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NOMENCLATURES

Notation

An = membrane surface area, m?

Bn = nthvirial coefficient, m¥™Ykg™?!

C = solute concentration, kg/m®

Cp = concentration in the bulk solution, kg/m®

Ce = concentration in the feed solution, kg/m®

Cy = concentration in the gel layer, kg/m®

Cnm = concentration at the membrane surface on the bulk solution
side, kg/m®

Co = concentration in the permeate solution, kg/m®

D = molecular diffusion coefficient, m”/min

e(t) = error

a(x) = vector of inequalities of dimension my

h(x) = vector of equations of dimension m,

J = permeate flux, m*mZmin

K = Kaman gain matrix

K1, K2 = tuning parameter of GMC

k = mass-transfer coefficient, m/min

L = length of membrane module, m

P = estimation error covariance matrix

p(t) = controller output

Q = Jprocess noise covariance matrix

R = measurement noise covariance matrix

R 3 gas-law constant = 8.3143 Jmol *.K*

Re = Reynolds number

Rep = resistance of the concentration polarization, m™
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CHAPTER 1

INTRODUCTION

In recent years, membrane has become an important unit operation in
chemical technology because many industries coneern about colloidal particles, including
the following: natural organic matter (NOM), heavy metals, and nonmetallic inorganic
ions from contaminated waters and industrial effluents. A large variety of membranes are
used in numerous processes devoted to molecular-scale separation in liquids or gases.
The most classic operations are electrodialysis, reverse osmosis, ultrafiltration, and
nanofiltration. Membranes applications in water and wastewater treatment have grown
rapidly because they have many advantages than other separation processes such as it
separates components as pure as other separation units and energy consumption is much
lower than. The lower energy consumption can be explained in term of latent heat that
membrane separation processes do not require latent heat in change of phase, unlike
digtillation and evaporation. Furthermore, membrane processes are appropriate to
manufacture high purity, quality, and valuable products. Nowadays membranes are
higher quality and lower price so the membrane processes have been applied to replace
other separation processes in most plants. In the future membrane process probably play

important role in environment because of high potential for recovery.

The economics of membrane filtration processes are dependent on the
permeate flux (Chellam and Wiesner, 1997). Almost membrane separation processes are
found operating condition that could be obtained maximizing permeate flux rate by using
optimal condition experiments. But permeate flux in cross-flow filtration is controlled by
dynamic process of gel-layer formation and growth. A serious limitation in such process
is the progressive permeate flux deterioration due to two phenomena: membrane fouling
and concentration polarization. The resistances that occur in membrane process could be

cause by the membrane, concentration polarization, internal pore fouling, and gel-layer



formation. Membrane fouling can be reversible when flux recovery can be achieve by

chemical cleaning or fluid dynamics, or irreversible when flux recovery is not possible.

The desire to maximize filtration rate using minimum energy is presents as
the motivation for this research. The model-base control is required to control the process
automatically so the reliable membrane transport model, developed for prediction and

simulation of membrane filtration dynamics with reference to permesate flux, is necessary.

In this work, the nanofiltration of agueous solutions containing organic
compounds developed by Chieh Tu et a. (2001) is considered. Nanofiltration membranes
are a new class of membrane, which have properties in between those of ultrafiltration
membranes and reverse-osmosis membrane. In this process the nanofiltration membrane,
which is a plate-and-frame system, is simulated to perform the filtration tests to remove
tannic acid, a model compound representing natural organic matter, under different
operating conditions including transmembrane pressure, reject flow rate, and acid
concentration. The primary purpose of this research is to develop process model
incorporating the concentration polarization and gel layer formation in the filtration
process and control the permestion rate of a chemical species through the membrane.
Applied pressure is used to control the operating flux at it desired trgjectory. A generic
model control (GMC) coupled with a Kalman filter is implemented to track an optimal
operating flux.



1.1 Ohbjectives of Research

The objectives of thisresearch are:

1. To study and develop membrane transport model for nanofiltration process,

To study the parameters of process that affect to performance of the nanofiltration
process,

To study algorithm of Generic Model Control (GMC) and design a control
configuration for the process to track the obtained optimal operating flux,

To study and develop computer program for nonlinear control of the process,

5. To assess the performance and robustness of the GMC controller and compare result

with PID controller.

1.2 Scope of Research

The scope of this research can belisted as follows:

1
2.

A nanofiltration membrane for removal tannic acid is studied in this research.

An off-line optimal control problem is solved with fixed batch time to find the
optimal flux. A nonlinear programming problem (NLP) is solved using a successive
guadratic programming (SQP) based optimization technique.

A generic model control (GMC) coupled with Kalman filter is applied to handle the
studied process. Applied pressure is selected as a manipulated variable.

4. The control response of GMC is compared with PID by using computer simulation.

5. The simulated program of the membrane separation process is developed by using

MATLAB language.



1.3 Contributions of Research

The contributions of this research can belisted as follows:

1. The mechanisms of transport phenomena and flux decline that occur in nanofiltration
have been studied.

2. Thefactors of flux decline during operation have been specified.

3. Mathematical model of a nanofiltration process has been devel oped.

4. The computer programs developed by MATLAB language have been simulated to
study the behavior of ananofiltration process.

5. A nanofiltration process has been controlled to achieve a desire objective.

1.4 Activity Plan

1. Relevant information regarding membrane separation process is reviewed.

2. Mathematical model of a nanofiltration membrane is developed to present behavior of
the process.

3. Relevant information regarding optimization and control are reviewed.

4. Kaman filter is applied to estimate uncertain parameters.

5. An optimal operating flux of a nanofiltration process is determined to achieve the
desired objective.

6. A suitable control law is designed to track the obtained optimal operating flux.

7. All simulation results are collected and summarized.

8. Edit and improve the report.



Thisthesisis divided into six chapters

Chapter 1 is an introduction to this research. This chapter consists of

research objective, scope of research, contribution of research, and activity plan.

Chapter 2 reviews the literature for work related to modeling of
nanofiltration system, Generic Model Control (GMC) strategy, optimization and Kalman

filter.

Chapter 3 covers some background information of membrane separation

process (nanofiltration), optimization, Generic model control (GMC), and Kalman filter.

Chapter 4 describes the membrane separation process, a modeling of
nanofiltration for tannic acid in agqueous solution and control configuration. Simulation
results obtained by simulating the optimization formulation and the formulation of a

GMC controller are detailed in each section.

Chapter 5 presents the conclusions of this research and makes the

recommendations for future work.

Thisisfollow by:

References

Appendix A: Mathematical Model Devel opment,
Appendix B: Mass Transfer Coefficient Determination,
Appendix C: System Checking,

Appendix D: Integra Error Criteria,

Appendix E: Successive Quadratic Programming (SQP).



CHAPTER 2

LITERATURE REVIEW

2.1 Nanofiltration and Membrane Filtration Process

Porter (1972) studied concentration polarization with membrane.

Nanofiltration and ultrafiltration are pressure-driven processes, in which water is forced
to permeate the small membrane pores by the application of pressure. The permeate flux
rateis generally proportional tothe applied pressure until the accumulation of solutesin
the concentration polarization layer reaches a threshold concentration that limits further
increases in flux. The amount or thickness of solute accumulation is also dependent on
the flow hydrodynamics at the membrane surface. Increasing the Reynolds number of the
flow produces greater shear at the membrane surface causing a reduction in the amount of
foulant material.

Bhattacharyya and Madadi (1988) developed the mathematical model for
separation of phenolic compounds by low pressure composite membranes. The set of
differential equations based on solute diffusion through membranes. The solute
adsorption phenomenon, which creates large flux_drops for polymer membranes, was
investigated, accounted for in the mathematica model, and used in the computer
program. The validity of the model was tested for single and multiple component systems
using experimental data. The systems studied inthis work were chloro-and nitrophenols

in water.

Li et al. (1996) presented numerical, finite difference methods to calculate
water concentration profiles over the time course from initial water uptake to equilibrium
in poly (vinyl chloride)-based ion selective membrane.



Hong et al. (1997) proposed kinetics of permeate flux decline in crossflow
membrane filtration of colloidal suspensions. The membrane filtration experiments were
performed to systematically investigate the dynamic behavior of permeate flux in cross
flow membrane filtration of colloidal suspensions. The model was based on a simplified
particle mass balance for the early stages of crossflow filtration. Experimental results and
model predictions verify that permeate flux in crossflow membrane filtration of colloidal
suspensions declines more rapidly with increasing transmembrane pressure, and when

filtering suspensions with higher feed particle concentration and smaller particle size.

Cho (1998) developed a gel resistance model for a membrane filtration.
The development required an understanding of the factors related to NOM fouling.
Considerable research in this area had revealed that the NOM accumulation at the
membrane surface is dependent on operating parameters (e.g., pressure, feedwater

velocity) and properties of the NOM, feed water, and membrane.

Afonso et al. (1998) studied mass transfer of salt in the tangential
turbulent flow inside a nanofiltration tubular membrane. This could be described by a
modified eddy diffusive model, which accounts for the effect of high permeation fluxes
on the mass transfer rates through permeation Reynolds number. For the mass transfer to
be modeled, the following phenomena were then considered: concentration polarization
in the feed solution; Donnan equilibrium in the interfaces feed-membrane active layer
and permeate-membrane active layer; diffusion, convection, and electromigration in the
membrane active layer, described by the extended Nernst-Planck equations. The
prediction of the nanofiltration performance in terms of permeation fluxes and salt
regiections is achieved through an integrated model, considering the mass transfer
mechanisms both in the feed solution adjacent to the membrane and in the membrane
phase.

Bowen and Mohammad (1998) developed a predictive model for the
performance of a nanofiltration membrane in separating the components of a dye/salt

solution. A diafiltration process involving a mixture of dye and NaCl has been modeled



using a Donnan-steric pore model which was based on the extended Nernst-Planck
equation. Finally, the model was used to investigate optimization of the processing

conditions and also the membrane parameters.

Bhattacharjee et al. (1998) described the mechanism of concentration
polarization of interacting solute particlesin cross-flow membrane filtration and permeate
flux declination during cross-flow membrane filtration. In this work, the solution was
assumed to be a pseudo-one-component system. The mathematical model was illustrated

as the steady-state differential solute material balance in the polarized layer.

Williams et al. (1999) proposed the predictive reverse osmosis model for
the application to dilute organic-water systems. This research established the permeate
flux quality and flux drop characteristics of membrane involving the separation of dilute
organic (nonionized and ionized) pollutants and to develop a transport theory based on
fundamenta diffusion-adsorption models. Two models are presented in this work: a
modified steady-state solution diffusion model and an unsteady-state diffusion adsorption
model which are able to predict flux and permeate concentrations from a single reverse

0SMOSi s experiment.

De Carlo and Meirina (2000) developed a ssimplified time domain process
model of ultrafiltration in hemodialysis. Using a variable displacement pump to control
the dialysate flow rate, a transmembrane pressure gradient is generated to force excess
water in the blood to flow across the membrane into the dialysate. This work investigates
the modeling and adaptive control the ultrafiltration process for a single pass delivery
system. The controller design takes an adaptive PID approach to control the ultrafiltration
process based on a physical model of the filtration process.

Jounela and Oja (2000) studied the modeling module for a pressure filter.
Their work presents the intelligent control system designed for a variable-volume
pressure filter. The system consists of the modeling, classification, economic, fault

diagnosis and control modules. The modeling module of the intelligent system predicts



filtration using the two-stage hybrid model. The first stage model is based on a numerical
model for compressive cake filteration and the second stage model is the identified grey-
box model based on the classical filtration model.

Chieh Tu et a. (2001) studied a membrane transport model, devel oped for
prediction and simulation of nanofiltration dynamics with refference to permeate flux.
The important membrane transport phenomena that affect to flux decline contain
concentration polarization and gel layer formation. Membrane filtration tests using tannic
acid as amodel organic compound were designed for investigating permeate flux, as well
as solute concentration profiles for permeates and concentrates. The experiments were
conducted under various operating conditions by varying several parameters including

solute concentration, transmembrane pressures, and reject flow rates.

Van Der Bruggen and V andecasteele (2001) studied different mechanisms
of flux decline for the nanofiltration of aqueous solutions containing organic compounds.
Experiments with different organic components in aqueous solution showed that
adsorption resulted in a strong decrease of the water flux. The results of flux decline as a
function of the concentration could well be fitted with the Freundlich equation for
adsorption. This research focuses on pore blocking and adsorption inside the membrane
pores. Blocking of the pores by adsorbed compounds was studied to explain mechanism

of flux decline.

Alvarez et a. (2001) developed the model- to predict flux and aroma
compounds rejection in a reverse osmosis-concentration of ‘apple juice. The equations
describing mass transport in the membrane were developed from flux equations of the
system and the film theory. In this work, the permeability of the membrane and the solute
transport parameters were determined from the experiments with water and with aqueous

solutions of apple juice aroma compounds, respectively.

Timmer (2001) proposed the use of nanofiltration for concentration and

demineralization in the dairy industry. Models were developed, based on the extended
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Nernst-Planck equation, which describe the salt regjection as a function of the flux for
binary and ternary salt solutions. Effects of concentration polarization, composition of
feed and concentration are incorporated in the model. Furthermore, mass transfer in
boundary layer and mass transfer inside the membrane were calculated separately and the

distribution of the solute at the membrane/boundary layer interface was described.

Lee et al. (2002) proposed determination of mass transport characteristics
for natura organic matter (NOM) in ultrafiltration and nanofiltration membranes. This
study is mainly concerned with establishing areliable method of the quantitative analysis
of natural organic matter transport characteristics through ultrafiltration and
nanofiltration membranes with molecular weight cutoffs of 8000 (GM) and 250 (ESNA),
respectively.

Bowen et al. (2002) developed the linearized transport model for
nanofiltration. Finite difference linearization of pore concentration gradient in
nanofiltration membranes simplified the solution of a three-parameter model for
electrolyte regjection by removing the requirement for numerical integration of the
extended Nernst-Planck equation. The validity of the linearized model was first
experimentally tested by comparing with a rigorous characterization of the Desal-DK
nanofiltration membrane. Overall, the model was powerful tool for characterization of
nanofiltration membranes and subsequent prediction of separation performance dueto the
removal of the need for complex nonlinear numerical methods through the reduction of

the governing eguations to algebraic expressions.
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2.2 Generic Model Control (GMC)

Lee and Sullivan (1988) proposed a model-base control agorithm, GMC
capable of using nonlinear process model directly. In GMC scheme, first-principles
models derived from dynamic material and energy balances are mostly used. The direct
implement of the nonlinear process model could be imbedded into the GMC controller
without resorting to linearization. They generalized relatively easy GMC framework that
relied upon the process model to approximate plant behavior. In 1989, Lee et al. extended
the application of the model bases GMC controller to forced circulation single-stage
evaporator. The control strategy employing a process model derived from fundamental
mass and energy balances was shown to outperform single loop and predictive control
strategies by a significant amount. The control structure was first presented in genera
form and then specifically applied to this process. Later, Lee et a. (1991) applied the use
of GMC for controlling the level in a surge tank. This work focuses on the effect of
certain user—sel ectable parameters on the controlled response to changes in the inlet flow
rate and model inaccuracies. The overal algorithm was shown to be significantly lower
in computational requirements than previously proposed algorithms for surge tank
control. Implementation was straightforward and was suitable for even small-scale

process control computing systems.

Cott and Macchietto (1989) presented a new model-based controller for
theinitial heat-up and subsequent temperature maintenance of exothermic batch reactors.
The controller-was developed by using the Generic Model Control framework of Lee and
Sullivan, which provided a rigorous and effective way of incorporating a nonlinear
energy-balance model of the reactor and the heat-exchange apparatus into the controller.
It also allowed the use of the same control agorithm for both heat-up and temperature
maintenance, thereby eliminating the need to switch between two separate control
algorithms as was the case with today’ s more commonly used strategies. A deterministic
on-line estimator was used to determine the amount and rate of heat released by the
reaction. This information was, in turn, utilized to determine the change in jacket

temperature setpoint in order to keep the reaction temperature on its desired trajectory.
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The performance of the new GMC-based controller was compared to that of the
commonly used dual-mode controller. Simulation studies showed the new controller to be
as good as the dual-mode controller for a nominal case for which both controllers were
will tuned. However, the new controller was shown to be much more robust with respect
to changes in process parameters and to model mismatch.

Kershenbaum and Kittisupakorn (1994) studied a temperature control of a
batch reactor using GMC controller. In this study, the amount of heat released by the
reactions had been estimated online using an extended Kalman filter, and incorporated
into the GMC agorithm. Simulation results had shown that the Kalman filter gave an
accurate estimate of the amount of hesat released and together with the GMC controller,
gave reliable robust control. An experimental extension of the work using the PARSEX
(Partially simulated Exothermic) reactor showed that the extended Kalman filter was
rather more sensitive to plant/model mismatch than would have been predicted from

simulations alone.

Farrell and Tsai (1995) implemented a GMC agorithm for batch
crystallization process. The resulting algorithm which was caled batch GMC (BGMC)
algorithm utilized atime variant reduced-order input-output model derived by correlating
historical data of solubility vs. weight mean size. Control of the weight mean size

trajectory in response to seed disturbances was demonstrated in this paper.

Khandaekar and Riggs (1995) applied the nonlinear process model based
control (PMBC) to the Amoco/Lehigh University Model 1V FCC industrial challenge
problem. In_particular, PMBC was applied for the control of reactor temperature,
regenerator temperature and the flue gas oxygen concentration. The GMC law was used
for the nonlinear PMBC controller. Both the nonlinear PMBC and conventional PE
controllers were tested first for the unconstrained control. Finally, the nonlinear PMBC
constraint controllers were used for optimization studies to analyze the operation at the
economic optimum in the face of variations in feed characteristics and variations in

operative constraints.
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Vega et a. (1995) used a dynamic model of the evolution of the
temperature of a batch cooling crystallizer for the development of a GMC system for the
crystallizer. This servo-control system had been found experimentaly to work
adequately. The crystallizer had aso been controlled with a conventional Pl controller,
and the process had been simulated with the model. Simulations were accurate enough to
allow the model to be used for the design of control strategies for programmed cooling
crystallizers. The methodology described could be adapted to the study of other systems

or control algorithms.

Dunia and Edgar (1996) improved a generic model control algorithm for
linear systems. This work evaluated the basic GMC algorithm when applied to SISO
linear processes and provided insight regarding its limitation to ensure robust stability.
The basic algorithm of GMC was presented as a special case of feed-back linearization.
The effect of sampling time on the reference trajectory for discrete systems was anayzed
in order to avoid unstable responses for perfect models. Finaly, a predictive GMC was
developed to handle models with dead time in areliable way.

Nussara (1999) presented the application of GMC to control the
temperature of a batch polyvinyl chloride polymerization reactor. In this work, heat
released of reactions was needed in the GMC formulation but not available for
measurement, on-line heat released estimator was used to estimate the heat released of
the reactions. The GMC controller coupled with the estimator could give better control
performance than the PID controller could. Furthermore, the GMC controller was more

robust than the PID controller in the presence of plant/model mismathches.

Aziz et a. (2000) designed and implemented three different types of
controllers namely PI,PID (both in DM strategy) and GMC controllers to track the
optimal reactor temperature profiles using a complex reaction scheme in a batch reactor.
Off-line optimal control problem had been formulated and solved to obtain the optimum
temperature profiles (dynamic set point for controllers) to maximize the amount of the

desired product while minimizing the waste by-product. Neural network technique was
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used as the on-line estimator the amount of heat released by the reaction within the GMC
algorithm. The GMC controller coupled with a neura network was found to be more
effective and robust than the Pl and PID controllers in tracking the optimal temperature
profiles to obtain the desired products on target.

Xie et a. (2000) devel oped a qugadratic programming-based optimization
algorithm, which had the ability to handle linear constraints of manipulated and
controlled variables and their moving velocities. By combination of the proposed
optimization algorithm with the generic model control scheme, a novel approach to
constrained generic model control based on quadratic programming was proposed for
nonlinear affine systems with relative order one. Computer simulation results show that
the proposed approach had definite robustness against processmodel parameter
mismatches, it could be applied in real time, and it appeared to hold a considerable

promise in process contral.

Meethong (2002) studied the GMC for a concentration control of
continuous stirred tank reactor with first-order exothermic reactor, which was the process
of relative degree two. This research used an internal controlled variable, the key
component that made the control variable to be effected directly like the relative degree
one processes. The results showed that the GMC with internal controlled variable could

use the techniques that improved the robustness like a conventional GMC.

Moolasartsatorn (2002) recently “"implemented GMC coupled with
extended Kalman Filter (EKF) for apervaporative membrane reactor thatestorification of
acetic acid and butanol was considered. Both optimal temperature set point and optimal

temperature profile obtained in the off-line optimization were tracked.in this research.
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2.3 Optimization

Tremblay and Luus (1989) proposed to present a computational procedure
to enable one to examine benefits to be expected from non-steady-state operation of
chemical reactors. Three examples showed that the proposed agorithm using dynamic
programming can be used for a wide variety of problems, such as to maximize the yield,
average rate of production or average concentration overtime. It was found that dynamic
programming performed well even for a 6™ order system. The optimum period, split of
period and amplitude of the input could be obtained in a reasonable computation time

when the optimal input signal was in fact periodic in nature.

Chang and Hseih (1995) proposed an integrated method for optimization
and control of semibatch reactors. Based on the desired control objective, dynamic
programming was applied to obtain optimal operating trajectories. Yield optimization
was assured for a real plant by tracking model-dependent optimal trajectories according
to the proposed modified globally linearizing control (MGLC) structure. The behavior of
the proposed MGL C structure was predictable and reliable, with tuning parameters based

on the proposed tuning method if the manipulated variables were not constrained.

Garciaet al. (1995) converted the optimal control problem into anonlinear
programming problem solved by the generalized reduced gradient procedure coupled
with the golden search method, for the search of the total batch time for fine chemical
productions in batch reactors. The efficiency of the methodology was shown by its
application to different formulations of the problem for different chemical reaction
schemes and with stress laid on the influence of the constraints on the limitation of

temperature variations and byproduct formation.

Chang et al. (1996) proposed an integrated method for optimization and
control of batch reactors. Based on the desired performance index, the modified two-step
method was applied to optimize an operating trajectory. Yield optimization was assured
for areal plant by tracking the model-dependent optimized trgectory through the
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proposed modified globally linearizing control (MGLC) structure. Experimental results
revealed that the proposed MGLC structure could be applied in tracking an operating

trajectory determined on-line or off-line.

Rojnuckarin and Floudas (1996) applied an optimal control strategy to the
problem of finding the flux profiles for the conversion of methane to ethylene and
acetylene in a plug flow reactor. The optimal control approach implemented in the paper
belonged to the class known as gradient methods in function space. The optimal control
designs were performed with respect to the final mass fractions of ethylene and acetylene

in aplug flow reactor using heat, oxygen, and chlorine fluxes as controls.

Carrasco and Banga (1997) considered the dynamic optimization (optimal
control) of chemical batch reactors. The solution of these types of problems was usually
very difficult due to their highly nonlinear and multimodal nature. Two algorithms based
on stochastic optimization were proposed as reliable alternatives. These stochastic
algorithms were used to successfully solve four difficult case studies taken from the
recent literature: the Denbign’s system of reactions, the oil shale pyrolysis problem, the
optimal fed-batch control of induced foreign protein production by recombinant bacteria,
and the optimal drug scheduling of cancer chemotherapy. The advantages of these
alternative techniques, including ease of implementation, global convergence properties,

and good computational efficiency, were discussed.

Guntern et al. (1998) proposed a methodology for the optimization of
semibatch reactors using dynamic programming. Thisincluded synthesis of a
mathematical model, analysis of the performance of the process at its present state,
definition of a set of decision variables, and optimization and simplification of this
optimum toward feasibility, The methodology was applied to an industrial case study in

the fine chemical industry using the lowest product cost as the objective function.

Luus and Okongwu (1999) determined the optimal flow rates of heating
and cooling fluids instead of finding only the optimal temperature profile, so that the
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yield of a desired product in a batch reactor was maximized. The purpose of this paper
was to investigate such an approach in the control of typical chemical reactors by
considering two examples. By using iterative dynamic programming (IDP) in multi-pass
fashion, the optimal policy could be readily obtained. Optimization as carried out on two
typical batch reactor problems showed that if the heat transfer coefficient was reasonably
chosen, then the optimal yield could be significantly larger than what could be expected
from the best isothermal operation.

2.4 Kaman Filter

Kaman (1960) published a famous paper describing a recursive solution
to the discrete data linear filtering problem. This paper formulated and solved the Wiener
problem from the state point of view. The Kalman filter has been the subject of extensive

research and application, particularly in the area of autonomous or assisted navigation

Alag and Gilyard (1990) presented a Kalman algorithm for estimation of
unmeasured output variables for an F100 turbofan engine. The approach was based on
explicitly modeling the effects of off-nominal engine behavior as biases on the measured
output variables. Results were presented for estimates of the output variables and were
compared with values obtained from detalled nonlinear simulation of the engine. The
evaluation was carried out for both a nominal engine and an engine in which intentional
deterioration was introduced. The proposed estimation algorithm was able to accurately
predict the values of the output variables for the simulation studies for both nominal and
degraded engine conditions. The proposed algorithm had been validated by comparing its
estimates with the values from the detailed nonlinear simulation, and it-had performed
well on flight data.

Myers and Luecke (1991) described and illustrated an efficient new
algorithm on process examples for solution of the extended Kalman filter equations for a

continuous dynamic system with discrete measurements. Implicit simultaneous methods,
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which were powerful in terms of accuracy and efficiency, were utilized for numerical
integration. At the internal integration step level, the new algorithm exploited the
decoupled nature of the state estimate and error covariance equations aong with the
symmetry of the error covariance matrix. The error control strategy included both the

state estimates and error covariance.

Avery (1992) presented an approach to track fitting that uses an iterative
algorithm to correctly account for the effects of multiple scattering and energy loss along
the track trgjectory. This technique, known generally as a Kaman filter, was first applied
to track fitting by Billoir (1984) and was used by several CERN experiments. In this
work, The tracks was measured through a two step process. First, detector measurements
were put through a pattern finding algorithm to select a subset that seems consistent with
belonging to a single track This set of measurements was then fit statisticaly through a
maximum likelihood method to determine the most probable set of track parameters
consistent with the measurements. Errors in these parameters were estimated from the
measurement uncertainties and other factors, as discussed below. Measurements may be
further eliminated during the track fit if they were found to be of sufficiently poor quality
or not consistent with belonging to the track. Because of its well understood properties,
the least squares algorithm was most commonly used to fit the track parameters and

estimate the parameter errors.

Russell et al. (2000) investigated a model-based inferential quality
monitoring approach for a class of batch systems. First, an extended Kaman filter based
fixed-point smoothing algorithm was presented and compared to a popular approach to
estimating the initial conditions. Subsequently, a nonlinear optimization-based approach
was introduced and analyzed. A sub-optimal on-line approximation to the optimization
problem was developed and shown to be directly related to the extended Kaman filter
based results. Finally, some practical implementation aspects were discussed, along with

simulation results from and industrially relevant example application.
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Lersbamrungsuk (2000) designed and developed two software programs
based on Kaman filter. The first one, named kSTAPEN+, was a software component
based on Kalman filter. In KSTAPEN+, users could define their own systems including
states and parameters to be estimated. After running the program, estimation results are
given. The estimates obtained from the kSTAPEN+ had been compared to those obtained
from the program written on Matlab. Furthermore, the program had been tested with a
heater, a stirred-tank reactor and a microfeeder. In kSTAPEN-C, the component had been
developed by using Component Object Model (COM) technology. The estimates
obtained from KSTAPEN-C had been compared to those obtained from kSTAPEN+.
Results had shown that both kSTAPEN-C and kSTAPEN+ were equival ent.



CHAPTER 3

THEORY

The aim of thiswork is to apply mathematical models of nanofiltration
to flux control. The economics and energy consumption of membrane separation
processes can be directly related to the permeate flux deterioration. Therefore, a clear
understanding of nanofiltration process is necessary. To solve this problem, the model
of nanofiltration is developed to predict, design, and optimise the nanofiltration
process. To start model development, the first step is to establish the basic
characteristics of membrane processes and the mechanisms that are responsible for

the separation.

The purpose of this chapter is to provide the practical introduction to
some theoretical groundwork and background information. This introduction includes
a description some discussion of membrane separation process, optimization, Kalman
filter, and Generic Model Control (GMC) configuration.

3.1 Membrane Separation Process

The details on ‘a general ‘introduction to. membrane separation
technology and transfer mechanism in membrane separation are provided in the

following sections.

3.1.1 Introduction

Starting in the late sixties, membrane processes gradually have found
their way into industrial applications and serve as viable alternatives for more
traditional processes like distillation, evaporation, or extraction. Based on the main

driving force, which is applied to accomplish the separation, many membrane
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processes can be distinguished. An overview of the driving forces and the related

membrane separation processesis given in Table 3.1 (Timmer, 2001).

Table 3.1. Driving forces and their related membrane separation processes

Driving force M embrane processes

e Pressuredifference microfiltration, ultrafiltration, nanofiltration,
reverse osmosis or hyperfiltration

e Chemical potential difference | pervaporation,  pertraction, diaysis, gas
separation, vapor permeation, liquid membranes
e Electrical potential difference | lectrodialysis, membrane  electrophoresis,

membrane electrolysis

e Temperature differential membrane distillation

This thesis will focus on pressure driven membrane separations.

Pressur e driven membrane processes

Four pressure driven membrane processes are distinguished in practice:

1. Microfiltration (MF) is characterised by a membrane pore size between 0.05 and 2
pum and operating pressures below 2 bar. MF isprimarily used to separate
particles and bacteriafrom other smaller solutes.

2. Ultrafiltration (UF) is characterised by a membrane pore size between 2 nm and
0.05 um and operating pressures between 1 and 10 bar. UF is used to separate
colloids like proteins from small molecules like sugars and salts.

3. Nancfiltration (NF) is characterised by a membrane pore size between 0.5 and 2
nm and operating pressures between 5 and 40 bar. Nanofiltration is used to
achieve a separation between sugars, other organic molecules and multivalent
salts on one hand and monovalent salts and water on the other.

4. Reverse osmosis (RO) or hyperfiltration. Reverse osmosis membranes are

considered not to have pores. Transport of the solvent is accomplished through the
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free volume between the segments of the polymer of which the membrane is
constituted. The operating pressures in Reverse osmosis are generally between 10

and 100 bar and this membrane process is mainly used to remove water.

Nanofiltration is a form of pressure driven filtration that uses
membranes to preferentially separate different fluids or ions. Nanofiltration is a
membrane liquid separation technology that is positioned between reverse osmosis
and ultrafiltration. The filtration process takes place on a selective separation layer
formed by a semipermeable membrane. The driving force of the separation processis
the pressure difference between the feed (retentaie) and the filtrate (permeate) side at
the separation layer of the membrane. However, because of its selectivity, one or
several components of a dissolved mixture are retained by the membrane despite the
driving force, while water and substances with a molecular weight < 200 D are able to
permesate the semipermesable separation layer. Because nanofiltration membranes also
have a selectivity for the charge of the dissolved components, monovalent ions can

pass the membrane and dival ent and multivalent ions are rejected.

The basic processes in membrane separation are dead—end and cross
flow filtration. Comparison of dead-end and cross flow filtration are illustrated in

figure 3.1.
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Figure3.1. Comparison of dead-end and cross flow filtration
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Membranes are manufactured as flat sheets, hollow fibers, capillaries,
or tubes, for practical applications membranes are installed in a suitable device, which
is referred to as membrane module. The most commonly used devices are pleated
cartridges, tubular and capillary membrane modules, plate-and-frame and spiral-
wound modules, and hollow-fiber modules. There are several other module types used
in special applications, such as the rotation cylinder and the transversal flow capillary
module. The key properties of efficient membrane modules are high packing density,
good control of concentration polarization and membrane fouling, low operating and
maintenance costs, and cost-efficient production. For the efficiency of a membrane
process in a certain application, the choice of the proper membrane module is of great

importance.
3.1.2 Mass Transfer in Nanofiltration

The membrane process is applied for separate or increase
concentration of the species in mixture. The most important property of membranesis
their ability to control the rate of permeate of different species. The two models used
to describe the mechanism of permeation are illustrated in figure 3.2.
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Microporous membranes Dense solution-diffusion
separate by molecular membranes separate because
filtration of differencesin the solubility

and mobility of permeantsin
the membrane material

Figure3.2. Molecular transport through membranes can be described

by aflow through permanent pores or by the solution-diffusion mechanism.
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One model is the solution-diffusion model, in which permeant
dissolved in the membrane material and then diffuse through the membrane down a
concentration gradient. The permeants are separated because of the differencesin the
solubilities of the materials in the membrane and the differences in the rates at which
the materials diffuse through the membrane. The other model is the pore flow model
that permeants are transported by pressure-driven convective flow through tiny pores.
Separation occurs because one of the permeantsis excluded from some of the poresin
the membrane through which other permeants move.

Diffusion, the basis of the solution-diffusion model, is the process by
which matter is transported from one part of a system to another by a concentration
gradient. The individual molecules in the membrane medium are in constant random
molecular motion, but in an isotropic medium, individual molecules have no preferred
direction of motion. Although the average displacement of an individual molecule
from its starting point can be calculated, after a period of time nothing can be said
about the direction in which any individual molecule will move. However, if a
concentration gradient of permeate molecules is formed in the medium, simple
statistics show that a net transport of matter will occur from the high-concentration to
the low-concentration region.

Mass transfer through nanofiltration membrane is usually described by
the solution diffusion model (Strathmann et a., 1979). The driving force for solvent
flow is the pressure gradient across the membrane. Solute transport in the membrane,
according to the solution diffusion - model, is driven by the concentration gradient of
solute across the membrane (Timmer, 2001). In the solution diffusion model it is
further assumed that no coupling between solute and solvent transport is present
(Pusch, 1986). However, this assumption is not always valid. Drag by solvent flow
may cause additional transfer of solute through the membrane. For the mass transfer
in nanofiltration to be modeled, the following phenomena are then considered;
concentration polarization in feed solution and advection-diffusion mechanisms. A
representation of the mass transfer process occurring in nanofiltration isgivenin
figure 3.3.
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Figure3.3. Masstransfer in nanofiltration

When an external pressure AP isimposed on aliquid which is adjacent
to a semi-permeable membrane, solvent will flow through the membrane. A neutral
solute dissolved inthe solvent at a concentration level C, will aso flow towards the
membrane. If the membrane exhibits rejections for the solute, partial permeation will
occur and non-permeated solute accumulates inthe boundary layer, and hence a
concentration profile develops. This phenomenon is called concentration polarization
(Mulder, 1991; Cheryan, 1998). Thesolute distributes at the membrane/solution
interface and will be transported through the membrane by convection and diffusion.
At the permeate side, a second distribution process will occur and a fina

concentration of solutein the permeate; 2™, will be reached.

The fundamental eguation of membrane transport model is the classic
is advection-diffusion equation. The general form of the advection-diffusion equation
for abinary system (solute/solvent system) can be written as show below:

%w-vc = DV°C (3.1.1)

Where C is the concentration of the solute and D is the diffusivity of the solute in the
solvent phase.
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Figure 3.4. Mathematical representation of mass transport in the membrane module.

The proposed membrane transport model considers only the solute
mass transfer in the region between the membrane surface and membrane cell wall.
And internal pore fouling is neglected. The mathematical model that represent solute
transport through the membrane system in the region between the membrane and the
membrane cell wall is illustrated in figure 3.4. Marked A in the figure 3.4 is the
control volume for advection and back diffusion. According to the rectangular
Cartesian coordinate system, the bulk solution flow between the membrane and the
membrane cell wall in the x-direction. The solute transport occurs in the y-direction
that is controlled by advection from bulk solution to the membrane and diffusion from
membrane surface back to the bulk ‘solution. It must be noted that the advective and
diffusive transport mechanisms are not exactly balanced before steady state, and
consequently the concentration polarlization and gel layers exhibit variable thickness
with time. The advection-diffusion equation, shown in equation (3.1.1), developed for
the control volume that is illustrated in figure 3.4 can be simplified using the
following assumptions:

1. No concentration gradient exists in the z-direction; that isoC/6z and 9C?%6z°

are equal to zero.
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2. The concentration gradient in the direction of product flow (6C/ox) can be

considered negligible in comparison with 6C/oy.

According to the preceding assumptions and considering the relation vy
=-J,, equation (3.1.1) can be transformed as

oc_,oc_ac

RSl (3.1.2)
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Figure 3.5. Concentration profiles of the proposed model without internal fouling.

As illustrates 'in figure 3.5, The boundary conditions for equation
(3.1.2) can be written as follows.

For the temporal and spatial stages before the gel-layer formation (Cy,
< Cy), figure 3.5(a).

at t=0, C= Cm,O: Cb,O

a y=95 C=G

a y=0, ICm=-D ()0
ot
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For the temporal and spatial stages after the gel-layer formation (Cy, =
Cy), figure 3.5(b).

a y=L+s C=GC
a  y<lL, C=Cs.

Under steady-state conditions (dC/dt = 0), the solution to equation
(3.1.2) with the boundary conditions becomes

J :Eln%:kln&, (313
o G, <

where k represents the mass-transfer coefficient for solute transport through the
membrane cell. After the gel-layer formation, the solute concentration on the
membrane surface will equal the gel-layer concentration (Cy = Cy), and equation
(3.1.3) can therefore be written as

J :kln%:kln—g. (3.1.4)

Driving forces such as concentration gradient and/or pressure gradient
that drive the mixture transport through the membrane separates the permeants.
According to Darcy’s law, permeate flux decline is caused by decreased driving
forces and increased resistances (van den Berg and Smolders, 1988; Ho and Sirkar,
1992). Membrane permeate flux (J,) can be described by the relation following:

Driving force (such as AP, AC, or AT)

Flux, J, = (3.1.5)

Viscosity x Total resistance

Concentration  polarization, reversible and directly occurring
phenomena, and Fouling, irreversible and long term phenomena, are two major
phenomena that affect to flux decline. The resistance occurring in membrane

processes could be caused by the membrane, concentration polarization, internal pore
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fouling, and gel-layer formation. The resistance of virgin membrane (Ry) is a
constant factor during filtration. Concentration polarization resistance increases due to
solute retention by the membrane when solvent transport is facilitated. Solute
accumulates on the membrane and forms a layer at the membrane interface with a
relatively high concentration. The resistance due to the concentration profile layer
(Rep) increases during membrane filter operation until the system reach steady state.
For some cases, the solution concentration at the membrane interface can reach
certain high values and will progressively evolve into a gel layer accumulation on the
membrane surface (Ry). Internal pore fouling occurring inside the membrane can also
lead to permeate flux decline (R,).

The advantage of membrane processes are summearized bel ow:

1. Inthe membrane processes, each species are separated by difference of molecular
size so the processes can be operated at normal temperature. Then the membrane
processes are suitable to separate species that decline by heat.

2. Most of the membrane processes consume lower energy than other separation
processes because they are not necessary to change phase.

3. Because both of permeate and retentate are products of the membrane processes, it
dose not generate waste.

4. Most of membrane units are designed for high separation area per volume of
module so they are compact.

5. The membrane processes can operate as batch or continuous processes. And they
are not complicated to install automatic process control.

The disadvantage of membrane processes are summarized below:

1. Accumulation of solute particles on_ retentate side, known as_“concentration
polarization”, is cause of high concentration at membrane surface and flux
decline.

2. Flux decline due to fouling in the membrane pores and surface affects to
performance of membrane processes.

3. Membranes stability is limited by their material such as; cellulous membranes are

appropriate to operate at pH 4-8.
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3.2 Optimization

Optimization is the use of specific methods to determine the most
effective and efficient solution to a problem or design for a process. This technique is
one of the major quantitative tools in industrial decision making. A wide variety of
problem in the design, construction, operation, and analysis of chemica plants (as
will as many other industrial processes) can be resolved by optimization (Edgar et al.,
2001).

3.2.1 The Essential Features of Optimization Problems

The essential elements of the optimization problems are:
1. Objective function,
2. Decision variable,
3. Constraint.

The objective function is a mathematical function that, for the best
values of the decision variables, reaches a minimum (or maximum). Thus, the
objective function is the measure of value or goodness for the optimization problem.
There may be more than one objective function for a given optimization problem.
There are different types of objective function depending on the needs and uses.

The decision variables are those independent variables over which the
engineer has some control. These can be continuous variables such as temperature or

discrete (integer) variables such asnumber of stages in a column.

Constraints are values that indicate the ability and limit of the feasible
path of the process. Constraints can be classified into two types as follow:
1. Equality constraints are constraints that indicate the limits of the process or
its product such as the purity of the products, mass and energy balance.
2. Inequality constraints are constraints that indicate the limit due to design

and other limits
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Constraints in optimization arise because a process must describe the
physical bounds on the variables, empirical relations, and physical laws that apply to a
specific problem. Examples of equality and inequality constraints follow:
e Production limitations,
e Raw materia limitations (e.g., limitation of feedstock supplies),
e Safety or operability restrictions (e.g., temperature, pressure),
e Environmental limitations (e.g., production of toxic material),

e Physical property specifications on products.

The optimization models represent problem choices as decision
variables and seek values that maximize or minimize objective functions of the
decision variables subject to constraints on variable values expressing the limits on

possible decision choices. The optimization model description is stated as:

f(X) objective function
Subject to: h(x) =0 equality constraints (3.2.1)
g(x) >0 inequality constraints

where x isavector of n decision variables (X1, Xz, ..., Xn),
h(x) is avector of equations of dimension my,

g(x) isavector of inequalities of dimension n.

An efficient and accurate solution to this problem is not only
dependent on the size of the problem in terms of the number of constraints and

decision variables but-also on characteristics of the objective function and constraints.

From equation (3.2.1), it is unconstrained problem if there are no
constraint functions and no bounds on the x. Linear Programming (LP) refer to
problems in which both the objective function and the constraints are linear. More
difficult to solve is the Nonlinear Programming (NLP) problem in which the objective

functions and constraints may be nonlinear functions of the decision variables.
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3.3 Kaman Filter

To develop advanced control system for filtration process
performance, uncertainty parameters and unmeasurable variables must be estimated.
Therefore, estimation is a necessary procedure in control strategy to estimate
measured and unmeasured process data and reduce errors from mathematical model in
order to force the process to satisfied state. The Kalman filter is an efficiently
estimated technique. It is a tool that can estimate the variables of a wide range of
processes. The Kalman filter not only works well in practice, but it is theoretically
attractive because it can be shown that of all possible filters, it is the one that
minimizes the variance of the estimation error. Kalman filter is often implemented in
embedded control systems because in order to control a process, process control

engineers first need an accurate estimate of the process variables.

The Kalman filter is a set of mathematical equations that provides an
efficient computational (recursive) solution of the least-squares method. The filter is
very powerful in several aspects: it supports estimations of past, present, and even
future states, and it can do so even when the precise nature of the modeled system is

unknown. A linear system is simply a process that can be described by the following

two equations:
State equation: X1 = AX +BuU + W, (331
Output equation: Y. = Cx t+v, (33.2)

In the above equations'A,B, and C are matrices, k isthe timeindex; x

is caled the state of the system; u isaknown input to the system; y isthe measured

output; and the random variables w and v are the process and measurement noise,
respectively. Each of these quantities are vectors and therefore contain more than one

element. The vector x contains al of the information about the present state of the

system, but x is not measured directly. Instead y , which is a function of x that is

corrupted by the noise v , is measured.
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From equation (3.3.1) and (3.3.2), the random variables w and v are

assumed to be independent of each other and with normal probability distributions

Q

P(w)
P(v)

N (0,Q), (3.3.3)
N (O,R). (3.3.4)

Q

In practice, the process noise covariance Q and measurement noise covariance R
matrices might change with each time step or measurement, however here they are

assumed to be constant.

The nxn matrix A in the difference equation equation (3.3.1) relates
the state at the previous time step k to the state at the current step k+1, in the absence
of either a driving function or process noise. Note that in practice A might change

with each time step, but here we assume it is constant. The nx| matrix B relates the
optional control input u € R'to the state x. The mxn matrix C in the measurement

equation equation (3.3.2) relates the state to the measurement y, . In practice C might

change with each time step or measurement, but here it is assumed as constant.
3.3.1 The Computational Origins of the Filter

Define X, to be a priori state estimate at step k+1 given knowledge
of the process prior to step k+1, and X,.,,., € R" to be a posteriori state estimate at

step k+1 given measurement'y, ., - Thus, apriori and a posteriori estimate errors can be
definded as
€k = X ™ )’Zkﬂjk ) (3.3.9)

and e><+]Jk+1 =X~ )’ZkJr]JkJrl : (336)

The apriori estimate error covariance is then

FLuk = E[e1<+uk 'QLJJk] ) (3-3-7)
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And the a posteriori estimate error covarianceis

Pk = E[ex+uk+1'elr+uk+1] . (3.3.8)

In deriving the equations for the Kalman filter, calculation begin with

the goal of finding an equation that computes an a posteriori state estimate X, aa
linear combination of an a priori estimate X, and a weighted difference between an
actual measurement y, and a measurement prediction CX, as shown below in

equation (3.3.9).

)’ik+uk+1 3 )2k+]]k = K%\~ Ck+1)2k+ﬂk) (3.3.9)

The difference (Y, —C,.,X.y)In equation (3.3.9) is caled the

measurement innovation, or the residual. The residua reflects the discrepancy

between the predicted measurement Cx, ., and the actual measurement y, . A residual

of zero means that the two are in complete agreement.

The nxm matrix K in equation (3.3.9) is chosen to be the gain or
blending factor that minimizes the a posteriori error covariance equation (3.3.8). This
minimization can be accomplished by first substituting equation (3.3.9) into the above
definition for SRTRE substituting that into equation (3.3.8), performing the indicated

expectations, taking the derivative of the trace of the result with respect to K, setting
that result equal to zero, and then solving for K. For more details see (Maybeck 1979;
Jacobs 1993; Brown and Hwang 1996). One form of the resulting K that minimizes
equation (3.3.8) isgiven by

Kk+l = FT<+1|kCI-<r+l(Ck+1FT<+]JkCI-<r+1 + R<+1)_1 (3310)

From equation (3.3.10) show that as the measurement error covariance R approaches

zero, the gain K weights the residual more heavily. Specially,
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leLrDO Kia = Ck_+11 .
On the other hand, as the a priori estimate error covariance Py, approaches zero, the

gain K weights the residual less heavily. Specialy,

lim K, ,=0.

R —0

Another way of thinking about the weighting by K is that as the measurement error

covariance R¢+1 approaches zero, the actual measurement vy, is trusted more and
more, while the predicted measurement CX,,, is trusted less and less. On the other

hand, as the a priori estimate error covariance Py.1c approaches zero the actual

measurement Y. is trusted less and less, while the predicted measurement CX,,,, is

trusted more and more.

3.3.2 TheKalman Filter Algorithm

The Kalman filter estimates a process by using a form of feedback
control: the filter estimates the process state at some time and then obtains feedback in

the form of (noisy) measurements As such, the equations for the Kalman filter fall into
two groups time update equations and measurement update equations The time

update equations are responsible for projecting forward in time the current state and

error covariance estimates to obtain the a priori estimates for the next time step. The
measurement update equations are responsible for the feedback—i.e for incorporating

a new measurement into the a priori estimate to obtain an improved a posteriori
estimate

The time update equations can aso be thought of as predictor
equations, while the measurement update equations can be thought of as corrector

equations Indeed the final estimation algorithm resembles that of a predictor-corrector

algorithm for solving numerical problems as shown below in figure ss.
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Compute Kalman gain

Ki+1= I:Jk+1|kCTk+1(Ck+1F’k+1|kCTk+1+Rk+1)-1

Time update

N N
Xi+1k = ArXik + BkUk A

Pk = AkPigA Tk + Qx

M easurement update

N

N
Xk+1k+1 = Xk+1k T Kis1(Yie1- Ck+1Xk+1|k)

Compute error covariance

Prsapr1 = (I = Kis1Cia1) P 1k

Figuress. The ongoing Kalman filter cycle

Figure 3.6 shows schematically the steps involved in the execution of

the Kalman filter. The time update projects the current state estimate ahead in time

The measurement update adjusts the projected estimate by an actual measurement at

that time

The specific equations for the time and measurement updates are presented below.

The predictor equations can be described by the following two equations

Q) Project the state ahead:

)A(kulk = A<>A(k|k +Bu, ,

2 Project the error covariance ahead.

Pk+uk = A<Pk|kA-<r +Qk .

(3.3.11)

(3.3.12)
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Again notice how the time update equations in equation (3.3.11) and (3.3.12) project
the state and covariance estimates forward from time step k to step k+1. A and B are
from equation (3.3.1), while Q is from equation (3.3.3). Initia conditions for the filter
are discussed in the earlier references.

The corrector equations can be presented by the following three equations:

Q) Compute the Kalman gain:
Kk+l i F{<+ukC;—+l(Ck+lF{<+ﬂkCI-<r+l + R<+l)7l (3313)
2 Update estimate with measurement vy, .,

quku = )'Zk+]jk + Kiin(Viaz— Ckﬂf(kﬂlk) (3.3.14)
3 Update the error covariance

R<+ﬂk+1 = (I — Kk+1Ck+1) R<+Mk (3315)

The first task during the measurement update is to compute the

Kalman gain, K, . Notice that the equation given here as equation (3.3.13) isthe same
as equation(3.3.10). The next step is to actually measure the process to obtain vy, , and

then to generate an a posteriori state estimate by incorporating the measurement as in
equation (3.3.14). Again equation (3.3.14) is simply equation (3.3.9) repeated here for
completeness. The final step is to obtain an a posteriori error covariance estimate via
equation (3.3.15)

After each time and measurement update pair, the process is repeated
with the previous a posteriori estimates used to project or predict the new a priori
estimates. This recursive nature is one of the very appealing features of the Kaman
filter—it makes practical implementations much more feasible than (for example) an
implementation of a Wiener filter (Brown and Hwang 1996) which is designed to
operate on al of the data directly for each estimate. The Kaman filter instead

recursively conditions the current estimates on all of the past measurements.
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3.3.3 Parameter Estimation and Tuning

In the actual implementation of the filter, the measurement noise
covariance Ry is usually measured prior to operation of the filter. Measuring the
measurement error covariance Ry is generally practical because process control
engineers need to be able to measure the process anyway while operating the filter so
they should generally be able to take some off-line sample measurements in order to

determine the variance of the measurement noise.

The determination of the process noise covariance Jy is generally more
difficult because it does not have the ability to directly observe the process.
Sometimes a relatively simple process model can produce acceptable results if one
injects enough uncertainty into the process via the selection of Q. Certainly in this

case one would hope that the process measurements are reliable.

The tuning of the filter parameters O and Ry is usually performed off-
line, frequently with the help of another (distinct) Kalman filter in a process generally
referred to as system identification. Under conditions where Oy and Ry are in fact
constant, both the estimation error covariance Pg:x and the Kalman gain K will
stabilize quickly and then remain constant. If this is the case, these parameters can be
pre-computed by either running the filter off-line, or for example by determining the

steady-state value of P k.

System Measurement Kalman Filter

Figure 3.7 The process to by analysed by the Kalman filter
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Figure 3.7 is a flowchart of the process to by analysed by the Kalman
filter. Data from time step k are conducted to calculate the state from time k+1. The
value of X+ isturned to calculate a new value of the state at next step and transmitted

to the measurement unit. The measurement value ,.,) is sent to Kaman Filter to
estimate  X,.,. The estimated value, X, ., is recurred to estimate the value of

§(k+]jk+l . These processes are repeated continuously.

3.4 Generic Model Control (GMC) Algorithm

In many chemical industries, the development of new control
technology is quite motivated by practical need. This is certainly true of classical
automatic process control where the emergence of the chemical process industries,
with its large production volume and complex of the processes, created automatic
process control technology. In process control technology with in the field of control
itself, the model-based control techniques have been already developed such as State
Feedback Control (SFC), Dynamic Matrix Control (DMC), Generic Model Control
(GMC), and etc.

Most of membrane processes are nonlinear processes because there are
nonlinear terms such as multiple terms and/or square terms of variables in the
equations. Because of nonlinear of the processes, the linear control algorithm israrely
applied to control _some nonlinear process. According to preceding, Using linear
control agorithm' is not appropriate to control ‘nonlinear ‘processes so nonlinear
control technique application should be better ‘than. A simple nonlinear control
technique, developed by Lee and Sullivan in 1988, is Generic Model Control (GMC)
that can be applied to control many SISO (Single Input Single Output) processes. The
GMC, a model-based control technique, requires mathematical model of process and
measured data of controlled variables in its algorithm. GMC uses a model of the
process in formulating the control law. The design framework is similar to other
model based approaches such as Dahlin’s algorithm and IMC. However, rather than
adopting a classical approach of comparing the trgjectory of the process output against
a desired trgjectory, GMC defines the performance objective in terms of the time
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derivatives of the process output, i.e. minimizing the difference between the desired
derivative of the process output and the actual derivative.

A general mathematical model of process can be developed in
relationship of state variables (x), manipulated variables (u), and time (t) as

dx
Y F(x,u,t) (34.1)
y=H{(x) (34.2

where X isthe vector of state variables,
u isthe vector of manipulated variables,

y is the process outpuit.

Good control performance will be given by combination of the

proportional and derivative term of error. The rule of manipulated variable selection

is
: .
y=Ke®)+ |, Kaet)dt (34.3)
where et = (v -Y),
K1 ,K3 are tuning parameters of the GMC,
and y isthe set-point of out put.

From equation (3.4.3), the first term is used to control the process output to the
desired target, y and the second term provides zero offset response.

By differentiate equation (3.4.2) becomes

°:8H(x)_g

344
ox ot ( )

Substituting equation (3.4.1) in equation (3.4.4) to obtain,
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§/=M- F(x,ut). (3.4.5)

From equation (3.4.3) and (3.4.5) the control algorithm can be written as following:

oH (X)
OX

K,e(t) + j; K, e(t)dt = CF(xut). (3.4.6)

For nonlinear system with relative degree one, we can handle in linear

form as following equation
F(xu,t)=F'(X)+G(x)-u. (3.4.7)

Combinating equation (3.4.6) and equation (3.4.7), gives
Kle(t)+J': K, e(t)dt =%)((X)~[F’(x)+6(x)-u]. (3.4.8)

oH(X) _
X

Mostly 1

In general, the exact process model is rarely known, and an approximate model is
introduced such that:

K.e(t) + j; K, e(t)dt = [F'(x) + G(X)-u]. (3.4.9)

Considering equation (3.4.9), Ability of the GMC algorithm to handle
the process depends on the accuracy of process model. Because the integral term in
the algorithm ensures that the controller is robust despite modeling error, inaccuracies
introduced by this approximation will be compensated by the integral term.

The process control performance is specified by choosing the values of
K: and Ky, with the appropriate values of these parameters the process response

provides the reasonable desired trgjectory. These values are related to the natura
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dynamic response of the process. How well the system matches this performance
index is governed by how closely the chosen model matches the plant behavior. By
taking Laplace transform of the equation (3.4.3), transfer function becomes,

Yy Zmstl (34.10)
y 1°S°+2tés+1
where T= 1 and &= Ky (3.4.112)

This system does not yield the same response as a classical second-
order system (Stephanopoulos, 1984). However, similar plots to the classical second-

order response showing the normalized response of the system y/y versus
normalized time t/z with £ as a parameter can be produced and is shown in figure

3.8.

1.4 T T SUSITE T T T T

Y/Y*

Figure3.8.  Generalized GMC profile specification
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The design procedure can be specified as follows:
1. Choose & from figure 3.8 to obtain desired trgjectory,

2. Choose r from figure 3.8 to obtain appropriate time of response in
relation to known or estimated plant speed of response,
3. Caculate K; and K using these following equations:

K, = % (3.4.12)

— =Y (3.4.13)

The pattern of the Generic model control shows in the following

figure.
Inpu Output
» Process P GMC [&— Maég
mo
Manipulated Variable

Figure3.9.  The pattern of the Generic model control

Figure 3.9 represents the GMC algorithm. The value of manipulated
variable, calculated by GMC, is obtained by the model of process and measured
output data. Therefore, the most important of control, using GMC, is accurate model
or at least reliable model is required.

GMC has severa advantages that make it a good framework for
developing the process controllers:
1. The process model derived from mass and energy balances appears
directly in the control algorithm.
2. The process model does not need to be linearized before use, allowing for
the inherent nonlinearity of exothermic batch reactor operation to be taken

into account.
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3. The relationship between feedforward and feedback control is explicitly
stated in the GM C a gorithm.

4. Controller tuning is straightforward and easy to understand.

5. Finaly and importantly, the GMC framework permits for developing a
control algorithm that can be used for membrane separation process and
therefore eliminates the need for a switching criterion between different

algorithms; this should result in a much more robust control strategy.

Since GMC is the advanced controller based on mathematical
modeling of the process so that the uncertainty of the process parameter or variable

causes the poor control performance Thus, with these conditions the estimator is

imperative procedure in control strategy to evaluate these values.

3.5 GMC Coupled with Kalman filter

Since the uncertainty of the state variables and process parameters
obtained with measurement or supposition, it affects to low process control
performance. Hence, the estimation of these data is an important feature to efficient
control operation of plants. The Kalman filter is then incorporated with GMC

controller to estimate unknown parameter and variable.

Estimated
K alman parameter / variable

filter

input output
——®» Process [—————»

—» GMC [&——

Figure3.10. GMC integrated with Kalman filter
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As seen figure 3.10, the unknown parameter and variable are estimated
based on the reconciled estimates of measurements by Kalman filter algorithm. The
GMC controller further calculates the control action relied upon these estimates. Thus
Kaman filter is an imperative adjunct in control strategy. If the estimated quantities
and the reconciled estimates are close to the actual values, the controller will give
good control performance with less offset or none.



CHAPTER 4

NANOFILTRATION FOR ORGANIC COMPONENT
IN AQUEOUS SOLUTION

Separation of molecules present in organic solvents by nanofiltration has a
great potential in a wide range of industries from refining to fine chemical and
pharmaceutical synthesis. Recently suitable organic solvent stable nanofiltration
membranes have become available, and during the 1990s the first large-scale application
of solvent NF was realised for lube oil solvent recovery. This research field is in its
infancy, and is becoming an area of intensive study. However, there is still little
information available on the processes controlling solvent fluxes and solute rejections
during solvent nanofiltration. A series of papers in the last 2-3 years have presented
measurements of solvent fluxes and solute rejections carried out using dead end filtration
cells with pure solvents, and with dilute solutions (<1wt% solute). In actual applications
however, solutes will typically be more concentrated (>5wt%) and phenomena such as
concentration polarisation and osmotic pressure may contribute significantly to solvent

flux, as they do in aqueous systems, which have been thoroughly studied.

In order to improve-our understanding of organic solvent nanofiltration
phenomena, experiments were performed in a continuous cross flow rig (plate-and frame
module). In the membrane separation systems, permeate fluxes and separation properties
of the membranes were determined along with their dependence on process parameters

such as-concentration of solution , applied pressure, and fluid flow rate.

This chapter is divided into three sections: mathematical model of a

nanofiltration process, optimization study, and control study. Simulation results obtained



47

by simulating the optimization formulation and the formulation of a GMC controller are
detailed in each section.

4.1 Process and Mathematical Model

This section describes the characteristics of membrane using in this study,
the filtration process for tannic acid in aqueous solution and mathematical modeling. In
this work, the membrane transport model is developed to predict the permeate flux

decline in nanofiltration processes under unsteady-state conditions.

4.1.1 Membrane and Process Description

Model studies were performed with the am of improving organic
component separation from aqueous solution by nanofiltration process. In this work, a
plate-and-and frame membrane system developed by Tu et al. (2001) is considered. The
membranes tested in these studies were chosen from commercially available industrial
products. The nanofiltration membranes used in the membrane separation tests were
FilmTec NF-45 thin-film composite membranes (FilmTec Corporation, Dow Chemical
Co., Midland MI). The important characteristics of the NF-45 membrane are summarized
intable 4.1.

Table4.1. Characteristics of membrane using in this study

Membrane Types NF-45
Membrane material Polypiperazine amide
Molecule weight cutoff (MWCO) ~ 200-300 Da
PH Operating range 2-11
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Table4.1.  Characteristics of membrane using in this study (continued)

Membrane Types NF-45
Contact angle
Clean membrane 45°
Exposed to 30 mg/L tannic acid 50.2°
Maximum temperature, °c 45
Maximum pressure, M Pa 4.1

Surface charge or surface potential (at pH of 6-9)

Deionized distilled water -22 mV to -33 mV
Tannic acid, 10 mg/L -17 mV to —20 mV
Water flux (at 1.0 Mpa, clean membrane), L/m*h 56

Source: Redondo and Lanari, 1997; Van der Bruggen et al., 1998; Sadr Ghayeni et a., 1998

A plate-and-frame membrane system was employed in the membrane
filtration experiments, which is illustrated in figure 4.1. The feed solution is pump from
the feed tank to the stainless-stegl plate-and-frame membranes cell, as shown in the
figure. The system was maintained under high transmembrane pressures of 750-1,500
kPa (110-220 psi). The feed solutions consisted of tannic acid at concentrations in the
range of 0-10 mg/L. The feed is alowed to flow into the plate-and-frame cell, and the
flow rate into the cell is controlled by the recirculation flow rate into the feed tank.
Permeate and reject flow rates are continuously measured. The transmembrane pressure
is carefully monitored and maintained at the desired levels. The temperature of thefeed is
maintained at 20 °c, and the feed flow velocity is varied from 0.4 cm/s to 1 cnm/s. The
permeate and the concentrates are collected at their corresponding outlets as shown in the
figure. Samples are obtained from the permeates and the concentrates, and are analyzed
for tannic acid concentrations to evaluate the solute regjection characteristics of the

membrane.
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Membrane fouling is generally explained by the phenomena of boundary-
layer development and gel-layer formation, as previously discussed. However, the
fouling potential of a membrane is greatly influenced by its surface characteristics. Three
major factors are generally believed to contribute to the flux-decline phenomenon: (1)
sorption of organic molecules on membrane surface, (2) chemical interaction between
membrane surface and the organic molecules, and (3) electrostatistic interactions between
membrane surface and the organic molecules. Physical adsorption organic molecules on
the hydrophobic sites of the membrane surface is an important factor with refference to
organic rejection, but its effect on permeate flux is highly dependent on whether polymer-

organic molecule interactions occur.

Feed Tank
Permeate Outlet
| Cooling Water Out .
— Reject Outlet
f— —

Cooling Water In
m Membrane Cell
AT ?

Figure4.1.  Cross flow membrane experimental setup.

Tannic acid is chosen for these tests to represent natura organic
compounds present in surface and ground waters. It Is a hydrophilic organic compound
that contain both saccharide and aromatic acid components of significance in surface
waters (Malleviale et al., 1989). Tannic acid (C7sHs,046, molecular weight = 1701.22) is
a derivative of glucose in which five hydroxyl groups are substituted for digalic acids,
and thus contains a large number of phenolic hydroxyl groups. The molecule structure of
tannic acid is presented in figure 4.2. The charge phenolic groups in tannic acid and the

carbonyl groups in the membrane polymer dictate the overall surface charge that showed
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in figure 4.3. Under low pH conditions, the membrane surfaces charges, mainly

contributed by the charged phenolic groups generated by hydrolysis of tannic acid.

The symbol R in tannic
acid molecule represents
the bi-phenoalic ester
shown below

Figure4.2.  Approximate molecule structure of tannic acid.

1005

HO OH
Hydrogen bond o 0O
H

formation between H
tannic acid and o+
membrane

Polypiperazine amide moiety

Figure4.3. Interactions between NF-45 polypeperazine amide membrane and tannic acid.

4.1.2 Modd Framework

Several key assumptions are made for the purposes of this study:
The filtration process is batch membrane system.
No solute adsorption in the membrane.

No internal pore fouling.

P w DN

No effect of charge during mass transfer.
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5. Thickness of the concentration polarization layer is assumed as a constant.

6. Transmembrane pressure and temperature is supposed to be constant.
7. The physical properties of solution are assumed to be constant.

Mathematical modeling of a plate-and-frame membrane system as

presented in figure 4.1 can be derived under the assumptions above as follows:

4G, _ AJG (4.1.1)
dt = V,(@-r)
ﬂ = ﬁ J, (4.1.2
at -V,
where Cy is the concentration in the bulk solution,

Cpisthe concentration in the permeate solution,
Jy isthe permeation flux,

permeste volume

—= =x100 ,
initial feed volume

r isthe product recovery =

A isthe membrane surface area,
Vpistheinitia feed volume:

From equation (3.1.5) in chapter 3, The membrane permeate flux can be
described by the fundamental relation

AP—-Arx
u(R+ R +R,)

Flux, J, = (4.1.3)

where is AP the applied pressure, Az is total osmotic pressure between the bulk solution
and permesate solution, (Rn + Ry + Rgp) denotes the total resistance, Ria Of the system,

and y isthe feed solution dynamic viscosity.
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Differentiating equation (4.1.1) with respect to time, and regarding AP, ,

and, Ry, as constants, the equation becomes

d d
(AP — A7) x &, +,uJV2><(—Rg+ R°‘J)+J dar _

=0 (4.1.4)
it dt ot dt

where the osmotic pressure variation with time is given by the following equation base on
virial coefficients (Haynes et al., 1992)

Ar= %(Cb +B,CZ+BCl+...). (4.1.5)

The coneentration polarization resistance Re, referred to in equation (4.1.3)
and (4.1.4) can be estimated by a modification of the power law suggested by several
investigators (van Boxtel et al., 1991; Pradanos et a., 1992; Akay and Wakeman, 1993;
Timmer etal., 1994) as shown below

R, = %vbwcg‘c‘: . (4.1.6)

In the preceding equation, the concentration polarization resistance Ry, isconsidered as a
time-dependent variable. Hence, differentiating the preceding relation with respect to

timeresultsin

dC

d
Ry =3dvbk°cglc$d—tb . (4.1.7)

dat o

The progressive accumulation of solute on the membrane (gel-layer
formation) is due to the difference between the net solute transport from the bulk solution

to the membrane and solute back-diffusion from the membrane to the bulk solution (van
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Boxtel et a., 1991; Timmer et al., 1994). The gel-layer resistance Ry variation with time
can be written as:

d c
B ey -Kense (4.1.8)
dt oy Py G

where e isthe resistance per unit of the gel-layer thickness.
4.1.3 Model parameters estimation

As the compositions of the membrane are proprietary, and their materia
properties are not available, results from membrane filtration tests are employed for
parameter estimation. These parameters included the following: the intrinsic membrane
resistance, Ry, the osmotic pressure, A, the mass transfer coefficient, k, and the specific

gel layer resistance, . The parameter estimation is outlined in this section.

The membrane resistance, Ry, was measured by conducting membrane
filtration tests employing deionized distilled water as the feed solution. The membrane
resistance, R, determined from equation (4.1.3), for NF-45 membrane were 6.412 x10".

Severa investigators, including Nabetani and coworkers (1990), and Haynes et al.
(1992), had observed that the osmotic pressure (47z) could be expressed by the empirical
relationship of equation (4.1.5). These works demonstrated the fact that osmotic pressure
for tannic acid solutions were negligible in comparison with the applied transmembrane
pressures. Therefore, the total driving force for the tannic acid with nanofiltration in the
propose model was only represented by the transmembrane pressure. Equation (4.1.4) can

be written as:

2 d d
d, _ 4, x( R, ch). (4.1.9)
dt AP " dt dt

The constants a, b, ¢, d, and e can be estimated by multiple regression,
where it is assumed that gel-layer resistance does not exist (Ry = 0) at the commencement

of membrane operations (t = 0). From the membrane performance test results, the
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constants a, b, ¢, d, and e for the NF-45 membrane were estimated as 3.80 x10°%6, - 3.02,

3.65, 3.18, -3.18, respectively. The parameters, namely K, &/py ,and Cy were determine
from the preceding relationship using experimental data. The estimated values of &/pgand
C, were 1.54 x10™ m/kg and 0.10 kg/m®, respectively. Determination of mass transfer

coefficients was demonstrated in Appendix B. It must be noted that the membrane
performance tests were conducted under laminar flow conditions, and so estimates of

mass-transfer coefficients varied between 1.28 x10° and 1.68 x10”° m/s, depending on

fluid dynamic regimes and operation conditions. The input parameters for the proposed

membrane transport model are listed in table 4.2.

It must be noted that the parameters associated with concentration
polarization and gel-layer formation cannot be estimated with reliability for complex
solute-solvent and membrane systems from equations without using experimental data.
Additionally, due to the complex structure of tannic acid, and the proprietary nature of
commercial membrane materials, regression techniques represented the only well-
established, reliable, and accurate for estimating the resistances Ry and Ry from

experimenta data.

Table4.2. Entry values for model parameters and operating condition

Parameter Symbol Unit Value
Feed solution concentration =Y kg/m® 2.50x10°
Gel-layer concentration e | kg/m® 1.00x10*
Applied pressure AP Pa 1.50x10°
Diffusion coefficient D m°ls 2.64x10™°
Mass-transfer coefficient k m/s 2.28x10°
Cross-flow rate v m/s 4.81x10°
Solution dynamic viscosity P Paes 1.002x10°
Resistance of membrane Rm 1/m 6.41x10"
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Table4.2. Entry values for model parameters and operating condition (continued)
Parameter Symbol Unit Value

Resistance per unit of L/ gel-layer density £/ py m/kg 1.54x10%
Thickness of the conc. polarization layer o m 2.0586x10™
Initial solution volume Vo m’ 1.50x10°
Membrane surface area An m’ 1.55x10°2
Membrane cell cross-section area Ac m’ 1.25x10*
Coefficient for resistance of a - 3.80x10°°
concentration polarization layer b - -3.02

C - 3.65

d - 3.18

e - -3.18

Theinitial values for the proposed membrane transport model are listed in

table 4.3.
Table4.3. Initial valuesin the nanofiltration process

Parameter Symbol Unit Value
Bulk concentration Co kg/m® 2.50x10°
Permeate flux =Y mYm7min | 1.78x10°
Rate of recovery r - 0
Resistance of gel-layer Ry m* 0
Resistance of concentration polarization Rep m* 9.23x10"™

4.1.4 Open-loop behavior

The simulation results presented in figure 4.4 illustrate the open-loop

response for the nanofiltration process.
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Figure4.4. Open-loop behavior of the nanofiltration process
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The open-loop behavior shows the progressive permeate flux deterioration due to the
resistance of the membrane, gel-layer, and concentration polarization. In these
simulations, the operating conditions were identical; the transmembrane pressure was
1,500 kPa, the cross flow rate was maintained at 4.81x10° m/s, and the duration of
simulation was 10 hours. The parameters and the initial values are shown in table 4.2 and

4.3, respectively.

4.2  Optimization Study

The mathematical models of a nanofiltration process indicate that an
operating permeate flux isone of key factors of the membrane filtration process. In order
to operate the nanofiltration process efficiently, optimaization framework is formulated to
determine an optima permeate flux of water in tannic acid solution studied by Shih-
Chieh Tu et a. (2001). An optimization goal is to determine an optimal permeate flux for

the filtration process to maximize volume of permeate (water) with a semi-batch time.

In this work, a Matlab program is written to solve the optimization
problem by using a successive quadratic programming (SQP) algorithm in Matlab
Optimization Toolbox as detailed in Appendix E.

4.2.1 Optimization Formulation

An off-line optimal control is solved with fixed batch time to calculate the
maximum permeate flux of water for the nanofiltration process of tannic solution. The
maximum permeate flux is applied as a trajectory set point of control strategies. The
objective function is to maximize the water-permeate flux of tannic solution over the
batch time intervals. The next step in formulating the optimization problem is to
determine the constrains by considering the fundamental chemical and physica
phenomena and physical limitations that influence the nanofiltration process behavior.

For the case of nanofiltration process, the construction of the process mathematical model
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and operating pressure of the nanofiltration membrane are constrains that limit the

membrane separation. The objective function and the constraints can be written as

following problem.

Subject to

and

where

max f =

Jv(tf)

5x10° < AR, < 4x10°

G X+ HUk—Xw1=0

o,
o
df,
ax,
df,
dx,

af, [ df, |
dx, du
e and H= ar, :
dx, du
df, dfy
dx; L du

(4.2.1)

(inequality constrain)

(equality constrains)

Matrices G and H are obtained by substitution the members of the matrices with the
equation (4.1.1), (4.1.2), and (4.1.9). Determination of mairices G and H are detailed in

Appendix C.

Table4.4.

The optimal results

Off-line optimal per meate flux (m¥m?/min) | Summation | %increasing

Case Timeintervals (min) of permeant | of permeant
0-200 201-400 401-600 | volume(m® volume
1 6.5770x10° | 6.5770x10° | 6.5770x10° | 6.12170x10° 22.57%
2 8.6813x10° | 8.4212x10° | 8.3963x10° | 7.9114x10° 58.40%
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In this research, two cases of the off-line optimal control are carried out.

One is an optimal flux set point using one control time interval (case 1). The other is an

optimal flux profile using three fixed control intervals (case 2). The optimization results

are shown in table 4.4 and figure 4.5.

Permeate Flux(m3/m2/min)

s x 10° Openloop compared with the optimal set-point

—— permeate flux (open-loop)
1.6 . N -
— optimal set-point in case 1

-~ - optimal set-point in case 2

0_ 2 L L L L L
0 100 200 300 400 500 600

Operation Time(min)

Figure4.5. Permeate flux in open-loop compared with

the optimal permeate fluxes of both cases.

4.2.2 Discussion

In this research; the volume of permeant (water) is measured to represent

the water permeate flux. The optimization results given-in table 4.4 indicate the

comparison of permeant volume of open-loop with the optimal permeant volume of both

cases that the water-permeate volume gives 22.57% improvement for an optimal

permeate flux set point (case 1) and 58.40% improvement for an optimal permeate flux

profile (case 2). It can be concluded that the operation of the nanofiltration process by the
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trajectory optimal flux profile (case 2) gives an increase in the performance of filtration

than using an optimal flux set point (case 1).

4.3 Design and Study of Controllers

The purpose of this section is to design a control configuration for a
nanofiltration membrane to track an optimal operating flux. In this work, a PID
controller, aGMC controller, and a generic model control (GMC) coupled with a Kalman
filter is implemented to track an optima operating flux. The controlled variable and
manipulated variable are permeate flux of water, J, and applied pressure, AP,
respectively. The volume of permeant (water) is employed as a measurement variable to

track the controlled variable.

4.3.1 PID Configuration

PID controller is a classical controller. The control strategy of PID does
not need mathematical model of the process because it takes a control action to force the
process response to the desired set point via the final control element based on the error
(deviation of the process measurement from its desired set point value). The digital PID

controller in the form of continuous equation is
B(t) = p.+ K {e(t) + (Lot de(t)} (4.3.1)
Here the operating equation in the discrete formis

p(k) = p(k-1) + Kc{[e(k)—e(k—l)]+§e(k)+Z—Dt[e(k)—2€(k—1)+e(k—2)]}- (4.3.2)
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where p is controller output,
psis controller output when e(t) is zero,
At isthe sampling period,
Kcis controller gain, 5.0x10™,
7 isintegral time constant, 21 minutes,

o IS derivative time constant, 0.009 minutes.

In this work, controlled variable is permeate flux and manipulated variable is applied
pressure. The error in this studied process is a different between the optimal flux set
point, Jvs and the permeate flux of the process, J,. The manipulated equation of PID

controller in thisresearch is
AP(K) = AP(k-1) + K, {[e(k) —e(k—1)] +£e(k) + %[e(k) —26(k—-D+e(k- 2)]} (4.3.3)
7

where ek) = Jugp—dh(K).
4.3.2 Generic Model Control (GMC) Configuration

GMC controller is an automatic process controller. It is a good control
strategy model-based controller because it can handle the nonlinear process to the
trajectory set point and the nonlinear process model does not need to be linearized for this
control scheme. Furthermore, in the situation where the controlled nonlinear processes
are required to operate in a wide range condition, the linear controllers may give a poor
control response because approximate linear models cannot be represented the effect of
nonlinearities. According to the above reasons, GMC is chosen as a controller for the
permeate flux control studied in this research. Two tunning parameters, K; and K, are
used to obtain the desired shape of the trajectory response. The general form of the GMC

algorithm can be written as:
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Y Koy =)+ K[ (7~ ek (43.4)

This may be further rearranged to give:

KilYs = y(K)] + KZZ[YSP - y(K)]At—F'(k)

k) = (K

(4.3.5)

where y isthe current value of controlled variable,
Yy is adesired value of controlled variable,
u isamanipulated variable,

and K1 and K, are tuning parameters.

For permeate flux control of the nanofiltration process, the manipulated
input of this tracking system is the inverse of applied pressure, AP and the controlled

variable is the permeate flux, J,.

To implement the GMC, a model of membrane permeatte flux relation is
required; it gives the relation between the permeate flux (controlled variable) and the
inverse of applied pressure (manipulated variable). Equation (4.1.9) isrearranged in form

as.

dJ drR, dR, 1
| J (2 —2) [x— 4.3.6
dt [ AL dt | dt )}(AP (436

Rearranging the equation (4.3.6) as in the form of GMC algorithm, the
following functions, F’ (k) and G(k) can be defined

FK = 0 (43.7)
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AR, (K) | AR, (K

G(K) = —ud;(K)( At At

) (4.3.8)

Replacing these equations in equation (4.3.5) and substituting water permeate flux,
optimal permeate flux set point, and inverse of applied pressure for y, ys, and u,

respectively, the manipulated variable of the GMC in the discrete form can be written as:

Kl[ Jv,sp - Jv(k)] s KZi[‘]v,sp o ‘]v(k)]At
AR () AR, (K)
At At

AP (k)= (4.3.9)

~ud5 (k) <[ ]

where At is the sampling time of the controller.

In this work, the appropriate values of the tunning parameters of the
GMC controller are K; = 0.04 min™ and K, = 0.0025 min™.

4.3.3 GMC with Kalman Filter

For membrane filtration performance, an estimator is applied with the
model-based controller to estimate uncertainty parameters or unmeasurable variables. In
the studied system, the filtration performance is depended on two physical parameters:
mass-transfer coefficient, k.and dynamic viscosity, x# The Kaman filter is employed to
estimate these parameters. To use the Kalman filter as a parameter estimator, it is
important to check observability of the system. The detail of observability checking is
detailed in Appendix C.

To estimate the deviated parameters, two equations of the process in state
space form are applied to explain the relationship between the measurement variable and
the estimated parameters. The mathematical model of the process can be written as

following:
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X = Ax+ Bu (4.3.10)

and the measurement equation is described as

y =Cx. (4.3.11)

In this research, the volume of permeate water, Vo iS measured and used
to estimate the entire state, X =[J, r Cp k ] " and manipulated variable, u is AP,
Volume of permeated water, Vo that is selected as the measurement variable, y can be

written the relationship with the permeste flux as following equation
Vout = AmJdy. (4.3.12)

The mathematical model of the nanofiltration process that is inserted into the Kalman

filter algorithm is shown below

d), J? &c; C
fi=—t="v|zCHt"b17C] -7zC, In-2|, 4.3.13
1= Ap[zl e SSURECY CJ (43.13)

a A,
fp= —=-MJ 4.3.14
Tt v, (43.14)
fy= d_Cb :M’ (4.3.15)

dt V(=)

dk
fo= —=0, 4.3.16
o ( )
= 94 o, (4.3.17)



65

z, =-ad gv"kCC?‘

&
where Z,=—pu—
9
&
z,=—pu—Kk.
Pq

From equation (4.3.13), (4.3.14), (4.3.15), (4.3.16), and (4.3.17), state space form of the
system can be determined matrix A, B, and C as

o, o, ] -
dx, dx, dx, dx, dx d—J
of, df, d, df, d d,
dg, dx, dx, dx, dx du
I A A S e
dg dx, dx, dx, dx du
of, o, o, di, o, o,
dx, dx, dx, dx, dx du
L dx, o dx, O | | du
andC=[A, 0 0 0 O
df, “C,J ,dc, C
where —~L=—0| 27C? —* 4 3z,J, ~2zn—2 |,
dx, AP{ZiCb at e ZSCJ
d g
dx,

ﬂ:‘]—vz_zlc“ d°C, | (d-1) dc
dx, AP| '™ ‘dt* C, dt

b)+22JV+23(1+In%)]

g
o, 3|, c
&, AP| 7k

C
c 9SG _Ze e
d k °C,



i:‘]_vz ﬁcdflﬁ
dx, AP|ux ° dt |

df,

df,
dx,

%_ A’n‘]va
dx, V,1-r)*’

df,
dx,

df,

df,
dx,

df,

—5_0,
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df,
d)(3 dX4

The flow chart diagram of the GMC controller coupled with Kalman filter
isillustrated in figure 4.6.

\]V,sp
— ! Nanofiltration Process
Vout
\ 4
Kaman Filter
l k’ ﬂ
GMC Controller «—

Figure4.6. The estimation diagram of 2, k in the nanofiltration process

To determine mismatch parameters, 1 and k via Kaman filter, the set of
matrices, P, Q, and Ris used to determine covariance of estimated values, process model

values, and measurement value, respectively. The matrices can be written as following:

p, O 0 0 0] g, 0 0 0 0O

0 p, 0 0 0 0. g, 0 0.0
P={0 O p, O O, Q=0 0 g, 0O 0]

o 0 0 p, O o 0 0 q, O

0 0 0 0 pg 0 0 0 0 g
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where pr1 = 7.00x10%, po» = 4.00x10°, psz = 4.00x10%
Pas = 2.32x10°,  pss = 3.14x10%,
1 = 3.10x10°, o = 1.20x10%  gs3 = 1.20x10%
Qusa = 2.20x10°,  Os5 = 1.90x10°
and ry; = 5.00x10°%

4.3.4 Control Results

In this section, the simulation of closed-loop behaviors is studied in two
parts. nomina case and robustness tests. Nominal case is studied to compare the
performance of PID and GM C controllers. Robustness cases are studied the control result
of controllers when some process parameters have deviated from their nominal values.
The GMC controller couple with the Kalman filter is developed to estimate parameter
mismatch and handle the permeate flux to the trajectory set point. In this study, IAE
(Integral absolute error) and ISE (Integral square error) are used as the control

performance index to compare each controller.

Nominal Case

In this section, two cases of permeate flux control are carried out in table

4.5. The simulation results are shown in figure 4.7- 4.10.

Table4.5. The comparison of IAE and |SE for nominal case
Case | Controller |AE | SE

PID 0.4966 1.3542x10°

1 GMC 0.2416 1.2052x10°

PID 0.5614 1.3384x10°®

2 GMC 0.1900 6.7457x107
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Robustness Tests

As seen the control results for the nominal case, The GMC controller is
effective to handle the permeate flux to the trajectory set point. The GMC controller is a
model-based controller so the mathematical model that represents the rea process is
required. However the developed model cannot represent all of the real process because
of complexity of the real process or changing of some process physical properties. These
are the main cause that determined parameters deviate from their real values. Changing of
process parameters may be effected to the stability of the controlled process so it is
important to examine the robustness of controllers with respect to changes in process
parameters. The GMC controller coupled with Kalman filter, tuned for nominal case, is
used to control the nanofiltration process where some of the conditions have changed
from their nominal value. In this work, two process parameters. mass-transfer coefficient,
k and solution dynamic viscosity, « are set to deviate 20% from their nominal values. The

robustness tests are divided into five cases as listed below:

e Mass-transfer coefficient, k, increase 20%
e Mass-transfer coefficient, k, decrease 20%
e Solution dynamic viscosity, y, increase 20%
e Solution dynamic viscosity, y, decrease 20%

e Mass-transfer coefficient, k and Solution dynamic viscosity, y, increase 20%

In this section, two cases of the optimal permeate flux set point are

considered as following:

Case 1: Tracking an optimal flux set point using one control time interval

In this case, parameter mismatches are studied by tracking an optimal flux
set point using one control time interval. Table 4.6 shows the comparison of the control
performance index in robustness tests for case 1. The simulation results are illustrated in
figure4.11 —4.20.
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Table4.6.  The comparison of IAE and I SE for robustness tests (case 1)

GMC coupled with
Condition GMC Kalman filter

IAE ISE |AE ISE
+20% k 0.25087 | 1.1844x10° | 0.2250 | 9.6251x10"
-20% k 0.2817 | 1.4702x10° | 0.2414 | 1.1012x10°
+20% u 0.2498 | 1.1840x10° | 0.2208 | 9.3885x10~
-20% u 0.2822 | 1.4732x10°| 0.2456 | 1.1306x10°
+20% k and +20% x| 0.2893 | 1.5476x10° | 0.2177 | 9.0658x10’

Case 2: Tracking an optimal flux profile using three fixed control intervals

In this case, the control objective is to track an optimal flux profile when
the mass-transfer coefficient and/or solution viscosity changes. Table 4.6 shows the
comparison of the control performance index in robustness tests for case 2. The
simulation results areillustrated in figure 4.21 — 4.30.

Table4.7.  Thecomparison of IAE and | SE for robustness tests (case 2)

GMC coupled with
Condition GMC Kalman filter

|AE |SE IAE |SE
+20% k 0.1928 | 5.7681x107 |  0.1888 | 6.7088x10"
-20% k 02140 | 8.2054x107 | 0.2025 | 7.7243x10°
+20% 0.4151 | 7.7884x107 | 0.1833 | 6.4627x10"
-20% u 0.2208 | 8.6686x10°7 | 0.2074 | 7.9991x10"
+20% kand +20% n | 04225 | 7.4961x10° | 0.2094 | 6.4606x10"
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Figure4.30. The controlled response and estimates of parameters for +20% k and
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4.3.5 Discussion

Nomina Case

Performances of PID and GMC controller are compared in this part. The
studied process is nanofiltration which has highly nonlinear behavior as seen in its
mathematical model. From the performance index in table 4.5 and the closed-loop
responses in figure 4.7 — 4.10, the control results in nominal case show that the
performance of the GMC controller is better than PID for both cases. The GMC
controller can force the permeate flux to the desires set point but the PID controller
cannot handle the studied process because the water permeate fluxes take long time to
reach their set pointsin both cases. These can conclude that the GMC controller is more
suitable than PID to use as a controller for track the nanofiltration process because the
GMC calculates the contral action based on the mathematical model and it directly
inserts nonlinear process model into its controller output. PID controller uses the error to

calculate the control action and equation of its manipulated variable is linear equation.

Robustness Tests

In this part, the closed-loop responses of the nanofiltration process when
the mass-transfer coefficient and/or solution viscosity have changed are studied. The
GMC controller and GMC coupled with Kalman filter are developed to control the
process. The comparisons of IAE and ISE for each robustness tests are shown in table 4.6

for casel and table 4.7 for case 2.

Case 1: Tracking an optimal flux set point using one control time interval

e Masstransfer coefficient change
Theresults given in figure 4.11-4.12 for the GMC and figure 4.16-4.17 for
the GMC coupled with Kalman filter. The simulations show that the GMC controller has

still provided control action similar to the nominal case. The GMC is robust to the mass-
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transfer coefficient changes. However, the Kaman filter improves the control
performance of the controller when compared IAE of GMC with GMC coupled with
Kaman filter because a reasonable estimation token from the filter decreases the

deviation of the model and real process.

e Solution viscosity change

In the cases of solution viscosity changes, the results are given in figure
4.13-4.14 for the GMC and figure 4.18-4.19 for the GMC coupled with Kalman filter. It
can be seen that the estimations of the viscosity are approached to the nominal value. The

GMC controller is still robust to the solution viscosity changes.

e Masstransfer coefficient and solution viscosity change

Figure 4.15 and 4.20 show the control results for the case that combines
the increment in the mass-transfer and the solution viscosity for the GMC and GMC
coupled with Kalman filter, respectively. It can be seen from the figure 4.20 (b) that the
Kaman filter gives reasonable estimations, As shown in figure 4.15 (@) and 4.20 (a), the
controllers perform satisfactorily; the permeate flux is delivered to the desired set point.

Case 2: Tracking an optimal flux profile using three fixed control intervals

e Masstransfer coefficient change

The simulation results of mass-transfer coefficient change areillustrated in
figure 4.21-4.22 for GMC and figure 4.26-4.27 for GMC coupled with Kalman filter. It
can be seen that the Kalman filter gives the reasonable estimations of the mass-transfer

coefficient. The GMC controller is still robust to the mass-transfer coefficient changes.

e Solution viscosity change

Figure 4.23-4.24 show the closed-loop responses of the process controlled
with the GMC controller for the case that solution viscosity changes. Figure 4.23
illustrates that the GMC controller can not handle the process when the solution viscosity

has increased. While in the case of solution viscosity declination, the GMC controller is
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still robustness. These can be explained by solution-diffuson model. The permeant
dissolved in the membrane material and diffuse through the membrane down the
concentration gradient. The permeant is separated because of the differences in the
solubilities of the materials in the membrane and the differences in the rates at which the
materials diffuse through the membrane. The solution viscosity increment is a cause of
the permeant solubility declination and deterioration of permeant diffusion rate through
the membrane. Figure 4.28-4.29 show the control response of the process controlled with
the GMC coupled with Kalman filter. The Kalman filter gives the reasonable estimations

of the solubility viscosity and the controller gives the satisfied response for these cases.

e Masstransfer coefficient and solution viscosity change

In the case of combines the increment in the mass-transfer and the solution
viscosity, the results are given in figure 4.25 for the GMC and figure 4.30 for the GMC
coupled with Kalman filter. Figure 4.25 illustrates that the GMC controller can not
handle the process to the set point. The GMC controller isnot robust for this case because
of affect of solution viscosity increment. Figure 4.30 (b) shows the estimated values of
the parameter mismatch. The Kaman filter gives the reasonable estimation for mass-
transfer coefficient but for the solution viscosity estimation, the filter gives the estimation
value that deviate 0.62% from the nominal value. However, the GMC coupled with

Kaman filter is still robust for this case.

The GMC controller and GMC coupled with the Kaman filter are
implementted to- track either optimal permeate flux set point or optimal permeate flux
profile of the nanofiltration process for tannic acid solution. From the simulation results,
it can be summarized that the GMC controller coupled with the Kalman filter is robust
for al the changes. The control response of the GMC controller is sensitive to the case
that solution viscosity increases and mass-transfer coefficient and viscosity increase when
it is applied to track the optimal permeate flux profile (case 2). For these robustness tests,
The GMC controller coupled with the Kalman filter has been found to be effective and

robust in tracking the nanofiltration process.



CHAPTER S

CONCLUSIONS AND RECOMMENDATIONS

In this work, the nanofiltration process for tannic acid solution has been
studied. In summary, to achieve the desired successful control of the process, the system
depends on the integration of three important ingredients. a reliable mathematical model,
an optimal operating traectory, and a suitable design of the control configuration. The
GMC controller is a model-based control, which is a simple nonlinear control technique.
For this reason, the GMC controller is chosen to track the studied process that has highly
nonlinear behavior. Although the GMC can handle the studied process in nominal case,
the developed controller has to have a good performance and robustness. In this research,
the Kalman filter is applied to improve the performance and robustness of the GMC

controller when the operating condition has changed.

5.1 Conclusions

From studying of the nanofiltration process, the filtration performance
index is permeate flux. A serious limitation in such membrane filtration process is flux
declination. The factors that have impact on the progressive permesate flux deterioration
are membrane resistance, gel-layer resistance, and concentration polarization resistance.
To improve the performance of the nanofiltration process, the GMC is develop to track
the permeate flux to the optimal trgectory set point. Due to the significant of the
operating condition, the optimization framework is formulated to determine the optimal
permeate flux. The obtained optimal permeate flux is used as the set point for the
nanofiltration membrane in the control study. In this work, the determination of off-line
optimal flux control is studied in two cases. One is an optimal flux set point using one

time interval (case 1). The other is an optimal flux set point using three fixed control
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intervals (case 2). From the optimization study it can be concluded that the use of an
optimal permeate flux profile give an increase in the performance of filtration rather than

an optimal permeate flux set point.

In the control study, A GMC controller and a GMC coupled with Kalman
filter are implemented to track the permeate flux. Both optimal flux in case 1 and case 2
are used as the trgjectory set point. From the study it can be conclude that:

. For nominal case, the GMC controller performs satisfactorily in tracking
both optimal flux set point and optimal flux profile of the nanofiltration process.

o The robustness of the controllers is evaluated by changing the process
parameters such as mass-transfer coefficient and solution viscosity. It has been found that
the GMC controller can handle the process for all cases of parameter mismatch except
tracking the optimal flux profile in the case of solution viscosity increase and case of
combines the increment in mass-transfer and solution viscosity. While the GMC coupled
with Kalman filter is robust for all cases of parameter change because the filter gives the

reasonabl e estimations of the parameter mismatch.

5.2 Recommendations

To explain the behavior of nanofiltration process, model in partia
differential equation (PDE) is more accurate and reliable than ordinary differential
equation (ODE) although developed mathematical model of the nanofiltration process
which is in the term of ODE gives the satisfactorily-results. In this research, researcher
keeps off PDE to study the behavior of the process because the limitation of computer

and software, solving of PDE spend long time in calculation.
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APPENDIX A

MATHEMATICAL MODEL DEVELOPMENT

For the incorporation of the transport model equation in a batch membrane
system, the volume and concentration changes as a function of time must be included.
The model is based on the general material balance equation, given as,

Accumulation = Input — Output +Generation — Consumption. (A.1)

For a batch system, a solute material balance resultsin

%:o%ﬂgvcpw—o (A.2)
dC dv
Vd—tb‘l-CbE:—AnJVCp (A3)
dv
~AJC -G -
aG, _ P dt (A.4)
dt \Y,

The solution volume in the membrane unit at any timeis given as:
V=V,1-r), (A.5)

where Vy istheinitial feed volume. The rate of water recovery from the cell can be

presented as.

ar_ Ay (A.6)

da v, Y
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Substituting into equation (A.4), it follows that:

dCb _ AnJV(Cb _Cp)
dt V,(1-r)

(A7)

For the membrane filtration process, bulk concentration, C, is very greater than
concentration of species in the permeate side of membrane, C,. Equation (A.7) can be

written as following:

d_Cb: An‘]vcb (A 8)
dt - V,(-r)° '



APPENDIX B

MASS-TRANSFER COEFFICIENT
DETERMINATION

The masstransfer coefficient, k can be caculated from Sherwood
correlations of the form used by several researchers (Bird et al., 1960; van den Berg et d.,
1989; Pradanos et al., 1992, 1995; von Meien and Nobrega, 1994):

Sh=kd, /D = pRE‘SC, (B.1)

where dy isthe hydraulic diameter of the system,
D isthediffusion coefficient,
Reisthe Reynold number (Re = pvdn /),
Scisthe Schmidt number (Sc = 1/ pD),

and p, g, and r are constants depending on the hydraulic regimes.

Aqueous diffusion coefficients of the natural organic mater in dilute solution can be
estimated by the Stokes-Einstein equation (Cornel et al., 1986). The diffusion coefficient
evaluated for tannic acid is 2.635 x 10™° m?/s.

Wiley et al. (1985) and van den Berg et al. (1989) used the following
correlations for membrane filtration systems operating under laminar flow conditions
(Re<2,000).

L<L : Sh=0.664Re*>"®(d, /L)°* (B.2)

L> L : Sh=1.86Re®®Sc*¥(d, / L)°%, (B.3)
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where L and L are length of a membrane module and length of the entry region in the
module, respectively. The entry length L” is given by the relation

L" = 0.029d\Re. (B.4)

These correlations establish the dependence of the mass-transfer coefficient on fluid
dynamics of the system and the solute/solvent characteristics for positions represented by
L less than or greater than the characteristics entry length L* required for fully developed
flow. While the Reynolds number characterizes the fluid flow and momentum transport
along the membrane surface in relation to inertia forces, the Schmidt number describes
the diffusion transport of solute (foulant) molecules to and from the membrane surface
under these conditions.



APPENDIX C

SYSTEM CHECKING

System Stability

The determination of system stability is based on the same principle as
that for SISO systems: by investigating the location of the open-loop poles on the

complex plane. The open-loop poles, or eigenvalues are determined from
det (AI-A) = 0 (C.1)

where A is pole of the system.

Pole

/1,

Stable Unstable

LHP RHP

Note that this determinant has to.be evaluated anyway in calculating the resolvent. As
before, if any of the eigen values are positive or have a positive real part, the system is

unstable.

Controllability

The dynamical system described by equation

x=Ax+Bu . (C.2)
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or equivalently the pair (A, B), is said to be state controllable if it is possible to bring a
state variable to any arbitrary value in a finite period of time using the manipulated

variables that are available. Otherwise the system is said to be state uncontrollability.

There are many ways to check whether a system is state controllable.

In this work, controllability matrix is formed to determine controllability.
Controllability Matrix = [B. AB A’B ... ... A"'B) (C.3)
where n is number of state variables.

The system is controllability if the rank of the matrix is # (full row rank).

Observability

The dynamical system

:r = Ax+Bu, (C4
y=Cx+ Du (C.5)

(or the pair (4, C)) is said to be state observable if measurement of output, y contains
sufficient information to enable us to completely identify the state x. Otherwise the

system, or (A, C), is said to be state unobservable.

The system (A, C) is state observable if and only if the observability

matrix
Observability Matrix = [T ATCT ... ... (AT (C.6)

has rank » (full column rank).
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In this study, the state of equationsis

dl, J? dC C
fi= —Y="v|cCi'—+cCJ, - In—= |, C7
1 dt APClb dt 2Cod, — GG, Cb:| (C.7)
d A,
f :—:—J y C.8
VAN (C.8)
f,= dG, _ AJG (C9)
da  V,(1-r)
¢, =—ad %vbkCC'f
where czz—yi
]
&
G, =-—u—Kk.
Pq

State variables, x, are J, r, and C, and manipulated variable, u is AP, Volume of
permeated water, Vo iS selected as the measurement variable, y that can be written
the relationship with the permeate flux as following equation

Vout = Amdy . (C- 10)

From equation (C.4), (C.5), (C.7), (C.8), and (C.9), state space form of the system can
be determined matrix A, B, and C as

df, df o, ]
d dx, dx, du
ae| U o dh ) g (e adc=[A, 0 0]
dx, dx, dx, du
df, df, df, dfy
& o) |
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where d G, {201 dzOlcb+30J —Zglnc}
b

dx, AP
g
dx,
2 2 _
gfl iP {QC (ddc;\b + (dC Y dgb)+c2\]v+g(1+ln% }
X3 t b t g
af, _ A
d V-
d o,
dx,
d, o
dx;
df; AG
dx. Vy(l-r)’
df, _ AJLC,
dx, V(l r)?’
df,  AJ
dx3 V(l r)’
df, dC C
CH=2+¢CJ, - In—2 |,
dU Cl dt + 2b%v CBCb ij|
g
du
du

Substituting all variables in matrix A, B, and C with the steady state values, the
determination of the system checking via MATLAB program can be summarized as
following:
1. The poles of this system are on left hand side of complex plane. This can
be concludes that the open-loop of system is stable.
2. Determinant of the controllability matrix is not equal to zero (The rank of
the matrix is full rank.). This can be conclude that the control variable can

be controlled by the selected manipulate variable.
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3. Determinant of the observability matrix is not equal to zero (The rank of
the matrix is full rank.). This can be concluded that the measurement
variable contains sufficient information to completely identify the state

variable.



APPENDIX D

INTEGRAL ERROR CRITERIA

Integral error measures indicate the cumulative deviation of the
controlled variable from its set point during the transient response. The following

formulations of the integral can be proposed.

&(t)

FigureD1.  Definition of error integrals

Integral absolute error (IAE)

|AE = T|e(t)|dt (D.1)

Integral square error (I1SE)

ISE = Tez(t)dt (D.2)

Integral of time-weighted absolute error (ITAE)

ITAE = T|e(t)|tdt (D.3)

where eisthe usual error (i.e., set point — control variable).
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Each of the three figures of merit given by equation (D.1), (D.2), and
(D.3) have different purposes. The ISE will penalize (i.e., increase the value of ISE) the
response that has large errors, which usually occur at the beginning of a response,
because the error is squared. The ITAE will penalize a response, which has errors that
persist for a long time. The IAE will be less severe in penalizing a response for large
errors and treat al errors (large and small) in a uniform manner. The I SE figure of merit
is often used in optimal control theory because it can be used more easily in mathematical
operations (for example differentiation) than the figures of merit, which use the absolute
value of error. In applying the tuning rules to be discussed in the next section, these
figures of merit can be used in comparing responses that are obtained with different

tuning rules.



APPENDIX E

SUCCESSIVE QUADRATIC PROGRAMMING (SQP)

Successive quadratic programming (SQP) method solved a sequence of
quadratic programming approximation to nonlinear programming problem. Quadratic
programs (QPs) have a quadratic objective function and linear constraints, and there exist

efficient procedures for solving them

Problem formulation with equality constraints

To derive SQP, we again consider ageneral NLP

Minimize: f (x)

Subjectto: g(x) =b (EL)
The Lagrangian function for this problem is
L(x,4) = f (X)+ AT (g(X)-b) (E.2)
and the KTC are
V., L=Vf (x)+Zm:/1|Vgi(x) =0 (E.3)
=
and g(xX)=b (E.4)

The equation (E.1)-(E.2) is a set of (n+m) nonlinear equations in the n unknowns x

and m unknown multipliers A . Linearization of (E.2) and (E.3) with respect to xand A

V,L-V2LAX+Vg'AL=0 (E.5)
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g+VgAx=0 (E.6)

For problem with only equality constraints, we could ssimply solve the
linear equations (E.2)-(E.3). To accommodate both equalities and inequality, an

alternative viewpoint is useful. Consider the quadratic programming problem

minimize: VLTAX+£AXTV)2(LAX
(E.7)

Subjectto: g+VgAx=0
If we call the Lagrange mutipliers for (E.7) A4, the Lagrangian for the

QPis

1
L, (AX,AZ) = VL'AX + EAxijLAx +AA" (g + VOAX) (E.8)

Inclusion of the both equality and inequality constraints

When the origina problem has a mixture of equalities and inequalities, it
can be transformed into a problem with equalities and simple bounds by adding slacks, so

the problem has an objective function f , equalities (E.1), and bounds
I <x<u (E.9)

This system is.the KTC for the QP-in (E.6) with the additional bound

constraints
| <X+Ax<u (E.10)

Here the QP sub problem now has both equality constraints and must be
solved by some iterative QP algorithm.
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The approximate Hessian

Solving a QP with a positive-definite Hessian is fairly easy. Several good
presented in (E.6) and (E.10) is V2L(X, 1), and this matrix need not be positive-definite,
even if (X,4)is an optima point. In addition, to compute Vf(L, one must compute
second derivative of al problem functions. Both difficulties are eliminate by replacing
Vf(L by positive-definite quasi-Newton approximate B, which is updated using only
vauesof Land V, L. Most SQP agorithms use Powell’s modification of BFGS update.

Hence the QP subproblem becomes

QP(X,B)

F i
minimize: VL' AX+ = Ax' BAx
2 (B.11)

Subjectto:VgAx=-g, | <X+Ax<u

The SQP line search

TO arrive at areliable agorithm, one more difficulty must be over come.
Newton and quasi-Newton method may not converge if a step of 1.0 is used at each step.

Both trust region and time search versions of SQP have been developed that converge
reliability. A widely used line search strategy is to use the L exact penaty
function P(x,w) . In a line search SQP algorithm, P(x,w)is used only to determine the
step size along the direction determined by the QP subproblem QP(X;B). The L, exact
penalty function for the NLP problemis

POV = T+ YW [5()-h | €12
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where a separate penalty weight W is used for each constraint. The SQP

line search chooses a positive step size o to find an approximate minimum of
r(a) = P(X+aAX, W) (E.13)

A typical line search agorithm, which uses the derivative of r(«)

evaluated at « =0denote by r'(0), is
1 o<1
2.if r(a)<r(0)—0.1ar'(0) (E.14)
stop and return the current @ value

3. Let &, be the unique minimum of the convex quadratic function that

passes through r(0),r'(0) and r(«) . Take the new estimate of o as
a<«max (0.1a,a,) (E.15)

4. Go to step 2.

SQP agorithm

Base on this line search and the QP subproblem QP(X, B)
1. Initialize: B« |, x> <%, k<0

2.0 Solved the QP subproblem QP(X,B), yieldiging a solution Ax* and Langrange

multiplier estimates A*
3. Update the penalty weightsin penalty function

4. Apply the line search algorithm, yielding a positive step size a*
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5. Xk+l — Xk +akAXk1/1k+l — /1k
6. Evauated al problem function and their gradients at new point. Update matrix
Bk

7. Replacek by k+1, and go to step 2

Initialize: k=0, B, X°

>
«

A 4

Calculated Ax* and A* from
subproblemQP(X, B)

y

Update penaty weights

Calculate step length, "

Let, Xk+1 = Xk +akAXk,lk+l =/1k

Update B*

k=k+1

FigureE.1l. Flowchart of SQP algorithm
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