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CHAPTER I 
 

INTRODUCTION 
 

 
In  mammalian central nervous system, glutamate (L-glutamic acid) is the major 

excitatory neurotransmitter. Glutamate not only mediates excitatory neurotransmission 
but also plays a crucial role in synaptic plasticity such as long-term potentiation (LTP), 
which plays a central role in learning and memory (Kawasaki et al., 1997; Rang et al., 
2000). 

 
However, excessive activation of glutamate receptor is neurotoxic, leading to 

neuronal degeneration and death. In many systems, including primary cultures of 
cerebellar neurons, glutamate neurotoxicity is mediated by excessive activation of 
NMDA receptors, leading to increased intracellular Ca2+, which induces the neurotoxic 
process. (Llansola et al., 2000). This phenomenon, glutamate is highly toxic to neurons, 
dubbed exicitotoxicity (Rang et al., 2000). Glutamate neurotoxicity has been implicated 
in pathogenesis of several central nervous system disorders, including stroke, trauma 
and neurodegenerative diseases (Chen et al., 2000). The understanding of mechanism 
of glutamate neurotoxicity and of possible mechanisms to prevent it would be, therefore, 
of great interest for the treatment of central nervous system disease. 

 
Bergenin is a C-glucoside of 4-O-methyl galic acid that has been isolated from a 

number of plants such as Bergenia crassifolia, Corylopsis spicata and Shorea leprosula 
etc. (Hay and Haynes, 1958). Bergenin has been used as a folk oriental medicine for 
treatment and therapy of gastrointestinal diseases such as gastritis, gastric ulcer, 
diarrhea and constipation (Chung et al., 2001). In addition, it has been reported that 
bergenin has antiinflammatory effect, antitussive effect and hypolipidaemic activity (Kim 
et al., 2000). Interestingly, the hepatoprotective effects of bergenin and its mechanism 
have been reported. The hepatoprotective effect of bergenin was evidenced by 
elevating the activities of glutathione S-transferase (GST) and glutathione reductase 



 

2 

(GR), and content of glutathione in carbon tetrachloride (CCl4) –intoxicated hepatocytes 
(Kim et al., 2000). In addition, Bergenin also significantly prevented the elevation of 
hepatic malondialdehyde formation and depletion of reduced gluththione content in the 
liver of CCl4–intoxicated rats (Lim et al., 2000a). The results of these studies implied that 
bergenin exerted antihepatotoxicity against CCl4–induced cytotoxicity through 
glutathione-mediated detoxification as well as free radical scavenging activity.  

 
From these activities of bergenin, it is interesting to investigate the effects of 

bergenin on glutamate-induced neurotoxicity in cultured rat cerebelar granule cells. 
Moreover, the effects of bergenin on primary cultures of cerebellar granule neurons have 
not been reported yet. 

 
Therefore, the purposes of this study were to examine effects of bergenin in 

primary cultured rat cerebellar granule cells and to explore effects of bergenin on 
glutamate-induced neurotoxicity in cultured rat cerebellar granule cells by using 
biochemical analysis as follows:  

 
1. MTT reduction assay – an indication of cell metabolic activity, especially 

mitochondrial dehydrogenase activity. 
2. Lactate dehydrogenase (LDH) release assays – an indication of cell 

membrane damage. 
3. Thiobarbituric acid reactive substances (TBARS) assay – an indication of 

lipid peroxidation reaction. 
4. Reduced plus oxidized glutathione (total glutathione) assay – an indication of 

cellular antioxidation. 
 



 

CHAPTER II 
 

LITERATURE REVIEW 
 
Cerebellum 

 
 Cerebellum is attached to the back of upper portion of brain stem, lying 

underneath occipital lobe of the cortex (Figure 1). It is concerned primarily with motor 
activity, yet like the basal nuclei, it does not have any direct influence on the efferent 
motor neurons. It functions indirectly by modifying the output of major motor systems of 
the brain. 

 
Specifically, cerebellum contributes to the maintenance of balance, enhances 

muscle tone, and coordinates skilled, voluntary movements. When cortical motor areas 
send messages to muscles for the execution of a particular movement, the cerebellum is 
also informed of the intended motor command. In addition, this region receives inputs 
from peripheral receptors that apprise it of what is actually taking place regarding body 
movement and position. Cerebellum essentially acts as “middle management” 
comparing the “intentions” or “orders” of the higher centers with the “performance” of 
the muscles and then correcting any “errors” or deviations from the intended movement. 
The cerebellum even appears to be able to predict the future position of a body part in 
the next fraction of a second and to make adjustments accordingly. These adjustments 
are especially important for rapidly changing (phasic) activities like typing, playing the 
piano, or running (Sherwood, 1991). 

 
The cerebellum constitutes only 10% of the total volume of the brain but contains 

more than half of all its neurons. Granule cells, the excitatory neurons, are one type 
neuron of cerebellar cortex (Kandel, Schwartz, and Jessell, 2000). 
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Figure 1. Anatomy of the brain, showing position of cerebellum (Pinel, 2000). 
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Granule cells 
 
The granule cells are small and closely packed together in the deepest cortical 

layer. Each cell has a spherical nucleus with a coarse chromatin pattern, and the scanty 
cytoplasm lacks clumps of Nissl substance (Figure 2). The short dendrites have clawed–
like endings that are contacted by mossy fibers. The unmyelinated axon enters the 
molecular layer, where it bifurcates and runs parallel with the folium. Because of the 
density of granule cell population, the whole molecular layer contains closely arranged 
parallel fibers. Each granule cell axon traverses the dendritic trees of some 450 Purkinje 
cells, making synaptic contacts with their dendritic spines. These axons also synapse 
with dendrites of stellate, basket, and Golgi cells in the molecular layer. Synaptic 
transmission of granule cells is a part of the circuit modules that is crucial for motor 
adaptation and learning (Figure 3) (Kiernan, 1998). 

 
 

 

 

Figure 2. Cerebellar granule cells in culture (8 days) in DMEM–high K+  (25 mM KCl) 
medium. 
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Figure 3. Synaptic organization of the basic cerebellar circuit module. Mossy and 
climbing fibers convey input to the cerebellum via a main excitatory loop through the 
deep nuclei. This loop is modulated by an inhibitory side-loop passing through the 
cerebellar cortex. This figure shows the excitatory (+) and inhibitory (-) connections 
among the cell types (Kandel et al., 2000). 
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Glutamate 

Glutamate (L–Glutamic acid) is the most abundant excitatory neurotransmitter in 
the mammalian CNS, accounting for perhaps one–third of all rapid excitatory synapses 
in the CNS. Glutamate plays an important function as a neurotransmitter, in numerous 
excitatory local circuits in the cortex, hippocampus cerebellum and many other brain 
regions (Cotman et al., 1987, cited in Doble, 1999). Glutamate not only mediates 
excitatory neurotransmission but also is involved in other phenomena such as neuronal 
plasticity and cell death (neuroexcitotoxicity) (Kawasaki et al., 1997). 

 
Glutamate receptors 
 
 There are four main subtypes of glutamate receptors, namely NMDA, AMPA, 
kainate and metabotropic receptors (Table 1). The first three (often-called ionotropic 
receptors) are ligand–gated ion channels according to their specific agonists and they 
have a pentameric structure. Other glutamate receptors (metabotropic) are monomeric 
G-protein–coupled receptors, linked to intracellular second messenger systems (e.g., 
phospholipase C or adenylyl cyclase) (Rang et al., 2000). 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 1. Properties of excitatory amino acid receptors (Rang et al., 2000). 
  NMDA        AMPA   Kainate  Metabotropic 
 Receptor site Modulatory site Modulatory site  Receptor site Modulatory site      
  (glycine) (polyamine)        
Endogenous Glutamate Glycine Spermine  Glutamate ??  Glutamate  Glutamate 
agonists 
 

Aspartate  Spermidine        

Other agonists NMDA D - serine    AMPA Cyclothiazide  Kainate  D - AP4 
     Quisqualate Aniracetam  Quisqualate  ACPD 
      "Ampakine"*     

Antagonists AP - 5, AP – 7 Kynurenate Ifenprodil  NBQX   -  MCPG 
 CGS 19755 Chloro - kynurenate   CNQX      
 CPP HA - 466         
 SDZ EAA 494          

Chanel blockers Dizoclipine (MK801)    -   -  Not applicable 
 Phencyclidine          
 Ketamine          
 Dextromethorphan          
 Mg2+          

Effector Ligand - gated cation    Ligand - gated cation   Ligand - gated cation  G-protein-coupled 
mechanisms Channel (slow kinetics,    Channel (fast kinetics,   Channel (fast kinetics,  (IP3 formation and 

 High Ca2+ permeability)    low Ca2+ permeability)   low Ca2+ permeability)  release of Ca2+) 
Location Postsynaptic (also glial)    Postsynaptic   Pre-and postsynaptic  Pre-and postsynaptic 

 Wide distribution          
Function Slow EPSP    Fast EPSP   Fast EPSP  Synaptic modulation 

 Synaptic plasticity    Wide distribution   ? presynaptic inhibition  Excitotoxicity 
 (LTP, LTD)       Limited distribution   
 Excitotoxicity          

ACPD = 1-aminocyclopentane-1,3-dicarboxylic acid; AP-5 = 2-amino-5-phosphonopentanoic acid; AP-7 = 2-amino-7-phosphonoheptanoic acid; CNQX = 6-cyano-7-nitroquinoxaline-2,3-
dione; CPP = 3-(2-carboxypirazin-4-yl)-propyl-1phosphonic acid; NBQX = 2,3-dihydro-6-nitro-7-sulfamoyl-benzouinoxaline; MCPG =α-methyl-4-carboxyphenylglycine.  
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Functional role of glutamate receptors 
 

AMPA receptors are mainly responsible for fast excitatory synaptic transmission 
in the CNS. In some regions kainate receptors may also serve this role, but the evidence 
is incomplete. NMDA receptors (which often coexist with AMPA receptors) contribute a 
slow component to the excitatory synaptic potential, the magnitude of which varies in 
different pathways. Metabotropic glutamate receptors are linked either to IP3 production 
and release of intracellular Ca2+ or to inhibition of adenylyl cyclase. They are located 
both pre- and postsynaptically, as well as on non-neuronal cells. Their effects on 
transmission are modulatory, rather than direct, comprising mainly postsynaptic 
excitatory effects (by inhibition of potassium channels) and presynaptic inhibition (by 
inhibition of calcium channels). 

 
NMDA and metabotropic glutamate receptors participate in various adaptive and 

pathophysiological events. Three such roles which are now generally accepted are 
synaptic plasticity, the pathogenesis of epilepsy and excitotoxicity (Rang et al., 2000).  

 
Excitotoxicity 
 
 Excitotoxicity is a phenomenon that neuronal cell death resulting from the toxic 
effects of the excitatory neurotransmitter glutamate (Nicholls and Ward, 2000). It is 
associated mainly with activation of NMDA receptors, but other types of glutamate 
receptors also contribute. 
 
 Calcium overload is the essential factor in excitotoxicity. The mechanisms by 
which this occurs and leads to cell death are as follows (Figure 4) (Rang et al., 2000): 

• Glutamate activates NMDA, AMPA and metabotropic receptors (Sites 1, 2 
and 3). Activation of AMPA receptors depolarizes the cell, which unblocks 
the NMDA-channels, permitting calcium entry. Depolarization also opens 
voltage-activated Ca2+ channels (Site 4), releasing more glutamate. 
Metabotropic receptors cause the release of intracellular Ca2+ from the 
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endoplasmic reticulum. Sodium entry further contributes to Ca2+ entry by 
stimulating Ca2+/Na+ exchange (Site 5). Depolarization inhibits or reverses 
glutamate uptake (Site 6), thus increasing the extracellular glutamate 
concentration. 

• The mechanisms that normally operate to counteract the rise in [Ca2+]i 

include the calcium efflux pump (Site 7) and, indirectly, the sodium pump 
(Site 8). 

• The mitochondria and endoplasmic reticulum act as capacious sinks for 
Ca2+, and normally keep [Ca2+]i under control. Loading of the mitochondrial 
stores beyond a certain point, however, disrupts mitochondrial function, 
reducing ATP synthesis, thus reducing the energy available for the 
membrane pumps and for Ca2+ accumulation by the endoplasmic reticulum. 
Formation of reactive oxygen species (ROS) is also enhanced. This 
represents the danger point at which positive feedback exaggerates the 
process. 

• Raised [Ca2+]i affects many processes, the chief ones relevant to 
neurotoxicity being: 
- Increased glutamate release 
- Activation of proteases (calpains) and lipases, causing membrane 

damage 
- Activation of nitric oxide synthase (NOS), which, together with ROS, 

generates peroxynitrite and hydroxyl free radicals, which react with 
several cellular molecules, including membrane lipids, proteins and DNA 

- Increased arachidonic acid release, which increases free radical 
production, and also inhibits glutamate uptake (Site 6). 
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Figure 4. Mechanisms of excitotoxicity. Membrane receptors, ion channels and 
transporters, identified by number 1-8, are discussed in the text. Mechanisms on the left 
(villains) are those, which favor cell death, while those on the right (heroes), are 
protective. (ER = endoplasmic reticulum; AA = arachidonic acid; ROS = reactive oxygen 
species; SOD = superoxide dismutase) (Rang et al., 2000).

 



 

Bergenin 
 

Bergenin occurs widely in a number of plants and has been found as an 
ingredient in plant extracts used in folk medicine to treat many diseases. It was isolated 
from many parts of trees that summarized in Table 2. 

 
Table 2. The part of plants that contains bergenin. 
 

Plants References 
the roots of Bergenia crassifolia Sadikov and Guthner, 1927, cited in Hay 

and Haynes, 1958 
the bark of Corylopsis spicata Hattori, 1929, cited in Hay and Haynes, 

1958 
the heartwood of Shorea leprosula Carruthers, Hay, and Haynes, 1957, cited 

in Hay and Haynes, 1958 
the bark of Macaranga peltata Ramaiah et al., 1979 
the bark and cortex of Mallotus japonicus  Yoshida et al., 1982; Lim et al., 2000a; Lim 

et al., 2000c; Chung et al., 2001. 
The roots of Bergenia pupurascenes  Min et al., 1987 
The leaves of Allophyllus edulis var. edulis Hoffmann-Bohm et al., 1992 
The flowers of Peltophorum pterocarpum 
Back. Ex K. Heyne known as “Non Sree” 
(Thai name) 

Siriwan Hirunyaphisutthikul, 1995 

The aerial parts of Ardisia japonica Piacente et al., 1996 
The rhizomes of Astilbe thunbergii known 
as “Hong Shengma” (Chinese name) and 
“Aka-Shouma” (Japanese name) 

Li et al., 1997, cited in Han et al., 1998 
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Table 2. The part of plants that contains bergenin (continue) 
 

Plants References 
The leaves and roots of Fluggea 
microcarpa and luvangetin 

Goel et al., 1997 

The leaves of Securinega melanthesoids    Schütz, 1998 
The bark of Mallotus polyadenos Setzer, 1999 
Bergenia ligulata Chaunhan et al., 2000 
The dried fruits of Ardisia colorata Roxb.  Sumino et al., 2002 
The aerial parts of Fluggea virosa Roxb.ex 
Wild  

Pu et al., 2002 

 
Bergenin is dihydroisocoumarin derivative characterized by a β-D–glucosyl 

residue C–linked to a hydroxylated phenylcarboxylic acid ortho to the carboxyl group 
(Figure 5). In addition, the carboxyl group is esterified with the C–2-hydroxyl group of the 
glucosyl moiety to form a δ-lactone ring (Piacente et al., 1996). It has a melting point of 
258 °C (decomposed), [α]24

D: -30° (C = 0.53,H2O), UV, IR, FAB–MS, 1H– and 13C–NMR 
data were in accordance with published data ( Murthy and Jairay, 1988, cited in Pu et al., 
2002).  
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Figure 5. The structure of bergenin (Han et al., 1998). 
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Biological activities of bergenin 
 

Bergenin is considered to be an active component of various plant species, 
which are employed in folklore medicine. For example, Malloti Cortex water extract, 
containing about 11-18% of bergenin, has been used as a folk medicine for treatment 
and therapy of gastrointestinal diseases such as gastritis, gastric ulcer, diarrhea and 
constipation (Okada et al., 1973; Abe et al., 1980). In addition, several studies on the 
biological activity of bergenin (e.g., Piegen, 1980; Swarnalakshmi et al., 1984; Jahromi et 
al., 1992) indicated a wide variety of effects such as anti–HIV activity, antiulcer activity, 
lipolytic effect, antiarrhythmic effect and hepatoprotective effect.  

 
Anti–HIV activity of bergenin 

 
Bergenin and related compound, norbergenin, that have been extracted from the 

aerial parts of Adrisia japonica showed the in vitro HIV inhibition in infected c8166 cells. 
Although they did not inhibit HIV replication, bergenin and norbergenin showed 
significant anti–HIV activity (Piacente et al., 1996).  

 
Antiulcer activity of Bergenin 
 

Bergenin and norbergenin have, moreover, antiulcer activity. Goel and others 
(1997) had pointed out that these compounds have protective activity against pylorus–
ligated and aspirin–induced gastric ulcers in rats and guinea pigs. The study on 
prostaglandin release by human colonic mucosal incubates had indicated that 
gastroprotective effect of bergenin and norbergenin could be due to increased 
prostaglandin production (Goel et al., 1997). 
 
The lipolytic effect of bergenin 

 
Bergenin, isolated from the rhizomes of Astilbe thunbergii, has been shown to 

enhance norepinephrine–induced lipolysis at the concentrations of 1–1,000 µg/ml in a 
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concentration–dependent fashion in fat cells of 5 weeks old Wistar rats, while bergenin 
by itself did not cause lipolysis. Furthermore, this compound slightly stimulated 
adrenocorticotrophic hormone–induced lipolysis and inhibited insulin–induced 
lipogenesis from glucose (Han et al., 1998). 

 
The antiarrhyhmic effect of bergenin 
 

Anti-arrhythmic effects of bergenin, isolated from the aerial parts of Fluggea 
virosa Roxb. ex Wild, was investigated. Bergenin showed distinct therapeutic effects on 
BaCl2-induced arrhythmias in rats and significantly countered arrhythmias induced by 
ligation and reperfusion of the coronary artery. Additionally, at 0.8 mg/kg, bergenin 
elevated the atrial fibrillation threshold in rabbits from 1.34 mV to 1.92 mV. These 
suggest that bergenin has good potential to treat cardiac arrhythmias (Pu et al., 2002). 

 
The hepatoprotective effect of bergenin 
 

Pharmacological studies indicated that bergenin and its derivatives have 
protective effects on D–galactosamine (Galc) and CCl4–intoxicated rat hepatocytes 
(Hoffman–Bohm et al., 1991; Lim et al., 2000a; Lim et al., 2000c). Hoffman–Bohm and 
others (1991) found that bergenin and 11–o–galloylbergenin, found in the leaf extracts of 
Allophyllus edulis, exhibited moderate antihepatotoxic activity against CCl4 and Galc 
cytotoxicity in primary cultured rat hepatocytes (Hoffman–Bohm et al., 1991). In addition, 
several studies had revealed that bergenin has many hepatoprotective mechanisms. 
Bergenin significantly reduced the activities of glutamic pyruvic transaminase and 
sorbitol dehydrogenase released from primary cultured rat hepatocytes subjected to 
CCl4–induced cytotoxicity. The antihepatotoxicity of bergenin was also evidenced by 
elevating the activities of GST and GR, and content of glutathione in the CCl4–intoxicated 
hepatocytes. It is assumed that bergenin exerted antihepatotoxicity against CCl4–
induced cytotoxicity through glutathione–mediated detoxification as well as free radical 
scavenging activity (Kim et al., 2000). It appeared that bergenin showed hepato-
protective effects against Galc–intoxicated rat hepatocytes by inhibiting the release of 
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glutamic pyruvic transminase and sorbitol dehydrogenase as well as by increasing RNA 
synthesis (Lim et al., 2000c). Moreover, bergenin also significantly prevented the 
elevation of hepatic malondiadehyde formation and depletion of reduced glutathione 
content in the liver of rats with CCl4–induced hepatic damage (Lim et al., 2000a). 
Acetylbergenin, one of the derivative of bergenin, has hepatoprotective effects against 
Galc–induced hepatotoxicity by inhibiting lipid peroxidation and maintaining an 
adequate level of GSH for the detoxification of xenobiotics as underlying 
hepatoprotective mechanisms (Lim et al., 2000b). It also has potent hepatoprotective 
activity against CCl4–induced hepatic damage in rats by glutathione–mediated 
detoxification as well as having free radical scavenging activity (Lim et al., 2001). 

Recently, Chung and others (2001) studied the effects of bergenin and 
acetylbergenin on liver fibrosis induced by bile duct ligation (BDL) in rats. They found 
that bergenin and acetylbergenin decreased towards normal the accumulated levels of 
hydroxyproline (HYP) (a marker of collagen accumulation) in the liver and the elevated 
serum levels of alanin aminotransferase (s-ALT), aspartate aminotransferase (s-AST) and 
alkaline phosphatase (s-ALP). These results indicated that bergenin and acetylbergenin 
ameliorated the liver damage induced by BDL in rats (Chung et al., 2001).  

 
The antioxidant activity and cytotoxic effect 
 

In the course of screening for antioxidants in Thai medicinal plants, bergenin that 
extracted from the fruits of Adrisia colorata Roxb. showed relative scavenging activity 
towards 1,1–diphenyl–2–picrylhydrazyl (DPPH) radicals in TLC autographic assay. 
Bergenin showed 131 µM of IC50 value and 0.3 mM of trolox equivalent value. Bergenin 
also showed weak activity (IC50 : 44 µM) in cytotoxicity against the murine breast cancer 
cell line, FM3A (Sumino et al., 2002). 
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CHAPTER III 
 

MATERIALS AND METHODS 
 
Materials 
 

1. Experimental Animals 
 
  Postnatal day 8, Wistar rat  (both sexes) were used in this study. They were 
obtained from time–pregnant rats of embryonic day 18 purchased from the National 
Laboratory Animal Center, Salaya, Mahidol University, Bangkok. All pregnant rats were 
housed in stainless steel cages at Faculty of Pharmaceutical Sciences, Chulalongkorn 
University, until delivery and then rat pups were kept with their mother until 8–day old. 
They were freely accessed to food pellets (C.P. rat fed, Pokaphand Animal Fed Co. Ltd. 
Yanawa, Bangkok, Thailand) and tap water ad libitum.   
   

2. Chemicals  
 
 The following chemicals were used in the experiments: 
 Bergenin [Sigma] 
 n-Butanol [BDH] 
 Butylated hydroxytoluene [Sigma] 
 Calcium chloride [Ajax chemicals] 

Dimethyl sulfoxide (DMSO) [BDH] 
5-5’- dithiobis-(2-nitrobenzoic acid) (DTNB) [Sigma] 
DNase I [Sigma] 
Dulbecco’s modified Eagle’s medium (DMEM) [Sigma] 
Dulbecco’s modified Eagle’s medium (DMEM) without phenol red [Sigma] 
Dulbecco’s phosphate buffered saline (DPBS) without calcium chloride [Sigma] 
Equin serum [Hyclone] 
Ethanol [Merck] 
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Fetal bovine serum (FBS) [Hyclone] 
D–glucose, monohydrate [Unilab] 
Glutathione, reduced form [Sigma] 
Glutathione reductase [Sigma] 
HEPES [Sigma] 
Hydrochloric acid [Merck] 
Insulin [Sigma] 
In vitro Toxicology Assay Kit (Lactate Dehydrogenase Based) [Sigma] 
L-Glutamic acid [Sigma] 
Magnesium chloride [Merck] 
Magnesium sulphate heptahydrate [BDH] 
Methanol [BDH] 
MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) [Sigma] 
β-Nicotinamide adenine dinucleotide phosphate, reduced form (β-NADPH) 
[Sigma] 
Penicillin G [Sigma] 
Phosphotungstic acid [Sigma] 
Potassium chloride [Ajax chemicals] 
Potassium dihydrogen phosphate [Sigma] 
Poly-D-lysine hydrobromide (MW 15,000–30,000) [Sigma] 
Progesterone [Sigma] 
Putrescine [Sigma] 
Pyruvic acid sodium salt [Fluka] 
Sodium chloride [Ajax finechem] 
Sodium dodecyl sulfate [Sigma] 
Sodium hydrogencarbonate [Ajax chemicals] 
Sodium hydroxide [Sigma] 
Sodium phosphate, dibasic anhydrous [Sigma] 
Sodium phosphate, dibasic heptahydrate [Sigma] 
Sodium phosphate, monobasic anhydrous [Sigma] 
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Sodium selenite [Sigma] 
Streptomycin Sulfate [Sigma] 
Sulfosalicylic acid 
Sulfuric acid [BDH] 
Thiobarbituric acid [BDH] 
Transferrin [Sigma] 

 0.04% Trypan Blue [Sigma] 
    

3.Instruments 
 
 The following instruments were used in the experiments: 

Adjustable pipette : 10–100 µl [Nichiyo] 
Adjustable pipette : 200–1000 µl, 1–5 ml [Labsystems] 
Aluminium foil [Tops] 
Bunsen burner 
Carbon dioxide incubator [Forma Scientific] 
Cell culture dish : diameter 35 mm, diameter 100 mm [Nunc] 
24-well cell culture plate [Nunc] 
Cell strianer : 40 µm Nylon [Becton Dickinson] 
Centrifuge [Kokusan] 
Conical tube : 15 ml, 50 ml [Nunc] 
Disposable glass Pasteur pipette: 230 mm [Volac] 
Fluorescence spectrophotometer FS 777 [Jasco] 
Glass bottle: 100 ml, 500 ml, 1000 ml [Schott Duran] 
Hemocytometer (Depth 0.100 mm) [Improved Neubauer] 
Inverted microscope, Axiovert 135 [Zeiss] 
Latex-free syringe: 10 ml [Becton Dickinson] 
Laminar air flow hood [Hepaco] 
96-well microtiter plate [Nunc] 
Microplate reader [Biorad model 3550] 
pH meter [Beckman Instruments] 
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Pipette tip: 1–200 µl, 200–1000 µl, 1–5 ml [Labsystems] 
Sterile Millex–GV (0.22 µm filter unit) [Millipore] 
Sterivex–GS (0.22 µm filter unit with filling bell) [Millipore] 
Surgical equipments 
Syringe filter holder: 13 mm [Satorius] 
Vortex mixer [Clay adams] 

 
Experimental methods 
 

1. Preparation of culture media, buffers and solutions 
 

All culture media were obtained from commercial sources in powder form. They 
were prepared by dissolving ingredients in nonpyrogenic distilled water followed by filter 
sterilization through a 0.22 µm membrane filter. They were kept at 4°C until used. 

  
 

1.1 Culture media 

Dulbecco’s modified Eagle’s medium (DMEM, high glucose) was used in 
culturing cerebellar granule neurons. The medium was supplemented with 99 µg/ml 
sodium pyruvate, 3.7 mg/ml sodium bicarbonate, 54 µg/ml penicillin G sodium and 90 
µg/ml streptomycin sulfate. Where indicated, 10% (v/v) fetal bovine serum (FBS) was 
added. Serum–free DMEM was composed of normal DMEM without phenol red 
supplemented with N-2 supplement. The supplement was used for the survival and 
expression of post–mitotic neurons in primary cultures from both the peripheral nervous 
system (PNS) and the central nervous system (CNS). It contained 30 µg/ml transferrin, 5 
µg/ml insulin, 100 µM putrescin, 20 nM progesterone and 30 nM sodium selenite. The 
medium was adjusted to pH 7.3 using 1 N NaOH and 1 N HCl. 
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 1.2 Dulbecco’s phosphate buffered saline (without Ca2Cl) (DPBS) 

DPBS was purchased from Sigma. It was used for the preparation of 
cerebellar granule cell culture and 0.5% triton–X 100. For 1 liter preparation, it consisted 
of MgCl2.6H2O 0.10 g, KCl 0.20 g, KH2PO4 0.20 g, NaCl 8.00 g and Na2HPO4 1.150 g. 
The solution was adjusted to pH 7.4 using 1 N NaOH and 1 N HCl. 

  1.3 Hank ‘s balanced salt solution     

  Hank ‘s balanced salt solution was used for the preparation of 0.25% 
trypsin and 0.01% DNase I. For 1 liter preparation, it contained KCl 0.40 g, KH2PO4 0.06 
g, MgCl2.H2O 0.10 g, MgSO4.7H2O 0.10 g, NaCl 8.00 g, NaHCO3 0.35 g and 
Na2HPO4.7H2O 0.09 g, adjusted to pH 7.4 using 1 N NaOH and 1 N HCl. 

 1.4 Locke’s solution 

Locke’s solution was used for the exposure of cerebellar granule neuron 
cultures to glutamic acid. It contained 154 mM NaCl, 5.6 mM KCl, 3.6 mM NaHCO3, 2.3 
mM CaCl2, 5.6 mM glucose and 5 mM HEPES. The solution was adjusted to pH 7.4 
using 1 N NaOH and 1 N HCl. 

1.5 0.1 M Sodium phosphate buffer 

0.1 M Sodium phosphate buffer was used for dissolving 5-5’- dithiobis-(2-
nitrobenzoic acid) (DTNB) and NADPH. It contained 94.7 ml. of 0.2 M sodium phosphate 
dibasic anhydrous and 5.3 ml. of 0.2 M sodium phosphate monobasic anhydrous. The 
solution was adjusted to 200 ml by distilled water and pH 7.5 using 1 N NaOH and 1 N 
HCl. 

 
2. Cerebellar granule neuron cultures (Figure 6) 

Cultures of cerebellar granule cells were prepared from pooled 
cerebellar of 8–day old Wistar rat pups, a time when many of the granule neurons were 
still at an early post–mitotic stage of differentiation. Postnatal rats were decapitated 
under ether anesthesia by scissors. Cerebellar were removed aseptically from the brain. 
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After removal of the meninges, the tissue was cut into cubes of about 0.4 mm side 
dimensions, and incubated for 20 min at 37 °C with 0.25% trypsin and 0.01% DNase I in 
Ca2+, Mg2+-free Hank’s balanced salt solution. The incubation was terminated by the 
addition of horse serum and tissue fragments were centrifuged at 3,000 rpm for 10 min. 
The tissue pellet was gently rinsed and resuspended in high K+ (25 mM KCl) DMEM 
containing 10% FBS. The single cells were dissociated by gently passing the 
suspension through a 10–ml plastic pipette tip and then a 5–ml plastic pipette tip. The 
cell suspension was filtered through two sheets of nylon net (50 µm–mesh) to remove 
cell lumps, and was further diluted as appropriate with high K+ (25 mM KCl) DMEM 
containing 10 % FBS and plated on poly–D–lysine (100 µg/ml) coated plates at density 
of 4 × 105 cells/cm2 in 24–well culture plates.  The cultures were grown in a humidified 
5% CO2–95% air atmosphere at 37°C. At 18–24 hr after plating, cytosine arabinoside 
was added to the medium to a final concentration of 10 µM; this curtails the number of 
astrocytes that develop in the cultures. One-third of volume of each well was replaced 
with fresh medium on day 4 in vitro. Cultures were used on day 8 at which the medium 
was changed to serum free high K+ DMEM without phenol red containing N–2 
supplement or Locke’s solution plus desired concentrations of bergenin and/or 
glutamate. 
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18 – 24 hr after plating 

 

 

cerebellum 

Figure 6. Prepartion of cerebellar granule neuron cultures 
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3. MTT reduction assay 
 

The MTT assay is widely used in cell proliferation and cytotoxicity assays. The 
colorimetric MTT assay based on the reduction of yellow–colored 3–(4,5–
dimethylthiazol–2–yl)–2, 5–diphenyltetrazolium bromide (MTT) into a purple insoluble 
formazan reduction product in living cell but not in dead cells or their lytic debris (Figure. 
7) (Mosman, 1983). The MTT assay is though to measure the ability of MTT to be 
reduced by electrons flowing through the mitocondrial electron transport chain and 
therefore reflects early redox changes within the cell. MTT is also reduced by superoxide 
that may be generated from mitochondrial oxidative metabolism by xanthine oxidase 
(Behl et al.,1994). The intracellular purple formazan, solubilized in dimethyl sulfoxide, is 
easily measured with a microplate reader (Skaper et al., 1998). 
 

 
Figure 7. Molecular structure of MTT and their corresponding reaction products. 
(Methods for studying cell proliferation and viability in cell populations : assays that 
measure metabolic activity, n.d.) 

 To evaluate cell survival, the MTT assay was performed with modification 
(Hansen et al, 1989, Ishikawa et al, 2000) of the original procedure (Mosmann, 1983). 
MTT reduction was analyzed by adding 10 µl of MTT stock solution, 5 mg/ml in 
phosphate–buffered saline (PBS), to medium or Locke’s solution in each well (final 
concentrations were 100 µg/ml). Cultures were incubated in a CO2 incubator for 1 h at 
37°C and the medium in each well was aspirated off without disturbing the formazan 
precipitate. Then 400 µl of DMSO was added to each well to solubilize the formazan 
crystals. Following thorough formazan solubilization, 200 µl aliquots of soluble formazan 

MTT Formazan
NADH

NAD+
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were transferred to 96–well microtiter plate. Absorbance (600 nm) in each well was 
quantified using a microplate reader (Biorad model 3550). The cellular reduction of MTT, 
which reflects metabolic activity and viability, was expressed in term of the percentage 
of absorbance in control cultures. 

 
4. Lactate dehydrogenase (LDH) release assay 

  
 The lactate dehydrogenase release assay is a means of measuring membrane 
integrity as a function of the amount of cytoplasmic lactate dehydrogenase (LDH) 
released into the medium. The assay is based on the reduction of NAD by the action of 
LDH. The resulting reduced NAD (NADH) is utilized in the stoichiometric conversion of a 
tetrazolium dye (Figure 8). 

 
Figure 8. The reactions in lactate dehydrogenase (LDH) assay. (Cytotoxicity detection kit 
(LDH) : instruction manual version 5, 1999) 
 
 Cell viability was determined by assaying the medium from each well for LDH 
activities using a cytotoxic test kit with a procedure according to the manufacture’s 
instructions (Sigma). Medium LDH was assayed by pipetting 100 µl of culture medium or 
Locke’s solution from each well into a 96–well microtiter plate.  Cellular LDH in cultures 
was measured by carefully removed the culture medium from the adherent cells and 
solubilized cells with 1 ml of 0.5 Triton X-100 in PBS after which 100 µl aliquots were 
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pipette into a 96–well microtiter plate. The reaction was started by adding 50 µl of assay 
mixture into each well. The reaction mixtures were left at room temperature for 30 min 
after which 50 µl of 0.5 N HCl was added into each well. During this incubation period, 
the reaction should be protected from light. The light absorbance in each well was 
measured at 510 nm and the reference wavelength was measured at 610 nm with a 
BIO–RAD Model 550 dual wavelength microplate reader. The LDH release which reflects 
cell death was presented as percentage of total LDH activity by the following formula: 
 
 % LDH release   =    LDH activity in medium    × 100 
     LDH activity in medium + LDH activity in cells 
  

In most case, comparative LDH release in test conditions was expressed as the 
percentage of that in control conditions. 
 
 5. Thiobarbituric acid reactive substance (TBARS) assay 
  
 The TBARS assay measures the amount of malondialdehyde (MDA), an end 
product of peroxidative decomposition of polyeonic fatty acids, and is widely used as a 
screening assay to quantify the extent of lipid peroxidation in vitro (Holly and 
Cheeseman, cited in Ljybucid et al., 1996)). One molecule of MDA can react with two 
molecules of thiobarbituric acid (TBA) to generate the production of pink pigment which 
can be determined by spectrofluorometric method (Halliwell and Gutteridge, 1989; 
Esterbauer and Cheeseman, 1990; Sattler et al., 1998). The principle of reaction was 
described below.  
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Figure 9. The reaction of thiobarbituric acid (TBA) and malondialdehyde (MDA). 
(Halliwell and Gutteridge, 1989). 
 

TBARS was measured using a technique modified from Ohkawa et al. (1979) 
and Storch et al. (2000). In this study, granular cultures grown in 24–well plate were 
lysed with 160 µl of 2% sodium dodecyl sulfate for 30 min. The lysates from six culture 
wells were pooled and adjusted with 2% sodium dodecyl sulfate to 1 ml. The lysates 
were added serially with 50 µl of butylated hydroxytoluene (4% in ethanol), 1 ml. of 
phosphotungstic acid (10% in 0.5 M sulfuric acid) and 1.5 ml. of thiobarbituric acid 
(0.7%). The mixtures were incubated at 95°C for 60 min, cooled by tap water, and 
extracted with n-butanol. After centrifugation at 3,500 rpm for 10 min, the fluorescence of 
the n–butanol layer was measured at 515 nm excitation and 553 nm emission 
wavelengths. Measurements are expressed in term of the percentage of control. 
Fluorescence was measured with Jasco FS 777 spectrofluorometer. 
 

6. Reduced plus oxidized glutathione (total glutathione) assay 
 
The total glutathione, comprising reduced glutathione (GSH) and glutathione 

disulfide (GSSG), content of biological samples is conveniently determined with an 
enzymatic recycling assay based on glutathione reductase (Tietze, 1969; Xu and 
Thornalley, 2001). The sum of the reduced and oxidized forms of glutathione can be 
determined using a kinetic assay in which catalytic amounts of GSH or GSSG and 
glutathione reductase bring about the continuous reduction of 5,5’-dithiobis (2-
nitrobenzoic acid) (DTNB) by NADPH according to the following reactions. 
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nonenzymic 

2GSH + DTNB                                                     GSSG + 2TNB 
GSH reductase 

GSSG + NADPH + H+                                          2GSH + NADP+ 

 
GSH/GSSG 

NADPH + H+ + DTNB                                          2TNB + NADP+ 
GSH reductase 

 
Figure 10. The reaction of GSH, GSSG and GSH reductase. (Akerboom and Sies, 1981) 
 
 In this study, granule cells were washed twice with PBS, dissolved in 150 µl of 
1% sulfosalicylic acid and left on ice for 10 min. Then, two wells of samples were pooled 
and centrifuged at 6,000 × g for 5 min at 4 °C. The supernatant was analyzed for total 
glutathione. An aliquot 20 µl of cell extract was added to PBS and adjusted to 100 µl. 
Then an aliquot was added into the well of a 96-well microplate. The assay was initiated 
by addition of 100 µl of GSH reductase solution in 0.1 M sodium phosphate buffer. This 
was prepared as follows: 25 µl of 0.15 mM 5,5’-dithiobis (2-nitrobenzoic acid), 25 µl of 
0.2 mM NADPH and 50 µl of 1 U GSH reductase. The rate of formation of 5-thio-2-
nitrobenzoate (TNB) was followed at 410 nm over the initial 3 min of the reaction time 
and the rate of increase in absorbance (dA/dt0) was determined and expressed in term 
of percentage of control. The cellular content of GSSG was typically less than 2% of 
GSH level and was not considered. 
 
Experimental procedure 
 
 The study was divided into 4 parts as follows: 

1. Determining effects of bergenin on cultured cerebellar granule cells 
2. Determining glutamate neurotoxicity on cultured cerebellar granule cells 
3. Determining effects of coexposure with bergenin on glutamate–induced  

cytotoxicity in cultured cerebellar granule cells 
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4. Determining effects of preexposure to bergenin on glutamate–induced 
cytotoxicity in cultured cerebellar granule cells 

 
1. Determination of effects of bergenin on cultured cerebellar granule cells 

 
Effects of begenin on cerebellar granule neurons were assay after 7 days of 

culture. Culture medium was removed. Cells were then replenished with serum-free high 
K+ DMEM containing N2 supplement in the presence of bergenin. Bergenin was 
dissolved in 0.5% dimethylsulfoxide (DMSO) and then diluted to final concentrations of 
0–100 µM in culture medium. The cells were incubated at 37 °C in 5% CO2 atmosphere. 
Cell viability was measured 12, 24 and 48 hr later, by MTT cell viability assay and LDH 
release assay to determine the effects of time and concentration of bergenin exposure. 
TBARS assay and total glutathione assay were measured at 48 hr for clarifying the 
mechanism of bergenin’s effects. 
 
 2. Determination of glutamate neurotoxicity on cultured cerebellar granule cells 
 

 Culture medium was removed on the experimental day. Cells were 
exposed to glutamate (0, 500 µM, 1 mM and 2 mM) in Locke’s solution in the presence 
of 1 µM glycine. Glycine was added to fully activate the NMDA–sensitive glutamate 
recognition sites (Johnson and Ascher, 1987, cited in Atlante et al, 1999). Cells were 
incubated for 4 and 8 hr at 37 °C in 5% CO2 atmosphere. Cell viability was determined 
by MTT cell viability assay and LDH release assay to determine the effects of time and 
concentration of glutamate exposure. TBARS assay and total glutathione assay were 
measured at 48 hr for clarifying the mechanism of glutamate’s effects. 
 
 3. Determination of effects of coexposure to bergenin on glutamated–induced 
cytotoxicity in cultured cerebellar granule cells 
 
 On the day of the experiment, the medium was removed. Cells were then 
replenished with Locke’s solution containing 500 µM glutamate and 1 µM glycine with 
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different concentration of bergenin (0–100 µM). They were maintained at 37°C in a 
humidified atmosphere of 5% CO2 for 8 hr. After the incubation period, MTT cell viability 
assay, LDH release assay, TBARS assay and total glutathione assay were conducted. 
 
 4. Determination of effects of preexposure to bergenin on glutamated–induced 
cytotoxicity in cultured cerebellar granule cells 
 
 On the day of the experiment, the medium was removed. Cells were then 
incubated with serum-free high K+ DMEM containing N2 supplement in the presence of 
bergenin (0–100 µM) for 48 hr at 37 °C in a humidified atmosphere of 5% CO2. After the 
incubation period, the medium was removed and replaced with Locke’s solution in the 
presence of 500 µM glutamate and 1 µM glycine. MTT cell viability assay, LDH release 
assay, TBARS assay and total glutathione assay were conducted 8 h later. 
 
Statistical analysis 
 

Data were expressed as mean ± standard error of mean (SEM) from groups of 
samples with n ≥ 6 separate experiments. Differences between control and treatment 
groups were analyzed using analysis of variance (ANOVA) followed by Tukey’s test for 
multiple comparisons. Groups were considered to show statistically significant 
difference if the p–value was less than 0.05. 
 

. 
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CHAPTER IV 
 

RESULTS 
 
1. Effects of Bergenin on Cell Survival of Cultured Cerebellar Granule Neurons 
 
  Exposure of cultured cerebellar granule neurons for 12-24 hr to bergenin at 
different concentrations (10-100 µM) did not induce any significant changes in cell 
metabolic activity (MTT reduction) or cell death (LDH release). However, after an 
exposure for 48 hr to bergenin at 10-100 µM, cultured neurons showed a trend of cell 
damage at bergenin concentration of 75 µM (73% of control) and a certain degree of 
cell injury at 100 µM (60%, p < 0.05) (Fig. 11A). However, all concentrations of bergenin 
did not induce significant changes in the extent of cell death (Fig. 11B). 
 
2. Effects of Glutamate on Cell Survival of Cultured Cerebellar Granule Neurons 
 
  Cultured cerebellar granule neurons were exposed to glutamate at different 
concentrations (500-2,000 µM) for 4 hr and 8 hr, at which times cell dysfunction and 
death were assessed using two different assays, MTT reduction and LDH release 
assays. Glutamate was toxic to cerebellar granule neurons in a time- and concentration- 
dependent manner. Using MTT reduction assay, exposure of cerebellar granule neurons 
to high concentrations of glutamate (1,000-2,000 µM) resulted in a decrease of MTT 
reduction to 85% – 89 % (p < 0.05) of control levels after 4 hr incubation period. This 
toxic effect on mitochondrial function gradually progressed to 45% - 63% of control at 8 
hr of exposure to glutamate  (500–2,000 µM) (Fig 12A). The pattern of LDH release 
following exposure to increasing concentrations of glutamate (500-2,000 µM) for 4 and 8 
hr mirrored the pattern of decrease in MTT reduction. Glutamate significantly increased 
levels of LDH at 1,000-2,000 µM (to ∼ 170% of control) at 8 hr (Fig 12B). Therefore, 
exposure to 500 µM of glutamate for 8 hr was used as an insulting condition in 
subsequent experiments of this study. 
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3. Effects of Coexposure to Bergenin on Glutamate-Induced Cytotoxicity in Cultured 
Cerebellar Granule Neurons 
 
  Coexposure of cultured cerebellar granule neurons with bergenin (at different 
concentrations ranging from 10-100 µM) and glutamate at 500 µM for 8 hr did not show 
any beneficial effects on cell metabolic activity (MTT reduction) (Fig. 13A) or cell death 
(LDH release) (Fig 13B). Instead, the simultaneous exposure to both compounds 
aggravated the suppression of cell metabolic activity (to ~55% - 65% of control, p < 
0.05) without any significant effects on cell death to cultured cerebellar granule neurons. 
However, the cytotoxic effect of coexposure on neurons did not differ from that of 
glutamate (500 µM) exposure alone. 
 
4. Effects of Preexposure to Bergenin on Glutamate-Induced Cytotoxicity in Cultured 
Cerebellar Granule Neurons 
 
  Preexposure of cultured cerebellar granule neurons with bergenin (at different 
concentrations ranging from 10-100 µM) for 48 hr before submission to glutamate 
exposure at 500 µM for 8 hr did not show any beneficial effects on cell metabolic activity 
(MTT reduction) (Fig.14A) or cell death (LDH release) (Fig. 14B). Instead, the 
preexposure to bergenin enhanced the suppression of cell metabolic activity (to ~ 55% - 
63% of control, p < 0.05) without any significant effects on cell death to cultured 
cerebellar granule neurons. In addition, preexposure of cerebellar granule neurons to a 
low concentration of bergenin (10 µM) plus glutamate (500 µM) significantly augmented 
neuronal injury (56% of control) compared with glutamate-treated neurons (75% of 
control). But, there were no significant differences between preexposure with other 
bergenin concentrations (25 – 100 µM) and glutamate-treated neurons in cell metabolic 
activity (MTT reduction) and cell death (LDH release). 
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5. Effects of Bergenin on Lipid Peroxidation in Cultured Cerebellar Granule Neurons 
 
 Exposure of cultured cerebellar granule neurons with bergenin at different 
concentrations ranging from 10-100 µM for 48 hr before the determination of lipid 
peroxidation by TBARS assay revealed no significant effects on cellular lipid 
peroxidation (Fig 15). 
 
6. Effects of Coexposure to Bergenin on Glutamate-Induced Lipid Peroxidation in 
Cultured Cerebellar Granule Neurons 
 
 Lipid peroxidation determinations in cultured cerebellar granule neurons 
coexposed with bergenin (at different concentrations ranging from 10-100 µM) and 
glutamate at 500 µM for 8 hr are shown in figure 16. No significant alterations in lipid 
peroxidation levels could be detected in cerebellar granule neurons.  
 
7. Effects of Preexposure to Bergenin on Glutamate-Induced Lipid Peroxidation in 
Cultured Cerebellar Granule Neurons 
 
 Preexposure of cultured cerebellar granule neurons to bergenin (at different 
concentrations ranging from 10-100 µM) for 48 hr before submission to glutamate 
exposure at 500 µM for 8 hr showed no significant effects on cellular lipid peroxidation 
(Fig 17). 
 
8. Effects of Bergenin on Glutathione Content in Cultured Cerebellar Granule Neurons 
 
 Exposure of cultured cerebellar granule neurons with bergenin (at different 
concentrations ranging from 10-100 µM) for 48 hr before determination of total 
glutathione content revealed no significant effects on cellular GSH levels (Fig 18). 
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9. Effects of Coexposure to Bergenin on Glutamate-Induced Glutathione Diminution in 
Cultured Cerebellar Granule Neurons 
 
 Glutamate (500 µM) treatment for 8 hr resulted in a 26% decrease (p < 0.05) in 
cellular GSH content (Fig 19) of cultured cerebellar granule neurons. This glutamate-
induced glutathione diminution was partially restored towards control levels (81% - 96% 
of control) by coexposing cultured neurons with bergenin (at different concentrations 
ranging from 10-100 µM) and glutamate at 500 µM for 8 hr. However, this beneficial 
effect was marginal and did not reach statistically significant level. 
 
10. Effects of Preexposure to Bergenin on Glutamate-Induced Glutathione Diminution in 
Cultured Cerebellar Granule Neurons 
 
 Preexposure of cultured cerebellar granule neurons with bergenin (at different 
concentrations ranging from 10-100 µM) for 48 hr before submission to glutamate 
exposure at 500 µM for 8 hr partially restored glutamate-induced glutathione diminution 
towards control levels (Fig 20). However, this beneficial effect was marginal and did not 
reach statistically significant level. 
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Figure 11. Effects of bergenin on viability of cultured cerebellar granule neurons. 
Cerebellar granule neurons were cultured for 8 days and then treated with various 
concentrations of bergenin (0-100 µM) for 12, 24, and 48 hr. Cell viability was 
determined by MTT cell viability assay (A) and LDH release assay (B). Data are 
presented as mean ± SEM from six independent experiments (duplicate). #p < 0.05 vs. 
control. 
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Figure 12. Effects of glutamate on cell survival of cultured cerebellar granule neurons.  
Cerebellar granule neurons were cultured for 8 days and then exposed to the indicated 
concentrations of glutamate for 4 hr and 8 hr. Levels of MTT reduction by the cells (A) 
and LDH release (B) in the culture medium were shown in this figure. Data are mean ± 
SEM values of six separate experiments (duplicate cultures in each experiment). #p < 
0.05 compared to control cultures.  
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Figure 13. Effects of coexposure with bergenin on glutamate–induced cytotoxicity in 
cultured cerebellar granule neurons.  Cerebellar granule neurons were cultured for 8 
days and then exposed to glutamate (500 µM) for 8 hr with or without bergenin. Viability 
was then determined by MTT assay (A) and LDH release assay (B). Data are mean ± 
SEM from six independent experiments (duplicate). #p < 0.05 compared to control 
cultures.  
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Figure 14. Effects of preexposure with bergenin on glutamate–induced cytotoxicity in 
cultured cerebellar granule neurons.  Cerebellar granule neurons were cultured for 8 
days. Bergenin was added at concentrations ranging from 10-100 µM 48 hr prior to 
glutamate exposure. Viability was determined by MTT assay (A) and LDH release assay 
(B). Data are mean ± SEM from six independent experiments (duplicate). #p < 0.05 
compared to control cultures. *p < 0.05 compared to glutamate-treated cultures. 
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Figure 15. Effects of bergenin on lipid peroxidation in cultured cerebellar granule 
neurons. Cerebellar granule neurons were cultured for 8 days and then incubated with 
or without different concentrations of bergenin (0-100 µM) for 48 hr. Lipid peroxidation 
was measured by TBARS assay. Data are mean ± SEM from independent experiments 
(n = 6). 
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Figure 16. Effects of coexposure to bergenin on glutamate–induced lipid peroxidation in 
cultured cerebellar granule neurons.  Cerebellar granule neurons were cultured for 8 
days and then exposed to glutamate (500 µM) for 8 hr with or without bergenin. Lipid 
peroxidation was measured by TBARS assay. Data are mean ± SEM from independent 
experiments (n = 6).  
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Figure 17. Effects of preexposure to bergenin on glutamate–induced cytotoxicity in 
cultured cerebellar granule neurons.  Cerebellar granule neurons were cultured for 8 
days. Cells were preincubated with bergenin at concentrations ranging from 10-100 µM 
48 hr before replacement with 500 µM glutamate for 8 hr. Lipid peroxidation was 
measured by TBARS assay. Data represent mean ± SEM from six independent 
experiments. 
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Figure 18. Effects of bergenin on glutathione content in cultured cerebellar granule 
neurons. Cerebellar granule neurons were cultured for 8 days and then were incubated 
with or without different concentrations of bergenin (0-100 µM) for 48 hr. Data represent 
mean ± SEM from six independent experiments. 
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Figure 19. Effects of coexposure with bergenin on glutamate–induced glutathione 
diminutuon in cultured cerebellar granule neurons. Cerebellar granule neurons were 
cultured for 8 days and then exposed to glutamate (500 µM) for 8 hr with or without 
bergenin. Data are mean ± SEM from six independent experiments (duplicate). #p < 0.05 
compared to control cultures.  
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Figure 20. Effects of preexposure with bergenin on glutamate–induced glutathione 
diminution in cultured cerebellar granule neurons. Cerebellar granule neurons were 
cultured for 8 days. Bergenin was added at concentrations ranging from 10-100 µM 48 
hr prior to glutamate treatment. Data are mean ± SEM from six independent experiments 
(duplicate).  
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CHAPTER V 

 
DISCUSSION AND CONCLUSION 

 
Bergenin, a major constituent of Mallotus japonicus, had been reported to have a 

potent hepatoprotective action against carbon tetrachloride (CCl4)-induced hepatic 
damage in rats (Lim et al., 2000c) and CCl4-induced cytotoxicity in primary cultured rat 
hepatocytes (Kim et al., 2000). Bergenin significantly reduced the activities of glutamic 
pyruvic transaminase and sorbitol dehydrogenase released from the CCl4-intoxicated 
hepatocytes. The antihepatotoxicity of bergenin was also evidenced by elevating the 
activities of glutathione S-transferase and glutathione reductase, and content of 
glutathione in the CCl4-intoxicated hepatocytes. It was assumed that bergenin exerted 
antihepatotoxicity against CCl4-induced cytotoxicity through glutathione-mediated 
detoxification as well as free radical suppressing activity. In addition, bergenin also 
showed hepatoprotective effect against D-galactosamine (GalN)-induced injury in 
primary cultured rat hepatocytes (Lim et al., 2000a). It was suggested that bergenin 
showed hepatoprotective effects against galactosamine-intoxicated rat hepatocytes by 
inhibiting the release of glutamic pyruvic transaminase and sorbitol dehydrogenase as 
well as by increasing RNA synthesis. 

 
Considering available information on hepatoprotective effect of bergenin, this 

study was designed to investigate the effects of bergenin against glutamate-induced 
neurotoxicity on primary cultured rat cerebellar granule cells. It was speculated that 
bergenin might possess some cytoprotective effects to chemically induced neurotoxicity 
in vitro. However, the experimental results from this study did not support this 
speculation. On the other hand, they suggested the possibility that bergenin might 
potentiate glutamate-induced neurotoxicity by, at the present time, unclarified 
mechanisms. These findings suggest that bergenin may exert different actions on 



 

46 

different cell types, at least in in vitro conditions, as illustrated different effects on 
primary cultured hepatocytes and granule neurons. 

 
Effects of bergenin on cultured rat cerebellar granule cells and on glutamate–

induced neurotoxicity in these cells were investigated by using cell metabolic activity 
and cell viability (MTT reduction and LDH release assays), lipid peroxidation (TBARS 
assay) and content of glutathione (GSH), as the measuring endpoints. 

 
MTT reduction assay was used to quantify mitochondrial metabolic activity by 

measuring the formation of a dark blue formazan product formed by the reduction of 
tetrazolium ring of MTT. The reduction of MTT is though to mainly occur in the 
mitochondria through the action of succinate dehydrogenase, thereby providing a 
measure of mitochondrial function (Lobner, 2000). In addition, Takahashi and other 
(2002) showed the substrate–preference for MTT reduction in cultures of rat type 1 
neurons. It was indicated that pyruvate dehydrogenase supports MTT reduction more 
effectively than glucose or lactate even though both of these substrates can produce 
NADH and pyruvate (Takahashi et al., 2002).  

 
Eight-day cultured cerebellar granule cells were used in all experiments. 

Exposure of cultured cerebellar granule neurons for 12-24 hr to bergenin at different 
concentrations (10-100 µM) did not induce any significant changes in cell metabolic 
activity (MTT reduction) or cell death (LDH release). However, after an exposure for 48 
hr to bergenin at 10-100 µM, cultured neurons showed a trend of cell injury at bergenin 
concentrations of 75-100 µM. However, all concentrations of bergenin did not induce 
significant changes in the extent of cell death. By incubating primary cultured rat 
hepatocytes with 1 - 1,000 µM of bergenin for 1.5 hr (Kim et al., 2000) and 14 hr (Lim et 
al., 2000a), a certain degree of adverse effect was apparent at bergenin concentrations 
higher than 300 µM. This line of evidence is in accordance with results of the present 
study. At higher concentrations, especially with prolonged exposure, bergenin may exert 
nonspecific cytotoxic effects on cellular functions thereby suppressing mitochondrial 
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metabolic acitivity. However, this harmful effect of bergenin is not drastic enough to 
induce neuronal cell death. 

 
Glutamate is the main excitatory neurotransmitter in mammals. However, 

excessive activation of glutamate receptors is neurotoxic, leading to neuronal 
degeneration and death. In many systems, including primary cultures of cerebellar 
neurons, glutamate neurotoxicity is mediated by excessive activation of NMDA receptors, 
leading to increased intracellular [Ca2+], which induces the neurotoxic process (Llansola 
et al., 2000). 

 
Glutamate was toxic to cerebellar granule neurons in a time- and concentration- 

dependent manner. In this study, exposure to 500 µM of glutamate for 8 hr was used as 
an insulting condition in subsequent experiments because this condition gave rise to 
approximately 50% decrease in MTT reduction activity of cultured neurons. 

 
To study effects of bergenin on glutamate–induced neurotoxicity on cultured 

cerebellar granule cells, experiments were divided two parts. The first part was done by 
preexposing cerebellar granule cells with different concentrations of bergenin, before 
exposing to glutamate. The second part was done by simultaneous coexposing cultured 
cells with bergenin and glutamate. Experimental results showed that both preexposure 
and coexposure with bergenin did not prevent glutamate-induced neurotoxicity in 
cultured cerebellar granule cells.  

 
Coexposure of cultured cerebellar granule neurons with bergenin (at different 

concentrations ranging from 10-100 µM) and glutamate at 500 µM for 8 hr did not show 
any beneficial effects on cell metabolic activity (MTT reduction) or cell death (LDH 
release). Instead, the simultaneous exposure to both compounds tended to aggravate 
the suppression of cell metabolic activity without any significant effects on cell death to 
cultured cerebellar granule neurons. However, the cytotoxic effect of coexposure on 
neurons was not statistically different from that of glutamate (500 µM) exposure alone. 
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Preexposure of cultured cerebellar granule neurons with bergenin (at different 
concentrations ranging from 10-100 µM) for 48 hr before submission to glutamate 
exposure at 500 µM for 8 hr did not show any beneficial effects on cell metabolic activity 
or cell death, in a similar fashion to the result of coexposure experiments. The only 
difference was that preexposure of cerebellar granule neurons to a low concentration of 
bergenin (10 µM) plus glutamate (500 µM) significantly augmented neuronal injury as 
compared to glutamate-treated neurons. 

 
These findings were somewhat contradictory to the reported hepatoprotective 

activity of bergenin in primary cultured hepatocytes and rats. However, this discrepancy 
might be due to differences in cell types tested, insulting agent used, and conditions of 
bergenin exposure. Neurons are nondividing cells, highly demanding for metabolic 
energy, sensitive to insulting conditions, and relatively lack of effective antioxidative 
capacity. It is possible that hepatoprotective mechanisms of bergenin in cultured 
hepatocytes may involve some targets that are unavailable or ineffective in cultured 
neurons, e.g., glutathione (GSH) replenishing system. 

 
Bergenin, by itself or in preexposure and coexposure with glutamate, did not 

alter cellular lipid peroxidation levels and total GSH content. Exposure of cultured 
cerebellar granule neurons with bergenin at different concentrations ranging from 10-
100 µM for 48 hr, before the determination of lipid peroxidation by TBARS assay or total 
GSH content assay, revealed no significant effects on cellular lipid peroxidation or GSH 
content. 

 
Preexposure of cultured cerebellar granule neurons with bergenin (at different 

concentrations ranging from 10-100 µM) for 48 hr before submission to glutamate 
exposure at 500 µM for 8 hr showed no significant effects on cellular lipid peroxidation. 
Results of coexposure experiments were also in the same manner with those found in 
preexposure experiments. 
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In this study, the exposure of cultured cerebellar granule neurons with glutamate 
at 500 µM for 8 hr showed no significant effects on cellular lipid peroxidation. On one 
hand, this might be due to the non-intensive nature of the insulting condition which 
allowed cellular antioxidant capacity to counteract membrane damages. On the other 
hand, this might be due to the fact that small amounts of MDA formed in cell culture 
system were in a lower limit of the assay’s sensitivity thereby making the quantitation 
inaccurate. However, it has been hypothesized that one of the principal causes of 
glutamate-induced neuronal injury is lipid peroxidation by free radical derivatives of 
glutamate (Skaper et al., 1998; Llansola, 2000). 

 
In a state of oxidative stress, GSH is converted to GSSG and GSH depletion 

leading to lipid peroxidation. Therefore, the role of GSH as a marker for the evaluation of 
oxidative stress is reasonable (Recknagel et al., 1991 cited in Lim et al., 2000a). 
Exposure with glutamate at 500 µM for 8 hr showed a signigicant decrease in cellular 
GSH content in accordance with previous studies. 

 
Preexposure of cultured cerebellar granule neurons with bergenin (at different 

concentrations ranging from 10-100 µM) for 48 hr before submission to glutamate 
exposure at 500 µM for 8 hr revealed a tentative restorative effect on glutamate-induced 
diminution of GSH content. Results of coexposure experiments were also in accordance 
with those found in preexposure experiments. These findings are in agreement with a 
previously reported findings in which antihepatotoxicity of bergenin was evidenced by 
elevating the activities of glutathione S-transferase and glutathione reductase, and 
content of glutathione in the CCl4-intoxicated hepatocytes (Kim et al., 2000). However, 
the restorative effect of bergenin on glutamate-induced GSH diminution was only 
marginal (with statistical nonsignificance) and might not be effective enough to rescue 
neurons from glutamate-induced neurotoxicity. 

 
 Acetylbergenin, synthesized from acetylation of bergenin, showed increased 
lipophilic and physiological activities. It had hepatoprotective effects against GalN-
induced hepatotoxicity by inhibiting lipid peroxidation and maintaining an adequate level 
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of GSH for the detoxification of xenobiotics. It was notable that lipophilic acetylbergenin 
showed more activity in the hepatoprotection than that of the much less lipophilic 
bergenin (Lim et al., 2000b). 
 
 Norbergenin, an O-demethyl derivative of bergenin, has recently been found to 
show moderate antioxidant activity (IC50 13 µM in DPPH radical scavenging; 32 µM in 
superoxide anion scavenging). In this connection, norbergenin 11-caproate was the 
most potent derivative which not only exhibited stronger antioxidant activity but also 
prevented neuronal death at 10 µM on the primary culture of rat cortical neurons in 
DMEM supplemented with N2 (Takahashi et al., 2003). 
 

These experimental findings suggest that bergenin, by itself, may not be a 
potential candidate for neuroprotective agent due to its low antioxidant activity and 
difficulty in entering the target cells. Modification of bergenin’s molecular structure is 
currently undertaking in different chemical laboratories and may provide potential 
candidates for in vivo and in vitro preclinical studies in the future. 

 
In conclusion, bergenin by itself decreased mitochondrial activity of cultured 

cerebellar granule neurons at high concentrations and at lower concentrations did not 
showed any beneficial effects on glutamate–induced neurotoxicity in cultured rat 
cerebellar granule cells. It was notable that bergenin showed a tendency to intensify 
glutamate-induced neurotoxicity, although the difference was not statistically significant. 
This tentative adverse effect of bergenin and its mechanism of action on cultured 
neurons are still unclear at the present time. 
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Table 3 Effects of Bergenin on MTT reduction assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 12 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00 % 0 
10 92% 105% 75% 51% 51% 105% 79.83 % 10 
25 112% 116% 81% 82% 82% 123% 99.33 % 8 
50 95% 99% 109% 89% 87% 99% 96.33 % 3 
75 101% 42% 124% 100% 99% 90% 92.67 % 11 

100 94% 43% 114% 88% 89% 64% 82.00 % 10 
 
N = number of experiments (duplicated) 
 
 
Table 4 Effects of Bergenin on MTT reduction assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 24 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 111% 102% 109% 103% 110% 93% 105.335 2 
25 109% 129% 112% 105% 108% 125% 110.00% 4 
50 115% 107% 112% 109% 111% 90% 103.44% 5 
75 110% 125% 114% 104% 113% 101% 105.78% 5 
100 101% 120% 98% 111% 98% 96% 104.11% 3 

 
N = number of experiments (duplicated) 
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Table 5 Effects of Bergenin on MTT reduction assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 48 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 126% 92% 143% 82% 116% 94% 108.83% 10 
25 112% 101% 93% 83% 100% 139% 104.67% 8 
50 119% 115% 125% 116% 95% 129% 116.50% 5 
75 91% 78% 83% 57% 60% 71% 73.33% 5 
100 88% 93% 32% 50% 28% 68% 59.83% 11 

 
N = number of experiments (duplicated) 
 
 
Table 6 Effects of Bergenin on LDH release assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 12 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 97% 100% 108% 68% 109% 88% 95.00% 6 
25 71% 131% 118% 106% 157% 57% 106.67% 15 
50 104% 99% 119% 64% 109% 102% 99.50% 8 
75 61% 103% 109% 48% 133% 144% 99.67% 15 
100 102% 122% 127% 94% 105% 161% 118.50% 10 

 
N = number of experiments (duplicated) 
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Table 7 Effects of Bergenin on LDH release assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 24 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 94% 102% 157% 99% 196% 91% 123.17% 17 
25 89% 98% 110% 98% 155% 99% 108.17% 9 
50 100% 108% 116% 70% 139% 82% 102.50% 10 
75 94% 106% 126% 99% 117% 91% 105.50% 5 
100 141% 118% 81% 88% 101% 99% 104.67% 8 

 
N = number of experiments (duplicated) 
 
 
Table 8 Effects of Bergenin on LDH release assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 48 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 77% 61% 95% 82% 101% 113% 88.17% 7 
25 86% 61% 100% 71% 97% 119% 89.00% 8 
50 107% 59% 96% 75% 102% 115% 92.33% 8 
75 88% 62% 111% 72% 96% 93% 87.00% 7 
100 165% 82% 152% 85% 108% 105% 116.17% 14 

 
N = number of experiments (duplicated) 
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Table 9 Effects of Glutamate on MTT reduction assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 4 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
500 89% 88% 103% 87% 105% 90% 93.67% 3 

1000 92% 93% 90% 85% 84% 91% 89.17% 1 
2000 92% 79% 85% 84% 88% 84% 85.33% 1 

 
N = number of experiments (duplicated) 
 
 
Table 10 Effects of Glutamate on MTT reduction assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 8 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
500 90% 82% 48% 61% 35% 64% 63.33% 8 

1000 76% 62% 41% 29% 27% 62% 49.50% 8 
2000 76% 42% 65% 37% 28% 30% 46.33% 8 

 
N = number of experiments (duplicated) 
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Table 11 Effects of Glutamate on LDH release assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 4 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
500 98% 112% 95% 155% 79% 91% 105.00% 10 

1000 91% 107% 92% 114% 83% 130% 102.83% 7 
2000 91% 145% 104% 114% 88% 150% 115.33% 10 

 
N = number of experiments (duplicated) 
 
 
Table 12 Effects of Glutamate on LDH release assay in Cultured Cerebellar Granule 
Neurons. (Incubation time = 8 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
500 153% 99% 123% 163% 138% 152% 138.00% 9 

1000 230% 99% 162% 193% 141% 208% 172.17% 19 
2000 214% 108% 162% 180% 146% 202% 168.67% 15 

 
N = number of experiments (duplicated) 
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Table 13 Effects of Coexposure with Bergenin on Glutamate-Induced Cytotoxicity in 
Cultured Cerebellar Granule Neurons. Determined by MTT reduction assay. 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 43% 73% 76% 81% 58% 60% 65.17% 5 
25 42% 87% 50% 51% 85% 27% 57.00% 9 
50 22% 82% 83% 72% 67% 27% 58.83% 11 
75 58% 64% 71% 57% 46% 38% 55.67% 4 

100 40% 61% 85% 59% 69% 49% 60.50% 6 
Glutamate 
(500 µM) 

66% 82% 75% 62% 74% 47% 67.67% 5 

 
 
N = number of experiments (duplicated) 
 
 
Table 14 Effects of Coexposure with Bergenin on Glutamate-Induced Cytotoxicity in 
Cultured Cerebellar Granule Neurons. Determined by LDH release assay. 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00 0 
10 137% 97% 75% 76% 89% 127% 100.17 10 
25 152% 87% 83% 75% 120% 99% 102.67 11 
50 145% 83% 82% 84% 101% 102% 99.50 9 
75 138% 87% 79% 80% 103% 124% 101.83 10 

100 131% 91% 81% 82% 102% 115% 100.33 8 
Glutamate 
(500 µM) 

144% 104% 78% 85% 100% 117% 104.67 9 

 
N = number of experiments (duplicated) 
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Table 15 Effects of Preexposure with Bergenin on Glutamate-Induced Cytotoxicity in 
Cultured Cerebellar Granule Neurons. Determined by MTT reduction assay.  
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 64% 58% 39% 67% 59% 48% 55.83% 4 
25 58% 61% 61% 65% 56% 53% 59.00% 1 
50 60% 56% 69% 63% 51% 50% 58.17% 2 
75 66% 57% 76% 62% 66% 49% 62.67% 3 

100 65% 62% 73% 74% 54% 48% 62.67% 4 
Glutamate 
(500 µM) 

77% 66% 78% 80% 65% 62% 71.33% 3 

 
N = number of experiments (duplicated) 
 
 
Table 16 Effects of Preexposure with Bergenin on Glutamate-Induced Cytotoxicity in 
Cultured Cerebellar Granule Neurons. Determined by LDH release assay. 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00 0 
10 97% 98% 103% 124% 82% 104% 101.33 5 
25 115% 105% 138% 133% 89% 101% 113.50 7 
50 126% 87% 115% 121% 116% 101% 111.00 5 
75 113% 126% 118% 145% 108% 95% 117.50 6 

100 128% 113% 104% 128% 112% 92% 112.83 5 
Glutamate 
(500 µM) 

100% 120% 117% 132% 93% 87% 108.17 7 

 
N = number of experiments (duplicated) 
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Table 17 Effects of Bergenin on Lipid Peroxidation in Cultured Cerebellar Granule 
Neurons. Determined by TBARS assay. (Incubation time = 48 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00 0 
10 50% 108% 52% 100% 115% 166% 98.50 17 
25 71% 101% 71% 111% 123% 99% 96.00 8 
50 84% 104% 49% 141% 143% 112% 105.33 14 
75 72% 96% 38% 129% 144% 108% 97.83 15 
100 78% 86% 29% 127% 151% 134% 100.83 18 

 
N = number of experiments  
 
 
Table 18 Effects of Coexposure to Bergenin on Glutamate-Induced Lipid Peroxidation in 
Cultured Cerebellar Granule Neurons. Determined by TBARS assay.  
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100% 0 
10 117% 121% 108% 116% 103% 93% 109.67% 4 
25 120% 104% 109% 116% 144% 122% 119.00% 5 
50 118% 100% 109% 115% 124% 51% 103.17% 10 
75 115% 94% 111% 124% 165% 89% 116.33% 11 

100 115% 97% 115% 122% 135% 107% 115.17% 5 
Glutamate 
(500 µM) 

103% 100% 89% 119% 79% 95% 97.50% 5 

 
N = number of experiments  
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Table 19. Effects of Preexposure to Bergenin on Glutamate-Induced Lipid Peroxidation 
in Cultured Cerebellar Granule Neurons. Determined by TBARS assay. 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00 0 
10 134% 100% 112% 103% 105% 91% 107.50 5 
25 137% 94% 109% 110% 123% 100% 112.17 6 
50 125% 118% 122% 104% 117% 94% 113.33 4 
75 139% 136% 129% 106% 119% 90% 119.83 7 

100 149% 107% 103% 113% 110% 81% 110.50 8 
Glutamate 
(500 µM) 

125% 59% 29% 99% 110% 113% 89.17 15 

 
N = number of experiments  
 
 
Table 20. Effects of Bergenin on Glutathione Content in Cultured Cerebellar Granule 
Neurons. Determined by Total GSH assay. (Incubation time = 48 hr) 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 93% 109% 125% 100% 85% 81% 98.83% 6 
25 96% 109% 119% 85% 77% 100% 97.67% 6 
50 119% 78% 69% 69% 100% 88% 87.17% 8 
75 111% 84% 75% 92% 77% 81% 86.67% 5 
100 85% 75% 81% 115% 100% 75% 88.50% 6 

 
N = number of experiments (duplicated) 
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Table 21. Effects of Coexposure to Bergenin on Glutamate-Induced Glutathione 
Diminution in Cultured Cerebellar Granule Neurons.Determined by Total GSH assay. 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 113% 93% 84% 91% 100% 95% 96.00% 4 
25 67% 86% 80% 78% 88% 109% 84.67% 5 
50 87% 93% 80% 78% 88% 109% 89.17% 4 
75 67% 86% 84% 83% 76% 118% 85.67% 7 

100 80% 79% 80% 61% 82% 109% 81.83% 6 
Glutamate 
(500 µM) 

67% 71% 80% 65% 71% 91% 74.17% 3 

 
 
N = number of experiments (duplicated) 
 
 
Table 22. Effects of Preexposure to Bergenin on Glutamate-Induced Glutathione 
Diminution in Cultured Cerebellar Granule Neurons.Determined by Total GSH assay. 
 

% Control Bergenin 
(µM) N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Mean  SEM  

Control 100% 100% 100% 100% 100% 100% 100.00% 0 
10 100% 87% 100% 118% 112% 83% 100.00% 5 
25 83% 93% 86% 109% 92% 75% 89.67% 4 
50 92% 100% 86% 105% 104% 75% 93.67% 4 
75 83% 93% 90% 95% 96% 67% 87.33% 4 

100 75% 87% 90% 109% 104% 67% 88.67% 6 
Glutamate 
(500 µM) 

75% 93% 57% 73% 104% 75% 79.50% 6 

 
N = number of experiments (duplicated) 
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