
 
ระบบการคํานวณแบบกระจายสําหรับหอกลั่น 

 
 
 
 
 
 
 
 
 
 

นาย สัมฤทธิ ์ล่ิมวงศสุวรรณ 
 
 
 
 
 
 
 
 
 
 
 

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบัณฑิต 
สาขาวิชาวทิยาการคณนา       ภาควิชาคณิตศาสตร  
คณะวิทยาศาสตร   จุฬาลงกรณมหาวิทยาลัย 

ปการศึกษา  2544 
ISBN  974-03-1643-3 

ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั 
 



 
DISTRIBUTED COMPUTING SYSTEM FOR A DISTILLATION COLUMN 

      
 

 
 
 
 
 
 
 
 
 Mr. Sumrid Limvongsuwan 

 
 
 
 
 
 
 
 
 
 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for the Degree of Master of Science in Computational Science 

Department of Mathematics 
Faculty of Science 

Chulalongkorn University 
Academic Year 2544 
ISBN 974-03-1643-3 

 



Thesis Title Distributed Computing System for a Distillation Column 
By Mr. Sumrid Limvongsuwan 
Field of study Computational Science 
Thesis Advisor Pornpote Piumsomboon, Assoc. Prof. Ph.D. 
             
 
 
  Accepted by the Faculty of Science, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Master’s Degree 
 
  ………………………………………… Deputy Dean for Administrative Affairs, 

                                                                      Acting Dean, Faculty of Science  
  (Associate Professor Pipat KranTiang, Ph.D.)  
 
THESIS COMMITTEE 
 
   ……………………………………………….. Chairman 
   (Associate Professor David Ruffolo, Ph.D.) 
 
   ………………………………………….……. Thesis Advisor 
   (Associate Professor Pornpote Piumsomboon, Ph.D.) 
 
   ……………………………………………….. Member 
   (Professor Chidchanok Lursinsap, Ph.D.) 
 
    
 



 
 

สัมฤทธิ ์ล่ิมวงศสุวรรณ : ระบบการคํานวณแบบกระจายสําหรับหอก
ล่ัน.(DISTRIBUTED COMPUTING SYSTEM FOR A DISTILLATION COLUMN)  
อ. ที่ปรึกษา : รศ. ดร. พรพจน เปยมสมบูรน จาํนวนหนา  92 หนา. ISBN 974-03-
1643-3. 

 
 

งานวิจัยนี้เปนการพัฒนาระบบการคํานวณแบบกระจาย เพื่อจําลองพลศาสตร
สําหรับหอกลั่น ประสิทธิภาพของการคํานวณแบบขนานขึ้นกับขนาดของหอกลั่นและการสื่อ 
สารบนเครือขาย แบบจําลองหอกลั่นใชระบบสมการพื้นฐาน MESH และประยุกตการสงผาน
ขอมูลดวย MPI ในระบบเครือขายคอมพิวเตอรดวยเครื่องคอมพิวเตอร 3 เครื่องชนิด AMD 
Duron 600 MHz. 

 
งานวิจัยนี้เปนการศึกษาพฤติกรรมเชิงพลวัตของหอกลั่นชนิดสององคประกอบและ

หลายองคประกอบโดยใชการเทคนิคการคํานวณจุดเดือดในการคํานวณหาคําตอบ แตละ
หนวยประมวลผลจะคํานวณหอกลั่นที่แบงยอยในขนาดเทากัน ในแตละขั้นเวลาของการอินทิ
เกรตสวนที่ทํางานแบบลําดับจะไมรองานจากหนวยประมวลผลอื่น จากการศึกษาเปรียบเทียบ
ผลลัพธจากการทํางานแบบอนุกรมและแบบขนานพบวาการเลือกขนาดของหอกลั่นและ
ปริมาณการถายโอนขอมูลที่เหมาะสมสงผลให การทํางานแบบขนานเปนไปไดดวยดี 

 
 

ภาควิชา.......คณิตศาสตร…..............  ลายมือช่ือนิสิต......................................................... 
สาขาวิชา......วิทยาการคณนา........... ลายมือช่ืออาจารยที่ปรึกษา........................................ 
ปการศึกษา   2544                                   

                                                                                            



 
 

# # 4172482923       : MAJOR   COMPUTATIONAL SCIENCE 
KEY WORD:  DYNAMIC PROCESS SIMULATION / DISTRIBUTED MEMORY / PARALLE 
COMPUTING / MESSAGE PASSING / MESH EQUATION 

SUMRID LIMVONGSUWAN: DISTRIBUTED COMPUTING SYSTEM FOR A 
DISTILLATION COLUMN. THESIS ADVISOR: PORNPOTE PIUMSOMBOON, 
Assoc. Prof. Ph.D., 92 pp. ISBN 974-03-1643-3. 

 
 

 The use of a distributed memory message-passing system for dynamic 
chemical process simulation was developed. The computational performance of parallel 
system depends on the size of distillation column and the data communication. The 
distillation model was based on MESH equations. The case study example is performed 
using MPI message-passing system on three AMD DURON 600 MHz. Multicomputers. 

 
 In this study, the dynamic behaviors of the binary and multicomponent 
distillation column were investigated. The multicomponent distillation was solved by the 
Bubble point method. The distillation column was partitioned into subsystems for each 
processor. For each subsystem, the serial computing portions were carried out without 
waiting computation the values from other processors for each time horizon integration. 
The comparative results between serial and parallel computations suggest that there is 
an optimum size of the distillation column and that of the transferred data to obtain the 
better result with parallel processing.  

 

Department Mathematics  ……………..    Student’s signature....................................... 
Field of study  Computational Science..    Advisor’s signature........................................ 
Academic year  2001                           

 



ACKNOWLEDGEMENT 
 

The author would like to express his sincere thanks to Assoc. Prof. Dr. 
Pornpote Piumsomboon, thesis advisor for his excellent guidance and extreme 
assistance toward the completion of the thesis. To the thesis committee, Assoc. Prof. Dr. 
David Ruffolo and Prof. Dr. Chidchanok Lursinsap. 

Most of all, the author would like to express the highest gratitude to his 
parents, teachers, sister, and friends for their inspiration and encouragement. 



CONTENTS 
 

Page 

ABSTRACT (in Thai) ………………………………………………………………………… iv 

ABSTRACT (in English)  ……………………………………………………………………. v 

ACKNOWLEDGEMENT  ……………………………………………………………………. vi 

CONTENTS  …………………………………………………………………………………. vii 

LIST OF TABLES  ……………………………………………………………………………. x 

LIST OF FIGURES  ………………………………………………………………………….. xi 

NOMENCLATURE  ………………………………………………………………………….. xv 

CHAPTER 

      I INTRODUCTION   ……………………………………………………………………… 1 

        1.1 Background   ………………………………………………………………………. 1 

        1.2 Objectives   ………………………………………………………………………… 3 

        1.3 Scope of Work   ………………………………………………………………….. 3 

        1.4 Benefits Expected  ……………………………………………………………….. 3 

      II THEORY AND LITERATURE REVIEW  ……………………………………………… 4 

        2.1 A Distillation Model  ……………………………………………………………….. 5 

         2.1.1 Binary Distillation Model  …………………………………………………… 8 

 2.1.2  Multicomponent Distillation Model   ……………………………………… 11 

 2.1.3 Vapor Pressure   ……………………………………………………………… 14 



 viii

CONTENTS (Continued) 
 

CHAPTER                   Page 

 2.1.4 Equilibrium Ratios   ………………………………………………………… 15 

 2.1.5 The Bubble-Point (BP) Method  ………………………………………….. 17 

 2.1.6 Murphree Tray Efficiency   ………………………………………………… 18 

 2.1.7 Enthalpy   ……………………………………………………………………. 18 

 2.1.8 Liquid Holdup   ……………………………………………………………… 19 

         2.2 Parallel Computing    ……………………………………………………………. 20 

 2.2.1 Parallel Performance   ……………………………………………………… 20 

 2.2.2 Message-Passing   …………………………………………………………. 21 

        2.3 Numerical Method   ………………………………………………………………. 30 

 2.3.1 Newton Raphson Method    ………………………………………………… 30 

 2.3.2 Euler Integration Method   ………………………………………………….. 31 

      III IMPLEMENTATION   …………………………………………………………………. 33 

        3.1 Binary Distillation Simulation Implementation   ………………………………… 33 

        3.2 Multicomponent Distillation Simulation Implementation    ……………………. 34 

        3.3 Partition Algorithm for Distillation Model    ……………………………………… 37 

        3.4 Input Data Required    ……………………………………………………………. 40 

 3.4.1 Binary Distillation Column   …………………………………………………. 40 

 3.4.2 Multicomponent Distillation Column   ……………………………………… 40 



 ix

CONTENTS (Continued) 
 

CHAPTER                   Page 

3.5 Hardware System   ………………………………………………………………… 42 

IV SIMULATION RESULTS   …………………………………………………………….. 43 

        4.1 Initial Condition   …………………………………………………………………. 43 

        4.2 Result   …………………………………………………………………………….. 47 

  V CONCLUSIONS   …………………………………………………………………….…. 62 

        5.1 Dynamic Binary Distillation   …………………………………………………..…. 62 

        5.2 Dynamic Multicomponent Distillation   ………………………………………… 62 

        5.3 Suggestion and Future Development  ………………………………………… 63 

REFERENCES   …………………………………………………………………………….. 64 

APPENDICES   ………………………………………………………………………………. 67 

      A LINUX SETUP   ………………………………………………………………………. 68 

      B MPI INSTALLATION   ……………………………………………………………….. 69 

      C LIST OF PARALLEL BINARY DISTILLATION PROGRAM   …………………….. 70 

      D LIST OF PARALLEL MULTICOMPONENT DISTILLATION PROGRAM   ……… 73 

VITA   ………………………………………………………………………………………… 92 

 

 

 



 x

LIST OF TABLES 
 

Page 

Table 2.1  Streams on nth tray  ………………………………………………………. 13 

Table 2.2 Basic MPI data types for FORTRAN  …………………………………… 26 

Table 2.3 Basic MPI data types for C  ……………………………………………… 27 

Table 2.4 The scatter and the gather parameters and meanings  ……………… 30 

Table 4.1  The relationship between the number of trays and the feed tray  …… 46 

Table 4.2  The relationship between the number of trays and the number of  

equations …………………………………………………………………… 46 

Table 4.3  Comparison of compositions from serial and parallel computation  

for dynamic binary distillation column  ………………………………… 47 

Table 4.4  Comparison the performance between serial and parallel simulation  

(2 nodes) of dynamic binary distillation  ……………………………… 48 

Table 4.5  Comparison the performance between a serial simulation and a parallel 
simulation (two and three processors) on 15 trays and 5 components 
distillation  ………………………………………………………………… 52 

Table 4.6  CPU time and load balance for the parallel runs on different numbers of 
trays  ……………………………………………………………………….. 57 

 

 



 xi

LIST OF FIGURES 
 

Page 

Figure 2.1 Distillation model (a) rectifying (b) stripping (c) overall  ……………… 6 

Figure 2.2 Binary distillation column  ………………………………………………… 10 

Figure 2.3 Open-loop distillation  …………………………………………………….. 12 

Figure 2.4 nth tray of multicomponent column  …………………………………….. 13 

Figure 2.5 DePriester chart – low temperature range  ……………………………... 16 

Figure 2.6 DePriester chart – high temperature range  ……………………………. 17 

Figure 2.7 Murphree tray efficiency  …………………………………………………. 18 

Figure 2.8 Francis weir  ……………………………………………………………….. 20 

Figure 2.9 Gustafson-Barsis Law of speed up. Notice that (a) time for  

parallel prcessors (b) time for a single processor   …………………… 21 

Figure 2.10 A broadcast from task 0T   ……………………………………………….. 28 

Figure 2.11 (a) Scatter from the task 0T  (b) Gather at the root task  ……………… 29 

Figure 2.12 Newton Raphson convergence  …………………………………………. 31 

Figure 2.13 Graphical representation of Euler integration  …………………………. 32 

Figure 3.1  Algorithm for solving binary distillation simulation ……………………. 33 

Figure 3.2  Algorithm for solving dynamic multicomponent distillation  

simulation …………………………………………………………………. 36 

Figure 3.3  Block band diagonal matrix  …………………………………………….. 37 



 xii

LIST OF FIGURES (Continued) 
 

Page 

Figure 3.4  Task balance for NT trays on NP processors  ……………………….. 37 

Figure 3.5  Two step processor transfer data. Ghost point areas are shown in  

dashed boxes; data to be moved are shaded  ……………………….. 38 

Figure 3.6 Paradigm for parallel simulation  ……………………………………….. 39 

Figure 3.7 Multicomputer and network connection  ….……………………………  42 

Figure 4.1  Dynamic binary distillation initial condition  ……………………………. 43 

Figure 4.2  Dynamic multicomponent distillation initial condition (a) column  

properties (b) component properties (c) initial condition trays. Zeroth  

trays means reboiler. Last tray means condenser  …………………  44-45 

Figure 4.3  Percentage of error between the serial and parallel simulation two 

 processors in dynamic binary distillation  …………………………… 48 

Figure 4.4  Transient profiles of bottom product temperature on the 15-trays  

column …………………………………………………………………….. 49 

Figure 4.5  Transient profiles of liquid composition of the heavy-key composition  

in the bottom product on the 15-trays column ..……………………… 50 

Figure 4.6  Transient profiles of bottom product rate on the 15-trays column  … 50 

Figure 4.7  Transient profiles of distillate product temperature on the 15-trays  

column …………………………………………………………………… .  51 



 xiii

 
 

LIST OF FIGURES (Continued) 
 

Page 

Figure 4.8  Transient profiles of vapor composition of the light-key composition in  

the distillate product on the 15-trays column ….……………………… 51 

Figure 4.9  Transient profiles of distillate product rate on the 15-trays column … 52 

Figure 4.10  CPU time of full data transfer for output  .……………………………… 54 

Figure 4.11  Speedup of full data transfer for output  ………………………………. 54 

Figure 4.12 Parallel efficiency of full data transfer for output …..………………….. 55 

Figure 4.13  CPU time of partial data transfer for output ……..……………………... 55 

Figure 4.14  Speedup of partial data transfer for output …..………………………… 56 

Figure 4.15 Parallel efficiency of partial data transfer for output …………………… 56 

Figure 4.16  Percentage of absolute error of transient profiles of bottom product  

temperature in multicomponent distillation  …………………………… 58 

Figure 4.17  Percentage of absolute error of transient profiles of liquid composition  

of the heavy-key composition in the bottom product in multicomponent  

distillation  ………………………………………………………………… 58 

Figure 4.18  Percentage of absolute error of transient profiles of bottom product rate  

in multicomponent distillation  …………………………………………… 59 



 xiv

LIST OF FIGURES (Continued) 
 

Page 

Figure 4.19  Percentage of absolute error of transient profiles of distillate product  

temperature in multicomponent distillation  …………………………… 59 

Figure 4.20  Percentage of absolute error of transient profiles vapor composition of  

the light-key composition in the distillate product in multicomponent  

distillation  ………………………………………………………………..… 60 

Figure 4.21  Percentage of absolute error of transient profiles of bottom product  

rate in multicomponent distillation  ……………………………………… 60 

Figure 4.22  Comparison the runtime of the full data transfer for output on two  

processors  ………………………………………………………………… 61 

Figure D.1  First page input initial condition program  …………………………… 82 

Figure D.2  Second page input initial condition program  ………………………. 82 

Figure D.3  The output initial condition  ……………………………………………… 83 

Figure D.4  Demo generate parallel program  ………………………………………. 91 

 

 

 

 



NOMENCLATURE 
 

LATIN CAPITAL AND LOWER CASE LETTERS 

 
A, B, C  Antoine’s constant 

B  Bottom flow rate 

C  Number of components in a mixture; molal specific heat; 

  Constant for unit conversion 

D  Distillate flow rate 

E  The error or deviation from the set point; Murphree tray efficiency 

F  Feed flow rate ( )/hrlbmol  

h  Liquid enthalpy per mole; liquid height 

H  Vapor enthalpy per mole 

K  Gain; equilibrium ratio 

l  Length 

L   Liquid flow rate ( )/hrlbmol  

M  Liquid mass holdup 

N  Number of stages; Number of processors 

NE  The number of equations 

NT  The number of trays 

P  Pressure 



 xvi

R  Reflux rate 

S  Side stream flow rate 

t  Time 

T  Temperature 

V  Vapor flow rate ( )/hrlbmol  

x  Mole fraction in liquid flow rate 

y  Mole fraction in vapor flow rate 

 

GREEK LETTERS 
 

α   Relative volatility; serial fraction  

β   Tray hydraulics constant 

λ   Latent heat 

ρ   Liquid density 

τ   Feedback-reset time for integral action 

 

SUBSCRIPTS 
 

avg  Average 

B  Bottom 



 xvii

C  Controller 

D  Distillate 

j  Particular component 

L  Liquid 

max  Maximum 

n  Stage  

nj  Particular component j in a stream leaving stage n 

NT  nth tray 

P  Pressure constant 

V  Vapor 

w  Weir 

 

SUPERSCRIPTS 
 

L  Liquid 

NC  Number of components in a mixture 

V  Vapor 

set  Set point 

  Initial 

*  In equilibrium 



CHAPTER I 
 

INTRODUCTION 
 

1.1 Background 

The technological driving force behind parallel computing is VLSI, or 
very large scale integration, the same technology that created the personal computer 
and workstation market over the last decade. In 1980, the Intel 8086 used 50,000 
transistors; in 2002, the latest AMD Athlon chip contains 37.5 million transistors a factor 
of 750 increase. The dramatic improvement in chip density comes together with an 
increase in clock speed and improved design so that the Athlon performs better by a 
factor of over one thousand on scientific problems than the 8086-8087 chip pair of the 
early 1980s.  

By the year 2000, parallelism is thus inevitable to all computers, from 
your children's video game to personal computers, workstations, and supercomputers. 
At present, we see parallelism in the larger machines as we replicate many chips and 
printed circuit boards to build systems as arrays of nodes. Each unit of which is some 
variant of the microprocessor. Parallelism allows one to build the world's fastest and 
most cost-effective supercomputers. Distributed computing systems have become more 
practical to implement due to advances in computer network technology and the drastic 
reduction in cost of processors. 

Beowulf is a kind of high-performance massively parallel computer built 
primarily out of commodity hardware components, running a free-software operating 
system like Linux or FreeBSD, interconnected by a private high-speed network. It 
consists of a cluster of PCs or workstations dedicated to running high-performance 
computing tasks. The first Beowulf was built with DX4 processors with Slackware Linux 
and 10Mbit/s Ethernet by Thomas Sterling and Don Becker (1994) [1]. Beowulfs make a 
computer with supercomputer performance for a third to tenth the price of a traditional 
supercomputer. The key component to compatibility is the system software used on 



 2

Beowulf. PVM and MPI are system software that write message-passing parallel 
programs that run on a cluster, in Fortran and C. 

The application of advanced computer architectures such as distributed 
computing systems, with their inherent advantages over conventional unique processor 
computers, could significantly aid the dynamic simulation of large-scale industrial 
processes. Distributed computing systems had become more practical to implement 
due to advances in computer network technology and the drastic reduction in the cost 
of processors. Dynamic process simulation was a problem of considerable importance 
to chemical engineers. The predicted transient behavior of processes under different 
conditions could be used for developing and testing alternative control schemes, for 
training plant personnel, and for optimizing plant operations, without the expense and 
possible hazard of plant experimentation. 
 The success of the chemical process industries depends on the ability to design 
and operate complex highly interconnected plants that were profitable and that met 
quality, safety, environmental, and other standards. Towards this goal, process 
simulation and optimization tools were increasingly being used industrially in every step 
of the design process and in subsequent plant operations. However, the solution of 
realistic, industrial-scale process modeling problems for dynamic simulation and 
optimization is computationally intense, and may require the use of high performance 
computing (HPC) technology to be done in a timely manner, especially for real-time 
performance. 

In this thesis, we consider dynamics of distillation columns working on the binary 
and multicomponent systems. The simulation of a distillation column is composed of a 
large number of ODEs and algebraic equations. The binary column has twenty trays with 
product controller. There are two ODEs per tray and two algebraic equations per tray. In 
non-ideal multicomponent column, we study the performance of algorithm by fifteen, 
sixty, one hundred and twenty, two hundred and forty, and four hundred and eighty 
trays. Each tray, the following material-balance, phase-equilibrium, mole-fraction-
summation, and energy-balance (MESH) was applied. In principle, multicomponent 



 3

equations are very similar to those for binary systems, but the solution involves 
substantially more computational effort. 

Our goal is to design an algorithm for parallel computation for simulating 
dynamic processes in chemical industries. Each processor (node) shares information 
and synchronizes the program executions. The nodes send and receive message over 
the network. Beowulf machines used MPI-Fortran run up to three AMD Duron 600 MHz 
on Linux Slackware. 

1.2 Objectives 
1. Design distributed computing system on network computers. 
2. Apply the system to simulate dynamic behavior multicomponent distillation. 

1.3 Scope of Work 
1. Study network computing theory and network programming. 
2. Study steady state and dynamic behavior of binary and multicomponent distillation 

columns. 
3. Design the serial and parallel computer algorithms to describe the dynamics of 

distillation column. 
4. Develop the serial and parallel computer programs. 
5. Compare the results obtained from serial and parallel programs. 
6. Study the computing condition to obtain the best speed up and efficiency. 

1.4 Benefits Expected 
1. Demonstrate how to apply parallel computing technique to solve a dynamic 

distillation behavior. 
2. Obtain network computer program that can be used for solving complex problem. 
 
 



CHAPTER II 
 

THOERY AND LITERATURE REVIEW 
  
 

Secchi A.R., Morari M., and Biscaia E.C. (1993) [2] investigated the concurrent 
solution of differential-algebraic equations (DAEs) by the waveform relaxation (WR) 
method, an iterative method for system integration. The WR method obtains the solution 
of a system DAEs by partitioning into several subsystems. The efficient implementation 
results in algorithms with a highly parallelizable concurrent fraction and low sequential 
overhead, making them suitable for coarse- and medium-grain MIMD distributed 
memory machines. They solved DAEs for a class of dynamic simulation applications of 
chemical engineering. 

Mallya J.U., Zitney S.E., Choudhary S., and Sadtherr M.A. (1997) [3] suggested 
that a parallel frontal solver that could significantly reduce the wallclock time required to 
solve a large sparse system of linear equations of large-scale chemical processes. The 
algorithm utilized both multiprocessing and vectors processing by using a multilevel 
approach in which frontal elimination was used for the partial factorization of each front. 
In 1999, they studied the matrix reordering effects on a frontal solver. The algorithm was 
based on a bordered block-diagonal matrix form. 

Nabil A.J., Brice C., and Costas K. (1998) [4] considered a distributed memory 
message-passing multicomputer for dynamic simulation of chemical processes. 
Dynamic models for complex multicomponent distillation column consist of large 
systems of DAEs that were typically nonlinear, sparse, and stiff. The algorithm based on 
a dynamic block Jacobi-like iteration was applied. The parallel implementation of the 
modular integration approach had a significant potential for execution time reductions. It 
also permitted simple implementation of multi-rate integration. The module integrations 
must be iterated over each time horizon until all module integrations were converged to 
satisfy a global error criterion for the iterative solution. 

Camarda K.V. and Stadtherr M.A. (1999) [5] considered the matrix ordering 
strategies for process engineering. The simple graph-partitioning algorithm that created 



 5

a bordered block-diagonal form was suitable for using parallel algorithms for the solution 
of the highly asymmetric sparse matrices. The method required much less reordering 
time than previously used graph partitioning methods. 

Borchardt J. (2001) [6] considered the plantwide dynamic simulation in the 
chemical process industry. The DAEs were partitioned into block such as block-
structured Newton-type. The simulation was developed on parallel computers with 
shared memory. The system covered up to 60,000 equations. 

Marakis J.G., Chamico J., Brenner G., and Durst F. (2001) [7] used the Monte 
Carlo method for combined heat transfer analysis on distributed computing  
environment. The problem of determination of the temperature field formed under the 
assumption of radiative equilibrium in an enclosure idealizing an industrial furnace. 
Carlsson P. (2001) [8] considered the optimization with a two-dimensional drying model 
on distributed computing. Anido L., Santos J., Caeiro M., Rodriguez J., Fernandez M.J., 
and Llamas M. (2001) [9] and Lalis S, and Karipidis A. (2001) [10] used the Java Web-
computing System (JaWS) and Java for general distributed computing framework. 

2.1 A Distillation Model 

 The distillation utilizes vapor and liquid phases at essentially the same pressure 
and temperature for the coexisting zones. Various kinds of devices such as structured 
packing and plates or trays are used to bring the two phases into intimate contact. Trays 
are stacked one above the other and enclosed in a cylindrical shell to form a column. A 
typical tray-type distillation column plus major external accessories are shown 
schematically in Figure 2.1. The feed material, which is to be separated into fractions, is 
introduced at one or more points along the column shell. Because of the difference in 
gravity between vapor and liquid phases, liquid runs down the column, cascading from 
tray to tray, while vapor flows up the column, contacting liquid at each tray. Liquid 
reaching the bottom of the column is partially vaporized in a heat reboiler to provide 
boilup, which is sent back up the column. The reminder of the bottom liquid is withdrawn 
as bottoms, or bottom product. Vapor reaching the top of the column is cooled and 
condensed to liquid in the overhead condenser. Part of this liquid is return to the column 
as reflux to provide liquid overflow. The remainder of the overhead stream is withdrawn 



 6

as distillate, or overhead product. In some cases only part of the vapor is condensed so 
that a vapor distillate can be withdrawn.  

 

Figure 2.1 Distillation model (a) rectifying (b) stripping (c) overall 

(Source: Henry Z. Kister, Distillation design, New York: McGraw-Hill Inc., 1992) [11] 
 

This overall flow pattern in a distillation column provides counter-current contacting of 
vapor and liquid streams on all the trays through the column. Vapor and liquid phases 
on a given tray approach thermal, pressure, and composition equilibrium to an extent 
dependent upon the efficiency of the contacting tray. The lighter (lower-boiling) 
components tend to concentrate in the vapor phase, while the heavier (higher-boiling) 
components tend toward the liquid phase. The result in a vapor phase becomes richer 
in light components as it passes up the column and a liquid phase becomes richer in 
heavy components as it cascades downward. The overall separation achieved between 



 7

the distillate and the bottoms depends primarily on the relative volatility of the 
components, the number of contacting trays, and the ratio of the liquid-phase flow rate 
to the vapor-phase flow rate. If the feed is introduced at one point along the column shell, 
the column is divided into an upper section, which is often called the rectifying section, 
and a lower section, which is often referred to as the stripping section. Dynamic or 
transient behavior of a continuous-distillation operation is important in determining 
startup and shutdown procedures, the transition path between steady states, effect of 
upsets and fluctuations on controllability, residence times and mass-transfer rates, and 
operating strategies that may involve deliberate imposition of controlled cyclic 
fluctuations or oscillations. Dynamic behavior may be studied with no controllers in the 
system to obtain a so-called open-loop response. Alternatively, controllers may be 
added for certain variables that are to be controlled by manipulating other variables to 
obtain a so-called closed-loop response. For this latter case, controllers of various levels 
of complexity [e.g., on-off, proportional (P), proportional with integral action (PI), and 
proportional with integral and derivative action (PID)] can be considered for various 
values of tuning parameters, and specific values of known characteristics may be 
incorporated if desired. Basically, dynamic distillation models are similar to the steady 
state models, but the dynamic model would consider the accumulative term in each 
equation. The equations for dynamic models based on first principles must be 
formulated in terms of fundamental quantities. In chemical engineering, these quantities 
are mass, energy, and momentum. Under assumptions that are generally valid in 
chemical engineering systems, these quantities obey the principle of conservation, 
which is generally stated as 

Accumulation = In – Out + Generation – Consumption 

When the accumulation is zero, the balance results in an algebraic equation. For a non-
zero accumulation, this balance results in a differential equation, which is generally 
written as 



 8

,
period time

system in consumed
 Xofamount 

                               

period time
system in generated

 Xofamount 

period time
system ofout 

 Xof flow   

period time
system into

 Xof flow  

period time
system withinX 

of onaccumulati

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

 

where X is one of the following fundamental quantities: Total mass, mass of a chemical 
component, energy, and momentum. The model has the proper number of equations 
when the behavior of the system can be predicted. A correctly formulated model has no 
degrees of freedom. The concept of degrees of freedom is expressed as 

Degrees of freedom = Number of variables – Number of equations 

If the number of variables is greater than that of equations, then the system is 
underspecified and the model must be corrected either by including more appropriate 
equations or by correctly designating a variable as a specified parameter. If the number 
of equations is greater than the number of variables, then the system is overspecified 
and in general no unique solution exists. In this situation, there are one or more 
dependent equations or constant parameters that ought to be designated as variables. 

2.1.1 Binary Distillation Model 

We consider the closed-loop response during dynamic distillation of an 
ideal binary mixture in the column shown in Figure 2.2, under two assumptions of 
constant relative volatility at a value and constant molar vapor flow for saturated liquid 
feed to tray. In this model, the two-components mixture is separated by an n-stages 
distillation column. The liquid holdup on each of the equilibrium trays is assumed to be 
perfectly mixed, but will vary as liquid rates leaving the trays vary. The vapor rate 
through all trays of the column is the same, both transiently and at a steady state. The 
calculation can be described by the set of equations that are defined from four relations. 
There are two ODEs per tray (total continuity and component continuity equations) and 
two algebraic equations per tray (vapor-liquid equilibrium relationship and liquid- 
hydraulic relationship) [12]. Based on the former assumption, it is not necessary to 



 9

include energy-balance equations for each tray or to treat temperature and pressure as 
variables. Overhead vapor leaving top tray is total condensed for negligible liquid 
holdup with condensate flowing to a reflux drum having constant and perfectly mixed 
molar liquid holdup. 
  Total continuity 

nnn
n LLF

dt
dM

−+= +1      (2-1) 
   

  Component continuity 
( )

nnnnnn
nn VyxLVyxL

dt
xMd

−−+= −++ 111   (2-2) 

Vapor-liquid equilibrium 

 ( ) n

n
n x

xy
11 −+

=
α
α      (2-3) 

Liquid-hydraulic 

 
β

nn
nn

MM
LL

−
+=      (2-4) 

For the condenser-reflux-drum combination: 

  1+−= NTLVD       (2.5) 

DNT
B

D VxVy
dt

dxM −=⎟
⎠
⎞

⎜
⎝
⎛     (2-6) 

For the reboiler: 

  VLB −= 1       (2.7) 

BB
B

B BxVyxL
dt

dxM −−=⎟
⎠
⎞

⎜
⎝
⎛

11     (2-8) 

where nF  is nonzero only for a feed tray, y and x refer to the light component only 
such that the corresponding mole fractions for the heavy component are  (1-y) and 
(1-x). L  and nM  are the initial steady state values, α  is relative volatility, and β  is 
a constant that depends on tray hydraulics. L and V are the liquid and vapor flow 
rate. B  and D  are the bottom and distillate product rate. 



 10

 

Figure 2.2 Binary distillation column 

(Source: W. L. Luyben, Process modeling, simulation, and control for chemical 
engineering, New York: McGraw-Hill Book Company, 1974) [12] 

Let us examine the degrees of freedom of the system. There are 4NT+7 
independent equations and 4NT+9 independent variables where NT is the total number 
of trays.The degree of freedom is equal to two. Thus, there are two controlled variables. 
The reflux rate R  is varied by a proportional-integral (PI) feedback controller to control 
distillate composition at a set point for the mole fraction Dx  of the light component. 
Holdup of reflux in the line leading back to the top tray is neglected. Under dynamic 



 11

conditions, NTy  may not be equal to Dx . At the bottom of the column, a liquid sump of 
constant and perfectly mixed molar liquid holdup BM  is provided. A portion of the liquid 
flowing from this sump passes to a thermosiphon reboiler, with the remainder taken as 
bottoms product at a molar flow rate B . Vapor boil-up generated in the reboiler is varied 
by a PI feedback controller to control bottom composition at the set point for the mole 
fraction Bx  of the heavy component. Liquid holdups in the reboiler and lines leading 
from the sump are assumed to be negligible. The composition of the boil-up By  is 
assumed to be in equilibrium with Bx . 
  The two PI-controller equations are 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∫

∆+ tt

t B
B

BCB dtEEKVV
τ
1     (2.9)  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∫

∆+
++

tt

t D
D

DCDNTNT dtEEKLL
τ
1

11    (2-10) 

where V  and 1+NTL  are initial values, CK  and τ  are respectively 
feedback-controller gain and feedback-reset time for integral action, and E  is the error 
or deviation from the set point as given by 

  B
set
BB xxE −=      (2.11) 

    D
set
DD xxE −=      (2-12) 

  2.1.2 Multicomponent Distillation Model 
 

  In principle, multicomponent equations are very similar to those for 
binary systems, but the solution involves substantially more computational effort. The 
model of open-loop distillation column is shown in Figure 2.3. For the sake of generality, 
it is shown that feed streams are introduced and both liquid and vapor side streams are 
withdrawn from each tray. Energy can be added or removed from each tray. In an actual 
column, however, many of these values would be zero. The theoretical model for this 
simulation has the assumption as follows: 

• Liquid on the tray is perfectly mixed and incompressible. 

• Tray vapor holdups are negligible. 



 12

• Dynamics of the condenser and the reboiler will be neglected. 

• Vapor and liquid are in thermal equilibrium (same temperature) but 
not in the phase equilibrium. 

• A general nth tray is shown in Figure 2.4. 

Figure 2.3 Open-loop distillation. 

(Source: Henry Z. Kister, Distillation-design-, New York: McGraw-Hill Inc, 1992) [11] 



 13

 

 
Figure 2.4 nth tray of multicomponent column. 

Table 2.1 Streams on nth tray 

Number Flow rate Composition Temperature 
1 L

nF  F
njx  F

nT  
2 V

nF 1−  F
jny ,1−  F

nT 1−  
3 1+nL  jnx ,1+  1+nT  
4 nV  njy  nT  
5 1−nV  jny ,1−  1−nT  
6 L

nS  njx  nT  
7 nL  njx  nT  
8 V

nS  njy  nT  
 

(Source: W. L. Luyben, Process modeling, simulation, and control for chemical 
engineering, New York: McGraw -Hill Book Company, 1974 [11] 
  In this system, the C-components mixture is separated by N-stages 
distillation column. The distillation calculation can be described by the set of equations.  

Total continuity 

V
n

L
nnnn

V
n

L
nn

n SSLVVFFL
dt

dM
−−−−+++= −−+ 111   (2-13) 

Component continuity 

jnn
F

jn
V
n

F
nj

L
nnn

njn yVyFxFxL
dt

xdM
,11,1111 −−−−++ +++=     



 14

nj
V
nnj

L
nnnnjn ySxSxLyV −−−−    (2-14) 

Phase equilibrium 

( )nnnjnj TPxfy ,,=       (2-15) 

Component summation 

1
1

=∑
=

C

j
njx        (2-16) 

1
1

=∑
=

C

j
njy        (2-17) 

Energy balance 

jnn
F

jn
V
n

F
nj

L
nnn

nn HVHFhFhL
dt

hdM
,11,1111 −−−−++ +++=     

nj
V
nnj

L
nnnnjn HShShLHV −−−−     (2-18) 

where n, j are the indices of the nth tray and jth component. 

There are altogether N(2C+3) equations. The unknowns are internal 
vapor rates (N), internal liquid rates (N), tray temperatures (N), liquid mole fractions  
(CN), and vapor mole fractions (CN). The total number of variables is N(2C+3) 
unknowns. 

2.1.3 Vapor Pressure 

In the ideal system, Raoult’s and Dalton’s laws are applied and vapor-
liquid equilibrium can be calculated from vapor pressures. Vapor pressure is 
represented by Antoine’s equation. 

CT
BAP
+

−=log       (2-19) 

where A, B, and C are Antoine’s constants. If A and B are unknown. 
Antoine’s constant can be calculated by equations 2-20, 2-21. 



 15

( )( ) ( )
( )bottomtop

bottomtopbottomtop

TT
PPCTCT

B
−

++
=

log    (2-20) 

( )CT
BPA

bottom
bottom +

−= log       (2-21) 

2.1.4 Equilibrium Ratios 

For many systems the equilibrium ratio jK  can be used: 

j

j
j x

y
K =        (2-22) 

The real value of jK  lies in the fact that charts of ( )PTfK ,=  are 
available. The De Priester charts are reproduced here as Figure 2.5 and Figure 2.6. 
They are for hydrocarbon systems only, which is somewhat restrictive. 



 16

Figure 2.5 DePriester chart – low temperature range. 

(Source: J. M. Smith and H. C. Van Ness, Introduction to chemical engineering 
thermodynamics, 4th Edition, New York: McGraw-Hill Book Company, 1987) [13] 



 17

Figure 2.6 DePriester chart – high temperature range. 

(Source: J. M. Smith and H. C. Van Ness, Introduction to chemical engineering 
thermodynamics, 4th Edition, New York: McGraw-Hill Book Company, 1987) [13] 

2.1.5 The Bubble-Point (BP) Method 

The BP method uses a form of the phase equilibrium equation and 
component summation equation to calculate the stage temperatures. By definition a 
saturated-liquid stream is at the boiling point (or bubble point). The first and tiniest of 
bubbles formed has a composition different from the liquid, but the amount of material in 
the bubble is too small to change the composition of the liquid. Obviously, the liquid and 



 18

the bubble are in equilibrium. Mathematically, the design equation for bubble point 
calculation is 

0.1
11

==∑∑
==

NC

i
ii

NC

i
i xKy       (2-23) 

2.1.6 Murphree Tray Efficiency 

Murphree tray efficiency is the ratio of the change of composition on the 
actual stage to the change that would occur on a theoretical stage. 

1
*

1

−

−

−

−
=

njnj

njnj
nj yy

yy
E       (2-24) 

where *
njy is the composition of vapor in equilibrium with the liquid 

leaving the tray. 

Figure 2.7 Murphree tray efficiency 

(Source: W. L. Luyben, Practical distillation control, Van Nostrand Reinhold, New York, 
1992) [14] 

2.1.7 Enthalpy 

Liquid and vapor enthalpy are functions of temperature, pressure, and 
composition. In energy balance, we use some simple enthalpy equations. 



 19

Liquid enthalpy 

TCh PL=        (2-25) 

where PLC is molal specific heat of liquid at constant pressure. 

Vapor enthalpy 

vPVTCH λ+=       (2-26) 

where PVC is molal specific heat of vapor at constant pressure. 

 vλ is heat of vaporization. 

2.1.8 Liquid Holdup 

Francis weir formula is used to calculate the liquid hold up on a tray. 

2/3
owW hlCL ρ=        (2-27) 

where L  is liquid rate. 

 C is a constant for a unit conversion. 

 ρ  is liquid density. 

 wl  is weir length. 

 owh is liquid height over weir. 

  



 20

  Figure 2.8 Francis weir 

2.2 Parallel Computing 

2.2.1 Parallel Performance  

The performance of parallel application is often measured in terms of 
speed up that known as Amdahl’s Law. The achievable speedup is shown in equation 2-
28. 

( ) ( )
( )NT

TNS 1
=        (2-28) 

where T(1) is the processing time of the program when run on one 
processor, and T(N) is the time taken to solve the problem using N processors. We get 
the good performance when speedup is above one. 

Gustafson-Barsis Law suggests another speedup performance that is 
shown in equation 2-29. 

( ) ( )α1−−= NNNS       (2-29) 

where α is the fraction of the program that must be run in sequence. 
Gustafson-Barsis interpreted the Amdahl’s Law that parallelism can be used to increase 
the parallel size of the problem. If one processor is used, it must compute both the serial 



 21

part and the parallel parts, and the parallel parts take N times as long to run on a single 
processor. If N parallel processors are used, the problem is scaled up so that N parallel 
processors execute the serial and parallel parts of the program as shown in Figure 2.9. 

The parallel efficiency measures the contribution of each processor to 
the parallel solution when N processors are employed. The parallel efficiency is defined 
as 

( ) ( )
N
NSNE =        (2-30) 

where E(N) is equal to the average efficiency per processor when the 
problem is run with N parallel processors. 

 

Figure 2.9 Gustafson-Barsis Law of speed up. Notice that (a) time for parallel processors 
(b) time for a single processor 

2.2.2 Message-Passing  

The Message-passing model poses a set of processes that have only 
local memory but are able to communicate with other processes by sending and 



 22

receiving messages. It is a defining feature of the message-passing model that data 
transfer from the local memory of one process to that of the others requires operations to 
be performed by both processes. 

The message-passing interface (MPI) is a standard protocol for writing 
message-passing programs. It was developed during 1993 and 1994 by an international 
group of application scientists, computer vendors, and software writers called the MPI 
Forum. The goal of MPI is to provide a standard library of routines for writing portable 
and efficient message-passing programs. MPI is not a language; it is a specification of a 
library of routines that can be called from C and FORTRAN 77 programs. MPI provides a 
rich collection of point-to-point communication routines and collective operations for 
data movement, global computation, and synchronization. MPI also defines a number of 
important features such as derived data types and communication contexts. Several 
functional implementations of the MPI specification are currently available. Both free 
public domain and commercial implementation already exist for tightly coupled parallel 
computers and clusters of workstations.  

An MPI application can be visualized as a collection of concurrent 
communicating tasks. A program includes code written by the application programmer 
that is linked with a function library provided by the MPI software implementation. Each 
task is assigned a unique rank within a certain context: an integer number between 0 
and n-1 for an MPI application consisting of n tasks. These ranks are used by MPI tasks 
to identify each other in sending and receiving messages, to execute collective 
operations, and to cooperate in general. MPI tasks can run on the same processor or on 
different processors concurrently. For an application program, sending a message to a 
task on the same or another machine is a transparent operation. MPI automatically 
selects the most efficient communication mechanism available on a particular machine 
or between machines. The use of ranks makes all cooperative operations independent 
of the physical location of the participants.  



 23

As in most computing systems, the environment in which an MPI 
application will run may require some set up before the MPI routines are called in an 
application. MPI provides the following initialization routine. 

MPI_Init(&argc, &argv) 

It must be called before any other MPI routine is used. All MPI tasks that 
participate in the computation are available after MPI is initialized. At the end of an MPI 
application, the programmer must call the function MPI_Finalize() to clean up the MPI 
state. Once this function is activated, no other MPI function can be called. It is important 
to ensure that all pending communication is finished before this function is called. Tasks 
in MPI are allowed to belong to named groups. A group in MPI is an object that can be 
accessed via a handle of the predefined type MPI_Group. Task groups provide contexts 
through which MPI operations can be restricted to only the members of a particular 
group. The members of a group are assigned unique identifiers, so called ranks, with in 
the group. A group is an ordered set of ranks that is contiguous and starts from zero. An 
important requirement in all message-passing systems is to guarantee a safe 
communication space in which unrelated messages are separated from one another, for 
example, library message can be sent and received without interference from other 
messages generated in the system.  

In MPI, where is no virtual machine, using just a message tag is not 
enough to safely distinguish library messages from user messages. The concept of 
communicator is introduced in MPI to achieve this safe communication requirement. A 
communicator can be thought of as a binding of a communication context to a group of 
tasks. A communicator is an object that can be accessed via a handle of type 
MPI_COMM. Communicators can be classified into intracommunicators, for operations 
within a single group of tasks, and intercommunicators, for operations between different 
groups of tasks. When an MPI application starts, all tasks are associated to a “world” 
communicator. When a new context is needed, the program makes a synchronizing call 
to derive the new context from an existing one. MPI provides the predefined 
communicator MPI_COMM_WORLD as the default communicator. Once MPI_Init() is 



 24

called, this default communicator  defines a single context including the set of all MPI 
tasks available for the computation. The communicator MPI_COMM_WORLD has the 
same value in all processes and cannot be changed during the lifetime of a task. MPI 
also provides the predefined communicator MPI_COMM_SELF, which includes only the 
calling process itself. The tasks involved in a communicator are assigned consecutive 
integer identifiers between zero and the size of communicator’s group minus one. These 
identifiers, which called ranks, are used to distinguish the different tasks within the same 
group. A task can find out its rank within a communicator by calling the function 
MPI_Comm_rank(). The size of the group associated with a communicator can be 
determined by calling the function MPI_Comm_size(). This function takes an existing 
communicator and returns the size of its corresponding group.  

A communication among MPI tasks is based on the message-passing 
paradigm. MPI utilizes a rich set of functions for sending and receiving messages. 
Communication between two tasks involves the following components: Sender, Receiver, 
Message data, Message tag (which helps multiple messages between two tasks to be 
handled in order), and Communicator (which provides a context for communication). 
The basic functions to send and receive message in MPI are the blocking send and 
blocking receive. There are several variations of functions that facilitate different kinds of 
communication modes. MPI supports the standard send, blocking receive, buffered 
send, synchronous send, and ready send modes. In standard send mode, the sender 
will block until its message has been safely copied into either a matching receive buffer 
or a temporary system buffer. It is up to the MPI implementation to decide whether or not 
a message should be buffered. Once the send call returns, the send buffer can be 
overwritten and reused for other purposes by the sender. The following function is the 
standard send in MPI. 

MPI_Send(buf, count, data_type, to_whom, tag, communicator) 

This function will send the message stored starting at address buf to the 
task whose rank is given as to_whom. The message consists of count elements, each of 
which is of type data_type. The message tag is given as tag. Both the sender and the 



 25

receiver must be part of the same communicator. If the buffer is used to store the 
outgoing message, the sender will continue without having to wait for a matching 
receive to be posted. The standard receive function in MPI is the blocking receive. A call 
to this function will not return until it receives the message it is expecting in its buffer. 
The following function is the blocking receive in MPI. 

MPI_Recv(buf, count, data_type, from_whom, tag, communicator, status) 

This receive will select a message with a matching sender (from_whom) 
and a matching message tag (tag) for receipt into the buffer (buf). Additional status 
information will be returned in (status). The status field is useful particularly when the 
source and/or the tag of the received message in not known to the receiver, as a result 
of using wild cards. The status is normally a structure consisting of two fields, 
MPI_SOURCE and MPI_TAG, for the rank of the sender and the tag of the received 
message, respectively. Again, the sender and the receiver should be participants in 
communicator. Using buffered send mode, message buffer is guaranteed that a 
buffered send may return whether or not a matching receive call has posted. Once the 
message information is buffered, the send call will return and the send buffer becomes 
reusable. The format of the buffered send is the same as in the standard send. The only 
difference is the addition of the letter B to the name of the send function, as MPI_Bsend(). 
Synchronous communication can be accomplished if both the sender and receiver 
block until the send and receive calls are posted and the communication is complete. 
Since the standard receive is already blocking, we just need a blocking send to be able 
to accomplish synchronous communication. MPI also provides the function MPI_Ssend() 
for this purpose. It has the same format as the standard send and it can start without 
having to wait for a matching receive call to be posted. However, it will not be complete 
until a matching receive has been posted and the receiver has started to receive the 
message. A send in the ready mode can be started only after a matching receive has 
been posted. The function MPI_Rsend() is provided for this purpose. The completion of 
the ready send, however, does not depend on the status at the receiving end.  



 26

Basic MPI data types include all commonly encountered C and 
FORTRAN native types. The definition allows for interoperation in a collection of 
heterogeneous machines. MPI is able to provide any bit ordering or other 
transformations required in the environment. MPI also provides the concept of derived 
data types. Derived data types consist basically of a sequence of data types and 
integer offsets for elements in the sequence. This concept allows the exchange of 
complex information elements without incurring needless overhead. 

Table 2.2 Basic MPI data types for FORTRAN 

MPI data type FORTRAN data type 
MPI_BYTE  
MPI_CHARACTER CHARACTER 
MPI_COMPLEX COMPLEX 
MPI_DOUBLE_PRECISION DOUBLE PRECISION 
MPI_INTEGER INTEGER 
MPI_LOGICAL LOGICAL 
MPI_PACKED  
MPI_REAL REAL 

(Source: H. El-Rewini and T. G. Lewis, Distributed and parallel computing, Greenwich: 
Manning Publications Co., 1998) [15] 



 27

 

Table 2.3 Basic MPI data types for C 

MPI data type C data type 
MPI_BYTE  
MPI_CHAR signed char 
MPI_DOUBLE double 
MPI_FLOAT float 
MPI_INT int 
MPI_LONG long 
MPI_LONG_DOUBLE long double 
MPI_PACKED  
MPI_SHORT short 
MPI_UNSIGNED_CHAR unsigned char 
MPI_UNSIGNED unsigned int 
MPI_UNSIGNED_LONG unsigned long 
MPI_UNSIGNED_SHORT unsigned short 

(Source: H. El-Rewini and T. G. Lewis, Distributed and parallel computing, Greenwich: 
Manning Publications Co., 1998) [15] 

Synchronization constructs are used to force a certain order of 
execution-among the activities of parallel tasks. In some cases, parallel tasks are 
required to synchronize with each other at a given point during the execution. Members 
of a group may need to wait at a synchronization point until all tasks reach the same 
point. Synchronization in MPI can be achieved using message-passing and barrier 
operations. Tasks in a group can synchronize at a synchronization point using a barrier. 
No task can proceed beyond the barrier until all tasks have checked in at that barrier. 
The group may include all tasks or only a subset of the tasks, depending on the 
communicator. The construct MPI_Barrier() takes a communicator as input as follows.  

MPI_Barrier(communicator) 

Barrier synchronization is achieved by having all tasks in the 
communicator’s group call the function MPI_Barrier(). A task waits at the barrier until all 
tasks referenced by the communicator reach the barrier. A call to MPI_Barrier() returns 



 28

after all the communicator’s group members have executed their calls to this function. 
MPI supports a broad variety of data movement collective functions. The basic 
operations supported are broadcast, scatter, and gather. In a broadcast, one process 
sends the same message to every member in the group. 

MPI_Bcast(buffer, n, data_type, root, communicator) 

All members of the communicator’s group, using the same arguments for 
the root and communicator, must call this function. The contents of the root’s buffer will 
be copied to the buffers of all tasks (Figure 2.10). 

Figure 2.10 A broadcast from task 0T  

(Source: H. El-Rewini and T. G. Lewis, Distributed and parallel computing, Greenwich: 
Manning Publications Co., 1998) [15] 

A scatter operation allows one process to send a different message to 
each member. 

MPI_Scatter(sbuf, n, stype, rbuf, m, rtype, rt, communicator) 

In scatter, the send buffer at the root is divided into a number of 
segments, each of size n.  The first n elements in the root’s send buffer are copied into 
the receive buffer of the first member in the group. The second n elements in the root’s 



 29

send buffer are copied into the receiver buffer of the second member, and so on (Figure 
2.11(a)). 

In gather, which is the dual operation of scatter, one process will receive 
a message from each member in the group. 

MPI_Gather(sbuf, n, stype, rbuf, m, rtype, rt, communicator) 

This function, each task sends the contents of its send buffer to the root 
task. The root receives the messages and stores them in rank order. The send buffer of 
the first member in the group is copied into the send m location in the receive buffer of 
the root, and so on (Figure 2.11(b)). The parameters and their meanings are shown in 
Table 2.4. 

Figure 2.11 (a) Scatter from the task 0T  (b) Gather at the root task 0T  

(Source: H. El-Rewini and T. G. Lewis, Distributed and parallel computing, Greenwich: 
Manning Publications Co., 1998) [15] 
 
 
 



 30

Table 2.4 The scatter and the gather parameters and meanings. 

Parameter Meaning 
Sbuf Starting address of the send buffer 
N Number of elements sent to each task by the root 
Stype Type of each element in the send buffer 
Rbuf Starting address of the receive buffer 
M Number of data elements in the receive buffer 
Rtype Type of each element in the receive buffer 
Rt Rank of the sending task or receiving task 
Commnuicator Communicator 

(Source: H. El-Rewini and T. G. Lewis, Distributed and parallel computing, Greenwich: 
Manning Publications Co., 1998) [15] 

2.3 Numerical Methods 

2.3.1 Newton-Raphson Method 

The Newton-Raphson method is one of the most powerful methods for 
solving one-dimensional or multi-dimensional and systems of nonlinear equations. This  
method is a powerful numerical method for thermodynamic calculation, such as the BP 
method. The analytical derivative is readily available for these calculations. Figure 2.12 
presents the Newton-Raphson method graphically. 

The method requires an initial estimate of the solution 1x . An analytical 
expression gives the derivative of the objective function at the estimate. The derivative is 
the tangent to the curve at this point. The next estimate 2x is computed where the 
tangent intersects the x-axis at 0=f . These convergence methods require initial 
estimates for the solution. During the dynamic simulation, the solution at the previous 
time step is used for these estimates. This is very close to the solution at the current time 
step. The algebraic equations are solved very quickly, in only a few iterations. 

 



 31

Figure 2.12 Newton-Raphson convergence. 

(Source: W. L. Luyben, Practical Distillation Control, New York: Van Nostrand Reinhold, 
1992) [14] 

2.3.2 Euler Integration Method 

The simplest possible numerical integration scheme is Euler integration, 
illustrated graphically in Figure 2.13. Assume the form of ODE be  

( )txf
dt
dx ,=        (2-31) 

where f is a nonlinear function. An initial condition for x  is needed. 
( ) 00 xx =      at 0=t  (2-32) 

Now if it is moved forward in time by a small step t∆  to tt ∆= , it can be got an estimate 
of the new value of x  at tt ∆= , ( )tx ∆  from a linear extrapolation using the initial time 
rate of change of x . The new value of x is approximately equal to the old value of x plus 
the product of the derivative of x times the step size. 

( ) ( ) t
dt
dxxx

t
t ∆⎟

⎠
⎞

⎜
⎝
⎛+=

=
∆

0
0      (2-33) 



 32

( ) txfxx ∆+= 0,001       (2-34) 

Figure 2.13 Graphical representation of Euler integration. 

(Source: W. L. Luyben, Process modeling simulation and control for chemical 
engineering, New York: McGraw-Hill Book Company, 1974.) [12]  

 
 



CHAPTER III 
 

IMPLEMENTATION 
  

3.1 Binary Distillation Simulation Implementation 

First, the parallel algorithm will be demonstrated with the simplified 
binary distillation column. Its model was described in previous chapter. The following 
procedure as shown in Figure 3.1 can be used to solve the equilibrium-stage model. 
The procedure starts from the bottom tray and proceeds up through the column.  At 
each instant in time, all holdups and all liquid compositions were known. The calculation 
steps were proceeded. 

Figure 3.1 Algorithm for solving binary distillation simulation 

Read  distillation column data,
component physical properties

Calculate vapor composition on all trays by
equation 2-3

Calculate all liquid flow rates by equation 2-4

Evalute all derivatives by equation 2-1 and 2-2
applied to all trays.

Integrate with Euler  method for all ODEs.

Time > Stoptime

End program

Yes

N o



 34

3.2 Multicomponent Distillation Simulation Implementation 

The general multicomponent model was described in previous chapter. 
The extension of the simple ideal binary system considered in the preceding section to a 
nonideal multicomponent column is not difficult. The only changes that have to be made 
to the basic structure of the solution algorithm are: 

1. More ODEs must be added per tray. Each component can be written 
one component balance per tray. There are NC equations for NC 
components on each tray. 

2. One energy balance per tray. 

3. The Bubble point method will be used for obtaining the solution.  

The simulated column is assumed to have the following equipment 
configurations and conditions: 

1. There is one feed plate onto which vapor feed and liquid feed are 
introduced. 

2. Pressure is constant and known on each tray. It varies linearly up the 
column from the base to the top. 

3. Coolant and steam dynamics in the condenser and reboiler are 
negligible. 

4. Distillate vapor and liquid products taken off the reflux drum and are 
in equilibrium. Dynamics of the vapor space in the reflux drum and 
throughout the column are negligible. 

5. Liquid hydraulics are calculated from the Francis weir formula. 

6. Volumetric liquid holdups in the reflux drum and column base are 
held perfectly constant by changing the flow rates of bottom product 
and liquid distillate product. 



 35

7. Dynamic changes in internal energies on the trays are much faster 
than the composition or total holdup changes, so the energy 
equation on each tray (Equation 2-18) is just algebraic. 

8. Reflux and heat input to the reboiler is simply held constant. 

The following procedure can be used to solve the stage multicomponent 
model. The procedure can be proceeded the same manner as that for binary column. 
The algorithm is shown in Figure 3.2. 

 



 36

Figure 3.2 Algorithm for solving dynamic multicomponent distillation simulation 

Input data on the column size,
components, physical properties, feed,

and initial conditions (liquid compositions
liquid flow rates, and initial guesses of

temperatures on all trays)

Calculate initial tray holdups and the pressure profile.

Calculate the temperatures and vapor compositions using the BP
methods. Newton-Raphson convergence is used.

Calculate liquid and vapor enthalpies by equation 2.25 and 2.26.

Calculate vapor flow rates on all trays, starting from bottom base
column by equation 2-18

Evaluate all derivatives of the continuity equations for all NC
components on all NT trays by equation 2-13 and 2-14

Integrate all ODEs.

Calculate new total liquid holdups.
Calculate the new liquid mole fractions.

Calculate new liquid flow rates by equation 2-27.

Time > Stoptime

End program

Yes

No



 37

3.3 Partition Algorithm for Distillation Model 

The distillation column has NT trays, and contains NC components. Each 
tray has a set of equations as described in section 2.1.2. The Nth tray only connects with 
(N-1)th and (N+1)th tray. All sets of equations for all trays can be illustrated in the block 
band diagonal matrix (Figure 3.3). 

Figure 3.3 Block band diagonal matrix 

 In order to reduce memory usage, we reduce the block band diagonal 
matrix into spline matrix. According to the number of trays and that of processors, the 
tasks can be balanced among processors as shown in Figure 3.4. 

Figure 3.4 Task balance for NT trays on NP processors 



 38

The coordination algorithm is used for mapping on multicomputers. The 
node rank is an integer between 0 and n-1 for an MPI application consisting of n nodes. 
The basic structure of the coordination algorithm is as follows: 

1. Calculate task size for each node. The task size is equal to the 
number of trays divided by the number of nodes, rounded down. 

2. Calculate tray range for each node. First tray for each node is equal 
to task rank multiplied by task size. Last tray for each node is 
calculated from task rank plus one and multiplied by task size. If 
node rank is equal to zero, then include reboiler into task size. And if 
node rank is n-1, then the node will include the condenser into its 
task size and last tray is NT. 

 Each processor computes only a number of specified trays. For each 
time horizon, the data will be shared and exchanged among processors which 
represent subsystems. The solution obtained for the trays at the boundary for each 
subsystem will be exchanged with adjacent subsystem as shown in Figure 3.5. 

Figure 3.5 Two step processor transfer data. Ghost point areas are shown in dashed 
boxes; data to be moved are shaded. 

(Source: William Gropp, Ewing Lusk and Anthony Skjellum, Using MPI Portable Parallel 
Programming with the message-Passing Interface, London: The MIT Press, 1994) [17] 



 39

In parallel computing, we reduces a number of communications by 
transfer all data at the end of each time horizon. For each subsystem, the serial 
calculation were carried out without waiting for the solution from other processors in 
each time horizon integration. It uses the old solution from last time horizon instead of  
the updated solution from the same time horizon. 

The algorithm on message passing multicomputers using paradigm is 
shown in Figure 3.6.  Each subsystem and the root do use the same code. However, the 
root also performs the output routine. 

Figure 3.6 Paradigm for parallel simulation 



 40

3.4 Input Data Required 

3.4.1 Binary Distillation Column 
1. Number of plates in the column (not including condenser and 

reboiler), NT 
2. Feed tray, NF 
3. Liquid holdup in column base and reflux drum (moles), MB 

and MD 
4. Liquid holdup on each tray (moles), M 
5. Product flow rate in column base and reflux rate (mol/h),V 

and R 
6. Feed flow rate (lb mol/h), F 
7. Relative volatility, α  
8. Hydraulic time constant, β  
9. Initial condition each tray for composition, X 
10. Controller constant in column base and reflux drum, KCD, 

KCB, TAUD, and TAUB 
11. Feed disturbance, Z 
12. Time step size (Hours), DELTA 

3.4.2 Multicomponent Distillation Column 
1. Number of plates in the column (not including condenser and 

reboiler), NT 
2. Number of components, NC 
3. Murphree vapor-phase tray efficiency, EFF 
4. Feed tray, NF 
5. Time step size (Hours), DELTA 
6. Time step show result (Hours), STEP 
7. Stop time for end program (Hours), STOP 
8. Liquid feed data i.e. flow rate (lb mol/h), FL, temperature (oF), 

TFL, and composition, XF 



 41

9. Vapor feed data i.e. flow rate (lb mol/h), FV, temperature (oF), 
TFV, and composition, YF 

10. Weir height in stripping and rectifying section (inches), WHS 
and WHR 

11. Weir length in stripping and rectifying section (inches), WLS 
and WLR 

12. Column diameter in stripping and rectifying section (inches), 
DS and DR 

13. Volumetric holdup in column base and reflux drum (ft3), MVB 
and MVD 

14. Pressure in column base and reflux drum (psia), PB and PD 
15. Vapor and liquid distillate product flow rate (lb mol/h), DV and 

DL 
16. Reboiler heat input (106 Btu/h), QR 
17. Reflux flow rate (lb mol/h), R 
18. Component properties i.e. name, molecular weight (lbm/lb 

mol), MW, density, (DENS), heat of vaporization at normal 
boiling point (Btu/lbm

oF), HVAP, boiling point temperature (oF), 
BPT, heat capacity of vapor (Btu/lbm

oF), HCAPV, heat 
capacity of liquid (Btu/lbm

oF), HCAPL, Antoine constant (or 
calculate Antoine constant from equation 2-20 and 2-21, and 
temperature and pressure find from Figure 2.5 and 2.6 at 
equilibrium stage) 

19. Initial condition for each tray (i.e. temperature (oF),  T, liquid 
flow rate (lb mol/h), LO, and liquid composition, X) 

 
 
 
 
 
 



 42

3.5 Hardware System 

• Three personal computers, CPU: AMD Duron 600 MHz, RAM: 128 MB., OS: Linux 
Slackware 7.1, Lan card: SMC 1211TX, Hard disk: 4 GB. 

• Surecom 5 Port Ethernet Mini HUB 

• Each unit is connected with 10 baseT wire and joint to an Ethernet hub as shown in 
Figure 3.7. 

Figure 3.7 Multicomputers and network connection 



CHAPTER IV 
 

SIMULATION RESULTS 
 

The program developed by FORTRAN 77 language can be used to solve 
the dynamic distillation model. The performance test of simulation is shown and is 
discussed in this chapter. The parallel solutions were compared with the serial solution  
(William L. Luyben, 1992) [12]. Several study cases are tested.  

4.1 Initial Condition 

Case I: Dynamic binary distillation column (William L. Luyben, 1992) [12].  
This case is the basic dynamic distillation column. The column is the conventional 
column (one feed and two products at distillate and bottom). The distillation column has 
20 trays and 87 equations. The system has a step change in feed composition from 0.50 
to 0.55 at time equal zero. The initial condition descriptions are shown in previous 
chapter. The Initial condition is shown as Figure 4.1.  

Figure 4.1 Dynamic binary distillation initial condition 



 44

Case II: Dynamic multicomponent distillation column (William L. Luyben, 
1992) [12]. The distillation column has 15 trays and 5 components and 221 equations. 
The initial condition descriptions are shown in previous chapter. The Initial condition is 
shown as Figure 4.2. 

 
(a) 

(b) 

Figure 4.2 Dynamic multicomponent distillation initial condition (a) column properties (b) 
component properties (c) initial condition trays. Zeroth trays means reboiler. Last tray 

means condenser. 



 45

 

(c) 

Figure 4.2 (Continued) 

Case III: Increase the number of trays and the size of data transfer for 
output between subsystems. The initial conditions are similar to the previous case 
except the number of trays, the feed tray, and the tray conditions. The new initial 
conditions were estimated by using linear interpolation between the upper tray and 
lower tray conditions.  

( ) ( ) ( ) ( ) ( )
01

01
00 xx

xfxf
xxxfxf

−
−

−+=     (4-1) 

Where x  is the tray number. f is the tray condition. The subscript zero means lower 
tray. The subscript one means upper tray. After linear interpolation, the tray number with 
decimal point was round up to integer number. The feed tray was changed with the total 
number of tray in the column as shown in Table 4.1. The distillation columns have the 
number of equation as shown in Table 4.2. 



 46

 

Table 4.1 The relationship between the number of trays and the feed tray. 

The number of 
trays 

NT  15 60 120 240 360 480 

The feed tray 1
15

)15( +⎟
⎠
⎞

⎜
⎝
⎛−=

NTNF  5 17 33 65 97 129 

Table 4.2 The relationship between the number of trays and the number of equations. 

The number of 
trays 

NT  15 60 120 240 360 480 

The number of 
equations ( )( )322 ++

=
NCNT

NE  221 806 1,586 3,146 4,706 6,266 

These case studies were divided into two parts. First, the performance 
was studied when full solution transfer for output at 410−=∆t  time step and integrated 
time horizon from 0.0 hours to 2x10-4 hours. Second part studies the performance when 
partial solution transfer for output at 410−=∆t  time step and integrated time horizon 
from 0.0 hours to 0.02 hours. 

The load balance is measured as 

avg

avgmax

CPU
CPUCPU

imbalance
−

=     (4-2) 

 
where maxCPU  and avgCPU  refer to the maximum and average CPU times. In general, 
a perfectly load balanced partitioning will produce an imbalance of zero. In this case 
study, load imbalance is nearly zero. 



 47

4.2 Results 

Case I: Dynamic binary distillation 

Examine the accuracy of the solutions obtained from serial and parallel 
computation. The parallel computation was carried out with two processors 
configuration test unit. The results are shown in Table 4.3. 

Table 4.3 Comparison of compositions from serial and parallel computation for dynamic 
binary distillation column  

Serial Parallel nodes=2 TIME 
(hours) XB X10 XD XB X10 XD 

0.0 0.02000 0.47688 0.98000 0.02000 0.47688 0.98000 
5.0 0.01950 0.52057 0.98018 0.01951 0.52061 0.98019 

10.0 0.01989 0.52266 0.98024 0.01989 0.52268 0.98024 
15.0 0.01997 0.52299 0.98017 0.01997 0.52300 0.98017 
20.0 0.01998 0.52299 0.98011 0.01998 0.52299 0.98011 
25.0 0.01999 0.52295 0.98007 0.01999 0.52296 0.98007 
30.0 0.01999 0.52293 0.98004 0.01999 0.52293 0.98004 
35.0 0.02000 0.52291 0.98003 0.02000 0.52291 0.98003 
40.0 0.02000 0.5229 0.98002 0.02000 0.52290 0.98002 
45.0 0.02000 0.52289 0.98001 0.02000 0.52289 0.98001 
50.0 0.02000 0.52289 0.98001 0.02000 0.52289 0.98001 

At the beginning of the simulation, the solutions by parallel calculation 
have slightly error. However, the solutions reach steady state at the same time and same 
solution. Figure 4.3 show the percentage error between serial and parallel simulation of 
various variables (i.e. composition at bottom, 10th tray, distillate, and control 
parameters). The error is monotonically decreased with time. 

 



 48

Figure 4.3 Percentage error between the serial and parallel simulation two processors in 
dynamic binary distillation 

During the experiment, it was observed that the average CPU time with 
parallel simulation dramatically increases compared with serial simulation, but the 
speedup and efficiency decreases. Table 4.4 shows the performances of serial and 
parallel simulation. 

Table 4.4 Comparison the performance between serial and parallel simulation (2 nodes) 
of dynamic binary distillation. 

The performance Serial Parallel (nodes=2) 
Average CPU time (seconds) 0.20 26.15 

Speedup 1.00 7.64E-03 
Parallel efficiency 1.00 3.82E-03 

 

0

0.05

0.1

0 10 20 30 40 50
Time (h)

% 
err

or

XB
X10
XD
R
V



 49

Case II: Dynamic simulation of multicomponent distillation column 

Examine the accuracy of the solution of dynamic multicomponent 
distillation model by comparing dynamic response of distillate and bottom products 
obtained from serial and parallel simulation (two processors and three processors). The 
results were shown in Figure 4.4 to Figure 4.9. It was observed that the profiles of both 
distillate and bottom products obtained from parallel calculation were different from that 
obtained from serial calculation. Moreover, the system of three nodes has shown larger 
error than that of two nodes, especially the distillate temperature and composition. 

 

Figure 4.4 Transient profiles of bottom product temperature on the 15-trays column 

201.50

201.60

201.70

201.80

201.90

202.00

0.000 0.005 0.010 0.015 0.020
Time (h)

Te
mp

era
tur

e (
F)

serial
node=2
node=3



 50

 

Figure 4.5 Transient profiles of liquid composition of the heavy-key composition in the 
bottom product on the 15-trays column 

 

Figure 4.6 Transient profiles of bottom product rate on the 15-trays column 

 

295.0

296.0

297.0

298.0

299.0

300.0

0.000 0.005 0.010 0.015 0.020
Time (h)

B 
(lb

 m
ol/

h)

serial

node=2

node=3

0.83550

0.83600

0.83650

0.83700

0.83750

0.83800

0.000 0.005 0.010 0.015 0.020
Time (h)

XB
_H

K

serial

node=2

node=3



 51

 

Figure 4.7 Transient profiles of distillate product temperature on the 15-trays column 

 

Figure 4.8 Transient profiles of vapor composition of the light-key composition in the 
distillate product on the 15-trays column  

0.55500
0.55550
0.55600
0.55650
0.55700
0.55750

0.000 0.005 0.010 0.015 0.020
Time (h)

YD
_L

LK

serial
node=2
node=3

77.20
77.22
77.24
77.26
77.28
77.30
77.32

0.000 0.005 0.010 0.015 0.020
Time (h)

Te
mp

era
tur

e (
F)

serial
node=2
node=3



 52

 

Figure 4.9 Transient profiles of distillate product rate on the 15-trays column 

The average CPU time in parallel simulation is higher than the average 
CPU time in serial simulation. In other words, the former has lower speedup and lower 
efficiency.  The load imbalance is nearly zero. Table 4.5 shows the performances 
between serial and parallel simulation. The parallel CPU time is larger than the serial 
CPU time, because the computational time is smaller than communication time. 

Table 4.5 Comparison the performance between a serial simulation and a parallel 
simulation (two and three processors) on 15 trays and 5 components distillation. 

The performance Serial Parallel (nodes=2) Parallel (nodes=3) 
Average CPU time (seconds) 0.04405 0.14842 0.24374 

Speedup 1.00000 0.29679 0.18073 
Parallel efficiency 1.00000 0.14840 0.06024 
Load imbalance  0.00904 0.01100 

 

295.0

296.0
297.0

298.0
299.0

300.0

0.000 0.005 0.010 0.015 0.020
Time (h)

B 
(lb

 m
ol/

h)

serial
node=2
node=3



 53

Case III: Test performance 

Examine the performance of the multicomponent distillation simulation.  

Part I, The system is conducted in full data transfer for output. All 
solutions for monitoring were sent back to root processor. The large numbers of data 
increase as the numbers of tray increase. Comparison the CPU time between serial and 
parallel simulation was shown in Figure 4.10. With lower number of trays, the parallel 
computing time is larger than the serial one. With higher number of trays, serial 
computing time becomes longer than the two-nodes parallel time, but not for three-
nodes parallel time. Comparison the speedup of parallel simulation was shown in Figure 
4.11. Two nodes speedup is more than one when the number of trays is larger than one 
hundred.  On the other hand, the system with three-nodes, its speedup is less then one. 
Comparison the parallel efficiency was shown in Figure 4.12. Parallel efficiencies for 
parallel computing systems are much less than one. Two-nodes system has higher 
efficiency than the three-nodes system. 

Part II, The system is the partial data transfer for output. Only distillate 
and bottom solutions were sent back to root processor. The numbers of data are not 
increased as the number of trays increased. Comparison the CPU time between serial 
and parallel simulation was shown in Figure 4.13. With lower number of trays, serial time 
is faster than parallel time. On the other hand, with higher number of trays, parallel time 
is faster than serial time. The system with three-nodes, its parallel time is faster than that 
with two-nodes. Comparison the speedup of parallel simulation was shown in Figure 
4.14. The speedup of the two-nodes system is more than one when the number of trays 
in the column are higher than eighty. While that of the three-nodes system is more than 
one, when the number of trays in the column are higher than one hundred. However, the 
larger the number of trays, the three-nodes system becomes more powerful than the 
two-nodes system. Comparison of the parallel efficiencies were shown in Figure 4.15. 
Parallel efficiencies were less than one for both of parallel units. Two-nodes system is 
more efficient than the three-nodes system. 



 54

 

Figure 4.10 CPU time of full data transfer for output. 

Figure 4.11 Speedup of full data transfer for output. 

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

0 100 200 300 400 500
Tray

Ru
n t

im
e (

s)

serial
node=2
node=3

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

0 100 200 300 400 500
Tray

Sp
ee

du
p

serial
node=2
node=3



 55

  

Figure 4.12 Parallel efficiency of full data transfer for output. 

Figure 4.13 CPU time of partial data transfer for output. 

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

0 100 200 300 400 500
Tray

Pa
ral

lel
 ef

fic
ien

cy
serialnode=2node=3

0.00000
0.10000
0.20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000

0 50 100 150 200 250 300Tray

Ru
n t

im
e (

s)

serial
node=2
node=3



 56

 

Figure 4.14 Speedup of partial data transfer for output. 

Figure 4.15 Parallel efficiency of partial data transfer for output. 

0.00000

0.50000

1.00000

1.50000

2.00000

0 50 100 150 200 250 300
Tray

Sp
ee

du
p

serial
node=2
node=3

0.00000
0.20000

0.40000
0.60000
0.80000

1.00000
1.20000

0 50 100 150 200 250 300
Tray

Pa
ral

lel
 E

ffic
ien

cy

serialnode=2node=3



 57

 

Table 4.6 shows the load imbalance. This algorithm gives good load 
balance.  

Table 4.6 CPU time and load balance for the parallel runs on different numbers of trays. 

Trays Nodes maxCPU  avgCPU  avgmax CPUCPU −  Load imbalance 
2 0.149757 0.148415 0.001342 0.009042 

15 
3 0.246415 0.243735 0.002680 0.010996 
2 0.223933 0.222570 0.001363 0.006126 

60 
3 0.283441 0.280753 0.002688 0.009575 
2 0.31376 0.312443 0.001317 0.004215 

120 
3 0.351174 0.348916 0.002258 0.006472 
2 0.492588 0.491218 0.001370 0.002789 

240 
3 0.472761 0.468885 0.003876 0.008266 

Examine the accuracy of the solution of dynamic multicomponent 
distillation model, comparison of the percentage error of parallel dynamic responses of 
distillate and bottom products between two processors and three processors was 
shown in Figure 4.16 to Figure 4.21. It was observed that the error profiles of distillate 
product was higher than those of bottom product. When the number of trays is large, the 
two-nodes and three-nodes systems had the same trend of the error profiles. The errors 
on the bottom products were within the acceptable range. However, the errors on the 
distillate product were rather high, especially when the column containing the large 
number of trays. The reason of the large deviation was that the data was not updated 
often enough and the process was large. Therefore, the solution can move away much 
Further.   



 58

 

 Figure 4.16 Percentage error of transient profiles of bottom product temperature in 
multicomponent distillation 

 Figure 4.17 Percentage error of transient profiles of liquid composition of the heavy-key 
composition in the bottom product in multicomponent distillation  

 

0
0.002
0.004
0.006
0.008

0.01
0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (h)

% 
err

or
TB node=2 Tray=15
TB node=3 Tray=15
TB node=2 Tray=120
TB node=3 Tray=120
TB node=2 Tray=240
TB node=3 Tray=240

0
0.001
0.002
0.003
0.004
0.005
0.006

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (h)

% 
err

or

HK node=2 Tray=15
HK node=3 Tray=15
HK node=2 Tray=120
HK node=3 Tray=120
HK node=2 Tray=240
HK node=3 Tray=240



 59

 

  Figure 4.18 Percentage error of transient profiles of bottom product rate in 
multicomponent distillation 

 Figure 4.19 Percentage error of transient profiles of distillate product temperature in 
multicomponent distillation 

 

 

0

0.02

0.04

0.06

0.08

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (h)

% 
err

or
B node=2 Tray=15
B node=3 Tray=15
B node=2 Tray=120
B node=3 Tray=120
B node=2 Tray=240
B node=3 Tray=240

0
2
4
6
8

10
12

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (h)

% 
err

or

TD node=2 Tray=15
TD node=3 Tray=15
TD node=2 Tray=120
TD node=3 Tray=120
TD node=2 Tray=240
TD node=3 Tray=240



 60

 Figure 4.20 Percentage error of transient profiles vapor composition of the light-key 
composition in the distillate product in multicomponent distillation  

 Figure 4.21 Percentage error of transient profiles of bottom product rate in 
multicomponent distillation 

 

 

 

0
5

10
15
20
25
30

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (h)

% 
ab

so
lut

e e
rro

r

LLK node=2 Tray=15
LLK node=3 Tray=15
LLK node=2 Tray=120
LLK node=3 Tray=120
LLK node=2 Tray=240
LLK node=3 Tray=240

0
2
4
6
8

10
12
14

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (h)

% 
err

or

D node=2 Tray=15 D node=3 Tray=15D node=2 Tray=120 D node=3 Tray=120D node=2 Tray=240 D node=3 Tray=240



 61

Examine the runtime of the dynamic multicomponent distillation model, 
comparison of the full data transfer for output on two processors between computation 
time and communication time was shown in Figure 4.22.  

 Figure 4.22 Comparison the runtime of the full data transfer for output on two 
processors. 

0.00

20.00

40.00

60.00

80.00

100.00

0 1000 2000 3000 4000 5000 6000
The number of equations

Th
e r

un
 tim

e (
%)

Total Communication Computation



CHAPTER V 
 

CONCLUSIONS 
 

5.1 Dynamic Binary Distillation 

In case I, the dynamic binary distillation column model on distributed 
computing consumes more CPU time. It indicates that task was not large enough to 
employ parallel computation. The tasks were increased by adding the number of 
components. It was observed that more error was generated in the beginning of the 
computation compared with serial calculation.  However, both approaches converge to 
the same solution at the same time. The partition algorithm has minimum load 
imbalance. The overhead has affected on CPU time higher than on computation time. It 
indicates that the size of the problem is smaller than the parallel computation. 

5.2 Dynamic Multicomponent Distillation 

In case II, the parallel unit run for dynamic multicomponent distillation 
gives better performance than that for binary system, but task was still not large enough 
when the column having a small number of trays. In the multicomponent system, a new 
algorithm was used to find the solution. The simulation was more complicated than for 
the binary system. In this case study, the distillate solution was more deviate from the 
serial solution than the bottom product. The error also increases as the number of trays 
is increased. The parallel performance was better than the binary system. The partition 
algorithm gives good load balance. The small speedup indicates that the size of the 
problem was smaller than parallel computing. 

In case III, the problem was divided in two cases: the size of the problem 
and the size of the transfer data for output. The large size of the problem has good 
performance than the small size of problem. The error also increases as the size of 
equation is increased. The small size of the solution transfer for output show better 
performance than the large size of the solution transfer for output. The speedup of 



 63

maximum solution transfer for output gives performance nearly one. It indicated that, for 
the case of full data transfer for output, the serial simulation is the appropriate approach.  

These algorithms were not adequate, according to parallel efficiency 
since, for all case studies, parallel efficiencies were below than one.  The partition 
algorithm has good load balance. The algorithm of Murphree tray efficiency of 
multicomponent distillation was modified for parallel calculation. It decreased CPU time 
but gives accumulation error instead.  

5.3 Suggestion and Future Development 

This multicomponent distillation model was used the ideal equation of 
state. In the future, the nonideal equation of state (e.g. Generic – Redlich – Kwong 
(GRK), Soave – Redliche – Kwong (SRK), Peng – Robinson (PR) and others) may be 
applied. These nonideal equations of states require more computation since the 
equations are complicated. The multicomponent distillation model is open-loop system. 
Reflux rate and heat input to the reboiler are the manipulated variables. In this 
simulation, they are simply held constant. If the close-loop response is desired, the 
model can be changed to use reflux rate to hold a temperature or a composition in the 
top of the column and to use heat input to hold a temperature or a composition in the 
bottom of the column. There are two degrees of freedom, so two variables can be 
specified. This work used the BP method solving MESH equations. There are many 
algorithms to solve MESH equations. Instead of using Euler integration, Runge-Kutta 
integration can be used. 

 



REFERENCES 
 

1. Phil Merkey, Beowulf Introduction & Overview [Online], 1998, Available from:  
  http://dune.mcs.kent.edu/~farrell/equip/beowolf/intro.html [2001,  
  December 17] 

2. Secchi A.R ., Morari M., and Biscaia E.C., THE WAVE-FORM RELAXATION METHOD
   IN THE CONCURRENT DYNAMIC PROCESS SIMULATION, Computers 
  & Chemical Engineering Vol. 17, No. 7, July 1993, pp. 683-704. 

3. Mallya J.U., Zitney S.E., Choudhary S., and Stadtherr M.A., Parallel frontal solver for 
  large-scale process simulation and optimization, AICHE JOURNAL Vol. 
  43, No. 4, April 1997, pp. 1032-1040. 

4. Nabil A.J., Brice C., and  Costas K., A multirate parallel-modular algorithm for  
  dynamic process simulation using distributed memory multicomputers, 
  Computers and Chemical Engineering Vol. 23, 1999, pp. 733-761. 

5. Camarda K.V., and Stadtherr M.A., Matrix ordering strategies for process  
  engineering: graph partitioning algorithms for parallel computation,  
  Computers & Chemical Engineering Vol. 23, No. 8, August 1999, pp. 
  1063-1073. 

6. Borchardt J., Newton-Type decomposition methods in large-scale dynamic process 
  simulation, Computers & Chemical Engineering Vol. 25, No. 7-8, August 
  2001, pp. 951-961. 

7. Marakis J.G., Chamico J. Brenner G., and Durst F., Parallel ray tracing radiative heat 
  transfer – Application in a distributed computing environment,  
  International Journal of Numerical Methods for Heat & Fluid Flow Vol. 11, 
  No. 7, 2001, pp. 663-681. 



 65

8. Carlsson P., Distributed optimization with a two-dimensional drying model of a  
  board, built up by sapwood and heartwood, HOLZFORSCHUNG Vol. 55, 
  No. 4, 2001, pp. 426-432. 

9. Anido L., Santos J., Caeiro M. Rodriguez J., Femandez M.J., and Llamas M., Moving
   the business logic tier to the client. Cost-effective distributed computing 
  for the WWW, Software-Practice & Experience Vol. 31, No. 14, November 
  2001, pp. 1331-1350. 

10. Lalis S., and  Karipidis A., JaWS: An open market-based framework for distributed 
  computing over the Internet, Grid computing – Grid 2000, Proceedings, 
  2001, pp. 36-46. 

11. Henry Z. Kister, Distillation design , New York: McGraw-Hill Inc, 1992. 

12. W. L. Luyben, Process modeling simulation and control for chemical engineering,  
  New York: McGraw-Hill Book Company, 1974. 

13. J. M. Smith and H. C. Van Ness, Introduction to chemical engineering   
  thermodynamics, 4th Edition, New York,:McGraw-Hill Book Company, 
  1987. 

14. W. L. Luyben, Practical distillation control, New York: Van Nostrand Reinhold, 1992. 

15. H. El-Rewini and T. G. Lewis, Distributed and parallel computing, Greenwich:   
  Manning Publications Co., 1998. 

16. William Gropp, Ewing Lusk and Anthony Skjellum, Using MPI Portable Parallel  
  Programming with the message-Passing Interface, London: The MIT 
   Press, 1994 

17. Dennis Wright, Basic Programs for Chemical Engineers, New york: Van Nostrand 
  Reinhold, 1986. 

18. Cricket L., Jerry P., Russ J., Bryan B., and Adrian N., Managing Internet Information 
  Services, CA: O’Reilly & Associates, Inc., 1994. 



 66

19. W. Richard Stevens, UNIX Network Programming Volume 1, 2nd Edition, NJ: Prentice-
  Hall Interational, Inc., 1998. 

20. Ian Foster, Designing and Building Parallel Programs, USA: Addison-Wesley  
  Publishing Company, Inc., 1995. 

21. W. Richard Stevens, UNIX Network Programming, New Jersey: Prentice-Hall, Inc., 
  1990. 

22. Philip A. Schweitzer, editor, Handbook of Separation Techniques for Chemical  
  Engineers, USA: McGraw-Hill, Inc., 1979. 

23. Charles D. Holland and Athanasios I. Liapis, Computer Methods for Solving Dynamic 
  Separation Problems, USA: McGraw-Hill, Inc., 1983. 

24. S. Lakshmivarahan and Sudarshan K. Dhall, Analysis and Design of Parallel  
  Algorithms Arithmetic and Matrix Problems, Singapore: McGraw-Hill, 
   Inc., 1990. 

25. George Coulouris, Jean Dollimore and Tim Kindberg, Distributed Systems Concepts 
  and Design, 2nd Edition, USA: Addison-Wesley Publishing Company Inc., 
  1994. 

26. Perry R.H. and D. Green, editor, Perry’s Chemical Engineers’ Handbook, 6th Edition, 
  New York: McGraw-Hill Book Co., 1984. 

27. Warin Iamteerapaiboon. Dynamics Compartmental Model for Multicomponent  
  Distillation. Graduate School, Chulalongkorn University, 1994. 

28. Kallaya Klaithong, A Comparative Study of Thermodynamic Models for Dynamic 
  Simulation of Continuous Distillation, Graduate School, Chulalongkorn 
  University, 1994. 

29. Eric W. Weisstein, Percentage Error -- from MathWorld [Online], 1999, Available  
  from: http://mathworld.wolfram.com/PercentageError.html [2002,April 28] 
   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES



 68

APPENDIX A 
 

LINUX SETUP 
 

Linux Specifiction 
• Recommendation : Linux Slackware 7.1, Harddisk 240 MB, Memory 64 MB  
• Choose  install compiler (C, C++, and/or Fortran) , Network (telnet, ftp, rlogin) and 

Xwindow   

Setup Linux 
• Setup /etc/hosts add your hostname to list.  
• Setup path add "." to /etc/export file.  
• On  login check rlogin to another computer. If can't add file .rlogin to home directory.  

Comment 
• On Linux Redhat you must open service rlogin.  
• About network file system (NFS), It make comfortable to run MPI. But It uses many 

resource for networking.  



 69

APPENDIX B 
 

MPI INSTALLATION 

 

Installation 
• Copy mpich.tar.gz to /usr/local .  
• Extract mpich.tar.gz by command "tar -xvf mpich.tar.gz" or "tar -xzf mpich.tar.gz".  
• In directory “mpich”, use command "configure" or "./configure" and wait for a 

minutes. When stop, it create new file "./config.status".  
• When got file "config.status". Using command "make" or "make 

PREFIX=/usr/local/mpich install".  
• If no problem, Editing file “/usr/local/mpich/util/machines/machines.Linux” adds 

hostname.  
• Checking file “/etc/hosts”, “/etc/hosts.equiv” and “~(home directory)/.rshosts” have 

hostname in group.  

Compile & run 
• Before running copy executable program to each computer to run. if use NFS not 

copy it.  
• The C language uses command "mpicc" for compile and "mpirun" for run.  
• The Fortran 77 language uses command "mpif77" for compile and "mpirun" for run.  
• example : "mpicc cpi.c -o cpi", "mpif77 fpi.f -o fpi", "mpirun -np 2 cpi", "mpirun -np 4 

fpi" or "mpirun -np 3 fpi -machinesfile hostlist"  
• For Linux Redhat edits additional file “/etc/inetd.conf”.  

Sample Error 
• Checking command “rlogin”. If can not login then can not run.  
• Can running program, but show message “permission denied” or “file not found”. 

Checking each computer has “+x” on file permission.  
• Checking communication time between each computer. 



 70

 
APPENDIX C 

 
LIST OF PARALLEL BINARY DISTILLATION PROGRAM 

 
      PROGRAM MAIN 
      INCLUDE "MPIF.H" 
      DIMENSION X(20),Y(20),L(20),LO(20),M(20) 
 DIMENSION MX(20),MDOT(20),MXDOT(20) 
 REAL L,LO,M,MX,MDOT,MXDOT,MDO,MO,MBO,KCD,KCB 
      REAL Z 
      REAL BUFFER(100) 
      INTEGER BLOCK,START,ISTOP,MID,ED,ST 
 INTEGER MYID,MASTER,NUMPROCS,IERR,STAT   
     +(MPI_STATUS_SIZE) 
 EQUIL(XX)=ALPHA*XX/(1.+(ALPHA-1.)*XX) 
 DATA NT,NF,MDO,MBO,MO,RO,VO,F,BETA,ALPHA 
     +/20,10,100.,100.,10.,128.01,178.01,100.,0.1,2./ 
 DATA XB,X,XD 
     +/.02,.035,.05719,.08885,.1318,.18622,.24951, 
     +.31618,.37948,.43391,.47688,.51526,.56295,.61896,.68052, 
     +.74345,.80319,.85603,.89995,.93458,.96079,.98/ 
 DATA KCD,KCB,TAUD,TAUB,DELTA,TIME,TPRINT,ERINTD,ERINTB/ 
     +1000.,1000.,5.,1.25,.005,4*0./ 
      Z=0.55 
      MASTER=0 
      CALL MPI_INIT(IERR) 
      CALL MPI_COMM_RANK(MPI_COMM_WORLD,MYID,IERR) 
      CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NUMPROCS,IERR) 
          
      ST=MPI_WTIME() 
          
      BLOCK=NT/NUMPROCS 
      START=BLOCK*MYID+1 
      ISTOP=BLOCK*(MYID+1) 
      MID=10/BLOCK 
      IF(MYID.EQ.NUMPROCS-1)THEN 
        ISTOP=NT 
      END IF 
      WRITE(*,*) MYID,BLOCK,START,ISTOP,MID 
      COUNT=0 
      IF(MYID.EQ.MASTER)THEN 
   WRITE(6,1) Z,F 
1       FORMAT(7X,'Z= ',F10.5,' F = ',F10.2) 
      END IF 
 DO 3 N=START,ISTOP 
 M(N)=MO 
 MX(N)=M(N)*X(N) 
 LO(N)=RO+F 
 IF(N.GT.NF)THEN  
          LO(N)=RO 
      END IF 
3 CONTINUE 
 
      IF(MYID.EQ.MASTER)THEN 
   WRITE(6,2) 
2   FORMAT(6X,' TIME     XB     X10     XD       R       V') 
      END IF 
100 DO 20 N=START,ISTOP 
 Y(N)=EQUIL(X(N)) 
 L(N)=LO(N)+(M(N)-MO)/BETA 
20 CONTINUE 
      IF(MYID.EQ.MASTER)THEN 



 71

   YB=EQUIL(XB) 
   ERRB=.02-XB 
   V=VO-KCB *(ERRB+ERINTB/TAUB) 
        B=L(1)-V 
      END IF 
      CALL MPI_BCAST(B,1,MPI_REAL,MASTER,MPI_COMM_WORLD,IERR) 
      CALL MPI_BCAST(V,1,MPI_REAL,MASTER,MPI_COMM_WORLD,IERR) 
      IF(MYID.EQ.NUMPROCS-1)THEN 
        ERRD=.98-XD 
     R=RO+KCD *(ERRD+ERINTD/TAUD) 
   D=V-R 
      END IF 
        CALL MPI_BCAST(R,1,MPI_REAL,NUMPROCS-1,MPI_COMM_WORLD,IERR) 
        CALL MPI_BCAST(D,1,MPI_REAL,NUMPROCS-1,MPI_COMM_WORLD,IERR) 
 IF(R.LT.0.) GO TO 500 
 IF(V.LT.0.) GO TO 500 
 IF(D.LT.0.) GO TO 500 
 IF(B.LT.0.) GO TO 500 
      IF(MYID.NE.NUMPROCS-1)THEN 
        CALL MPI_SEND(Y(ISTOP),1,MPI_REAL,MYID+1,0, 
     +  MPI_COMM_WORLD,IERR) 
      END IF 
      IF(MYID.NE.MASTER)THEN 
        CALL MPI_RECV(Y(START-1),1,MPI_REAL,MYID-1,0, 
     +  MPI_COMM_WORLD,STAT,IERR) 
        BUFFER(1)=L(START) 
        BUFFER(2)=X(START) 
        CALL MPI_SEND(BUFFER,2,MPI_REAL,MYID-1,1, 
     +  MPI_COMM_WORLD,IERR) 
      END IF 
      IF(MYID.NE.NUMPROCS-1)THEN 
        CALL MPI_RECV(BUFFER,2,MPI_REAL,MYID+1,1, 
     +  MPI_COMM_WORLD,STAT,IERR) 
        L(ISTOP+1)=BUFFER(1) 
        X(ISTOP+1)=BUFFER(2) 
      END IF 
      IF(MYID.EQ.MASTER)THEN 
   XBDOT=(L(1)*X(1)-V*YB-B*XB)/MBO 
   MDOT(1)=L(2)-L(1) 
   MXDOT(1)=V*(YB-Y(1))+L(2)*X(2)- L(1)*X(1) 
      END IF 
      IF(MYID.EQ.MASTER)THEN 
        ST=2 
      ELSE 
        ST=START 
      END IF 
      IF(MYID.EQ.NUMPROCS-1)THEN 
        ED=NT-1 
      ELSE 
        ED=ISTOP 
      END IF 
 DO 30 N=ST,ED 
 MDOT(N)=L(N+1)- L(N) 
 MXDOT(N)=V*(Y(N-1)-Y(N))+ L(N+1)*X(N+1)- L(N)*X(N) 
      IF(N.EQ.NF)THEN 
   MDOT(N)=MDOT(N)+F 
        MXDOT(N)=MXDOT(N)+F*Z 
      END IF 
30 CONTINUE 
      IF(MYID.EQ.NUMPROCS-1)THEN 
   MDOT(NT)=R-L(NT) 
   MXDOT(NT)=V*(Y(NT-1)-Y(NT))+R*XD-L(NT)*X(NT) 
   XDDOT=V*(Y(NT)-XD)/MDO 
      END IF 
 IF(TIME.LT.TPRINT) GO TO 50 
      CALL MPI_BCAST(X(10),1,MPI_REAL,MID, 
     +     MPI_COMM_WORLD,IERR) 
      CALL MPI_BCAST(XD,1,MPI_REAL,NUMPROCS-1, 
     +     MPI_COMM_WORLD,IERR) 



 72

      IF(MYID.EQ.MASTER)THEN 
   WRITE(6,41) TIME,XB,X(5),X(10),XD,R,V 
41   FORMAT(7X,F5.1,4F9.5,2F9.2) 
      END IF 
 TPRINT=TPRINT+.5 
50 CONTINUE 
 TIME=TIME+DELTA 
      IF(MYID.EQ.MASTER)THEN 
   XB=XB+DELTA*XBDOT 
        ERINTB=ERINTB+ERRB*DELTA 
      END IF 
      SUM=0 
 DO 60 N=START,ISTOP 
 M(N)=M(N)+MDOT(N)*DELTA 
 MX(N)=MX(N)+MXDOT(N)*DELTA 
 X(N)=MX(N)/M(N) 
 IF(X(N).LT.0.) GO TO 500 
 IF(X(N).GT.1.) GO TO 500 
60 CONTINUE 
      IF(MYID.EQ.NUMPROCS-1)THEN 
   XD=XD+XDDOT*DELTA 
   ERINTD=ERINTD+ERRD*DELTA 
      END IF 
 IF(TIME.LE.100.) GO TO 100 
        CALL MPI_FINALIZE(IERR) 
 
        ED=MPI_WTIME() 
        WRITE(*,*) MYID,ED,ST,ED-ST 
 
 STOP 
 500 WRITE(6,501) R,V,D,B 
 501 FORMAT(7X,'LEVEL TOO LOW OR ',F10.2,F10.2,F10.2,F10.2) 
 WRITE(*,*) 
       

CALL MPI_FINALIZE(IERR) 
 STOP 
 END 



 73

APPENDIX D 
 

LIST OF PARALLEL MULTICOMPONENT DISTILLATION PROGRAM 
 
Input initial condition program by Active Server Pages (ASP) 

• Program requirement 

This ASP web page requires IIS version 4.0 or PWS or ASP host. 

• List of input initial condition program 
<%Function subs(A)%> 
<sub><%=A%></sub> 
<%end function%> 
 
<%Function sup(A)%> 
<sup><%=A%></sup> 
<%end function%> 
 
<% 
dim 
Name(20),DENS(20),MW(20),HVAP(20),BPT(20),HCAPV(20),HCAPL(20),VP1(20)
,VP2(20),T1(20),T2(20) 
dim XF(20),YF(20) 
dim T0(200),LO(200),XO(1000) 
NC=request.form("NC") 
NT=request.form("NT") 
NF=request.form("NF") 
WHS=request.form("WHS") 
WHR=request.form("WHR") 
DS=request.form("DS") 
DR=request.form("DR") 
WLS=request.form("WLS") 
WLR=request.form("WLR") 
MVB=request.form("MVB") 
MVD=request.form("MVD") 
FL=request.form("FL") 
TFL=request.form("TFL") 
FV=request.form("FV") 
TFV=request.form("TFV") 
PD=request.form("PD") 
PB=request.form("PB") 
QR=request.form("QR") 
R=request.form("R") 
DV=request.form("DV") 
EFF=request.form("EFF") 
STEP=request.form("STEP") 
STOP1=request.form("STOP1") 
DELTA=request.form("DELTA") 
Data1=request.form("Data1") 
for i=1 to NC 
Name(i)=request.form("Name" & i) 
MW(i)=request.form("MW" & i) 
DENS(i)=request.form("DENS" & i) 
HVAP(i)=request.form("HVAP" & i) 
BPT(i)=request.form("BPT" & i) 
HCAPV(i)=request.form("HCAPV" & i) 
HCAPL(i)=request.form("HCAPL" & i) 
VP1(i)=request.form("VP1" & i) 
VP2(i)=request.form("VP2" & i) 



 74

 
T1(i)=request.form("T1" & i) 
T2(i)=request.form("T2" & i) 
XF(i)=request.form("XF" & i) 
YF(i)=request.form("YF" & i) 
next 
for j=0 to NT+1 
T0(j)=request.form("T0" & j) 
LO(j)=request.form("LO" & j) 
for i=1 to NC 
XO(j*NC+i)=request.form("XO" & (j*NC+i)) 
next 
next 
%> 
<html> 
<head><title>Distillation Model</title></head> 
<script language="Javascript"> 
function gencode() { 
  alert('Gen code'); 
  f1=form1.data1 
  f1.value="" 
  f1.value+=form1.NC.value+'\n' 
  f1.value+=form1.NT.value+'\n' 
 f1.value+=form1.NT.value+','+form1.NF.value+','+form1.WHS.value+','+ 
form1.WHR.value+','+form1.DS.value+','+form1.DR.value+','+form1.WLS.v
alue+','+form1.WLR.value+','+form1.MVB.value+','+form1.MVD.value+'\ 
n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.Name<%=i%>.value+',' 
  <%next%>  f1.value+=form1.Name<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.HVAP<%=i%>.value+',' 
  <%next%>  f1.value+=form1.HVAP<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.HCAPV<%=i%>.value+',' 
  <%next%>  f1.value+=form1.HCAPV<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.HCAPL<%=i%>.value+',' 
  <%next%>  f1.value+=form1.HCAPL<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.VP1<%=i%>.value+',' 
  <%next%>  f1.value+=form1.VP1<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.T1<%=i%>.value+',' 
  <%next%>  f1.value+=form1.T1<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.VP2<%=i%>.value+',' 
  <%next%>  f1.value+=form1.VP2<%=NC%>.value+'\n' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.T2<%=i%>.value+',' 
  <%next%>  f1.value+=form1.T2<%=NC%>.value+'\n' 
  f1.value+=form1.TFL.value+','+form1.FL.value+',' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.XF<%=i%>.value+',' 
  <%next%>  f1.value+=form1.XF<%=NC%>.value+'\n' 
  f1.value+=form1.TFV.value+','+form1.FV.value+',' 
  <%For i=1 to NC-1%> 
  f1.value+=form1.YF<%=i%>.value+',' 
  <%next%>  f1.value+=form1.YF<%=NC%>.value+'\n' 
  f1.value+=form1.PD.value+','+form1.PB.value+','+form1.QR.value+',' 
+form1.R.value+','+form1.DV.value+','+form1.EFF.value+'\n' 
  <%For j=0 to NT%> 
  f1.value+=form1.T0<%=j%>.value+',' 
  <%next%>  f1.value+=form1.T0<%=(NT+1)%>.value+'\n' 
  <%For j=0 to NT%> 
  f1.value+=form1.LO<%=j%>.value+',' 
  <%next%>  f1.value+=form1.LO<%=(NT+1)%>.value+'\n' 
  f1.value+=(form1.NC.value-(-2))+'\n' 
  <%For i=1 to NC-1%> 



 75

  f1.value+=form1.XO<%=i%>.value+',' 
  <%next%>  f1.value+=form1.XO<%=NC%>.value+',\n' 
  <%For i=1 to NC%> 
  <%For j=1 to NT%> 
  f1.value+=form1.XO<%=j*NC+i%>.value+',' 
  <%next%>  f1.value+='\n'  
  <%next%> 
  <%For i=1 to NC-1%> 
  f1.value+=form1.XO<%=(NT+1)*NC+i%>.value+',' 
  <%next%>  f1.value+=form1.XO<%=(NT+1)*NC+NC%>.value+'\n' 
  <%For i=1 to NC%> 
  f1.value+=form1.MW<%=i%>.value+'\n' 
  <%next%> 
  <%For i=1 to NC%> 
  f1.value+=form1.DENS<%=i%>.value+'\n' 
  <%next%> 
  <%For i=1 to NC%> 
  f1.value+=form1.BPT<%=i%>.value+'\n' 
  <%next%> 
  f1.value+=form1.STEP.value+'\n' 
  f1.value+=form1.STOP1.value+'\n' 
  f1.value+=form1.DELTA.value+'\n' 
  f1.value+='0.\n0.\n822.\n' 
} 
function clearcode() { 
  f1=form1.data1 
  f1.value="" 
} 
</script> 
<style type="text/css"> 
@import url(main.css); 
select, input {border-RIGHT: black 1px double; border-TOP: black 1px 
double; FONT-SIZE: 8pt; border-LEFT: black 1px double; border-BOTTOM: 
black 1px double} 
</style> 
<body bgcolor=#FFFFFF leftmargin="0" topmargin="0"> 
<div align="center"><table width="700"><tr><td> 
<%if len(request.form("data1"))=0 then 
' check data in textarea%> 
 
<table border="0" width="100%"> 
<form action="gencode2.asp" method="post" name="form1"> 
<tr> 
 <td><font size="2"> 
 Number of Tray 
 </font></td> 
 <td><font size="2"> 
 <input type="text" name="NT" value="<%=NT%>"> 
 </font></td> 
 <td><font size="2"> 
 Number of component 
 </font></td> 
 <td><font size="2"> 
 <input type="text" name="NC" value="<%=NC%>"> 
 </font></td> 
</tr> 
<%if len(NC)>0 and len(NT)>0 then 
'check number of component and tray%> 
<tr> 
 <td><font size="2"> 
 Murphree vapor-phase tray efficiency, EFF 
 </font></td> 
 <td><font size="2"> 
 <input type="text" name="EFF" value="<%=EFF%>"> 
 </font></td> 
 <td><font size="2"> 
 Feed Tray 
 </font></td> 
 <td><font size="2"> 



 76

 <input type="text" name="NF" value="<%=NF%>"> 
 </font></td> 
</tr> 
<tr> 
 <td><font size="2"> 
 &Delta;T,DELTA (Hours) 
 </font></td> 
 <td><font size="2"> 
 <input type="text" name="DELTA" value="<%=DELTA%>"> 
 </font></td> 
 <td><font size="2"> 
 STEP show result,STEP (Hours) 
 </font></td> 
 <td><font size="2"> 
 <input type="text" name="STEP" value="<%=STEP%>"> 
 </font></td> 
</tr> 
<tr> 
 <td><font size="2"> 
 End time step,STOP (Hours) 
 </font></td> 
 <td><font size="2"> 
 <input type="text" name="STOP1" value="<%=STOP1%>"> 
 </font></td> 
 <td><font size="2"> 
 &nbsp; 
 </font></td> 
 <td><font size="2"> 
 &nbsp; 
 </font></td> 
</tr> 
 
 
<tr><td colspan="4"> 
<table border="0" width="100%"> 
<tr> 
<td rowspan="2"><div align="center"><font size="2"> 
&nbsp; 
</font></div></td> 
<td rowspan="2"><div align="center"><font size="2"> 
Flow rate,F <br>(lb mol/h) 
</font></div></td> 
<td rowspan="2"><div align="center"><font size="2"> 
temperature,TF <br>(lb mol/h) 
</font></div></td> 
<td colspan="<%=NC%>"><div align="center"><font size="2"> 
Composition, XF or YF (m.f.) 
</font></div></td> 
</tr> 
<tr> 
<%For i=1 to NC%> 
<td><div align="center"><font size="2"> 
<%=i%> 
</font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><div align="center"><font size="2"> 
Liquid feed 
</font></div></td> 
<td><div align="center"><font size="2"> 
<input type="text" name="FL" value="<%=FL%>" size="10"> 
</font></div></td> 
<td><div align="center"><font size="2"> 
<input type="text" name="TFL" value="<%=TFL%>" size="10"> 
</font></div></td> 
<%For i=1 to NC%> 
<td><div align="center"><font size="2"> 
<input type="text" name="XF<%=i%>" value="<%=XF(i)%>" size="10"> 



 77

</font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><div align="center"><font size="2"> 
Vapor feed 
</font></div></td> 
<td><div align="center"><font size="2"> 
<input type="text" name="FV" value="<%=FV%>" size="10"> 
</font></div></td> 
<td><div align="center"><font size="2"> 
<input type="text" name="TFV" value="<%=TFV%>" size="10"> 
</font></div></td> 
<%For i=1 to NC%> 
<td><div align="center"><font size="2"> 
<input type="text" name="YF<%=i%>" value="<%=YF(i)%>" size="10"> 
</font></div></td> 
<%next%> 
</tr> 
</table> 
</td></tr> 
 
<tr> 
 <td colspan="2"><font size="2"> 
 &nbsp; 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"><b> 
 Stripping section 
 </b</font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"><b> 
 Rectifying section 
 </b></font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Weir height, WH (in)  
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="WHS" value="<%=WHS%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="WHR" value="<%=WHR%>"> 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Weir length, WL (in)  
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="WLS" value="<%=WLS%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="WLR" value="<%=WLR%>"> 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Column diameter, D (in)  
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="DS" value="<%=DS%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="DR" value="<%=DR%>"> 
 </font></div></td> 
</tr> 
 
<tr> <td colspan="4"><font size="2"> &nbsp; </font></td></tr> 
 



 78

<tr> 
 <td colspan="2"><font size="2"> 
 &nbsp; 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"><b> 
 Column base 
 </b</font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"><b> 
 Reflux drum 
 </b></font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Volumetric holdup, MV (ft<%sup("3")%>) 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="MVB" value="<%=MVB%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="MVD" value="<%=MVD%>"> 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Pressure, P (psia) 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="PB" value="<%=PB%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="PD" value="<%=PD%>"> 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Product flow rate,D (lb mol/h) 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="DL" value="<%=DL%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="DV" value="<%=DV%>"> 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Reboiler heat input, QR (10<%sup("6")%> Btu/h) 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 <input type="text" name="QR" value="<%=QR%>"> 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 &nbsp; 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="2"><font size="2"> 
 Reflux flow rate, R (lb mol/h) 
 </font></td> 
 <td bgcolor="#CCFF99"><div align="center"><font size="2"> 
 &nbsp; 
 </font></div></td> 
 <td bgcolor="#99CCFF"><div align="center"><font size="2"> 
 <input type="text" name="R" value="<%=R%>"> 
 </font></div></td> 
</tr> 
 
<tr><td colspan="4"> 
<table border="0" width="100%"> 



 79

<tr> 
<td><font size="2"> 
&nbsp; 
</font></td> 
 <td colspan="<%=NC%>" bgcolor="#99FFCC"><div align="center"><font 
size="2"><b> 
  Component 
 </b></font></div></td> 
</tr> 
<tr> 
<td><font size="2"> 
&nbsp; 
</font></td> 
<%For i=1 to NC%> 
 <td bgcolor="#99FF99"><div align="center"><font size="2"><b> 
  <%=i%> 
 </b></font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Component Name 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="Name<%=i%>" value="<%=Name(i)%>"  
size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Molecular weight, MW (lb<%subs("m")%>/lb mol) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="MW<%=i%>" value="<%=MW(i)%>" size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Density, DENS 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="DENS<%=i%>" value="<%=DENS(i)%>"  
size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Heat of vaporization at normal boiling point, HVAP 
(Btu/lb<%subs("m")%>) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="HVAP<%=i%>" value="<%=HVAP(i)%>"  
size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Boiling point temperature, BPT (<%sup("o")%>F) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 



 80

 <input type="text" name="BPT<%=i%>" value="<%=BPT(i)%>" size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Heat capacity of vapor, HCAPV (Btu/lb<%subs("m")%> <%sup("o")%>F) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="HCAPV<%=i%>" value="<%=HCAPV(i)%>" 
size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Heat capacity of liquid, HCAPL (Btu/lb<%subs("m")%> <%sup("o")%>F) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="HCAPL<%=i%>" value="<%=HCAPL(i)%>" 
size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Vapor pressure, VP1 (psia) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="VP1<%=i%>" value="<%=VP1(i)%>" size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
at temperature, T1 (<%sup("o")%>F) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="T1<%=i%>" value="<%=T1(i)%>" size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
Vapor pressure, VP2 (psia) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="VP2<%=i%>" value="<%=VP2(i)%>" size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
<tr> 
<td><font size="2"> 
at temperature, T2 (<%sup("o")%>F) 
</font></td> 
<%For i=1 to NC%> 
 <td><div align="center"><font size="2"> 
 <input type="text" name="T2<%=i%>" value="<%=T2(i)%>" size="10"> 
 </font></div></td> 
<%next%> 
</tr> 
</table> 
</td></tr> 
 



 81

<tr><td colspan="4" bgcolor="#CCFF99"><font size="2"><b> 
<center>Initial condition</center> 
</b></font></td></tr> 
<tr><td colspan="4"> 
<table border="0" width="100%"> 
<tr bgcolor="#99CCFF"> 
<td rowspan="2"><div align="center"><font size="2"><b> 
N 
</b></font></div></td> 
<td rowspan="2"><div align="center"><font size="2"><b> 
Temperature,T <br>(<%sup("o")%>F) 
</b></font></div></td> 
<td rowspan="2"><div align="center"><font size="2"><b> 
Liquid flow rate, LO <br>(lb mol/h) 
</b></font></div></td> 
<td colspan="<%=NC%>"><div align="center"><font size="2"><b> 
Liquid composition, X (m.f.) 
</b></font></div></td> 
</tr> 
<tr bgcolor="#99CCFF"> 
<%For i=1 to NC%> 
<td><div align="center"><font size="2"><b> 
<%=i%> 
</b></font></div></td> 
<%next%> 
</tr> 
<%For J=0 to NT+1%> 
<tr> 
<td><div align="center"><font size="2"><b> 
<%=J%> 
</b></font></div></td> 
<td><div align="center"><font size="2"><b> 
<input type="text" name="T0<%=J%>" value="<%=T0(j)%>" size="10"> 
</b></font></div></td> 
<td><div align="center"><font size="2"><b> 
<input type="text" name="LO<%=J%>" value="<%=LO(j)%>" size="10"> 
</b></font></div></td> 
<%For i=1 to NC%> 
<td><div align="center"><font size="2"><b> 
<input type="text" name="XO<%=(J*NC+i)%>" value="<%=XO(j*NC+i)%>" 
size="10"> 
</b></font></div></td> 
<%next%> 
</tr> 
<%next%> 
</table> 
</td></tr> 
<tr> 
 <td colspan="4"><div align="center"><font size="2"> 
 <input type="button" value="TRANSFER DATA" onclick="gencode()"> 
 <input type="button" value="CLEAR DATA" onclick="clearcode()"> 
 </font></div></td> 
</tr> 
<tr> 
 <td colspan="4"><div align="center"><font size="2"> 
 <textarea cols="160" rows="10" name="data1"><%=Data1%></textarea> 
 </font></div></td> 
</tr> 
<%end if%> 
<tr> <td colspan="4"><font size="2"> &nbsp; </font></td></tr> 
<tr> 
 <td colspan="4"><div align="center"><font size="2"> 
 <input type="submit" value="Generate code"> 
 <input type="reset" value="Clear"> 
 </font></div></td> 
</tr> 
</form> 
</table> 
<%else%> 



 82

 <textarea cols="160" rows="40" name="data1"><%=Data1%></textarea> 
<%end if%> 
</td></tr></table> 
</div> 
</body> 
</html> 
 

• Demo program 
1. Start input number of tray and number of component in input box. And click 

“generate code” button. 

Figure D.1 First page input initial condition program 
2. Input column condition, component physical properties and initial steady state tray 

condition. And click “TRANSFER DATA” button. All initial condition will show the 
initial condition in below rectangle box. Copy the data to file. 

Figure D.2 Second page input initial condition program  



 83

 
 

Figure D.3 The output initial condition 
Generate parallel program by PASCAL language 

• Program requirement 

DOS 6.0., initial condition file and file “P8-1.txt” 
• List of generate parallel program 
program parallel_gencode; 
var f1,f2,st : string; 
    t1,t2 : text; 
    nc,nt,i,j : integer; 
begin 
    write('input file output: '); readln(f1); 
    assign(t1,f1); 
    rewrite(t1); 
    write('input file input: '); readln(f2); 
    assign(t2,f2); 
    reset(t2); 
    writeln(t1,'C SIMPLE MODEL on MPI'); 
    writeln(t1,'        program main'); 
    writeln(t1,'        include "mpif.h"'); 
    writeln(t1,'        real buffer(100)'); 
    writeln(t1,'        integer block,start,istop,done,count(3)'); 
    writeln(t1,'        double precision st,ed'); 

writeln(t1,'        integer myid,master,numprocs,ierr,stat 
(MPI_STATUS_SIZE)'); 
    writeln(t1,'        REAL MW,LO,MVB,MVD,MWA,MV,LV,M,L,MB,MD'); 
    writeln(t1,' CHARACTER*6 NAME'); 
    readln(t2,nc); 
    readln(t2,nt); 

writeln(t1,' COMMON NC,MW(',nc,'),DENS(',nc,'),C1(',nc,'),C2 
(',nc,'),C3(',nc,'),'); 
    writeln(t1,'     + BPT(',nc,'),AVP(',nc,'),BVP(',nc,')'); 

writeln(t1,' DIMENSION LV(',nt,'),L(',nt,'),P(',nt,'),XF 
',nc,'),YF(',nc,'),DXD(',nc,'),YAV(',nc,'),'); 

writeln(t1,'     + YY(',nc,'),HL(',nt,'),HV(',nt,'),V(',nt,'),DM 
(',nt,'),DXM(',nt,',',nc 
    ,'),XM(',nt,',',nc,'),DXB(',nc,')'); 

writeln(t1,' DIMENSION NAME(',nc,'),T(',nt,'),XB(',nc,'),X 
(',nt,',',nc,'),Y(',nt,',',nc,'),LO(',nt,')'); 

writeln(t1,'     + ,XD(',nc,'),YB(',nc,'),YD(',nc,'),XX 
(',nc,'),MV(',nt,'),M(',nt,'),HCAPV(',nc,'),HCAPL(',nc,')'); 



 84

writeln(t1,'     +  ,VP1(',nc,'),VP2(',nc,'),T1(',nc,'),T2 
(',nc,'),HVAP(',nc,')'); 
    writeln(t1,' DATA NT,NF,WHS,WHR,DS,DR,WLS,WLR,MVB,MVD/'); 
    readln(t2,st); 
    writeln(t1,'     + ',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA NAME/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA HVAP/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA HCAPV/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA HCAPL/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA VP1/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA T1/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA VP2/',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA T2/',st,'/'); 
    writeln(t1,' DATA TFL,FL,XF/'); 
    readln(t2,st); 
    writeln(t1,'     + ',st,'/'); 
    writeln(t1,' DATA TFV,FV,YF/'); 
    readln(t2,st); 
    writeln(t1,'     +  ',st,'/'); 
    readln(t2,st); 
    writeln(t1,' DATA PD,PB,QR,R,DV,EFF/',st,'/'); 
    writeln(t1,' DATA TB,T,TD/'); 
    readln(t2,st); 
    writeln(t1,'     +  ',st,'/'); 
    writeln(t1,' DATA LO/'); 
    readln(t2,st); 
    writeln(t1,'     +  ',st,'/'); 
    writeln(t1,' DATA XB,X,XD/'); 
    readln(t2,j); 
    for i:=1 to j do 
    begin 
    readln(t2,st); 
    writeln(t1,'     +  ',st); 
    end; 
    readln(t2,st); 
    writeln(t1,'     +  ',st,'/'); 
    writeln(t1,' NC=',nc); 
    for i:=1 to nc do 
    begin 
    readln(t2,st); 
    writeln(t1,' MW(',i,')=',st); 
    end; 
    for i:=1 to nc do 
    begin 
    readln(t2,st); 
    writeln(t1,' DENS(',i,')=',st); 
    end; 
    for i:=1 to nc do 
    begin 
    readln(t2,st); 
    writeln(t1,' BPT(',i,')=',st); 
    end; 
    readln(t2,st); 
    writeln(t1,' STEP=',st); {'Step to show output'} 
    readln(t2,st); 
    writeln(t1,' STOP1=',st); {'Stop loop'} 
    readln(t2,st); 
    writeln(t1,' DELTA=',st); {'step time'} 
    readln(t2,st); 
    writeln(t1,' TIME=',st); {'default =0'} 
    readln(t2,st); 



 85

    writeln(t1,' TPRINT=',st); {'default=0'} 
    readln(t2,st); 
    writeln(t1,' V(NF)=',st); {'default=822'} 
 
    close(t2); 
    assign(t2,'P8-1.txt'); 
    reset(t2); 
    while not(eof(t2)) do 
    begin 
    readln(t2,st); 
    writeln(t1,st); 
    end; 
    close(t1); 
    close(t2); 
end. 

• List of file “P8-1.txt” 
        master=0 
        done=0 
        count(1)=0 
        count(2)=0 
        count(3)=0 
         
C       MPI Initial 
 
        call MPI_INIT(ierr)      
        call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr) 
        call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr) 
        st=MPI_WTIME() 
C       INITIAL CONDITION 
 
        if(myid.eq.master)then 
 WRITE(6,1) 
1 FORMAT (' NT NF NC WHS WHR DS DR WLS WLR MVB MVD 
     + ') 
 WRITE(6,3) NT,NF,NC,WHS,WHR,DS,DR,WLS,WLR,MVB,MVD 
3 FORMAT(1X,3I3,1X,8F6.2) 
 WRITE(6,*) 'NAME ','MW ','DENS ','HVAP ','BPT ' 
     + ,'HCAPV ','HCAPL ','VP1 ','T1 ','VP2 ','T2 ' 
 DO 5 J=1,NC 
 WRITE(6,4)NAME(J),MW(J),DENS(J),HVAP(J),BPT(J),HCAPV(J), 
     + HCAPL(J),VP1(J),T1(J),VP2(J),T2(J) 
4 FORMAT(1X,A6,4F7.2,2F7.3,4F7.1) 
5 CONTINUE 
 WRITE(6,*) 'FL ','TFL ','XF1 ','XF2 ','XF3 ','XF4 ' 
     + ,'XF5' 
 WRITE(6,7) FL,TFL,(XF(J),J=1,NC) 
7 FORMAT(1X,2F10.0,5E10.2) 
 WRITE(6,*) 'FV ','TFV ','YF1 ','YF2 ','YF3 ','YF4 ' 
     + ,'YF5' 
 WRITE(6,7) FV,TFV,(YF(J),J=1,NC) 
 WRITE(6,*) 'PD ','PB ','QR ','R ','DV ','EFF ' 
 WRITE(6,9) PD,PB,QR,R,DV,EFF 
9 FORMAT(1X,10F8.2) 
c READ(*,*) II 
 WRITE(6,10) 
10 FORMAT(4X,'N   TEMP   L   X1   X2   X3   X4   X5') 
 BLANK=0. 
 WRITE(6,11)TB,BLANK,(XB(J),J=1,NC) 
11 FORMAT(5X,2F8.2,5E10.3) 
 DO 12 N=1,NT 
12 WRITE(6,15)N,T(N),LO(N),(X(N,J),J=1,NC) 
15 FORMAT(1X,I3,1X,2F8.2,5E10.3) 
 WRITE(6,11 )TD,R,(XD(J),J=1,NC) 
 WRITE(6,16) DELTA 
16 FORMAT(1X,' DELTA = ',F8.5) 
        end if 
 
 DO 19 J=1,NC 



 86

 AVP(J)=(T1(J)+460.)*(T2(J)+460.)*ALOG(VP2(J)/VP1(J))/(T1(J)-
T2(J)) 
 BVP(J)=ALOG(VP2(J))-AVP(J)/(T2(J)+460.) 
 C2(J)=HCAPV(J)*MW(J) 
 C3(J)=HCAPL(J)*MW(J) 
 C1(J)=HVAP(J)*MW(J)+(C3(J)-C2(J))*BPT(J) 
C WRITE(*,*) AVP(J),BVP(J),C1(J),C2(J),C3(J) 
 19 CONTINUE 
C READ(*,*) II 
 CALL ENTH(TFL,XF,YF,HLF,HVF) 
 
C       CALCULATE INITIAL HOLDUP 
 
        CALL MWDENS(TB,XB,MWA,DENSA) 
        MB = MVB*DENSA/MWA 
 DO 20 N=1,NT 
 DO 21 J=1,NC 
21 XX(J) = X(N,J) 
 CALL MWDENS(T(N),XX,MWA,DENSA) 
 LV(N) = LO(N) * MWA/DENSA 
 L(N) = LO(N) 
 IF(N.GE.NF)THEN 
   HFOW = (LV(N)/(999.*WLR))**.66667 
   MV(N) = (HFOW+WHR/12.)*3.1416*DR*DR/(4.*144.) 
 ELSE 
   HFOW = (LV(N)/(999.*WLS))**.66667 
   MV(N) = (HFOW+WHS/12.)*3.1416*DS*DS/(4.*144.) 
 END IF 
 M(N) = MV(N)*DENSA/MWA 
 DO 31 J=1,NC 
 XM(N,J) = M(N)*X(N,J) 
31 CONTINUE 
 
C       CALCULATE PRESSURE PROFILE 
 
 P(N)=(PB-(N*(PB-PD))/NT) 
20 CONTINUE 
 CALL MWDENS(TD,XD,MWA,DENSA) 
 MD=MVD*DENSA/MWA 
 
C       MAIN LOOP FOR EACH TIME STEP 
 
        master=myid 
 
100 CONTINUE 
        if(done.gt.0)then 
        block=NT/numprocs 
        start=block*myid+1 
        istop=block*(myid+1) 
        if(myid.eq.numprocs-1) istop=NT 
        done=done+1 
c        write(*,*) myid,done,block,start,istop 
        else 
        start=1 
        istop=NT 
        done=1 
c        write(*,*) myid,done,block,start,istop 
        end if 
c        if(myid.eq.0) read(*,*) ii 
        if(myid.eq.master)then 
 CALL BUBPT(TB,XB,YB,PB) 
 CALL ENTH(TB,XB,YB,HLB,HVB) 
        end if 
 
 DO 110 N = start,istop 
 DO 111 J = 1,NC 
111 XX(J)=X(N,J) 
 CALL BUBPT(T(N),XX,YY,P(N)) 
 DO 106 J=1,NC 



 87

 IF(N.EQ.1)THEN 
   Y(N,J)=YB(J)+EFF*(YY(J)-YB(J)) 
 ELSE IF(N.EQ.NF+1)THEN 
   YAV(J)=(YF(J)*FV+Y(N-1,J)*V(N-1))/(V(N-1)+FV) 
   Y(N,J)=(YY(J)-YAV(J))*EFF+YAV(J) 
 ELSE 
   Y(N,J) =(YY(J)-Y(N-1,J))*EFF+Y(N-1,J) 
 END IF 
106 YY(J)=Y(N,J) 
 CALL ENTH(T(N),XX,YY,HL(N),HV(N)) 
110 CONTINUE 
        if(myid.eq.numprocs-1 .or. done.eq.0)then 
 CALL BUBPT(TD,XD,YD,PD) 
 CALL ENTH(TD,XD,YD,HLD,HVD) 
        end if 
 
C       CALCULATE VAPOR RATE 
        if(myid.eq.master)then 
 VB = (QR*1000000.-L(1)*(HLB-HL(1)))/(HVB-HLB) 
C WRITE(*,*) VB,QR,L(1),HLB,HL(1),HVB 
 B = L(1)-VB 
 IF (B .LT. 0.) STOP 
        end if 
 DO 120 N = start,istop 
 IF(N.EQ.1)THEN 
   V(N) = (HL(N+1)*L(N+1)+HVB*VB-HL(N)*L(N))/HV(N) 
 ELSE IF(N.EQ.NF)THEN 
   V(N)=(HL(N+1)*L(N+1)+HV(N-1)*V(N-1)-HL(N)*L(N)+HLF*FL) 
     +   /HV(N) 
 ELSE IF(N.EQ.NF+1)THEN 
   V(N)=(HL(N+1)*L(N+1)+HV(N-1)*V(N-1)+HVF*FV-HL(N)*L(N)) 
     +   /HV(N) 
 ELSE IF(N.EQ.NT)THEN 
   V(N)=(HLD*R+HV(N-1)*V(N-1)-HL(N)*L(N))/HV(N) 
 ELSE 
   V(N)=(HL(N+1)*L(N+1)+HV(N-1)*V(N-1)-HL(N)*L(N))/HV(N) 
 END IF 
120 CONTINUE 
        if(myid.eq.numprocs-1 .or. done.eq.0)then 
 DL=V(NT)-DV-R 
        end if 
 
 
C       EVALUATE DERIVATIVES 
 
 DO 160 J=1,NC 
        if(myid.eq.master)then 
 DXB(J)=(X(1,J)*L(1)-YB(J)*VB-XB(J)*B)/MB 
        end if 
 DO 140 N=start,istop 
 IF(N.EQ.1)THEN 
   DM(N)=L(N+1)+VB-V(N)-L(N) 
   DXM(N,J)=X(N+1,J)*L(N+1)+YB(J)*VB-X(N,J)*L(N)-Y(N,J)*V(N) 
 ELSE IF(N.EQ.NF)THEN 
   DM(N)=L(N+1)+FL+V(N-1)-L(N)-V(N) 
   DXM(N,J)=X(N+1,J)*L(N+1)+Y(N-1,J)*V(N-1)-X(N,J)*L(N)-V(N) 
     +   *Y(N,J)+FL*XF(J) 
 ELSE IF(N.EQ.NF+1)THEN 
   DM(N)=L(N+1)+FV+V(N-1)-L(N)-V(N) 
   DXM(N,J)=X(N+1,J)*L(N+1)+Y(N-1,J)*V(N-1)-X(N,J)*L(N) 
     +   -V(N)*Y(N,J)+FV*YF(J) 
 ELSE IF(N.EQ.NT)THEN 
   DM(N)=R+V(N-1)-L(N)-V(N) 
   DXM(N,J)=XD(J)*R+Y(N-1,J)*V(N-1)-X(N,J)*L(N)-Y(N,J)*V(N) 
 ELSE 
   DM(N)=L(N+1)+V(N-1)-L(N)-V(N) 
   DXM(N,J)=X(N+1,J)*L(N+1)+Y(N-1,J)*V(N-1)-X(N,J)*L(N)-V(N) 
     +   *Y(N,J) 
 END IF 



 88

140     CONTINUE 
        if(myid.eq.numprocs-1 .or. done.eq.0)then 
 DXD(J)=(V(NT)*Y(NT,J)-DV*YD(J)-(R+DL)*XD(J))/MD 
        end if 
160 CONTINUE 
 
C       PRINT DATA 
 
 IF (TIME.GT.STOP1) GO TO 400 
 IF (TIME.LT.TPRINT) GO TO 210 
 WRITE(6,201) myid,master,TIME 
201 FORMAT (3X,2I3,1X,F5.4,' TIME  T  X1  X2  X3  X4  X5  L V P') 
        if(myid.eq.master .or. TPRINT.lt.STEP)then 
 WRITE(6,202) TB,(XB(J),J=1,NC),B,VB,PB 
202 FORMAT(3X,F7.2,5F9.6,3F7.1) 
        end if 
 DO 203 N=start,istop 
203 WRITE(6,204) N,T(N),(X(N,J),J=1,NC),L(N),V(N),P(N) 
204 FORMAT(I3,F7.2,5F9.6,3F7.1) 
        if(myid.eq.numprocs-1 .or. done.eq.0)then 
 WRITE(6,205) TD,(XD(J),J=1,NC),R,PD 
205 FORMAT (3X,F7.2,5F9.6,F7.1,7X,F7.1) 
 WRITE(6,206) (YD(J),J=1,NC),DL 
206 FORMAT(10X,5F9.6,F7.1) 
        end if 
 TPRINT = TPRINT+STEP 
c READ(*,*) II 
210 TIME=TIME+DELTA 
 
C       INTEGRATE EULER 
 
 DO 220 J=1,NC 
        if(myid.eq.master)then 
 XB(J)=XB(J)+DXB(J)*DELTA 
 IF (XB(J).LT.0.) XB(J)=0.0 
 IF (XB(J).GT.1.) XB(J)=1. 
        end if 
 DO 225 N=start,istop 
 XM(N,J)=XM(N,J)+DXM(N,J)*DELTA 
 X(N,J)=XM(N,J)/M(N) 
 IF (X(N,J).GT.1.) X(N,J)=1. 
 IF (X(N,J).LT.0.) X(N,J)=0.0 
225 CONTINUE 
        if(myid.eq.numprocs-1 .or. done.eq.0)then 
 XD(J)=XD(J)+DXD(J)*DELTA 
 IF(XD(J).LT.0.) XD(J)=0.0 
 IF(XD(J).GT.1.) XD(J)=1. 
        end if 
220 CONTINUE 
 
 DO 215 N=start,istop 
 M(N)=M(N)+DM(N)*DELTA 
 
C       CALCULATE NEW LIQUID RATES 
 
 DO 271 J=1,NC 
271 XX(J)=X(N,J) 
 IF(N.GE.NF)THEN 
   CALL HYDRAU(M(N),T(N),XX,L(N),WHR,WLR,DR) 
 ELSE 
   CALL HYDRAU(M(N),T(N),XX,L(N),WHS,WLS,DS) 
 END IF 
215 CONTINUE 
 
C       share data between tray & processor 
        if(done.gt.1)then 
        if(myid.ne.numprocs-1)then 
        do 300 K=1,NC 
300     buffer(K)=X(istop,K) 



 89

        buffer(NC+1)=P(istop) 
        buffer(NC+2)=L(istop) 
        buffer(NC+3)=V(istop) 
        call MPI_SEND(buffer,NC+3,MPI_REAL,myid+1,0, 
     +       MPI_COMM_WORLD,ierr) 
        count(1)=count(1)+1 
        end if  
        if(myid.ne.master)then 
        call MPI_RECV(buffer,NC+3,MPI_REAL,myid-1,0, 
     +       MPI_COMM_WORLD,stat,ierr) 
        do 310 K=1,NC 
310     X(start-1,K)=buffer(K) 
        P(start-1)=buffer(NC+1) 
        L(start-1)=buffer(NC+2) 
        V(start-1)=buffer(NC+3) 
 
        do 320 K=1,NC 
320     buffer(K)=X(start,K) 
        buffer(NC+1)=P(start) 
        buffer(NC+2)=L(start) 
        buffer(NC+3)=V(start) 
        call MPI_SEND(buffer,NC+3,MPI_REAL,myid-1,1, 
     +       MPI_COMM_WORLD,ierr) 
        count(2)=count(2)+1 
        end if  
        if(myid.ne.numprocs-1)then 
        call MPI_RECV(buffer,NC+3,MPI_REAL,myid+1,1, 
     +       MPI_COMM_WORLD,stat,ierr) 
        do 330 K=1,NC 
330     X(istop+1,K)=buffer(K) 
        P(istop+1)=buffer(NC+1) 
        L(istop+1)=buffer(NC+2) 
        V(istop+1)=buffer(NC+3) 
        count(3)=count(3)+1 
        end if 
        end if 
 
        master=0 
 
 GO TO 100 
400     call MPI_FINALIZE(ierr) 
        ed=MPI_WTIME() 
        write(*,*) myid,done,ed,st,ed-st,(count(I),I=1,3) 
 STOP 
 END 
 
 SUBROUTINE HYDRAU(M,T,X,L,WH,WL,DCOL) 
 REAL M,L,MW,MWA 
 COMMON NC,MW(5),DENS(5),C1(5),C2(5),C3(5),BPT(5),AVP(5), 
     + BVP(5) 
 DIMENSION X(5) 
 CALL MWDENS(T,X,MWA,DENSA) 
 CONST=183.2*M*MWA/(DENSA*DCOL*DCOL)-WH/12. 
 IF(CONST.LE.0.) GO TO 10 
 L=DENSA*WL*999.*((183.2*M*MWA/(DENSA*DCOL*DCOL)- 
     + WH/12.)**1.5)/MWA 
 RETURN 
10 L=0. 
 RETURN 
 END 
 
 SUBROUTINE ENTH(T,X,Y,HL,HV) 
 COMMON NC,MW(5),DENS(5),C1(5),C2(5),C3(5),BPT(5),AVP(5), 
     + BVP(5) 
 DIMENSION X(5),Y(5) 
 HL=0.0 
 HV=0.0 
 DO 1 J=1,NC 
 HL=HL+X(J)*C3(J)*T 



 90

 HV=HV+Y(J)*(C1(J)+C2(J)*T) 
1 CONTINUE 
 RETURN 
 END 
 
 SUBROUTINE MWDENS(T,X,MWA,DENSA) 
 COMMON NC,MW(5),DENS(5),C1(5),C2(5),C3(5),BPT(5),AVP(5), 
     + BVP(5) 
 DIMENSION X(5) 
 REAL MW,MWA 
 DENSA=0.0 
 MWA=0. 
 DO 1 J=1,NC 
 MWA=X(J)*MW(J)+MWA 
1 DENSA=X(J)*DENS(J) +DENSA 
 T=T+0.0 
 RETURN 
 END 
 
 SUBROUTINE BUBPT(T,X,Y,P) 
 COMMON NC,MW(5),DENS(5),C1(5),C2(5),C3(5),BPT(5),AVP(5), 
     + BVP(5) 
 DIMENSION X(5),Y(5),PS(5) 
 LOOP=0 
10  LOOP=LOOP+1 
 IF(LOOP.GT.50) GO TO 30 
 SUMY=0.0 
 DO 15 J=1,NC 
 PS(J)=EXP(BVP(J)+AVP(J)/(T+460.)) 
 Y(J)=PS(J)*X(J)/P 
15 SUMY=SUMY+Y(J) 
 IF(ABS(SUMY-1.).LT..00001) RETURN 
 F=SUMY*P-P 
 FSLOPE=0. 
 TSQ=(T+460.)**2 
 DO 20 J=1,NC 
20 FSLOPE=FSLOPE-AVP(J)*X(J)*PS(J)/TSQ 
 T=T-F/FSLOPE 
 GO TO 10 
30 WRITE(6,21) 
21 FORMAT(1X,'TEMP LOOP') 
        call MPI_FINALIZE(ierr) 
 STOP 
 END 

• List of example file 15 trays 5 components (P8T15N5.txt) 
5 
15 
15,5,0.75,1.25,72.00,72.00,48.00,48.00,10.00,10.00 
'LLK','LK','INTER','HK','HHK' 
100.00,90.00,70.00,80.00,80.00 
0.200,0.400,0.300,0.300,0.300 
0.600,0.600,0.500,0.400,0.400 
5*14.7 
10.00,90.00,150.00,210.00,360.00 
50.00,500.00,150.00,150.00,150.00 
30.00,200.00,200.00,300.00,420.00 
120.00,800.00,0.5E-01,0.6E+00,0.10E-01,0.30E+00,0.40E-01 
120.00,200.00,0.40E+00,0.53E+00,0.20E-01,0.50E-01,0.00E+00 
19.70,21.20,5.00,400.0,200.0,0.50 
201.58,154.90,132.60,120.20,114.00,108.40,101.20,98.20,96.90,96.20,95
.80,95.50,95.30,95.10,94.90,94.20,77.26 
740.10,814.40,892.00,960.10,986.00,320.00,381.90     
+  ,409.60,423.70,431.20,435.20,437.50,438.70,439.50,438.60 
14 
0.000E+00,0.725E-02,0.488E-01,0.836E+00 
,0.108E+00,0.999E-11,0.156E-08,0.182E-06,0.133E-04,0.760E-03 
,0.112E-02,0.129E-02,0.136E-02,0.140E-02,0.142E-02,0.143E-02 
,0.144E-02,0.144E-02,0.145E-02,0.175E-02,0.110E+00,0.286E+00 



 91

,0.457E+00,0.572E+00,0.634E+00,0.818E+00,0.910E+00,0.953E+00 
,0.975E+00,0.986E+00,0.992E+00,0.995E+00,0.997E+00,0.998E+00 
,0.998E+00,0.240E+00,0.202E+00,0.131E+00,0.803E-01,0.496E-01 
,0.866E-01,0.446E-01,0.238E-01,0.128E-01,0.694E-02,0.374E-02 
,0.199E-02,0.104E-02,0.519E-03,0.236E-03,0.607E+00,0.473E+00 
,0.376E+00,0.314E+00,0.284E+00,0.942E-01,0.440E-01,0.218E-01 
,0.110E-01,0.563E-02,0.286E-02,0.145E-02,0.718E-03,0.342E-03 
,0.149E-03,0.433E-01,0.393E-01,0.359E-01,0.333E-01,0.325E-01 
,0.174E-05,0.776E-06,0.371E-06,0.181E-06,0.893E-07,0.440E-07 
,0.216E-07,0.104E-07,0.484E-08,0.205E-08,0.174E-01,0.982E+00 
,0.824E-04,0.493E-04,0.659E-09 
30.00 
50.00 
90.00 
130.00 
300.00 
40.00 
40.00 
60.00 
70.00 
90.00 
10.00 
90.00 
150.00 
210.00 
360.00 
0.0001 
0.0002 
0.0001 
0. 
0. 
822. 
• Demo program 
1. Input output filename in Fortran file format ( “.f” or “.for”) 
2. Input initial condition file.  

Figure D.4 Demo generate parallel program 



 92

VITA 
 

 Mr. Sumrid Limvongsuwan graduated high school from Samsen 
Wittayalai school in 1994 and received a Bachelor Degree in Chemical Engineering from 
the Department of Chemical Engineering, Faculty of Engineering, King Mongkut Institute 
of Technology Ladkrabang in 1998. After then he has subsequently studied for a 
requirement of the Master’s Degree in Computational Science at the Department of 
Mathematics, Faculty of Science, Chulalongkorn University from 1998 till 2002. 


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgement
	Contents
	Chapter I Introduction
	Chapter II Theory and literature review
	Chapter III Implementation
	Chapter IV Simulation results
	Chapter V Conclusions
	References
	Appendices
	Vita



