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APPENDIX A

THE EQUATIONS OF MOTION FOR INFINITE MONATOMIC

" AND DIATOMIC CHAINS |

In the Classical Mechanics, the HamiltonianH, is equal to the summation of the

kinetic energy, T, and the potential energy,V.

H=T+V ’ (A.l)
P
where = . (A2)

and thepotennal energy of spring is

(A3)

Here P is the linear momentum, m is the mass, C is the spring constant and u is the

displacement.  Then, in the case of the infinite monatomic chain, the Hamiltonian is

H=(I/2m)§: PI+(C /2)2(::“,—::_)’ ~ (A4)

A -

From the definition of the linear momentum of mass m_ -



m:.:,,=P

Taking the time derivative Eq. (A.5) yields

- L

mu, = P,

From Eq. (A.4), H=H(P,u) and the Hamiltonian’s equations of motion are

- MH - H
u=5,¢mdP— e

od ._a!
Consider T

Insert Eq.(A.4) and Eq.(A.5.1) into Eq.(A.6.1) and then obtain

- Cu,,-u,)
P &

c _ c _

= --2—[-—2(:4" 1 =u))- —2'[2(", —u, ;)]
Therefore m; = C("m-l‘ —“.) + C(ll'_, - “l')

Similarly, in the case of the infinite diatomic chain, the Hamiltonian is

H=(/2m)Y Pl +(C,12)D (u,,, —-u,,)

LET ] A=-w

+(U12my) 2 PR +(Cy/2) 2, (uypny, = uyy,)

n=—ag N==a0

Since the definition of the linear momentum of mass ml is

(A.5)

(A5.1)

(A.6)

(A6.1)

(A7)

(A.8)



mu,, =P

sl
Taking the time derivative of Eq.(A.9) yields
m;:l,n = Psl,n

Insert Eq.(A.8) and Eq.(A.9.1) into Eq.(A.6.1) and then obtain

- C_L a(ud_,_n i ";.r,u)2 Cz a(ud,awl - u:2.n )2
A= T A 2 a ’

i8] «ln

C C.
= —‘}L[_z(ud.n ¥ ull.u)]— -2—2[2(":1." N ”-'2-"" )]

Therefore MY = C; (u.:,n 7 u;],n) + C2 (ud,uol - uxl.n)

S"nilaﬂYv m! Uian = Cl' (uﬂ,u 7 uﬂ,n) + CJ (u:.',lr!-l = “:.?,n)

(A.9)

(A9.1)

. (A.10)

. (A1)



APPENDIX B

THE EQUATIONS OF MOTION FOR SEMI-INFINITE MONATOMIC

AND DIATOMIC CHAINS

In the Classical Mechanics, the Hamiltonian H, is equal to the summation of the

kinetic energy, T, and the potential energy, V.

H=T+V , (B.1)

. PZ
where = , (B.2)
2m

(B.3)

Here P is the linear momentumn, m is the mass, C is a spring constant and u is the

displacement. Then, in the case of the semi-infinite monatomic chain, the Hamiltonian

s H=(/2m3 P2 +(C /D3 (uy~u) . B4

From the definition of the linear momentum of mass m,



(B.5)

mu, = P,
Taking the time derivative of Eq. (B.5) yields
miun = P, N (B.5.1)
From Eq. (B.4), H =H(P,u) and the Hamiltonian’s equations of moﬁon are
;=%,;md1.’=—§l]-. (B.6)
Consider > = -g{— | . (B.6. 1_)
Insert Eq.(B.4) and Eq.(B.5.1) into Eq.(B.6.1) vields
o _C Oy ~u,)’
2 du,
e T e |
Therefore, the equation of motion for the first mass is
mu = Cuy-u) : (B.7)
while the equation of motion for the other mass (n>1)is
mu, = C(u,, - u,) + C(u,, - u,) , (BS)

Similarly, in the case of the semi-infinite diatomic chain, the Hamiltonian is




= /2m)Y P2 +(C, 7 2)D (usy -1

+(I /ZMZ)Z ,2,,l+(c /2)2 (usl.n+)‘

Since the definition of the linear momentum of mass m1 is

mus =P

slm
Taking the time derivative of Eq.(B.9) yieids

oy -
MUsn = P:IJI

Insert Eq.(B.8) and Eq.(B.9.1) into Eq.(B.6.1) yield

- - C a(ud.n u n)2 a(” i.a+] u:?,u )2
MI uﬂ.ﬂ - 2 a’:la 2 ’ a‘al -
= __[ 2(“!2,1 u,. u)] [2( Jun uxZ,u—} )]-

Therefore, the equation of motion for the first mass (s1) is

L
m'l u‘i

G, -u,))
while the equation of motion for the other mass (n>0) is
C: (v,;.

ml Ut - u:l,u) + CJ(”&Z,M-! = .11 n) nzj

Similarly, the equation of motion for the s24n th mass (n>0)is

’

Uyrn )’
4,20’
(B.10)
(B.10.1)
@B.11)
(B.12)



9

Myttan = C (g, = Un,) + Colttyp = Ug,) i N20 . (B.13)

alm




APPENDIX C
THE PROOF OF BLOCH’S THEOREM

Bloch’s theorem follows from the fact that the potential function in the
Schoedinger equation is petiodic. The Schroedinger equation of two different cells of

lattice is
:Z%VJ Y(r)+v(r)¥(r) = EY(r), (C.1)

%’;—:—V"P(r +R)+v(r+R)¥(r+R)= E‘P(r +R), (C2)

Here R is a lattice vector connecting the two cells. Sence lattice is completely
periodic v(r) = v(r+R) . The solution of Eq. (C.1) and (C.2), W(rJand ¥(r+R)
respectively,are translated from another by R. The solutions must be the same
physical wave function, which they are equivalence. The function must he normalized,
thus the multiple factor may be a complex number which has magnitude equal to

one,exp ix , as (expix)® = 1.

¥(r) =V +R) : (C.3)
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If two independent lattice translations, R and R;, are performed, the result must be |

a lattice translations which we call Rs.

W(r + R, +R,) = “™W(r+ R,) = &'“r*¥(r) : (C4)
where W(r+ R, +R,) =W(r + R,) = £"“(r) _ . (C.5)
then &' = g/@ren) ,
and a,=a,+a, : (C.6)

This gives to be the linear in the distance of the translation, thus we can write the

translation R, in x direction as follows.
a=kR,
or in the other direction (for three dimensions),
a=kR.+k R +kR =kR . (C.7)
Then the solution of the Schroedinger equation must have the form
Y(r)= €N (r+ R) . (C.8)
Multiply Eq.{(C.8) by exp (ikr) on each side; then obtain

¢ N(r) = H RN 4. R) i (C.9

That it means the product exp (ikr) ‘¥(v)is the periodic function which repeats itself

within each cell of the lattice. 1f we call this function as u(r), then
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() = u(r) . (C.10)
or ¥(r) =" ®u(r) , (C.1D) |
which is the Bloch’s theorem.

Reference
C. A. Wert and R. M. Thomson, Physics of Solids, 2 nd. ed. (New York:

McGraw-Hill, 1970) p.176-179,



APPENDIX D

THE RELATIONSHIP BETWEEN THE CAUSE AND THE EFFECT

In the special case of the simple harmonic motion,the force F applied on mass m

is proportional to the displacement x from its equilibrium (in the opposite direction) .
Thus, F=—ke , (D.1)
“and , according to the second law, F = ma. Hence

d’x

m;{;=—w’mx © o = Vk/m,
d: ) .
therefore, Ez{-&w‘?x =0 . (D.2)
| The one of the sblution is
x = Asina Y (D.3)

Ift=o,thenx=0,and it t,= 2n+l) /20 ; n =90,1,2,..., then x is maximum
(x=Xmx = A). Thus w=(2n+l):r/21,,=wnl ,

and x, = Asinot=x, sinay . D.49)
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To find Xmsx, differentiating the Eq. (D.4) two times with response to time t, hence

d’x, 2.
=—Xx @ Sinwi{
dtZ max " m "

Mutiplying the mass m on the both side yields

d’x, .
g !
o Maa, Sina,

m

Therefore, F=-mx_o’sinat

F will be maximum when sin @ut = 1, Fasx = Fo = -MXauxhy> thus,

Insertiong Eq. (D.S) into Eq. (D.4) vields

-F, |,
X, = Fsinw

”
n

In the case of the solution which there is the phase factor

~F, .
e ? sin(af - §) .

X =

where § is the phase factor, or

— Sinw, (-5 /@)

X =

Let &/w,=t,, hence

(D.5)

(D.6)

(D.7)



APPENDIX E

THE DEFINITION OF THE FOURIER TRANSFORM

OF THE RESPONSE FUNCTION

The displacement of the first mass has the from uw(t) = uo(w)exp(iot)
and the force is F(t) = Foexp(iot). From the relationship between the cause and the

effect in Eq. (4.2)inch_apter IV, we can write the cause as
(1) = Fyexplian) y (0) (€D

where x (1) means the effect such that x (t) is the acceleration of the first mass.

Therefore

dl‘
ro="2 - €2)

Substitutiing u(t) = uo(o)exp(iot) into Eq.(E.2) vields
x(1) = —exp(ion)’u, (E.3)
Insert Eq. (E.3) into Eq. (E.1) , we get

F, exp(ian) y (@) = —exp(iot)w’u, " (E.4)



therefore, F,z(@)=-0'u,

"Insert the Harmonic motion, (@) = —w’w(@) into this last equation, can be written

as

(o) = F, 7 () : (ES5)



APPENDIX F

THE MATHCAD (MCAD) PROGRAM

The MCAD program for window is the high guality program. It can solve the

complex equation of Mathematics (such as, integral, differential, numericalmethods,
Matrix,etc.), plot the graphs (in 1-3 dimensions, polar, contour,etc.), and so on.

In this thesis, we used the MCAD program for window to evaluate variables and to

plot graphs.

Program for Fig 4.1
N=15,0=05,m:=2,

T=I1LN,t=LN,

| (T, t)= cos(ax;oa())s(mn .

M,ry=2(T,0)



m for Fig 4.2

N =15, 0 =05, m:=2,
T=1LN,t=1N,

-
(1= LD

M(:,r)5= x(T.1)

v g

Program for Fig 4.3

x(T,t) = T+t ,
h(T,t) = if{T<t,x(T,t),0) ,

2(T,y= ZHEALID,

My ry= 2(T,0)

100
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Program for Fip 5.2.3

m; = 5.8852x10% m = 3.8163x10% |
M :=2315x10% | C:=78.4945 ,

o = -9.000x10" -8.995x10". 9.000x10"

w* [] 7 (m, -m,)C :l

@) = 2C m,m,®” - (m, +m,)C

: 1‘ 4 4C [(C +C )-m,»’}imm,»* -(m, +m,)C ]
) @’[mm,o’ - (m, +m,)C -(m; -m,)C ¥

Program for Fig 5.2.4

m; = 5.8852x10% my = 3.8163x10°%

>

M :=2315x10% C.=178.4945

o = -9.000x10" -8.995x10%_ 9.000x10"

@’ [l . (m, -m,)C 1

@) = —
%1 mm@? (m, +m)C

2C
l:l- 1+ AC [(€ +C )-me’)imm, 0’ -(m, +m,)C ]]

‘!’2[“11‘“2“"2 -(m; +m,)C -(m, -m,)C



m for 53.1
m, = 5.8852x10% | my:=3.8163x10%* |

M:=2315x10% | C:=78.4945

o = -9.000x10" -8.995x10"..9.000x10"

o* [1 (m, -m,)C ]

(@) = 5¢ " m,myo? -(m, +m,)C

o'[mm, o’ -(m, +m,)C -(m, -m,)C T

[ I-Jl SN [ )-m,’jim;m,®’ -(m, +m,)C ]]

(m, 'mz)C }

m,m,»* -(m, +m,)C

2
-~
&
it
eu
r—
+

[ 1-.J1 4 4C [(C +C )-mzwiltmlmzwz <(m, +m,)C ]]

@' [m;m;0” - (m; +m,)C -(m, -m,)C I

M, 100 (D) - Z,(2)C
8 20n 1 (D) . (@)C -o®

L L ZA2)C
“-Mn(w) x:(w)C -’

102
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