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APPENDIX A

ms EQUATIONS OF MOTION FOR INFINITE ~ONATOMIC

AND DIATOMIC CHAINS .

In the Classical Mechanics, the Hamiltonian,H, is equal to the summation of the

kinetic energy,T, and the potential energy,V.

where

H=T+V

r
T=­

2m

(A.I)

(A.2)

and the potential energyofspring is

cu2

V=­
2

(A.3)

Here P is the linear momentum, m is the mass, C is the spring constant and u is the

displacement. Then, in the case ofthe infinite monatomic chain, the Hamiltonian is

H = (/ / 2m) f Po' + (C /2) f (u •• , - u.)'• __ CIl)

From the definition ofthe linear momentum ofmass m, .

(AA)



•
mu; =p.

Taking the timederivative Eq. (AS) yields

- .
mu; =P.

FromEq. (AA), H = H(P,u) andthe Hamiltonian's equations ofmotion are

(A.S)

(A.S.I)

(A.6)

Consider
• tH
P.=a,'

•
(A.6.1)

InsertEq.(A.4) and Eq.(A.S.l) intoEq.(A6.1) andthen obtain

Therefore -mil =C(II.+, -II.)+C(II..., -II.) (A.7)

Similarly, in the case ofthe infinite diatomic chain, the Hamiltonian is

~ c

H = (J 12m,) I: r: .. + (C, 12) I: (U'2 •• - U., •• )2
"=-<>:1 "=-110

~ ~

+ (J 12m 2 ) I: p,~.• + (C 2 12) L (u" ..+, - U'2 •• )2
1lI=-ag 1It=-""

Sincethe definition ofthe linear momentum ofmass mI is

(A.S)



Taking the time derivative ofEq.(A.9) yields

Insert Eq.(A.8) and Eq.(A.9.1) into Eq.(A.6.1) and then obtain
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(A.9)

(A.9.1)

Therefore

Similarly,

-m/Ud.. - C/ (U.,•• - Ud .. ) + C2 (U.,.../ - ud •• )

-m, u.,.. ... C/ (u".• - u.,.• ) + C, (u./.o+/ - u.,.•)

(A.IO)

(A.ll)



APPENDIX B

mE EQUATIONS OF MOTION FOR SEMI-INFINITE MONATOMIC

AND DIATOMIC CHAINS

In the Classical Mechanics, the Hami1tonian,H, is equal to the summation of the

kinetic energy,T, andthe potential energy,V.

where

H=T+V

p'
T=­

2m

(B.I)

(B.2)

and the potential energy ofspring is

CU'
V=­

2
(B.3)

Here P is the linear momentum, m is the mass, C is a springconstant and u is the

displacement. Then, in the caseofthe semi-infinite monatomic chain, the Hami1tonian

is
~ ~

H = (l / 2m)L p.' + (C / 2)L (u•• / - u.)'
ft=O n=O

(B.4)

Fromthe definition ofthe linear momentum ofmass m,



•
mu, = p,.

Taking the timederivative ofEq. (8.5) yields

- .
mu; = P.

FromEq. (B.4), H =H(P,u) and the Hamiltonian's equations ofmotion are

• aI • aI
u=- andP=-

CP' a.,'
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(B.S)

(B.S. I)

(B.6)

Consider
• Of
p.=a.,'

•
(8.6.1)

InsertEq.(8.4) and Eq.(B.S.I) into Eq.(B.6.1) yields

- C iJ(u"l -u.f
mu= 2 a.,

•
C C

=--[-2(u -u )]--[2(u -u )]2 ..I. 2 • ...1'

Therefore, the equation ofmotion for the first mass is

while the equation of motion for the other mass (0)1) is

-mu; = C(u.+1 • u.) + C(u•.1 - u.)

t (8.7)

, (8.8)

Similarly, in the case of the semi-infinite diatomic chain, the H8!J1iltonian is



H = (J / 2m /)r. p,~,. + (C I / 2)f. (U'2,. _U'I,.)2
.-0 n-O

• •
+ (J / 2m 2)L rs, + (C 2 / 2)L (U'I,.+I - U'2,.)2

ncO .-0

Since the definition ofthe linear momentum ofmass mI is

Taking the timederivative ofEq.(B.9) yields
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(B.10)

InsertEq.(B.8) and Eq.(B.9.1) into Eq.(B.6.1) yield

Therefore, the equation ofmotion for the first mass (sI) is

(B.IO.I)

-
while the equation ofmotion for the other mass(n>O) is

, (8.11)

,

-
m/Ud,. .. C/ (u82,. - ud ,. ) + C2( U82,•• / - U'I,.) ; n':i!. J

Similarly, the equation ofmotion for the s2+n th mass (n>O) is

(8.12)



"
m2U62.. = C, (U'I,. - U'2") + C2(U" ..., • U'2,.) n e: 0
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(8.13)



APPENDlXC

THE PROOF OF BLOCH'S THEOREM

Bloch's theorem follows from the fact that the potential function in the

Schoedinger equation is periodic. The Schroedinger equation of two different cells of

latticeis

_h'-V"I'(r+R)+v(r+R)'fI(r+R) =E'¥(r+ R),
1m

(C.I)

(C.2)

Here R is a lattice vector connecting the two cells. Sence lattice is completely

periodic v(r) "" v(r+R) . The solution of Eq. (C.1) and (C.2), 'fI(r)and 'fI(r+R)

respectively,are translated from another by R. The solutions must be the same

physical wavefunction, which they are equivalence. Thefunction musthe nonnalized,

thus the multiple factor may be a complex number which has magnitude equal to

one,exp iec , as (exp ioe)2 = I.

(C.3)
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Iftwo independent lattice translations, R, and R2, are perfonned, the result mustbe

a lattice translations which we call R3•

where

then

and

(C.4)

(C.5)

(C.6)

This gives to be the linear in the distance of the translation, thus we can write the

translation R. in x direction as follows.

or in the other direction (for three dimensions),

Thenthe solution ofthe Schroedinger equation must havethe fonn

'I'(r) =e'(IIlAfl(r +R)

Multiply Eq.(C.8) by exp(ikr) on eachside, then obtain

(C.7)

(C.8)

(C.9)

That it means the product exp (ikr) 'I'(r)is the periodic function which repeats itself

within eachcell ofthe lattice. Ifwecall this function as u(r), then



or

which is the Bloch's theorem.

Reference

e'(lrllp(r) =u(r)

'P(r) = e.j(lr)u(r)
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(C.10)

(C. II)

C. A. Wert and R. M. Thomson, Physics of SQlids. 2 nd. ed. (New York;

McGraw-Hili, 1970) p.176-179.



APPENDIXD

THE RELATIONSHIP BETWEEN THE CAUSE ANDTHE EFFECT

In the special caseofthe simple hannonic motion,the force F applied on mass m

is proportional to the disPlacement x from its equilibrium (in the opposite direction) .

Thus, F=-kx (D.1)

and , according to the second law, F = ma. Hence

(I) = ../kIm,

therefore,

The one ofthe solution is

(D.2)

x=AsinWl (D.3)

1ft = 0, thenx = 0, and it t,.= (2n+1) 7t 12m ; n = 0,1,2, ..., thenx is maximum

(x = x .... = A). Thus

and

(J) =(2n+ I)K 121. = (J).

(D.4)



To find x-., diffelclltiating the Eq. (D.4) two times with response to timet, hence

Mutiplying the mass m on the bothsideyields

Therefore,

F will be maximum when sin<Dot = I, F_ = Fo= _rnx-en.2 thus,

x - -Fo
.... - mw 2

•

Insertiong Eq. (D.5) into Eq. (D.4) yields

In the case ofthe solution which there is the phase factor

where6 is the phase factor, or

Let i51m" = In , hence

(D.5)

(D.6)

(D.7)



APPENDIXE

THE DEFINITION OF THE FOURIER TRANSFORM

OF THE RESPONSE FUNCIlON

The dispW:ement of the first mass has the from Uo(t) = Uo(CD)exp(iCDt)

and the force is F(t) - Foexp(icot). From the relationship between the cause and the

effect in Eq. (4.2) in chapter IV, we can write the cause as

x(/) =FoexP(iM)Z(IlJ) (E. I)

where x (t) means the effect such that x (t) is the acceleration of the first mass.

Therefbre

(E.2)

Substitutiing Uo(t) = Uo(CD)exp(iCDt) into Eq.(E.2) yields

(E.3)

Insert Eq. (E.3) into Eq. (E.I) , weget

(E.4)
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therefore,

as

"Insert the Harmonic motion,u(w) = -w'u(w) into this last equation, can be written

"
u(w) =F"Z(w) (E.5)



APPENDIXF

THE MATHCAD (MCAD) PROGRAM

The MCAD program for window is the high guality program. It can solve the

complex equation ofMathematics (suchas, integral, differential, rwmericalmethods,

Matrix,etc.), plot the graphs(in 1-3 dimensions, polar, contour,etc.), and so on.

In this thesis, we used the MCAD program for window to evaluatevariables and to

plotgraphs.

Program ror Fig 4,.

N := IS , co := O.S , m := 2 ,

T:= I..N, t := I..N ,

(T )
.=cos(at)cos(mT)

Z ,1. •
mm

M o.Tl:= X(T,/)



Program for Fig 4,1

N := IS , 0> := 0.5 , m := 2 ,

T := I..N , t := I..N ,

X(T,t):= cos(w[T-t]),
mw

M(f.Tl:= X(T,t)

Prognm for Fig 4.3

N := IS , 0> := 0.5 , m := 2 ,

T := I..N , t := I..N ,

x(T,t) := T-t ,

h(T,t) := i~T<t,x(T,t),O) ,

X(T,t): cos(aiI(T,t]),
moa

M(f.Tl:= Z(T,t)
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Program for Y'I 5,2,3
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ml:= 5.8852xIO·26

M :=2.315x Hy26

,

C := 78.4945 ,

XI(W)

Prognm for Y'I 5,2.4

M:= 2.315xIO·26

rIl2:= 3.8163xIO·26

C :=78.4945 •



Ptn...mforrIJ5.3.1

m.:= 5.8852xIO·26

M :=2.315xI0·26

• 11l2:= 3.8163xIO·26

C := 78.4945 ,

•
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X,(tD)C

xltD)C
Xz(tD)C -ai
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