CHAPTER 111
MATERIALS AND METHODS

3.1 Materials

3.1.1 Protein Database
Information on protein sequence and secondary structure was obtained
frorir Brookhaven's Protein Data Bank (PDB).
URL = http://pdb.pdb.bnl.gov/
URL = Gopher://pdb.pdb.bnl.gov : 70/00/PDB/Entries
URL = Gopher://pdb.pdb.bnl.gov : 77/xfullindex/full

3.1.2 Computer Hardware
All computations were performed on the COMPAQ PRESARIO 4712
Series Personal Computer, with the following specification :
System Processor : Intel is Pentium®
System Clock Speed 166 MH,
Hard Disk : 2.5 GB
Cache Memory 32 MB
Main memory : 32 MB of RAM

3.1.3 Computer Software

Linux

Linux is an operating system which shares many features of UNIX system
V, but with many enhancements. It has become a widely popular version of UNIX for
use in personal computers. Linux can be obtained from a variety of sources. Two of
the most popular locations to find Linux on the internet are :

sunsite.unc.edu (152.2.22) in the /pub/Linux directory

tsx-11.mit.edu (18.86.0.44) in the /pub/linux directory
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In this study, the neural network, SNNS, program was run on Linux
version 2.0.0. Some tools and applications of Linux such as X-window, C++

compiler, vi - editor were also used.

SNNS (Stuttgart Neural Network Simulator)

SNNS is a simulator for neural networks that consists of two main

components, the simulator kernel and the graphical user interface (Figure3.1). The
SNNS was developed at the Institute for Parallel and Distributed High Performance
System at Stuttgart University (SNNS, 1989). The SNNS simulator can be obtained as
a free software via anonymous ftp from host
fip.informatik.uni-stuttgart.de (129.69.211.2)
in the subdirectory
[pup/SNNS
as file
SNNSv3.3.tar.Z
After successful transmission the file was moved into the target directory and
uncompressed with the Unix command |
uncompress SNNSv3.3.tar.z
followed by
tar -xvf SNNSv3.3.tar

A simple network (Figure.3.2) that can be generated by the SNNS
simulator consists of units and directed, weighted links (connection) between them.,
Depending on their function in the net, one can distinguish three types of units :

- input units, the units whose activation is the problem input for the net.
- output units, the units whose outputs represent the output of the net.

' - hidden units, the remaining units that are not visible from the outside

In most neural network models the type correlates with the topological
position of the unit in the net : If a unit does not have input connections but only

output connections then it is an input unit. If it lacks output connections but has input



37

links, it is an output unit, if it has both types of connections it is a hidden unit. The
actual information processing within the units is modeled in the SNNS simulator with
the activation function and the output function. The activation function first computes
the net input of the unit from the weighted output values of prior units. It then
computes the new activation from this net input. The output function takes this result

to generate the output of the unit.

In contrast to other network simulators where the bias (threshold) of a unit
is simulated by a link weight from a special ‘on ’-unit, SNNS represents it as a unit
parameter. In the standard version of SNNS the bias determines where the activati;)n
function has its steepest ascent. Learning procedure like back-propagation change the

bias of a unit like a weight during training.
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Figure 3.1 SNNS components.
Source: Andrease et al., 1989. SNNS User Manual, Version 3.3. p. 2.
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Figure 3.2 A Simple network, it is a feed-forward net with three layer of units.

Source: Andrease et al., 1989. SNNS User Manual, Version 3.3. p. 22.

SNNS Algorithm.
Activation function : A new activation is computed from the output of preceeding
units, usually multiplied by weights connecting these predecessor units with the
current unit, the old activation and its bias. The SNNS default activation function

Act_logistic

aj(t+1) 5
.0:1) O
1 +e-(XViPiV-9)

where aj (¢) is activation of unit, in step ¢
O;(t) is output of unit i in step ¢

Wij  is weight of the link from unit 7 to unit j

G is threshold or bias of unit j
J is index for some unit in the net
i is index of a predecessdr of the unitj

Output function : The output function computes the output of every unit from the

current activation of this unit. The output function is in most cases identity function

K
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(SNNS: Out_identity). This is the default in SNNS. ‘The output creates the possibility
to process the activation before an output occurs.
O;j (V) = fout (aj (1))
where :
aj (1) isactivation of unit j in step t
Oj () is output of unit j in step t

J is index for all units of the net

Learning in Neural networks. An important focus of neural network research is the
question of how to adjust the weights of link to get the desired system behavior. This
modification is very often based on the Hebb-rule, which states that between two units
is strehgthened, if both units are active at the same time. In its general form is :
Awij=g (aj @), t;) h (O; (v), w,-j)

where:

Awjj s weight of the link from unit ¢ to unit;

aj ()  isactivation of unit / in step £

t is teaching input, in general the desired output of unit j

O; (f) is output of unit { at time ¢

g (... ) is function, depending on the activation of the unit and the teaching

input
h (... ) is function, depending on the output of the preceding element and the

current weight of the link

Training a feedforward neural network with supervised learning consists of followiﬁg
procedure : .

1. An input pattern is presented to the network. The input is then propagated forward
in the net until activation reaches the output layer. This constitutes the so called
Jforward propagation phase.

2. The output of the output layer is then compared with the teaching input. The error,

J; between the output O; and the teaching input ¢; of a target output unitj is then used
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together with the output O; of the source unit i to compute the necessary changes of
the link wjj. To compute the deltas of the following layer, which are already
computed, are used in a formula given below . In this way the error are propagated
backward, so this phase is called backward propagation.
3. The weight change dwj; are cumulated for all patterns in the training file and the
sum of all chaﬁges is applied after one full cycle ( epoch ) through the training pattern
file, | '

The most famous learning algorithm which works in the manner
described is backpropagation. The backpropagation weight updated rule, also called

-

generalization delta rule reads as follows :
Awjj =17 G O;

g

f'j (nety) (tj-0;)  if unit  is a output - unit
f’j (netj) Zidiwjk if unit j is a hidden - unit
Where :

n learning factor eta ( a constant)

& error ( difference between the real output and the teaching input ) of unit/
tj teaching input of unitj

O; output of the preceding unit

i index of a predecessor to the current unitj with link w;;from i toj

J index of the current unit

k index of a successor to the current unit; with link w; fromj to k

There are several backpropagation algorithms supplied with SNNS.. A simple version

called Std_Backpropagat.ion was used in this study.

Molecular visualization
Rasmol (the UC Regent/Modular CHEM Consortium version 2.6 ucb.) was
used to visualize molecular information obtained primarily from PDB (Protein Data

Bank, Brookhaven National Laboratory).
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3.2 Methods

3.2.1 Protein database

The database of protein sequences and associated 2' structure used in this
study was complied from information PDB (gopher:// www.pdb.bnl.;gov). These
collected protein was based on the classification scheme of Pascarella and Argos
(1992) that categorizes the majority of known proteins ( 245 proteins ) into 83 classes
: 38 classes have two or more proteins members whereas the other 45 classes have
only a single protein example. The data are based on superpositions among protein
structures with similar main-chain folds and contain a large number of protein families
with low sequence homology. The average sequence identity over all pt;ssible aligned
PDB sequence pairs is 15%. Only 98 proteins (table 3.1) which have one chain of
amino acid sequence were used in this study. These proteins were randomly grouped
into two groups of training set and testing set. The number of proteins in the training

and testing sets are 70 and 28 respectively.

3.2.2 Properties of amino acid used
A sequence of amino acids as input were replaced by a sequence of
symbols representing properties. In the first set of trials, eight symbols were used to

represent the following properties :

1. Aliphatic side chain = Gly, Ala, Val, lle; Leu symbol = 0.1
2. Aromatics side chain = Phe, Tyr, Trp symbol = 0.2
3. Imino side chain = Pro symbol = 0.3
4. Sulfur = Cys, Met symbol = 0.4
5. Hydroxy = Ser, Thr symbol = 0.5
6. Basics = Lys, Arg, His symbol = 0.6
7. Acidics "= Asp, Glu symbol = 0.7
8. Amides = Asn, GIn symbol = 0.8
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In the second set of trials, the hydropathy of each amino acid residue was
used as the sole attribute. The amino acid residues were divided into 2 groups (Table

3.2) and 5 groups (Table 3.3) by these hydropathies scale.

In the third set of trials, the relative hydrophobicity of amino acid residues
was chosen as the sole attribute. The amino acid residues were classified into three

groups (Chothia and Finkelstein, 1990).

Polar group : Arg, Lys, Glu, Asp, Gln and Asn symbol = 0.1
Neutral group : Gly, Ala, Ser, Thr, Pro, His and Tyr symbol = 0.2
Hydrophobic group: Cys, Val, Leu, Ile, Met, Phe and Trp symbol = 0.3

In the final set of the trials, the attribute chosen was the relative helical
tendencies of amino acid measurement in one peptide. From this property, the amino

acid was divided into 5 groups as shown in Table 3.4.

In summary, amino acid residues were divided into eight groups based on
(1) property of amino acid side chain ( Aliphatic, Aromatics, Imino, Sulfur, Hydroxy,
Basics, Acidis, Amides ), (2) hydropathy scale of each amino acid (2 groups) (3)
hydrophobicity (3 groups) and (4) five groups based on relative helical tendencie.
These properties were substituted in place amino acid residues symbols in the primary
structures of proteins which were used for training and testing by Neural Networks in

this study.
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Table 3.1 Database of protein(s) used in protein structures prediction by NNs.

Input No.|Code Protein name Resolution| %H | %S | %T
1 1ALC [Calcium binding protein 1.7 21 | 65| O
2 1BP2 |Hydrolase 1.7 55 | 48 | 33
3 |1CA2 |Lyase (oxo-acid) 2 16 | 23] 9
4 1CDH (T-cell surface glycoprotein 2.3 0 65
5 1CMS |Hydrolase (acid proteinase) 2.3 12 | 46
6 1CTX |Toxin 2.8 0 23 | 23
7 1ECA (Oxygen transport 14 78
8 1GOX |Oxidoreductase (oxygen(A)) 2 39 9
9 1H1p |Electron transfer (Iron -sulfur protein) 2 11. | 16
10 1HOE |Glycosidase inhibitor 2 77 | 16
11 111B  |Cytokine 2 69 | 31
12 1LDM |Oxidoreductase (CHOH(D)-NAD(A)) 5 33 | 21| 31
13 1IMBA |Oxygen storage 1.6 73 0
14 1P2P |Carboxylic ester hydrolase 2.6 52 .33
15 1PHH |Oxidoreductase 23 26 | 26| O
16 1PLC |Electron transport 1.33 4 48 | 45
17 1PYP |Acid anhydride hydrolase 3 19 | 47 | 31
18 1R69 |Gene regulating protein 2 59 0 0
19 1RHD |Transferase (thiosulfate, cyanide sulfur) 2.5 37 | 15 | 26
20 1SGT |Hydrolase (serine proteinase) 1.7 13 | 36 | 29
21 1TON |Hydrolase (serine proteinase) 1.8 12| 30| 24
22 1UBQ |Chromosomal protein 1.8 21 | 43 | 47
23 1UTG |Steroid binding 1.34 76 0
24 JLDX |Oxidoreductase (CHOH(D)-NAD(A)) 2.96 45 17
25 2LH1 |Oxygen transport 2 69 [ O
26 2LIV [Periplasmic binding protein 2.4 41 25 0
27 |2LZ2 |Hydrolase (o-glycosyl) 2.2 28 | 16 | 31
28 2MHR |Oxygen binding 1.7/1.3 64 0 | 32
29 20VO |Proteinase inhibitor (KAZAL) 1.5 21 | 18 | 29
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Table 3.1 (continued)
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Input No.|Code Protein name Resolution | %H | %S | %T
30 |2pAZ |Electron transfer (cuproprotein) 2 17 | 40 | 16
31 1ALC |Calcium binding protein 1.7 21 [ 65 O
32 1BP2 |Hydrolase 1.7 55 | 48 | 33
33 |1cA2 |Lyase (oxo-acid) 2 16 | 23
34 1CDH |T-cell surface glycoprotein 2.3 0 65
35 1CMS |Hydrolase (acid proteinase) 2.3 12 | 46
36 1CTX |Toxin 2.8 0 23 | 23
37  |2TS1 |ligase (synthetase) 2.3 35 | 7
38 3APP |Hydrolase (acid proteinase) 1.8 15 | 53
39 3BLM |[Hydrolase , 2 42 | 18
40 3C2C |Electron transport protein (cytochrome) 1.68 54 0 18
41 3CLA |Transferase (acyltransferase) 1.75 31 | 29 0
42 3CLN |Calcium binding protein 2.2 64 | 29 | 11
43 |3CNA [Lectin (agglutinin) 2.4 0|51 0
44 3DFR [Oxido-reductase 1.7 25 | 37 | 37
45 3EST (Hydrolase (serine proteinase) 1.65 8 56
46 ' 3GRS |Oxydoreductase (flavoenzyme) 1.54 38 | 32
47 3HVP |Hydrolase (acid proteinase) 2.8 9 57 | 10
48 3ICB [Calcium binding protein 2.3 77 0
49  [3LZM |Hydrolase (o-glycasy) 1.7 62 | 11
50 3PFK |Transferase (phosphotransferase) 2.4 50 | 20
51 3PGM | Transferase (phosphoryl) 28 32| 10] 12
52 3SSI  (Serine protease inhibitor 2.3 16 | 32| O
53 451C |Electron transport 1.6 51 0 24
54 4APE |Hydrolase (acid proteinase) 21 11 | 62
55 4FXC |Electron transport 2.5 12 | 24
56 4FXN |Electron transport 1.8 38 | 27 | 14
57 4GCR |Eye lens protein 1.47 7 16 [ 0
58  [4PEP |Hydrolase (acid proteinase) 1.8 13 | 48 | 28
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Table 3.1 (continued)
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Input No. |Code Protein Name Resolution| %H | %S | %T
59  |4TNC |Contractile system protein 2 64 0
60 5CPV |[Calcium binding protein 1.6 55 15
61 1CCR |Electron transport (cytochrome) 1.5 57 28
62 2-Apr [Hydrolase (aspartic proteinase) 1.8 17 | 82 | 53
63 3B5C |Electron transport 1.5 38 | 27 | 26
64 |INXB |Neurotoxin (post-synaptic) 1.38 0 | 47 | 32
65 5CPA |Hydrolase (c-terminal peptidase) 1.54 34 | 15| 42
66 8TLN |Hydrolase (metalloproteinase) 1.6 42 | 23| 26
67 s5pT] |Proteinase inhibitor (trypsin) 1 2 [ 21 o
68 6RXN |Electron transfer (Iron -sulfur protein) 1.5 0 26 | 76
69 7RSA |Hydrolase (phosphoric diester) 1.26 27 | 77 0
70 8ADH |Oxidoreductase (NAD(A)-CHOH(D)) 2.4 36 0 21
71 2CAB |Hydro-lyase 2 20 | 28 | 17
72 2CDV |Heme protein of electron transport 1.8 18 37
73 2CRO |Gene regulating protein 2.35 59 0
74 2FXB |Electron transport 2.3 22 15
75 2LBP |Periplasmic binding protein 2.4 40 | 33
76 2LDB |Oxidoreductase (CHOH(D)-NAD(A)) 3 40 | 24
77 IMBS |Oxygen transport 2.5 73
78 1MBD |Oxygen storage 1.4 79
79 1Cy3 |Electron transport (heme protein) 1.7 22 44
80 2RNT  [Hydrolase (endoribonuclease) 1.8 16 | 35 | 38
81 2STV |Virus 2.5 14 | 47 | 3
82 2TMV |Virus 2.9 12 | 22 | 18
83 5TNC |Contractile system proteins 2 65 0
84 2CYP |Oxidoreductase (H202(A)) 1.7 49 10
85 2GBP |Periplasmic binding protein 1.9 45 | 25 | 48
86 2LHB |Oxygen transport 2 76 2
87 2PTN |Hydrolase (serine proteinase) 1.55 13
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Table 3.1 (c}ontinued)
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Input No. |Code Protein name Resolution| %H | %S | %T
88 1CYC |Electron transport 2.3 45 0 12
89 1LLC |Oxidoreductase (CHOH(D)-NAD(A)) 3 41 | 23] 0
90 [1LzZ1 |Hydrolase (o-giycosyl) 1.5 26 | 15 | 56
91 1SBT |Hydrolase (serine proteinase) 2.5 31 10 0
92 2CI2 |Proteinase inhibitor (chymotrypsin) 2 16 | 27 | 24
93  |2TAA |Hydrolase (o-glycosy) 211 25| 0
94 5cyT |Electron transport (heme protein) 1.5 51 0| 19
95 3PGK |Phosphotransferase (carboxyl as acceptor) 2.5 36 | 13| 12
96 7PCY |Electron transport protein 1.8 7 62 | 29
97 8DFR |Oxidoreductase (CHOH(D)-NAD(A)) 1.7 27 | 60 | 17
98 OPAP |Hydrolase (sulfhydryl protei.nase) 1.65 27 | 17 | 28




Table 3.2 Two groups of amino acids which were divided by hydropathy property.

AMINO ACIDS HYDROPATHY SYMBOL
Ile 4.5
Val 4.2
Leu 3.8
Phe 2.8 0.1
Cys 2.5
Met 1.9
Ala 1.8
Gly -0.4
“Thr 0.7
Ser -0.8
Trp -0.9
Tyr -1.3
Pro -1.6
His -3.2 | 0.2
Glu -3.5
Gln -3.5
Asp -3.5
Asn -3.5
Lys -3.9
Arg -4.5

47
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Table 3.3 Seven groups of amino acids which were divided by the hydropathy

property.

AMI NO ACIDS HYDROPATHY SYMBOL

Ile 4.5

Val 4.2 0.1
Leu 3.8

Phe 2.8

Cys 2.5 0.2

Met 1.9

Ala 1.8 0.3
Gly -0.4

Thr -0.7

Ser -0.8 0.4
Trp -0.9

Tyr -1.3

Pro -1.6 0.5
His -3.2

Glu -3.5

Gin 3.5 0.6

Asp -3.5

Asn -3.5

Lys -3.9

Arg -4.5 0.7
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Table 3.4 Five groups of amino acids which were divided by relative helical

tendencies.
Symbol Amino acid Relative stabilization of a-helical
residue conformation (kcal/mol)

0.1 Pro 0
Gly ~3

0.3 His -0.06
Asn -0.07
Thr -0.11
Val -0.14
Asp -0.15
Tyr -0.17

0.5 Ile -0.23
Cys -0.23
Glu -0.27
Gln -0.33
Ser -0.35

0.7 Phe -0.41
Trp -0.45
Met -0.50

0.9 leu -0.62
Lys -0.65
Arg -0.68
Ala -0.77
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3.2.3 Input pattern and output pattern construction

The input pattern to the neural network amino acid sequence of each
protein, after substitution by‘ properties as previously described. First of all, the amino
acid sequences were extracted from PDB files and replaced with propgrties using the
amino acid residues symbols with computer programs SEQaa, SEQh2, SEQh7,
SEQpho and SEQhe. These programs were used for replacing the amino acid residue
symbols with seven groups of amino acid side chain property, two groups of
hydropathy, seven groups of hydropathy , three groups of hydrophobicity and five
groups of helical tendency respectively. To conform with PDB format, the input
pattern was set to 13 columns of properties vector and the number of rows were
dependent on the number of amino acid residues in each protein. Since the protein
which has the longest amino acid sequence in this study was 481 amino acid residues
in length, if follow that the number of input unit was 481 units. Because the number
of input units should be a constant value, all input units in all input patterns for
training and testing by Neural network should have the same number of input units.
Thus, all input units in this study had 481 units. Any amino acid sequences that had
shorter lengths than 481 residues were added with zeroes to make such sequences 481

residue long. Some examples of input patterns in this study are shown in Figure 3.3

The output patterns consist of 3 classes of secondary structure, helix, sheet
and turn. These secondary structure data were obtained from the PDB file of each
protein. For prediction of existence of ‘these secondary structures in an amino acid
sequence, the output layer of the networks consisted of 1 unit where corresponding to
helix, sheet or turn.  For prediction number of amino acid residue which should be
helix, sheet or turn, the output depends on the range of the number of each secondary
structure. For example, the number of helical residue of proteins in this study were in
the range between 1- 100, the output has 5 groups with the range 1-20, 21-40, 41-60,
61-80 and 81-100 of the number of amino a&id residues. This output had 3 units for

each group of range.
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HST HorS orT %ofHorSorT(5gr) %ofHorSorT(3gr.or2gr)
ooa a 000 ga Output layer
oo 0O Hidden layer

(5) 09 0.1 03 09 0507 0.7 03 0.1 0.5 0.7 0.50.3 0.9 09 03 03 0.5 0.3 0.5..000..(481)
(49 02 0203 03 030303 02 02 0303 0202 01 01 02 0.1 01 0.1 0.1..000..(481)
(3) 01 0.10.1 01 010202 0203 04 04 0505 06 06 06 07 0.7 08 08..000..(481)
2 0.3 0401 01 010204 0505 02 0304 04 07 07 06 06 0.6 0.6 0.6....000...(4I81)
() 01 02 0101 010102 0202 02 0102 02 02 02 02 02 02 0.2 0.2..000..(481)

Ala Gly Val Leu Ile Phe Trp Tyr Pro Cys Met Ser Thr Lys Arg His Asp Glu Asa Gln............. (481)

Input layer = amino acid residues (1 - 481) were coded by amino acid properties

Figure 3.3 Protein structure prediction networks.  Units in the network are
represented by squares, connection between units by solid lines. In input layer, -
shown at the bottom of the figure, there are 481 input units which were amino acid
sequence of each proteins coded by amino acid properties : (1) two groups of
hydropathy coded, (2) five groups hydropathy coded, (3) eight groups of amino acid
side chain properties coded, (4) three groups of hydrophobicity coded and (5) three
groups of helical tendencies coded. All input units are connected to every hidden units
which were also connected to all output units. The networks with 3 output units were
used for prediction of the existence of helix&sheet&turn in the same network and
percent (5 gr.) of helix or sheet or turn. The networks with 2 output units were used
for prediction of percent (3 groups) of helix or sheet or turn and percent
(2 groups) of helix or sheet. The networks with one output unit were used for

prediction of the existence of helix or sheet or turn in separate networks.
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3.2.4 Neurﬂ Networks
Ail neural networks model used in this study are three-layer feed forward

neural networks the SNNS neural network simulator software. The networks are fully
connected from one layer to the next. The first layer, the middle layer and the last
layer are input, hidden and output layers respectively. Each unit in the neural network
accepts a number of inputs from previous layer or from external data in the case of the
input layer. Each input unit is multiplied by a weight Wij, which represents the
strength of the connection betweer 2 units { and j , and the total is offset by the bias ,
b;, of the unit :

input; = ZiW;j + b; (1
The output is a result from input processing. This processing is a continuous nonlinear
activation function that switches bgtween Oand 1:

output =___1 ! ' (2)

] + e-inputi

The independent variables in these functions are the biases of individual units and the
weights between every pair of units in adjacent layers. The initiation values of these

variables was randomly picked.

The input patterns for training and testing in were the amino acid
sequences substituted by properties and the output pattern was the secondary structure
of each protein as previously described. For training, the networks were trained by
back-propagation which is used for adjusting the weights and biases, using 70 input
patterns . ( 70 amino acid sequences ) and 481 units for each pattern. After training,
the test set (28 amino acid sequences) was examined and the predicted outputs were

compared with the observed outputs from PDB.

To determine the suitable number of hidden units which would produce
the most accurate results, 7, 35, 70, 100, 120 and 140 hidden units were employed in

each set of trial.
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3.2.5 Training and Testing
The input and output patterns as described in 3.2.3 were saved as a learmn
pattern file and test pattern file (t.pat and te.pat). The learn pattern files were used for

training the networks, while, the test pattern files were used for testing.

The network files for training were created by “bignet” program in SNNS.
This program is a generator for special 3 layered feedforward networks. After training
the trained networks were saved as “file.net”

3.2.6 Measurement of accuracy prediction.

the total number of protein predicted correctly

prediction accuracy = x 100 percent

total number of proteins for testing
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3.3 Structure Prediction Problem as a Classification Problem

3.3.1 Geometical Meaning of Neural function
Based on the output function of implemented by the sigmoid function
1 , the function of a neuron can obviously be considered as a hyperplane

1 + e-dwixi A
whose location in the n-dimensional space is captured by Zw;x;. Each input pattern is,

therefore, a vector in the n-dimensional space. Hence, the hidden neurons are acting as

a set of separating hyperplanes.

For examples, in a two-dimensional space, suppose we have these input
vectors (1,2), (2,2), (5,5) and (4,5).
Vectors (1,2) and (2,2) are in class A. Vector (5,5) and (4,5) are in class B.
To classify these vectors into their correct classes (A and B) by a neuron, a good
separating line is required. The value of each w; can be obtained as follows.

From linear line equation y=ax+ b

From Figure 3.4 y=4 x=6
4=b
0=6a+4
y=-4x+4

6
f=y+4x-4
6

w; =1 wy;=2 bias = -4
K}
From the examples, the actual meaning of leaming of each neuron is

finding the appropriate vale of each w; to locate the hyperplane in between two
separated classes. Thus, the leaming process is the adjustment of a and b using x and y
for teaching Where, w;, w, and bias are'a, b and c in the linear line equation
respectively. .

Liy=ax;+bx;+c

Lo = wix; + waxa + bias
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In case of complex inputs pattern such a protein structure prediction, we

need more than one separating line to classify the desired outputs or hyperplanes.

N W e OO

separating line

Figure 3.4 Vectors in 2-dimensional space which are separated into hyperplane by a

separating line.

3.3.2 Classification of Protein Structures

We can transform the problem of structure prediction to the problem of
classifying the difference structures .into their corresponding classes based on their
essential properties. Protein structures acting as a set of hyperplanes. Thus the protein
properties are collected to form a vector in n-dimensional space. Neural Network is
separating hyperplanes. The suitable features are required for training the network to
separate these proteins to the correct classes of structures. Thus, the actually main
problem is the extraction of protein properties to obtained the desired structures. If we
have the suitable properties, it mean that the different protein structures are obviously
separated into the different dimensional space. On the other hand, the neuron can have

a good example for learning and give rise a correct answer.
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