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CHAPTER 1

Ritt’s factorization theorem

A (complex) exponential sum is an expression of the form

ape™* + a1 + ... + a,e**,  a;,a; € C.

Equip a lexicographical ordering ,<, to C. In order to factor such exponential
sum, it suffices to factor a normalized exponential sum, i.e an expression of the
shape

1+ a1e* + ..+ a,e®?,

where the exponents are so arranged that 0 < oy < ... < «a,. A (normalized)
exponential sum is said to be simple if each «; is a multiple of some fixed complex
number, termed index. Clearly, a simple exponential sum can be factored in in-
finitely many ways, and for factorization purposes, it is enough to group them into
parts with different irrational index ratios. Ritt’s factorization theorem of 1927
essentially states that any normalized exponential sum can be uniquely written
as a product of simple and irreducible exponential sums, where the simple ex-
ponential sums have pairwise irrational index ratio, and the irreducible ones are
non-simple and not capable of being decomposed further.

In this chapter, the coefficients, exponents and exponential function involved in
Ritt’s factorization are studied in order to determine enlarged structures validating

Ritt’s theorem.



1.1 Definitions

Definition 1.1.1. A Ritt space (R, 6, ), or simply R, is an R-vector space with
a countable basis {0,} = {01, 6,, ...}, and a lexicographical order defined by
a=nr0+..+nrb < =350+ ..+ 80 (r;,s; € R) if and only if there is a
positive integer n < ¢ such that r; = s, ...,7r,_1 = s,_1 but r, < s,,.
Define 0 = 00, + 005 + ... + 00, € R for all n. Clearly, 0 is the zero element of the
Ritt space R.
Proposition 1.1.2. Let R be a Ritt space. Then

(i) Fora € R andr € R, if @ > 0 and r > 0, then r - a > 0.

(ii) For o, 3,7,0 € R, if a« <  and v < ¢, then a4+ v < 5+ 6.

(iii) For o, 3 € R, if @ > 0 and 3 > 0, then a + 8 > 0.
Proof. Clear. [

Let R be a Ritt space. Denote by f a function whose domain is the set
Rz = {ax | « € R}, where z is an indeterminate, satisfying f(ayz)f(asx) =
f((ar + az)zx).

Definition 1.1.3. Let F be an algebraically closed field with characteristic zero
and R a Ritt space. A ' Ritt exponential sum, abbreviated by RES, is an
expression of the shape

aof(aoz) + a1 fla1z) + ... + an f(anz),
where a; € F, o; € R and a9 < a3 < ... < «,. The «a;’s will be referred to as
RE-coefficients.
Over the set of RES’s, we impose

(i) an equality relation by the condition that

Z a; f(oyz) = Z b;f(Biz) if and only if a; = b; and a; = f3; for all ¢ and
=0

=0



(ii) an algebraic independence condition stating that f(oyz), ..., f(a,x) are
algebraically independent over F whenever aq, ..., a,, € R are linearly independent
over Q.

Denote the set of RES’s imposed with such conditions by £.

Define addition and multiplication on &£ as follows :

For any E(z) = Z a; f(a;z) and Ey(z) = ibif(aix),
=0

=0
n

Ei(x) + Ea(z) =) (a; + b;) f(asx), and

=0

Ei(w)- Ba(@) =) aibif((c; + oy)z).
i=0 j=0
It is easy to verify that, under the operations defined above, £ is a ring with

S -

multiplicative identity f(0x), indeed &£ is an integral domain. The multiplicative
inverse of f(ax)is f(—ax), while the additive inverse is — f(ax). Any RES of the
form agf(0x) is called a constant Ritt exponential sum. The constant RES’s
add and multiply as in F and so form a subring of £ isomorphic to F. We then
identify F as the set of constant RES’s in €. Sometimes, we refer to £ as a Ritt
domain with respect to F and R.

It can be proved by induction that (f(ax))” = f(nax) for all n € N and it
follows that (f(ax))? = f(qax) for all ¢ € Q.
Definition 1.1.4. A nonconstant element E(x) = i a;f(a;x) of a Ritt domain
& with respect to F and R is-said to be simple if éczhoere exists A € R such that
for all 7, a; = k;\ where k; € Z, equivalently, a simple RES is an RES of the form
E(z) = iaif(k:i)\a:) where k; € Z. We refer to A\ as an s-index of the simple
RES E(z).
Definition 1.1.5. A nonconstant element E(z) of a Ritt domain £ with respect

to F and R is said to be irreducible if it can not be factored as a product of

other RES except 1 and itself.



Remarks.

(i) It follows immediately from the definition that in any Ritt domain £ with
respect to F and R, the RES a + bf(Bx) is simple for all a,b € F and g € R.

(ii) In any Ritt domain &, the class of simple RES’s and the class of irreducible

RES’s are disjoint.

1.2 Finding base

Throughout this section, let € be a Ritt domain with respect to an algebraically
closed field F and a Ritt space (R,0,). We will factor RES of the form 1 +
arf(aiz) + ... + anf(apr) with 0 < a3 < ... < a,. As the proof is long and
complicated, we will first prove those lemmas needed.

A subset {my, ..., m,} of R is said to be Q-linearly independent if whenever
zp:qimi = 0 for rational numbers q,...,q,, then ¢y = ... = ¢, = 0. A Q-
li;alse for {ay,...,an} € R is a Q-linearly independent subset of R which spans
{oq, ..., }. A Q-linearly independent subset {1, ..., i, } of R is called a Q*-base
for {ay, ..., o, } if each «; can be written as a Q*-linearly combination of p;’s, i.e.
;= iqij,uj, where ¢;; € QF.

Deﬁrii:tlion 1.2.1. Ana=ri0y + ...+ r,0, € R is said to be strictly positive
if r; >.0.

The ‘next lemma gives a sufficient condition when a subset {aq,...,a,} of R
has a Q™ -base.

Lemma 1.2.2. Let {a,...,a,} CR. If0 < oy < ... < o, and « is strictly

positive, then there exists a Qt-base {p, ..., up} for {oq, ..., an}.

Proof. Let {mj,...,m,} be the largest Q-linearly independent subset of

p
{ai,...,a,}. For each i, let oy = Zqikmk, where ¢;; € Q. We can also write
k=1



mj = erkek, where 7;, € R. Define a linear map ¢ : R? — R" by p(X) = QX
for all g( € RP, where Q is the matrix (gi;j)nxp. Since ay is strictly positive, all
entries of ¢((r11,...,7p1)) are positive. By the continuity of ¢ and the denseness
of Q in R, for each i = 1,...,p, there is (ty;,...,%,) € QF such that all entries

of ¢((t14, ..., tp)) are positive and the matrix (¢;;),x, has a nonzero determinant.

Hence the system of linear equations

my = tr1 + tiaZs + ...+t

Mo — tg]fL'l o tQQIL'Q N T tgp.iljp

mp = tp1$1 + tpgl'g —|— + tppl'p

has a unique solution, say 4, ..., f,. Consequently, each «; is a Q-linear combi-
nation of the u;’s as desired.
It remains to show that {s,...; p,} is @-linearly independent. Suppose on the
contrary that there exist rational numbers s;. ..., s,, not all zero, such that
St + Saplg + ... + Spit, = 0. (1)

The system

t11$1 + t211’2 4 €. tplfL’p = 51

t12$1 + t22$2 + ...+ tpg.xp = So

tlpl‘l + tgpllfg + ...+ tppl’p = Sp,

then has a nontrivial solution, say vy, ...,v,. Substituting s; = 1,01 + to;v2 + ... +
tpivp in (1), it follows that Z v;m; = 0, which contradicts the Q-independence of

{mq,...,m,}. Consequently, {y1,..., it} is Q-linearly independent. O

Remark. In Ritt’s original construction of Q*-base {y1, ..., 1, } the real part of

each complex «; was made positive by multiplying with a fixed complex constant.



Our Ritt space, (R,6,) does not enjoy this characteristic property of C, which
forces us to impose the strictly positive condition.

Definition 1.2.3. Let Fi(x), Ex(z) € £. We say that Es(z) | Ey(x) when there
is F3(z) € € such that Ey(z)Es(x ) = Ey(x).

Lemma 1.2.4. Let F(z) = 1+Z a;f(;x) and Fy(z) = 1+be Bix)

=1
If Es(x) | Eq(x), then each f; is a Q-linear combination of the aZ :

Proof. Let

1+Zai ) = +be@ 1+Zci Yi (2)
Let {my,...,my} be the largest Q- hnearly independent subset of {aq, ..., }. Sup-
pose that there is a (3;, which is not a Q-linear combination of «;’s. Taking
mo = [,, it follows that {mg,mi,....,m,} is also Q-linearly independent. Ad-
join my41,...,my to this set in such a way that {mg, mi,...,m:} is a Q-linearly
independent set and each «;, 3;,7; is a Q-linear combination of m;’s. Then each
0B; has a representation of the form qu-kmk, where ¢;; € Q. Let ug be the
maximum ¢;o in the representation o? Bi’s. Note here that since 3, = my,
ug > 1. Then among those f3;’s whose ¢;o is ug, let u; be the maximum ¢;;.
Continuing this process for all ¢;;’s, we obtain rational numbers wug, uy, ..., u;. Let
8 = ugmg + uymi + ... +usmy;. Then § =, for some k = 1,...,r. We ad-
join o =0 to {71, .., Vs } and consider the representation of all 4;’s'in the form
Zpikmk, where p;, € Q. Let vy be the maximum p;y in the representation of
fyf’s. Since 79 = 0, it follows that vy > 0. Then among those 7;’s whose p; is vy,
let v; be the maximum p;;. Continuing this method for all p;;’s, we get rational
numbers vy, vy, ..., v;. Let v = vgmg + vymy + ... + vymy. Then v = 7, for some
[ =1,...,s. Multiplying out the factors on the right hand side of (2), we obtain
the unique term d - f((# 4+ v)x) in the resulting product for some d € F. By

the choice of 3 and v, we have that 0 + v = «,, for some m = 1,....n. Hence



Q= (ug 4+ vo)mo + (ug +v1)my + ... + (ug + vy)my with ug+v9 > 140 = 1. This

contradicts the fact that {my,...,m,} is a Q-base for {a, ..., a,}. ]

Corollary 1.2.5. Let Ei(x), Es(z) be RES’s. If Ey(z) | Ei(z) and Ey(z) is

simple, then Ey(z) is also simple.
Proof. Immediate from Lemma 1.2.4. O]

Corollary 1.2.6. Assume that 1 + Zaif(aix) = (1+ Zbif(ﬁix))(l
i=1

i=1
Z cif (vix)). If oy is strictly positive, then each 3;,7; can be written as Q -linear
i=1

combination with respect to the Q-base {1, ..., u,} for {as, ..., a,,} so obtained

in Lemma 1.2.2. In particular,

L+ > a [ [ flama) = 0+ Y0 [ ] £dhm) 1+Zcsz (afji7)), (3)
i=1  j=1 = =1

for some positive rational numbers ¢;;’s and some nonnegative rational numbers

q;;’'s and q;;’s.

Proof. From Lemmas 1.2.2 and 1.2.4, each §; is a Q-linear combination of p;’s,
say (3; = Z gixfx Where g;x € Q. Suppose on the contrary that there were some
I} involves,kwithout loss of generality, 1, with negative coefficient. Let u; be the
minimum ¢;; in the representation of 3;’s. Then among those ;’s whose g;; is
uy, let uy be the minimum g;5. Continuing this process for all g;;’s, we obtain
rational numbers uq, ..., u;. Let 8 = uypuy + usps + ... + ugpty. Then G = [ for
some k = 1,...,7, and u; < 0. We adjoin 79 = 0 to {v,...,7s} and consider
the representation of all 4;’s in the form Z Dikite where py. € Q. Let vy be the
minimum p;; in the representation of %’s.k Then among those ~;’s whose p;; is
v1, let vy be the minimum p;,. Continuing this method for all p;;’s, we obtain

rational numbers vy, ...,v;. Let v = vy + vope + ... + vypy. Then v = ~; for

some [ = 1,...,s, and v; < 0 because 79 = 0. Multiplying out the factors on



the right hand side of (3), we obtain d - f((8 + 7)z) as a unique term for some
d € F. By the choice of g and v, 6 + v = «,, for some m = 1,...,n. Thus
O = (U1 + vy + (ug + vo)pa + ... + (up + v) e where uy + vy < 0, ie.
is a Q-linear combination of yu;’s with the coefficient of p; being negative. By
assumption, «,, is a Q-linear combination of y;’s with the coefficient of ;1 being

positive, which is a contradiction. Il

1.3 Transforming to polynomials

Let E(z) = 14 ayf(ax) + ... + a,f(a,x) € € with ay strictly positive. Let

{m1, ..., up} be a QT -base for {a, ..., a,}. Then
E(z) =14 ayf( ZCIU#J oA an f( an]“]

=1+ arf(qumz) - f(Q1p/~Lpl°) + ot anf(gupnr) - f(anNpl’)?

where ¢;;’s are positive rational numbers.
Let I; € N (j =1,...,p) be the least common multiple of the denominators of ¢;;,

1=1,....,n. Now

E(z) =1+ alf(Qllll%l') - Fgapl M f

pl )+‘”+anf(Qn1l1

7 [
_1$) f(qﬂplp £ )
I Ly

SR A alf(k‘ll—x) f(klp l ) 4 VN anf(knl

Hp
: DTS

h

Loy (f (B2 )y,

o)) (F(FEa)) e 4+ an(F( 3

by

= 1+a1<f(lu

ll ll

where k;; = ¢;;1; € N. Invoking on the algebraic independence, replacing f(%z)
J

by y;, the outcome can be considered as a polynomial in F[y, ...,y,]. This poly-

nomial is called the polynomial corresponding to E(x) and will be denoted

by QY1 Yp).

Conversely, for any P(yi,...,y:) € Flyi,...,y], if each y; is replaced by f(a;x)



where {aq, ...,a;} is a Q-linearly independent set in R, then we obtain an RES
in &, referred to as the RES corresponding to P(y,...,y;) and denoted by
Ep(f(anz), ..., floux)).

Remark. Eg,(f(57), ,f(‘;—:x)) = E(x).

Lemma 1.3.1. Let E(x) = 1+ay f(aiz) + ... +a, f(a,x) with o strictly positive
and Qg(y1, ..., yp) be the polynomial corresponding to E(z) with respect to a Q-
base {p1, ..., ptp }. Then each factorization of E(x) in € gives rise to a factorization

of Qu(yl, ..., yy") in Flyy,..., yp] for some (ty, ..., 1,) € NP and vice versa.

Proof. (=) To simplify notations, we treat only the case when E(x) has two

factors. By Corollary 1.2.6,
n p U p S p
L+ > a [ ] flagme) = T+ 0 ] Flalma)) (0 + D e [ fafm)
=1 j=1 =1 j=1 =1 j=1

where ¢;; =

/
mij ALY pp— "
ny o G = and g;; = n"] , my;, my; € No and myj, ng, ni;,ni; € N.

R ig) '3

— — / 11 "
Let I = l.cm.(nyj, ., npy) and t; = Lem. (0, .., myg 1y, ., n;). Then

n P

1+Zain(qiijI) =1 +Zaz’H(f('u]

where k;; = ¢;;1; € N and

1_'—2bequ“3 —1+ZbH )Y,

p

S p
1Y e ] £ @) —1+Z@H )b
i=1 j=1
Thus

E0300 | LT RIRRIES 318 | (ORIAIES 08 | OIet

Substltutlng f(’l‘—] x) for yj in the above equation, we get on the left hand
P

side 1 + Zalnyk”tﬂ which is QE(yil,...,yff’). Since qj;lit;, qi;lit; € No,

we obtaln on the rlght hand side a product of two polynomials in Flyi, ..., y,],

: D it L
qi5t5t5 ;555 .
( E b; | | v )( E Ci | | y;”7"), as required.
=1 j=1 =1 j=1
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(<) Let

Qe y5) = Ra(yr, - 9p) - Bn(y1, - 9p) (5)

be a factorization of Qg (y', ..., y,tf’) in Flyi, ..., yp]. Replacing y; by f(*;—]]:v) in (5),

we obtain
Equ((f (52", s (F(522))12) = By (f(550). s [ (22)) - B, (42 oy S (2
Then
B(x) = Equ(f () {(750))
1 1
Bou (G- n)¥ b G2
1 1 1
= Bn, (F(-F0) b JE R0 B (), o, (- E)

101 p 'p 14 p 'p

is a factorization of E(z) in € as desired. O

1.4 Polynomials

Having reduced the problem of factorizing RES’s to that of factorizing polyno-
mials in several variables, we collect here those results needed to justify the proof
of the main theorem.

Let ¢ = (&1,...,&p) wWhere &; is a primitive ki-th root of unity. We say
that polynomial P(yi,...,y,) and Q(yi,...,y,) are e-related if P(yi,...,y,) =
QM Y1, ..., ep7yp) for some (ng, ..i,my) € ZP. It can easily be shown that e-related
is an equivalence relation on Flyy, ..., yp).

Lemma 1.4.1. Let Q(y, ..., yp) be an irreducible polynomial with constant term

1. If there are positive integers t;’s such that

Q(ylltla "'7y;7p) = Q1<y17 "'7yp) e Qm(!/l; "'7yp)7

where Q;(v1,...,yp)’s are irreducible polynomials with constant term 1, then ev-

ery pair Q;(yi,...,yp) and Q;(y1,...,yp) are (e1,...,&,)-related where each ¢; is a
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primitive t;-th root of unity.

Proof. Since each ¢; is a primitive t;-th root of unity, it follows that for any

(n1,...,n,) € ZP, we have

Q1(Y1, - Yp) QY1 oy Up) = QUL oy 17l7)
= QT m) 5, (epryp)™)

= Q1" Y1, - 8,"Yp) -+ Qe Y15 5 €57 Yp)-

Thus for each i = 1,..m, Qi(eT Y1, ....ep"yp) = Qi(y1,...,y,) for some t =
1,...,m; that is, each Q;(y1,...,,) is e-related to some Q:(y1,...,yp). To show
that each Q;(y1,...,y,) Is e-related to all Qi(y1,...,y,), it suffices to show that
Q1(y1, ..., yp) is e-related to all Q¢ (v, ..., y,). Suppose that Q1(yi, ..., y,) is not e-
related to some Q(y1,...,¥p). Without loss of generality, we may assume that
Q1(Y1s oy Up)s ooy Q(Y1y oy yp)y L < j < m, are in [Q1(y1, ..., yp)], the equiva-
lence class containing Q1 (v, ..., yp), but Q;1(y1, ..., ), o, Qm(v1, ..., yp) are not
in [Q1(y1, ..., Yp)]. Thus

QuEV Y1, e Yp) - Qi (e Y, s €07 Yp) = QuYr, o ) -+ Qi (Y1, -, Yp)
for all (n4, ..., ny) € ZPTo show that Q1 (y1; o, Yp) = Qv Up) == P(y1, ..., Yp)
is a polynomial in y!', ..., y;f, suppose not. Then there is y; such that t; does not
divide an exponent of 1;. Rewrite
P(yr, - ¥p) = ao(y) + a1(@)yi + . + an(@)yi" = ao(®) + - + @y +
where ¥ = (Y1, .., Yi—1, Yit1s - Yp), ¢(7) # 0 and 0 < r < t;, it follows that

ao(Y) + .. + a; (@)Y + o= Plyr, ey yp) = PEM Y1, oy 657 Yp)

= ao(Y) + ... + a; (@) (el y) T + .= ao(Y) + ... + a; (YT +
Thus ;™" = 1, this is not true for all n; € Z. Hence Q1(y1, ..., Yp) - Qi (Y1, -, Yp)
= Ky, ..., y?) for some K (y, v Up) € Flyr, oo yp)-

Simﬂa’rIY7 Qj+1 (yh ) yp) T Qm(y17 A yp) = F(yila T ylip) for some
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K(y1, ...y Yp) € Flya, ..., yp]. Therefore,

Q(yil, ‘-wy;tf') = Ql(yh "'7yp) T Qj(yh -'-ayp)Qj—i-l(yla --'7yp) e Qm(yla ---7yp)

=Kyt ..y ) KW, . yr).

Then Q(y1, -, Yp) = K1, s Yp) K (Y1, s 9p), 80 Q(y1, ..., ) is reducible, a con-

tradiction. O

Any P(y1,...,4:) € Fly, ...,y is said to be primary in y; if the greatest

common divisor of all exponents of y; which appear in P(y;,...,y;) is equal to 1
and it is said to be primary if it is primary in every ;.
Lemma 1.4.2. Let Q(v1,...,y,) be a primary irreducible polynomial of degree
0 consisting of more than two terms and with constant term 1. Suppose that
for certain positive integers ti,...,t,, the irreducible factors of Q(y', ...,ylt,”) are
primary. Then there exist a polynomial T'(ys, ..., y,) and positive integers 71, ..., 7,
with the following properties :

(a) T'(y1, ..., yp) is a primary irreducible polynomial with constant term 1.

(b) The degree of T'(y1, ..., yp) in each variable does not exceed the correspond-
ing degree of Q(y1,...,Yp)-

(c) For every i, 7;/t; > § 7.

(d)-The irreducible factors. of T(y7*, ..., 4p") are primary and consist of more
than two terms.

(e) The polynomials T (y1,y5%, -, yp’ ), T(Y1", Y2, Y32, s Yp’ ), .. and

T (Y7, Y32, - yprd' s yp) are all irreducible.

Proof. 1t is enough to consider the case p = 3, and replace y1, Y2, ys3, t1, t2, t3 by
x,Y, z,p,q and r, respectively.

Step 1.((a),(e)) Let
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Qz,y",2") = Qu(z,y,2) - - Qu(,y, 2), (6)
where Q;(x,y, z)’s are irreducible polynomials with constant term 1. By Lemma
1.4.1, @, is related to each );. Thus @) is primary in z, but may not be primary
in y and z. Let

Qu(z,y,2) = Rz, y*, 2"),

where R(x,y, z) is primary. Then R(z,y, z) is also irreducible. Let a be the degree
of z in Q(x,y, z). We will show that qil <aand ;- <a.

To see this, from (6), m < a and ¢;|q. Let k = % and ¢; be a primitive k-th root
of unity. Since R(z,y, 2) is primary, the & polynomials R(x, ety 2™), i =1,..., k,
are all distinct. Since each &} is a ¢;-th power of a g-th root of unity, it follows
from Lemma 1.4.1 that ?qu =k < m < a. Similarly, % < a. Denote the degrees
of y,z in Q(x,y,2) by b, ¢, respectively, and the degrees of z,y,z in R(z,y, 2)
by aq,b1, ¢y, respectively. By (6), we obtain a = ma;, and so a; < a. Since
mbiq1 = bg and ¢ < mqq, by < b. Similarly, ¢; < c.

We replace p by p; and let

R(zP,y,2") = Ri(2,y,2) - - - Ru(2,9, 2),
where R;(z,y, z)’s are irreducible polynomials with constant term 1. Then R; is
primary in y, but may not be primary in = and z. Let

Ry(z,y,z) = S(xP2,y,2"),

where S(z,y,z) is primary. ‘This implies that S(x,y, 2z) is irreducible. Then

|’E

; < by, :—; < by and as < ai, by < by, co < 1, where aso, by, ¢ are the degrees of

3

x,y,z in S(x,y, z), respectively.
We substitute ¢; by ¢ and let
S(aP?,y®, z) = Si(x,y,2)--- Sy (x,y,2),
where S;(z,y,z)’s are irreducible polynomials with constant term 1. Then

Si(x,y, z) is primary in z, but may not be primary in z and y. Let
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Si(z,y,z) =T(x™, yX, 2),

where T'(z,y, ) is primary. Then T'(z,y, z) is irreducible and x | go. Thus 2 < ¢,
q;? < ¢9, ag < a9, by < by and c3 < ¢y, Where ag, b3, c3 are the degrees of x,y, z in
T(x,y, z), respectively.

We replace o by p. We shall show that T'(z, yX, 2) is irreducible. Suppose
that T'(x, yX, z°) is reducible. Let

T(z,y%,2") = Alz,y,2)B(x,y, 2),
where A(z,y, z) and B(xz,y, z) are non-constant polynomials. Then
Si(x,yy2P) =T(x",yX, 2°) = A(z",y, z) B(z", y, 2).

Let | = % and ¢; is a primitive [-th root of unity. Since T'(z,y, z) is primary,
the [ polynomials T'(2™, iy, 2¢), i = 1,...,1, are all distinct. Since each &} is a
x-th power of a go-th root of unity, it follows that each T'(z™, elyX, 2°) is obtained
from Si(x,y, 2”) by replacing y by the product of a go-th root of unity and y.

Consequently, each. T'(x™, elyX, 2P) is S;(z,y, 2”) and so [ < m”. Hence

S(aP?,y®, 2" = Si(x,y,2™) - - S (@, y, 2™)
= Si(z,y,2°) -+ Sy (2,9, 2°)
= T(2™, y%, 2PV (@™, efyX, 2P) < T(a™ elyX, 2°) - - -
= A(2™,y,2)B(2™, y, 2) A8, y%, 2) B(w, e}y, 2) - - -

Az, ey, 2)Blw, ey, 2) - .

Therefore, A(x,e}yX, z)--- A(z,elyX, 2) | S(aP?,y%, 2"?) = R(z,y*®,z). Note that
when we multiply out A(x,elyX, 2)... Az, elyX, z) each coefficient of yX*, n € N
is a symmetric polynomial in €},...,e! and vanishes unless n is a multiple of [,
ie. A(z,efyX,z) - A(z,elyX, z) is a polynomial in x,y®, 2. Thus R(z,y,z) is
reducible, which is a contradiction. Hence T'(x, yX, 2*) is irreducible.

By the same proof as what has just been done, T'(z™,y, 2*) is irreducible.
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Step 2. (d) We have that
(H) T
(2) S
(3) R(xPr,y®, z™) is a factor of Q(a?,y4, 2").

™, yX, 2P) is a factor of S(xP?,y?, 2"),

(
(xm’ yqz7 zTQ) is a factor of R(xm ’ yq17 ZTl) and

Thus T(x™,yX, 2*) is a factor of Q(2?,y4, 2"). By assumption, the irreducible
factors of Q(aP,y?, 2") are primary. Thus the irreducible factors of T'(z™, yX, 2”)
are primary. Let
T(amy2P) = Tu(z,y, 2) - - - Tz, y, 2),
where T;(z,y, z)’s are primary irreducible polynomials with constant term 1. We
must show that each T;(x, y, 2) has more than two terms. Without loss of general-
ity, suppose that T} (z, y, z) contains only two terms. Let T} (z,y, z) = 1+cx®y’2?.
Since Ty (z,y, z) is an irreducible factor of Q(z?,y4, z"), by Lemma 1.4.1, other ir-
reducible factors of Q(aP,y?, 27) are e-related to T1(z,y, z). Thus Q(zP,y?,z") is
a polynomial in z%%z7. Then the exponents of z, ¥, z in each term of Q(z,v, z)
8

are respectively multiples of o 2

Let A, B, C' be the greatest common divisor of all exponents of T, yg, z+ which
appear in Q(z,v, z), respectively, Let 7 = x4y®2°. Then Q(z,v, z) is a polyno-
mial in 7 which contains more than two terms. Hence Q(z,v, z), considered as
polynomial in one variable 7 of more than two terms, must then be reducible,
which is a contradiction.

Step 3. (b) From above, degree of x in T'(z,y,2) = a3 < as = degree of z in
S(z,y,z) < a; = degree of z in R(x,y,z) < a = degree of z in Q(z,y, z), and so
are the degrees of v, 2.

Step 4. (C)Wehaveq%ga,%ga,g—égbl,%gbl,%gc%%gcg,aggalg

a,by <by<bandec, <c <ec. Thusgzlz-ﬂ~ﬂ>i-i-1> L > 1L > 1

XX @2 a>1l1.1> 1 > 1> 1l pqe—r.n.n>p. .1 1 >
q g2 q1 q co a abico abc & r ro ry T b1
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1 1

abe = §3

where 6 > max{a,b, c}. O

Lemma 1.4.3. Let Q(yi, ..., yp) be a primary irreducible polynomial consisting of
more than two terms and having 1 for its constant term. Then there exist only a

finite number of sets of positive integers ¢, ..., ¢, such that the irreducible factors

of Q(yb, ..., yf,”) are primary.

Proof. Let T'(vx, ..., y,) be the polynomial and 7, ..., 7, be the integers whose ex-
istence were shown in Lemma 1.4.2. Let

Ty v ) = Ty, - ) -+ Ty, - ), (7)
where each T;(v1, ...,yp) 18 a primary irreducible polynomial consisting of more
than two terms with constant term 1. We will show that t =71 = = ... = 7,.
To prove this, let € be a primitive 7-th root of unity. Thus the 71 polynomi-
als T1(g'y1,Y2..., yp), @ = 1,...,7p are all distinct, and each of them is equal to
some T;(y1,...,yp). Then the product of these polynomials is a polynomial in
Y1 Y2y ey Ypo SINCE TYE Y1y Y vwes Yp )y wees L1(ET Y1y Y2y -ey Yp) are irreducible factors
of T(y[',...,y,") and they are all distinct, it follows that 7, < t. Assume that

71 < t. Then

T(yy', --"y;p) = T1(51?Jl;y2, co¥p) e T (E™M Y, Yo Yp)

= P(:gIl?yQa &> yp)ﬁ<y?7y27 0¥ ) yp)

Thus T(y17 y;27 ey y;p) = P(yb Y2, - yp)?(yh Y2, -y yp) Hence T(yh y;QJ ) y;p)
is reducible, which contradicts Lemma 1.4.2(e). Therefore, 77, = t. Similarly,
Ty = t, vy Tp = t.

Qp

Since Ti(y1,...,yp) is primary, let ayi® ---yp" and by|" -- -yg" be two terms of
T1(v1, ---, Yp) With o and s not proportional to 81 and (3, ; that is oy fo— i # 0.
Without loss of generality, we may assume that o135 —31as > 0. Then oy > 0 and

B2 > 0. There are t* relations transforming y; and yo in Ty (yy, ..., y,) by primitive
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t-th roots of unity but there are only ¢ distinct 7;(y1, ..., y)’s. Then there must be ¢
ways which leave some Tj(y, ..., y,) invariant. Without loss of generality, we may
assume T;(y1, ..., Yp) = T1(y1,...,yp) by taking appropriate composite relations.
Let €%y, and €y, be any of the t operations which leave T} (yy, ..., y,) invariant.
Thus the congruences
a1t + azv =0 (mod t) , Biu +Fv =0 (mod t)
must have at least ¢ solutions (u, v) with 0 < w,v <t. Any solution of the above
congruences is also a solution of the congruences
(1 fBy = fraz)u=0 (mod t) (8)
Bov = —[(iu (mod t). (9)
Let h be the greatest common divisor of (a3 — fiag) and t. Then (8) has
precisely h solutions in u. Let k& be the greatest common divisor of (3, and t.
Then for each u satisfying (8), the congruence (9) has at most k solutions in v.
Thus hk > t, so that either h > t2 or k > ts. Finally, we show that for each
i =1,..,p, we have t; < 0™ where ¢ is the degree of Q(y1,...,y,), which will
imply that the set of all (¢, ...,¢,) is finite.
Case 1. h > t%, then a3y > a1 Bs — Brag > h > t2. Thus oy > ti or By > ti.
Case 1.1. a; > ti, let a be the degree of y; in T'(yi,...,y,). Then by (7),
t-a>t-ap > t-t%, and so a > ti. By Lemma 1.4.2(b), a < 0 where 0 is the degree
of Q(y1,-..,yp). Thus ¢ < §*. By Lemma 1.4.2(c), % >'57P and so t; < 6Pt for
alli =1,....p.
Case 1.2. 35 > t%, by similar argument, ¢; < 67+,

Case 2. k > t%, then Gy > k > t > t7. Then we are led to Case 1.2. ]
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1.5 Main theorem

Definition 1.5.1. For any Fi(z), Ex(z) € &, we say that F(x), Ex(z) are rela-
tively prime if they have no common divisor in £ except 1.

Lemma 1.5.2. Let Ei(z) = 1+ Zaif(ozix), Ey(z) =1+ Zbif(ﬁix) and
i=1 i=1

Es(x) =1+ Z ¢if(vir) be elements in £ with ey, 51 and v, strictly positive.
i=1

If Ey(x) | Ex(x)Es(x) and E(x), Ex(x) are relatively prime, then E)(z) | Es(x)

Proof. Assume that Fy(x)Es(x) = Ey(2)Es(z) for some Ey(x) =1+ i d; f(0;x)
in £. Since aq, (1,71 are strictly positive, d; is strictly positive. By Leiljllma 1.2.2,
for each ¢ = 1,...,4, E;(2) has a Q*-base for the RE-coefficients. Let {yu1, ...,y }
be a largest Q*'-linearly independent subset of the set of elements in Q'-base of

all E;(x)’s. Hence
n p
Ey(z) =1+ > aif(O qim)r),
i=1 =1

Ea(w) =1+ Zbif((zpijﬂj)@a
Es(x) =1+ Zcz'f((z kijuj)r)  and

m p
Ba(a) = T4 & F(O i),
i=1 j=1
where ¢;;’s, pij’s, kij’s, l;;’s are nonnegative rational numbers. Let ¢; be the least

common multiple of the denominators of nonzero g¢;;, pi;, ki; and ;. Then

Eiw) =1+ Y aif (O ati ),
i=1 j=1 J

Ey(z) =1+ Z bif((zpijtj%)x)v
i=1 j=1 J

Bs(x) =1+ af(>] kz‘jtj%)x) and
i=1 j=1 J

Eila) =1+ Y dif (Y lit;f)e)

Replacing f(%2x) by y; in E;(x), we obtain a polynomial Q;(y1,...,y,). Hence
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Q1Q4 = Q2Q3 ; that is, Q1 | Q2Qs. If there is a nonconstant common factor,

P(yla "'7yp)a Of Ql(yh '“7yp) and QQ(yla "'7yp)ﬂ then EP(f(%x))’ "'7f<l;_§x))7 RES

corresponding to P(yi, ..., y,), is a nonconstant common factor of E;(z) and Ey(x),

which is a contradiction. Thus Q1 (v, ..., Yp), Q2(v1, ..., yp) are relatively prime as

polynomials, and so Q1(y1, ..., Yp) | @3(y1,-..syp) implying E;(z) | E5(x). O

We are now ready to prove our main theorem.

Theorem 1.5.3. Every RES of the form

I +ayf(onz) 4+ ... + anflanz),
with a; # 0 and oy strietly positive, can be uniquely expressed as a product
(5’152 = SS)(]1]2 2 .]i),

where S1,..., S are simple RES’s such that the RE-coefficients in any one of
them have irrational ratios to the RE-coefficients in any other, and I, ..., I; are

irreducible RES’s.

Proof. Let {pu, ..., iy} be a QT-base for {a, ...,a,}. Then
n p
r) =1+ Zaz’f((z qijltf) @)
=1 —l—Za,f qul ,u]

where g;;’s are positive rational numbers and [; is the least common multiple
of the denominators of ¢;;, ¢« = 1,...,n. Replacing f(%%l:) by v;, we obtain the
polynomial corresponding to E(z), Qg(y1,...,yp). We resolve Qg(yi,...,y,) into
irreducible factors with constant term 1 and separate these factors into two groups.
The first group contains irreducible factors consisting of two terms which will be

proved in step 1 that they offer the simple factors 57, ..., S5 and the second group
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contains the rest which will be proved in step 2 that they provide the irreducible
factors I, ..., I;.

Step 1. For each irreducible factor consisting of two terms T'(yi,...,y,) =
1+ ayl---y7, veplacing y; in T(y1,...y,) by f(‘;—jx), we get a simple RES 14
af((ti + ... + tp’;—;’)x). Partition the set of these simple RES’s into sets such
that the RE-coefficients of the RES’s of any one set have rational ratios to one
another, but have irrational ratios to the RE-coefficients of any other set. Then
the product of the simple RES’s in each set is also a simple RES. The simple
RES’s, so obtained, form the required simple RES’s 51, ..., S,.

Step 2. For each irreducible factor consisting of three terms or more
U(yry - yr); 7 < p, we rewrite Uy, ..., yr) as V(yi", ...,y ), where V(yi, ..., y,)
is primary. Then V(yi,...,y,) is irreducible. By Lemma 1.4.3, there exist only a
finite number of set of positive integers ¢y, ..., ¢, such that the irreducible factors
of P(y%,...,ytr) are primary for all P(y1,...,yr) € Flys;...,y,]. Let ty,....t, be
natural numbers arisen from the factorization of V (3!, ..., y’") with a maximum
number, q, of irreducible and primary factors. Let

V) = Vi) Va(gs o). (10)
We claim that the RES’s, obtained by replacing each y; in Vi (y1, ..., Yr), ...,
Vi(y1, .., yr) by f(%ﬂ%fx), are all irreducible in &.
Suppose on the contrary ‘that at least one of them is not irreducible, say

‘/l<y17 sy yr)) Let

ViFCEE ) SO TE0) = (14 3 ef () (L4 3 dif (Bir).
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By Corollary 1.2.6, 7;, §; are Qg -linear combinations of &’s. Thus

:(1—}—230z Zq;]lzj
1+de Z d5'7))

for some q;;, q;; € Qg . Let h; be the least common multiple of the denominators

Of G, - Gy Q> > Q- Replacing f (1) by yi7, we get

Vil " g ) = <1+i@ﬁy§§j J +Zd qu” )
= 41

myhy myhy

Thus mtl—lhl, s mt’“—m are positive integers making Vi(y, ™ ...,y ™ ) reducible.
T
lmm My myhy mphy myhy myhy
31 t N/ 31 t ty t
From(10), V(y, s T = Vil ey ) Vollyr Tt e )

contains more than ¢ primary irreducible factors, which is impossible.
To prove the uniqueness, assume that (S ---Ss)(I; «- [;) and

(Ty---T3)(Jy - - - Jj)are two factorizations of E(x). Thus (Sy---Ss)(L1---1;) is
divisible by Jy. If Jy | S; for some [, then J; is a simple RES, by Corollary 1.2.5,
which is a contradiction. Thus Jy+| (I;---1;). ;| I, for some [, then J; = I
which implies that we can cancel out all these identical irreducible factors. Having
done so, it follows that i = j.and {I;,...,[;} is-a permutation of {J1,..., J; }.
Since Ty | Sp - -+ Ss, 1t follows from Lemma 1.5.2 that a factor of T} is also a factor

of, say S1. Then we can write

T, = FiT]
Sl - Fl Sia
where F} is a common factor of 77 and S; and 7] and S} are relatively prime.

By Lemma 1.2.4, ¢;(s-index of T7) = (s-index of F}) = [ (s-index of S;) for some

q1,11 € Q. Assume that 7] and some S;, say Sz, have a common factor. Write
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T! = BT

SQ - FQSéu

where F, is a common factor of 7] and Sy and 77" and S} are relatively prime. Thus
¢2(s-index of T7) = (s-index of Fy) = ly(s-index of Sy) for some go,l5 € Q. Then
l1g2g3(s-index ofS7) = qags(s-index of F}) = ¢1¢aq3(s-index of T1) = ¢1¢o(s-index
of T]) = q1(s-index of Fy) = lsqy(s-index of Sy) for some g3 € Q. Consequently,
s-index of S] = ¢(s-index of Sy) for some ¢ € Q, which is impossible. Thus 77 | S;.
Similarly, S; | 71. Then S; = 7. Continuing in this fashion, we have {Sj, ..., S5}

is a permutation of {7y,...,T}}. O

Definition 1.5.4. For any elements o = 10, +...+7r,,0,, and 8 = 10, + ...+ 5,0,
in R, we say that « is strictly less than 7 if r; < s;.
n
Corollary 1.5.5. Let E(x) = Zaif(ai:r). If a is strictly less than ag, then
i=0

E(z) can be uniquely expressed as a product
0(5152 g Ss)(I1I2 P Ii) )

where c is a constant RES, 51, ..., S are simple RES’s such that the RE-coefficients

in any one of them have irrational ratios to the RE-coefficients in any other, and

I, ..., I; are irreducible RES’s.

n

Proof. ‘Let E(x) = Z a;f (e;x). Then we can write F(z) in the form
i=0

aof(cox)[1 + Z(Z—;)f((ai —)z)], @< <..<ay.

Since o is strictly less than «g, oy — «q is strictly positive. By Theorem 1.5.3,
1+ Z(&)f((ai — ap)z) can be factored in the form
-1 0
(Sl"‘Ss)(Il“'Ii> (11)
where S, ..., 5 are simple RES’s such that the RE-coefficients in any one of

them have irrational ratios to the RE-coefficients in any other, and I, ..., I; are
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irreducible RES’s. If oy = 0, then agf(apx) is a constant RES, and we are done.
For the case ag # 0, agf(apz) is a simple RES. If apg = go(s-index of S;,) for some
jo=1,..,s and gy € Q, then S;, = aof(ar)S}, is simple, so the factorization
obtain by replacing S;, by Sj, in (11) is the factorization needed for E(z). If
ap # ¢(s-index of S;) for all j = 1,...,s and ¢ € Q, then S;11 = aof(aox)
is a simple factor of E(z) and E(z) = (Sy+--SsSs41)({1---1;) is the required

factorization. N



CHAPTER II

Shapiro’s factorization theorem

2.1 Backgrounds

Lemma 2.1.1. Let F(z) = Z Pi(x)A?(x), where A; € C~{0}, P;(z) € Clz]~{0}
i=1

and Q(x) € Z[x] \ Z. If F(z) = 0 for all sufficient large integers x, then there

Aig

exist g, jo, 1o # Jo such that | % = 1.
Jo
Proof. Suppose that % #1 for all i # j. Let Q(z) = cppa™ + ... + co, ¢ # 0,

and let Z = {z € Z | F(xz) = 0}. Without loss of generality, arrange the A;’s so
that |4;| < ... <|A,|. Assume that ¢,, > 0. For z € Z,
X a8 An—— X
0= 8 = P@)(£)00 4+ Py (@)(452)°) + Po(w).

The limit on the right hand side does not exists, which is a contradiction. The

case ¢, < 0 is similar. O

= 1,72 # j. This leads us to

From Lemma 2.1.1, there exist 2,7 such that %
J

consider an expression, called a pexponential polynomial, of the form

E(z) = [Pou(2)p” + Poa(z)p” + ...
[Pi(2)p5" + Pia(a)p5™ + ...
[P21($)P2Q1(x) + P22(95)P2Q2($) + ...

[P () p2% + Pro () p2 + ..,

+ Pong (@), 1457+

0

+ Proy () p 1A 4

+ Pop, () pet 1 AZW) 4 Lt

+ Prony (1) AR,

where p;; is a d;;-th root of unity, piy = 1, P;;(z) € Clz] \ {0}, Q(z) € Z[z] \ Z,

Ai e C~ {O}, AO =1 and |A0| < |A1| < < |Ak|
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Rewrite F(z) = zk: Fi(z), where F;(x AQ(w) Z Pj(x pm

Let S; = {pi1, piQ,ifi pin,} and define the rank of F (x) to be the least common
multiple of the order of the roots of unity in S; and the rank of F(z) to be the
least common multiple of the ranks of F;(x), i =0,1,..., k, denoted by R(F).

Let F(x ZAQ(x Z T pg( “ be'a pexponential polynomial. If each
Py(z) € Qla] ~ {0}, loa(gede) € T S {0}, Q) = 0 and Q'(0) # 0, then F(z)
satisfies the result of the Skolem-Mahler-Lech theorem (Theorem 2.1.2), and will
be called an SML pexponential polynomial and denoted by SML-pex. This
particular shape of SML-pex will be kept standard throughout the rest of this
chapter.

Let V denote the set of all nonzero SML-pex F(z) with infinitely
many integer zeros.

Theorem 2.1.2. If F(z) € V, then there exist an integer A and a certain set
{dy, ..., d;} of least positive residues modulo A such that F(z) vanishes for all
integers * = d; (mod A), j = 1,....[, and F(z) vanishes only finitely often on

other integers.
Proof. This is proved in [1]. O

The integer-A; which appears-in Theorem 2.1.2 s calleda period of F(z).
In fact, any multiple of a period is also a period. We shall call the least positive
period the basic period of F(x).

For any F(x) € V with a period A, we shall denote by P(F,A) the set of all

least positive residues di, ..., d; modulo A mentioned in Theorem 2.1.2.
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2.2 Lemmas and factorization theorem

Lemma 2.2.1. Let F'(x) € V. Then for each i = 1,2, ..., k, Pij(x)pg(d) = 0.

j=1

Proof. Let 3 € N. Substltutmg x = tpA + d where t € Z and d € P(F,A),
A;

we get 0 = % = Z(Ak)Q(tﬁA+d) ZP tﬁA—i—d) tﬁAer))’ Ay = 1.

Assuming that the leading coefficient of Q(z) is positive ; the other possibility is

n
treated similarly, then Z Pyi(tBA + d)kaj(tﬁAM) — 0, as t — oo. Taking t = udy,

=T
where u € Z, u — 00

and 0 = l.c.m.(0k1, Oka,+--, Okny ); We obtain Zij(u5kﬂA+d)pgj(d) — 0. The

Y

polynomial ZP’W pk]( ) tending to 0 as # — 00 on Z implies that it must
7j=1
vanish identically, and so

k -
0 = F(udpBA +d) = Z AZQ(“‘WM"Z)(Z Pyj(udyBA + d)p@0 82+

Repeating the above steps again, we have

k—1 n;
m Az w - U
0= jéé‘;f/it‘i% _ Z(Ak 1)Q( 6kﬁA+d)(Z (u6k6A+d) Q( 5kﬁA+d))
k=1 i=0 - j=1
Nkg—1
Thus > Plep); (udpBA + d)pgff';fMd) — 0, as U= oo.
§=1
Taking u = vép_1, v € Z,v — o0 and 6,_; = l.cm.(Sp=1)1, -, O(k—1)n,_,)> then
NE—1 NE—1
Z Pl—1)j(v0r_16,8A + d) %(dm — 0, as v — 00, S0 Z P(k_l)j(a:)pgffl)l)j =0.
Jj=1 j=1
Continuing in this fashion, we get Z Pj(x pu( ) =0 as required. O]
j=1
Let F(z ZAQ ZPZ] 2)p2”) € V, d € P(F,A) and § € N. Define
Rpa(z) = Q' (d):L’ + Ll 26A + ..+ Q( ™ x™(BA)™! abbreviated by R(x).

By hypothesis (Q, A, d, 3), we mean :
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(1) For Jii, ..., Jgi, with pfit = My, # 1 (t = 1,..., 1), assume that there

exist integers jgi, ..., jki, such that

1 1 o 1
R(jk1) R(jr1)

1 nkJﬁfl e Uk],zlkkl £0
R(jr1,,) R(jk1,)

e kaflk o leJklkk

(2) For J(kfl)h J(k~1)lk , with P k DI 1y M(k=1)T (1) #1 (t =1, ~-~>lk—1)7

assume that there exist integers jg.—1)1, ..., J(k—1)1, , such that

1 1 4 1
1 R(J(k=1)1k) R(j(r—1)10%)
FE—Tx—vr k=1 Jk=1yi,
S
1 R k-1t Ok) R(j(k—1)1;,_, O%)
n(k—l)J(kqn p— n(k_l)*](k—l)lk_l

where 0 = l.e.m.(0k1, ..oy Oy )-

(k) For Jiq, ..., Jy, with p’fﬁt =, 71 (t=1,...1;), assume that there exist

integers ji1, ..., j1;, such that

1 1 LA 1
1 R(j1162-:-0k) R(j11,02°0)
1J11 - | ].Jl
117 # O
1 R(j11, 02°++0k) R(j11,62°+0k)
771J11 tee nlJlll

Lemma 2.2.2. If F(x) € V satisfies the hypothesis (Q, A, d, 3), then for each

1=1,...,k, we have

0= Z P ng Z RJ pz]( ) and ‘PiJil (LL’) = PiJili (.73) =0
ﬁA J#Jit
Py =1

Proof. Substituting x = tGA + d, where t € Z, we get
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k

E d A " Q BQ-i—d
ﬂA—l— (2 (/) 3A+d
1=0

S

7=1
Assuming that the leading coefficient of Q(x) is positive ; the other possibility
Q(

is treated similarly, then Z Py (tBA + d)py tBA+d)

7j=1
t = udg + jr1, where u € Z and 6 = L.e.m.(0g1, Ok2, -, Okny, ), WeE get

— 0, as t — oo. Taking

ng
Z Prj((udy + jr1) BA + d)kaj((ua’“ﬂ’“)ﬁAer)

J=1

= [Z Prj ((udy, + jr1) BA+ d)Pijd) Z Pri ((wor + ji1)BA + d)pkj d)nli(ml)]

j#Jkt =Y

— 0, as u — oo.

Being a polynomial tending to 0 as the variable taking arbitrarily large integral

values, we deduce that

Q(d)_R(
Z Pyj(x pk] Z Byj( pkz )nkyjkl)] =0.

J# Ikt J=Jkt
Continuing in this fashion, we obtain
d) d)_R(j
PIFIC pfj (2 Pl ng”) =0 1)
I# Tkt J=Jkt
(3" Pu@t @141 Pyl@)pdnfi= ) = 0 2)

J# Ikt J=Jkt

R(jwy,)
Z Pk‘] pk] Z Pk‘] pk] kjjklk ] = 0. (lk’)

J=Jkt
By Lemma 2. 2 1 We also have
d)
Z Pj(x pff Z Pyj(x pk] = 0. (le+1)
J# Ikt J=Jkt
Since the determinant
1 1 1
R(jr1) R(jk1)
1 nka’fl . Ukjkfkl 20,
R(jr1,) R(jr1,.)
1 nkjkflk ce ka:k
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it follows that Z Pyi(z pkj =0 and Py, (z )pg} ) = 0, ie. Pyy,(z) =0 for all

t=1,..1; that is, the result of the lemma holds for i = k. Observe that under

the hypothesis (@, A, d, 3) what we have done above is to reduce the number of

terms in the sum representing F'(x) by choosing appropriate integral values of z.

We now repeat the steps by taking x = wdpBA + d, u € Z. Thus

k—1

Q(udrBA+d)
At

Nk—1

Then Z Pre—1)j (udgBA + d)

j=1

Taking u = v0p—1 + Jg—1)1, where v € Z and 61 = L.c.m.(O(e—1)1

we get

Nk—1

Z Pre—1); (v0h—1 + J=1)1)0rBA + d)

i=1

—
A
=0

j=1

u5k6A+d) — 0, as u — 00
, )

U5k 1+i(k—1)1)0kBA+d)

> P8y +jp-)BA + d)pf ] +

J#I (k—1)t

[ > Puu(

J=J -1yt

— 0, as v — oo.

R )
(vOk_1 + Jk— 1)1)(5kﬁA + d)pgc(dnﬂ?(k(j(f) 11 k)]

As polynomials, we infer as above that

Z P(k—l)j($ kl)]

J7EI(k—1)¢
and so
Q(d)
Z Ple—1);(2)p Pk 1)3
J#EI(k—1)¢
Z P(k—l)j(x k 1)3
J#EI(k—1)¢

Q(d
Z P(k—l)j( Pk 1)]

JEI k1)t

Q(d R(j(k=1)10k)
Z P 0/ (@) pg i =0

J=J—1)¢
19
Z Pk 1 ( )) n(k(J(lk) 11 k)] -0
J=Jk—1)¢
R é
[ Y Poons@eGymas, " =0
J=J(k—1)t

Z Ple_1) Q(d) 'nR(j(kil)lkiltsk)] _o

Pk—1)"k~1);
J=J k1)t

Q(u&kﬁAer)(Z P@J(U&gﬁA + d)pg(j6k6A+d)).

PR 6(k—1)nk_1>7

(1)
(2)

(lk-1)



30

Z Pi—1);( Z Pi—1);( ()]_0- (lg—1+1)

J#I (k—1)t J=J k1)
Since the determinant

1 1 o 1
1 R(j(k—1)1%) R(j(k—1)10%)
(k‘fl)J(kfl)l P (kfl)t](kfl)lkfl # 0
R(J(k—1)1;,_, %) R(J(k—1)1,_, %)

1 n(kfl)J(k—m - n(kfl)‘](k—l)lkil
) d d
it follows that Z P(k—l)j(x)/)gc(_)l)j =0 and P—1y75,_,, (q:)p(c;l(_)l)(](kil)t =0 for

J#I(k—1)t

allt =1,...,lx_1, i.e. the result holds for i = k — 1.
Continuing in this pattern, we get the desired result. O]

Lemma 2.2.3. Let F(z) € V, d € P(F,A) and § € N. If F(z) satisfies the
hypothesis (Q,A,d, 3), then F(x) = Y Pii(x)p;; @ eV, i=1,..,k with a

]#Jzt
period BA.

Proof. By Lemma 2.2.2 Z Pl pg(d) = 0. Replacing « by ufBA + d, u € Z,

J#Jt

we obtain, for all 4, 0 = Z P,i(uBA + d)pg(d) = Z Pi(uBA + d)p?f“ﬂAM) =
VED J#J

FP(uBA + d). O

Lemma 2.2.4: Let G(z) = [Pi(2)pfY + Pa(a)pS" & .. + Po(2)p?™) A2C) be
an element in'V-with order of p; = d;, P;(x) # 0. (3= 1,w.,n).If G(x) satisfies the

hypothesis (Q, A, d, 1), then l.c.m(dy, ..., 0r,) | A where m is the number of p;’s in

Gl(:v) — AQ) Z Pj(ﬂﬁ)p?(x).

Jp5=1
Proof. Since p = 1 for all p; in GY(z), & | A (i = 1,..,m), and so

lem. (61, ..., 0m) | A. O

Theorem 2.2.5. Let F(z) € V with the basic period A and rank r(F). If F(x)

satisfies the hypothesis (@, A, d, 1), then
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Fz)={ J[ 0% —n?9)}G (),
deP(F,A)

where 7 is a primitive A-th root of unity and G(x) is a pexponential polynomial.

Proof. Recall that F(x ZF ZPM 2)p2™), and Fl(z) ==

AP Py()pd?) = AQ x)(Z(same)). By Lemma 2.2.2, Fy(z) = F}(x).
By Lemma 2.2.3, F;(z) = F(z) € V with a period A, and so Lemma 2.2.4 implies

r(Fl) | A, ie. pijis a A-root of unity. Rewriting F}'(z) as a polynomial in z with
exponential coefficients, we have Fl(z) = AZ-Q(I)(Z &t (o7 + . —l—pitpg(z))),

t
and p =1 (j =1,....,5). Foreach d € P(F,A) and u € Z,

0= F'(ul+ d)

= AP (A 4 @) (prpP Y L+ pp 2T

v

= AP S WA + ) (prpp? + .+ pap ).

t

Q(d)

Thus for each ¢, py,p; Q)=

+ ..+ pip; T = 0. Let  be a primitive A-th root of
unity. Then p; = 1™ for some k; € N. Hence
P @D L p @D =0

that is, 9@ is'a root of H;(y) = p1,y* + ... +pityk"t. Thus

={ II ¢ N}Gily),
deP(F.A)
where G(y) is a polynomial. Hence

A (3 4 1, ()
t
T 09 =2y G
t

deP(F,A)

and so F(x) = { H (n@ — ZAQ thG O

deP(F,A)
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