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CHAPTER I

Introduction

A multilayer feedforward neural network (MFNN) [1, 2] is a popular tool for pattern

classification. It typically comprises several layers of interconnected neurons, each of

which outputs a value by applying a nonlinearity to a weighted sum of the input. The

hyperbolic tangent, tanh, and the sigmoid, 1/(1 + exp(−x̂)), are the most commonly

used nonlinear activation functions. A simplified tanh (or sigmoid) function, referred to

as tanh-like (or, correspondingly, sigmoid-like), is often used in practice, especially in

hardware implementations, to reduce the complexity of the forward phase of the network

computation [3–7]. The tanh-like function is monotonically increasing on a finite interval

(a, b); this interval is the unsaturation or active region of the function. If the activation

value, x̂, is less than or equal to a, the function is saturated and outputs −1 (or zero),

while if the input is greater than or equal to b, the function is also saturated and outputs

+1.

Some examples of the simplified activation functions are the lookup table (LUT) [6],

an adaptive polynomial (AP) [7], a second-order polynomial [3, 4], and an adaptive

Catmull-Rom spline (CRS) [8,9]. Each of these functions comes with its own drawback.

The LUT not only needs a large memory space for storing its outputs, it also quantizes

the activation function. The quantization errors can reduce the network performance.
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The CRS only needs to store its adjustable controlling points so that its memory re-

quirement is less than that of the LUT. Nevertheless, the network capability depends

on the size of the table which must be chosen carefully. An AP neural network could

have problems due to local minima and numerical instability, especially in high-degree

polynomials. Even though a second-order polynomial requires less amount of computa-

tional time and realization components than other methods, the training process either

converges slowly or fails to converge.

1.1 Motivation

The motivation regarding to simplified activation function can be drawn from the fol-

lowing example. We want to compare networks with some of the existing simplified

activation functions [3, 4] to a trained network with the actual tanh as the activation

function. Fig. 1.1 shows the decision boundaries in the two-spiral problem of four differ-

ent two-layered feedforward networks. Each network has two nodes in the input layer,

30 nodes in the hidden layer, and one node in the output layer. This is a very compact

structure for performing the two-spiral classification task [10]. To demonstrate the effect

of the activation functions, every network uses the same weight vector and uses tanh

as the output activation function. The only difference is in the activation functions in

the hidden layer. Fig. 1.1(a) shows the decision boundary of the network with tanh

in the hidden layer. Figures 1.1 (b), (c), and (d) show the decision boundaries of the

networks with polynomials of degrees two, five, and eleven, respectively, as the hidden

layer activation function. We can see that only the network shown in Fig. 1.1(a) yields
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the correct classification results. Furthermore, it is clear that the decision boundaries

are totally different, even though the activation functions differ only slightly (see Fig.

3.2).

From the previous example, we see that we cannot train a network with a particular

activation function and implement the network with a simplified function. The logical

procedure is to train a network with neurons equipped with simplified activation func-

tions. Nevertheless, from our observations, training a network with tanh converges faster

than the network with the same structure but having tanh-like activation function in the

hidden layer. The reason is that, during training, some of the activation values fall be-

yond the unsaturation regions. In the saturation regions, the derivative of the tanh-like

function is zero so that the weights are not changed. In the original sigmoid and tanh

activation functions, their derivatives in the saturation regions are small, but nonzero,

so that even when learning is slow, it is not halted. Nevertheless, this phenomenon of

“false local minima” [11] or “error saturation” [12], can be addressed by decreasing the

slope of the activation function in order to extend the active input region [11], or by

adding an error function in order to increase the gradient value [12, 13]. We propose

another approach so that the activation value will be decayed if it is outside the active

region.

1.2 Objectives

In this dissertation, our objectives are as follows:

1. To develop a class of low computational complexity sigmoid-like activation func-
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tions to replace the logistic sigmoidal function and the hyperbolic tangent function

of the feedforward multilayer perceptron;

2. To propose a training algorithm for enhancing the generalization capability as well

as the rate of convergent training of a network based on the proposed activation

function.

1.3 Scope of Work

An investigation was constrained on a three-layered feedforward network. The cause and

effect of the deterioration of the existing training algorithm due to the use of sigmoid-

like activation function have been solved. The network with the proposed activation

functions have been applied to the classification benchmark problems. The following

classification problems have been considered: the Sonar [14], the encoder60 and en-

coder120 [15], the higher order parity problem (8-bit [10] and 9-bit [16] parity) and

two-spiral [14] problems. The data sets corresponding to these benchmarks, but the

encoder60 and encoder120, are publicly available from the CMU Repository of Neural

Network Benchmarks at http://www.boltz.cs.cmu.edu.

1.4 Contributions of the Dissertation

In this dissertation we instantiate the solutions of the above objectives in a novel method

for a neuron construction that using the recursion process of a parametric piecewise

polynomial.

The proposed functions have several interesting features:
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• they are easily to compute;

• they retain the squashing property of the sigmoid; and

• they are easy to implement both in hardware and in software.

And we proposed a modified error function to sense the degree of saturation of the

hidden layer’s neuron. Furthermore, the proposed construction process can be extended

to construct a class of low complexity RBF-like neuron efficiently.

1.5 Situating the Work Relative to Existing Related Works

The proposed functions are built upon a p-recursive piecewise polynomial. The key

contribution of the proposed neuron is its low complicated tanh-like function. Typical

use of the tanh-like function replaces the higher complicated tanh or sigmoidal function.

The recursive polynomial-based neural networks (RPPNNs) are designed by using a

neuron called the p-recursive piecewise polynomial (p-RPP) sigmoid-like function. The

basic network scheme is, therefore, similar to the classical multilayer perceptrons (MLP)

structures, but with simplified nonlinear sigmoidal activation functions. The weight

adaptation algorithms are based on iRprop+ [17] or SARPROP [18] algorithms with

the inclusion of an additional annealing anti-Hebbian rule [19] showing up from the

formulation of the training with the sum-squared post synaptic of the hidden layer.

Since the active region of the function can be extended by a specific parameter

corresponding to the degree of the polynomial while the slope of function is slightly

altered, a proper p-RPP neuron of a training network can be selected to fit with the

task. Regardless to the activation function used, the novel modified error function shows
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that the anti-Hebbian is a source of aid to help the weight adjustment procedure escapes

from the error saturation situation. According to the use of the derived anti-Hebbian

rule combining with the existing weight decay term as the penalty function, not only

the convergent rate and the success training rate but the generalization of the trained

network are also significantly increased.

1.6 Dissertation Organization

The rest of the dissertation is organized into five additional chapters. Chapter 2 intro-

duces the sigmoid-like functions. Chapter 3 presents the p-recursive piecewise polyno-

mial neurons. Chapter 4 introduces the p-recursive piecewise polynomial networks and

training algorithms as well as the experimental results. Chapter 5 generalizes the modi-

fied error term in Chapter 4 and experimentally shows the improvement of the training

algorithms. Chapter 6 discusses and concludes the dissertation.
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(a) (b)

(c) (d)

Figure 1.1: Panel (a) shows the decision regions of a network using hyperbolic tangent
function as the activation function of the hidden and output layer. Panels (b), (c), and
(d) show the decision regions of the network using the same weights as the network in
(a) while their activation functions in the hidden layer are replaced by degrees 2, 5,
and 11 polynomial tanh − like function (The detail of each function is in Chapter 3.),
respectively.



CHAPTER II

Neuron and Activation Function

In this chapter, the mathematical model of neuron will be presented. Some of sigmoid-

like activation functions constructed from a look-up table and a polynomial degrees

two will be discussed. The methods related to the convergent rate enhancement and

generalization enhancement are shifted to the related chapter.

2.1 A Neuron

In neural networks, computational models or nodes or neurons are connected through

weights that are adapted during its training to improve the performance. The simplest

node provides a linear combination of N weights w1, . . . , wN and N inputs x1, . . . , xN ,

and passes the result through a nonlinearity f , as shown in Figure 2.1.

In our work, the term neuron will refer to the McCulloch and Pitts neural model [20] which

is an operator performing the mapping

Neuron : ℜN+1 → ℜ (2.1)
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as shown in Figure 2.1. The activation value x̂ is is computed by

x̂ =

N∑

i=1

wixi + w0 (2.2)

where the input vectors of the neuron is given by x1, . . . , xN . Whereas w = w0, w1, . . . , wN

is referred to as the weight vector of a neuron. The weights w0 is the weight which cor-

responds to the bias input, which is typically set to unity. The output of neuron y is

computed by

y = f(x̂) (2.3)

The activation function f is a mapping. The hard-limiter Heaviside (step) function

was frequently used in the first implementations of neural networks, due to its simplicity.

It is given by

H(x) =






0, x ≤ ζ,

1, x > ζ,

(2.4)

where ζ is some threshold. However, this one is not differentiable means that the

gradient-based training procedure can not be applied.

The S-shaped function f is a mapping from ℜ to (0, 1) and is monotone and con-

tinuous. The hyperbolic tangent, tanh(.), and the logistic, 1/(1+exp(-x)) are the most

commonly used. Their graphs and derivatives are depicted in Figure 2.2. However, tanh
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can be computed from the logistic function by

tanh(x) =
2

(1 + exp(−x))
− 1, (2.5)

which is more simpler.

1


x
^

f(   )
x
^


y=f(   )
x
^


w
0


w

1


w

n


in
p
u
t


x

1


x

n


Figure 2.1: Connection within a node
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Figure 2.2: Sigmoidal functions. (a) Tanh. (b) Logistic.
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2.1.1 Sigmoid-Like Activation Function

In our work, the term sigmoid-like will refer to an approximating of tanh or logistic

function. A simple method of sigmoid-like implementation is a look-up table (LUT).

For neurons based upon look-up table (LUT), samples of a chosen activation function

are put into a ROM or RAM to store in the desired activation function. The size of

table depends on the precision of sampling. A LUT based neuron is depicted in Figure

2.3.
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Figure 2.3: LUT.

Alternatively, simplified activation functions are used to approximate the chosen

activation function which consume less processor time and memory. Thus, for instance,

the sigmoidal curve can be presented by a polynomial function of degrees two, due to

its simplicity of coefficient selections and small number of nonlinear curvature segments.

The domain of function is divided into two parts. Each part is represented by a second-

order function. The sigmoidal-curve is, then, completed by joining both parts which
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includes a smooth sigmoidal-curve.

There is an intensive reviewing of neuron constructions in chapter 4 of [21]. An

example of a second-order function is described in the Section 2.1.2.

2.1.2 Second-Order Activation Function

We review from a simple second-order nonlinear patch curve which has a tanh-like tran-

sition between the lower and the upper saturation regions given by [3]:

g(u) =






1, for u > 1

u(β − θu), for 0 ≤ u ≤ 1

u(β + θu), for − 1 ≤ u < 0

−1, for u < −1

(2.6)

g′(u) =






β − 2θu, for 0 ≤ u ≤ 1

β + 2θu, for − 1 ≤ u < 0

0, otherwise

(2.7)

The shape of the sigmoid-like curve are determined by β and θ. The nonlinear region

is in the interval of u ∈[-1, 1]. Hence, a sigmoid-like symmetric function F (x̂) and the

derivative F ′(x̂) can be defined by

F (x̂) = g(
x̂

L
) (2.8)
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and

F ′(x̂) =
1

L
g′(

x̂

L
) (2.9)

where L represents the threshold on x-axis. The non-symmetric version of these functions

are f(x̂) = 1
2
F (x̂) + 1

2
and f ′(x̂) = 1

2
F ′(x̂), respectively.
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Figure 2.4: The second-order sigmoid-like activation function and the gradient with
respect to the activation value. The parameters L, α, and β are 2, 1, and 2, respectively.

Since this function needs a very simple arithmetic operation, the computational

complexity is very low. Its shape is adjustable by changing the value of L whose value is

the half of the constructed nonlinear region. The graph of this second-order sigmoid-like

function and its derivative are shown in Figure 2.4.
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In the next chapter, we will propose a systematic construction of neuron. The fol-

lowing properties of function will be retained.

1. Computational simplicity: The design must be simple in a computational sense,

given its cost/speed implications. In this sense, the use of an interpolation funda-

mentally based on a polynomial function provides a very appropriate framework.

2. Programmability: The generating scheme must allow for the modification of the

parameters that define the shape of the sigmoid-like function.



CHAPTER III

The p-Recursive Piecewise Polynomial Neurons

In this chapter, we firstly describe a class of neurons that uses a parametric piecewise

polynomial as activation functions. We describe algorithms for generating the new ac-

tivation functions as well as their derivatives in Section 3.1. The reason for using a

simplified activation function is to reduce the amount of computation for the nonlin-

earity in a neuron. Accordingly, the comparisons of their execution times with other

implementations of the nonlinearities are in Section 3.3.

3.1 Neuron Construction

The p-recursive piecewise polynomial (p-RPP) neuron is a derivative of the piece-

wise second–order polynomials proposed by Kwan [3] and Zhang [4]. The second–

order tanh-like approximation can be implemented by dividing the active input segment

(−2, 2) as (−2, 0) and [0, 2). When the input goes beyond these two segments, the func-

tion clamps the output to values of −1 or 1. The piecewise second-order polynomial
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function is implemented as follows:

h(x̂) =






−1, x̂ ≤ −2,

−1 + (1 + 2−1 × x̂)2, −2 < x̂ < 0,

+1 − (1 − 2−1 × x̂)2, 0 ≤ x̂ < 2,

+1, x̂ ≥ 2.

(3.1)

Before we proceed to the discussion on the p-RPP neurons, we consider how well a

polynomial can be made to approximate the tanh function. In the range x̂ greater than

or equal to zero, from Eq. (3.1), the second-order polynomial approximates tanh(x̂) by

h(x̂)|x̂≥0 =






+1 − (1 − 2−1 × x̂)2, 0 ≤ x̂ < 2,

+1, x̂ ≥ 2.

(3.2)

Equation (3.2) can be generalized by the following general piecewise polynomial

model approximating tanh.

h(x̂)|x̂≥0 =






+1 − (1 − 2−(p+1) × x̂)n, 0 ≤ x̂ < 2p+1,

+1, x̂ ≥ 2p+1,

(3.3)

where p and n are the parameters. In order to look for their relationship, we compare

the parametric model with p = 0, 1, 2, and 3, and with n = 2, 3, · · · , 32. Fig. 3.1

shows the graphs of the piecewise polynomials when n = 2, 5, 11, and 23 for p = 0, 1, 2,

and 3, respectively. We can see that these curves are very close to the curve of tanh(.).

Following from the previous observation, the relationships of p and n are represented
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by Eq. (3.4) and the values of the threshold computed from different p are depicted in

Table 3.1.

n = (3 × 2p − 1). (3.4)

Table 3.1: Relationship of the parameters p, n, and Lp. Lp is the thresholds on x-axis
corresponding to p. If input of function is greater than or equal to Lp, output of function
is +1. From this data, n = (3 × 2p − 1).

p n Lp = 2p+1

0 2 2
1 5 4
2 11 8
3 23 16

Following from the prevoius discussion, we construct a class of tanh-like functions,

G, with the active input segments (−2p+1, 2p+1), p = 0, 1, 2, 3, as follows:

G(x̂, p) =






−1, x̂ ≤ −2p+1,

−1 + (1 + 2−(p+1) × x̂)3×2p−1, −2p+1 < x̂ < 0,

+1 − (1 − 2−(p+1) × x̂)3×2p−1, 0 ≤ x̂ < 2p+1,

+1, x̂ ≥ 2p+1,

(3.5)

Theorem 1. Function G is a differentiable function.

Proof. Let x be an input and p ∈ {0, 1, 2, 3} be the parameter of G, respectively. The do-

main of G comprises of four segments: (−∞,−2p+1), (−2p+1, 0), (0, 2p+1), and (2p+1,∞),

and three connecting points: −2p+1, 0, and 2p+1.
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Figure 3.1: The curves of x vs. 1−(1−2−(p+1)×x)n when n = 2, 5, 11, 23 for p = 0, 1, 2, 3,
respectively. If input of function is greater than or equal to Lp, output of function is
+1.

Case 1: x is in (−∞,−2p+1), G outputs -1. lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t
is zero.

Case 2: x is in (2p+1,∞), G outputs +1. lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t
is zero.

Case 3: x is in (−2p+1, 0), G is a continuous increasing function. lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t

is (3×2p−1)
2p+1 (1 + 2−(p+1) × x)3×2p−2.

Case 4: x is in (0, 2p+1), G is a continuous increasing function. lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t

is (3×2p−1)
2p+1 (1 − 2−(p+1) × x)3×2p−2.

Case 5: x is −2p+1. If ∆t < 0, lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t
is zero. If ∆t > 0,

lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t
is zero. So G′(−2p+1, p) is zero.

Case 6: x is 0. If ∆t < 0, x+∆t is in (−2p+1, 0). x is in [0, 2p+1). lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t

is (3×2p−1)
2p+1 . If ∆t > 0, x + ∆t is in (−2p+1, 0). x is in [0, 2p+1). lim∆t→0

G′(x+∆t,p)−G′(x,p)
∆t
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is (3×2p−1)
2p+1 . So, G′(0, p) is (3×2p−1)

2p+1 .

Case 7: x is 2p+1. If ∆t < 0, the lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t
is zero. If ∆t > 0,

lim∆t→0
G′(x+∆t,p)−G′(x,p)

∆t
is zero. So G′(2p+1, p) is zero.

Hence, from all cases, G is differentiable.

Since G is differentiable, from Theorem 1, differentiating G with respect to the input

variable x̂ can be computed by

G′(x̂, p) =






0, x̂ ≤ −2p+1,

(3×2p−1)
2p+1 (1 + 2p+1 × x̂)3×2p−2, −2p+1 < x̂ < 0,

(3×2p−1)
2p+1 (1 − 2p+1 × x̂)3×2p−2, 0 ≤ x̂ < 2p+1,

0, x̂ ≥ 2p+1,

(3.6)

3.2 Fast p-RPPs

With a fixed value of p, the number of multiplication operations in the realization of

G depends on the degree of (1 + 2−(p+1) × x̂), which is 3 × 2p − 1 and the number of

multiplication operations in the realization of G′ also depends on the degree of (1 +

2−(p+1) × x̂), which is 3 × 2p − 2.

Let φ(·, ·) be the basis function defined by

φ(x̂, q) =






0, x̂ ≤ −2q+1,

(1 + 2−(q+1) × x̂), −2q+1 < x̂ < 0,

(1 − 2−(q+1) × x̂), 0 ≤ x̂ < 2q+1,

0, x̂ ≥ 2q+1,

(3.7)
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where q is an integer 0, 1, 2, or 3. We can see that both G and G′ can be rewritten in

terms of φ as follows.

G(x̂, p) =






−1 + φ(x̂, p)3×2p−1, x̂ < 0,

+1 − φ(x̂, p)3×2p−1, x̂ ≥ 0.

(3.8)

G′(x̂, p) =
(3 × 2p − 1)

2p+1
φ(x̂, p)3×2p−2,

= (
3

2
−

1

2p+1
)φ(x̂, p)3×2p−2. (3.9)

A systematic procedure of raising φ to the power of 3 × 2p − 1 can be done in two

steps. First, transforming the term φ(x̂, p)3×2p−1 to an equivalent recursion g(x̂, p, n) is

given by:

g(x̂, p, n) =






φ(x̂, p) × φ(x̂, p), n = 0,

φ(x̂, p) × g(x̂, p, n − 1) × g(x̂, p, n − 1), n > 0,

(3.10)

where n is an integer ranges from zero to p. Therefore, the new form of G is as follows:

G(x̂, p) =






−1 + g(x̂, p, n), x̂ < 0,

+1 − g(x̂, p, n), x̂ ≥ 0.

(3.11)

where n = p.
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Second, transforming the recursion of g(x̂, p, n) to the loop invariance, which is sim-

pler. The pseudocode of this computation of G is shown in Algorithm 1.

Algorithm 1 Compute G(x̂, p)

Require: An activation value x̂, an integer p ∈ {0, 1, 2, 3}
Ensure: G(x̂, p)
1: if x̂ < 0 then
2: sgn := −1
3: φ := 1 + x̂/2p+1

4: else
5: sgn := +1
6: φ := 1 − x̂/2p+1

7: end if
8: if φ ≤ 0 then
9: G := sgn

10: else
11: g := φ × φ
12: for n := 1 to p do {loop invariant: g := φ(x̂, p) × g × g = φ(x̂, p)3×2n−1}
13: g := φ × g × g
14: end for
15: G := sgn − sgn × g
16: end if

The same procedure can be applied directly to G′ as follows:

G′(x̂, p) =
(3 × 2p − 1)

2p+1
φ(x̂, p)3×2p−2,

= (
3

2
−

1

2p+1
)φ(x̂, p)3×2p−2,

= (
3

2
−

1

2p+1
)g′(x̂, p, n), n = p, (3.12)

where

g′(x̂, p, n) =






φ(x̂, p), n = 0,

(φ(x̂, p) × g′(x̂, p, n − 1))2, n > 0.

(3.13)
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The term g′(x̂, p, n) can be also transformed to a simpler loop.

In the backward computation of the training procedure, both G and its derivative,

G′, are required. The pseudocode for computing both G and G′ is shown in Algorithm

2. Algorithm 1 is a direct implementation of G. Algorithm 2 is not only a direct

Algorithm 2 Compute both G′(x̂, p) and G(x̂, p)

Require: An activation value x̂, an integer p ∈ {0, 1, 2, 3}
Ensure: G′(x̂, p) G(x̂, p)
1: if x̂ < 0 then
2: sgn := −1
3: φ := 1 + x̂/2p+1

4: else
5: sgn := +1
6: φ := 1 − x̂/2p+1

7: end if
8: if φ ≤ 0 then
9: G′ := 0, G := sgn

10: else
11: g′ := φ
12: for n := 1 to p do {loop invariant: g′ := (φ(x̂, p) × g′)2}
13: g′ := (φ × g′)2

14: end for
15: G′ := (3

2
− 1

2p+1 ) × g′, G := sgn − sgn × g′ × φ
16: end if

implementation of G′ but is also an indirect implementation of G. The difference between

the two algorithms is in how the power of φ is raised to 3 × 2p − 1. The basis function

is the second-order polynomial: φ2; consequently, there is no loop to perform. If a

polynomial of a higher-order is required and is controlled by p, then the polynomial of

that order will be constructed by the loop invariance. We can see from both algorithms

that p represents the number of loops, and that there are two multiplication operations

in each loop. In Algorithm 1, the initial degree for g, which is a variable representing φ,

is 2. Suppose that the degree of g before the loop begins is n, it will be 2n+1 when each
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iteration of the loop is performed. After the pth iteration has been done, the degree of g

or, equivalently, the degree of φ will be 3 × 2p − 1. Whereas, in Algorithm 2, the initial

degree for g′, which is also a variable representing φ, is 1. The degree of g′ is added by

one and then is doubled per iteration of the loop. Once the loop is finished, the degree

of g′ is 3 × 2p − 2: one order fewer than that of g. Hence, in this case, G needs one more

multiplication of φ than for G′.

The graphs of the p-RPPs are shown in Fig. 3.2. Their differences from tanh are

shown in Table 3.2. We can see that when p is 1, the active region is (−4, 4), and the

differences between the 1-RPP and the tanh is minimum. When the input is 2.0 (or,

correspondingly, -2.0), the 0-, 1-, 2-, and 3-RPPs output 1.0 (-1.0), 0.9688 (-0.9688),

0.9578 (-0.9578), 0.9536 (-0.9536), respectively. Each of which is an extreme or a nearly

extreme value. Accordingly, the segment of (−2, 2) can be considered as the common

active input segment for all the p-RPP neurons.

The number of multiplications of raising φ to the power of 3 × 2p − 1 are reduced

from 3 × 2p − 2 to 2p + 1. Since the denominator, 2p+1, is a power-of-two number, the

division operation can be simplified to an equivalent bit-shifting operation, or can be

simplified to a hashing table operation. The value from the hashing table is then used

to multiply with the dividend to obtain the result. These evidences reveal the p-RPP

neuron realizations to be simple and yet to be approximate to tanh function.



24

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 3.2: Graphs of p-RPPs, tanh and their differences. (a) 0-RPP. (b) 1-RPP. (c)
2-RPP. (d) 3-RPP. The thick lines represent p-RPP, the dash-dot lines represent tanh,
and the dash-dash lines represent the differences between p-RPP and tanh.

3.3 Radial Basis Function-Like

From the above construction, we can also construct a class of the p-recursive piecewise

polynomial radial basis function (p-RPPRBF) as radial basis function-like (RBF-like)

as follows:

RPPRBF(d2, p) = φ(d2, p)3×2p−1, (3.14)
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Table 3.2: Differences between p-RPPs and tanh. x0, x1 and x2 are the points on the
x-axis when p-RPPs equal to tanh. If input is greater than or equal to zero, 0-RPP has
two points of that kind, whereas 1-, 2- and 3-RPPs each of which has three points. Lp

is the threshold on the x-axis. If input of function is greater than or equal to Lp, output
of function is +1. The differences are the integration of the difference between p-RPPs
and tanh when input is in the interval of [x0,x1], [x1,x2], [x2,Lp], and [Lp,16].

p x0 x1 x2 Lp = 2p+1 Difference
0 0 1.3262577500 – 2 0.05875
1 0 1.0508487975 1.54909325 4 0.02771
2 0 1.1721823970 3.45095900 8 0.04298
3 0 1.1979472750 7.12802350 16 0.05809

where d is a difference of the center of RBF and input data. The pseudocode of this

computation of RPPRBF is shown in Algorithm 3. The graphs of 0-, 1-, 2-, and 3-

Algorithm 3 Compute RPPRBF(d̂, p) := φ(d̂, p)3×2p−1

Require: A distance-squared d̂ ≥ 0, an integer p ∈ {0, 1, 2, 3}
Ensure: RPPRBF(d̂, p) := φ(d̂, p)3×2p−1

1: φ := 1 − d̂/2p+1

2: if φ ≤ 0 then
3: RPPRBF := 0
4: else
5: g := φ × φ
6: for n := 1 to p do {loop invariant: g := φ(d̂, p) × g × g = φ(d̂, p)3×2n−1}
7: g := φ × g × g
8: end for
9: RPPRBF := g

10: end if

RPPRBFs, and exp(−(d2)/0.65) are shown in Fig 3.3. We can see that the curves of 1-,

2- and 3-RPPRBFs are closable to RBF.

3.4 Execution time of p-RPPs

In the previous section, we introduced a new class of neurons with p-RPP activation

functions. The motivation for the new class of neurons is in improving computation
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Figure 3.3: Graphs of RPPRBFs, and exp(−(d2)/0.65). (a) is for RPPRBF(d2,0), (b) is
for RPPRBF(d2,1), (c) is for RPPRBF(d2,2), and (d) is for RPPRBF(d2,3), respectively.
The thick lines represent p-RPPRBFs, the dash-dash lines represent exp(−(d2)/0.65).

efficiency. We therefore compare the execution times of the p-RPP neurons (Algorithm

1) with a neuron with the tanh-function as the activation function with the execution

times of the other methods of implementing an activation function, viz. LUT, sigmoid:

2/(1+exp(−x̂))−1, and tanh. The p-RPPs test is shown in Table 3.3. The measurements

are the execution time of the code generated by three compilers: MSVC++ version

6.0 [29], MinGW32 version 3.2 [30], and Lcc-Win32 version 3.3 [31]. Each function



27

computes the outputs of 2 × 108 input values generated uniform randomly over the

active input segment. The measured times in Table 3.3 depend on the compiler, with

MSVC++ yielding the shortest time and Lcc-Win32 the longest time. Both p-RPP and

LUT method are faster than either sigmoid or tanh. The p-RPPs of MinGW32 are faster

than LUT for p set to zero to three. The p-RPP of MSVC++ are faster than LUT for

p less than three. The p-RPP of Lcc-Win32 is faster than LUT for p equal to one.

Table 3.3: Time in seconds required to perform 2 × 108 activation operations. Single
and double represent single precision and double precision floating points, respectively.
TimeMSV C++6.0, TimeMinGW32, and TimeLcc−Win32 are measured from the codes gener-
ated by three compilers: MSVC++6.0 [29], MinGW32 [30], Lcc-Win32 [31], respectively.
The experiments are performed on the Windows XP PC with one Intel Pentium III 1.06
GHz CPU, 640 MB RAM.

p of RPP TimeMSV C++6.0 TimeMinGW32 TimeLcc−Win32

single double single double single double
0 1.409 1.782 2.771 2.616 2.676 3.494
1 1.288 2.058 2.953 2.768 3.089 4.213
2 1.414 2.432 3.140 2.899 3.476 4.900
3 1.576 2.828 3.314 3.256 3.984 5.646
LUT 2.440 2.446 3.719 3.526 3.627 3.573
sigmoid 3.593 4.009 8.294 9.027 5.263 8.637
tanh 8.568 8.812 10.344 10.439 10.262 10.009

3.5 Summary

In this chapter, a systematic construction of adjustable active input segment sigmoid

generators was shown. We not only generalized the p-RPP neuron model to a class of

tanh-like functions having the interval of (−2, 2) as their common active segment, but

also proposed the p-RPPRBFs as a low complexity RBF-like. The shape and complexity

of functions are controlled by a pameter p. The execution times of p-RPP neurons are
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shorter than those of both sigmoid and tanh and yet comparable to the lookup table

scheme.



CHAPTER IV

The p-Recursive Piecewise Polynomial Network’s Training

A p-RPP network consists of the p-RPP neurons as described in the previous chapter,

arranged as layers with full interconnection between successive layers. The weights are

determined by a learning algorithm, such as backpropagation, which propagates and

distributes the errors at a higher layer backwards. In this chapter, we describe our

modifications of the error function as well as input normalization those facilitate a more

efficient learning process and overcome deficiency due to using p-RPP neurons. The

experimental results and conclusion are also included this chapter.

4.1 Training Criteria

Without loss of generality, suppose the network has three layers of nodes in which the

lth layer has N (l) nodes. According to the input vector x, let the state vector of nodes

in layer l be

x(l) = [x
(l)
1 x

(l)
2 . . . x

(l)

N(l) ]
T ,

where x(0) is the input, and x(2) is the output vector. Here, x
(l)
j (l 6= 0) takes on a value

between −1 and 1. Let the desired output vector, or target, corresponding to a training
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pattern x be t = [t1 t2 ... tN(2) ]T .

When x is presented to the network with a current weight vector w and is propagated

forward to determine the output vector, the state x
(l)
j of neuron j in each lth layer is

computed by

x
(l)
j = G(x̂

(l)
j , p), l = 1, 2, (4.1)

and

x̂
(l)
j = w

(l)
j0 +

N(l−1)∑

i=1

w
(l)
ji x

(l−1)
i

=

N(l−1)∑

i=0

w
(l)
ji x

(l−1)
i , where x

(l−1)
0 = 1, (4.2)

and where w
(l)
ji denotes the weight connecting x

(l−1)
i to neuron j, w

(l)
j0 denotes the bias

weight incoming from a constant x
(l−1)
0 , and x̂

(l)
j denotes the activation value of the

neuron. Both w
(l)
ji and w

(l)
j0 are elements of w.

If the error function is E(w), the gradient-descent direction which is used for itera-

tively optimizing w
(l)
ji to minimize E(w) at time t is calculated by the error backpropa-

gation (BP) algorithm [22]:

−
∂E(w)

∂w
(l)
ji (t)

= −
∂E(w)

∂x̂
(l)
j

∂x̂
(l)
j

∂w
(l)
ji (t)

,

= δ
(l)
j x

(l−1)
i , (4.3)
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where δ
(l)
j is the generalized delta term [22] defined by

δ
(l)
j =






−G′(x̂
(l)
j , p)∂E(w)

∂x
(l)
j

, l = 2,

G′(x̂
(l)
j , p)

∑N(l+1)

k=1 w
(l+1)
kj (t)δ

(l+1)
k , l = 1.

(4.4)

Since the generalized delta term, Eq.(4.4), at each node is multiplied by the sigmoid

prime factor [23], G′(x̂
(l)
j , p), it is a nullity if x̂

(l)
j is outside the input active region. The

network with tanh activation function encounters a very similar problem because this

factor becomes small when x̂
(l)
j is large. Recently, Joost and Schiffmann [23] proposed the

combination of two modifications called CEN Optimization (Cross Entropy combined

with Pattern Normalization). Instead of the usual quadratic error, they used the cross

entropy (CE) [24] as an error function to eliminate the sigmoid prime factor of the

updating rule for the output units. Also, the input patterns were normalized in order

to balance the dynamic range of the input. Oh [25] proposed a modified error function

that can be reduced to the CE. The function is superior to CE in terms of effectively

eliminating the uncorrected saturation and preventing overspecialization during training.

At the output layer, the sigmoid derivative can be eliminated by selecting the proper

error function. The modified error function proposed by Oh is generally defined as

E(w) = −

N(2)∑

j=1

∫
tn+1
j (tj − G(x̂

(2)
j , p))n

2n−2G′(x̂
(2)
j , p)

dx
(2)
j , (4.5)

where tj = ±1 and n = 1, 2, · · · . When n = 1 it is the CE function. In our work, we

use n = 2 per the experimental results from Oh [25]. The generalized delta term used as
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the factor for updating the weight wl
ji in the iteration t can be computed in a backward

manner by

δ
(l)
j =






tn+1
j (tj−x

(l)
j )n

2n−1 , l = 2,

G′(x
(l)
j , p)

∑N(l+1)

k=1 w
(l+1)
kj (t)δ

(l+1)
k , l = 1.

(4.6)

The sigmoid derivative at the output layer is thus eliminated although it remains in the

hidden layer.

Let xs, 1 ≤ s ≤ S, be a member of a training set with S patterns. We calculate

the Hj,s to sense the distance between x̂s
(l)

j , the activation value of neuron j in layer l

due to the input pattern xs, and the common active input segment (−2, 2). In order to

inhibit the growth and to decay the magnitude of the activation value, especially when

its value is outside this segment, Hj,s can be defined as

Hj,s(w) =

(
w

(l)
j0 +

∑N(l−1)

i=1 w
(l)
ji xs

i
(l−1)

2

)2

, (4.7)

=

(
x̂s

(l)

j

2

)2

.

Differentiating Hj,s(w) with respect to the weight w
(l)
ji is computed by

∂Hj,s(w)

∂w
(l)
ji

=
x

s(l−1)
i x̂s

(l)

j

2
. (4.8)

The effect of Eq.(4.8) is the more x̂s
(l)

j grows beyond (−2, 2), the more penalty Hj,s

yields.



33

To remedy for the deficiency of the sigmoid prime factor in the hidden layer, we

modify the error function. The total error function for all S training patterns, E(w), is

the average of the summation of all E(w) with the Hj,s term:

E(w) =
1

S × N (2)




S∑

s=1

E(w) +
α(t)

N (l=1)

N(l=1)∑

j=1

S∑

s=1

Hj,s(w)



 , (4.9)

where 0 < α < 1 usually varies with time.

Finally, from equations (4.3), (4.6), (4.9), and (4.8) the gradient-descent direction

−∂E/∂w
(l)
ji (t) is computed by

−
∂E(w)

∂w
(l)
ji (t)

=






1
S×N(2)

∑S

s=1 δ
(l)
j x

s(l−1)
i , l = 2,

1
S×N(2)

(∑S

s=1 δ
(l)
j x

s(l−1)
i − α(t)

N(l)

∑S

s=1

x
s(l−1)
i x̂s(l)

j

2

)
, l = 1.

(4.10)

Here, both δ
(1)
j and x̂s

(1)

j in Eq.(4.10) are multiplied by x
s(0)
i . If two inputs connect to

the same neuron possess highly different dynamic range of their input values, the weights

must be adapted in such a way that the influence of that neuron’s input is equalized.

This process of dynamic range adaptation can be very time consuming when the values

of different inputs vary strongly.

The problem described above can be eliminated by the input normalization pro-

cess [23]. The process is a simple linear transformation of the inputs and yields stan-

dardized inputs.

x
s(0)
i =

xs
i − x̄i

σi

, (4.11)
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where xs
i denotes the i-th component of the s-th input vector xs; x̄i = 1

S

∑S

s=1 xs
i cor-

responds to the mean and σi =
√

1
S−1

∑S

s=1(x
s
i − x̄s

i )
2 is the standard deviation of the

original input data.

By means of Eq.(4.11), a multimodal distribution is centered around zero and dy-

namic range will be equalized because of the division by the standard deviations. The

term −α(t)
2

x
s(0)
i x̂s

(1)

j is a form of the anti-Hebbian rule [19]; essentially, it acts as an

unsupervised learning rule for the hidden neurons. When α is not zero, the gradient

direction of the hidden layer comes from a combination of the supervised algorithm, viz.

backpropagation [22], providing an excitatory force, and the unsupervised algorithm,

viz. the anti-Hebbian rule [19], providing an inhibitory force [26]. When the excitatory

force is less than the inhibitory force, the neuron reduces its magnitude of activation

value. When α approaches zero, the gradient direction is determined by the supervised

algorithm.

This allows the supervised algorithm and the unsupervised algorithm to cooperate

in the training procedure. In the early phase of training, the unsupervised learning rule

can provide supplement information to the supervised algorithm. During the training

procedure, the values of the weights are initially small, typically around zero. As the

weight values increase with training, the activation value and the derivative of the ac-

tivation function grow in opposite directions. As the activation value of a neuron due

to an input pattern increases, the derivative of the activation function due to this input

decreases to zero. If there are some classified output bits having tj − x
(2)
j equal to zero,

this bit does not provide any supervised information but it does supply unsupervised

information for further weight updating process.
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As training progresses, more and more output bits match the corresponding target

bits so that the number of output bits providing supervised information are decreased.

To reduce the effect of over-inhibiting, α should be annealed over time. In addition, the

activation value should be scaled down so that the Hj,s is lessened with more hidden

units. Based on these observations, α(t) can be defined by

α(t) = β
C

tj 6=x
(2)
j

Ctotal × N (1)
, (4.12)

where C
tj 6=x

(2)
j

is the number of output bits such that tj 6= x
(2)
j , Ctotal = S ×N (2), and β

is a positive constant. In our experiments, setting β to be 0.05 works for every problem.

4.2 Experimental Results

In the previous chapter, we introduced a new class of neurons with p-RPP activation

functions. In the previous section of this chapter a new error criteria for training networks

with those neurons are proposed. The evaluations of the proposed enhancements (4.10)

to the weights updating procedures are presented in this section.

We use two variations of Rprop (Resilient propagation) [27] algorithms: iRprop+ (Im-

proved Rprop with weight-backtracking) [17] and SARPROP (Simulated Annealing and

weight decay Rprop) [18]. These algorithms are selected because they have performed

well in terms of speed and generalization results. The temperature T of SARPROP is

set to 0.01. The remaining parameters of the both algorithms are the default values.

Since the Oh’s modified error function can be considered as an enhancement of

CE [25], we use the same criterion as Joost and Schiffmann [23] to name the four
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possible combinations of algorithms. The cooperations of iRprop+ with and with-

out anti-Hebbian, SARPROP with and without anti-Hebbian rule are named as fol-

lows: ECEN-iRprop+ (Enhanced CEN iRprop+), CEN-iRprop+ (CEN iRprop+), ECEN-

SARPROP (Enhanced CEN SARPROP), and CEN-SARPROP (CEN SARPROP).

ECEN-SARPROP and CEN-SARPROP differs as to what the additional penalty func-

tions are. The former uses the anti-Hebbian while the latter uses the log squared weight

decay terms.

Totally, there are sixteen combinations of networks with tanh, 0-, 1-, 2-RPP activa-

tion functions and the two original, the two proposed algorithms. They were tested

on the training of standard three-layered networks architectures on the Sonar [14],

the encoder60 and encoder120 [15], the higher order parity problem (8-bit [10] and

9-bit [16] parity) and a well-known classification benchmark, namely two-spiral [14]

problem. The data sets corresponding to these benchmarks, but the encoder60 and

encoder120, are publicly available from the CMU Repository of Neural Network Bench-

marks at http://www.boltz.cs.cmu.edu. The details of the network architectures for

each of these benchmarks and the performance of our algorithms are mentioned in the

corresponding subsections.

All simulations were carried out on a Pentium III 1.06 GHz with 640 MB RAM PC.

The MATLAB executable mex file of each algorithms was complied by MSVC++ 6.0. In

all cases 100 training trials were performed (with uniformly random initialization of the

weights in (−0.5, 0.5). The maximum number of epochs was set to 20000, except two-

spiral problem was set to 100000. Since the algorithms used in the experiments are in

the same class, actually, they are the variations of Rprop algorithm. The computational
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effort for one weight updating cycle is approximately the same which means that the

number of epochs can be compared directly.

The criteria for evaluation and comparison will be:

• the convergence reliability: the success rate,

• number of epoch for a success training: mean, standard deviation (sd), minimum

and maximum, and in some cases

• the quality of solution.

The training was considered successful whenever Fahlman’s “40-20-40” criterion [28] was

satisfied (i.e., values in the lowest 40% of the output range were treated as output −1,

and values in the highest of 40% were treated as output +1, and values in the middle

20% were treated as indeterminate and therefore were considered as incorrect).

In the following, the experiments on the networks are presented, organized by the

data sets used.

4.2.1 The Sonar benchmark

The Sonar benchmark is a very well-known classification problem. The task is to clas-

sify reflected sonar signals in two categories (metal cylinders (mines) and rocks). The

related data set comprises 208 input vectors, each with 60 components. Recently, it has

been pointed out that the problem indeed is linearly separable [32,33]. Despite this fact,

Gorman and Sejnowski [14] reported a success rate of only 85% for a single-layered per-

ceptrons, rising to 100% only when 12 hidden nodes are introduced in the feedforward
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neural network architecture. A challenging task is to apply the proposed algorithms to

the sonar problem using a network without hidden nodes. It has been argued [34] that

the solution of this problem without hidden nodes is a difficult task because of the

highly nonuniform distribution of data points in the input space. Therefore, conven-

tional algorithms may take very long times to converge and this explains Gorman and

Sejnowski’s results. Hasenjäger and Ritter [35] showed the experimental results dealing

with the generalization and convergence properties of various perceptron learning pro-

cedures using the Sonar benchmark. More advanced learning procedures for threshold

perceptrons did not outperform the classical perceptron learning rule. It turned out that

a continuous perceptron with sigmoidal activation function is not in general guaranteed

to find a separating solution. Recently, Ampazis and Perantonis [10] reported that the

BFGS [36], Inverse-BFGS [37] and CG/PR [38] methods failed to converge in all trials,

and LM [39] is only 7% of trials.

In this dissertation, a network with 60 inputs, one output unit, and one hidden

node was used. This network architecture is equivalent to a series of a perceptron in

the hidden layer following by a not or a buffer logic gate in the output layer. The

number of adaptation cycles required by each of the sixteen combinations of algorithms

and network architectures for converging to the total classification error 0 as well as the

success rate of training, evaluated by averaging the results of 100 trials are shown in

Table 4.1.

Both CEN-iRprop+ and CEN-SARPROP algorithms fail in all trials, while ECEN-

iRprop+ and ECEN-SARPROP algorithms converge to solution with very high success

rates. The network with 0-RPP yields the lowest success rates: 66% from the training by
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ECEN-SARPROP, and 98% from the training by ECEN-iRprop+. It is noteworthy that

the network with the wider active input segment activation functions: tanh, 1-RPP, and

2-RPP converge in all trials within less than 1000 epochs on average. Furthermore, the

network with p-RPP converges faster than the network with tanh activation function.

Table 4.1: Success rate, required mean epoch and standard deviation as well as minimum
and maximum epochs for the network applying to Sonar problem. NCs in the table
means there is no convergent training. The structure of network is 60–1–1.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 0 0 0 0
CEN mean NC NC NC NC

- sd NC NC NC NC
iRprop+ min NC NC NC NC

max NC NC NC NC
success(%) 100 98 100 100

ECEN mean 830 723 794 818
- sd 318 227 240 251

iRprop+ min 339 299 412 400
max 1683 1569 1324 1397
success(%) 0 0 0 0

CEN mean NC NC NC NC
- sd NC NC NC NC

SARPROP min NC NC NC NC
max NC NC NC NC
success(%) 100 66 100 100

ECEN mean 971 715 902 962
- sd 485 146 318 341

SARPROP min 595 518 523 603
max 3097 1120 2671 2294

4.2.2 The n–to–n encoder

In the next two set of experiments, a multilayered neural network was trained to function

as an n–to–n encoder [15]. The n–to–n encoder is implemented by a neural network with
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n inputs and n output units trained to map n input pattern into the output. Each of

the n patterns contains only one active element, represented in this experiment by +1,

while all the other elements are inactive, represented by −1. The number of hidden

units of an n–to–n encoder, denoted by nh, is typically smaller than n and at least

equal to log2(n). If nh < log2(n), it is a more difficult task called “tightly compression”.

In this dissertation, we intend to evaluate the proposed algorithms by using the tough

one, a network with N (0) = 60 inputs, N (1) = 3 hidden units, and N (2) = 60 units its

was trained to function as an encoder60: 60–to–60 encoder. The encoder120: 120–to–

120 encoder, was also realized by a network with N (0) = 120 inputs, N (1) = 4 hidden

units, and N (2) = 120 units. The number of adaptation cycles required by each of the

sixteen combinations of algorithms and network architectures for converging to the total

classification error 0 as well as the success rate of training, evaluated by averaging the

results of 100 trials are shown in two tables. Table 4.2 shows the experimental results

of encoder60, and Table 4.3 the experimental results of encoder120. These comparisons

demonstrate the efficacy of the proposed additional term as well as the effect of active

input segment size, especially in complex training tasks.

From Tables 4.2 and 4.3, both ECEN-iRprop+ and ECEN-SARPROP are very

successful algorithms when compared to CEN-iRprop+ and CEN-SARPROP. ECEN-

iRprop+ converges nearly 100% in all acivation function used while CEN-iRprop+ fails

nearly 100% in all trials. CEN-SARPROP is more successful than CEN-iRprop+. How-

ever, ECEN-SARPROP gets the highest success rate of 100% if 1-, 2-RPP and tanh

activation function were used. The network with 0-RPP fails more frequently than

other functions. Even the case it converges, the time is still very long. Our algorithms
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not only have a higher successful training rate but also are faster than the original

algorithms.

When N (1) < N (0), the hidden units form a data compression layer. The function of

the 60–3–60 architecture is about 60 : log3.9(60) compression because it comprises only 3

hidden units, as well as the 120–4–120 architecture, its function, is about 120 : log3.3(120)

compression because it has only 4 hidden units. The former is more compact than the

latter. And these compression ratio are more compact than n : log2(n) in Karayiannis’s

method [15]. Furthermore, that method not only required longer epochs it also used a

more effective weights initialization procedure than ours. The more nonlinear activation

function is, the faster training is. This can be seen from Tables 4.2 and 4.3. Every

algorithm yields the higher success rates and fewer mean epochs if the networks use the

wider active input segment activation function, and each of which requires a polynomial

of higher degrees. When the activation function is concerned, the network with 2-RPP

is not only faster but is also more stable than the network with tanh.

4.2.3 Higher order parity

Parity problems are difficult tasks for feedforward networks, especially as the order of

the problem increases. Tesauro and Janssens [40] used backpropagation approach to

study N -parity functions. They employed and N -2N -1 fixed architecture to reduce

the problems of getting stuck in a local minima. They required an average of 1953

epochs for the 8-parity problem. However, 9-18-1 architecture was not applicable for

the 9-parity problem. Yang and Kao [41] reported the proposed evolutionary based
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Table 4.2: Success rate, required mean epoch and standard deviation as well as minimum
and maximum epochs for the network applying to Encoder60 problem. NCs in the table
means there is no convergent training. The structure of network is 60-3-60.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 57 0 19 59
CEN mean 7318 NC 7662 6222

- sd 2628 NC 3116 3029
iRprop+ min 3080 NC 4036 2552

max 17399 NC 16794 15035
success(%) 100 99 100 100

ECEN mean 4690 7085 4251 3694
- sd 1403 2319 1861 1378

iRprop+ min 2718 3564 2310 2257
max 9733 16041 15189 9175
success(%) 97 83 97 98

CEN mean 4449 5523 4036 3155
- sd 1673 2209 2315 1592

SARPROP min 2261 2742 1711 1637
max 13941 15958 17168 11639
success(%) 100 45 100 100

ECEN mean 1974 8187 2425 1905
- sd 177 4142 422 183

SARPROP min 1616 2699 1753 1554
max 2563 19054 3749 2492

algorithm (FCEA) required an average of 3650 and 6704 epochs for the 8- and the

9-parity problems. And FCEA obtained 90% convergent rate for N -N -1 on the 8-

parity problem. However, they did not report convergent rate on the 9-parity problem.

Recently, Ampazis and Perantonis [10] showed the results of training an 8-8-1 (eight

inputs, one hidden layer with eight nodes, and one output node) network on 8-bit parity

problem according to the second-order training algorithms. Note that all conventional

training algorithms (BFGS [36], Inverse-BFGS [37], CG/PR [38], LM [39]) failed to

converge in all trials. The LMAM [10] algorithm was able to solve the problem at

least in 14% of the trials. The OLMAM [10] algorithm showed a very high success rate
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Table 4.3: Success rate, required mean epoch and standard deviation as well as minimum
and maximum epochs for the network applying to Encoder120 problem. NCs in the table
means there is no convergent training. The structure of network is 120-4-120.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 67 0 0 2
CEN mean 5328 NC NC 4006

- sd 1482 NC NC 1804
iRprop+ min 2922 NC NC 2730

max 10966 NC NC 5281
success(%) 100 100 100 100

ECEN mean 3318 4999 2944 2643
- sd 576 929 474 375

iRprop+ min 2217 3282 1983 1842
max 5274 7952 4203 3725
success(%) 67 13 67 77

CEN mean 4780 9461 4648 4088
- sd 1646 5289 2566 3137

SARPROP min 2646 3999 2507 2198
max 12411 18017 14145 19747
success(%) 100 53 100 100

ECEN mean 2364 6153 3039 2181
- sd 197 3594 575 180

SARPROP min 2003 2647 2130 1800
max 2927 18282 4904 2640

(94%) along with a smaller mean value of epochs than LMAM. However, they are all

the second-order algorithms.

In our experiments, we used two network architectures. An 8-8-1 (eight inputs, one

hidden layer with eight nodes, and one output node) network is for the 8-bit parity prob-

lem, and a 9-9-1 (nine inputs, one hidden layer with nine nodes, and one output node)

network is for the 9-bit parity problem. The number of adaptation cycles required by

each of the sixteen combinations of algorithms and network architectures for converging

to the number of total classification error 0 as well as the standard deviation, minimum

and maximum cycles required, the number of successful training over 100 trials, which
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all these measurements are evaluated by averaging the results of 100 trials are shown in

two tables. Table 4.4 shows the experimental results of 8-bit parity, and Table 4.5 the

experimental results of 9-bit parity problems, respectively.

From Table 4.4, the algorithms with the anti-Hebbian rule are more stable than the

algorithms without anti-Hebbian rule. Accordingly, the success rates of ECEN-iRprop+

comparing to CEN-iRprop+ enormously increase from 12 to 69, 32 to 58, 15 to 91, and

15 to 94. And likewise, the success rates of ECEN-SARPROP comparing to the original

CEN-SARPROP increase significantly from 25 to 95, 19 to 20, 16 to 89, and 22 to 98,

when the activation functions are tanh, 0-, 1-, and 2-RPPs, respectively.

Although the number of required mean epochs for a convergent training of the al-

gorithms with anti-Hebbian are more than those of the algorithms without the anti-

Hebbian rule, the characteristic of the n-parity problem itself is an explanation. There

is a very long plateau before a solution is discovered. We can interpret them from the

results of training by CEN-iRprop+ and CEN-SARPROP. The mean number of adapta-

tion cycles is very short but the number of successful trainings is very low. That means

most of the time the training process has to fight against the plateau. When the training

process encounters a plateau, that training may not get a solution in time. According to

unsupervised information from the anti-Hebbian rule, the training process can get back

at the plateau latter.

The network with 0-RPP activation functions is not only the most unstable but also

is the slowest network compared to the network with other activation functions. That

means the length of the active input segment before outputting either −1 or +1 plays a

significantly important role during training.
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Table 4.5 shows the results from the 9-bit parity problem. The interpretations and

conclusions are the same as from Table 4.4. The algorithms with anti-Hebbian rule do

more successfully solve the 9-parity problem than the algorithms without anti-Hebbian

rule.

From the experimental results regarding the algorithms with anti-Hebbian rule, the

performance of the algorithm with anti-Hebbian rule is less sensitive to initial weights

of RPP network than the algorithm without anti-Hebbian rule. The wider active input

segment function has, the more stable network is.

Table 4.4: Success rate, required mean epoch and standard deviation as well as minimum
and maximum epochs for the network applying to 8-bit parity problem. The structure
of network is 8-8-1.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 12 32 15 15
CEN mean 536 4049 465 1356

- sd 413 4440 173 2377
iRprop+ min 189 485 234 284

max 1777 15210 780 9150
success(%) 69 58 91 94

ECEN mean 4964 10452 4258 3370
- sd 3524 4940 4544 4175

iRprop+ min 576 2193 296 496
max 16705 19302 19671 19511
success(%) 25 19 16 22

CEN mean 1040 4631 2245 938
- sd 851 3850 4766 650

SARPROP min 357 584 427 436
max 4269 15758 18068 2797
success(%) 95 20 89 98

ECEN mean 4000 6678 3307 1732
- sd 4805 6058 4078 1714

SARPROP min 295 288 304 340
max 19726 18224 19585 11226
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Table 4.5: Success rate, required mean epoch and standard deviation as well as minimum
and maximum epochs for the network applying to 9-bit parity problem. The structure
of network is 9-9-1.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 13 39 18 14
CEN mean 631 3997 516 1160

- sd 616 4510 279 1458
iRprop+ min 199 276 193 201

max 2462 17297 1095 5151
success(%) 58 65 96 97

ECEN mean 4178 9444 2940 2218
- sd 3573 5320 3139 2784

iRprop+ min 381 1189 277 276
max 16187 19946 17477 15318
success(%) 15 33 14 24

CEN mean 1097 6250 1888 1586
- sd 660 4793 2727 1835

SARPROP min 389 518 254 208
max 2800 16089 9959 6446
success(%) 97 36 96 96

ECEN mean 2324 5089 3379 2476
- sd 1902 5205 3619 2940

SARPROP min 253 248 309 167
max 10168 19987 18734 15569

4.2.4 The two-spiral benchmark

The two-spiral problem is a typical benchmark in the field of neural networks. This

problem was originally proposed by A. Wieland as a challenging benchmark for feedfor-

ward networks, where two spiral parts totaling 194 associations should be classified by

training. The task is to construct a classifier capable of distinguishing between the two

classes. Some researchers reported that gradient-descent-based algorithms failed to con-

verge when tested on this training set. Furthermore, even in cases where these algorithms

were successful, the number of required weights adaptation epochs for convergence was
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very high [42]. Karayiannis [15] also reported a convergent gradient-descent-based train-

ing. The weights were initialized by a very efficient method: generalized anti-Hebbian

rule. The training set used in these experiments consisted of 150 points belonging to two

interspersed spiral-shaped classes, with 75 samples for each class. However, the number

of epochs was still very high.

In our work, we use a conventional feedforward network comprising of two inputs, 30

hidden nodes, one output unit, without any shortcut connections between nonadjacent

layers. This is the same structure of Karayiannis’s experiments [15]. The training set

consists of two spiral parts of 150 associations. Specifically, the training set example

sequences (a(51),b(51)), (a(52),b(52)) · · · , with a(t) = (a
(t)
1 , a

(t)
2 ) ∈ R2, b(t) = b(t) ∈ R1, are

given by the following equations. For n = 26, 27, · · · , 97,

a
(2n−1)
1 = 1 − a

(2n)
1 = rn sin αn + 0.5,

a
(2n−1)
2 = 1 − a

(2n)
2 = rn cos αn + 0.5,

(4.13)

where rn = 0.4((105 − n)/104), αn = π(n − 1)/16, and b2n−1 = 1, b2n = −1. This

network architecture with the p-RPPs and tanh activation functions varying training

algorithms are used to complete the task. The number of required adaptation cycles by

each of the sixteen combinations of algorithms and network architectures for converging

to the number of total classification error 0 as well as the standard deviation, minimum

and maximum cycles required, the number of successful training over 100 trials, which

all these measurements are evaluated by averaging the results of 100 trials, are shown

in Table 4.6.
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From Table 4.6, the network trained by the algorithm with anti-Hebbian rule is not

the fastest network. In addition, the ECEN-iRprop+ is slower than the CEN-iRprop+.

In case of CEN- and ECEN-SARPROPs, their mean epochs are comparable. This

is because the characteristic of problem itself. There is a report that the number of

hidden units plays a crucial role for the classification and generalization quality of the

network [16]. While a 100% correct classification of a fixed number of patterns can

be achieved relatively easy, it is rather difficult to achieve a perfect generalization. As

anti-Hebbian rule is added to the error term, both the error surface and the solution are

modified.

From the experiments, the networks with 1-RPP and 2-RPP are both faster and

more stable than the network with 0-RPP. The generalization ability of the networks

trained by various algorithms was evaluated by visualizing the outputs of the input

vectors not included in the training set. The testing input set consists of data 171248

patterns: 154x139, which are different from 150 training inputs. The results of each

of the sixteen combinations of network architectures and the training algorithms are

displayed in Fig. 4.1 as follows. Rows 1, 2, 3, and 4 represent the separations and

contours of the two-dimensional (2-D) input vector spaces produced by CEN-iRprop+,

ECEN-iRprop+, CEN-SARPROP, and ECEN-SARPROP , respectively. The outputs of

networks with tanh, 0-RPP, 1-RPP, and 2-RPP activation functions are in the first, the

second, the third and the last columns, respectively. The results shown in the figure are

the simple averaging [43] of 100 trial outputs. The contoured outputs is only class −1.

Fig. 4.1 shows that the decision boundaries produced from the network trained by

the algorithms with and without anti-Hebbian rule are very similar. However, when we
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consider the contour lines, the algorithms with anti-Hebbian rule yields a better contour

than the algorithms without anti-Hebbian rule. Comparing Fig. 4.1 (C) and (D) to

(c) and (d), the contours produced from the network with 1-RPP and 2-RPP trained

by ECEN-iRprop+ are smoother than that from the network with the same activation

function trained by CEN-iRprop+. Comparing row 3 to row 4, the contours produced

from the network trained by ECEN-SARPROP are smoother than that from the network

with the same activation function trained by CEN-SARPROP.

Hence, not only the number of hidden units but also the shape of the hidden unit

and the regularization term play important roles in the training, classification and gen-

eralization quality of the network.

4.3 Summary

In this chapter, three modifications were made for new algorithm. First, modified er-

ror function was selected to eliminate the sigmoid prime factor for the output units.

Second, the input patterns were normalized in order to balance the dynamic range of

the inputs. And third, anti-Hebbian rule was added to cooperate with the error back-

propagated from the output layer. It was experimentally verified that the enhanced

algorithms proposed in this dissertation considerably improves the convergence rate and

the successful training rate of the two sophisticated first-order gradient-descent-based

algorithms: ECEN-iRprop+ and ECEN-SARPROP, used to perform nontrivial training

tasks.
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Table 4.6: Success rate, required mean epoch and standard deviation as well as minimum
and maximum epochs for the two-spiral problem. NCs in the table means there is no
convergent training. The structure of network is 2-30-1.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 88 0 99 99
CEN mean 31648 NC 17629 15089

- sd 20963 NC 13207 7833
iRprop+ min 6219 NC 6640 6491

max 87671 NC 93870 51857
success(%) 9 0 94 99

ECEN mean 53912 NC 24687 22059
- sd 19368 NC 15880 14965

iRprop+ min 36704 NC 7594 7465
max 98322 NC 91249 88309
success(%) 100 99 100 100

CEN mean 2762 21058 3656 3436
- sd 613 19781 2807 1601

SARPROP min 1383 2891 1725 1351
max 4542 99246 29260 11712
success(%) 100 99 100 100

ECEN mean 2564 8627 3633 3931
- sd 1140 8028 2016 2312

SARPROP min 1089 1097 1504 1468
max 9398 44743 15904 17354
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(A) (B) (C) (D)

(e) (f) (g) (h)

(E) (F) (G) (H)

Figure 4.1: The decision regions of the networks. The training algorithms are CEN-
iRprop+ and ECEN-iRprop+ for the two upper panels, and CEN-SARPROP and ECEN-
SARPROP for the two lower panels. From left to right, the activation functions are tanh,
0-RPP, 1-RPP, and 2-RPP, respectively.



CHAPTER V

New Modified Error Function

In the previous Chapter, the local minima problem was overcome by the combination of

Oh’s error function excluding the derivative of the output node and the additional error

function revealing the additional anti-Hebbian term for updating the weights connecting

the input and the hidden layers. In this chapter, we generalized that additional error

function by automatically accounting the correct output.

5.1 New Modified Additional Error Function

A new modified error function is given by

E(w) =
1

S × N (2)




S∑

s=1

E(w) + α

S∑

s=1

E(w)




N(l=1)∑

j=1

Hj,s(w)







 , (5.1)

An added term can be defined by

EB =

S∑

s=1

E(w)




N(l=1)∑

j=1

Hj,s(w)



 . (5.2)

This added term is used to keep the magnitude of activation value in the hidden layer

small while E(w) is large. While the output layer approximates the desired targets, the
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effect of term EB will be diminished and will eventually become zero. Using the above

error function as the objective function, the gradient-descent information for updating

rule of weight w
(l)
ji can be rewritten as

−
∂E(w)

∂w
(l)
ji

= −
∂E(w)

∂w
(l)
ji

− α(l) ∂EB(w)

∂w
(l)
ji

, l = 1, 2, (5.3)

where α(1) and α(2) are the learning rate for EB(w) in hidden layer and output layer,

respectively. We usually set α(1) = 0.01 and α(2) = 0.004.

If E(w) is the sum-squared-error (SSE) defined by

E(w) =
1

2

N(l=2)∑

k=1

(tsk − x
s(2)
k )2, (5.4)

then, for pattern s, the derivative ∂E(w)
∂wji

can be computed by BP. ∂EB(w)
∂wji

is easily obtained

as follows. For the weight connected to the output layer,

∂EB(w)

∂w
(l=2)
ji

=
∂E(w)

∂w
(l=2)
ji

N(l=1)∑

j=1

Hj,s(w). (5.5)

For weights connected to the hidden layer,

∂EB(w)

∂w
(l=1)
ji

=
∂E(w)

∂w
(l=1)
ji

N(l=1)∑

j=1

Hj,s(w) + x
s(0)
i x̂

s(1)
j Es(w), (5.6)

=
∂E(w)

∂w
(l=1)
ji

N(l=1)∑

j=1

Hj,s(w) + x
s(0)
i x̂

s(1)
j

N(l=2)∑

k=1

(tsk − x
s(2)
k )2. (5.7)

If E(w) is Oh’s modified function, ∂EB(w)

∂w
(l)
ji

can be obtained by the same way of above
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formulas as follows. For the weight connected to the output layer, ∂EB(w)

∂w
(l=2)
ji

is Eq. (5.5).

For weights connected to the hidden layer, ∂EB(w)

∂w
(l=1)
ji

is Eq. (5.6). However, for simplicity

of error computation, we can use Eq. (5.7) rather than Eq. (5.6).

5.2 Experimental Results

The evaluations of the proposed enhancements Eq.(5.1) to the weights updating proce-

dures are presented in this section. We compare the effect of using two different E(w)s:

the classical SSE and the Oh’s modified function of the previous chapter. SARPROP

and iRprop+ algorithms are used as the weight updating procedures. However, we also

combine the adaptive regularization parameter selection (ARPS) method [47] for assign-

ing the appropriate amount of the weight decay term to iRprop+ algorithm.

We use the same criterion as in Chapter 4 to name the ten combinations of algo-

rithms. For the network with E(w)s is SSE, SSEN-iRprop+ means the SSE Normalized

input iRprop+, SSEN-iRprop+ARPS means the SSE Normalized input iRprop+ with

ARPS method, ESSEN-iRprop+ means the Enhanced SSE Normalized input iRprop+)

with ARPS method (the anti-Hebbian rule is included), SSEN-SARPROP means En-

hanced SSE Normalized input SARPROP, ESSEN-SARPROP means the Enhanced SSE

Normalized input SARPROP with ARPS method (the anti-Hebbian rule is included).

For the network with E(w)s is the the Oh’s modified function, CEN-iRprop+ means

the CEN iRprop+, CEN-iRprop+ARPS means the CEN iRprop+ with ARPS method,

ECEN-iRprop+ means the Enhanced CEN iRprop+) with ARPS method (the anti-

Hebbian rule is included), CEN-SARPROP means CEN SARPROP, ECEN-SARPROP
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means the Enhanced CEN SARPROP with ARPS method (the anti-Hebbian rule is

included).

There are four activation function types: tanh, 0-, 1-, 2-, and 3-RPPs. Hence, there

are totally 40 combinations of experimental sets. The data set used in these experiments

is the IRIS problem. The data set is publicly available from the CMU Repository of

Neural Network Benchmarks at http://www.boltz

.cs.cmu.edu. The IRIS has four input variables and has three output classes . Each class

is comprising of 50 instances, and, totally, 150 instances are in the whole data set. For

each run, the 40 out of 50 instances in each class are randomly selected as the training

set and the remaining instances are in test set. Hence, there are 120 instances in the

training set, and 30 instances in the test set.

The network architecture for each of these experiments is 4-3-3, and each of which

uses only one activation function type.

All simulations were carried out on a Pentium III 1.06 GHz with 640 MB RAM PC.

The MATLAB executable mex file of each algorithms was complied by MSVC++ 6.0.

In all cases 50 training trials were performed (with uniformly random initialization

of the weights in (−0.5, 0.5). The maximum number of epochs was set to 20000. The

temperature T of SARPROP is set to 0.01. The remaining parameters of the both

algorithms are the default values.

The criteria for evaluation and comparison will be:

• the percentage of the successful training,

• the quality of solution: the percentage of correct classification when the trained



56

network classifies the unseen input. Regarding to all the successful training, the

mean, standard deviation (sd), minimum and maximum percentages of the correct

classification are measured.

The training was considered successful whenever Fahlman’s “40-20-40” criterion [28] was

satisfied (i.e., values in the lowest 40% of the output range were treated as output −1,

and values in the highest of 40% were treated as output +1, and values in the middle

20% were treated as indeterminate and therefore were considered as incorrect).

In the following, the experiments on the networks are concluded, organized by the

error functions used.

5.2.1 Sum-Squared-Error (SSE)

From Table 5.1, we can see that the algorithms cooperated with anti-Hebbian rule and

weight decay term yield a higher successful training rate than the algorithms without

anti-Hebbian rule and weight decay term. In all case, the success rates are significantly

increased. Regarding to the generalization, the network with tanh, 2-, and 3-RPPS

yield better percentage of classification corrections if the SARPROP cooperates with

anti-Hebbian rule.

5.2.2 The Oh’s Modified Error, n = 2 (CE2)

Comparing the success rates in Table 5.1 and Table 5.2, the network using CE2 yields

a significantly better successful training rate than the network using SSE. The lowest

success is more than 56% from the algorithm without the aid of anti-Hebbian rule. The
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highest success of the network with SSE from the algorithm with and without the aid of

anti-Hebbian rule are 56.0% and 38.67%, respectively. The iRprop+ algorithm with the

weight decay term or the anti-Hebbian rule has higher success rate than that without

them. However, the generalization is slightly decreased. The SARPROP algorithm with

the anti-Hebbian rule not only has a significantly higher success rate but also yields a

better generalization than that algorithm without the anti-Hebbian rule. This one is the

best among our experiments.

5.3 Summary

The new modified additional error function was presented in this chapter. The experi-

mental results revealed that SARPROP cooperated with the anti-Hebbian rule showed

the best results. It is the most reliable algorithm in term of success rate and generaliza-

tion of the trained network.
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Table 5.1: Success rate, The mean and standard deviation as well as minimum and
maximum percent of testing correction for the IRIS problem. The E(w) is SSE. The
structure of network is 4-3-3.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 26.0 28.0 24.0 14.0
correction(%)

SSEN mean 94.87 93.33 94.72 93.33
- sd 4.64 3.92 4.60 1.92

iRprop+ min 83.33 83.33 83.33 90.00
max 100.00 100.00 100.00 96.67
success(%) 46.0 34.0 30.0 34.0
correction(%)

SSEN mean 93.84 93.18 92.47 93.33
- sd 4.26 3.63 4.58 4.75

iRprop+ARPS min 86.67 86.67 80.00 80.00
max 100.00 100.00 100.00 100.00
success(%) 56.0 52.00 32.00 40.00
correction(%)

ESSEN mean 94.04 94.49 93.96 95.00
- sd 4.06 3.52 3.04 3.33

iRprop+ARPS min 86.67 90.00 90.00 90.00
max 100.00 100.00 100.00 100.00
success(%) 38.67 32.67 26.0 28.0
correction(%)

SSEN mean 93.62 94.63 92.39 92.86
- sd 3.38 4.18 3.33 4.00

SARPROP min 83.33 86.87 86.87 83.33
max 100.00 100.00 100.00 100.00
success(%) 44.67 36.00 33.00 38.67
correction(%)

ESSEN mean 94.18 93.33 93.47 93.33
- sd 4.07 3.89 3.56 3.45

SARPROP min 83.33 83.33 86.67 86.67
max 100.00 100.00 100.00 100.00
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Table 5.2: Success rate, The mean and standard deviation as well as minimum and
maximum percent of testing correction for the IRIS problem. The E(w) is CE2. The
structure of network is 4-3-3.

Activation Function
Algorithm Performance tanh 0-RPP 1-RPP 2-RPP

success(%) 56.00 68.00 62.00 60.00
correction(%)

CEN mean 94.64 95.00 95.48 95.11
- sd 3.67 4.44 3.90 3.69

iRprop+ min 83.33 83.33 86.67 86.67
max 100.00 100.00 100.00 100.00
success(%) 90.00 68.00 88.00 96.00
correction(%)

CEN mean 93.56 93.73 94.55 94.24
- sd 4.52 4.77 4.39 4.70

iRprop+ARPS min 80.00 83.33 83.33 80.00
max 100.00 100.00 100.00 100.00
success(%) 100.00 96.00 100.00 98.00
correction(%)

ECEN mean 94.33 94.31 94.80 94.56
- sd 5.10 4.81 4.53 4.55

iRprop+ min 83.33 83.33 83.33 83.33
max 100.00 100.00 100.00 100.00
success(%) 64.00 44.00 66.00 70.00
correction(%)

CEN mean 94.90 94.85 95.76 95.81
- sd 4.23 3.52 3.93 4.30

SARPROP min 86.67 90.00 86.67 86.67
max 100.00 100.00 100.00 100.00
success(%) 100.00 100.00 100.00 100.00
correction(%)

ECEN mean 95.73 95.40 95.87 95.80
- sd 3.87 3.56 3.60 3.55

SARPROP min 86.67 86.67 83.33 90.00
max 100.00 100.00 100.00 100.00



CHAPTER VI

Conclusions

This dissertation showed an example that the network with tanh and the network with

tanh-like activation functions quite differed in response while the shape of those activa-

tion functions are very similar. A class of p-RPP tanh-like neurons was systematically

developed. The shape and computational complexity of neurons can be changed by the

parameter p. Their execution times are shorter than those of both sigmoid and tanh

and yet comparable to the lookup table scheme. Regarding to the generalization and

convergent enhancement, three modifications were made for the new algorithm. First,

input normalization process of [23] was performed in order to balance the dynamic range

of the inputs. Second, modified error function of Oh was selected to eliminate the sig-

moid prime factor for the output units. And third, anti-Hebbian rule was generalized

and added to cooperate with the error back-propagated from the output layer. The

proposed scheme was combined with the weight decay term in order to improve the

generalization of the trained network as well as the convergence of training process.

Our ongoing work includes the following. In Chapter 4 and 5, we focus on the error

saturation elimination of classification problem which highly depends on the error func-

tion selected. With the cooperation of anti-Hebbian rule, the hidden layer accomplishes

the data compression task. Applications range from image compression [44] to function
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approximation [45, 46]. Since the radial basis function-like is also directly constructed

by the proposed method, the application of RBF-like function to the existing devices

using RBF should be explored.

We proposed some heuristics to set the factor α(t) of the anti-Hebbian term in the

weight updating rule. We are developing a general criterion to select the proper value

of α(t). This may contribute to improve not only the learning convergence but also the

network generalization. In our formulation of the p-RPP neurons, the size of the active

input segment is fixed for a given p. It would be useful if the segment can be extend

during training. This may contribute to improve the learning convergence.

A major advantage of the proposed algorithms is that they achieved their training

performance without the need for careful selections of training parameters. The gener-

alization of the trained network is also enhanced. This makes them attractive choices

among the first-order training algorithms.
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Appendix A

iRprop+ Algorithm

Require: The input/output data set and the initial weights and biases of network.
Ensure: The weights and biases of the trained network.

{The iRprop+ error gradient is computed by

∂E

∂wji(t)

iRprop+

=
∂E

∂wji(t)

}
1: ∀ i, j : ∆ji(0) = ∆0

2: ∀ i, j : ∂E
∂wji(0)

= 0
3: t = 1
4: repeat
5: Compute iRprop+ Gradient ∂E

∂wji(t)

6: for all weights and biases do
7: if ∂E

∂wji(t)
× ∂E

∂wji(t−1)
> 0 then

8: ∆ji(t) = minimum(∆wji(t − 1) × η+, ∆max)
9: ∆wji(t) = −sign( ∂E

∂wji(t)
) × ∆ji(t)

10: wji(t + 1) = wji(t) + ∆wji(t)
11: else if ∂E

∂wji(t)
× ∂E

∂wji(t−1)
< 0 then

12: ∆ji(t) = maximum(∆wji(t − 1) × η−, ∆min)
13: if E(t) > E(t − 1) then
14: wji(t + 1) = wji(t) − ∆wji(t − 1)
15: end if
16: ∂E

∂wji(t)
= 0

17: else
18: ∆wji(t) = −sign( ∂E

∂wji(t)
) × ∆ji(t)

19: wji(t + 1) = wji(t) + ∆wji(t)
20: end if
21: end for
22: t = t + 1
23: until Converged or t > maximum epoch



Appendix B

SARPROP Algorithm

Require: Temperature: T. The input/output data and the initial weights and biases
of network.

Ensure: The weights and biases of the trained network.
{The SARPROP error gradient is computed by

∂E

∂wji(t)

SARPROP

=
∂E

∂wji(t)
+ 0.1 × wji/(1 + w2

ji) × SA,

}
1: ∀ i, j : ∆ji(0) = ∆0

2: ∀ i, j : ∂E
∂wji(0)

= 0
3: t = 1
4: repeat
5: SA = 2−t×T

6: Compute SARPROP Gradient ∂E/∂wji(t)
7: for all weights and biases do
8: if ∂E

∂wji(t)
× ∂E

∂wji(t−1)
> 0 then

9: ∆ji(t) = minimum(∆wji(t − 1) × η+, ∆max)
10: ∆wji(t) = −sign( ∂E

∂wji(t)
) × ∆ji(t)

11: wji(t + 1) = wji(t) + ∆wji(t)
12: else if ∂E

∂wji(t)
× ∂E

∂wji(t−1)
< 0 then

13: if ∆ji(t − 1) < 0.4 ∗ SA2 then

14: r = rand()
RAND MAX

{r ∈ [0, 1)}
15: ∆ji(t) = ∆ji(t − 1) × η− + 0.8 × r × SA2

16: else
17: ∆ji(t) = ∆ji(t − 1) × η−

18: end if
19: ∆ji(t) = maximum(∆ji(t − 1), ∆min)
20: ∂E

∂wji(t)
= 0

21: else
22: ∆wji(t) = −sign( ∂E

∂wji(t)
) × ∆ji(t)

23: wji(t + 1) = wji(t) + ∆wji(t)
24: end if
25: end for
26: t = t + 1
27: until Converged or t > maximum epoch
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