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Chapter 1

Introduction

Mullins equation is the fourth-order non-linear partial differential equation (PDE)

whose solution models the evolution of a surface under the influence of mass transport

mechanisms. Herein, the Mullins equation describing grain boundary grooving, in which

surface diffusion is treated as the dominant mechanism, over another principal mass trans-

port mechanism, evaporation-condensation, is studied.

Mullins [1] considered the surface groove for a material with isotropic properties in

the theory of thermal grooving. In order to solve the surface-diffusion problem, he assumed

the surface slope to be small, much less than unity, everywhere so that he could linearize his

non-linear PDE. Mullins solved the linearized equation analytically to obtain the so-called

“small-slope approximation”, which is valid for nearly flat surfaces. Mullins also suggested

that for grain boundary grooving the PDE could be transformed to an ordinary differential

equation (ODE).

Robertson [2] performed a transformation as indicated by Mullins. The resulting
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differential equation is then numerically integrated. The detailed groove shapes are pre-

sented for the groove root slope m ranging from 0 to 4. The groove width is within five

percent of the small-slope width for all groove root slopes calculated. The groove depth

departs by more than ten percent from the small-slope depth for groove root slopes greater

than about 0.7.

Zhang and Schneibel [3] used a method of lines approach to solve Mullins equation.

It first converted the PDE to a system of ODE’s in time space through spatial discretization

and then integrated in time by a stiff ODE solver. The numerical results showed excellent

agreement with Mullins’ analytical “small slope” solution. However, when the groove root

slopes are greater than 0.5, differences between Zhang and Schneibel’s solution and Mullins’

solution develop.

Although no analytic solutions were known for Mullins equation [4], Tritscher and

Broadbridge [5] gave the first analytically solvable model in which the governing equation

was an alternative modified form of Mullins equation. A solution is achieved by partitioning

the surface into subintervals delimited by lines of constant slope. Their model does not rely

on the linear or small-slope approximation in which nonlinearity is neglected. Tritscher

and Broadbridge’s solution therefore provides a based line against which to check other

numerical results.

Lee [6] investigated into solving Mullins equation by the finite difference method

(FDM). In this case both temporal and spatial derivatives are replaced by finite difference

approximation. The accuracy for small slope (m < 0.5) is very good. However, error is

obviously increased as the value of m is getting larger.
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Recently, Mullins equation was solved by Liu [7] using cubic splines to approximate

the function of the surface profile. This causes the governing equation being transformed

into a system of ODE’s which is then solved by a stiff ODE solver. The numerical solution

for small slope (m ≤ 0.1) is in good agreement with the analytical solution. However, when

the groove slope is equal to 1, the shape of the profile is still correct but the accuracy is not

good enough. Moreover, when the groove slope is more than 1, the program even does not

converge [7].

In this thesis we consider the hybrid application of the Laplace transform technique

and the finite difference method, called the Laplace transform finite difference method

(LTFDM), for solving Mullins equation. This method was used by Chen and co-worker

[9] in transient heat conduction problems. The advantage of this method is that the time

derivative from the governing differential equation is removed by the Laplace transform,

thus reduces the governing equation to an ODE. Furthermore, another advantage of the

Laplace transform technique is that it can quickly give a solution at any specific time.

Later, Chen and Lin [10] used the same method to solve non-linear transient problems.

They concluded that the hybrid application of the Laplace transform technique and the

finite difference method is reliable. The Laplace transform has also been incorporated with

the dual reciprocity method for solving non-linear diffusion equations with considerable

success [11].

We will first test the LTFDM with the linear system involving the linearized

Mullins equation before applying it to solve the non-linear system. Our solutions will

be compared with the previous ones.
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Chapter 2

Mullins equation

As a background knowledge, Mullins equation will be derived in this chapter. In

the theory of thermal grooving published in 1957, Mullins investigated the development of

surface grooves at the grain boundaries of a heated polycrystal (see Figure 2.1), in which

evaporation-condensation and surface diffusion are the two principal mechanisms for mass

transport at a metal surface. Herein we will be interested in the grain boundary grooving

by surface diffusion only. In other words, we assume surface diffusion is the only process

operating. Let µ(K) be the increase in chemical potential per atom which is transferred

from a point of zero curvature to a point of curvature K on the surface. It can be shown

that

µ(K) = KγΩ

where γ is the surface-free energy per unit area and Ω the molecular volume.

Therefore, gradients of chemical potential along the surface will be associated with

gradients of curvature. These gradients will produce a drift of surface atoms with an average
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A

groove root

x
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depth

width

Figure 2.1: A symmetric groove profile.

velocity given by the Nernst-Einstein relation

V = −Ds
kT

∂µ

∂s

where Ds is the coefficient of surface diffusion, s the arc length along the profile, k the

Boltzmann constant, and T the absolute temperature. Note that kT is the thermal energy.

The surface flux of atoms, J , is obtained by multiplying V by the number of atoms

per unit area or ε. Thus,

J = −DsγΩε
kT

∂K

∂s
;

or in term of cartesian coordinates

J = −DsγΩε
kT

(1 + y2x)
−1
2 [yxx(1 + y

2
x)
−3
2 ]x.

The governing equation for the evolution of surface, denoted y(x, t), can be ex-
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pressed as

yt = −B{(1 + y2x)−
1
2 [yxx(1 + y

2
x)
− 3
2 ]x}x, (2.1)

where B = DsγΩ2ε/(kT ). Equation (2.1) can be written in another form as

yt = − B

(1 + y2x)
4

£
yxxxx(1 + y

2
x)
2 − 10yxyxxyxxx(1 + y2x) + 3y3xx(5y2x − 1)

¤
,

by taking differentiation. The above equation will be refered to as Mullins equation here-

after. In Mullins equation the subscripts x and t of y indicate differentiation with respect

to space and time respectively. Equation (2.1) is driven by gradients in surface curvature

(K).

As in [1] we impose the boundary condition of zero flux at the groove root. We

also impose a fixed dihedral angle A (see Figure 2.1) at the groove root and an initially flat

surface. We consider the symmetric grooving case as shown in Figure 2.1. In our numerical

calculation we select a sufficiently long interval of x, [0, L], so that the effect of its end

x = L on the groove profile is insignificant for the time interval concerned. Here, we set

L = 1 [7]. The boundary conditions we impose at x = L are zero slope of the surface and

zero flux. The first condition corresponds to the initially flat surface. The second condition

guarantees the conservation of matter, i.e. a constant area under the groove profile during

the evolution.

The governing equation, initial condition, and boundary conditions are as follows:

yt = − B

(1 + y2x)
4

£
yxxxx(1 + y

2
x)
2 − 10yxyxxyxxx(1 + y2x) + 3y3xx(5y2x − 1)

¤
; (2.2)
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subject to

IC. y(x, 0) = 0, 0 ≤ x ≤ 1

BC. yx(0, t) = m,

[yxxx(1 + y
2
x)− 3yxy2xx]|x=0 = 0,

yx(1, t) = 0,

[yxxx(1 + y
2
x)− 3yxy2xx]|x=1 = 0.

(2.3)

Here, m is the slope of the surface at the groove root and is related to the dihedral

angle A by

m = tan(90◦ − (A/2)).

It should be noticed that the initial condition, y(x, 0) = 0, is not consistent with

the boundary condition, yx(0, t) = m. That is, a singularity exists at x = 0 and t = 0.

However, Zhang and Schneibel [3] indicated that this does not pose a barrier in solving the

system numerically if we choose a proper numerical method.

Now we will assume that the surface slope is small everywhere (|yx| ¿ 1). Let

yx = 0 everywhere on interval and replace in Equation (2.1) and Equation (2.3).

Therefore, we will obtain the linear Mullins equation, initial condition, and bound-

ary conditions as follows:

yt = −Byxxxx (2.4)
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subject to

IC. y(x, 0) = 0

BC. yx(0, t) = m

yxxx(0, t) = 0

yx(1, t) = 0

yxxx(1, t) = 0.

(2.5)

Previously, Mullins derived the equation on a semi-infinite interval such that he

had to solve the governing equation with only two boundary conditions, i.e., yx(0, t) = m

and yxxx(0, t) = 0, and requires that the solution behaves properly at the infinity. This

requirement is consistent with our boundary conditions at x = 1, i.e., yx(1, t) = 0 and

yxxx(1, t) = 0. He assumed the solution in form of power series and obtained the recurrence

relation for the coefficients through standard technique. However, the first four coefficients

need to be computed separately which involves application of Laplace transform and Taylor’s

theorem. The “small-slope exact solution” is given in Appendix A.

However, Zhang and Schneibel [3] pointed out that Mullins’ solution can easily

become unstable when evaluated numerically using a computer. This is due to the limited

machine precision and the truncation of the infinite series in which Mullins’ solution is

presented. To avoid such instability, we solve Equation (2.4) in finite domain, i.e., interval

[0, 1], subject to initial and boundary conditions in Equation (2.5) to get the exact solution.

Detail is given in Appendix A. We will use our linear solution instead of the small-slope

solution for comparison with numerical solutions in the next chapter.
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Chapter 3

Numerical solution to linear

Mullins equation

In this chapter, we will survey numerical methods previously used to solve Mullins

equation along with our proposed LTFDM. They will be investigated for linear Mullins

equation and their solutions will be compared with analytic solution.

3.1 Cubic splines method

We will follow Liu’s derivation, but with some slight modifications. We want to

transform the system of Equations (2.4) and (2.5) to another system involving homogeneous

boundary conditions. To do so, let u(x, t) = y(x, t) + f(x). Pluging y(x, t) = u(x, t)− f(x)

into Equation (2.4) we find that if we want the form of Equation (2.4) to be preserved, f (4)

must be equal to zero. For this reason we choose f(x) = ax3 + bx2 + cx+ d where a, b, c, d

are arbitrary constants. All these constants can be determined by forcing u(x, t) to satisfy
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homogeneous boundary conditions as follows:

ux(0, t) = yx(0, t) + f
0(0) = m+ c = 0,

uxxx(0, t) = yxxx(0, t) + f
000(0) = 6a = 0,

ux(1, t) = yx(1, t) + f
0(1) = 3a+ 2b+ c = 0,

uxxx(1, t) = yxxx(1, t) + f
000(1) = 6a = 0,

so that a = 0, b = m
2 , and c = −m. Since d can be any number, we choose d = 0. Therefore,

f(x) =
m

2
x2 −mx,

which is slightly different from what Liu obtained. Now we have the new system to be

solved as:

ut = −Buxxxx

subject to

IC. u(x, 0) = m
2 x

2 −mx

BC. ux(0, t) = 0,

uxxx(0, t) = 0,

ux(1, t) = 0,

uxxx(1, t) = 0.

By letting v = uxx, the above system can be split into two systems. That is

ut = −Bvxx (3.1)
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subject to

IC. u(x, 0) = m
2 x

2 −mx

BC. ux(0, t) = 0,

ux(1, t) = 0,

(3.2)

and

v = uxx (3.3)

subject to

BC. vx(0, t) = 0,

vx(1, t) = 0.

(3.4)

Using separation of variable, we approximate u and v by the following expansions

u(x, t) =
nX
k=1

ck(t)φk(x), (3.5)

and

v(x, t) =
nX
k=1

dk(t)ϕk(x), (3.6)

where ck and dk are undetermined coefficient functions depending only on t while φk and

ϕk are the basis functions depending only on x. From Equations (3.2) and (3.4), u and

v have the same boundary conditions so we can use the same basis functions to expand

them, i.e., φk = ϕk. Here, B_splines are chosen to form basis functions since they are

twice continuously differentiable, the property of which is needed in Equations (3.1) and

(3.3). (See detail of B_splines in Appendix B.) The basis functions must also be chosen to
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satisfy the homogeneous boundary conditions. In this case, we need φ0k(0) = φ0k(1) = 0 for

k = 1, 2, . . . , n. Therefore, we consider

φ1(x) = B1(x)

φ2(x) = B0(x) +B2(x)

φk(x) = Bk(x), k = 3, . . . , n− 2

φn−1(x) = Bn−1(x) +Bn+1(x)

φn(x) = Bn(x).

We now discretize the interval [0, 1] with n nodal points such that 0 = x1 < x2 <

. . . < xn = 1 with equally spacing h. Substituting u from Equation (3.5) and v from

Equation (3.6) into Equation (3.1), we have in discretized form

nX
k=1

c·k(t)φk(xi) = −B
nX
k=1

dk(t)φ
00
k(xi), i = 1, 2, . . . , n (3.7)

where dot and prime denote derivative with respect to t and x, respectively. Equation (3.7)

can be written in the matrix form as

Φct = −BΦxxd.

Similarly, Equation (3.3) becomes

nX
k=1

dk(t)φk(xi) =
nX
k=1

ck(t)φ
00
k(xi), i = 1, 2, . . . , n

and is written in the matrix form as

Φd = Φxxc.
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Here,

Φ =



1 1/2 0 0 0 0 0

1/4 1 1/4 0 0 0 0

0 1/4 1 1/4 0 0 0

0 0
. . . . . . . . . 0 0

0 0 0 1/4 1 1/4 0

0 0 0 0 1/4 1 1/4

0 0 0 0 0 1/2 1


and

Φxx =
1

h2



−3 3 0 0 0 0 0

3/2 −3 3/2 0 0 0 0

0 3/2 −3 3/2 0 0 0

0 0
. . . . . . . . . 0 0

0 0 0 3/2 −3 3/2 0

0 0 0 0 3/2 −3 3/2

0 0 0 0 0 3 −3



.

Notice that Φ is tridiagonal and stictly diagonally dominant. By Gershgorin’s theorem, Φ

is invertible. Therefore,

ct = −BΦ−1Φxxd,

d = Φ−1Φxxc,

and hence

ct = −B(Φ−1Φxx)2c, (3.8)
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which is a system of first order ODE’s.

System (3.8) together with initial condition in Equation (3.2) form an initial value

problem, solution of which at time tj , called c(j), is obtained through the fourth-order

Runge-Kutta method. Once we get c(j), we can compute u(xi, tj) by

u(xi, tj) =
nX
k=1

ck(tj)φk(xi),

and our approximate solution is then

yapprox(xi, tj) = u(xi, tj)−mxi(1
2
xi − 1).

Figure 3.1 shows numerical solution compared to the exact solution of linear

Mullins equation from Appendix A, for groove profile when constant B = 0.00001 and

slope at the groove root m = 0.1 at t = 1 using 2000 time steps and 41 nodal points. It can

be seen that they are in very good agreement. While we simulated the numerical solutions

for several values of m we found that the solution for any value of m is just m multiple of

the solution for m = 1 or m/r multiple of the solution for m = r. This is in accord with the

exact solution in which m is the multiplication factor. For this reason we only show the

comparison between numerical solution and analytic solution when m = 0.1. This means

that for any value of m, numerical solution produces groove profile which agrees well with

that produced by exact solution.

In the previous work on cubic splines, Liu [7] transformed by using

f(x) =
m

2
(1− x)2
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Figure 3.1: Comparison of groove profiles obtained from cubic splines method (dashed line)
and analytic solution (solid line) for m = 0.1.
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and chose φ2 and φn−1 differently and they are

φ2(x) = B0(x) +B1(x) +B2(x),

φn−1(x) = Bn−1(x) +Bn(x) +Bn+1(x).

Then, Φ and Φxx become

Φ =



1 3/2 0 0 0 0 0

1/4 5/4 1/4 0 0 0 0

0 1/4 1 1/4 0 0 0

0 0
. . . . . . . . . 0 0

0 0 0 1/4 1 1/4 0

0 0 0 0 1/4 5/4 1/4

0 0 0 0 0 3/2 1


and

Φxx =
1

h2



−3 0 0 0 0 0 0

3/2 −3/2 3/2 0 0 0 0

0 3/2 −3 3/2 0 0 0

0 0
. . . . . . . . . 0 0

0 0 0 3/2 −3 3/2 0

0 0 0 0 3/2 −3/2 3/2

0 0 0 0 0 0 −3



.

Notice that now Φ is not stictly diagonally dominant, so it is not guaranteed by Gershgorin’s

theorem that Φ is nonsingular. However, the result in this case is the same as the one shown

in Figure 3.1.
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3.2 Finite difference method

Following Lee [6], the interval [0, 1] is equally discretized into n − 1 subintervals

such that the distance of each subinterval is 4x. The nodal points i = 1 and i = n refer

to the boundary point 0 and 1 respectively. Moreover, the time t will be discretized into

m− 1 subintervals, and the distance of each subinterval is 4t (see Figure 3.2).

i=1 i=2 i=n
j=1

j=2

x

t

j=m

Figure 3.2: The finite difference discretization.

Then, applying the finite difference formulae from Appendix C to approximate

Equation (2.4) yields

y
(j+1)
i − y(j)i

4t = −By
(j)
i+2 − 4y(j)i+1 + 6y(j)i − 4y(j)i−1 + y(j)i−2

4x4 ,



18

or, after rearrangement,

y
(j+1)
i = y

(j)
i −4tB

y
(j)
i+2 − 4y(j)i+1 + 6y(j)i − 4y(j)i−1 + y(j)i−2

4x4 . (3.9)

However, doing this leads us into trouble of having points outside [0, 1] involved

in the calculation. We can circumvent this problem by applying finite difference formulae

to the boundary conditions, thus obtains

y0 = y2 − 2m4 x

yn+1 = yn−1

y−1 = y3 − 4m4 x (3.10)

yn+2 = yn−2.

Using Equation (3.9) and (3.10) together with initial condition in Equation (2.5),

we can solve the solution at each time step by Jacobi iterative technique. The result for

small slope (m = 0.1) at t = 1 is shown in Figure 3.3 with B = 0.00001, 300 time steps,

and 41 nodal points being used. Also presented in Figure 3.3 is the graph of exact solution.

Obviously, numerical and analytical solutions are in very good agreement.
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Figure 3.3: Comparison of groove profiles obtained from finite difference method (dashed
line) and analytic solution (solid line) for m = 0.1.
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3.3 Laplace transform finite difference method (LTFDM)

In this section, Mullins equation will be solved by the Laplace transform technique

applied in conjuction with the finite difference method. This technique was used, for ex-

ample, by Chen and Lin [10] in solving one-dimensional transient problems with non-linear

material properties.

First, the interval [0, 1] is evenly discretized into n− 1 subintervals such that the

distance of each subinterval is h. In addition, the nodal points i = 1 and i = n refer to the

boundary points 0 and 1 respectively as illustrated in Figure 3.4.

i=1 i=n

0 L
... xh

i=0i=-1 i=n+1 i=n+2

Figure 3.4: Diagram of discretization along x-axis.

The approximated form of Equation (2.4), using the central finite difference ap-

proximation with the spatial derivative, can be stated as

∂yi
∂t

= −B
µ
yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4

¶
(3.11)

for i = 1, 2, . . . , n, where yi = y(xi, t). Taking the Laplace transform of Equation (3.11)

with respect to time yields

s
∧
yi − y(xi, 0) = −

B

h4

³∧
yi+2 − 4∧yi+1 + 6∧yi − 4∧yi−1 + ∧

yi−2
´
, (3.12)

in which
∧
yi =

∧
y(xi, s) is the Laplace transform of yi and s is the Laplace parameter. Equation
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(3.12) can be rearranged as

µ
B

h4

¶
∧
yi−2 +

µ
−4B
h4

¶
∧
yi−1 +

µ
6B

h4
+ s

¶
∧
yi +

µ
−4B
h4

¶
∧
yi+1 +

µ
B

h4

¶
∧
yi+2 = y(xi, 0).

(3.13)

It should be noted that when i = 1, i = 2, i = n−1, and i = n, Equation (3.13) will

involve points external to interval [0, 1] as in Section 3.2. However, after applying the finite

difference formulae to the boundary conditions in Equation (2.5), the values at external

nodes can be computed as follows:

y0 = y2 − 2mh,

yn+1 = yn−1,

y−1 = y3 − 4mh, (3.14)

yn+2 = yn−2.

Then taking the Laplace transform of Equation (3.14) with respect to time gives

∧
y0 =

∧
y2 −

2mh

s
,

∧
yn+1 =

∧
yn−1,

∧
y−1 =

∧
y3 −

4mh

s
, (3.15)

∧
yn+2 =

∧
yn−2.

Equations (3.13) and (3.15) can be rearranged into the matrix form

A
∧
y = b (3.16)

where A is an (n× n) band matrix, ∧y an (n× 1) vector representing the unknown ∧
yi, and

b an (n× 1) known constant vector.
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Before solving the system (3.16), we need to specify the time t we want solution

to be computed. Then we calculate 6 values of s as indicated in the Stehfest’s algorithm

for numerical inversion of Laplace transform given in Appendix D. Each value of s gives

system (3.16) a solution vector
∧
y. After having solved system (3.16) to get 6 vectors of

∧
y,

the Stehfest’s algorithm is utilized to obtain the value of yi at the specified time.

Depicted in Figure 3.5 are groove profiles obtained from numerical solution by

LTFDM and analytical solution for slope m = 0.1 at t = 1 with B = 0.00001 and 41

nodal points being used. Numerical solution is seen to be in excellent agreement with the

analytical solution.
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

LTFDM

exact (linear)

Figure 3.5: Comparison of groove profiles obtained from Laplace transform finite difference
method (dashed line) and analytic solution (solid line) for m = 0.1.
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3.4 Comparison

Now we will compare the results among cubic splines method, FDM, and LTFDM.

In Figure 3.6, we see that all methods give similar results which agree very well with the

analytic solution. However, the time used for running program in each method is very

different when we fix the number of nodes. LTFDM uses time much less than the others.

For specific time t, unlike the other two methods which need step-by-step calculations,

LTFDM needs only 6 calculations in Laplace space before the numerical inversion is used to

retrieve the desired solution. Moreover, if we want to increase the number of nodes for more

accuracy, it can be done easily with LTFDM. For cubic splines and finite difference methods,

we have to increase the number of time steps when increasing the number of nodes. For

example, the stability requirement for FDM is B4t4x4 < 0.125 by the Von Neumann method.

In Figure 3.3, the converged solution can still be obtained using 40 subintervals and 300

time steps since 4x = 1/40 = 0.025, 4t = 1/300 and B4t
4x4 = 0.085 < 0.125, but when

increasing the number of subintervals to be 50 (4x = 0.02), the solution does not converge

with the same number of time steps because B4t
4x4 = 0.208 ≮ 0.125. Therefore, we have to

decrease 4t in order to obtain the solution. Thus, the time used for solution calculation by

cubic splines and finite difference methods is much more than that by LTFDM.
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Figure 3.6: Comparison of numerical and analytical solutions for linear Mullins equation
when m = 0.1.
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Chapter 4

Numerical solution to non-linear

Mullins equation

In this chapter, we extend the numerical methods surveyed in the previous chapter

to non-linear Mullins equation. All numerical results obtained will be compared with that

obtained from Tritscher and Broadbridge (T&B)’s analytically solvable model.

4.1 Cubic splines method

Similar to Section 3.1, we transform the system of Equations (2.2) and (2.3) to

another one by letting u(x, t) = y(x, t) + f(x) where f(x) = m
2 x

2 −mx. Hence, we can find
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initial condition and boundary conditions in terms of u as

IC. u(x, 0) = m
2 x

2 −mx

BC. ux(0, t) = 0

ux(1, t) = 0

uxxx(0, t) =
3m(uxx(0,t)−m)2

1+m2

uxxx(1, t) = 0.

However, this time we cannot make all the boundary conditions to be homoge-

neous. Nevertheless, by letting v = uxx the above initial condition and boundary conditions

can be separated into two parts, i.e.,

IC. u(x, 0) = m
2 x

2 −mx

BC. ux(0, t) = 0

ux(1, t) = 0

(4.1)

and

BC. vx(0, t) =
3m(v(0,t)−m)2

1+m2

vx(1, t) = 0.

(4.2)

We now discretize the interval [0, 1] with n nodal points such that 0 = x1 < x2 <

. . . < xn = 1 with equally spacing h. Now u and v can be approximated by the following

expansion

u(x, t) =
nX
k=1

ck(t)φk(x)

and

v(x, t) =
nX
k=1

dk(t)ϕk(x).
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As before, φk and ϕk are the basis functions chosen so as to satisfy homogeneous boundary

conditions. It should be noted that boundary conditions in Equations (4.1) and (4.2) are

not the same, so we can not immediately use φk = ϕk.

From boundary conditions in Equation (4.1), we require that φ0k(0) = φ0k(1) = 0

for k = 1, 2, . . . , n. Therefore, we select

φ1(x) = B1(x)

φ2(x) = B0(x) +B2(x)

φk(x) = Bk(x), k = 3, . . . , n− 2

φn−1(x) = Bn−1(x) +Bn+1(x)

φn(x) = Bn(x),

which satisfy the requirement.

On the other hand, ϕk must be chosen to satisfy boundary conditions for v in

Equation (4.2). Thus, we need ϕ0k(1) = 0 but ϕ0k(0) is not necessary to be zero, for k =

1, 2, . . . , n. Let us consider the set of {ϕk}nk=1 to be the same as {φk}nk=1 except for ϕ2 that

we choose

ϕ2(x) = B2(x).

It is obvious that, by taking differentiation, we have ϕ0k(0) = 0 for k = 1, 3, 4, . . . , n and

ϕ0k(1) = 0 for k = 1, 2, 3, . . . , n, and

ϕ02(0) = B
0
2(0) =

3

4h
.
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Since vx(0, t) =
3m(v(0,t)−m)2

1+m2 and

vx(0, t) =
nX
k=1

dk(t)ϕ
0
k(0)

= d1(t)ϕ
0
1(0) + d2(t)ϕ

0
2(0) + d3(t)ϕ

0
3(0) + · · ·+ dn(t)ϕ0n(0)

=
3

4h
d2(t)

and

v(0, t) = uxx(0, t) =
nX
k=1

ck(t)φ
00
k(0)

= c1(t)φ
00
1(0) + c2(t)φ

00
2(0) + c3(t)φ

00
3(0) + · · ·+ cn(t)φ00n(0)

= c1(t)B
00
1 (0) + c2(t)

£
B000 (0) +B

00
2 (0)

¤
+ c3(t)B

00
3 (0) + · · ·+ cn(t)B00n(0)

= c1(t)

µ
− 3
h2

¶
+ c2(t)

µ
3

2h2
+

3

2h2

¶
+ c3(t) · 0 + · · ·+ cn(t) · 0

=
3

h2
[c2(t)− c1(t)] ,

we finally have

3

4h
d2(t) =

3m

1 +m2

½
3

h2
[c2(t)− c1(t)]−m

¾2
,

and hence

d2(t) =
4mh

1 +m2

½
3

h2
[c2(t)− c1(t)]−m

¾2
.

Now we write v in terms of φk ’s as follows:

v(x, t) =
nX
k=1

dk(t)ϕk(x)

= d1(t)B1(x) + d2(t)B2(x) + d3(t)B3(x) + · · ·+ dn(t)Bn(x)

= {d1(t)B1(x) + d2(t) [B0(x) +B2(x)] + d3(t)B3(x) + · · ·+ dn(t)Bn(x)}− d2(t)B0(x)

=
nX
k=1

dk(t)φk(x)−
4mh

1 +m2

½
3

h2
[c2(t)− c1(t)]−m

¾2
B0(x).



29

From v = uxx, we will have

nX
k=1

dk(t)φk(x)−
4mh

1 +m2

½
3

h2
[c2(t)− c1(t)]−m

¾2
B0(x) =

nX
k=1

ck(t)φ
00
k(x).

Applying this equation to all nodal points yields

d = Φ−1Φxxc+Φ−1g (4.3)

where c, d, Φ−1, and Φxx are the same as in Section 3.1, and

g =



4mh
1+m2

©
3
h2
[c2(t)− c1(t)]−m

ª2
B0(0)

0

...

0


.

Remembering that y(x, t) = u(x, t)− f(x), we have

yt = ut(x, t) =
nX
k=1

c·k(t)φk(x),

yx = ux(x, t)− f 0(x) =
nX
k=1

ck(t)φ
0
k(x)− (mx−m) ,

yxx = uxx(x, t)− f 00(x) =
nX
k=1

ck(t)φ
00
k(x)−m,

yxxx = vx(x, t)− f 000(x) =
nX
k=1

dk(t)φ
0
k(x)−

4mh

1 +m2

½
3

h2
[c2(t)− c1(t)]−m

¾2
B00(x),

yxxxx = vxx(x, t)− f (4)(x) =
nX
k=1

dk(t)φ
00
k(x)−

4mh

1 +m2

½
3

h2
[c2(t)− c1(t)]−m

¾2
B000 (x).

We now substitute the above 5 derivatives into the original non-linear Mullins

equation (2.2) and use Equation (4.3) to compute the coefficient function dk ’s in terms of

ck ’s. We finally arrive at a system of n ODE’s in matrix form as

Φct = f(t, c) (4.4)
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We can solve system (4.4) using Runge-Kutta-Fehlberg method with

c0 = Φ
−1u0

= Φ−1


u(x1, 0)

...

u(xn, 0)

 .

Then we will get u(x, t) and, finally, y(x, t).

In the previous work, Liu [7] transformed the system of Equation (2.3) by letting

f(x) = m
2 (1− x)2 + m

π2
cosπx, and chose φ2 and φn−1 differently which are

φ2(x) = B0(x) +B1(x) +B2(x),

φn−1(x) = Bn−1(x) +Bn(x) +Bn+1(x).

Additionally, ϕ2 and ϕn−1 were chosen to be

ϕ2(x) = AB0(x) +B1(x) +B2(x),

ϕn−1(x) = Bn−1(x) +Bn(x) +Bn+1(x).

where

A = 1− 36m

(1 +m2)h3
c21(t)

d22(t)
.

The solution could be obtained through IMSL ODE package DIVPAG [7], however,

we will use Runge-Kutta-Fehlberg method instead. In this case, we find that the result

obtained from our derivation is very close to that from Liu’s.
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Figures 4.1 - 4.5 shows the results using our derivation for m = 0.1, 0.5, 0.7, 0.8, 1

at t = 1. They are compared with T&B’s solution. Our solutions are close to T&B’s

solutions for the value of m up to 0.5 and they start to depart from T&B’s solution when

m > 0.5. Here, we use 41 nodal points with 2000 time steps for the calculation.
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Figure 4.1: Comparison of groove profiles produced from cubic splines method (dotted line)
and T&B’s solution (solid line) for m = 0.1.
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Figure 4.2: Comparison of groove profiles produced from cubic splines method (dotted line)
and T&B’s solution (solid line) for m = 0.5.
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Figure 4.3: Comparison of groove profiles produced from cubic splines method (dotted line)
and T&B’s solution (solid line) for m = 0.7.
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Figure 4.4: Comparison of groove profiles produced from cubic splines method (dotted line)
and T&B’s solution (solid line) for m = 0.8.
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Figure 4.5: Comparison of groove profiles produced from cubic splines method (dotted line)
and T&B’s solution (solid line) for m = 1.0.



36

4.2 Finite difference method

We use the forward finite difference formula for the first order derivative with yt

in Equation (2.2) yields

y(j+1) − y(j)
4t = − Bµ

1 +
³
y
(j)
x

´2¶4
"
y(j)xxxx

µ
1 +

³
y(j)x

´2¶2

−10y(j)x y(j)xx y(j)xxx
µ
1 +

³
y(j)x

´2¶
+ 3

³
y(j)xx

´3µ
5
³
y(j)x

´2 − 1¶¸ ,
then, after rearrangement,

y(j+1) = y(j) − B 4 tµ
1 +

³
y
(j)
x

´2¶4
"
y(j)xxxx

µ
1 +

³
y(j)x

´2¶2
(4.5)

−10y(j)x y(j)xx y(j)xxx
µ
1 +

³
y(j)x

´2¶
+ 3

³
y(j)xx

´3µ
5
³
y(j)x

´2 − 1¶¸ .
We can approximate yx, yxx, yxxx, and yxxxx by using the symmetry finite difference formu-

lae from Appendix C. However, we still have problem with the unknown external points.

Hence, we have to apply the finite difference formulae with the boundary conditions in

Equation (2.3), and we will obtain

y0 = y2 − 2m4 x,

yn+1 = yn−1, (4.6)

y−1 = −64 x
3yxy

2
xx

1 + y2x
+ y3 − 4m4 x,

yn+2 =
64 x3yxy2xx
1 + y2x

+ yn−2.

We solve Equations (4.5) and (4.6) together with the initial condition in Equation

(2.3) using Jacobi iterative technique. Figures 4.6 and 4.7 display groove profiles produced
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by FDM and T&B’s solution for m = 0.1 and 0.5. We can see that both graphs in each

figure are in very good agreement with each other. However, when we increase the slope

at groove root or the values of m to more than 0.5, the profile produced by FDM starts

to depart from that produced by T&B’s solution (see Figure 4.8 - 4.10). For m = 0.1, the

number of nodal points used is 31 with 500 time steps. When increasing the value of m, we

have to increase the number of nodal points for more accuracy so that we have to increase

the number of time steps also. For m = 1, we use 81 nodal points with 4000 time steps in

the production of groove profile.
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Figure 4.6: Comparison of groove profiles produced from FDM (dashed line) and T&B’s
solution (solid line) for m = 0.1.
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Figure 4.7: Comparison of groove profiles produced from FDM (dashed line) and T&B’s
solution (solid line) for m = 0.5.
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Figure 4.8: Comparison of groove profiles produced from FDM (dashed line) and T&B’s
solution (solid line) for m = 0.7.
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Figure 4.9: Comparison of groove profiles produced from FDM (dashed line) and T&B’s
solution (solid line) for m = 0.8.
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Figure 4.10: Comparison of groove profiles produced from FDM (dashed line) and T&B’s
solution (solid line) for m = 1.0.
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4.3 Laplace transform finite difference method (LTFDM)

In order to use LTFDM, unlike the linear Mullins equation which can be solved

without any trouble, the non-linear Mullins equation needs linearization to relieve the non-

linear structure. That is the non-linear terms must be linearized before applying FDM.

The linearized variable will be written with ∼ which denotes the previous iteration. In

this thesis, we propose two linearization schemes including direct scheme and Taylor series

expansion scheme.

Direct linearization scheme

For this scheme, we will keep the highest order spatial derivative terms as many

as possible with the rest being written with ∼. Thus, Equation (2.2) can be rewritten as

∂y

∂t
= − B

(1 +
∼
y
2

x)
4

h
(1 +

∼
y
2

x)
2 · yxxxx − 10∼yx

∼
yxx(1 +

∼
y
2

x) · yxxx + 3(5
∼
y
2

x − 1)
∼
y
2

xx · yxx
i

Using the symmetry finite difference formulae from Appendix C to approximate yxx, yxxx,

yxxxx yields

∂yi
∂t

= − B

(1 +
∼
y
2

x)
4

·
(1 +

∼
y
2

x)
2 ·
µ
yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

h4

¶
− 10∼yx∼yxx(1 + ∼

y
2

x) ·
µ
yi+2 − 2yi+1 + 2yi−1 − yi−2

2h3

¶
(4.7)

+3(5
∼
y
2

x − 1)
∼
y
2

xx ·
µ
yi+1 − 2yi + yi−1

h2

¶¸
,

for i = 1, 2, . . . , n. It should be remarked that
∼
yx and

∼
yxx are also approximated by the

finite difference formulae. However, for conciseness, they will be left as they are in Equation
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(4.7). Taking Laplace transform of Equation (4.7) with respect to t, it follows that

s
∧
yi − y(xi, 0) = −

Ã
B

(1 +
∼
y
2

x)
4

!("
(1 +

∼
y
2

x)
2

h4
+
5
∼
yx
∼
yxx(1 +

∼
y
2

x)

h3

#
∧
yi−2

−
"
4(1 +

∼
y
2

x)
2

h4
+
10
∼
yx
∼
yxx(1 +

∼
y
2

x)

h3
− 3(5

∼
y
2

x − 1)
∼
y
2

xx

h2

#
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where i = 1, 2, . . . , n.

Now we approximate the boundary conditions in Equation (2.3) by finite difference

formulae so that two of the boundary conditions are as follows:

yx(0, t) = m ⇒ y0 = y2 − 2mh,

yx(1, t) = 0 ⇒ yn+1 = yn−1.

The rest of the boundary conditions must be linearized. We can linearize yxxx(1 + y2x) −

3yxy
2
xx to be (1+

∼
y
2

x)yxxx− 3
∼
yx
∼
yxxyxx. Thus, from [yxxx(1+ y

2
x)− 3yxy2xx]|x=0 = 0 we have

(1 +
∼
y
2

x)

·
y3 − 2y2 + 2y0 − y−1

2h3

¸
− 3∼yx∼yxx

·
y2 − 2y1 + y0

h2

¸
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12h

∼
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∼
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∼
y
2

x
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1 +
∼
y
2

x
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"
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∼
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∼
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1 +
∼
y
2

x

− 4mh
#
.

For [yxxx(1 + y2x)− 3yxy2xx]|x=1 = 0, we have

(1 +
∼
y
2

x)

·
yn+2 − 2yn+1 + 2yn−1 − yn−2

2h3

¸
− 3∼yx∼yxx

·
yn+1 − 2yn + yn−1

h2

¸
= 0
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or

yn+2 = yn−2 +
12h

∼
yx
∼
yxx

1 +
∼
y
2

x

· yn−1 − 12h
∼
yx
∼
yxx

1 +
∼
y
2

x
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Taking Laplace transform of y0, yn+1, y−1, and yn+2 with respect to time yields

∧
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∧
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s
,

∧
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∧
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∧
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∧
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∼
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1 +
∼
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2

x

· ∧yn−1 −
12h

∼
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∼
yxx

1 +
∼
y
2

x

· ∧yn.

Taylor series expansion linearization scheme

Now we will use Taylor series expansion scheme to linearize the non-linear terms.

The truncated first order Taylor series expansion states that

f(u1, . . . , un) = f(
∼
u1, . . . ,

∼
un) + fu1(

∼
u1, . . . ,

∼
un)(u1 − ∼u1) + · · ·+ fun(∼u1, . . . ,∼un)(un − ∼un).

If we let u1 = yx, u2 = yxx, u3 = yxxx, u4 = yxxxx and use the above expansion,

we have
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Thus, Equation (2.2) becomes
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Using symmetry finite difference formulae with spatial derivative terms in Equation (4.10),

we have
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where i = 1, 2, . . . , n. Taking the Laplace transform of Equation (4.11) with respect to time
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and rearranging terms yields
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Doing the same way with the boundary conditions, finally we will obtain
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We can now solve system (4.8) or (4.12) together with Equation (4.9) or (4.13) as
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described in Section 3.3. However, instead of solving linear system (4.8) or (4.12) together

with (4.9) or (4.13) by standard Gaussian elemination, we will solve it by Thomas’ algorithm

for pentadiagonal matrix which will save time greatly.

From Figures 4.11 and 4.12, one can see that LTFDM based on both direct lin-

earization scheme and Taylor series expansion linearization scheme, called LTFDM-D and

LTFDM-T respectively, give groove profiles which are in very good agreement with T&B’s.

When the slope at the groove rootm = 0.7, LTFDM-T produces better result than LTFDM-

D does (see Figure 4.13). When increasing the slope at the groove root above 0.7, the shape

of the groove is still correct but it is lower than T&B’s (see Figures 4.15 - 4.19). For

LTFDM-D, we can increase the number of nodes if we want to increase the accuracy. Here,

we choose approximately 30-60 nodal points form < 1 and 400-1000 nodal points form ≥ 1.

On the other hand, we can choose only 20-35 nodal points for LTFDM-T for all the value

of m presented. It is rather strange that the larger the groove slope is the less nodal points

can be used in LTFDM-T. For example, at the groove root m = 0.1, the maximum of nodal

points is N = 35 and for m = 3, N = 20.
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Figure 4.11: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 0.1.
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Figure 4.12: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 0.5.
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Figure 4.13: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 0.7.
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Figure 4.14: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 0.8.



52

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

LTFDM-D

LTFDM-T

T&B

Figure 4.15: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 1.0.
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Figure 4.16: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 2.0.
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Figure 4.17: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 3.0.
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Figure 4.18: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 4.0.
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Figure 4.19: Comparison of groove profiles produced from LTFDM-D (dotted line),
LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 4.5.
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4.4 Comparison

Figures 4.20 and 4.21 show that all numerical methods presented herein give similar

results that are in excellent agreement with T&B’s solution when m = 0.1 and m = 0.5.

For better comparison, we calculate relative error of solution produced by each method

at 10 points which are equally spreaded over [0, 0.45]. Then we take an average of these

relative errors, which is denoted ARE. The relative error is computed based on L∞-norm.

From Table 4.1, when m = 0.5, every method gives the solution with ARE less than 10%.

But, when m = 0.7, LTFDM-T produces the best accurate solution compared with T&B’s

solution with ARE = 8.51% while the others have ARE more than 10%. Additionally,

LTFDM-D and LTFDM-T give better results than the others for m = 0.8. Moreover, for

m = 1, LTFDM-D gives the solution which is closest to T&B’s solution (see Figure 4.24).

Furthermore, when the value of m is increased, the number of nodal points has to be

increased accordingly for more accuracy, which can be done quickly and easily by LTFDM.

On the other hand, for cubic splines and finite difference methods, we have to increase a

great deal of time steps also.

m CBS Liu FDM LTFDM-D LTFDM-T

0.5 5.97 7.06 5.32 8.05 9.98

0.7 17.99 16.62 18.61 11.36 8.51

0.8 33.51 32.15 28.09 17.52 17.71

Table 4.1 : The average relative errors.
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Figure 4.20: Comparison between each numerical method for solving non-linear Mullins
equation when m = 0.1.
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Figure 4.21: Comparison between each numerical method for solving non-linear Mullins
equation when m = 0.5.
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Figure 4.22: Comparison between each numerical method for solving non-linear Mullins
equation when m = 0.7.
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Figure 4.23: Comparison between each numerical method for solving non-linear Mullins
equation when m = 0.8.
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Figure 4.24: Comparison between each numerical method for solving non-linear Mullins
equation when m = 1.0.
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Chapter 5

Conclusion

In this thesis, three numerical approaches including cubic splines method, finite

difference method (FDM), and Laplace transform finite difference method (LTFDM) are

presented and applied to solve Mullins equation which is the fourth-order non-linear partial

differential equation describing grain boundary grooving by surface diffusion. All meth-

ods are first tested with linearized Mullins equation before extended to non-linear case.

Numerical results produced by these three methods exhibit very good accuracy compared

with exact solution of linear Mullins equation. However, our main aim is to extend all the

methods to solving non-linear Mullins equation.

Cubic splines method was previously used to solve Mullins equation by Liu [7].

Herein, we solve Mullins equation by cubic splines method through slightly changing Liu’s

derivation and compare our results with the solution obtained via Liu’s derivation. We find

that the result from our derivation is similar to that from Liu’s derivation, and the accuracy

is very good when the groove slope is not more than 0.5 compared to T&B’s solution.
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Also, FDM was previously used to solve Mullins equation by Lee [6]. Our work is

to study this numerical technique for Mullins equation. We find that the result is in very

good agreement with T&B’s solution for the groove slope m ≤ 0.5.

The highlight of this thesis is to solve Mullins equation by LTFDM through direct

linearization and Taylor series expansion schemes. By the way of LTFDM, we have to use

the numerical inversion of Laplace transform. Herein, the numerical inversion of Laplace

transform called “Stehfest’s algorithm” is utilized. The results obtained from LTFDM based

on direct linearization scheme, called LTFDM-D, are presented for the groove slope ranging

between 0 and 4.5. Additionally, LTFDM-D’s solution agrees very well with T&B’s solution

when the groove slope is not more than 0.5. For LTFDM based on Taylor series expansion

linearization scheme, denoted LTFDM-T, the numerical results obtained compare very well

with T&B’s solution when the groove slope is not more than 0.7 which is better than the

other methods. Moreover, for the groove slope m = 0.8, LTFDM-D and LTFDM-T produce

better accurate results than the other methods do. Unfortunately, LTFDM-T somehow fails

when the value of m is beyond 3.

For the time used in calculation, LTFDM uses the time much less than cubic

splines method and FDM because LTFDM does not have to calculate at each time step.

Therefore, we can quickly obtain an accurate solution at any specific time by LTFDM. On

the other hand, cubic splines method and FDM spend time for calculating at each time

step. Moreover, if we want to increase the number of nodes for more accuracy, it can be

done easily with LTFDM. For cubic splines and FDM, we have to increase the number of

time step also so that the time for calculation is increased at the same time.
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From all of the points mentioned above, LTFDM is a powerful numerical method

for solving Mullins equation and LTFDM-T is better than LTFDM-D for small slope,m < 1,

and LTFDM-D is better than LTFDM-T for larger slope, 1 ≤ m ≤ 4.5. However, there are

many methods for numerical inversion of Laplace transform. For the future works, LTFDM

may be improved by using other numerical inversion of Laplace transform and extended to

solving other non-linear partial differential equations.
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Appendix A

Exact solution for linear Mullins

equation

For convenience, let u(x, t) = y(x, t) + m
2Lx

2 −mx. The advantage of this change

is to have homogeneous boundary conditions. Hence, the new system to be solved in terms

of u is as follows:

ut = −Buxxxx (A.1)

subject to

IC. u(x, 0) = m
2Lx

2 −mx

BC. ux(0, t) = 0,

uxxx(0, t) = 0,

ux(L, t) = 0,

uxxx(L, t) = 0.

(A.2)
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Using separation of variables, let u(x, t) = X(x)T (t) and substitute it in Equation (A.1).

So, we have

− 1
B

T 0(t)
T (t)

=
X(4)(x)

X(x)
= k. (A.3)

Case 1. k > 0 (let k = λ4, λ > 0)

From Equation (A.3), we have two ODE’s, i.e.,

T 0(t) + kBT (t) = 0,

and

X(4)(x)− λ4X(x) = 0,

which have corresponding general solutions as

T (t) = d1e
−kBt,

and

X(x) = c1e
λx + c2e

−λx + c3 cosλx+ c4 sinλx.

From boundary conditions in Equation (A.2), we have

X
0
(0) = 0 : λc1 − λc2 + λc4 = 0

X
0
(L) = 0 : λc1e

λL − λc2e
−λL − λc3 sinλL+ λc4 cosλL = 0

X
000
(0) = 0 : λ3c1 − λ3c2 − λ3c4 = 0

X
000
(L) = 0 : λ3c1e

λL − λ3c2e
−λL + λ3c3 sinλL− λ3c4 cosλL = 0.

Solving for c1, c2, c3, and c4, we have c1 = c2 = c4 = 0 and c3 sinλL = 0. Since c3 6= 0,

otherwise it gives trivial solution; sinλL = 0. Thus, λn = nπ
L , n = 1, 2, 3, . . . so that
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Xn(x) = cn cos
nπx
L and Tn(t) = dne−n

4π4Bt/L4 . Hence,

un(x, t) = Xn(x)Tn(t)

= Cne
−n4π4Bt/L4 cos

nπx

L
, n = 1, 2, 3, . . .

where Cn = cndn.

Case 2. k = 0

From Equation (A.3), we have two ODE’s, solutions of which are T (t) = d1, and

X(x) = c1 + c2x+ c3x
2 + c4x

3.

From boundary conditions in Equation (A.2), we have in this case

X
0
(0) = 0 : c2 = 0

X
0
(L) = 0 : c2 + 2c3L+ 3c4L

2 = 0

X
000
(0) = 0 : 6c4 = 0

X
000
(L) = 0 : 6c4 = 0.

Solving this linear system of equations, we have c2 = c3 = c4 = 0 and c1 is an arbitrary

constant. As a result, X(x) = c1 and T (t) = d1. Accordingly, u(x, t) = c1d1. However, let

us write it in another form as

u(x, t) =
C0
2
.

Case 3. k < 0 (let k = −λ4, λ > 0)

From Equation (A.3), we have two ODE’s, solutions of which are T (t) = d1e−kBt,

and X(x) = e
√
2
2
λx(c1 cos

√
2
2 λx+ c2 sin

√
2
2 λx) + e−

√
2
2
λx(c3 cos

√
2
2 λx+ c4 sin

√
2
2 λx).
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From boundary conditions in Equation (A.2), we have

X 0(0) = 0 : c1 + c2 − c3 + c4 = 0

X 0(L) = 0 :
e
√
2
2
λL[c1(cos

√
2
2 λL− sin

√
2
2 λL) + c2(cos

√
2
2 λL+ sin

√
2
2 λL)]

+e−
√
2
2
λL[c3(− cos

√
2
2 λL− sin

√
2
2 λL) + c4(cos

√
2
2 λL− sin

√
2
2 λL)] = 0

X 000(0) = 0 : −c1 + c2 + c3 + c4 = 0

X 000(L) = 0 :
e
√
2
2
λL[c1(− cos

√
2
2 λL− sin

√
2
2 λL) + c2(cos

√
2
2 λL− sin

√
2
2 λL)]

+e−
√
2
2
λL[c3(cos

√
2
2 λL− sin

√
2
2 λL) + c4(cos

√
2
2 λL+ sin

√
2
2 λL)] = 0.

Solving this linear system of equations, we have c1 = c2 = c3 = c4 = 0. Hence,

u(x, t) = 0.

From 3 cases, the solution of Equation (A.1) satisfying boundary conditions in

Equation (A.2) is

u(x, t) =
C0
2
+

∞X
n=1

Cne
−n4π4Bt/L4 cos

nπx

L
.

Applying initial condition yields

m

2L
x2 −mx = C0

2
+

∞X
n=1

Cn cos
nπx

L
,

which is the half-range expansion of m
2Lx

2 −mx in the interval [0, L]. Thus, from Fourier

cosine series, we obtain C0 = −2mL3 and Cn = 2mL
(nπ)2

, n = 1, 2, 3, . . . . Therefore,

u(x, t) = −mL
3
+

∞X
n=1

2mL

(nπ)2
e−n

4π4Bt/L4 cos
nπx

L

so that the actual analytical solution is

y(x, t) = −mx
2

2L
+mx− mL

3
+

∞X
n=1

2mL

(nπ)2
e−n

4π4Bt/L4 cos
nπx

L
.



72

Mullins [1], on the other hand, solved the exact solution from

∂y

∂t
+Byxxxx = 0 (A.4)

subject to

IC. y(x, 0) = 0

BC. yx(0, t) = m,

yxxx(0, t) = 0.

(A.5)

Using the Laplace transform technique together with initial condition from Equation (A.5),

we operate on Equation (A.4) in the usual way to obtain

B
∧
yxxxx + s

∧
y = 0, (A.6)

where s is the Laplace parameter. Boundary conditions from Equation (A.5) are trans-

formed into

∧
yx(0, s) = m/s, (A.7)

and

∧
yxxx(0, s) = 0. (A.8)

The solution of Equation (A.6) that behaves properly at infinity and obeys condi-

tions (A.7) and (A.8), is found by standard methods to be

∧
y =

mB1/4

s5/4
exp(− s1/4

21/2B1/4
x) sin(

s1/4

21/2B1/4
x− π

4
). (A.9)

The Laplace inversion may in principle be applied to Equation (A.9) for any value of x. In
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this case, it is feasible only if x = 0. By use of a table of Laplace transforms we find

y(0, t) = − m

21/2Γ(5/4)
(Bt)1/4,

yx(0, t) = m, (A.10)

yxx(0, t) = − m

21/2Γ(3/4)
(Bt)−1/4,

yxxx(0, t) = 0.

Then, substituting y(x, t) = m(Bt)1/4Z[x/(Bt)1/4] into Equation (A.4), and de-

noting x/(Bt)1/4 by u and dZ/du = Z 0 etc., one find the following ODE for the shape

function Z(u)

Z(4) − (1/4)uZ 0 + (1/4)Z = 0. (A.11)

We replace the power series Z(u) =
P∞
n=0 anu

n into Equation (A.11) and obtain

the following recursion relation between the coefficients an in the usual way

an+4 =
n− 1

4(n+ 1)(n+ 2)(n+ 3)(n+ 4)
an. (A.12)

The first four coefficients is calculated from relation (A.10) by using Taylor’s theorem and

remembering that ∂/∂x = (Bt)−1/4(d/du). That is

a0 = − 1

21/2Γ(5/4)
, a1 = 1, a2 = − 1

23/2Γ(3/4)
, a3 = 0.

Recursion relation (A.12) then determines all coefficients an and the solution of the original

problem follows

y(x, t) = m(Bt)1/4
∞X
n=0

an

·
x

(Bt)1/4

¸n
.
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Appendix B

B_splines

First we will explain the meaning of spline. A spline function consists of polynomial

pieces on subintervals joined together with certain continuity conditions. Formally, suppose

that n+1 points x0, x1, . . . , xn have been specified and satisfy x0 < x1 < . . . < xn. These

points are called knots.

A spline function of degree k having knots x0, x1, . . . , xn is a function S such

that:

1. On each interval [xi−1, xi] , S is a polynomial of degree ≤ k

2. S has a continuous (k − 1) derivative on [x0, xn] .

The cubic spline is the spline when k = 3. Thus

S(x) =



S0(x) , x ∈ [x0, x1]

S1(x) , x ∈ [x1, x2]
...

Sn−1(x) , x ∈ [xn−1, xn]
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where Si be the cubic polynomial that represents S on [xi, xi+1].

In particular, B_splines or bell-shaped splines have several forms. One is

Bi(x) =
1

4h3



(x− xi−2)3 , x ∈ [xi−2, xi−1]

h3 + 3h2(x− xi−1) + 3h(x− xi−1)2 − 3(x− xi−1)3 , x ∈ [xi−1, xi]

h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2 − 3(xi+1 − x)3 , x ∈ [xi, xi+1]

(xi+2 − x)3 , x ∈ [xi+1, xi+2]

0 , otherwise.

which is graphed in Figure B.1.

ix 1+ix 2+ix 3+ix3−ix 2−ix 1−ix

)
4
1

,( 1−ix )
4
1

,( 1+ix

)1,( ix

Figure B.1: Graph of Bi(x).

Hence,

Bi(xj) =


1 , j = i

1/4 , j = i± 1

0 , otherwise.

Now we can find B0i(x) and B
00
i (x) :
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B0i(x) =
1

4h3



3(x− xi−2)2 , x ∈ [xi−2, xi−1]

3h2 + 6h(x− xi−1)− 9(x− xi−1)2 , x ∈ [xi−1, xi]

−3h2 − 6h(xi+1 − x) + 9(xi+1 − x)2 , x ∈ [xi, xi+1]

−3(xi+2 − x)2 , x ∈ [xi+1, xi+2]

0 , otherwise

and

B00i (x) =
1

4h3



6(x− xi−2) , x ∈ [xi−2, xi−1]

6h− 18(x− xi−1) , x ∈ [xi−1, xi]

6h− 18(xi+1 − x) , x ∈ [xi, xi+1]

6(xi+2 − x) , x ∈ [xi+1, xi+2]

0 , otherwise.

Thus, we can summarize them in Table B.1.

xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1/4 1 1/4 0

B
0
i(x) 0 3/(4h) 0 −3/(4h) 0

B
00
i (x) 0 3/(2h2) −3/h2 3/(2h2) 0

Table B.1
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Appendix C

FDM formula

Algebraic formulae for derivative of y with respect to x:

Derivative Type Finite Difference Approximation

yx 3 pt SYM (yi+1 − yi−1)/(24 x),

yxx 3 pt SYM (yi+1 − 2yi + yi−1)/(4x2),

yxxx 5 pt SYM (yi+2 − 2yi+1 + 2yi−1 − yi−2)/(24 x3),

5 pt ASYM (−yi+3 + 6yi+2 − 12yi+1 + 10yi − 3yi−1)/(24 x3),

5 pt ASYM (3yi+1 − 10yi + 12yi−1 − 6yi−2 + yi−3)/(24 x3),

yxxxx 5 pt SYM (yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2)/(4x4),

6 pt ASYM (−yi+4 + 6yi+3 − 14yi+2 + 16yi+1 − 9yi + 2yi−1)/(4x4),

6 pt ASYM (2yi+1 − 9yi + 16yi−1 − 14yi−2 + 6yi−3 − yi−4)/(4x4).

Note that all the above finite difference approximations are of second order.
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Appendix D

Numerical inversion of Laplace

transforms

The numerical inversion of Laplace transform by Stehfest [8] evaluates

f(t) =
ln 2

t

NX
i=1

ViF (si)

where

si =
ln 2

t
i

and

Vi = (−1)N2 +i
min{i,N/2}X
k=[ i+12 ]

kN/2(2k)!

(N/2− k)!k!(k − 1)!(i− k)!(2k − i)! .

Note that f(t) is the approximately inversed value of function F (s) at time t.

For the value of N , an even positive integer, Stehfest reported after the inversion

was done with 50 tested functions that the value of N should be about 18 for double
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precision calculation. However, it has been shown that accurate numerical inversion of

Laplace transform can be obtained using the value of N as small as 6 from [12] and [11].

Therefore, we choose N = 6 in this thesis.
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