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CHAPTER 1

Introduction

Pattern recognition and classification is one of the most basic characteristics of human intelli-
gence. It plays a key role in perception, as well as at the various levels of cognition. Nowadays,
the advanced system of pattern recognition where the automatic recognition of an object in
a scene regardless of its position, size and orientation has become increasingly necessary. To
solve the problem of invariant recognition, the feature extraction is a key and an extremely
significant step. This dissertation is aimed at developing a new algorithm to extract intrinsic

features of an image and at considering computational complexity of the algorithm.

1.1 Approaches of Invariant Recognition

An image is basically characterized by a range of individual features such as color, texture and
shape. The extracted feature is considered as a representative of the image. The represen-
tative should be as insensitive as possible for variations such as changes in size, rotation and
translation as discussed in [1, 2, 3, 4, 5, 6, 7]. Several representative fashions are categorized
into two classes. First, the representative is in forms of a boundary shape such as chain codes,
polygonal approximations, signatures, skeletons and Fourier descriptor 2,8, 9, 10, 11, 12, 13].

The other representatives of reflective properties, such as color and texture, are computed
by a histogram of an image. Moments of the histogram which describe the properties of the
histogram such as its variance, smoothness, skewness and flatness [10, 14] can be a representa-
tive of an image. However, using only the intensity histogram is not an efficient representative

for classification. The representative based on the histogram lacks the image information re-



(a) (b)

Figure 1.1: For example, two different types of airplanes have the same colored texture. (a)

Airplane type A-1. (B) Airplane type F-1.

garding the relative position of pixels with respect to each other. A co-occurrence matrix is an
alternative tool to consider not only the distribution of intensity but also the position of pixels.
Its aim is to discriminate among images having different textures but it does not consider the
shape and texture of the whole image. For example, the co-occurrence matrices of the two
airplanes in Figure 1.1 are the same because of their texture. The technique is suitable for the
problem of the texture classification in textile industry.

Several approaches on invariant recognition are realized by neural networks. These net-
works have a specific architecture designed for an individual task such as a recognition re-
gardless of translation, rotation and scaling of an image. If a simple multilayer perceptron
is used in the problem of invariant classification, it will be exhaustively trained over a large
number of patterns containing the most possible transformations of them. For example, the
technique of setting weight links in a neural network known as a shared weight neural net-
work [15, 16, 17, 18, 19] has been proposed for a handwriting recognition since it has some
invariant degree of local translation and rotation. Local translation and rotation are defined
as some local parts of image which change in a'shifting position and a rotating orientation,
respectively. This technique is not applied to the invariant recognition of rotation and scaling
of the whole image.

Third-order neural network [20, 21, 22, 23] is the other technique used for solving the prob-

lem of invariant recognition. Although it has successfully classified the images independently of



their sizes and rotational orientations, the growth rate of network complexity is in the order of
n? where n is the size of image. Implementing the third-order neural network in the real appli-
cations is not feasible. Furthermore, several papers on image processing address the technique
of a pulse-coupled neural network [24, 25, 26, 27, 28] to cope with the image segmentation with
invariant property. The pulse-coupled neural network is a biological model inspired by cat’s
visual cortex. However, the model has been modified to be a feature extractor by gathering
the produced pulses from all neurons. It is called “time signature”. One disadvantage of the
pulse-coupled neural network working as the feature extractor is how to measure the similarity
and dissimilarity among the time signatures of the transformed images and the different images
regardless of their orientation and sizes.

Moments have been utilized as extracted features to achieve invariant recognition of two-
dimensional images. Zernike moment is the most widely accepted in many applications requir-
ing the invariant properties as mentioned in [29, 30, 31]. Zernike moment declares only the
rotation invariant feature. Subsequently, the normalization approach using a regular moment
is applied to an image to obtain the scale and translation invariance prior to applying Zernike
moment. The performance of Zernike moment is not robust to scaling of an image when it
scales two times as large as the original.

Most techniques applied to the invariant recognition problems do not address the robustness
of color intensity change. The technique of fuzzy color histogram [32] investigated for the image
retrieval from image databases. performs better tolerance to color intensity change than the
conventional histogram does. This technique considers the color similarity of the color of each
pixel color associated to all the histogram bins through fuzzy-set membership values. The fuzzy
color histogram has also a. weak point to discriminate two different images with the similar
color distribution as shown in Figure 1.2.

Most of efficient image recognition methods do not consider the texture of color images.
Some techniques use the concept of color distribution but they neither capture the colored

texture nor consider the global pixel positions. In addition, the time complexity of some



(a) (b)

Figure 1.2: For example, two images (a) and (b) with the similar color distribution appear

different on the shape: squares and circles.

techniques is not practical to apply to some real applications having images of size at least 256 x
256 pixels. In this dissertation, a model of the proposed technique is based on unsupervised
learning neural network. The technique of competitive learning is applied to extract the feature
of an image. To develop the new model, the classical competitive learning method is presented

in Chapter 3 and then the formulation of the invariant recognition is discovered in Section 1.2.

1.2 Problem Formulation and Proposed Solutions

Many applications of Kohonen's competitive learning algorithm are aimed at classification,
where the input data are assigned to individual classes. In particular, the input data are
represented as the pixel coordinates of an image; therefore, the location of weight vectors can
play a role of a feature representative of the image. The interesting problem is how to guarantee
that all weight vector locations will not be altered due to the transformation, scaling, rotation
and color intensity changes of the image. There are three main problems to be considered in

this dissertation as shown in Table 1.1.

1.3 The Contributions of the Dissertation

Image recognition with the invariant capability is one of the significant and intriguing problems

in the computer vision. Human does not even notice that one recognizes objects and patterns



Table 1.1: A list of three formulated problems and the corresponding solutions.

Problems

Solutions

How can the weight vectors with re-
spect to the rotated data vectors and
the weight vectors with respect to the
original data vectors be placed at the
same location after the SOM learning

is converged?

Apply the concept of Principle Compo-
nent Analysis (PCA) to initialize the
location of weight vectors. All weight
vectors must be initialized at the same
location with respect to the structural
aspect of the data vectors. After the P-
CA step, the typical SOM learning can

be proceeded.

I1

How can the weight vectors with re-
spect to the scaled data vectors and the
weight vectors with respect to the orig-
inal data vectors be placed at the same
location after the SOM learning is con-

verged?

Adopt the concept of selecting the da-
ta vectors to adjust each weight vec-
tor suggested by Clippingdale and Wil-
son [33]. The concept of Clippingdale
and Wilson is used instead of adjust-
ing a weight vectors of a winner neuron

based on only one selected data vector.

III

Given two images whose textures are
identical but their color intensities are
different, how can the SOM algorithm
be applied to these images to extract

their invariant features?

Expand a dimension of data vectors in
order to encode the whole information
of an image with gray-leveled intensity
or color intensity. Then, the problem of
color intensity invariant is transformed
to the problem of scaling invariant in

the intensity dimension.




independently of changes in lighting conditions, shifts of the object, or changes in orientation
and scale. The intensity of light, sound, odor and touch vary from place to place and from time
to time. The stimulation of receptors and the presumed sensations are variable and changing
extremely, unless they are experimentally controlled in a laboratory. The unanswered question
of sense perception is how an observer, animal or human, can obtain constant perceptions in
everyday life on the basis of these continually changing sensations.

Only a small subset of the problems outlined above is concerned in this dissertation, i.e.,
the invariant perception of two-dimensional patterns under shift, rotation and scaling in the
plane. Considerably many approaches have been investigated to extract the features of an
image which are independent on translation, rotation and scaling of an image. The approaches
can be classified in groups of using the architecture of neural network [34, 35, 20, 16, 17, 36, 37,
38, 18, 19, 21, 22, 23, 39, 40], the integral transforms [41, 42, 43, 44, 45, 46, 47, 48, 49, 50] and
the statistical methods [51, 21, 45, 52, 29, 53, 54, 48, 22, 55, 56, 50, 57, 58]. The tremendous
number of researches emphasizes that invariant capability is a vital feature. Some classical
and recent techniques are reviewed, and their strengths and weaknesses are identified in this
dissertation. Researches in the invariant image recognition are contributed not only in the
field of computer science but also expanded in breadth thorough many branches; scientific,
agricultural, industrial, medical, environmental, educational, and military in [6, 7]. Table 1.2
shows the examples of invariant image recognition in the real applications.

To achieve the problem of image recognition with invariant property, it is necessary to
extract the feature from an image which is not effected by the orientation or size of the image.
The system commonly matches two images according to.the extracted features. One of the
difficult tasks is how to provide the most discrimination ability in the feature space and how to
maintain the invariant ability aspects of rotation and scaling. It also is essential to regard the
complexity of time and space of the approach in order to preserve its practical implementation

in the real problems. In this dissertation, a new image recognition method is proposed and

!Malignant melanoma is nowadays one of the leading cancers among many white-
skinned populations around the world [61].



Table 1.2: Examples of invariant image recognition.

Branches Applications
Scientific DNA /Protein sequence analysis
Agricultural Forecasting crop yields
Industrial Machine perception to automate the process of sorting incoming

material on a conveyor belt

Medical Automated Melanoma' Recognition [59]
Environmental || Automatic plankton image recognition [60]
Educational Search engine on Internet

Military Automatic airplane detection

the technique of feature extraction with the invariant properties is emphasized. The proposed
technique is based on the concept of Kohonen’s competitive learning and the knowledge of
principle component analysis.

In particular, the contribution of this dissertation is to develop a new feature extraction
algorithm based on the neural network concept of self-organizing mapping which has the fol-

lowing capabilities:
1. invariant to rotation, scaling and color intensity,

2. lower computational time and space than the current technique and the expected com-

plexity in the order of O(n),

3. applicable to a color image of size at least 256 x 256 pixels.

1.4 Scope and Organization

Basically, the system of automatic pattern recognition consists of the following three modules:
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Raw pattern Input Pattern Feature Class
Preprocessing Feature Extraction Classification
 — —> =

Learning Mode

Figure 1.3: A system of automatic pattern recognition.

1. Preprocessing: The role of the module is to segment the pattern of interest from the
background, to remove noise, to normalize the pattern and any other operation in order
to define an input pattern. After the completion of preprocessing, the input patterns
and the raw patterns' are in the Cartesian domain defined as a function f : 2 — R,

f(x,y) = z, where z is the intensity of the image at coordinates (z,y).

2. Feature Extraction: The module extracts the appropriate features for representing

the input pattern invariant to shift, rotation and scaling.

3. Classification: Given the features of a pattern, there are two sorts of classification:
supervised and unsupervised classification. The supervised classification requires the
number of categories and the meaning of categories, defined by a system designer. The
unsupervised classification can determine the number of classes and the meaning of

categories by the similarity of pattern.

The system of automatic pattern recognition is illustrated in Figure 1.3: The system can
classify the patterns after the learning mode. In the learning mode, a large number of patterns
are proceeded and the classifier must learn to partition the feature space with respect to the
desired classes. In the other, the learning classifier assigns the input pattern to one of the

pattern classes according to the partitioning of learning mode.

LA pattern acquired from any equipments such as a scanner is so-called a raw pattern.



Figure 1.4: An example of an image having an object, letter ‘A’, in the white background.

(a) The prototype image. (b) The rotated ‘A’ (¢) The scaled ‘A".

In this dissertation, the pattern of interest, herein, is a two-dimension image with color
intensity of size at least 256 X 256 pixels. Invariant recognition is constrained to rotation,
scaling and color intensity. Constraints relevant to invariant rotation and scaling are defined

as follows:

1. The considered image has only one object in the whole scene. The object is rotated

and/or scaled without altering the background as shown in Figure 1.4.

2. In case of having many objects, it is more convenient to cluster them as a group and,

then, consider them with the properties given in constraint 1 as shown in Figure 1.5.

In case of the invariant color intensity of an image, let (x) be the intensity of a gray-leveled
image at x where 0 < I(x) < 255 and (R(x),G(x), B(x)) the intensity of a color image at x
presented in RGB format, where 0 < R(x), G(x), B(x) < 255 If the intensity of a gray-leveled

image I(x) is changed by an intensity ratio «, the new intensity, I'(x), will become

I'(x) =TIy + al(x) (1.1)
Ima:z:_I
a = WU (1.2)

where Iy and I, are a constant, and 0 < Iy < 4 < 255. To change the intensity of a
color image, let a, B, and v be independently given intensity ratios for changing the intensities

of R(x), G(x), and B(x), respectively. The new intensity (R'(x), G'(x), B'(x)) of an image is
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Figure 1.5: An example of an image having two objects, letter ‘A’ and letter ‘I’, in the white
background. (a) The prototype image. (b) The rotated group which is formed by letter ‘A’

and letter ‘I'. (c) The scaled group.

computed by

(R (x),G'(x), B'(x)) = (Ro + aR(x), Gy + fG(x), By + vB(x)) (1.3)
o = T T »
poloms s
B o

where Ry,Go, By, Rimary Gmar and By, are constants which Ry < R0z, Go < Gige, and
By < Bz, and Ry, Gy, By, Rimary Gmar and Byq: are between 0 and 255. An example is
illustrated in Figure 1.6.

The dissertation is‘organized into six chapters. Chapter 2 reviews the previous techniques
of invariant recognition such as neural network, transformation and statistics. Using neural
network to recognize regardless of invariant geometric transformation is divided into subsec-
tions: neural network with shared weights, high-order neural network and pulse-coupled neural
network. Transformation technique is the convolution of an image in the spatial domain with
the kernel. Transforms are useful for invariant pattern recognition if it is possible to choose
kernels so that the transformed images are invariant under some specified transformation-

s. Fourier transform is the most broadly used in an image processing. In this dissertation,
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(e) (f) (8) (h)

Figure 1.6: An example of a change in color intensity. (a) The prototype image. (b)-(d)
Images decomposed from (a) into R, G and B planes, respectively; (e) The output image after
adjusting the color intensity of R, G and B planes. (f)-(h) Images when «, 5,7 = 0.59 whereas

RO = 50, GO =0 and Bg = 100.
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Fourier transform is discussed as well as the other series of Fourier transform such as discrete
Fourier transform, and Fourier-Mellin transform. Invariant recognition based on the statistical
techniques such as moments and co-occurrence matrix is finally discussed. The discussion is
focused on how each technique provides the invariant features and some derivations to prove
those techniques. The strengths and weaknesses of each technique are also examined.

To understand the proposed algorithm, the concept of Kohonen’s competitive learning is
presented in the first section of Chapter 3. Then, the proposed algorithm, Rotational and
Scaling Invariant Self-Organizing Mapping Neural Network algorithm, is described and its
computational time is discussed in Chapter 3. For convenience, the proposed algorithm is
shortly called RSISOM. RSISOM comprises two main algorithms, namely, Rotational Direction
and Self-Partitioning Competitive Learning. Rotational Direction algorithm finds the correct
direction of a pattern when it arbitrarily rotates through at most 360 degrees. Section 3.4
demonstrates how the proposed algorithms are applied to color images. The role of the other
algorithm is to partition a pattern regardless of its scaling. The demonstration of applying
RSISOM to color image is also demonstrated in Chapter 3.

Chapter 5 shows the experimental results performed by the proposed technique RSISOM
on the synthesized image set. The test sets contain images with gray-leveled, color-texture and
their size of up to 256 x 256 pixels. Furthermore, hierarchical RSISOM is tested against the
color image set to compare the accuracy between the proposed methods with or without the
hierarchy concept. Moreover, the comparisons with previous techniques are shown in Chapter

5. Finally, Chapter 6 concludes the dissertation and guides the future works.



CHAPTER II

Literature Reviews

In this chapter, a brief review of invariant pattern recognition is demonstrated in Section 2.1.
The rest of chapter is about the existing methodologies of the approaches related to the problem
of invariant pattern recognition. Their weaknesses are also indicated. There are both classical
and modern techniques for solving the problem of invariant recognition applied to an image.
Such techniques are classified in three main categories: special structures of neural networks,
integral transforms into the frequency domain and statistical approaches. Most techniques in
three categories do not address in the robustness of color intensity. In the last section, the

techniques of fuzzy color histogram [32] is reviewed.

2.1 Invariant Features in Pattern Recognition

The aim of invariant pattern recognition is to identify an object independently of its rotational
orientation and size, i.e., smaller or larger. The idea is to find a mapping T that is capable of
extracting the features of the object regardless of the rotational orientation or the size of the
object are made different. The mapping T necessarily maps all objects of an equivalent class
under a group operation G into one point-in the feature space as discussed by Burkhardt and
Siggelkow [2]. Figure 2.1 illustrates the mapping T can transform an object f and its rotated

object into the same point of the feature space.

f=af' = T(f)=T(f) (2.1)

From the above equation, an object f will be equivalent to another object f' under a group

operation G such as translation, rotation and scaling if they are mapped to the same point
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T(f")

f eat ure space

Figure 2.1: A mapping T maps the object f and its rotated object f’ into the same point of

the feature space.

using the function T in another space; the definition of the equivalent class is shown in the

following equation:

f=cf' < 39€G, f=g(f) (2.2)

where ¢ is an unary operation in group G.

The operation g is a geometric transformation such as translation, rotation and scaling.
An example of tramsformation, rotation and scaling are shown in Figure 2.2. Let x be the
spatial coordinates (x1,x2) of object f(x). For translation operation, if object f(x) located
at coordinate x is shifted to a new coordinate x’ by using displacement (¢,%2), the equation

expressing the value of x’ is the following:

XI = (271 + tl, To + tg) (23)

If object f(x) is scaled by a scaling factor «, a new coordinate x’ of the scaled object will be
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Figure 2.2: An example of geometric transformations. (a) An original object. (b) The

ety bk ] B i
QW’]M NIUNVRTIVIEINE
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as follows:
x' = (az1, awxg) (2.4)

In case of rotation, if object f(x) is rotated through an angle @, the obtained coordinates x’

will be achieved by using the equation below:
x' = (z1cos0 + z9sinf, —z1sinb + wocosh) (2.5)

However, a mapping T that is invariant with respect to G is said to be complete if the

following condition holds:

T(f) =T(f") = f=af (2.6)

Let It(f) be a set of invariants of an object f with respect to a mapping T is given by all

elements that are mapped by T into one point as defined below:

Ir(f) = fil B(f) = T(f) (2.7)

The set of objects within one equivalence class, that is, all images that can be generated from

a prototype f by applying the group operation G' such that

G(f) = filfi=af (2.8)

In general, the mapping T yields the condition in Eq. 2.1 such that

G(f) CIx(f) (2.9)

Ideally, such a mapping T would identify f and f’ as representatives of the same object.
However, in many pattern recognition problems, the aim is to produce a system which classifies
input patterns as belonging to a particular class, rather than to identify uniquely every single
input pattern presented. In such cases, an unique representative for each and every possible
input pattern can actually be a disadvantage. The invariant representative, therefore, retains

enough information for distinct classes to be distinguishable in the invariant representative.
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2.2 Invariant Recognition Using Neural Networks (NIN)

In recent literatures, several approaches to deal with invariant recognition are variations a-
mong neural networks. These networks have a specific architecture designed for an individual
task in image recognition such as a recognition regardless of translation, rotation or scaling
of an image. If a simple multilayer perceptron is used in the problem of invariant classifi-
cation, it will be exhaustively trained over a large number of patterns containing the most
possible transformations of them. High-Order Neural Network (HONN) has been widely used
to solve the problem of invariant recognition as described in Subsection 2.2.1. The recent
variation of neural network, so-called Pulse-Coupled Neural Network (PCNN), is reviewed in

Subsection 2.2.2.

2.2.1 High-Order Neural Network (HONN)

A model of high-order neural network in [34, 35, 20, 36, 37, 38, 21, 22, 23, 39, 40] is proposed
to manage and improve the invariant pattern recognition problem of the invariant capability
of the first-order neural network.

In mathematical terms, the first-order neuron is defined by the following activation function:

= oD wijws) (2.10)
j=1

where z; is the input of link j; » is the number of z;; w;; is the weight of link j of neuron ¢; ¢(-)
is the activation function; and y; is the-output of the neuron-¢.-Similarly, a high-order neuron
consists of a set of different ordered activation terms. The order of a network is defined in
terms of the maximum number of inputs multiplied by each weight in each activation term. For
example, Figure 2.3 illustrates a sample architecture of a high-order neural network consisting
of three activation terms, i.e. first-order, second-order and third-order activation terms. The
general form of a high-order activation equation can be formulated as follows.

szﬂ?] + ZZw”kijk +Zzzw”kl$3$k$l +...) (2.11)

j=1k=1 j=1k=1 =1
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FIRST-ORDER SECOND-ORDER THIRD-ORDER

Figure 2.3: A sample architecture of high-order neural network with four inputs, x1, z2, 3, z4.

In Eq. (2.11), each consequent term is called first-order term, second-order term, and so on,
where the last term is a r"-order term. To take full advantage of high-order neural network,
the category of third-order and second-order neural networks have been investigated by Lee
Giles and Maxwell [62] since 1987. Both a third-order and second-order neural networks are
described later.

However, the technique of high-order neural network has a considerably inherent drawback
concerning the number of combinatoric connections. Consequently, the implementation of
a high-order neural network is not possible in the real applications because of the network
complexity and computational time of order O(n") where r is the highest order as proved in

Appendix B.
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Figure 2.4: Two triangles with included angles (a,3,7). (a) Original triangle jkl. (b) A new

triangle j'k'l' by scaling and rotating triangle (a).

Third-Order Neural Network (TONN)

To achieve the invariant classification with respect to translation, rotation and scaling, a third-

order neural network is employed in [20, 21, 22, 23] which is defined in Eq.(2.12).

n n n
Wikl T LRT]) (2.12)
]zm 11=1

The application of third-order neural networks to invariant recognition for a bi-level image has
been investigated by Delopoulos, Tirakis and Kollias [20], and Perantonis and Lisboal21, 22].
Thus, x; denotes the j" element of a spatial coordinate of an image or equivalently the j*
input, w;;x; is the weight that connects the product of x;, xy, and z; to the output y;. The
variable n is the number of pixels in the image.

Reid [23] said that any three points within an object define a triangle with included angels
(e, B,7). The fact of the triangle with the angles (v, 3,7) is invariant under object translation,
scaling and rotation. Figure 2.4(a) shows an triangle jkl and then the triangle is moved into
the other position, rotated and scaled up. The new triangle is j'k’l' as shown in Figure 2.4(Db).
However, the set of three angles (a, 8,7) of both triangles jkl and j'k'l' is the same.

Therefore, the weights in the third-order neural network to be invariant under translation,
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Figure 2.5: A computation diagram of pulse-coupled neural network according to Eq.(2.15)-

(2.16).

rotation and scaling are defined as
Wijkl = Wijrg 1t (2.13)

However, the third-order neural network is not feasible for the real applications because the
high complexity of network and time are in the order of O(n3) where n is the number of pixels.
For example, the image of size 128 X 128 requires the number of hidden nodes as much as

7.3 x 101,

2.2.2 Pulse-Coupled Neural Network (PCNN)

Several papers [24, 25, 26, 28, 27| in the image processing address the technique of pulse-
coupled neural network to cope with the problems such as image segmentation, edge detection
and image recognition. A PCNN is a biological model inspired from the cat’s visual cortex. It
is the extension of Eckhorn’s model of the cat’s visual cortex.

A neuron of PCNN is computed by the following equations and its computation diagram
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is shown in Figure 2.5.

Fij(n) = e *Fjj(n—1)+ Sij + Vre ™™ miji Yi(n — 1) (2.14)
Lij(n) = e “Lij(n—1)+Vie "™wijgYi(n — 1) (2.15)
Uij(n) = Fij(n)(1 + pLij(n)) + 1 (2.16)
1, if UZ(TL) >02(TL)
Yij(n) = ’ ’ (2.17)
0, otherwise
0ij(n) = e “0;i(n —1) + Vy¥ij(n) (2.18)
(2.19)

where S is the input signal, F' is the feed, L is the link, U is the internal activity, Y is the pulse
output and 6 is the dynamic threshold. The weights m;;z; and w;j;; are local interconnections,
and  is the linking constant. V@ and V7, are the temporal response kernel. ap, ar, ay and o
are the decay time constant. Vp, Vz and Vj are the amplitude gain. I is the inhibition term
that is determined by the total activity of the network. The output values of all neurons are
accumulated and fed back to each neuron.

The simple structure of a PCNN for a two-dimensional image is a network of neurons
connected and arranged matching to the pixels of the image as shown in Figure 2.6. Let the
size of an image be M X N pixels. Hence, the number of neurons is M x N as well. Suppose
that the neurons are set to zero, so the input results in activation of all of the neurons at
the first iteration. Normally, the threshold value is reduced with an exponential time. Only
case of the threshold value increasing is after its neuron firing: But the neuron will fire when
the threshold falls below the respective neuron’s potential UU. The pulses for each neuron
are produced by repeating the process of neuron firing, threshold increasing and threshold
slowly decaying, and neuron firing again after the threshold value being below the respective
neuron’s internal activity. However, there are supporters from neighboring neurons to fire
simultaneously through interconnections. The firing neurons begin to communicate with their
nearest neighbors, which in turn communicate with their neighbors.

The representative of an image is called a “time signature”. The time signature is a
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Figure 2.6: A structure of pulse-coupled neural network with the input image of size M x N

pixels.
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histogram by time domain where the vertical axis is the amount of neurons firing at the time.
However, the performance of a PCNN considerably depends upon the assigned parameters. The
other disadvantage is how to measure the similarity of time signatures in which the images are
transformed in either size or rotational orientation. It is necessary to apply the post-processing

approach such as a multilayered neural network to recognize the time signatures.

2.3 Invariant Recognition Based On Transformation Tech-

niques

2.3.1 Fourier Transforms (FT)

The application of Fourier transforms covers a wide range of image processing problems. Sev-
eral researches have used it to extract the features of an image. The transformed image in the
frequency space has the translation invariant property as discussed in [41, 43, 45, 46, 47, 63, 50].
But the other important properties, rotation and scaling, can be derived from Fourier-Mellin
Transform applied in [42, 44, 48, 49]. Discrete Fourier Transform (DFT) to implement on a
digital image is also explained in this section since this approach copes with a digital image in
discrete domain. The following subsection describes each version of Fourier transform including
its invariant properties.

Let us start with a 1-D Fourier transform equation. The Fourier transform of a continuous

function f(z) is defined in Eq.(2:20).

F(u) = /_00 flz)e 7?met dy, (2.20)

where 7 =4/—1 and a variable u is the frequency variable. We denote the operation of taking
the Fourier transform by the operator § so that we can write F(u) = Sf(z).
Now consider a 2-D transform equation. It can be extended to a function f(z1,z2) as the

following equation.

Sf(@1,22) = Flu,v) = / / F (w1, m0)e 72 WoLH22) 4 iy (2.21)
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If f(x) is transformed by the one parameter translation specified by ¢, the new f'(z) is

f') = flz—1)

Taking the Fourier Transform of f'(z), we obtain

/ f 6 ]QWuxdx

Then, we substitute ' with z — ¢.
w .
3f'(@) = / f(at)e 2R+ g
—00

0 . .
= / e—]?wuxe—]%rutdx/
—00

. 00 .
4 67]27rut / 67]27ru:1:d$/
00

e —j2mut oy f( )

(2.22)

(2.23)

(2.24)
(2.25)

(2.26)

(2.27)

Hence, the Fourier transform provides the invariant properties under transformation since

the translation in f(z) does not affect the magnitude of its Fourier transform, as

S f(z)] = e PSS (2)]

(2.28)

In the same manner, the 2-D Fourier transform has the transformation property derived in [10]

as the equation below.
f(xl — 11,29 — tg) < %f(xl, xg)e_j27r(utl+vt2)

The following Subsection describes the other versions of Fourier transform.

Discrete Fourier Transform (DFT)

The discrete Fourier transform is shown in Eq.(2.30).

M—-1N-1

Sf(z1,22) = F(u,v) = MNZ fol,xge i (5 +54)

x1=0x2=0

where v =0,1,2,..., M —1land v =0,1,2,...,N — 1.

(2.29)

(2.30)
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Fourier-Mellin Transform (FMT)

The Mellin transform of function f(x) defined over the positive reals is the complex function

#(z), where

d(z) = /OO *  f (z)dx (2.31)

0

Mellin transform of a function f(z) is an integral function over the positive real numbers. Its
equation is closely related to the Fourier transform if the parameter = e™7¥ is replaced. The

re-written equation becomes

o
e ) M O (23
0
00 . .
Y / e 1% f (e 1Y) dy (2.33)
0
Hence, Mellin transform with the new parameter y = 4?("1‘,) is similar to the Fourier trans-

form where a coordinate z has been defined in logarithmic form. As described in Section 2.3.1,
the Fourier transform transforms the function f(x) in spatial domain into the function f(z)
in frequency domain but its magnitude of S f(z) is not changed even though the position of x
is shifted. Thus, Mellin transform is invariant to translation.

Previous researches [42, 44, 48, 49] have discovered that Mellin transform is possible to
obtain the other invariant properties such as rotation and scaling in the application of pattern
recognition. Suppose the function f(z1,z3) € R X R and then its coordinates (zy,z9) is
represented in the polar coordinates (r,#) where r € [0,00) and 6 € [0,27). Let v be a vector
from the origin to the pixel coordinate (xy,x2); = the length of vector v, and 6 an angle
between vector and z1-axis in counterclockwise direction. Such a rotation operation in a polar

coordinate is
=0+« (2.34)

where ' is the new angular coordinate after rotating through a degrees.

In case of scaling, a scaling operation in a polar coordinate is

r' = Ar (2.35)
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where A is the new radius coordinate after scaling with a parameter A. As mentioned above,

Yy = %(r) is used so the re-write equation (2.35) is shown as follows.
-1 , -1
—In(r') = —In(rA) (2.36)
J J
-1 -1
= —In(r) + —1In(}) (2.37)
J J
y = y+p (2.38)
where g = —In(d), Obviously, Mellin transform has the properties invariant to translation,

rotation and scaling.

2.4 Invariant Recognition based on Statistical Techniques

2.4.1 Moments

Various types of moments are examined to characterize the features of an image with the
desirable properties in aspects of translation, rotation and scaling invariance in [51, 45, 52,
29, 53, 21, 54, 48, 22, 55, 56, 50, 57, 58]. Hu [52, 53, 54, 55, 56, 30] introduced a set of
invariant moments based on regular moments'. He generated the set of invariant moments by
nonlinear combinations which has the properties of being invariant under translation, scaling
and rotation.

The definition of regular moment can be viewed as the projection of f(z1,z2) onto the
monomial z¥z%. Generally, the expression for the calculation of the moments is written in the
forms of integration instead of suinmation. Assume that an image f(z1,22) is a continuous

function. A given order (p + ¢) is defined as

(0¢] o
Mp,q = / / 2y x5 f (1, 22)dz1 dvy (2.39)
—00 J =00

for p,q=0,1,2,....

The central moment is used to be invariant under translation as follows.

lpg = /_Z /_Z(fm — 21)P (w2 — 52) f (%1, 2)dz1dT2 (2.40)

'Regular moments will be referred to as Geometric moments in [30)].
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for p,q =0,1,2,.... The centroid of the image can be found by using
g = Ao (2.41)
moo
g = 0 (2.42)
moo

If the image is scaled with the scaling factor «, we can estimate the scaling factor by using
the central moments oy and pge. Both the central moments pog and ppe are the variance of

the image as shown in Eq.(2.43) and (2.44).

P20 =) Mmog — —— (2.43)

Mmoo

2

m

flg = Moy — —= (2.44)

moo

Thus, Eq.(2.42) is re-defined as
Yy PR

Ppg = prate (2.45)

Hu discovered the set of seven invariant moments of order up to three as the following.

1 =m0+ n02 (2.46)
$2 = (m0 —mo2)” + 407, (2.47)
¢3 = (n3o = 3mz)” + (321 —no3)’ (2.48)
$s = (n3o+m2)” + (21 + no3)? (2.49)
¢5 = (130 — 3m12)(mso+ m2)[(nso + m2)” = 3(m21 + n03)”]

(3721 — 103) (21 + 703) B(m30-+ m2)” = (21 + 1M03)”] (2.50)
¢ = (n20 — 1m02)[(m30 + m2)” = (n21 + 103) >+ 41 (30 + mi2) (021 +m03) ~ (2.51)
¢r = (32— 108)(n3o + m2)[(n30 + m2)* = 3(n21 + 103)°]

+(3n21 — 103) (121 + M03)[3(m30 + m2)? — (21 + 703)°] (2.52)

where 7, , is called the normalized central moment defined as

/

Hp,
Mp,g = pvq (2.53)
Hoo
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where v = ’%—i—l and p+q=2,3,4,....

The methods in Section 2.3 transforms an image into a space of the same dimensionality
as the image space. A moment of a given order p + ¢ is scalar but the set of all its moments
can be considered that the image is mapped into a discrete moment space, indexed by p and

q. Consequently, moments can be considered as integral transforms.

Zernike Moment (ZM)

Among various types of moments, Zernike moment is the most potential method for extracting
the invariant features of images. To process Zernike moment method, a spatial coordinate
(1, x2) of an image is normalized on a unit disk region as follows.

D ={(x1,27) € R*|2? + 23 < 1} (2.54)

The regions of interest can be normalized by scaling down their sizes until they fit into the
unit disk. After the normalization, the centroid of the image should be located at the origin of
the unit disk. In other words, a polar coordinate is replaced by a spatial coordinate as shown

in Eq.(2.55).
D={(r6)J0<r<1 and 0<6<2r} (2.55)

Then, the Zernike moment of order p with repetition ¢ for the normalized image is defined

in the form of polar coordinate in unit disk becomes the following:
A & @ / /D f(r,0)Z5 ,(r,0)rdrdo (2.56)
where * denotes the complex conjugate. 7, , is the polynomial formed as
Zpysa(r10) = Ryq(r)ed? (2.57)

where p is a positive integer or zero, ¢ is a positive or negative integer, subject to the constraints
(p — |q|) is even and |g| is less than or equal to p. Variable R, , is a radial polynomial defined

by

(2.58)
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In accordance with the above-defined formula, Zernike moments are the projection of the
image f(x1,z2) onto the orthogonal basis functions except that the image f(x1,z2) is outside
the unit disk.

The Zernike moment of the image after rotation through an angle o denoted by A;),q is
calculated as shown in Eq.(2.59). In the same manner of the property of the Fourier transform,

it is obvious that the magnitude of Zernike moment does not change when the image is rotated.
A;)’q AP (2.59)

Therefore, the feature representative of an image invariant to rotation and scaling can be
a vector containing the Zernike moments with different parameters either p or ¢. The vector

of Zernike moments with the parameter p is defined as follows:

[ApoApat. Ay andi=0,1,... .2 if p is even
z’ = / (2.60)
[Apr Ay Aygiq] and i =0,1,... , 251 if pis odd

2
Generally, most applications of Zernike moments focus on binary images in where the technique

performs efficiently. However, the Zernike moments are very sensitive to intensity change when

applied to gray-leveled images.

2.4.2 Co-occurrence Matrix (CM)

The aim of co-occurrence matrix is to measure the texture of an image. The gray-level his-
togram of an image cannot describe the texture information of an image. It does not provide
the information regarding the relative position of pixels with respect to each other while the
co-occurrence matrix is a tool which considers not only the distribution of intensities but also
the positions of pixels with equal or nearly equal to intensity values.

Let S be a set of intensity values. An co-occurrence matrix is a two-dimensional array of
size |S| x |S|, P4 = [psj], in which each element p;; is the number of times that points with
intensity value z; occur relative to points with intensity value z; with the distant operator,

where 0 < 4,5 < |S| — 1. The distant operator denoted by d = (m,n) is such m pixels to
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m pixels

n pixels

Figure 2.7: A distant operation d = (m,n) is defined that m pixels to the right and n pixels

below corresponding to a solid block.

the right and n pixels below; on the other hand, it can be written in a coordinate mapping as
shown in Figure 2.8(a). For instance, suppose that an image contains a set of intensity values
S =0,1,2 as shown in Figure 2.8(b) and the distant operation d = (1,1) is assigned. The
co-occurrence shown in Figure 2.8(c) describes that there are 16 pairs of pixels in the image
which is performed by the distant operation and its size is 3 x 3 since there are only three gray
levels.

To measure the similarity of any two co-occurrence matrices, the set of statistical parame-

ters below are used.

1. Maximum probability, Propm.z, i a maximum element in the co-occurrence matrix

calculated by

Propmam 5 HZI?;X(ng) (261)

2. Element difference moment of order k, DMy, is computed by

5|

DMy, = Z Zj‘sl(i — 5)"pis (2.62)

3. Inverse element difference moment of order k, I DM}, is defined as
IS 15|

DM =3 (CA) i (2.63)
i

z—jk’
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Figure 2.8: An example shows the co-occurrence matrix on a given image and the defined
distant operation. (a) An image of size 16 x 16 pixels. (b) A distant operation d = (1,1), i.e.,
one pixels to the right and one pixel below. (¢) A co-occurrence matrix after computing the

image matrix (a) with the distant operation (b).
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4. Entropy, F, is defined as
IS 15|
E = — Z Zpij logpij (264)
i g
5. Uniformity, U, is written by the following equation.

IS| 1S
DYV (255)
i
This technique emphasizes the texture feature but it does not consider the shape of an

image.

2.5 Invariant Feature by Using Fuzzy Color Histogram (FCM)

According to the conventional color histogram, it assigns each pixel into one of the bins only.
Unlike the conventional histogram, the fuzzy color histogram considers the color similarity
information by spreading the total membership value of each pixel to all the histogram bins.
Furthermore, the membership values of the fuzzy color histogram are computed by using fuzzy
c-mean clustering algorithm.

The fuzzy c-mean algorithm is dominated by an objective function and a fuzzy c-partition
of the set of data vectors as described in [64, 65, 66, 67]. Let X = {x1,... ,x,} be a set of data
vectors and V = {vy,...,v.} a set of clustering center vectors where n and ¢ are the number
of data vectors and the number of clusters, respectively. A non-degenerate fuzzy c-partition
of X is conveniently represented by a matrix U. The objective function of the fuzzy c-mean
algorithm is minimized until the difference between the objective function at the previous time
and at the present time is lower than a predefined minimum error. The objective function at

time ¢ is written as the following

(& n
obj(t) = > Y (uik ()™ lzk — vi(t)]® (2.66)
i=1 k=1
where || - || is the Euclidean norm. The weighting exponent m, termed “amount of fuzziness”,

is a constant number greater than 1. wu;(¢) is an element of a matrix U at time ¢, so-called “a

fuzzy c-partition of X”, defined as
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1

(=) @ 0
wip (1) = VT (2.67)

1
c 1 Tm—1)
=1 (=mme) Y

Note that, Eq.(2.67) must satisfy the following conditions:

1. uzk(t) S [0, 1] for all 4, k
2. >y u(t) =1 for all k
3.0 <> p  u(t) <nforalli

The location of each clustering center vectors is directly moved into the substantial fuzzy-
mean value of the group of data vector partitioning by the fuzzy c-partition in the following

equation.

vi(t) = 2= Yin(8) Xk (2.68)

D=1 Wik (t)
To begin with the fuzzy c-mean algorithm, the fuzzy c-partition U is randomly initialized. It
then follows with the three main steps: computing the clustering center vector V', updating
the fuzzy c-partition U, and calculating the objective function. They are repeated until no
noticeable change in the objective function.

Given an image with n' colors, we need to classify the n’ fine colors into n clusters in
fuzzy c-mean (usually, n is much less than n'). The fuzzy clustering result of fuzzy c-mean is
represented by matrix U = [uj],xn and uk is referred to as the grade of membership of color
x), with respect to cluster center v;. Let M = [m;],xn be a membership matrix which each
element m;; is the membership value of the jth fine colors distributing to'the sth coarse colors.
Thus, the obtained matrix U, v,/ can be viewed as the desired membership matrix M,,
for computing fuzzy color histogram. The fuzzy color histogram of an image is expressed as

follows
Fn><1 = Mnxn’Hn’Xl (269)

where H, 1 is a conventional color histogram with n’ colors.
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Therefore, the invariant feature is represented by the obtained histogram and the color
bin of the histogram is based on the locations of clustering centers in the technique of fuzzy
c-mean. As a result, the location of clustering center also is a feature representative of an

image.

AOUUINBUINT )
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CHAPTER III

Rotational and Scaling Invariant Self-Organizing Mapping

3.1 Kohonen’s Competitive Learning Concept

Among the neural network models, Self-Organizing Mapping (SOM), is categorized as an
unsupervised learning. Either unsupervised or self-organized learning implies that there is no
given target corresponding to its input data. Typically, a network of SOM is based on the
competitive learning approach introduced by Kohonen [68]. A simple architecture of Kohonen’s
competitive learning network is a single layer of output neurons 7 and all inputs are fully
connected to all output neurons in a feedforward fashion via synaptic weight connections wy;
as shown in Figure 3.1. Moreover, there are complete connections among the neurons known
as lateral connections. The number of output neurons which must be specified prior to the
learning process corresponds to the number of classes of the input data.

The output neurons in a network compete among themselves in order to be a winner during
the learning period. The winning output neuron is called a winner-takes-all neuron or a winner
neuron. Let xp = [zg ... xkl]T be a currently selected data vector and w; the weight vector of
neuron z. Only one of the neurons is called a winner neuron :* with respect to x, if its weight

vector w;= satisfies the following condition:
Wis - Xp = max(w; - Xg) (3.1)
2

This condition can be viewed as the distance between the weight vector and the input vector

if the length of the weight vector is normalized to one. Hence, the alternative condition for
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Figure 3.1: A sample architecture of Kohonen’s competitive network with three input and

four output neurons which x;. is a selected data vector at present.

identifying a winning neuron is given by
[lwie =34} = min [w; = x| (3.2)

After obtaining the winner neuron 2%, its weight vector w;- is updated with respect to data

vector xi by this simple learning rule

Wi = wold L Aw;- (3.3)

7%

Awg = n(x — Wix) (3.4)

where 7 is a learning rate.
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Listing of notations used in Kohonen’s SOM algorithm

T: a constant number

[: the dimension of data vector

n: the number of output neurons in the network

m: the number of data vectors in data set

Xp, = [Tp1 .. o] data vector k

X ={x1,...,xn}: a set of data vectors

w; = [wir ... wy)T: weight vector of neuron &

w;(t): weight vector of neuron ¢ being considered at time ¢
W = {wy,... ,w,}: aset of weight vectors

Ci(t): data vectors in the cluster represented by w; at time ¢

Ci(t) = {xkl| llxx =wilt)|| < llxe—wy(t)[l; Vi#j}
Kohonen’s SOM Algorithm

1. t=0.
2. Initialize small random values for all weight vectors in a set W.

3. Do
(a) t = t+1.
(b) Randomly select a data vector, xj, from a set X.

(c) Determine the winner neuron :* defined in Eq.(3.2).

(d)Update the weight vector w;- of the winner neuron i* by Eq.(3.3) and (3.4).
Until ( Vi(C;(t) =Ci(t—1)) OR t>T)

From the Kohonen’s competitive learning rule, it is obvious that the location of each w;
depends on the selection sequence of each data vector x; and the initial location of each w;. To

make the locations of all weight vectors invariant to the rotation and scaling of the data vectors,
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all weight vectors must be initialized at the same locations with respect to the structural aspect
of the data vectors. In addition, the selection sequence of the data vectors for directing the
movement of the winner neurons to the same locations as those locations prior to either the

rotation or scaling is also crucial.

3.2 Rotational Direction

Principle Component Axis (PCA)

proper direction of PCA

Figure 3.2: An example shows the principle component axes of image “T” and its rotated

image. Both images have the same direction of principle component axes.

The initial location of each weight vector requires-the information regarding the direc-
tion of the clustering aspect of the data vectors. This direction can be easily found by
applying the concept of principle component analysis (PCA). Given a set of data in R2,
I'={(z1,11), (z2,92), -+ -, (Tn,yn) }, suppose that unless I has a zero mean, its mean must be
subtracted before proceeding. The principle component axis is computed from the covariance

matrix as shown in the following equation:

T.L x2 7.2 TiY;
COV(F) _ szl 7 szl LI (35)

Z?:l TiYi Z?:1 yz'2
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If a data vector with coordinate (z;,y;) is rotated through any angle 0, the new coordinate

is defined as
(2}, y}) = (z;c080 + y;sinf, —z;51n0 + y;cosb). (3.6)

As a result, the covariance matrix of a set of rotated data through an angle 8, denoted by

I'y will become as shown below.

A\
Cov(ly) = (3.7)
b ¢
n
where = Z(micose + y;5ind)> (3.8)
1=1
b = Z(mmos@ + yisin®) (—z;sinb + yicosd) (3.9)
=B
ln
Y = Z(—xisinO + y;cos0)> (3.10)
=1

Consequently, PCA cannot indicate the actual direction with respect to the structural
aspect of the data vector cluster. It is noted that both original data vector and data vectors
rotating through 180 degrees have the same covariance matrix. Hence, the principle component
axis of both data vectors is the same. For example, the original and its image of letter “T”
turned through 180 degrees shown in Figures 3.2 (a) and (b) have the same principle component
directions. In this example, if we use the top of letter “T” as an indication for the correct
direction of the principle component axis then the image in Figure 3.2 (b) should be changed
as shown in Figure 3.2 (c).

To calculate the rotated angle, it is necessary to identify the proper direction. The concept
of the density data vectors corresponding to both directions of PCA is used. Both directions of
PCA are defined as the same direction and the opposite direction of the obtained eigenvector.
The proposed algorithm to find the correct direction is called Rotational Direction Algorithm.
Let e, be the eigenvector corresponding to the eigenvalue p of a set of data vector, I'. Let C

be a set of data vectors in which its inner product with the eigenvector is not less than the
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arbitrary parameter 7 as shown in Eq.(3.11).

Cl = {xi|ep SX; > 7'} (3.11)

and let Cy be a set of data in which its inner product with the negative eigenvector is less than

the negative value of the parameter 7 as shown in Eq.(3.12).

Cy = {XZ| — €, -X; < —7'}. (3.12)

The desired direction depends on the greater number of data vectors between the sets
C1 or (5. Herein, the desired direction is changed to the opposite direction of the obtained
eigenvector if ||Cy|| > ||C2l|. Otherwise, the desired direction is the same direction of the
obtained eigenvector. In addition, the parameter 7 keeps increasing until the size of C; is
not equal to the size of Cy. For example, Figure 3.3 (a) shows the eigenvector e with the
maximum eigenvalue of the rotated image “T” after applying PCA. Then, the sets C; and
Cy are calculated by Eq.(3.11) and (3.12), respectively. As shown in Figure 3.3 (b), the data
vectors in C] are represented by a dark-colored area in the same direction of e while the data
vectors in Cy are represented by a gray-colored area in the opposite direction of e, denoted by
—e. Since ||C1]| < ||Cs||, the desired direction is changed to the direction of —e as shown in

Figure 3.3 (c).
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eigenvector e eigenvector e

@ (b)

the negative eigenvector (-€)

(©

the desired direction of the obtained e
is changed onto the opposite direction (-€)

Figure 3.3: An example of the rotated image “T” illustrates the process of finding the proper
direction of eigenvector of the image. (a) The eigenvector e obtained directly from PCA. (b)
The data vectors in C7 and O represented by dark area and gray area, respectively. (c) The

proper direction of the image changed to the negative eigenvector.

3.3 Self-Partitioning Competitive Learning
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The principal goal of the Kohonen’s competitive learning in Section 3.1 is to partition the
data vectors into clusters where the number of clusters is defined by a user. The obtained
result after learning is the center of the clusters represented by the location of weight vectors
but the algorithm does not consider the location of the obtained weight vectors. For instance,
Figures 3.4 (a)-(d) show the location of weight vectors after performing four trials of the
Kohonen’s competitive learning on the same data vectors. It is obvious that the obtained
weight vectors are different in location. Figure 3.4 (a)-(b) show the location of weight vectors
after performing the Kohonen’s competitive learning in the first and second trials by using
random initialization of weight vectors while Figure 3.4 (c)-(d) show the location of weight
vectors after performing the Kohonen’s competitive learning in the third and fourth trials by
using fixed initialization of weight vectors. Due to these experiments, the final location of each
w; depends on how initial weight vectors and selected data vectors are shown at random in
the updating procedure.

The data vectors are represented as the pixel coordinates of an image. The interested
problem of a scaled image is how the weight vectors with respect to the scaled data vectors
and the original data vectors are placed at the same location after learning. An algorithm,
named “Self-Partitioning Competitive Learning” based on the concept of Voronoi diagram is
introduced to find the data partition and to guide the movements of the weight vectors of a
considered data and its scaled data to the same locations.

Given any weight vector w; and any data vector x;, H(w;) be a polyhedral region of data

vectors closer to the weight vector w; than to any other weight vectors.
H(w;) = {xp| lxp—will < |px =w;ll; Vi # i} (3.13)

where || - || is the Euclidean norm. The mean vector of a region is defined as the summation of
all data vectors of its region divided by the number of belonging data vectors as follows:
1
pHW)) = ——— > xp (3.14)
Hw)|, 2
y keH(Wz)

where |H (w;)| is the number of data vectors in a region H(w;). Similar to a Voronoi diagram,
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Figure 3.4: The location of weight vectors after applying the Kohonen’s competitive learning
to the same data vectors in order to partition the data.  (a)-(b) Performing the Kohonen’s
competitive learning in the first and second trials by using random initialization of weight
vectors. (c)-(d) Performing the Kohonen’s competitive learning in the third and fourth trials

by using fixed initialization of weight vectors.
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the whole data are partitioned into regions corresponding to the weight vectors and each weight
vector is moved closer to the mean vector of region.

Beginning with the initialization of weight vectors, we can put the weight vectors on the
curve of the circular function defined in terms of cosf and sinf for the z-coordinate and

y-coordinate, respectively, as follows:
w; = [rcos@; rsin@;]” (3.15)

r is a constant and less than the variance of the set of data vectors. 6; is equal to %’rz where
m is the number of weight vectors. As shown in Figure 3.5, wy is assigned by 6 equal to zero.
The angle of the following weight vectors wi, wo, ... , W), is increased by e degree.

In the learning process, the regions are updated corresponding to the location of weight
vectors until there is no significant difference between the data vectors of the regions at the
time ¢ and ¢ —1. Thus, the self-partitioning competitive learning algorithm is written as follows.

Let w;(t) and H(w;)(t) be the weight vector ¢ and the polyhedral region of w; at time ¢.

ws = (rcos(3¢), rsin(3e))

® Q) Wa = (rcos(2€), rsin(2e))

() W1 = (rcos(e), rsin(e))

O, wp = (rcos(0), rsin(0))

Figure 3.5: The location of initial weight vectors assigned by Eq. (3.15). The angle 6 of wy
is equal to zero and the angle space of the adjacent weight vector, denoted by ¢, is equal to %

where m is the number of weight vectors.
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Self-Partitioning Competitive Learning

1. t=0.
2. Initialize the weight vector w; by assigning the function:
w;(t) = [rcos; rsin@;]”

where 0; = e¢i and m is the number of weight vectors.
3. do
4. t=t+ 1.
9. Update each w; as follows:

p(H (wilt=1)) [H(w)(t = 1)] >0

w;(t) =
wi(t —1) if|H (w;)(t = 1)| =0

(=]

. until (Vi(H(w;)(t). = H(w;)(t = 1)) or ¢ > T)

7. Obtain all w;.

3.4 Feature Extractor for Color Images

In this paper, we also consider an image with color formats. Therefore, the dimension of the
data vectors is expanded in order to encode the information of an image with color intensity.
Figure 3.6 gives an example of encoding pixel k& with the vectors x; and iy as follows.

Each pixel of an image is considered as a data vector, which is called coordinate data

vector. Let X = {x1,... ,x,} be a set of coordinate data vectors such that the mean of X is
w(X) =0 (3.16)

However, if X has a nonzero mean, its mean is subtracted from every data vector to obtain a

new xj, denoted by x;“*,

X1 = x5, — p(X) (3.17)

Definition 3.1. The normalized coordinate data vector, x),, is defined as

,_
Xp = 59Xk (3.18)
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where aq is a constant, and ¥ is the mazimum value of the projection of coordinate data vectors

on the principle component axis with the mazimum eigenvalue defined as follows.
¥ = ma a - e), ma -(—e 3.19
masx {ma(x - ), max(xi - (~e))} (3.19)
where e is the principle component axis of C with the mazimum eigenvalue after applying PCA.
]T

The intensity data vector, i = [rg gi bg] , at pixel k of an image is a vector whose elements

are the intensities of red (ry), green (gi) and blue (bg) colors, respectively.

Definition 3.2. The normalized intensity data vector, i), is defined as

1
i (11 0 07— G ooy O O
v 1 ¥ 3.20
S vy e e ) R B (3.20)
L 0 0

maxyy, (ix-[0 0 1]7") ~miny (ix-[0 0 1]7)

where a9 s a constant.

Feature extraction algorithm combines the techniques of the rotational direction and the
self-partitioning competitive learning described in subsection 3.2 and 3.3, respectively. Basi-
cally, only the coordinate data vectors are changed when the image is rotated. Finding the
eigenvector and applying the rotational direction algorithm can be achieved by considering only
the information of the coordinate data vectors. During the self-partitioning competitive learn-
ing, the coordinates of each pixel and its intensity data vector are simultaneously considered
as a vector in a five-dimensional space.

Each region is obtained by applying the partitioning process in Eq.(3.13) and then cal-
culating the mean of the partitioned region by Eq.(3:14). Finally, the weight vectors are
moved to the mean of their partitioned regions. Let py = [xk; ik]T be a data vector derived
from the concatenation between the coordinate data vector and the intensity data vector, and

C I

w; = [w&;w!]T be a weight vector derived from the concatenation between the coordinate

weight vector wiC and the intensity weight vector wiI . To apply the algorithm to color images,
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we change Eq.(3.14) to the following equation:

W) = (v prem (wi)(t—1) Xk) /1 H (wi) (& — 1)] if{H (w;)(t —1)] >0 (3.21)

wé(t—1) Otherwise.

min{mOder,pk €H(w;) (rk ) }

I .
w; (t) = mln{moder,pkeH(wi)(gk)} (3.22)
min{mOder,pkEH(wi)(bk)}J
where w{(t) is the coordinate weight vector i considered at time ¢ and w!(¢) is the intensity

weight vector i considered at time . The symbols modey;, ,, c i (w,)(Tk), modey, o, cr(w,)(9k)
and modeyy, ,, crr(w;)(bk) indicate the most frequent value of red (r;), green (gi), and blue
(b) colors, respectively, for all k where p, € H(w;).

In general, the scaling procedure is a method in which an operator must introduce some
pixels to extend the size of image. The intensity values of the new pixels are defined by
the interpolating technique such as neighboring estimation, bilinear interpolation and cubic
interpolation. Suppose that the technique of neighboring estimation is used to introduce the
new pixels for scaling operation. Consequently, we consider the coordinate weight vector
separately and the intensity weight vector in the procedure of moving weight vectors from the
location at time ¢ — 1 to the new location at time ¢ as shown in Eq.(3.21) and Eq.(3.22).

The algorithm of feature extraction applied to color images is developed by using Rotational
Direction algorithm to guide the correction direction in the process of initializing weight vectors
and Self-Partitioning Competitive Clearing algorithm to-capturethe color texture of the image

with the scaling and intensity invariant properties. This new algorithm is named Rotational

and Scaling Invariant Self-Organizing Mapping algorithm.
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T:
m:
n:

pr = [xk; 1]

Cov(X):

w& = [yi1 yio] "

1
)

wi = [wC wl]T:

w! = [zi1 2i2 23]
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List of notations used in RSISOM algorithm

a constant number used for initializing weight vectors

a constant number

the number of weight vectors

the number of data vectors in data set

data vector k derived from the concatenation between

the coordinate data vector and the intensity data vector
covariance matrix of X

coordinate weight vector 4

intensity weight vector of neuron

weight vector ¢ derived from the concatenation between

the coordinate weight vector and the intensity weight vector
weight vector ¢ considered at time ¢

coordinate weight vector 7 considered at time ¢

intensity weight vector ¢ considered at time ¢

principle component axis with the maximum eigenvalue
after applying PCA; e[| =1

unit vector [1 0]T.

RSISOM algorithm

Compute Cov(X) = XX

Compute the eigenvector e using the maximum eigenvalue.

Determine the proper direction of e using Rotational Direction Algorithm.

Compute p” by concatenating the normalized coordinate data vector x,

and the normalized intensity data vector i) as defined by Eq. 3.18 and Eq. 3.20

Initialize all w;(¢) when ¢ = 0 using Initializing Weight Algorithm.

Determine each region H(w;)(t) when t = 0 as follows



H(wi)(t) = {ps| llpr = wi())l| <llpr — w;(®)[; V5 # i}.

t=1t+1.

Update each w;(t) as follows:

8.1.

8.2.

8.3.

8.4.

(X vk premw)e—1) X6) /I H (wi)(t = 1)

wl(t) =
w(t —1)
min{modevk,pkeﬂ(wi)(Tk)}
wl(t) = min{modey; o, et (w;)(9k) }
min{modey;, ;,, crr(w,)(0r)}
wi(t) = [wiwi].

Determine each region H(w;)(t) as follows:

H(wi)(t) el Pk —wil)|| <llpr — w;()ll; V5 # i}

iff| H (wi)(t = 1)[| >0

Otherwise.

if (Vi(H (w;)(t) = H(w;)(t — 1)) or ¢ > T) then obtain all w; else go to step 6.

Rotational Direction Algorithm

10.

11.

12.

13.

Set threshold 71 = 0, €; = 0.25, and dummy u = e

do

u = [ug cos(m) + ugsin(ry) — wysin(r) + us cos(ﬁ)]T

Compute maximum count M = maxy;(u - x;)
Set threshold 75 = 0, €2 = 1, countl = 0, and count2 =0
do
for each coordinate data vector x; do
if e x; > 1 then countl = countl +1
if e - x; < —75 then count2 = count2 + 1
end
if countl # count2 then go to step 17
Tp = To + €2

until » > M

49
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14. T =T+ €1
15. until 7 > 5
16. if countl > count2 then set e = e

17. if countl < count2 then set e = —e

Initializing Weight Algorithm

1. Compute the angle # between e and €’

2. fO=cos t(e-€)

— 27
3. €e=2]

4. forl<i<mdo

5. w; = (rcos@,rsin,0,0,0)
6. 0=0+¢
7. end

3.4.1 Time Complexity of the Proposed Feature Extractor

Theorem 3.1. Rotational and Scaling Invariant Self-Organizing Mapping (RSISOM) algo-
rithm extracts the invariant feature of an image in O(n) time where n is the number of data

vectors.

Proof. The algorithm begins with computing the covariance matrix, Cov(X), in which size
of matrix X is 2 x n. Let fp, be an element of the covariance matrix X ,and a;; and b;;
be an element of the matrix X and an element of the matrix X', respectively. The matrix

multiplication between X and X7 is written as follows:

n

fra = Zam’biq (3.23)

i=1
Therefore, the arithmetic complexity time to compute the covariance matrix Cov(X) of size

equal to 2x2 is O(4n). Then, the maximum eigenvalue and the eigenvector, then, are computed



51

in a constant time. To determine the proper direction of the eigenvector e, Rotational Direction

M

Algorithm is applied. Its time complexity is, obviously, O(%n) where o is much less than n.
Let m be the number of weight vectors. Then, the location of weight vectors is assigned by
Initializing Weight Algorithm. Its complexity time is O(m).

Finally, the learning step is to update the weight vectors either until there is no significant
difference between the region of the data vectors at the present time, H(w;)(¢), and the region
of the data vectors at the previous time, H(w;)(¢ — 1), or until the time exceeds the constant
number, T. For each iteration, the coordinate weight vector moves closer to the arithmetic
mean of its region of coordinate data vectors and the intensity weight vector is set to the
mode value of its region of intensity data vectors. Finding the elements of each region, H(w;),
requires n times. Therefore, the total run time is O(mn) for m regions. To compute the
function mode for each region, it takes O(n) in the worst case. Therefore, the total run time
is O(nm) for m regions.

Thus, RSISOM algorithm requires O(4n) + O(m) + O(n) + O(m) + O(mn) + O(mn) equal

to O(mn) and it is equals to O(n) if m is much less than n. O

3.4.2 Feature Extraction Based on The Location of Weight
Vectors

After locating the weight vectors, W = {wy,... , w,, } where m is the number of weight vectors,

by RSISOM algorithm, the feature vector of an image, f, is defined as follows:
f=[ai;...;a;;.. am]T (3.24)

Symbol “;” means the concatenation. Element a; is the concatenation between the coordinate
weight vector, wiC , after rotating through an angle, 8, and the intensity weight vector, wiI and

it is explicitly computed by



52

cos@ sinf
a; = wi wl! (3.25)

—sinf cosf

where 6 = cos !(e - €).
The obtained feature vector of an image is appropriate to proceed through the classification

invariant to rotation, scaling and inte ing as shown in Chapter 4.
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Figure 3.6: Given an example of a color image “T”, there are two encoded vectors from a pixel.
The first vector, x; = [a; ap]”, is the information of z“coordinate and y-coordinate at pixel k&
and the other, iy = [by by b3]T is-the information-of intensities of red, green and blue colors at
pixel k. The concatenation of both vectors is denoted by a new vector, px = [a1 a2 b1 bo b3]T

in a 5-dimensional space.



CHAPTER IV

Experimental Results

In this chapter, the proposed algorithm, RSISOM, is tested and evaluated on a number of
artificial and real data sets. The experiments are designed to evaluate the success on the
distiguishability and robustness of rotation, scaling and intensity change. The performance is

measured by Euclidean distance among the feature vectors of images.

4.1 Test Data

There are four data sets of which all tested images are constrained by the following properties:
1. Color intensity of each pixel is in RGB format.
2. Size of images is at least 256 x 256 pixels.
3. The background of each image is white.

Firstly, Dataset A consists of 34 different images obtained from clip-arts on the Internet
[see Appendix C]. Next, Dataset B and-data set C-are the synthesis images of airplane model
A and F, respectively. Figure 4.1 (a)-(f) illustrate six airplane types, namely A-0, A-1, A-2,
A-3, A-4, and A-5. Likewise, the six airplane types in Figure 4.2 (a)-(f) are F-0, F-1, F-2,
F-3, F-4, and F-5. Lastly, Dataset D is the synthesis data test of four images; Figure 4.3
(a)-(b) have similar superimposing structures and colors. They only differ in shapes, circles
and squares. Figure 4.3 (c)-(d) consists of the same objects, namely circles, triangles, and
squares. The objects in both figures are located at different locations. Herein, the different

images mean that each image is different in shape, colored texture, or both of them.
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Figure 4.1: Dataset B consists of six airplane types, namely A-0, A-1, A-2, A-3, A-4, and

A-5, which all are of the same model A.
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Figure 4.2: Dataset C consists of six airplane types, namely F-0, F-1, F-2, F-3, F-4, and

F-5, which all are of the same model F.



S7

(c) ()

Figure 4.3: Dataset D has four images: (a)-(b) have similar superimposing structures and
colors but different shapes, circles and squares. (c)-(d) consists of the same objects, namely

circles, triangles, and squares.
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Table 4.1: Parameter values used for all data sets.

Parameter Value
T: maximum number of iterations 200
al: the constant used for normalization of coordinate data vectors 100
a2: the constant used for normalization of intensity data vectors 20/255

To prove that the features extracted by RSISOM is invariant to rotation, scaling and color
intensity changes, a computer can create 83 transformed images [see Appendix C] from each

original image as follows:

1. 24 rotated images. They are produced by rotating the original image through 0 — 360

degrees.

2. 5 scaled images. They are produced by scaling the original image up to 2 times as large

as the original size.

3. 10 intensity-changed images. They are produced by increasing or decreasing the intensity

of R, G and B planes up to 20% of the original intensity.

4. 44 mixed-transformation images. They are produced by combining all above transfor-
mations; for example, the original image is rotated through 210 degrees, then scaled up
1.6 times of the original size, and, last, is increased the intensity 10% of the original

intensity.

4.2 Setting and Definitions

Applying RSISOM to data sets, the parameter values are set as shown in Table 4.1. The
number of weight vectors used for each data set is set with respect to the intrinsic information

of images of data set as shown in Table 4.2.
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Table 4.2: The number of weight vectors used for data sets.

Parameter | The number of weight vectors used for data sets

A: Cliparts | B: Model A | C: Model F | D: Geometry

m 12 20 20 10

Let v; be a feature vector of an original image ¢ and fjm be a feature vector of the image
j trasformed from the original image ¢. Conveniently, the class of the original image 7 is
represented by [i]. The classification measurement of the feature vector f,gj] belonging to the

class [1*] is given as the following:

"= argmin(|§ ~ vil) (4.1)
2

]

The misclassification of feature vector £ occurs when the obtained class [i*] is not in the same

class as fg |, In the other hand, the transformed image f,Ej lis misclassified if i* # 7.

4.3 Results

We test our proposed feature extraction algorithm against data set A described in Section 4.1.
The features of all original images and their transformed versions are extracted and classified
by Eq.(4.1). The accuracy of the classification is shown in the first column in Table 4.3. The
other columns in Table 4.3 show the maximum, minimum and standard deviation (S.D.) of
the distance between fl[j] and vy, denoted by Dy. The average of each column is computed at
the last row in Table 4.3.

To demonstrate the power of RSISOM discrimination among images with the same shape
but different color texture, RSISOM is tested against data set B in Section 4.1. The accuracy
of the invariant classification of data set B is 95.59 %. Table 4.4 shows the average boundary
distance of each invariant airplane type. Table 4.5 shows the distance among each feature

vectors of original images of model A.
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Table 4.3: The results of feature classification of data set A are presented in classes of trans-

formations, i.e., rotation, scaling, changing the intensity and combining all. The correctness of

invariant classification is shown in the second column following the maximum, minimum and

standard deviation (S.D.) of the distance between fl[ci] and v, denoted by D; in the third,

fourth, fifth and sixth columns, respectively.

Correctness(%) | Max D; | Min D; | Mean of D; | S.D. of Dy
Rotation 100.000 0.000 0.000 0.000 0.000
Scaling 87.65 0.374 0.022 0.155 0.133
Intensity 88.89 0.377 0.028 0.122 0.136
Combination 93.58 0.170 0.130 0.175 0.017
Mean 94.51 0.230 0.045 0.113 0.072

Table 4.4: The average boundary distance (x10 ?) of each invariant class denoted by Mean

Ofo.

Airplane type | Average boundary distance (Mean of Dy)
A-0 16.0030
A-1 22.1201
A-2 18.3161
A-3 14.9190
A-4 20.2280
A-5 11.2144
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Table 4.5: The distance measure (x10 2) among each feature vectors of original images,

airplane type A, [|v; — v;]|.

Vi | 57.3894
V(az) | 50.4136  55.5353

V(az | 56.5283 57.7535 55.8296

Viay | 44.8099 53.5162 524130 59.6914

v(as) || 55.0028 60.6946 46.5255 59.8578 54.2431

V(A40) V(A1) V(42) V(43) V(A4)

In additional, RSISOM can discriminates effectively among images with the same color
texture but different shape. The distances between the feature vectors of original airplane of
model A and of model B, which are extracted by RSISOM, are shown in Table 4.6. RSISOM
also performs efficiently to differentiate between a pair of images in data set D as shown in

Table 4.7.

4.3.1 Robustness of RSISOM Under Scaling

The test data in Section 4.1 is used to compare the robustness of scaling of RSISOM with
Zernike moment. It contains 34 sets of scaled images but the colors of those images are
changed to gray-leveled intensity. ‘'The feature vector applied by Zernike moments, z?, in this

comparison uses the parameter p equal to 12, namely,
2" =[Ai20 Aigg Araa. . Az 12]" (4.2)

Similar to the measure in Section 4.2, the classification accuracy is measured by Euclidean dis-
tance. Fig. 4.3.1 shows that RSISOM is robust to scaling but Zernike moment is more sensitive
when the scaling factor is close to two. The scaling factors used in the other experiments [21, 22]

are less than 1.3 which our ranges from 1.2 to 2.
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Table 4.6: The distance measure (x1072) between each pair of feature vectors of original

images (i) , [v; - v,

Distance between each pair of feature vectors of original images

A1,F1
A2 F2
A3 F3

A4,F4

~—~~ I~~~ o~
~— ~— ~— N~ ~—

A5 F5

46.1211
68.1502
57.9190
65.1002

73.3345

Table 4.7: The distance measure (x1072) between each pair of feature vectors of original

images (i), [v; — vl

Distance between each pair

of feature vectors of original images

(Fig. 4.3(a), Fig 4.3())

(Fig. 4.3(c), Fig 4.3(d))

22.8911

35.4245
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Figure 4.4: The correctness percentage of both Zernike moments (ZM) and RSISOM when

they test against the scaled data described in Section 4.1.
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Figure 4.5: The accumulated number of images recognized correctly by both Zernike moments

(ZM) and RSISOM with the parameter of scaling from 1.2 to 2.0 times of the original.
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4.3.2 Robustness of RSISOM Under Color Intensity Changes

The robustness of RSISOM with respect to color intensity change are compared with fuzzy color
histogram. In fuzzy color histogram, the fuzzy c-mean algorithm is applied to compute the
membership grades. Following the parameters suggested in [32], the value of m and the number
of clusters are set to 1.9 and 30, respectively. Fig 4.6 shows that our approach consistently
outperforms fuzzy color histogram when the intensity is increased from 5 to 45, i.e., the intensity
changes are equal to +5, +10, +15, + 20, +25, +30, +35, +40 and +45 while the changes
are set between 5 to 25 in [32]. The extracted features of RSISOM are deployed against five
dimensional data composed pixels’ coordinate and color intensity but which of fuzzy color
histogram excludes information of pixels’ coordinate. As a result, RSISOM is more robust

than fuzzy color histogram in color intensity change.
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Figure 4.6: The correctness percentage of both fuzzy color histogram denoted by FCH and

RSISOM when they test against the intensity-changed images described in Section 4.1.
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Figure 4.7: The accumulated number of images recognized correctly by both fuzzy color
histogram denoted by FCH and RSISOM with the parameter of intensity change from +5 to

+45.



CHAPTER V

Conclusion

A new algorithm based on the concept of self-organizing mapping and principle component
analysis is introduced to solve the problem of invariant pattern recognition. The experiments
indicate that the proposed algorithm extracts successfully the feature of an image with the
capability to capture the color-texture of an image while it preserves the invariant capability
against rotation, scaling and color intensity. The experimental results performed on the test
data in Chapter 4 show that their extracted features can be successfully discriminated among
others. The averaged percentage of correct classification of data set A and of data set B is

94.51 % and 95.59 % as indicated in Section 4.3.

5.1 Invariance Capability

Feature extraction is a mapping function addressed in Section 2.1. The perfect mapping T
would map the image f and its transformed image f’ into one point in the invariance space.
Most of mapping T are not perfect so all feature vectors of all the images produced by rotating,
scaling and changing their color intensity are grouped within some boundary. Therefore, the
achievement of mapping T is evaluated by the Euclidean distance between the feature vectors
of the original image and of its transformed image, called boundary distance. The considered
transformations in this dissertation are rotation, scaling and color intensity change.

Table 4.3 indicates the efficiency of the proposed algorithm that maps all images of an
equivalent class into the feature space. The equivalence class is defined as transformations of

images under rotation, scaling and changing color intensity in this dissertation. The values of
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the maximum, minimum and standard deviation of the distance between the feature vectors of
a transformed image and its original image indicate the performance of the algorithm extracting

the feature.

Rotation Invariance

Invariance under rotation is completely achieved by the proposed algorithm, Rotational Direc-
tion algorithm demonstrated in 3 as indicated in Table 4.3. The classification performance is

100 % and the boundary distance is equal to zero.

Scaling and Color Intensity Invariance

The scaling operation on an image not only extends the original location of coordinate data
but also introduces new data by interpolating the existing data. Therefore, the scaled image
might be distorted if the scaling factor is not a whole number. Likewise, the degree of changing
the color intensity probably produces the new image much different to the original image. As a
result, the proposed algorithm, Self- Partitioning Competitive algorithm, transformations such
as scaling and increasing intensity level of an image are not perfect. However, RSISOM is
much more invariant to scaling than Zernike moment when the scaling factor greater than
1.3 as illustrated in Figure 4.3.1-4.3.1. According to robustness of changing intensity level,

RSISOM also outperforms fuzzy color histogram.

5.2 Distinguishability

Regarding with the technique of color metric such as fuzzy color histogram,.it does not consider
the actual texture of an image, In Chapter 4, the synthetic images of data set D as shown in
Figure 4.3 are distinguishable by using RSISOM as shown in Table 4.7.

Nevertheless, the remarkable performance of RSISOM is able to distinguish among airplane
type in data set B as shown in Table 4.5. Six airplanes in data set B have the same shape of

model A but different color texture. Co-occurrence technique cannot differentiate two airplanes



(d) A-5 (e) F-5

Figure 5.1: Pairs of airplane types with the similar color texture.
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having the same color texture but different models, for example, pairs of airplane types with
the similar color texture as shown in Figure 5.1 while RSISOM can differentiate between two
different type but similar texture such as pair of A-1 and F-1, A-2 and F-2, A-3 and F-3,A-4

and F-4, A-5 and F-5. The result of RSISOM is shown in Table 4.6.

5.3 Future Work

One possible future improvement on RSISOM is to integrate the concept of Hierarchy. Hier-
archical Rotational and Scaling Invariant Self-Organizing Map (Hierarchical RSISOM) will be
investigated further as a modified RSISOM algorithm with hierarchical architecture. RSISOM
has the complexity in the order of O(n), where n is the number of data vectors, as proved
in Theorem 3.1. Generally, a search algorithm with O(logn) complexity can be obtained if
the neurons are arranged in a tree. A hierarchical SOM is a tree-structured neural network
composed of independent SOMs that is capable of representing hierarchical relations between
the input data. Barbalho and Batista [69, 70] present the applications of hierarchical SOM
for image compression and handwritten digit recognition and their experimental results show
better performance of hierarchical SOM, mainly regarding to the processing time.

To improve the classification accuracy, the structure of hierarchical RSISOM is appropri-
ately designed for extracting the feature of a color image. The important information of a
color image comprises pixel coordinates and R, G and B intensity values. Thus, the structure
of the hierarchy consists of two layers. The first layer has only one RSISOM performing on
the coordinate data vectors.. The second layer has several independent scaling invariant self-
organizing maps (SISOM) of which each computes on the intensity data vector. As a result,

the hierarchical RSISOM possibly outperforms RSISOM without hierarchy concept.
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Appendix 11

Mathematical Theory

Theorem B.1. The time complezity of high-order neural network is O(n"), where r is the

highest order.

Proof. Let n be the number of inputs. The time and network complexities are equivalent to the
number of hidden nodes in the network. Consequently, the proof below is shown the growing
number of hidden nodes in the network following the order term of the high-order neural
network. The number of hidden nodes is equal to all possible combinations of inputs where the
combinations comprise "(1, i.e., n-choose-1, for the first term, "C, for the second term, "Cj for
the third term and so on. As shown in the above equations, the network and time complexities

of the high-order neural network are Q(n) + O(n?) + O(n3) +... +O(n") = O(n"). O



Appendix III

Test Data

The total of 34 different color images of Set A used in Chapter 4 are shown in Figure C.1-C.2.
These images are download from the Internet. To show the invariant capability, each of 34
sets can produce 83 transformed images. For example, the original image mos produces the

transformed images as shown in Figure C.3-C.5.
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Figure C.1: Original images m;;1 <4 < 20 used in the experiment. The subscript ¢ denotes

the assigned class [7].
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Figure C.2: Original images m;;21 <7 < 34 used in the experiment. The subscript 7 denotes

the assigned class [i].
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Figure C.3: Transformed images: Rotating the original image mgy through 15-180 degrees.
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Figure C.4: Transformed images: Rotating the original image mos through 195-345 degrees.
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Figure C.5: Transformed images: Scaling the original image ms> up to two times as large as

the original size.
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