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CHAPTER 1

Introduction

1.1 Introduction and Problem Review

Recently, blind source separation (BSS) or independent component analysis (ICA) has
become a high potential real world application problem. ICA problem concerns the
transformation and de-transformation of source signals in an unknown environment.
More precisely, the source distributions s(¢) and the mixture environments B are as-
sumed to be totally unknown. The main objective of ICA problem is to recover the
source signals from the observed signals x(¢), which are collected from the receivers,
such as microphones or sensors.

ICA can be seen as an extension to principal component analysis and factor analy-
sis. ICA is a much more powerful technique than PCA, however, capable of finding the
underlying factors or sources when these classic methods fail completely. The results
of using the ICA technique are not only mutually independent but are also mutually
decorrelated. The application of the ICA technique covers several essential areas such
as speech separation, steganography, cryptography, data communication, double-talk
detection or echo cancellation, sensor signal processing, microarray processing, biomed-
ical source processing, fault diagnosis, feature extraction, financial time series analysis,
and data mining [2, 12, 18, 19, 29, 39]. The measurements of the ICA technique are
given as a set of sequential or parallel signal separation, time dependency, stationary

and non-stationary sources, and linear and nonlinear mixtures.



A very well-known practical example of ICA application is the cocktail party problem.
This problem assumes there are some people talking simultaneously in the room, having
some microphones for receiving the voices. Herein, we assume that there are three
people, n = 3, and three microphones, m = 3. Each of these recorded signals is a
linear combination of the mixing matrix B and the speaker signals s;(t), (1 < i < 3),

formulated as:

:Ul(t) = busl(t) 18 blgSQ(t) + b1383(t)
ng(t) —= bglsl(t) R b2282(t) = b2383(t) (11)

T3(t) = b3181(t) i b3282(t) + b3383(t)
or more compactly in a matrix form as:
x(t) = Bs(?) (1.2)

Figure 1.1 illustrates a cocktail party problem with n sources, s;(t) = [s1(t), s2(t), .. .,
sn(t)]7, and k noises, v;(t) = [v1(t), va(t), ..., ve(¢)]", which are mixed in an unknown
environment by the mixing matrix B. Each microphone AMic; records the time signal,

x;(t) and t is the time index.

Unknown

: Sources V V ---V 3 Observed Estimated
signals sources

X yl = Sl
Mixin : —X Y, = s;

environme, t

\
§
/

. Yy
Demixing n.n
environment

Figure 1.1: The cocktail party problem: an example of ICA structure.



Several solutions to the ICA problem have been published during the past two
decades in the fields of signal processing [1, 2, 8, 9, 18, 32, 39, 40, 43], artificial neural
networks [4, 11, 12, 13, 14, 17, 23, 26, 27, 33, 46|, statistics [9, 19, 29], information
theory [2, 3,7, 8,9, 11, 26, 38, 39, 45, 47], and other application fields [16, 18, 29]. Two
significant points of research for ICA problems which are source density estimation—the
probability density function of the sources— and the cost function or contrast function
were proposed. The source density estimations are, for examples, Edgeworth expansion
[19] and Gram-Charlier expansion [2, 26]. Approximation functions with low complexity
computation were presented in consequence [13, 14, 43]. Contrast functions for ICA are
based on the concept of information theory including Maximum Likelihood Estimation
(ML) [8, 28], Information Maximization (Infomax) [2, 7, 18, 38, 39], and the concept of
high order statistics involving the 27 order statistics [1, 9], 4" order cumulant [5, 19, 30],
and Kurtosis [9, 18, 29, 39]. The significant contributions of the ICA problem discussed

in this dissertation are:

increasing learning speed-up,

separation of mixed Kurtosis signed signals,

finding some low complexity activation functions for approximating probability

density functions for the super-Gaussian and sub-Gaussian channels,

finding an optimal subblock size for an unsupervised learning.

1.2 Statement of the Problem

In this dissertation, efficient learning methodologies will be proposed in order to find the
optimal recovered signals. The problem to be solved in this dissertation can be classified

as follows:



First, as described above, the distribution of sources for the BSS problem is totally
unknown. For super-Gaussian source, it has a positive Kurtosis sign. Contrastingly, the
sub-Gaussian source has a negative Kurtosis sign. But, the Kurtosis sign of source has
been changed after the linear transformation x = Bs. Hence, it is difficult to determine
an appropriate activation for each observed channel. Moreover, it is more difficult to do
when the sources are mixed between super-Gaussian and sub-Gaussian distributions. In
this dissertation, the algorithms for solving these described problems will be proposed.

Second, it has been known that the activation functions for demixing of the super-
Gaussian and sub-Gaussian channels are ¢(y;) = tanh(o;y;) and ¢(y;) = y3, respectively,
where 1 < ¢ < n. Each output channel y; is independently evaluated via the activation

function ¢(y;). Two weak points of both functions are listed below:

e They are of high order complexities which require high computational time per

instruction.
e They are difficult to realize on the hardware level.

In order to obtain the low computational cost activation function, two approximation
activations for separating the super-Gaussian and sub-Gaussian channels will be devel-
oped.

Third, in the batch learning method, the computation must be performed on learning

data sets -which requires the following costly resources:
e amount of computer memory.
e the number of CPU time computation.
e high computational complexity.

The learning methods which reduce the usage of computer memory, CPU time com-

putation, computational complexity, and the online learning systems will be introduced.



1.3

Research Objectives

. To approximate the low computational time activation functions for demixing

super-Gaussian and sub-Gaussian distributions.

To propose a new contrast function for evaluating the dependency among output

channel y; and y; where 1 <1i,7 < m.

To propose the suitable online subblock size for reducing the computational com-

plexity.

. To propose and generalize the learning methodologies for separating the mixed

Kurtosis sign sources.

Scope of the Study

. The source signals are Gaussian, super-Gaussian and sub-Gaussian distributions.

The sources are independently distributed.

The number of sources is equal to the number of sensors (n = m).

. The source signals are mixed together in a stationary environment by an unbiased

mixing matrix.

Research Plans

. Collect the super-Gaussian and sub-Gaussian sources from the standard and ex-

isting benchmark databases.

. Study various proposed methods in the blind source separation researches.

Study the principal theories and various researches in neural networks and statis-

tical learning techniques to analyze the data from steps 1 and 2.



4. Apply the neural network and statistical learning techniques from step 3 to the

collected data above.

5. Design an appropriate algorithms from the study results and perform the experi-

ments to validate the algorithms.

6. Conclude the experimental results by comparing the results with those from other

methods.

1.6 Research Advantages

It is expected that the designed approach are:
1. applicable for separation of any super-Gaussian and sub-Gaussian signals.

2. used for a preprocessing procedure of other signal applications such as signal recog-

nition.



CHAPTER II

Theories and Literature Reviews

This chapter, the basic concepts of probability theory, statistics, random processes, in-
dependent component analysis or blind source separation model, ICA learning methods,
and some literatures on preprocessing, contrast functions, and activation functions are

briefly revised.

2.1 Probability of Events

Let A, B,C,---, N denote events. The probability of each event is a real number be-
tween 0 and 1 denoted by P[A], P[B], P[C],---, P[N]. The notation of P[.] with square
brackets will always be used to denote the probability of the event. If an event is certain
to occur, the probability of the event is 1. On the other hand, the probability of the
null event is 0. If events A and B are complementary, then their probabilities must add

to 1 as related in equation (2.1).
P[B] = 1 = PJA] (2.1)

The joint probability of events A and B, denoted by either P[AB] or P[A and B] is the

probability that both events A and B occur simultaneously.

P[A and B] = P(An B) (2.2)



2.2 Probability Distribution and Density Functions

2.2.1 Distribution of a Random Vector

In this dissertation, we assume the random variables are continuous-valued unless stated
otherwise. Let x be a random vector
L1

T2

Tn

where the components x4, 9, 73, ..., 1, of X are random variables. Let X be a particular

instance of x

Compoments 21, Ts, . . ., &, are fixed real values. The probability of event

xgﬁ:xlgaﬁl,x2§£2,...,xn<xn

is obviously a function of X. This function is called the cumulative distribution function
(cdf) for the random vector x. The cdf F of variable x; at point &; is defined as the

probability that x; < z;:
Fx(X) = Py g,z (T1, T2, .., ) = P(x < X) (2.5)

where —oo < x < oo. Clearly, for continuous random variables, the cdf value is in the
interval 0 < Fy(x) < 1. Normally, the probability function is described in terms of its

density function rather than cdf. The probability density function (pdf) px(X) of the



random variable z is acquired as the derivative of the distribution function with respect
to all of the vector components. The multivariate probability density functions py(X) is
defined as the derivative of the cdf Fy(x) with respect to all components of the random

vector x:

(%) = 0 0 0
Pl Oz, 019 Oz,

Fy(x) (2.6)

2.2.2 Joint Distribution and Density Functions

If x and y are both random vectors (perhaps of different dimensionalitv), the vectors
x and y can be concatenated to form a ”supervector” z' = (x”,y”). The cdf for the
supervector is called the joint distribution function of x and y. The cdf can be described

as follows:

Fy(%,¥)=P(x <%y <y) (2.7)

The joint density function pxy(%,¥) of x and y is again defined by differentiating
the joint distribution function Fy (X, y) with respect to all components of the random

vectors x and y. Hence, the relationship can be described as follows:

X y
Feyx,y) = / / Pxyl&, o)dodé (2.8)

2.3 Independence of Signals

To obtain completely separated any two signals y; and y;, the values of y; and y; must
be statistically independent at all times. There are various statistical independence
tests that can be used in this context. Two random variables y; and y; are said to be
statistically independent if the value of y; does not affect the value of y;, and vice versa
[29]. The independence of sources can be considered in terms of probability density

function. We denote by p(y;, y;) the joint probability density function of y; and y;, and
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pi(y;) the marginal probability density function of y; as follows:

pi(yi) = /Ooop(yi, y;)dy;
and (2.9)

(i, Z/j) = pi(yi)pj(yj)

Practically, it is not easy to test whether two signals y; and y; are independent by
using p(vi, v;), pi(yi), and p;(y;). The easier testing is by considering their correlation.
Two random variables y; and 7, are said to be uncorrelated if their covariance is zero.
The covariance can be computed in terms of the correlated expected values and the

multiplication of the expected values of y; and y; as follows:
Blysy;l = Elyil Ely;] = 0 (2.10)

If the variables are independent, they are also uncorrelated. On the other hand, uncor-

relatedness does not imply independence.

2.4 Independent Component Analysis

A very well-known practical example of an ICA application is the cocktail party prob-
lem. This problem assumes there are people talking simultaneously in a room, which
is provided with some microphones for receiving what they are talking about. Herein,
we assume that there are n people, and m microphones as illustrated in Figure 2.1 (for
n = m). BEach microphone Mic; gives a recorded time signal, denoted as x;(k), where
1 < j < m and t is an index of time. Each of these recorded signals is a linear com-
bination of the original signals s;(k), (1 < ¢ < n) using the mixing matrix B, as given

below:
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where bj;, 1 < 7,7 < n are the weighted sum parameters, that depend on the distance
between the microphones and the speakers [29]. If the sources s; are near the receivers
Miic; or the elements of the mixing matrix B are diagonal, it is not a proper ICA problem.
Commonly, the elements of mixing matrix B are nonsingular diagonal and permuted.
In addition, the probability density function of s;(k) are unknown in advance. The
only basic assumption of the cocktail party problem is that all of the sources s;(k) are
identically and independently distributed (i2d). The sources, observed and recovered
signals, have zero mean, E[s] = E[x] = E[y| = 0. The basic background of ICA were

presented in [2, 18, 29].

Unknown

- Sources Vi Yy ~ Observed Estimated
s

\ l ‘ l ; signals sources
: o X »Yy =S
: 4 N 177
S, |
\ Mixin }

———»X y, =s,
. 2 2
environmet

S : Demixing " "
environment

Y i T A 5 G 6 o o o 0 o o 3 W

Figure 2.1: The cocktail party problem.

The objective of an ICA problem is to recover the source signals § =y = Wx from
an observed signal x = Bs, where each component of the recovered signals y;(k) is iid.

The equation for transforming the mixed signals is the following:
§S=y=Wx=WBs=B !Bs=Is=s (2.12)

Equation (2.12) shows that the full rank demixing matrix W is needed for recovering

the mixed signal z;.
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2.5 Principal Component Analysis

The brief concept of PCA and the notations used in this dissertation are given in this
section. Principal Component Analysis, PCA in short, or Karhunen-Loeve transform in
data communication is a standard technique used to approximate the source data with
lower dimensional pattern vectors. In statistical pattern recognition problem, feature
selection or feature extraction is a common task to do first. The minor components that
have no effect in learning process will be eliminated. In other word, feature selection is
a mapping process from data space to feature space, f : R® — R™ where m < n or we
simply truncate the dimension of observed signal set x(t) = [x1(t) 2o(t) ... z,(t)]T to
x(t) = [Z1(t) Z2(t) ... &pm(t)], m < n, during the sampling period time 1 <¢ < P.

The basic properties of the PCA are defined under the following conditions. Let
x = {x(t)|1 <t < P} denote a set of input signals during a sampling period P. The
definition of each x(t) is the same as that given in the previous section. The dimension

of x(t) is equal to n. The mean of x is constrained by
Ex] =0 (2.13)
while its variance is limited to
o> =q'Rq (2.14)

where q denotes an n-dimensional unit vector and R denotes a correlation matrix of

random variables x.
R = E[xx] (2.15)

Dimensionality reduction is a process of eliminating the number of features needed
for data representation. The small variance features in data space are eliminated and
retained only those terms that have large variances o7, 03, ..., 02, where m < n. In prac-
tice, we reduce some dimensions of x(¢) by considering the eigenvalues of the correlation

matrix R. We select A1, Ao, ..., A, where Ay > Ay > ... > A\,
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Figure 2.2 illustrates an unsupervised multilayer neural network which consists of
PCA and ICA layers. After the PCA layer, the signal dimensions will be reduced from
n to m. The m dimensions are the principal components. The remaining dimensions
n—m are the minor components or noises. PCA not only reduces the signal dimensions,

but also decorrelates the signals.

Unknown
: S Noise :
| Sourees Ve VoV : Observed
: 1 k : )
S l f l ] signals Estimated
\ ? sources
\ Xl yl = Sl
: %2 Y275,
- /'xm y. =S
"’"‘,—>X

n N . Demixing
Prewhitening environment
environment

T’ I/ Aa - - W

Figure 2.2: PCA works as a preprocessing of an ICA, m < n

2.6 Maximization Mutual Information Learning Algorithm

The main objective of the Information Maximization principle is to maximize an output
entropy y. Bell and Sejnowski [7] proposed a simple learning algorithm for blindly
demixing linear mixtures x of independent sources s using information maximization.
They showed that maximizing the joint entropy H(y) of the output can approximately
minimize the mutual information between the output components y; = ¢(y;) where ¢(y;)
is an invertible nonlinearity and y = Wx. Mutual information at the output neural node

or processor is defined as follows:

Iy, yn) = HWr, - yn) — H(y) + ...+ H(yn) (2.16)
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where H (y;) are the marginal entropies of the outputs, H(yi, ..., y,) is the joint entropy
of the output y. Minimizing I(y1,...,¥y,) consists of maximizing the joint entropy and
the marginal entropies. For I(yy,...,y,) = 0, the joint entropy is equal to the sum of

marginal entropies:

H(ys, - yn) = H@y) + .- + H(yn) (2.17)

As known, the original frame work of ICA is to estimate §(t) = y(¢t) = Wx(t) of
the sources s(¢). In order to obtain a good estimate, we introduce an objective or loss

function in terms of estimates y and W.
L(W) = E{p(y, W)} (2.18)

The loss function should be minimized when the component y; become independent,
that is, when W is a rescaled permutation of B='. To minimize the dependency among
the estimated signals y;, the Kullback-Leibler divergence between the joint and esti-
mated probability density functions of y(#) is used. Let p(y) be the joint probability
density function of y, and ¢(y) be an estimated probability density function of y. ¢(y),
sometimes, is called the marginal pdf of y. In which all y; are statistically independent,

q(y) can be rewritten as follows:

o(y) = qu-(yz-) (2.19)

We use the Kullback-Leibler divergence between the joint and estimated probability

density functions of y as follows:

Dyy = / oozf)(y)log%dy (2.20)

The Kullback-Leibler divergence always takes a positive value and becomes zero
if p(y) and ¢(y) are the same distribution. It is invariant with respect to invertible

nonlinear transformations of variable y;, including scaling and permutation [18, 26].
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Amari [2] showed that Kullback-Liebler divergence D(W) can be calculated from the

average Mutual Information (MI) of y; as follows:

Dw = [ siosply)dy - [ piy)osaiay

:/ p(y) log p(y)dy — Z/ y) log g (y;)dy
= _h'(}’)_";hi(yi) (2.21)
where _
hy) =Elogp(y)] =— [ p(y)logp(y)dy (2.22)
hi(y)) = Elloggi(y)] = — [* p(y) log g;(y:)dy

h(y) is a differential entropy and h(y;) is a marginal entropy of variable y, respectively.

From y = Wx, the differential entropy can be calculated by
h(y) = h{Wx) = h(x) + log |det(W)] (2.23)
Applying (2.23) to (2.21), we get
D,, = —h(x)— log|det(W)|+ Zj: hi(y:) (2.24)

To find W that minimizes D,,(W); we differentiate D,,(W) with respect to W. The

gradient directions can be derived as follows:

0Dy (W) = _alog‘det(WT)‘+8(Z?:1hi(yi))T
OW oW oW
o, 002 Jogqi(wi)”
_ T =1
= -W T4 W
_rd(logg;(y:)" dyl
_ T 7
= WA dy; AW
8(11(%)
- - W T4 2T
)
- y’) T (2.25)

QZ(yz)
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In 1996, Amari et al. [2] reported the natural gradient learning for the ICA problem,
where WTW is an an optimal rescaling of the entropy gradient. Hence, the gradient

directions of M)gqiv(:v) should be

ODyg(W) oor _ _w-T QZ(yZ)xT T
5 W'W = [-W +qz_(yz_) IW'W
di(ys) TTW
7/, Qi(yi)y | (2.26)

By ordinary steepest gradient descent online learning, the learning equation is given by:

AW(t) = W(t+1)—W(t)

= —n(t) agé\\zfv )

(2.27)

where 7 is the learning rate which depends on the learning time ¢. Hence, W at time

t + 1 is adjusted by the following constructive steps:

Wt d 1) = W gl - ST wi

= W(t) + () - o(y)y () TW(1) (2.28)

The function ¢(y;) is the nonlinear activation function which depends on the probability
density function of the source signals s;, n is the learning rate, I is an identity matrix,
and ¢ is the time index. It has been known that the activation functions for demixing
super-Gaussian -and-sub-Gaussian-channels, are, ¢(y;) = tanh(a;y;) and ¢(y;) = vy

3
7

respectively, where 1 <i <n [18].

2.7 Kurtosis Measurements

As known, the ICA learning is a blind separating procedure for the non-Gaussian chan-
nels. In the ICA mixtures, at most one Gaussian channel is allowed. Because of the
Gaussian distribution property, the transformation of two Gaussianities are also Gaus-
sianity with another variable [29]. The non-Gaussianity can be categorized into super-

Gaussian and sub-Gaussian distributions. Super-Gaussianity has a sharp peak and a
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large tail probability density function (pdf). On the other hand, sub-Gaussianity has a
flat pdf. As we described in the previous section, the nonlinear activation function ¢(y)
in equation (2.28) is determined by the degree of non-Gaussianity. Hence, we need some
measurement tools for determining the degree of non-Gaussianity of random variable
s;. In this dissertation, the Kurtosis [29] is used for selecting the nonlinear activation

function, which is an appropriate measure for the degree of non-Gaussianity.
4
Kurtosis(s;) = —=—5 — 3 (2.29)

where

< 0, (if s; is a sub-Gaussianity. )
Kurtosis(s) § =0, (if s; is a Gaussianity.) (2.30)
> 0, (if s; is a super-Gaussianity.)

Figure 2.3 shows the family of Gaussian distributions. The thick line is super-
Gaussian distribution. The dotted-and-dashed line is Gaussian distribution. The dotted
line is sub-Gaussian distribution. Super-Gaussianity has a sharp peak and a long tail
distribution. On the other hand, sub-Gaussianity has a flat peak and a short tail

distribution. For whitened data F[s?] = 1, its Kurtosis is reduced to
Kurtosis(s;) = B[s{]~ 3 (2.31)
Kurtosis-has some useful properties as follows:
e Additivity, if x and y are two statistically independent random variables, then

Kurtosis(x + y) = Kurtosis(x) + Kurtosis(y)

e Scalar Productivity, for any scalar parameter «,

Kurtosis(ax) = o* Kurtosis(x)
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Probability density function: pdf

T T

— Super-gaussianity
07 — - Gaussianity
Sub-gaussianity

Figure 2.3: Gaussian family.

2.8 Blind Source Extraction

In the mixing and filtering of the blind source separation problem, unknown input
sources s;(t) (1 < j < n) may have different mathematical or physical models, which
depend on the nature of applications. For example, in this dissertation, input sources
are classified into positive, negative, and zero Kurtosis values. There are two main
approaches to separate the mixtures. The first approach is to separate all sources
simultaneously. ‘In the second approach, the sources are sequentially extracted one by
one or group by group [18]. The Kurtosis signs of the prewhitened signals as a cost

function to extract signals into two subgroups are used in our proposed solution.

2.9 Literature Reviews

Comon [19] proposed Independent Component Analysis: A new Concept? and approxi-
mated the source distribution by Edgeworth expansion of the mutual information which

consist of cumulants of increasing orders. Computational time of the ICA of a data
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matrix is within a polynomial time.

Amari et al. [2] proposed a novel learning algorithm for blind signal separation.
The proposed algorithm minimizes a statistical dependency amoung the outputs. In
the simulation, the number of sources are known but the source signals and the mixing
matrix are unknown. They used Gram-Charlier expansion for estimating the probability
density function of the sources. They derived an efficient learning rule which minimizes
the Mutual Information of the outputs using the natural gradiant descent. Finally,
they obtained a polynomial activation function ¢(y) of the 11** order for demixing the

sub-Gaussianity. The acivation function is rewritten below:

P PASBINIIN N7 . 29
ry o7 ISR ON, Nl = 92.32
f(y) T T AT ARV, (2.32)

Douglas et al. [21] presented two nonlinear activation functions for switching between

sub-Gassianity and super-Gaussianity as follows:

dsun(y) =y and  @gu(y) = tanh(10y) (2.33)

Douglas and Cichocki [22] proposed Neural Networks for Blind Decorrelation of Sig-
nals. They analyzed and extended a class of adaptive neural networks for second or-
der blind decorrelation of instantaneous signal mixtures. They used a locally-adaptive
multilayer decorrelation networks. Their simulations confirmed and pointed out the
usefulness of the locally-adaptive networks for decorrelating signals in both space and
time.

Karhunen et al. [33] presented A Class of Neural Networks for Independent Compo-
nent Analysis. They used an extension of principal component analysis for developing
an ICA learning algorithm. They proposed a multilayer feedforward neural network
for performing complete ICA. The proposed neural network provides good results from
the test examples for both artificial and real-world data. In 1998, Karhunen et al. [34]

proposed The nonlinear PCA criteria in blind source separation: Relation with other
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approaches. In this paper, they derived the nonlinear principal component analysis in
blind source separation appropriate for comparison with the other BSS or Independent
Component Analysis. The choice of the optimal nonlinearity was explained.

Chen, Amari and Lin [11] proposed a unified algorithm for principal and minor
components extraction using eigenvectors. This algorithm can extract true principal
components and true minor components. The proposed algorithm is of practical signif-
icance in neural network implementation. The algorithm is based on natural gradient
ascent/descent methods (a ponential flow in a Riemannian space).

Cichocki, Douglas and Amari [16] proposed Robust techniques for independent com-
ponent analysis (ICA) with noisy data. A recurrent dynamic neural network is intro-
duced for simultaneous unbiased estimation of unknown mixing matrix, blind source
separation and noise reduction in the extracted output signal. The shape parameters of
the nonlinearities are adjusted using gradient-based rules.

D.Charles [10] described Constrained PCA techniques for the identification of com-
mon factor data. An unsupervised learning network is presented that operates similarly
to Principal Factor Analysis. The network responds to the covariance of the input data.

Mansour and Jutten [42] used higher order statistics for solving the problem of blind
source separation. It was proved that the forth-order cross-cumulant is the simplest
criteria for separating the sources when the two sources have the same Kurtosis sign. If
not, they required a decorrelation as preprocessing.

Zarzoso et al. [59] proposed forth-order statistics estimator for blind source separa-
tion. Proposed estimator works well when the sources Kurtosis sum is zero. Heuristic
decision rule is used for choosing between the proposed estimator and an other estimator.

Bell and Sejnowski [7] derived a new self-organising learning algorithm which max-
imises the information transferred in a network of non-linear units. The algorithm did

not assume any knowledge of the input distributions. Successfully separating unknown
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mixtures is up to ten speakers. And they derived dependencies of information transfer
on time delays.

Te-Won Lee et al. [38] presented A Unifying Information-theoretic Framework for
Independent Component Analysis. They showed that different theories recently proposed
for Independent Component Analysis (ICA) lead to the same iterative learning algorithm
for blind separation of mixed independent sources. They also reviewed those theories
and suggested that information theory could be used to unify several lines of research.

In 1999, Te-Won Lee et al. [39] presented an extension of the Information Maximiza-
tion algorithm of Bell and Sejnowski [7]. Proposed extended infomax is able to blindly
separate mixed signal with sub-Gaussian and super-Gaussian source distributions. They
used a simple learning rule which was proposed in Girolami’s Ph.D. thesis. Bell and
Sejnowski [7] learning rule is optimized by natural gradient as in [2, 3]. They demon-
stated that the extended infomax algorithm is able to separate 20 sources with varity of
source distributions. They suggested ¢(y) = tanh(y) —y for sub-Gaussian distribution,
and ¢(y) = tanh(y)+y for super-Gaussian distribution, respectively. A simple learning

equation for separating the mixture of non-Gaussian distribution is expressed as follows:
W, =W, +n(I— Ktanh(y)y? —yy" )W, (2.34)

where K = diag[ki,. .., k" is a diagonal matrix of signs. If we know the distribution
of sources, then we can assign negative values for k; if the sources are sub-Gaussian dis-
tributed, and positive values if the sources are super-Gaussian distributed, respectively.
If the distribution of sources is unknown, the switching between the sub-Gaussian and

super-Gaussian learning rule is given by the following:
ki = sign(E[sech’|E[y?] — E[tanh(y;)y;]) (2.35)

Figure 2.4 shows an FExtended Infomax activation functions and their probability

density functions for both super-Gaussian and sub-Gaussian distributions.
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Lee et al.’s Probability Density Function (pdf)
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Figure 2.4: Lee et al.’s activation functions and their derivatives or their probability
density functions. The thick line is for super-Gaussianity. The dashed line is for sub-

Gaussianity.

Cardoso [8] presented Infomazr and Mazimum Likelihood for Blind Source Separation.
The proposed infomax algorithm is equivalent to maximum likelihood.

Hyvarinen [28] presented Independent Component Analysis in the presence of Gaus-
stan noise by mazrimizing joint likelthood. The noise in the presence is nonlinear. For
super-Gaussian data can be recovered by shrinkage operation and analyzed by compet-
itive learning. For sub-Gaussian components anti-competitive learning can be used.

Xu, Cheung, and Amari [57] described a Learned parametric mizture based ICA
algorithm. It is based on linear mixture and its separation capability is shown to be
superior to the original model with prefixed nonlinearity. Experiments with sub-, super-,
and combination Gaussians of sources confirm the applicability of the algorithms.

Cichocki at al. [18] explained the optimal nonlinear activation functions for the super-

Gaussian and sub-Gaussian distibutions. For example, the super-Gaussian source signals
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require the nonlinear function given by
¢i(y;) = tanh(a;y;) (2.36)

where a; = 1/ a;. For the sub-Gaussian source signals, they suggested the nonlinear
function ¢;(y;) = y®. It can be concluded that the Cichocki’s functions are the gen-
eralization of Douglas’s functions. Figure 2.5 shows the graphical shape of family of

super-Gaussian activation functions.

Super-Gaussian activation functions (cdf) Super-Gaussian Probability Density Function (pdf)
T T T T : T : J T T T T T T — a“;nh(zy)) 1
: — - d(tanh(4y))
r @ = & d(tanh(By))
v’
4 — gly)=tanh(2y)
0ly)=tanh(dy) i ]
= @y)=tanh(By)

-
T

.
a(tanh(ay))
©
:

Figure 2.5: (a) Family of Super-Gaussian activation functions and (b) their derivatives.



CHAPTER III

Proposed ICA Learning Methods

Four optimization techniques for Independent Component Analysis will be discussed,

studied, and summarized in this dissertation. They are rewritten as follows:

e Increasing learning speed-up.

Separation of mixed Kurtosis signed signals.

Finding some low complexity activation functions.

Proposing new learning methods using partial observations.

3.1 Increasing Learning Speed-up

We revise an important experimental result of Amari [2] and Haykin [26]. Our improve-
ment is based on these few observations of Amari’s and Haykin’s results. Firstly, only
a small fixed step of learning rate value can-make the separation of signals y converged
but a larger learning rate values in the range of 0.5 <1 < 0.9 causes output signals y
to diverge. Secondly, the convergence speed can be increased by gradually reducing the
learning rate until it is equal to zero. The learning rate may be initially set to any value.
Thirdly, the reduction of learning rate in the current iteration step is done by dividing
the learning rate from the previous iteration step, namely 7,1 = 7;/1.005. However, we
find that this simple approach works well when 0.1 < n < 0.5, but when 0.6 < n < 0.9

the convergence speed is reduced and more iterations are required.
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Instead of using a fixed divisor throughtout the learning period, we use different
divisors for different learning rates. The learning rate should be divided proportionally
to its value. If the learning rate is large then it should be divided by a large divisor.
In addition, at each iteration ¢, a momentum term AM and a momentum rate 3 are
added to adjust the weight W. Let W; be the weight W at iteration ¢ and AM, the
momentum term at iteration . The momentum term AM, is adjusted by using this rule
AM,; = BAW,. The stopping condition is defined in terms of the difference between
D(W,) at time ¢t and D(W,_y) at time ¢t — 1. Figure 3.1 shows the typical ICA batch

learning algorithm which we proposed in 2001 [12].

Algorithm: ICA Batch Learning
Input: Observed signals, x
Output: Recovered signals y
begin
Load all observed signals x
i=0;
while i < NumberOflterations
Randomly initialize weight matrix Wy
appropriate divisor = 1.0 + 10 2n
Compute y = Wx
Compute Kullback-Liebler Divergence D,,(W)

AMU =0
Set t =1
repeat

AW, = 5L+ f(y)y" )W i
Wi =W, + AW+ AM,
AM,; = SAW,

WY nt
Tl St appropriate divisor

Compute Kullback-Liebler Divergence D, (W)
until |[D(W,;) — D(W,_;)| <€
End While
end.

Figure 3.1: Standard ICA Batch learning algorithm.
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3.2 Blind Source Extraction

We start with the demixing of mixed Kurtosis sign sources. Simply, the sources in an ICA
problem are assumed to be identically and independently distributed, which are either
super-Gaussian or sub-Gaussian distributed. The super-Gaussianity has a positive Kur-
tosis sign. In contrast, the sub-Gaussianity has a negative Kurtosis sign. Details of the
distribution of sources were discussed in Section 2.7. For demixing the super-Gaussianity
using learning algorithms proposed in [2], an activation function ¢(y) = tanh(ay) is
used. On the other hand, an activation function ¢(y) = 3> is used for demixing the
sub-Gaussianity [18]. Some experimental results in [2], [12] and [13] confirmed that
sources could be recovered if they are identically distributed. On the other hand, when
the sources s; and s; have different Kurtosis signs, the learning algorithm in [2] cannot
recover the sources simultaneously. In [2], the authors used the Kullback-Leibler Diver-
gence: (D,,) between the joint probability density function, pxy(z,y), and the marginal
pdf, ¢x(x).qy(y), as a cost function. The relationship among them can be written as

follows:

+o0o
Pxy (T, y)
D :/ Pry(®,y) log —"""_dxdy (3.1)
i —00 . 4x(7)-qy (y)

The D), values are usually positive and will be zero when the joint pdf is equal to
the marginal pdf. In case of identical sources, it is easy to estimate an optimal marginal
pdf for the current joint pdf. For example, x and y are super-Gaussian distributed
which have a sharp peak and a long tail. The activations for x and y will support one
another. In contrast, it is more difficult to find the suitable distributions for py(x) and
py(y) when they are nonidentically distributed. For example, px(z) is super-Gaussian
distributed but gy(y) is sub-Gaussian distributed. The sub-Gaussian source is flatter
than the super-Gaussian source. Possibly, the mixed signals are Gaussian distributed.
If it is so, it is obvious that each mixed channel is independent from each other [30] and,

then, we cannot recover the sources from the mixtures. In order to solve this problem,
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we first extract an observed signal into subgroups via the Kurtosis signs of a prewhitened
observed signals.

The mixing and demixing processes of the unknown source signals s;(k),1 < i < n,
which may have distinguished mathematical or physical model [18] are our main concern.
The source distribution p(s) has been transformed to p(s) that depends on the mixing
matrix B. In other words, after the transformation with the mixing matrix B, the
Kurtosis sign of the source might be changed. In order to recover the Kurtosis sign of
the sources, we need a prewhitening step on the observed signals x(k). The proof on
the properties of the Kurtosis of source s; and prewhitened channel Z; will be described
as follows:

Let s; and s; be independently distributed,

FlssTEET, (3.2)
The Kurotosis of s; is described as:
E[sY]
kurt(s) = ———== —3 3.3
urt(s) El2) (3.3)

After the linear transformation with mixing matrix B, it will be

x = Bs (3.4)
or
z1 = by1s1 4 bi2se + bi3ss
To = by151 4 baasa + bazss
ry = b3181 + b3282 + b3383. (35)

Then, its Kurtosis may be changed to

kurt(x;) = b} kurt(s,) + bikurt(ss) (3.6)
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The prewhitening step will decorrelate the existing correlation between the observed

channels.
X =7x =17Bs (3.7)
where
2R DS (3.8)
1
& AN
DY/? = NN .
0 = 0 | (3.9)
1
00
and
Uﬁam V21 U31
VT = V12 V29 U?r)réa:v (310)
V13 UQ?),M U33

The product of minimum values, vyo, v13, Va1, U9, v31 and v33, can be discarded. Hence,

we approximately obtain:

TV P zy 0 10
Z =~ 0 0 % =10 0 2z (3.11)
0d 542 N0 0 2 0
Then Z is orthogonal matrix. After the de-transformation with Z, we obtain:
Ty z11b1181
Ty - 23209252 (3.12)

T3 293b3353
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Then the Kurtosis of z; is

Kurtosis(Zy) 2t bt Kurtosis(sy)
Kurtosis(Zz) | = | 23,05 Kurtosis(ss) | - (3.13)
Kurtosis(i3) 233043 Kurtosis(ss)

It means that each component #; and Z; are decorrelated or mutually independent
after the prewhitening transformation. In other words, the Kurtosis sign of each source
is recovered after the prewhitening step. The blind source extraction approach has
been used for separating the source signals. The prewhitened signals are classified into
2 sub-groups, which are the positive and the negative Kurtosis signed signals. Then,
the super-Gaussian source separation is performed. In this stage, the positive Kurtosis
signed signals are selected. Next, the negative Kurtosis signed signals are consequently
fed into the previous separating procedure. Figure 3.2 shows the diagram of our proposed

learning procedure.

Blind sourc
extraction legfning

. demixed by/ | _
Kkl W /LY kgt
(super-ga smn\ "
3 demixt .
S(K) e by X(K) e 1 XK ok emixyire) combine Y

B whitenning segmentation

/ output

inherit W for next subblock

Figure 3.2: Blind source extraction.
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3.3 Activation Functions for Mixed Kurtosis Sign Sources

Third, as described above, the activation functions for demixing super-Gaussianity and
sub-Gaussianity are ¢(y;) = tanh(oyy;) and ¢(y;) = y3, respectively, where 1 < i < n.

Two weak points of both functions are listed below:

e They are of high order complexity which requires a high computational time per

instruction.

e They are difficult to implement on the circuit level.

In order to obtain the low computational cost activation functions, some quadratic
approximation activation functions for separating the super-Gaussian and sub-Gaussian
channels are proposed. In the next two subsections, the low computational functions
for demixing of the super-Gaussian and sub-Gaussian source signals will be presented.

The proposed functions are the quadratic function.

3.3.1 Low Computational Function for Super-Gaussianity

In 1992, Kwan [36] presented the KTLF (Kwan Tanh-Like activation Function), which
is the 2" order function. This function is an approximation of tanh(2y) function. He
divided the approximation curve into three regions, which are the upper bound y > L,
the nonlinear logistic tanh-like area —L < y < L, and the lower bound y < —L. All

regions are described below:

1, (y > L)
Y (y — fY), < L
sy = | FO-0D 0y <D) -
T(y+0%), (-L<y<0)
L _17 (y < _L)

The shape of KTLF curve is controlled by v = 2/L and # = 1/L?. The approximation

function given in equation (3.14) corresponds to the tanh(2y) function. Consequently,
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the term & is needed for controlling y, and we also suggest L = 1. Then, the modified

equation mKTLF can be rewritten as follows:

;

L, (y > 1)
d)(y) _ 4 Y(2 - Y)a (0 < y < 1) (315)
y2+y), (-1<y<0)
’ =1, (y < _1)

where a; = 1/ agi_ is an upper-peak of the derivative of the activation function and ¢; =
=% The bigger a value it is, the lower distribution it has. In other words, the channel
has a sharper peak than the other’s. Figure 3.3 shows tanh(ay), its approximation (the
dash line) and their derivatives. From the figure we can conclude that the fraction § is

fitted for all tanh(ay).

Super-Gaussian activation functions (cdf) Super-Gaussian Probability Density Function: pdf
T T T T

— 9y)=tanh(2y) — dtanh(2y)
9y)=mKTLF(2y) 0 mKTLF(2y)

Figure 3.3: (a) The ¢(y) = tanh(2y) activation function and its approximation from

equation (3.16). (b) Their derivatives.
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Rearrange the term y(2 Fy) in equation (3.15), we obtain then:

(1, y>1)
o(y) = 4 t-i-yn, O<y<) (3.16)
—14+(1+y9)?% (-1<y<0)
_1’ (y < _1)

\

3.3.2 Low Computational Function for Sub-Gaussianity

In this subsection, a new 2"¢ order approximation of ¢(y) = y'' [2] and ¢(y) = y*
[21, 18] are proposed. Given the graphical representation of the sub-Gaussian activation
functions illustrated in Figure 3.4, it can be seen that the sub-Gaussian activation
functions can be separated into two regions: the positive and the negative regions. For
demixing the sub-Gaussian distribution, we propose the bisection paraboloid function
given in equation (3.17), which is a good approximation for the previously reported

functions in the literatures [13, 14].

oly) = _— (3.17)
_y27 (y < 0)

Figure 3.4 shows sub-Gaussian activation function in the literature [2, 21] and the

bisection paraboeloid function given-in equation (3:17):

3.4 Considerations on the Online Learning Subblock Size

In current batch mode learning [26], all incoming data signal must be retained and
used during the computation. This process is inappropriate and infeasible if the blind
separation must be used for online applications and must be implemented on the VLSI

circuit level due to the following constaints:

e amount of computer memory
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Sub-Gaussian activation functions Sub-Gaussian Probability Density Function: pdf

— a(Arlnari Fn)
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Figure 3.4: (a) Graphical representation of an activation function of 11%*, 3¢ and 2™

order activation function. (b) Their derivatives.
e the number of CPU time computation

e high computational complexity

Moreover, the recovered results for batch or online learning method will be produced
after the learning system reaches the saturated region or the local minimum. The
proposed solutions to the learning methods which reduce the usage of computer memory,
CPU time computation, computational complexity, and can be used in online real world
learning systems will be proposed.

The ICA problem is a multi-dimensional data analysis problem as Principal Com-
ponent Analysis (PCA). Each source has its own properties and characteristics such
as Kurtosis sign and value, variance and waveform or shape, etc. After the mixture

stage, signal characteristics will be changed. For example, its Kurtosis will change from

2

negative sign to positive sign. A variance will change from afi to o, after the mixture.

Precisely, ICA algorithm task is to recover the properties of each channel.
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In this subsection, we describe an online subblock ICA learning algorithm. We used
an unsupervised multi-layer feed forward neural network for demixing the non-Gaussian
channels. Our learning method is a combination of the online and the batch learning
techniques. First, unknown or observed signals x; are fed into the input layer, where
1 < j < m. Second, the signals are, then, passed to the prewhitening step via PCA
layer. The results from this stage are whitened. Third, the prewhitened signals are
separated into subblocks size k. x;(ko : ko + k), where kg is the starting index of the
subblock. And the Mutual Information learning method, detailed in Section 2.6, is used.
The output signals y;(ko : ko + k) are produced by y;(ko : ko + k) = Wa;(ko : ko + k),
where W is called the demixing matrix. If the output channels y;(kq : ko + k) depend on
each other, the natural gradient descent in equation (2.28) updates the demixing matrix
W and produced the output signals v, (ko : ko + k) until they become independent.

Figure 3.5 shows an algorithm for finding the partial observation length. In this sub-
section, we describe an algorithm for finding the partial observation length. As described
in Section 3.3, the source distribution functions not only have their own characteristics,
but also their own principal directions. After the prewhitening step, the observed sig-
nals become whitened, E[x(k)x(k)T] = E[s(k)s(k)T] = I. Then, we found a significant
point that, for each row i’ of eigenvector matrix V, one of them will be maximized.
The maximal value ||v;;]| , (1 < j < n) guides the principal direction of each component.
This criterion is used for estimating an optimal subblock length. In the simulation, we
require an eigenvector ||v;;|| &~ 1 for each principal direction. The optimal value for the
subblock length obtained is k¥ = 4096. The subblock size is based on four benchmark
sources accessible at http://speech.kaist.ac.kr/“jangbal /ch1bss. Next, an ICA based on
the MI algorithm [2] performs a separating process on a coming subblock. Figure 3.6 dis-
plays an ICA online subblock learning method. This algorithm will repeatedly calculate

the demixing matrix W until the D,, (W) approaches zero.
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Algorithm: Find Subblock Length
Aim: To find an optimal subblock length for ICA learning.
Input: Observed signals: x.
Output: Optimal subblock length: k.
Begin
Start with ¢ = 2;
k = power(2, i);
Repeat
xSubblock = LoadSubblock(%);
xPre = prewhitening(xSubblock);
V' = eigenvector(cov(xPre));
1=1+1;
k = power(2, i);
until argmazx ||v;|| is reached

End

Figure 3.5: Algorithm for finding an optimal subblock size, k.

Figure 3.6 shows an ICA subblock learning algorithm. This algorithm is derived
from the algorithm presented in Figure 3.1. It can be seen that the algorithm produces
the recovered signal y(ko : ko + k) in every r iterations. In contrast, the typical batch
and online learning will produce output after the demixing weight reaches the saturated
region. Hence, practically, our proposed learning method produced the result faster
than the typical batch learning. The result of computer simulation based on CPU time
usage is shown in Section 4.2. Theoretically, the increase of speed in obtaining results

for the online subblock method is proved in the following theorem.

Theorem 1. ICA online subblock learning is of lower computational complexity than

the batch learning.

Proof Let us consider that K is the total time index of the signal and & is the time
index number for each subblock, where £ < K. The learning equation (2.28) can be

rewritten as follows:
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Algorithm : ICA Subblock Learning
Aim: Separate an observed signal
Input : 1. Prewhitened observed signal: x.
2. Optimal subblock size: k
3. Initial demixing matrix: W
Output: recovered signal: y
Begin
noBlock = size(xPre) / k;
for r:=1 to noBlock
x = LoadSubblock(k);
D(W) = Kullback(x, W);

AM = 0;
do
y = WH*x:

AW = (I - (y)y")W;
W =W + AW + AM;
AM = 3 x AW;
D(W) = Kullback(x, W);

while (D(W) > 0)

ypth = W % X;

endfor
End

Figure 3.6: Algorithm for calculating the demixing matrix W for online subblock learn-
ing.

Wip =W, + [l = ¢(y)y"TW, + BAW, (3.18)

T
)

The computational complexity of equation (3.18) depends on the correlation ¢(y)y
where y7'is a transpose of y. For the batch learning method with time index K, the
complexity of equation (3.18) is of O(K?)

On the other hand, for the online subblock learning method, we have % subblocks.
The computational complexity of equation (3.18) is of £O(k?) = O(K.k?). It is obvious
that O(K.k?) < O(K?), where k < K. Hence, the ICA online subblock learning is of

lower computational complexity than the batch learning method. O



CHAPTER IV

Experimental Results

The following four essential points will be addressed in our experiments, which are:

Increasing learning speed up.

Separation of mixed Kurtosis signed signals.

Finding some low complexity activation functions.

Proposing new learning methods using partial observations.

4.1 Results on Increasing Learning Speed-Up

We simulate our algorithm on the computer using three synthetic signals, a random mix-
ing matrix B, and a initial random de-mixing matrix W. Each signal contains 2500 data
points. The stopping condition is defined in terms of the difference between D,,(W;) at
time ¢ and D,,(W;_1) at time £—1. The convergent test is set as AD,, (W) < 0.000001.
We simulate five iterations for-each step with the learning rate values of 0.1 <7 < 0.9

and step size of 0.1.

L.s1(t) = 0.1sin(400¢) cos(30t)
2.55(t) = 0.01sign[sin(500t 4 9 cos(40t))] (4.1)
3.s3(t) = uniform noise in range [-1,1]

Our improvement is based on these few observations of Amari [2] and Haykin [26]

results. Firstly, only a small fixed step of learning rate value can make the separation
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of signals y to converge but a larger learning rate values in the range of 0.5 <7 < 0.9
cause output signals y to diverge. Secondly, the convergence speed can be increased
by gradually reducing the learning rate until it is equal to zero. The learning rate
may be initially set to any value. Thirdly, the reduction of learning rate in the current
iteration step is done by dividing the learning rate from the previous iteration step,
namely 7,47 = 1;/1.005. However, we find that this simple approach works well when
0.1 < n < 0.5, but when 0.6 < 5 < 0.9 the convergence speed is reduced and more
iterations are required. Instead of using a fixed divisor throughtout the learning period,
we use different divisors for different learning rates. The learning rate should be divided
proportionally to its value. If the learning rate is large then it should be divided by a
large divisor. In addition, at each iteration #, a momentum term AM and a momentum
rate 3 are added to adjust the weight W. Let W, be the weight at iteration ¢ and AM,
the momentum term at iteration . The momentum term AM, is adjusted by using
this rule AM; = SAW,_; as reported in [12]. We use an activation function defined in
equation (2.32) [2]. Five types of examples are provided to measure the efficiency of the

algorithm.

1. Fixed learning rate value: 0.1 <71 < 0.9

2. Approach Learning rate to 0 by n; =,y /1.005

nt—1

T4 010~ and 0.01 momentum rate.

3. Approach Learning rate to 0 by n, =

4. Approach Learning rate to 0 by n, = and 0.10 momentum rate.

Nt—1
1.04+n10—2

5. Approach Learning rate to 0 by 7, = mfﬂﬁ and 0.20 momentum rate.

Figure 4.1 shows three original signals s;(t), observation signals z;(¢) = Z?,j:l bjisi(t)
and recovered signals y;(t) = Z?,j:l w;;x;(t) on the 15, 2" and 3" column, respectively.
The recovered signals were permuted and rescaled. For example, input signals s;(t), s (%)

and s3(t) were recovered on the y3(t), y1(t) and yo(t), respectively.
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Input Signal : S Observation Signal: X = AS Ourput signal : Y = WX
0.1 0.4 0.1
0.05 02 0.05
0 0 0
-0.05 -0.2 -0.05
T 450 500 oo 450 500 oo 450 500
0.01 1 0.2
0.005 05 0.1
0 0 0 WWU\
-0.005 -05 ~0.1
0000 450 500 400 450 500 oo 450 500
1 1 0.2
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-05 fis -0.1
“hoo 450 500 400 450 500 400 450 500

Figure 4.1: Successful separation of ICA Examples.

The comparison on the number of epochs of all experiments are illustrated in Figure
4.2. The dashed-and-dotted line is for fixed step of learning rate value 7.1 = n;.
The thick-and-marked line is for varied step of learning rate value 7,1 = 1,/1.005.
The dotted line is for varied step of learning rate value with momentum term n;,; =
n:/1.0 + 11072 3 = 0.01. The thick line is for varied step of learning rate value with
momentum term ;. = 1;/1.04+71072, 3 = 0.10. The thick-and-dotted line is for varied
step of learning rate value with momentum term 7., = 1;/1.0 + 1072, 3 = 0.20. The
dashed-and-dotted line shows that only a small fixed step of learning rate value can make
the separation of signals y to converge but a larger learning rate values in the range of
0.5 < n < 0.9 cause output signals y to diverge. The reduction of learning rate in the
current iteration step, done by dividing the learning rate from the previous iteration
step, can make the separation y converged for all learning rate values. However, we find
that this simple approach works well when 0.1 < n < 0.5, but when 0.6 < 7 < 0.9 the
convergence speed is reduced and more iterations are required. Instead of using a fixed

divisor throughtout the learning period, we use different divisors for different learning
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rates. The learning rate should be divided proportionally to its value. If the learning
rate is large then it should be divided by a large divisor. In addition, the difference of

the momentum rate can make the separation y converge at different speed.

Put all result together
1000

900 - /

800 - A

700 - I

600 -

500 !

Epoch Value

400+ I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning Rate

Figure 4.2: Comparison experimental results. Five types of lines are used to denote
the results. The dashed-and-dotted line is for fixed 7. The thick-and-marked line is for
n = n/1.005. The dotted line is for n = /1.0 + 1072, 8 = 0.01. The thick line is for

n=mn/1.0+n1072, 3 = 0.10. The thick-and-dotted line is for n = 1/1.0+11072, 3 = 0.20.

4.2 Results on Low Computation Complexity

Learning Methods

4.2.1 Initial Conditions and Learning Criteria

A mixing matrix B is randomly generated. As presented in [12], we initialized the
learning rate value 7 = 0.05 and the momentum rate value 3;,; = 0.17;. At each learning
iteration, the learning rate was decreased by 1.0005 (n41 = 7;41/1.0 + 71072). An

initial demixing matrix Wy, is set as the eigenvector of the prewhitened signals, detailed
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in Section 3.2. For improving the learning performance, we exploit the relationship
between two consecutive online subblocks. The final demixing matrix W of the 7
subblock is set to the initial demixing matrix of the (r + 1) subblock. The weight
inheritance will maintain the output channel. The simulations are run on Pentium 4
with CPU speed of 2.4 GHz.

The simulations for both uni-distributed and multi-distributed mixtures are per-
formed. The uni-distributed mixture simulation performs the demixing algorithm on
only one source distribution, which is either super-Gaussian or sub-Gaussian distribu-
tion. On the other hand, the multi-distributed mixture performs the demixing procedure
on the mixed Kurtosis sign sources. The source signals are possibly super-Gaussian and
sub-Gaussian distribution. In this kind of mixtures, the sequential source separation, or
blind source extraction, is used.

In this experiment, the source signals are uni-distributed. The super-Guassian data
sets consist of four sound sources taken from http://speech.kaist.ac.kr/ jangbal /ch1bss.
For sub-Gaussianity, we simulated our algorithm using the following three synthetic

signals:

s1(t) = 0.1sin(400t) cos(30t)
sy (t) = 0.01sign[sin(500¢ + 9cos(40t))] (4.2)

s3(t)" =uniform noise in range [-0.05,0.05]

Each channel contains 46,560 data points.. The online subblock size for both distri-
butions were found to be 4,096 data points. It is known that all activation functions in
Section 3.3 can recover the source signals from the observed signals, but the recovered

signals will be permuted and scaled over the output channels [18].
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4.2.2 Performance Correlation Index

The performance index between the demixing matrix W and the mixing matrix B [2]

is adopted and its equation is rewritten as below:

SO R By S R

=1 j=1 ]111ma$k|pk]|

where P = WB. In practice, the separating equation (2.28) is mainly significant with
respect to the cross correlation between the activation function of the output ¢(y) and
the output y?. It can be observed that the cross correlation gradually becomes an
identity matrix during the learning iterations. It means that the recovered signals y;
and y; are getting more and more independent from each other after each learning
iteration. Then, the performance index from equation (4.3) can be replaced with the

following performance correlation index:
(S il s

PCI = ;(; max;f|0ik| ~1)+ ;(; mam:|6kj| —1) (4.4)

The matrix C = ¢(y)y? is close to the identity matrix when the recovered signals y; and
y; are mutually uncorrelated or linearly independent. Obviously, the performance corre-

lation index approaches zero when the recovered signals; 7; and y;, become independent,

which is similar to the properties of the Kullback-Leibler divergence.

4.2.3  Similarity Measure

Similarity measure is used for evaluating the difference of the waveforms between the
source vector and its corresponding recovered vector. The Scalar Product or Dot Product
between the source s and the recovered signal y is used. Assume s is the source signal,
and y is the recovered source signal. s and y have the same distribution and their dot

product or cosine is defined as follows:

s.y = [Isl[ lyll cos(6) (4.5)
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or

. S.y
0s0) = 5T (4.6)

Vectors s and y are similar when its cos(f) approaches one.

Experiment 1: Uni-distributed Mixtures

Figure 4.3 and 4.4 show the source, the mixed, and the recovered signals for super-
Gaussianity and sub-Gaussianity, respectively, which have been produced using our
activation functions described in Sections 3.3.1 and 3.3.2, respectively. The order of the
recovered signals were manually rearranged so that each recovered signal corresponds

to the similar original signal.

Original Signals: s Observed Signals: x Recovered Signals: y
0.2
2.
0.05 0.1 1
% 0 0 S o
-0.05 =0.1 -1
=)=y -2
50 100 150 200 0 100 200 50 100 150 200
0.1
0.01 1
0.05
. 0.5
DY 0 S o
-0.01f -0.05 -0.5
= i
—-0.02 -0.1
50 100 150 200 0 100 200 50 100 150 200
x107°
0.1 2
4]
2 0.05 1
2 oflf 0 @0
|
-2 i -0.05 1 |
-4
-0.1 -2
50 100 150 200 (0] 100 200 50 100 150 200

Figure 4.3: The source, the mixed and the recovered signals for sub-Gaussianity.

Figure 4.5 shows the source, the mixed and the recovered signals for super-Gaussianity,
which have been produced using the online subblock learning method and our activation
functions described in Section 3.3.1. Figures 4.5(a), (b) and (c) are the results from
the first subblock (1 < ¢ < 4096), the seventh subblock (24577 < ¢ < 28672) and the

eleventh subblock (40961 < ¢ < 45056), respectively.
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Original Signals: s Observed Signals: x Recovered Signals: y

Figure 4.4: The source, the mixed and the recovered signals for super-Gaussianity.

In this experiment, the Kurtosis value is not considered because after the linear
transformation in equation (1.2), the Kurtosis sign of the source s; will not be changed
if the mixing matrix B is unbiased. The similarity measure in this dissertation is the
cos(f) between the source signal s; and its recovered signal y;, which is given in Tables
4.1, 4.2 and 4.3. For the super-Gaussian source signals, all of the algorithms in Section
3.3 are based on the hyperbolic-Cauchy distribution (tanh(4y)). In this simulation, the
learning parameter «; = 4 is suitable for the demixing of the super-Gaussian source
signals.

Tables 4.1, 4.2 and 4.3 show the recovered signals from our proposed algorithm (LF-
ICA) which are similar to the results obtained from using other-activation functions.
For some recovered channels, in both super-Gaussian and sub-Gaussian distributions,
our proposed learning method produces better results than the others’. Moreover, our
proposed learning method is of lower computational complexity and easy for hardware
implementation. It means that our proposed algorithm is applicable to real-world prob-

lems.
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Figure 4.5: The source, the mixed and the recovered online subblock signals for super-
Gaussianity. (a) The first subblock. (b) The seventh subblock. (c) The eleventh

subblock.

Tables 4.4-and 4.5 show the CPU time usage for both the online subblock learning
and the batch learning methods. We simulated all functions from the literatures [18, 39],
including our proposed activation functions [13]. For example, considering our proposed
function for demixing super-Gaussian channels in Table 4.4, the total CPU time usage for
an online subblock learning is 190.2830 seconds. The first output subblock is produced
after the learning procedure is run on CPU 34.6500 seconds. Then, in 28.2100 second,

the next output subblock is produced, and so forth. For batch mode learning, data sets
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Table 4.1: The Similarity Measure using Cichocki’s function for an online subblock

learning and batch learning methods based on uni-distributed mixtures.

Learning | Subblock Sources
Methods Number sup1 sup2 sups Sup4 suby suba subs
1 -1.0000 | 1.0000 | -0.9986 | -0.9997 | 0.9966 | 0.9998 | 1.0000
Online 2 -1.0000 | 0.9999 | -0.9964 | -1.0000 | 0.9978 | 0.9996 | 0.9998
Subblock 3 -0.9999 | 1.0000 | -0.9999 | -0.9994 | 0.9986 | 0.9994 | 1.0000
Method 4 -1.0000 | 1.0000 [ -0.9993 | -0.9999 | 0.9999 | 0.9996 | 0.9999
5 -1.0000 | 1.0000 | -0.9996 | -0.9996 | 0.9999 | 0.9994 | 0.9999
6 -0.9997 | 1.0000 | -0.9998 | -0.9987 | 0.9978 | 0.9991 | 0.9999
7 -1.0000 | 1.0000 [ -0.9999 | -0.9988 | 0.9926 | 0.9986 | 0.9999
8 -1.0000 | 0.9998 | -0.9995 | -0.9997 | 0.9885 | 0.9991 | 1.0000
9 -1.0000 | 1.0000 | -0.9984 | -0.9989 | 0.9834 | 0.9996 | 0.9999
10 -1.0000 | 0.9999 | -0.9999 | -0.9997 | 0.9846 | 0.9998 | 1.0000
11 -0.9999 | 0.9998 | -0.9996 | -0.9998 | 0.9855 | 1.0000 | 1.0000
Batch Method -1.0000 | 1.0000 | -0.9999 | -1.0000 | 0.9978 | 0.9996 | 0.9999

in this simulation require 201.4500 seconds of CPU time, which is greater than the total
CPU time of an online subblock learning method. Not only the online subblock learning
method requires lower CPU time for demixing super-Gaussianity, but also it is of lower

CPU time for separating sub-Gaussianity, as shown in Table 4.5.

Experiment 2: multi-distributed Mixtures

In this experiment, the source signals are mixtures between super-Gaussian and sub-
Gaussian distributions. The super-guassian data sets consist of four sound sources taken
from http://speech.kaist.ac.kr/ jangbal/chlbss. For sub-Gaussianity, we simulated our
algorithm using the three synthetic signals given in Section 4.2.3. Each channel con-
tained 46,560 data points. Similar to the previous section, the optimal result is obtained
when the subblock size is greater than or equal to 4,096 data points. In this simulation,
the blind source extraction method was first used in the learning methodology. It can

be observed that the blind source extraction method converges to the local minimum
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Table 4.2: The Similarity Measure using Extended Infomax function for an online sub-

block learning and batch learning methods based on uni-distributed mixtures.

Learning | Subblock Sources
Methods Number sup1 sup2 sups Sup4 suby suba subs
1 -0.9999 | 1.0000 | -0.9983 | -0.9997 | 0.9959 | 0.9998 | 0.9999
Online 2 -0.9999 | 0.9999 | -0.9978 | -0.9995 | 0.9970 | 0.9995 | 0.9997
Subblock 3 -0.9999 | 1.0000 | -0.9999 | -0.9995 | 0.9980 | 0.9991 | 1.0000
Method 4 -0.9999 | 1.0000 | -0.9999 | -0.9999 | 1.0000 | 0.9993 | 0.9998
5 -1.0000 | 0.9999 [ -0.9999 | -0.9999 | 0.9998 | 0.9989 | 0.9999
6 -1.0000 | 1.0000 | -0.9999 | -0.9993 | 0.9974 | 0.9983 | 0.9998
7 -1.0000 | 0.9999 | -0.9999 | -0.9995 | 0.9927 | 0.9978 | 0.9998
8 -0.9999 | 0.9998 | -0.9998 | -0.9999 | 0.9880 | 0.9985 | 0.9999
9 -1.0000 | 1.0000 | -0.9985 | -0.9994 | 0.9799 | 0.9991 | 0.9999
10 -0.9999 | 0.9998 [ -0.9998 | -0.9998 | 0.9815 | 0.9995 | 1.0000
11 -1.0000 | 0.9999 | -0.9998 | -0.9999 | 0.9824 | 0.9999 | 1.0000
Batch Method -1.0000 | 1.0000 | -0.9995 | -0.9992 | 0.9971 | 0.9992 | 0.9997

better than the parallel blind source separation if the non-identically and independently
distributed sources are mixed.

As known from the previous simulation, the optimal hyperbolic-Cauchy function for
separating the observed signals in this paper is ¢;(y;) = tanh(4y;). Hence, the results
in this simulation are based on the Cichocki [18], and Fztended Infomax [39] functions,
and our low computational functions (LF-ICA)[13] with respect to tanh(4y;). Similar
to the experiment on the uni-distributed mixtures; all activation functions from Section
3.3 are able to recover the source signals from the observed signals. Figure 4.6 shows
the source, the mixed, and the recovered signals using the activation functions described
in Sections 3.3.1 and 3.3.2. The signals s; to s, are super-Gaussian distributions. The
remaining signals are sub-Gaussian distributions.

Table 4.6 shows the similarity measure between the sources and the recovered sig-

nals when two source distributions are mixed. Table 4.7 shows the Kurtosis of the
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Table 4.3: The Similarity Measure using LF-ICA function for an online subblock learn-

ing and batch learning methods based on uni-distributed mixtures.

Learning | Subblock Sources
Methods Number sup1 sup2 sups Sup4 suby suba subs
1 -1.0000 | 1.0000 | -0.9987 | -0.9996 | 0.9956 | 0.9997 | 0.9999
Online 2 -1.0000 | 0.9999 | -0.9970 | -0.9999 | 0.9961 | 0.9995 | 0.9999
Subblock 3 -0.9999 | 1.0000 | -0.9999 | -0.9995 | 0.9975 | 0.9990 | 1.0000
Method 4 -1.0000 | 1.0000 | -0.9937 | -0.9962 | 0.9998 | 0.9992 | 0.9999
5 -1.0000 | 1.0000 | -0.9997 | -0.9995 | 1.0000 | 0.9988 | 0.9999
6 -0.9997 | 1.0000 | -0.9997 | -0.9987 | 0.9983 | 0.9982 | 0.9999
7 -1.0000 | 1.0000 | -0.9999 | -0.9988 | 0.9942 | 0.9975 | 0.9999
8 -1.0000 | 0.9998 | -0.9996 | -0.9996 | 0.9895 | 0.9982 | 1.0000
9 -1.0000 | 1.0000 [ -0.9986 | -0.9988 | 0.9821 | 0.9990 | 0.9999
10 -1.0000 | 1.0000 [ -0.9999 | -0.9996 | 0.9826 | 0.9995 | 1.0000
11 -0.9999 | 0.9998 | -0.9993 | -0.9998 | 0.9829 | 0.9999 | 1.0000
Batch Method -1.0000 | 1.0000 | -0.9999 | -1.0000 | 0.9979 | 0.9990 | 0.9999

seven source signals, observed signals, prewhitened observed signals and recovered sig-
nals which produced by the Cichocki’s function [18], Frtended Infomax function [39],
and our low complexity functions [13]. Before the linear transformation done by the
mixing matrix B, the super-Gaussian and the sub-Gaussian source signals have posi-
tive and negative Kurtosis values. After the linear transformation, they become pos-
itive Kurtosis values, as shown in column 3. After decorrelation process, x(k) =
diag(ﬁ, . ﬁ)fo(k), the Kurtosis sign of each channel is recovered. Then, we
can extract the prewhitened signals into two subgroups which are the positive and the
negative Kurtosis signs. Next, the positive Kurtosis signed channels are fed into an
online subblock learning method which were proposed in Section 3.4. After all on-
line subblock of positive Kurtosis signs are performed, the negative Kurtosis signed

channels are fed into the separating networks. The simulation results confirm that the

prewhitened Kurtosis signed channel is similar to the recovered Kurtosis signed channel.
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Table 4.4: The CPU time usage for online subblock learning and batch learning methods

for super-Gaussianity.

Learning subblock CPU time usage (sec)
Methods number Cichocki | Infomax | LF-ICA
Online 1 40.1680 28.8310 34.6500
subblock 2 32.2660 10.8360 28.2100
learning 3 16.1730 9.2940 14.2700
4 13.7300 4.7370 13.1790
5 13.5500 6.1390 12.3880
6 13.7690 5.2980 12.6280
7 18.4570 6.3990 16.1030
8 13.4790 6.4690 13.5290
9 20.7300 7.8620 19.0780
10 15.1210 12.2970 13.9600
" 13.6990 6.8500 12.2880
Total for Ounline learning | 211.1420 | 105.0120 190.2830
Batch learning 224.3320 | 511.3150 | 201.4500

Obviously, if the source and its corresponding recovered channel have the same Kurtosis
sign, then, they are similarly distributed.

Figure 4.7 shows the number of iterations (epochs) per each coming online subblock.
The first 11 subblocks are the epochs for demixing positive Kurtosis signs. The re-
maining subblocks are for demixing negative Kurtosis signs.-Normally, a natural sound
signal is super-Gaussian distributed. As known, the natural sound is composed of mul-
tiples of frequency Fy. . The components for the super-Gaussian distribution are more
complicated than for sub-Gaussian distribution. Hence, the super-Gaussianity is more
computational intensive than the sub-Gaussianity, both in terms of epochs and CPU
time usage. Considering the Cichocki function and the LF-ICA function for positive
Kurtosis sign separation, our proposed function requires higher number of epochs than
the Cichocki function, see Figure 4.7. But our proposed function is of lower CPU time

than the Cichocki function, see the first 11 subblocks in Figure 4.8. An Fxtended Infomaz
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Table 4.5: The CPU time usage for online subblock learning and batch learning methods

for sub-Gaussianity.

Learning subblock CPU time usage (sec)
Methods number Cichocki | Infomax | LF-ICA
Online 1 1.1620 3.5850 2.4640
subblock 2 0.7410 1.0210 1.3510
learning 3 0.5710 1.8230 0.9910
4 0.5310 1.4320 1.1620
5 0.4600 1.4720 0.7810
6 0.6510 1.9120 1.2020
7 0.7010 2.4940 1.2420
8 0.5810 1.0110 0.9910
9 0.5500 1.4820 1.0610
10 0.3500 1.0620 0.6610
11 0.5210 1.1620 0.9120
Total for Online learning 6.8190 18.4560 12.8180
Batch learning 24.5560 22.3220 18.7470

function is of the lowest computational complexity for demixing positive Kurtosis signed
channels. But the performance correlation index in Figure 4.9 shows that the correlation
index values from an Frtended Infomazx function will not approach zero. It means that
their results, y; and y;, are much more correlated among the recovered channels than the
other two functions. In-contrast, for demixing sub-Gaussianity, all functions produce low
correlated recovered channels because the component of the sub-gaussianity is of lower
complexity. For example, s;(¢) = 0.1 sin(400¢)cos(30t) from equation (4.2) is composed
of Fy = 400 and Fy = 30 Hz. Hence, the sub-Gaussianity requires fewer separating
time operation than the super-Gaussianity. In this case, the Eztended Infomaz function
requires much more computational complexity than Cichocki and LF-ICA functions.
Figure 4.9 and 4.10 illustrate the performance correlation index, during the learning
process, using our activation functions described in Sections 3.3.1 and 3.3.2, and the

existing activation functions for the non-Gaussian mixtures from Section 2.9. Figure 4.9
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Figure 4.6: The source, the mixed and the recovered signals of the sub-Gaussian and

super-Gaussian distributions.

corresponds to the mixture of super-Gaussian signals and Figure 4.10 corresponds to
the mixture of sub-Gaussian distributions. Three types of lines are used to denote the
performance correlation index results. The thick line is for the Cichocki’s function [18].
The dotted line is for an Eztended Infomaxz function, presented by Lee et al [39]. The
dashed line is for LF-ICA [13]. Each-graphical line for super-Gaussian separation from
Figure 4.9 has 11 peaks, which is the same number as the number of the online subblocks.
For each learning subblock, the performance correlation index approaches zero when the
output signals y; and y; become independent. The next subblock will be fed into the
blind separating stage, after the output signals in the current subblock become mutually
independent. The performance correlation index is obviously increased in the first epoch
for every new subblock. Considering the mutual independent degree among the three

methods used in our simulation, it can be concluded that the Cichocki’s function [18]
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Table 4.6: The Similarity Measure using Cichocki, Ertended Infomaz and our low com-

putational function LF-ICA for multi-distributed mixtures.

Online Subblock Learning Batch Learning

types | Cichocki | Infomax | LF-ICA | Cichocki | Infomax | LF-ICA

Sup 0.8841 -0.9423 -0.9733 -0.9996 0.9967 -0.9996
Supa -0.9989 -0.9482 -0.9454 -0.9995 0.9968 -0.9995
Sups -0.9579 0.9667 0.9532 0.9998 0.9996 0.9998
Supa -0.9396 0.9413 0.9190 0.9998 -0.9996 -0.9997
Suby 0.9927 -0.9913 -0.9921 0.9933 -0.9868 -0.9904

Subs -0.9993 -0.9988 -0.9988 -0.9960 -0.9906 -0.9936

Subz 0.9999 -0.9996 -0.9997 0.9999 0.9998 0.9998

and the LF-ICA [13] have higher degree of independence than the Eztended Infomaz

function [39].

4.3 Analytical Considerations on Complexity

For the mixture of the super-Gaussian signals, the unknown source signals can be re-
covered by tanh(ay) and its approximation, as given in equation (3.16), and the Ez-
tended Infomaz function. Considering the same input vector, both tanh(ay) and its
approximation activation functions produce a similar output vector because the curve
of the approximation was matched to the curve of tanh(ay), as illustrated in Figure
3.3. Hence, they required the same number of epochs for recovering the source signals,
as shown in the first eleven subblocks in Figure 4.7. But an approximation function
requires fewer computational micro-operations per instruction than tanh(ay), and it is
more suitable for hardware implementation. Moreover, an approximation function of
tanh(ay) requires lower CPU time than tanh(cy) as shown in Figure 4.8. Comparing
the number of iterations per each subblock between the Extended Infomax function and

the MI function, the Fxtended Infomax function requires lower number of epochs than
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Table 4.7: The Kurtosis of the seven source signals and the Kurtosis of the recovered

signals via Cichocki, Extended Infomazx and our low computational function LF-ICA..

Source Source Observed | Prewhitened Recovered Kurtosis

types Kurtosis Kurtosis Kurtosis Cichocki Infomax LF-ICA
Supi 3.91e + 01 | 1.66e + 01 1.42e + 01 1.58e + 01 1.60e + 01 1.81e + 01
Supo 3.06e + 01 | 4.99¢ + 01 1.78e + 01 1.56e 4 01 1.55e + 01 1.32e + 01
Sups 7.87e — 01 | 1.15e + 01 8.28¢e + 00 2.62e — 01 2.58¢ — 01 2.62e — 01
Supa 3.83e + 01 | 8.10e + 00 1.09¢e + 01 3.53e 4 01 3.37e 4+ 01 3.50e + 01
Suby —4.69¢ — 06 | 1.09¢ +01 | —1.20e+00 | —6.18e — 01 | —5.62e — 01 | —5.94e — 01
Subs —2.00e — 08 | 7.08¢+01 | —1.18¢+00 | —1.95¢ +00 | —1.90e + 00 | —1.93e + 00
Subs —8.53e —19 | 1.27e + 01 —2.78¢ — 01 | —1.20e +00 | —1.20e+ 00 | —1.20e + 00

the MI. But the Extended Infomaz function produces the correlated output as illustrated
in Figure 4.9. The recovered signals from the Ezxtended Infomaxz function have higher
degree of correlation than the MI function.

Regarding the recovery of the mixture of more sub-Gaussian signals, the curves
of ¢(y) = +y? did not exactly match either y* or y'', but they produced the same
results with higher convergent speed as shown in Figure 4.10. The lower activation
function needs smaller memory representation during the running process. And, also,
the ¢(y) = +y? requires only ”Shift-and-Add” micro-operations per instruction and no

multiplication operation.
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Figure 4.7: Number of iterations per online subblock. The first 11 subblocks are the
computational complexity for demixing super-Gaussian distribution. The remaining

subblocks are for demixing sub-Gaussian distribution.
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are for demixing sub-Gaussian distribution.
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CHAPTER V

Conclusions

The main problem of ICA or BSS concerns the unknown information of source and mix-
ing matrix B. We try to solve the inversion matrix of B, called demixing matrix W here.
The convergence test is measured by Kullback-Liebler divergence. In this dissertation,
four optimization techniques for independent component analysis problem are proposed,
which include (1) increasing the learning convergence using the momentum term and
an appropriate learning rate divisor, (2) deriving some low computational activation
functions, (3) proposing blind source extraction and, (4) presenting an unsupervised
learning method for finding an optimal online subblock size.

First, we study an effect of learning parameter for independent component analysis.
We found that the momentum term and an appropriate divisor for each learning rate
value are significant factors for the ICA learning mechanism. Figure 4.2 shows that the
fixed learning rate value will diverge if the learning rate is too high. The result is better
than the fixed learning rate value if we divide all learning rate values with 1.005. For
better results, we look for an optimal divisor for each learning value. For example, if
n is 0.8, its optimal divisor is 1.008. Moreover, the convergent speed is increased when
the momentum term is added in the learning equation.

Second, some low complexity activation functions are presented in order to reduce
computational time per instruction and implement the functions on a circuit level. We
obtain two quadratic functions for demixing super-Gaussian and sub-Gaussian chan-

nels. It is confirmed by the computer simulation that our proposed activation functions
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produce the outputs as good as those from the existing high order activation functions.
The recoverd signals from our proposed functions are not exactly similar to the results
from the exising functions because our functions are only approximated functions. But
the proposed activation functions are of lower computational time per instruction than
the exising functions. They require only ”shift-and-add” operations per instruction and
they are feasible to implement on the VLSI level.

Third, a sequential blind source separation or blind source extraction for an inde-
pendent component analysis for the non-Gaussian mixtures using a two layered neural
network is presented in this dissertation. This method is, mainly, to avoid a weak point
of the mutual information learning criteria. Mutual Information learning works well for
identical and independent distributions. For non-identical sources, MI diverges to a local
minima. After the prewhitening process, the prewhitened signals have been separated
into two subgroups of positive and negative Kurtosis signs. This property is used to ex-
tract prewhitened signals. We, first, operate on the positive Kurtosis or super-Gaussian
distribution. Then, we follow with the negative Kurtosis or sub-Gaussian distribution.
Experimantal results claim that blind source extraction is better than the typical blind
source separation when the sources are non-identically distributed. It is observed that
in some cases more than one (Gaussian noises are in the system, the Kurtosis objective
functions are unsuitable. The reason behind this observation needs further investigation.

Forth, in case that we want to implement the previously proposed method at the
VLSI level or on chip. A possible subblock size of the input-must be known in advance.
But in the assumption of the ICA problem, we have no information about the sources
and the mixtures. This dissertation proposed a novel technique for finding an feasible
online subblock for the ICA problem based on the observation on the eigenvalue of
the prewhitened signals when the input size is changed and found that subblock size

k = 4096 is suitable for the current data set.



58

Finally, it can be said that a momentum term and an appropriate divisor for each
learning rate, proposed activation functions, online sub-block learning algorithm, and
sequential blind source separation are efficient methods for demixing the non-Gaussian
mixtures, with respect to the convergence speed and learning abilities. The blind source

separation problem may have the following further studies.

—_

. Source signals have more than two Gaussian distributions.

2. Sources, observed and recovered signals are non zero mean and non unit variance.

3. Number of sensors is less than number of sources, m < n.

4. Observation is on only one channel.

5. Ensemble learning system for ICA problem.

6. Applications of ICA problem.
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