nsWRwnFsutsn s ine 1 lennsaluuunivuafaedeys

108l AN RREIan

?;m;mﬁwuéﬁﬂuﬁmﬂﬁwmrm'ﬁnmmwﬁnzgﬂﬁ.ﬁ‘ﬂgﬂgﬁﬁqnsmmﬂmumﬂmﬁm
ATRTIANIINABNRAWaT AAdTdranssuAaN AT
AYAAINTINAERT JiaensainuAnendy
Unnsin 2544
ISBN 974-030-278-5

Ardviorasiaensaluminandy

A DEVELOPMENT OF DETERMINISTIC PARSER
USING DATA-DIRECTED GRAMMAR

Mr. Meta Citsawat

A Thesis Submitted in Partial Fuffiliment of the Requirements
for the Degree of Master of Engineering in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulaionggorn University
Academic Year 2001
ISBN 974-030-278-5

Thesis Title A Development of Deterministic Parser using Data-Directed

Grammar
By Mr. Meta Citsawat
Field of Study Computer Engineering
Thesis Advisor Associate Professor Wanchai Rivepiboon, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master s Degree

................. M’V&‘* Dean of Faculty of

Engineering

(Profegsor Somsak Panyakeow. Dr. Eng.)

THESIS COMMITTEE

........... ﬁ@%/ﬁ%{};ﬂ "/....... Chairman

(Assistant Professor Somchai Prasitjutrakul, Ph.D.}

{ Wirote Aroonmanakun, Ph.D.)

e

w1 faadan @ nsWeudauasdenitrualee e nmaduuuinuuasasds
HA . (A DEVELOPMENT OF DETERMINISTIC PARSER USING DATA-
DIRECTED GRAMMAR) &. ftfinm : se.as st Salnyad, 95 ulin. ISBN 974-
030-278-5.

AU AARAaILULAWANANNALINATAII LA AR LUIAATAINTIN NIUBLULUAI A

b4 1 3
{fop-down) WAZMINMULLLIENTULY (Dottom-up) TmefiuusRniegesldaziautiauun

= ddl o L 1 =4 ar 2 =y o & ‘ﬂ' %4 ﬁ/l:lld
ﬂﬂﬂﬂ’]ﬂtyﬂﬂdﬂﬂ’mﬂﬂﬂﬂﬂﬂ’]ﬂ“ﬁ WQN@‘VIT‘BLLUUN’THH@WQEL‘]’:I’WHNWFJ"N RUAITHNINHAEY

uGd

S0 ofey warudnaeanimaaed drzaunisnd nsdansvenuuthdiedaystatiudayaiiv

cwdn T llAsnsuasusazutiuaziigluunlosnsnizessmesanfislayafinduie
=l :l! tﬂl 1 3 = o

- daelunisuas vaesliganminaduienaay sgnidisugulugluiuuineldifinaauiinog

o 4 & 1 " I al” I v

’Lumﬁ‘mqmwmqmmmfﬂulmmfaqmnﬂnuuu watmazdrliensalindiuld i3 uleeg

l'ﬂgﬂLLUU_WlﬂiﬂﬂﬂQNLLﬂ zHa N TaRUAE e

2 8 1
WinsndnwudianiistidauemeiinnisiaadanuuaainateiuuuiounlusfiGan
pawsgsuuinsaedayateazaniiunisluanududeutesaninfuom) wazsesnis

plhaensaifigniswueiulugduunlsgansalunuina®3andn Chulatongkorn

ersity _N'ormal Form (CUNF) winti - CUNF gnWmuINIa11 Chomsky Normal Form
uuuﬂmummmmﬂ‘uz,mﬂulfsmn?mwlummuw (Cortext-Free Grammar) W&

m'isnmLﬂu@“lqmmmmmumnlmﬂLLuuw'lstmulﬂ TAneniinusisndaldansa

a

1
=l o

ﬁ-@“aﬂfiﬂ‘ﬂ CUNF_fiulaennsaifdanandszinnengeg soulufenislszgnldnu

?mﬂ'ﬂ\‘iﬂ’li‘f’] L'ﬂ‘ﬁ‘lﬂ G LL‘ﬂﬂﬁ“l.B 2 135qe

n = I'a A A ey o ;-, ‘:_)‘\\\\{J
..Q_ﬂg_ﬂ?ﬁ'ﬂﬂﬂﬂwqLﬂ@?............ [ANeHaTRUAR.... T Q”“ﬁ

AInsTNARNRAYAET......... anelaTaanasanlingm
2584 e, ANEEDTOANRTIALIN NIV e

#4270487021 : MAJOR COMPUTER ENGINEERING
KEY WORD: GRAMMAR / PARSER
META CITSAWAT : A DEVELOPMENT OF DETERMINISTIC PARSER USING

DATA-DIRECTED PARSER . THESIS ADVISOR : ASSOC. PROF. WANCHA|
RIVEPIBOON, Ph.D., 95 pp. ISBN 974-030-278-5.

There are two distinct concepts in parsing techniques; top-down and bottom-up
paradigms. Both of them reflect two important insights; the rationalist tradition or goal-
directed which focuses on the prior knowledge, and the empirical tradition or data-
directed which focuses on the data. Generally, each parsing technique wili have its own
grammar formalisms inciuding additional information to help in parsing. Sometimes,
those grammars may have been written in the form that could cause ambiguous results
in parsing despite in fact, they were not intended ta be. This is because those grammars

were not written in the form which is explicitly enough to avoid ambiguous resulis.

fn this thesis, we present a new deterministic bottom-up parsing technique
called data-directed parser which runs in time complexity equais to O(n). it requires only
grammar rules defined in a new grammar formalism called Chulalongkom Univérsity
Normal Form (CUNF) grammars. CUNF is derived form Chomsky Normal Form {(CNF). 1t
has a generative power equals to context-free grammars, and can be used to represent
a large class of grammars in an -unambigucus form. In the thesis, we have also

demonstrated how to appiy CUNF with various ambiguous grammars inciuding the

syntax of Hyper Text Markup Language {(HTML) version 3.2.

ACKNCWLEDGEMENT

First, | am grateful to Assoc. Prof. Wanchai Rievpiboon, Ph.D., my thesis
advisor, for his guidance and suggestions that helped this thesis possible. Moreover, |
would like to thank following people for their perspective comments and advice: Assist.
Prof. Somchai Prasitjutrakul, Ph.D.; Assoc. Prof. Booncharoen Sirinaovakul, Ph.D.:
Boonserm Kijsirikul, Ph.D.; and lecturer Wirote Aroonmanakun, Ph.D. | am also indebted
to all of whom reviewed this thesis. Their comments and suggestions have made this a

much better thesis.

Thank also to Software Engineering Laboratory and Machine Learning
Laboratory, Department of Computer Engineering, Faculty of Engineering,
Chuialongkorn University, which supplied me with technicat information and various of
the software products. Finally, the biggest thank-you of ali go to my family, especially to

my parents.

CONTENTS

'page

LARREBTNENINUL 1ovv.vveereerere s assssessssssssene st snss st sres s ssas s s s s sannssas iv
AB ST RACT ettt ettt et e et e rae e e ekt et a e rant e ran et e re e nrenaes v
ACKNOWLEDGEMENT ...ttt bt et e s et e s s seme e eeeaame e e ennr a2 gereaens vi
CONTENT S et et e e e re e e e s e s srae e et ems et arann e e raeanessmennaesnsntsners vit
CONTENT OF TABLES .cooee e srer s e e sse e e s nae e s an e s mn s ane s e maenne X
CONTENT OF FIGURES ...ttt a e et srr e st s e ne xi
T INTRODUCTION Lottt ietie e ieiiceentae s tras s asmenesse e 4amse e anneenasteassssesassnteressens snnesaseesassesaras 1
1.1 BACKOTOUNG ..ttt ettt et e e et sk e e s s s ansabbms e s e s e saeessass sbmantsnetssseans 1
1.2 PUIDOSE Of RESEATCH 1ttt ittt e teeee s carrsrss s e n s rae s e e e e rne s st eeeeenasanes e 2
1.3 SCOpE Of RESEAICH ... i ettt ettt et e ee e s 3

B o d o] 1= B T (ot a)0 = S 3
1.5 Research Plan ... St 3

2 THEORY AND LITERATURE REVIEW ...ttt mene s 5

2.1 AT AT F O S TS it e e reasseer e rre e eenn s nesansemnarasasssennsnsnsananseese O

2.1.1 Unrestricted GrammiarS. ..ot sriie s e ssi e asiee s msanseneene s 5
2.1.2 Context Sensitive GramimarS.. ... i s ssrressssee 5
2.1.3 Context-iree GrammIanrS... oo e ieiiiiie it ere e e esse s srsses s s ssae e sear e sere s sneseses 6
2.1.4 REGUIAT GraiMITTIAIS . oieeiivaererrrerassrarassersrerssasasssssssssarsnsssiiransssrsssrastisrersssssesnsss 6
210 BNF Grammars «o e iiveiae s sste st SR, 7
2.2 Parsing Techniques......cc.ooceeveeeiinnee. s ooessaaaetVTTTON | TR 7
2.2.1 PArSer 85 SEATCH ..o e e e 7
2.2.1.1 TOP-DOWN PaISiNG ... i covurwsaestanasne s aiinmbesssnss svssnnssiin astevteennesasessrsssnrerseans 8
2.2.1. 2 Bottom=Up Parsing ..o e et e 9
2.2.1.3 Comparing Top-down and Bottom-up Parsing . c..co.eovaraiirinniiecien e 9
222 The Earley's AlQOiNMm.. ..o ettt 9
2.2.3 Cocke-Younger-Kasami (CYK) .. it essaies s s 12
2.2.4 Finite-State Parsing Methods ..o rceenn e 13
2.2.4.1 Transition Network (TN) ..o 13
2.2.4.2 Recursive Transition Network (RTINY e e eveveeresessesssensees 14

2.2.4.3 Augmented Transition Network (ATN)cceevviiineeennne. e ——— 14

viil

2.2.4.4 Modified-Augmented Transition Network (M-ATN}coccovviinnnenen 15

225 LR ParSer ..vveeeveeeeesesiesnnssesenas SO P OO UERRPR 16
3 CHULALONGKORN UNIVERSITY NORMAL FORM GRAMMAR ... e eeesers e 18
/3.1 Languages ettt e ea R e et eb b 18
32 Lé_nguages and Chomsky’s Hierarchy of Grammars........occevereernicrnnnsnsarenens .. 19
33 DErVation ANG LANGUAGES «----vvrreissssseseesrsrasssssss rmrsenssss s 20

.._.;;"_9':.'.4..[)_erivation TTEE oot ee vt s e es et e s et e eeeeneneneennsaeessannsaneearenansaemsansinenrsrnnees 21
35 Goal-directed and Data-directed Paradigm ..o, 22

" 36 C_h_omsky NOTTNE] FOMM {CNF s treeeteecareseeeeeesiseeetse oo emsasiesssssssasassssassrsesessnssssstesenns 23
'L?_é’,jjphulaiongkom University Normal Form (CUNF} ..o 24

:if;.:i:’:-;élirl?.'roof Of CUNF GaMIMAIS.. . cevr. cro s ceeriesasbesesesesssasessessiss staessessssemsessnenssessssesssnnes 26

j:j’:_finr‘:.__giJ_.Jieri\Jra’[ion Trees and CUNE GramiMarS . cecieces s siieseinneeasseeeereeeesinnee s ieisnnes 28

'éfé’;ﬁi_:o.éonverting other grammar formalisms to CUNF grammarsc.c.cecvnveceennennns 29

: 3101 Context-free GraMIMAIS . o.. i cctireeiiieisatrssessinressssar s sesssnssessnsasesssbnenssses 29

:f _..::C.%;._“l..{).2 REGUIAT GBIMIMIATS 1o orerucei e cesersensensasasassaeanssesenss s seeseseneseenssseneasssserenerinns 30
3,41 Problematic Grammars N8 CUNF ... o isteeeerorseessieressseerssooneseessceresnee 31
3.11.1 The shift/reduce AMDIQUIY ..ot i Ry
3.11.2 The reduce/reduce ambBIQUiLY oo 32
3.11.3 Problem of Speciai-Case Productions ...t 33
3.11.4 Problem of precedence-conflicts ..o 35

- 4 DATA-DIRECTED PARSERo.oeecevcemremeenicerccins UPTSTURIRE . SOOI a7 .

4.1 Data-DireCted Parser....c st sien st s i s 37
42Tree v NLL L AL LR AW =-0 R 8 RO B A 38
4.2 Binary Tree O S S - ¥ A 39
4.4 Recursion......d.khe S0 e b L L L WL 39
4.5 Recursive Tree Traversal ... e e 41
4.6 Simple Recursive Tree CONSIUCHON ...vviriceeeiiiir et cien i 41
4.7 Conditional Recursive Tree ConstruChion ... 43
4.8 Algorithm of Data-Directed Parser. ..., 45
4.9 Proving Algorithm of Data-Directed Parser ceeerer et te et eennasans 46

B EXPERIMENT wiiierereeeeemmmrersinsans it innnss s rmae s ssaas s s ree s a4 0s bt e s e an e e e samansae s e snaecasarenanes 52

5.1 Languages used iN EXDEMMENT ...t arcreeasimece ettt eisscse s ssmias v
5.1.1 Element AHMDUES ..o

5.1.2 STUCIUTEA LANGUAGTES crovveiresiierie e secsrrereeesssrsensesssmreeanessenssessssnmnmnsrennesssonas

5.2 CUNF Grammiars for HTML oo rnr s srrnns e rsnaee e
B.2.1 TYPE T RUIES t e et srete e s e e e e s s r et e e nemneeean

5.2.2 TYPE HRUIBS 1ot s e e s
5.2.3Type IH RUIES .o orii ittt e e

5.3 CUIPUT FOMMBE coiiiiiiieie et et e s st a s s ae e s sabr e ssase s
5.4 Error-Insensitive Solution for HTML ... o
5.5 Common Parsing using Data-Directed Parser.....c....ocoinvcmeiiiiniicenanis
5.6 Error-Recovery Parsing using Data-Directed ParSer.....cvvvereveeeeerirseeieeeeess

6 CONCLUSION AND PERSPECTIVE....cc.covteeeiiiinsne s scesinns s cteato et aren
B.1 CONCIUSION c.ueiveiiiiiistirissstee st sie i iamaanms st sbassssan b o bnsssbasassbees o saness srrnnsnnanssnnaans
S ST 1] 0T Lot 1Y S U
REFERENCES ... veetveseasetieeesssaes et essesitearsane sk s amaescsonas s aeat s e s sksaebtnsssart s essrrnsansntansnsnnses
APPENDICES.....oo e eeeeeeestteees e nees ettt essse oot rtsssoereesseessonooeereeees s orrioe
APPENDIX A : HTML ELEMENT SPECIFICATIONS ..iiiiiiiereeer et
APPENDIX B : CUNF GRAMMARS FOR HTML...ooi ittt
APPENDIX C : DATA-DIRECTED PARSER USER MANUALcccoovriimininirccnnniinne
BIOGRAPHY ..o set ittt aaieia e astaesssbtesbe s st e anesme e shaeaabnaaabesthmaEtveesans s enmneansssmnesnenaneas

CONTENT OF TABLES

Table 5.1 Error-Recovery Table for HTML ..ot 57

AONUUINBUINT)
ANRINITUNINEAE

CONTENT OF FIGURES

Page
Figure 3.1 Goal-directed Paradigmeoueoeerrceiiiieerie et e 22
Figure 3.2 Data-directed Paradigm ... i s, 23
FIgure 3.3 EXDrEssion 1R i erererer ettt as e s san e araa s 29
FIGUre 4.1 Tree SITUCIUIE «oooie ettt e et b s me e e 38
Figure 4.2 LINKEd LISttt e e s b aan s s 42
Figure 4.3 Parse Tree...ociviceeccrnccrnenne FeeeTeeeeereaeerEboeeaetyeeeetegetarantnntneogiaaaareee 42
Figure 4.4 Input symbois represented by linked list ..o 47
Figure 4.5 Case of one input SYMBOE ... it aini e s e 47
Figure 4.6 Case of two INPUL SYMDOIS.......coiiiiiciicirtinn s verrinees e s 48
Figure 4.7 Case of two reducibie symbolS.. ..o s e 48
Figure 4.8 Case of two irreducible symBbols. ... 48
Figure 4.9 Case of three INput SYMIDOIS ivoi v 49
Figure 4.10 Case of three irreducible input Symbols ..o 49
Figure 4.11 Case of shifting right after left reductionccc.ccivviiiiicens 45
Figure 4.12 Case of shifting right after right reduction........cccoo e 50
Figure 4.13 Case of shifting seif after left reduction........... e e 50
Figure 4.14 Case of shifting self after right reductionccococcvniiviiicicnce, 50

e o L T B = = 4= T O T SRS 56

CHAPTER 1
INTRODUCTION

1.1 Background

Syntactic analysis is an important part for analyzing languages generated by
grammar. Due to information described by grammar which indicates the way how
symbois in strings are related to each other, syntactic anatysis is responsible to order
those symbols and group them together into constituents to form the syntactic
structures. [n addition, these structures may identify type of relationships that exist
between constituents and can store other information about the particular structures that

may be needed for fater processing in semantic analysis.

There are mainly two components in the syntactic analysis which are used to
examine niow the syntactic structure of a sentence can be computed. The first one is
grammar which is a formal specification of the structures allowable in the language, and
the second cne is a parser which is the method of analyzing a sentence to determine its
structure according to the grammar. Many grammar formalisms and parsing techniques
have been deveioped which each one has its strength and weakness. The weakness of
an existing one always leads to the development of a new one and this becomes the
traditional style of development process. However, the strength features still exist and
influence another new born researches. For example, the context-free grammar since it
was proposed by (Chomsky, 1956), has influenced most of grammar formalisms

including parsing techniques, and is an important tool in syntactic analysis at present.

According to this concept, many parsers have been developed such as the top-
down and bottom-up parser which could require up to C" operation to parse the
sentence of length n, where Cis a constant that depends on the specific algorithm used
in the system. To improve the efficiency of the parser, the CYK algorithm, which was
originally proposed by J.Cocke, but its first publication was due independently to
{Kasami, 1965) and (Younger, 1967}, was developed and can parse sentences in time

complexity equals to O(n3). However, the most practical, general, context-free

recognition and parsing algorithm is (Earley, 1970 } which is established for O(n3) in
general, where n is the length of the sentence. Moreover, it takes only O(n‘?) on any
unambiguous CFG and is actually linear on a wide variety of useful grammars. Besides,
there are the algorithm of (Vatiant, 1975) which is asymptotically the most efficient,
taking O(nz'a) steps, while the algorithm of (Graham et al., 1976) takes O(n3/iog n) steps.
A related result, that membership for unambiguous CFG's can be tested in O(nz) time, is
due to (Kasami and Torii, 1969) and (Earley, 1970). Later, GLR parsing with time
complexity equals to O(na) is proposed by (Tomita, 1991).

However, the most famous technigue used in compilers today as described in
(Aho, 1986) is LR parser which is an efficient and bottom-up syntax analysis technique,
and can run in time complexity equals to O(n), where n is the length of input symbals,
Due to the propeﬁies of LR tabies, some problems in the past like shffb’shift conflicts will
never occur, but reducefreduce and shift/reduce conflicts still remain. In fact, LR parser
does not deal with number of input symbols exactly but number of states that occur in
parsing process. Even though input symbols are used up, the parser continues running
untii the last state is reached. Referring to LR parser's algorithm as shown in chapter 2,
we can say that time complexity of LR parser is sum of numbers of shift and reduce
operation. Then, LR parser always runs more than or equals to n loops, where n is

length of input symbois.

Generally, the question of concern in this thesis is that “Is it possible to develop
a parser that performs better than any other parsers at present?” An ideal parser that
shouid deal with input symbols instead of states. Moreover, there should be a way to
gliminate all conflicts and parse input symbols in time complexity equals to O(n) within
syntactic boundary. in-addition, not only parser techniques but also grammar formalisms

that need to be improved in developing a better parser.

1.2 Purpose of Research
1. To develop syntactic rules and additional information called CUNF

(Chulalongkorn University Normal Form) grammar that is an unambiguous

1.3 Scope
1.

grammar formaiism for analyzing tanguage.

To develop an effective and qualitative parser that can parse language in O

(n) based on CUNF grammar.

of Research

To develop syntactic rules that are appropriate to context-free grammars by
deriving from CNF (Chomsky Normai Form) to CUNF grammar.

To develop an effective and qualitative parser with these qualifications.

- Can parse input symbois correctly according to grammar generated in
CUNF.

- Can parse input symbols in time complexity equals to O(n), where nis
number of input symbaois.

Tooi used in this research is Perl.

The developed system will work and run under Windows operating system.

1.4 Expected Cutcome

4
i.

2.

An appropriate grammar formalism calied CUNF which is unambiguous for
language generated by context-free grammar.

An effective and qualitative parser that can parse language generated by
contexf—free grammar in time complexity equais to O(n) based on CUNF

grammar.

1.5 Research Plan

1.
2.
3.

To explore problem and limitation of various grammar formalisms.
To explore problem and limitation of various parsers and aigorithms.

To develop an appropriate syntax for language generated by context-free

grammar.

To deveiop an appropriate methodology for converting grammar from CFG to

the gther grammar formalism called CUNF.

To develop an appropriate algorithm of parser based on information in

CUNF.

6. To design system and related companent.
7. Toimplement and test system.

8. To evaluate and adjust systern

AOUUINYUINNS)
ANRINTUNIINENRE

CHAPTER 2
THECRY AND LITERATURE REVIEW

2.1 Grammar Foarmalisms

There are mainly four kinds of grammar formalisms which are different in
generative power. A grammar has a greater generative power or be more complex than
another if it can define a language that the others cannot define. it is possible to
construct a hierarchy of grammars, where the set of languages described by grammars
of greater power subsume the set of languages described by grammars of less power.
The most common hierarchy used in computational linguistics is Chomsky’s hierarchy
{Chomsky, 1958), which consists of type 0. or unrestricted grammar, context-sensitive
grammar, context-free grammar and regular grammar. Generally, all grammars will
conform to the general definition as G = (V, T, P, S}, where V is a set of nonterminal
symbols, Tis a set of terminals symboi, P is a set of productions and S is a start symbol.

However, grammars can be ciassified according to the form of their productions in P.

2.1.1 Unrestricted Grammars

The largest family of grammars in the Chomsky's hierarchy is
unrestricted grammar which has no restrictions on the form of their rules, except
that the left-hand side can not be the empty string ‘£’. Any string which is not

string ‘€’ can be written as any strings inciuding string ‘€. Unrestricted

grammars- characterizes the recursively enumerable language. The rute are in
the form & = ﬁ , Where (X and ﬁ are arbitrary strings of grammar symbols, with

CL # €. These grammars are aléo known as semi-thue, type 0, phrase structure

or unrestricted grammars.

2.1.2 Context Sensitive Grammars

Context-sensitive grammars have rules that rewrite a non-terminal

symbol A in the context d)Aw as any nonempty string. The production form of

context-sensitive grammars can be written in the form d)A\Il - d)’yw. This form

of restriction on a production prevents the right-side of productions from being

empty. Besides, it can be stated in another manner. This form involves letting d)

AY and YWY be expressed as O = dAY and B = Py where Y must be
nonempty string as given in the following definition.
o = B, where o) < |3} and |, B} denotes the length of &

and ﬁ respectively.

2.1.3 Context-free Grammars

Context-free grammars consist of a set of rules of productions, each of
which expresses the ways symbols are grouped and ordered. Context-free
grammars have four parameters as

- a set of nonterminal symbois V.

- a set of terminal symbols T (disjoint from V).

- a set of productions P in the form of A = 7V, where A is a non-terminal

symbol and Y is @ string of symbols from the infinite set of strings (V U

"

- a designated start symbol S.

fn this formalism, a language is defined via the concept of derivation.
OCne string derives another one if it can be rewritten as the second one via some
series of rule applications regardless of the other symbols in its vicinity or

context,

2.1.4 Reqular Grammars

Regular grammars are a special case of context-free grammars which
their power are equivalent to the finite state automata (FSA) and regular
expression. This grammar formalism has rules in the form of;

AZFYBorA=Y

Regular grammars can either be right-linear of left-linear. A rule in a right-
linear grammar has a single terminat symbol on the left and at most one
nonterminal symbol on the nght-hand side. If there is a terminal symbol on the
right-hand, it must be the last symbol in the string. On the other hand, the right-

hand-side of left-linear grammars is reversed.

2.1.5 BNF Grammars

BNF (Backus-Naur form) was developed for the syntactic definition of
ALGOL by (Backus, 1360) as the way to express grammar formalism for
programming languages. At about the same time, a simiiar grammaticat form,
the context-free grammar, was developed by linguist {(Chomsky, 1959) for the
definition of naturat language syntax. The BNF and context-free grammar are
equivalent in power, but the difference is in notation. The definition of BNF is in

the form:

2.2 Parsing Technigues

2.2.1 Parser as Search

In syntactic parsing, parsing can be viewed as searching through the
space of all possible parse trees to find the correct parse tree for the input
sentence. The search space of possible parse trees is defined by the grammar.
The goal of a parsing search is to find ail trees whose root is start symbaol S,
which cover exactly all words in the input sentence. There are two kinds of
constraints that help guide the search. These two constraints give rise to the two
search strategies underlying most parsers: top-down or goal-directed search
and bottom-up or data-directed search. Besides, they also reflect two important
insights in the western philoscphical tradition: the rationalist tradition (focus on
the prior knovﬂedge) and the empirical tradition (focus on the data). Parsing as

search algorithm is rather simple but it couid require up to C” operation to parse

a sentence of length n, where C is a constant that depends on the specific

algorithm used in system.
2.2.1.1 Top-Down Parsing

Top-down parsers search for a parse tree by trying to build from

the root node S down to the leaves. The algorithm starts by looking for
grammar rules with S on the left-hand side and build alt possible tree in
parallel. The next step is to expand these trees as originally expanded S.
At each level of search space, this algorithm uses the right-hand-sides of
the rules to provide new sets of expectations for the parser and then
used to recursively generate the rest of the trees. Trees are built
downward untit they eventually reach the part-of-speech categories at
the bottom of the tree. Finally, tree whose leaves fail to match all the
words in the input can be rejected, leaving behind those that represent
successful. The algorithm of top-down parser was shown below.

Algorithm of Top-Down parsing algorithm

function Top-Down-Parser (input, grammar) retum a parse tree
agenda + {initial S tree, Beginning of inpuf)
current-search-state + Poplagenda)
loop
if Successful-Parse(cument-search-staie) then
return Tree(current-search-state)
else
if Cat(Node-To-Expand{current-search-siate)} is a POS then
if Cat(nade-to-expand) C Pes(Current-input{curreni-search-state)) then Push
(Apply-Lexical-Rule{current-search-state), agenda)
else
return reject
eise
Push(AppIy—RuIes(cﬁrrentwsearch-sfate, grammar), agenda)
if agendais empty then
retumn reject
else
current-search-state + Next(agenda)

end

2.2.1.2 Bottom-Up Parsing

Bottom-up parsing was first suggested by (Yngve, 1959). In
bottom-up parsing, the parser starts with the symbols of the input, and
tries to build trees from the input symbols by applying rules from the
grammar one at a time. The parser will look up each symbol and try to

build partial trees. Each of the trees are then expanded if the parser can

recognize places in the parse-in-progress where one of the topmost
nonterminal symbols is the right hand side of some ruie in the grammar.
The parse is successful if the parser succeeds in building a tree with the

start symbaol S at root that covers all of the input.

2.2.1.3 Comparing Top-down and Bottom-up Parsing

Each of these two parsing techniques has its own advanfages
and disadvantages. Top-down parsers never waste time exploring trees
that cannot resuit in a start symbol S, since they begin by generating just
those trees. This means that they also never explore subtrees that cannot
find a place in some S-rooted trees. In the bottom-up strategy, by
contrast, trees that have no hope of leading to an S, or fitting in with any
of their neighbors, are generated with wild abandon.

However, the top-down approach has its own inefficiencies as
weil. While it does not waste time with trees that do not lead 1o an S, it
does spend considerable effort on S trees that are not consistent with the
input. This weakness in top-down parsers arises from the fact that they
can generate trees before ever examining the input. Bottom-up parsers,
on the other hand, never suggest trees that are not at least locally

grounded in the actuai input.

2.2.2 The Earley’s Algoithm
The Earley’s algorithm (Eariey, 1970) uses a top-down dynamic
programming approach to efficiently implement a paraiiel dynamic programming

soiutions, this aigorithm reduces an apparently exponential-time problem to a

10

polynomial-time one by eliminating the repeative solution of sub-problems
inherent in backtracking approaches. The dynamic programming approach
leads to a worst-case behavior of O(n3), where n is the number of words in the
input. The core of the Earley's algorithm consists of a single left-to-right pass that
fills an array called a chart that has n + 7 entries. For each word position i in the
sentence, the chart contains a lists of states representing the partial parse trees
that have been generated so far. By the end of the sentence, the chart
compactly encodes all the possible parses of the input. importantly, each
possible subtree is represented only once and then can be shared by all the
parses that need it.

There are tree operators used in Earley’s aigorithm to process states in
the chart: the PREDICTOR and the COMPLETER that add states io the chart
entry being processed, and the SCANNER which adds a state to the next chart
entry. Each one takes a single state as input and derives new states from it.
These new states are then added to the chart as long as they are not already
present. For the PREDICTOR, its job is to create new states representing top-
down expectations generated during the parsing process. it is applied to any
state that has a nonterminal symboi to the right of the dot that is not a terminal
symboi resuits in the creation of one new state for each aiternative expansion of
that nonterminal provided by the grammar. The second cne, SCANNER, it is
called to examine the input and incorporate a state corresponding to the
predicted terminal symbol into the chart when a state has a terminal symbol to
the right of the dot. This is accomplished by creating a new state from the input
state with the dot advanced over the predicted input category. The last one,
COMPLETER, is applied to a state when its dot has reached the right end of the
. rule. The purpose of the COMPLETER is to find and advance all previously
created states that were looking for this grammatical category at this positioh in
the input. New states are then created by copying the older state, advancing the
dot over the expected category and instaliing the new state in the current chart

entry. Algorithm of Earley’s parsing was shown in section below.

Algorithm of Farley's parsing

function Earley-Parse{words, grarnmar) return chart
Enqueue(y =S, [0,0]), chart/0))
for i + from 0 to Length{words) do
for each siate in chart[/] do
if Incomplete(state) and Next-Cat(state) is not a part of speech then
Predictor{state)
else if Incomplete(state) and Next-Cat(state) is a part of speech then
Scanner{state)
else
Completer(state)
end
end

return(chart)

procedure Predictor((A = & - B 3, [ij))
for each (8 =) in Grammar-Ruie-For(5, grammar) do

Engueue((8 = - v, [j, /1), chanij])

end

procedure Scanner((A = ¢ - 2 B, [if]))
if B C Parts-Of-Speech{wordlj]} then
Enqueue((8 = werd(f], [, j + 11), chartj + 1])

procedure Completer((8 = ¥ -, [j, k1))
foreach(A—+ L -8B f), [i, /1) in chart{j} do
Enqueue(A = QL B B, [, k1), chartlk])

end

procedure Enqueue(siate, chart-entry)
if state is nct already in chart-entry then
Push(state, chart-entry)

end

11

12

The version of the Earley’s algorithm just described above is actually a
recognizer not a parser. After processing, valid sentences will leave the state S
= L -, [0, N] in the chart. To turn this algorithm into a parser, we must be able o
extract individual parses from the chart. To de this, the representation of each
state must be augmented with an additional field to stere information about the
compieted states that generated its constituents. This information can be
gathered by making a simple change to the COMPLETER. Recall that the
constituent following the dot is discovered. The only change necessary is to
have COMPLETER push a peinter to the newly discovered state onto the list of
children of the new state. Retrieving a parse tree from the chart is then merely a
recursive retrieval starting with the states representing a complete S in the final

chart entry.

2.2.3 Cocke-Younger-Kasami {CYK}

The CYK algerithm {Kasami, 1965), (Younger, 1967} uses a bottom-up
dynamic pregramming approach to efficiently implement a parallel dynamic
programming solutions as Earley's algorithm. This algorithm reduces an
apparently exponential-time problem to a polynomial-time one when gi\)en a
sentence of iength nand a grammar G, which is in Chomsky Normal Form. That
is all productions used in this parsing technique must have cne or two symbols
on the right side of each rule. Unilike Early's algorithm, the grammar rules used
in algorithm are not restricted. By eliminating the repeative solution of sub-
probiems - inherent in-backtracking approaches, the dynamic programming
approach leads to a worst-case behavior of O(na), where n is-the number of
words in the input.

The core of the CYK algorithm consists of a single left-to-right pass that
fills an array calied a chart that has n entries. For each ceil in chart position Vi,
the ceil contains a list of corresponding left side of product from a list in the
upper cells and diagonal cells extending from Vif to the right. Algorithm of CYK’

parsing was shown below.

13

Algorithm of CYK parsing algorithm

function CYK-Parse(words, grammar) retums chart
begin
fori:=1tondo
Vi,) ={A| A~ ais a producticn and the ith symbol of x is &};
forj:=2tondo
fori=1ton-j+1do
begin
Wi, j) := empty,
fork:=1toj-1dc
Vi,) == VL) U{A | A= BCis a production, B isin
Wi, k) and Cis in W{i+k, j-k)}
end

end

2.2.4 Finite-State Parsing Methods

From the basis of graph theory, network is composed of nodes and arcs,
which each node has unique name and linked together by arcs ¢r groups of arcs
which have specific conditions. Many parsing techniques were developed
based on those concepts such as Transition Network, Recursive Transition
Network, Augmented Transition Network and Modified-Augmented Transition
Network.

2.2.4.1 Transition Natwork {TN)

Transition network as described in (Gilbert, 1999} consists of
nodes or group of nodes combined with arcs or links for defining the
transition from one state to another following to conditions of grammar. 1t
can be defined with the definition of & nondeterministic transition
network, M, which is a 5-tuple with M = (Q, Z K, q, F), where

- @ is a finite set of nodes or states;

- Z is a finite set of acceptable input symbols;

- K is a finite set of rules representing the state transition function

or transitions from one state to anather;

14

- g, in Qs the initial state in the network; and

- Fis the set of accepting or final states.

The problem of transition network is complexity of network when
the conditions according to syntax increase which leads to a

development of the Recursive Transition Network.

2.2.4.2 Recursive Transition Network (RTN)

Recursive transition network as described in {Allen, 1995) and
(Gilbert, 1999), has a structure and style like transition network which has
nodes, arcs and conditions foliowing to grammar. it can be defined as a
7-tuple with M = (Q, z Ik, S.. Z,, F), where

- Qis the set of states;

- Z is the set of terminal symbols;

-1 is the set of symbols that may appear on the stack used as

an auxiliary form of controk;

- K is the set of moves or rules that controf the transitions from

one state to the next;

- S, is the initial state;

- Z,is a unigue symbol that serves {o initialize the stack; and

- FIs the set of accepting slates.

The RTN is flexible to edit or create a new network, but the
problem is lacking ability of remembering whether a node has already
been examined. When node does not have the suitable condition,
network wiil backtrack 2 nodes and verify condition of arc again which
wastes time. Besides, RTN cannct support complex sentences. This

drawback leads to a development of the Augmented Transition Network.,

2.2.4.3 Augmented Transition Network {ATN)
ATN as described in (Gilbert, 1993}, works iike TN and RTN but

has more conditions of nocde movement. it registers each process of

15

analysis, and its definition can be defined as an 8-tuple as A = {Q, E I,

7. O, R, q,, Z;), where

- @ is a finite set of state symbols representing the possible
states;

- Z is a finite set of input symbot;

-T is afinite aiphabet of symbols;

- Tis the set of transition rules that will subsequently be defined;

- O is a finite set of operations for storing information in a finite
system of registers;

- R is a finite set of operations for reading information stored in
one or more register;

- g, is the initial state in the primary network; and

- Z,1s a single finite state

Although ATN is very efficiency, some part of networks cannot

specify the correct function of word in sentence such as arc that dispiays

function of verb which leads to a development of the Modified-

Augmented Transition Network.

2.2.4.4 Modified-Augmented Transition Network (M-ATN)

M-ATN has an analysis style form left to right and from top to

down which has the method of verifying arc, backtracking and

remembering. step. of working like ATN. Besides, M-ATN has 3 basises

arc.

- Seek Arc (8/ name node) is the arc that jumps to a specific arc.
- Jump Arc is the arc that jumps to a next node or a specific
node.

- Send Arc is the arc that indicates the end of network or sub
network.

The advantage of M-ATN is ability to find the main verb of

sentence and its position which leads to the correct deep structure of

16

language as described in (Varakulsiripunth, 1988) and (Varakulsiripunth,

1989).

2.2.5LR Parser

LR parser is the most famous technique used in compiler today as
described in (Aho, 1986} which is an efficient, bottom-up syniax analysis
technique that can be used to parse a large class of context-free grammars. Its
time complexity equals to O(n), where n is the length of input sentence. This
technique is called LR{k) parsing; the L is for left-to-right scanning of input, tha R
for construction a rightmost derivation in reverse, and the & for the number of
input symbols of [ookahead that are used in making parsing decisions. When (k)
is omitted, k is assumed to be 1.

The schemati¢ form of LR parser consists of an input, an output, a stack,
a driver program, and a parsing table that has two parts (action and goto). The
driver program is the same for all LR parsers; only the parsing table is different.
There are three techniques for constructing LR parsing tabie for a grammar, The
first method, called simple LR (SLR), is the easiest to implement, but the least
powerful of the three. It may fail to produce a parsing table for certain grammars
on which the cther methods succeed. The second method, called canonical LR,
is the most poweiful. and the most expensive, The third methcd, called
lookahead LR (LALR), is intermediate in power and cost between the other two.

Algorithm of LR parser was shown below.

Algorithm of LR parser

set ip to paini to the first symbol of w$;
repeat forever begin
let s be the state on top of the stack and a the symbol pointed to by ip;
if actionis, a] = shift s’ then
begin
push a then s'on top of the stack;
advance ip to the next input symbol

end

17

eise if action[s, a] = reduce A= B then

begin
pop 2 * [B} symbols off the stack;
let s’ be the state now on top of the stack;
push A then goto[s', A] on top of the stack;
output the production A=+ B

end

else if actionls.a] = accep! then
refum

else
error{)

end

From aigorithm of LR parser described above, even though afl input
symbols are used up, LR parser siill continues running until the last state is
reached. Although LR parser’s time compiexity equals to O(n) where n is a
number of input symbols, it does not mean that numbers of looping occur in
parsing will equai to n. In fact, the time compiexity of LR parser always depends
on states while those states are dependent to grammar rules.

Starting with some syntactic rules, for LR parser, we must cerive sets of
LR items for augmented grammar and construct LR table respeciively. Then, we
need grammar, LR items and LR table to parse input strings with LR parser.
Moreover, editing or changing grammars will always lead to rebuilding LR items
and LR tablte. Even though someone will argue that these two processes can be
done automatically by computer, we often encounter with ambiguous grammar
causing shift/reduce conflicts and reduce/reduce conflicts that computer cannot
solve because of lacking appropriate information, and require human to soive
them. In addition, these aiso mean that only syntactic rules are not enough in
some case. Besides, LR parser is difficult fo write unless we have a tool such as
yacc or occs to help us construct the tables used by parser. Also, LR error

recovery is difficult to do in yacc-generated parsers.

CHAPTER 3
CHULALONGKORN UNIVERSITY NORMAL FORM GRAMMAR

3.1 Languages

A language is made up of sentences that can be used in communication.
Nevertheless, not any sequence of words could be characterized as a sentence; only
some of which we would judge as grammatical. Whenever we judge which sentence is
acceptable, what knowledge do we use as the basis for our judgment? One possibie
approach te our judgements about sentences is based upon past knowledge, assume
that we had accumulated a dictionary-like list of sentences. Then, the set of grammatical
or well-formed sentences could be defined as a list of facts, like wordé in a dictionary,
and the process of using that knowledge would be by exhaustive search through that
list. However, the list would have to be very long and might easily inciude several billion
entries. More important, the process of searching through that list would be time
consuming at best. if this assumption is correct, what about new sentences that we had
never seen bejore? How could we possibly conciude that those also might be

grammatical?

In this regard, a line of argument was emghasized by (Chomsky, 1957) with his
observation that our knowledge of syntax is productive. Chomsky’s approach to this
dilemma was fo shift from an emphasis on the /langtiage that for all practical purposes
inciudes an infinite number of members to an emphasis on the gramwnar or rules that

could generate the language. By definition, the grammar must be finite: therefore, our

L knowledge, as incorporated in the grammar, must also be finite. it is the process of

S using this knowledge that will be productive. In effect, the grammar can define an infinite

.+ . set of possibilities, including many that have never been encountered before.

However, not any sequences of words are grammatical would have meaning.
.. For example, we can define grammar rules for “1a2b3” and “4b5a7”, and we can say

- that both of these are grammatical, but we can not tell what they mean. We cannot also

19

answer question like “what is the difference between both of them except the symbols
and their order?” Let us change 'a’ to ‘+" and ‘b’ to ', we can define grammar rules for
“1+2*3" and “4"5+7" as well. Moreover, we can tell that “1+2*3" equals to “7”, “4*5+7"
equals to '27°, and “4*5+7" |s greater than “1+2*3". Hence, we should be careful to think
that sentence which is grammatical according to defined grammar is really acceptable.
For sometimes, nobody even grammar writer knows the meaning of language generated
by his grammars. In such case, what we can discuss is only in level of weak
equivalence or symbols and order of themi; set of possible languages that could be

generated by & grammar.

3.2 Languages and Chomsky’s Hierarchy of Grammars

Due to Chomsky’s hierarchy described in Chapter 2, we can classify grammars
which conform to the general definition as G =(V, T, P, S) by the form of their
productions in P. Referring to Chomsky’s hierarchy, there are four classes of grammars;
type O or unrestricted grammars, context-sensitive grammars, context-free grammars
and regular grammars respectively. A grammar that has a greater generative power can

define a language that the less one cannot.

Generaily, any commL}nication is. composed of 2 agents; a sender who
generates languages by hisf“grammars and a receiver who receives the sentences and
tries to understand them by using his own grammars. The sentences we got, are in
sententiai forms or sequence of words, not in structural forms or parse trees. We do not
know even what grammar generates such languages. In order to understand such
languages, our own grammar rules must be generated first. For, we do not know which
grammar that the sender uses in generating such language, so it is possible that our
grammar may differ form sender’s. Due to concept of Chomsky's hierarchy, we can
claim that if we understand language of the sender, our grammar should be greater

generative power or equals to the sender’s,

These assumptions remind us two important insights in the western philosophical

tradition: the rationalist tradition or goal-directed (focus on the prior knowledge) and the

20

empirical tradition or data-directed {focus on the data). To understand the difference
between these two paradigms, let us consider the way that we try to write a sentence
and the way we try to read it. In reading a sentence, we have to see all words in
sentence before we know its meaning, while in writing a sentence, we need to know the

meaning we want t6 write first. Then, we begin to write each word to form a sentence.

According to Chomsky’s hierarchy, it is possible for grammars of greater power
to describe languages that subsume set of languages generated by grammars of less
power. From this view, we can say that whoever can understand our language must
have the grammar that is equatl or more powerful than ours. From such assumption, we
will design a new grammar formalism that based on data-directed paradigm which

differs from grammar formalisms based on goal-directed paradigm.

3.3 Berivalion and Languages

Due to Chomsky’s observation that our knowledge of syntax is productive, the
languages are formaily defined by a grammar G = {V, T, P, S), where V is a set of nion-
terminal symbol, T a is set of terminal symbol, P a is set of productions and S a is start
symboi respectively. As described in (John and Jeffrey, 1978), we can develop notation
to represent a defivation. First we define two relations = ¢ and = *s between strings in
(Vvun~ifA—>Pisa prodLIction of Pand & and Y are any strings in (VU T)* then
QAY =6 OdBY. We say that the preduction A —> [3 is applied to the string XAY to
obtain XY or AY that directly derives C{B3Y in grammar G. Two strings are related
by = sexactly when the second is obtained from the first by one app}ication of some

production.

Suppose that 01, g, ., QO are stings in (VU T)*, m>=1, and

7

A1=>603, Co=>6U3, . Clm-1= 60

~f

Then we say Q1 = *¢ Ol or ({1 derives Ol in grammar G. That is, = *sis the
reflexive and transitive closure of = . Alternatively, X1 = *¢ B if B follows from & by

application of zero or more productions of P. Note that & = *6 X for each string .

21

Usually, if it is clear which grammar G is involved, we use = for = ¢ and = * for

= *c. If Ot derives [3 by exactly i steps, we say Ct=> / [3.

The language generated by G [denoted L{G)] is Wwisin Tand S = *s w}.
That is, a string is in L(G) if:
1) The string consists solely of terminals.

2) The string can be derived form S.

We cali L a context-free language (CFL) if it is L{G) for some CFG G. A string of
terminals and variables X is called a sentential form if S = * (X . We define gfammars

G, and G, to be ecjuivalent if L{G,) = L(G,).

3.4 Derivation Tree

It is useful to display derivations as trees. These pictures called derivation or
parse trees superimpose a structure on the words of a language that is useful in
applications such as the compilation of programming languages. The vertices' of a
derivation tree are labeled with terminal or variable symbols of the grammar of possibly
with €. If an interior vertex n is labsled A, and the sons of n are labeled X, X,, :.., X,
form the left, then A -> X, X, ...X, must be a production. Figure 3.1 shows the parse tree
for derivation, and if we read the leaves, in left-to-right order, we get the last line of “E +
E*E". More formally, let G = (V, T, P, S) be a CFG. A tree is a derivation or parse tree for
Gif:

1) Every vertex has a label, which is a symbol of VI TU {€}.

2) The label of the root is S.

3) If a vertex is interior and has label A, then A must be in V.

4) If n has labet A and vertices n,, n,, ..., n, are the sons of vertex n, in order from

the left, with fabels X|, X, ..., X,, respectively, then A -> X, X, ... X, mustbe a

preduction in P.

5) If vertex n has label £, then nis a leafand is the only son of its father.

22

We need one additional concept, that of a subtree. A subtree of a derivation tree
is a particular vertex of the tree together with all its descendants, the edges connecting
them, and their labeis, It locks just like a derivation tree, except that the label of the root
may not be the start symboi of the grammar. If variable A labels the root, then we call the

subtree an A-tree. Thus “S-tree” is a synonym for “derivation tree” if Sis the start symbol.

3.5 Goal-directed and Data-directed Paradigm

Data-directed grammar is a grammar defined by a receiver in order to
understand languages generated by sender's goal-directed grammar. While The
rationalist tradition or goal-directed grammars focus on the prior knowledge or set of
product rules in order to generate languages, the empirical tradition or data-directed
grarhmars focus on the data or input symbols in order to generate parse tree. For the
difference of these two paradigms, fet us consider context-free grammar G = (V, T, P, S)

is the grammar of sender, where P congists of

ES>E+E|EYE|iD

For the strings “1 + 2 * 3%, in goal-directed paradigm when scan input from left to
right, we must look backward to the start symbols in grammar and start derivation from
there until we have all external nodes of parse tree that match our input symbols as in
figure 3.1. On the other hand, in oata-directed paradigm, we start from input symbols
and try to construct a parse ‘tree as-in figure 3.2. Although this sequence of input
symbols generated by context-free grammar, language itself is Context-sensitive_from
data-directed view because we cannot reduce “1 + 2% hefore “2 * 3", ‘and this is the

difference between goal-directed and data-directed paradigm.

- /’IE\ /I%\
E * E

Figure 3.1 Goal-directed Paradigm

23

E—+-—E—*—E E—+—E /E%\
E/L\E EE + E
E * E

Figure 3.2 Data-directed Paradigm

Generally, we could say that whatever languages that could be written in the
form of binary tree can be rewritten in CUNF grammar. Referring to Chomsky Normal
Form, we could rewrite grammar G, to G, where languages generated by G, are
equivalent fo languages generated by G,. Before going into CUNF grammar, it should

be useful to review Chomsky Normal Form.

3.6 Chomsky Normal Form (CNF)

Chomsky Norma! Form is one of two normal-form theorem which states that all
contexi-free grammars are equivalent io grammars with restrictions on the forms of
productions. From the theorem of Chomsky normal form (CANF) as described in {(John
and Jeffrey, 1879), any context-free language without € is generated by a grammar in
which all productions are of the form A = BC or A = a, where, A, B and C, are variable

and ais a terminal.

Suppose that G be a context-free grammar generating a language not
containing €. We can find an equivalent grammar, G,=(V, T, P, S), such that P contains
no unit productions or € —productions. Thus, if a production has a single symbol on the
nght, that symbol is a terminal, and the production is already in an acceptable form.
Now consider a production in P, of the form A = X, X, ... X , where m >= 2. [f X is a
terminal symbol, g, introduce a new variable C, and a production C, = a, which is of an
allowable form. Then replace X; by C.. Let the new set of variables be V" and the rew set
of productions be P'. Consider the grammar G,=(V', T, P, S). If Ot =& [3, then &
= *5 B . Thus L(G,) c L{G,). Now we show by induction on the sumber of steps in a

derivation that if A = *: w, for Ain Vand win T then A = *s w. The resuit is trivial

24

for one-step derivations. Suppose that it is true for derivations of up to k steps. Let A
= *s: w be a (k + 1) - step derivation. The first step must be of the form A = B, B, ..

B, m>=2. wecanwrite w=w, w, ... w,, where B, = *&: w, 1<=j <=m.

If B,is C,, for some terminal a, then w, must be a,. By the construction of P, there
is a production A = X, X, ... X of Pwhere X, = B;if B,isin Vand X = a,if B/isin V' - V.
For those B, in V, we know that the derivation B, = *& w; takes no more than k steps,
so by the inductive hypothesis, X, = *a w,. Hence A = *s w. Now, We have proved
the intermediate result that any context-free language can be generated by a grammar
for which every production is either of the form A = aor A = B, B, ... B_, for m >= 1,
where A and B,, B,, ... B,, are variables, and a is a terminal. Consider such a grammar
G,= (V. T, P’, 8). We modify G, by édding some additicnal symbols to V' and repiacing

scme productions of P'. For each production A = B, B.,..B_ of P’, where m >= 3, we

create new variables D,, D,, .., D_, and replace A = B, B, .. B_ by the set of

z m-2

productions

{A=B,D,D,~*B,D,...D,, B, D ,D ,>B_ B}

m-3 m-Z —m2 —m-2 m-1 = m

3.7 Chulaiongkorn University Normal Form {CUNF)

CUNF is denoted by G =(V, T, P, R, S, §) where both V and T are finite sets of
variables and terminals (without empty string) respectively when V and T are disjoint. P
is a finite set of productions; each preduction is of the form either S= A$orA = BCor
A = a where A, B, and C are the string of symbols from V and a is a string of symbal
from 7. R is a finite set of rules describing the priority of productions in P. S is a special
variable called the start symbol and $; a special variable called the end symbol. For
example, let'us consider a context-free grammar G = (V, T, P, S} as G(A) = ({E}, {+, *,
id}, P, E) where P corsists of

E-E+E
E-E*E
E—id
We can generate grammar G in CNF as

E_)EEI!EEH

25

E'=+E

E"=*E

E—+id ,
From CNF we could generate CUNFas G = ({A, B, C, D, E, F, ptus, mutl, id}, {+,

*}, P, R, S, $) where P consists of
S—+id$
A-* plus id
B=mulid
plus = +
mul =+ *
id—+digit]idAlidB

and R consists of

{piusid<id A, plusid<idB,mulid>idA, mulid<id B}

Generally, set P could be viewed as 2 parts; £ and F" where P = P' union P". For
P, it collects production in form A = BC, where A, B, C are non-terminal symbols and
are elements in set V. P’ wili be used in reduction steps or syntactic analysis while P
collects productions of form A = a, where A is a non-terminal symbol and a is a terminal
symbol. P* will be used in lexical analysis. For set R or set of priority rules, it
accumulates any pairs of product rules that overlaps with each another such as A = BC
and E = CD. We will see that bloth of the rules share the same symbol C, and must add
an appropriate priority rule like BC > CD to set R if we prefer the first rule for a particular
parse tree. Although CUNF is rather complex compared to other grammar formalism, it
will never fail during parsing. Besides, using data-directed parser designed for CUNF,
we can controf every process of parsing during construction of the parse tree. Moreover,
its time complexity equals to O(n), and parser will stop running when input symbols are
used up, uniike LR parser which deals with states; data-directed parser deals with input

symbols only.

Many problematic grammars could be represented by CUNF which is
unambiguous and more powerful. We can define many ambiguous grammars in

unambiguous form using CUNF as we will see in later section for its power to define

26

unambiguous grammar. Even though CUNF grammar may look like deterministic
grammar in which it produces a specific parse tree for the same input symbols, we can
apply it fo generate non-deterministic resuits as well. By considering set R or the priority
set as the choices that parser must choose either left or right direction. Each times we
access set R and find the same item X, XX, there, we will have 2 possible patterns of
parse trees that couid be built from the current one. Suppose that we access set R k
times, a number of parse trees that would be produces will equal to 2 power k, where
the maximum k equal to n-2 when n is a number of all symbols. So, the worst case for
this process would be O(2"). However, this boundary cannot be compared with dynamic
programming technique's which always require O(n’) because the value of k is
uncertain. in practical, n or n-2 differs from k for it depends on numbers of input symbols

while vaiue of k depends on grammars especially set R.

3.8 Proof of CUNF Grammars

Due to the definition of CUNF grammars which have the restriction of numbers of
symbols on the right side of product rules described in previous section, we will see that
CUNF grammar looks like context-free grammar defined in Chomsky Normal Form
(CNF), except the symbol $ or end marker for input symbols including set R or context-
sensitive rules. Proving of CUNF will be divided into 2 parts. First, we will prove that it is
equivalent to CNF in reverse order or bottom-up direction. Next, we will prove that with
this non-deterministic form and information defined in context-sensitive rules, it can be

used as a deterministic grammar for a specific purpose as well.

In_part one, to prove that CUNF equivalents to CNF we will refer to CNF which
states that any context-free language without empty string can be generated by a
grammar in which ali productions are of the form A = BC or A = g, where A, B, C are
variables and a is a terminal. Then, if we have productions in P of the form A = X, X, ...
X, where m >= 2, we can replace themin form A = X, D,, D, X, D,, ...D,, = X, D,
» Dop ™ X, X, which are equivalent. From this concept, suppose that G is context-free
grammar not containing empty string as G = (V, T, P, S}. According to Chomsky Normal

Form theorem, we can define grammar G, = (V', T, P, S} in CNF which is equivalent to

27

grammar G. Then we define grammar G, = (V. T, P", S, $) following to concept of CUNF
grammar. To define grammar G, from G,, we will add augmented rules suchas S—=* $* §
in P" where S* is start symbol Sin CNFand S$* = X Yis in P'. Besides, we need to add
the rule S = X $in P" where in CNF, X could be the reduced to start symbol as welt,

Refer to CNF, now we will have rules defined in P" as

S=*A%and A X, D,,D,7*X,D,, .0, ,*X ,D. ., D,.,*X_ X, where all
productions are unique subtrees of a parse trees according to grammar. From Chomsky
Normal Form theory, we will see that L(G) C L(G,} and L(G,) CC L{G,). Then we can

conclude that L(G) C L(G,).

For the second part, we will prove that CUNF could be use as a deterministic
context-free grammar using context-sensitive rules or set R which defined in CUNF as
grammar G = (V, 7, P, R, S, §). From sequence of terminal symbols w,w,w,..w_
generated by grammar G = (V, 7, P, §), it is possible to parse them from bottom-up

direction in O(n} using only information defined in CUNF grammar.

Foilowing to grammar G, any terminal symbol w;, where X, = w, could be reduced
to X, So, we will have sequence of non-terminal symbols X, XX, ... X instead. For any
non-terminai symbol X; where X XX, is substring of XX X,... X, either X_ X, or XX,
could be reduce in deterministic grammar. However, In CNF, it is possible for two
productions that could share either left or right symbol of their right side of productions.
For example, we may have the ruies both A = XX, and B =* X)X, for the input symbols
like X, X;X,. But, it not clear whether A or B is preferred and result in the different parse
tree. in such case, X, XX, will be added in context-sensitive rules with its priority defined
as 'L’ for left direction or 'R’ for right direction. In syntactic analysis, we have 2 choices
each times whenever the overlap occuirting between two rules is found. Without context-
sensitive rules, suppose that the parser finds these overlaps k times, it means that
parser will generate 2 parse trees as the results. By using context-sensitive rules, we
can retrieve only one parse tree which is grammatical following to grammar G at the end

because 1 power k equals to 1.

28

3.9 Derivation Trees and CUNF Grammars

CUNF grammar is a data-directed grammar. [t differs from other grammar
formalisms in which it concentrates on input symbols and relation among them in
sentential form. As we known that some context-free grammar will produce language
such as “1+2*3” which cannot be reduced freely, but depends upon precedence and

associativity.

In fact, CUNF is a model of whole derivation trees in formalism of grammars
definedas G=(V, T, P, R, S, §). Each rule in Pis g unigue subtree in derivation trees,
and pricrites among those rules control the appearance of parse trees. However,
priorities of rules are not something that just happened in CUNF grammar. Hs existence
remains in other grammar formalisms as well. Let us consider grammar G=(V, T, P, S)
and its productions as

E2E+E
E—E*E
E=id

Suppose that we are going to parse “id + id * id”. When the parser scans syntax
rules downwards, and it get E~» E + E first, nextis E~ E*E, and E = id respectively.
Then we will have the parse tree as figure 3.3 a). On the other hand, if we define
grammar G = (V, T, P, S).as

E-E*E
EE+E
E=id

When parser a scans syntactic ruies downwards with productionsE—*E*E, E
—+ E + E,and E =*id respectively, it produces the parse tree as shown in figure 3.3 b).
This parse tree and the prior one is not the same, even though both of them are weak
equivalence. Main cause of this problem is the way that we define grammars, and the
way that parser reads them. The rule which parser finds first in parsing is always less

important than the next downward one.

29

a) E b) E
E"+ E E/i"\E
E E E/Jr\E

Figure 3.3 Expression tree

Not only precedence plays an important role in grammar formalisms, but it also
may cause a problem in parsing if we are careless. The existence of context-sensitive
rules or set R defined in CUNF grammar is designed for this problem. To solve this
problem, we need to break the way parser scans the grammar rules downwards. In
order 1o do this, we have to break the way that grammars are written first. Then, CUNF

grammar was designed with a separated set of priority among productions.

3.10 Converting other grammar formalisms tc CUNF grammars

3.10.1 Context-free grammars
A context-free grammar {(CFG) is denoted as G = (V, T, P, S), where V
and T are a finite sets of variables and terminals, respectively. We assume that V
and T are disjoint. P is a finite set of productions; each production is of the form
A = (X, where A'is a variable and X is a string symbol from (V U T)*. Finally, Sis
a special variable called the start symbol. For example, suppose that we use E
instead of <expression> for the variable in the grammar. Then we could formatly
express this grammar as ({E},{+, *, {,), id}, P, E), where P consists of
E=E+E
E=E"E
E=(E)
E—id
From CFG shown above we could generate CUNF grammar as G = ({4,
B, C, plus, mul, id, Ip, rp}, {+. %, (,)}, P, R, S, $) where P consists of
S=*id$
A plusid

B = mujid

30

C—idm
plus = +
mul = *
Ip = (
=)
id—=digit{idAlidB|ipC
and R consists of _
{plusid>idmp,mulid >idrp, plusid <id A, plusid<id B,
mulid>id A, mulid <id B}

3.10.2 Regular grammars
Refer to Chomsky's heirarchy, CFG is more powerful than regular
grammar. That means we can rewrite regular grammar in CUNF grammar as
welil. If all productions of a CFG are of the form A = w B or A = w, where A and
B are variables and w is a {possibly empty) string of terminals, then we say the
grammar is right-linear. If all productions are of the form A = B wor A = w, we
call it left-linear. A right-linear or left-iinear grammar is called a regular grammar.
For exampie, the language 0(10)* is generated by the right-iinear grammar
S=>0A
A-* 10A|E
and by the left-linear grammar
S=2>81010
From the definition of grammar shown above we can rewrite it into CUNF
grammar as. G = {{A, B, C}, {0,1}, P, R, S, $} where P is set of products as
S2AS
B=>CA
A—Q0]AB
C—= 1
and R which is set of context-sensitive rules as

{CA>AS CA<AB)

31

3.11 Problematic Grammars and CUNF

There are context-free grammars for which shift-reduce parsing cannot be used.
Every shift-reduce parser for such a grammar can reach a configuration which the
parser, knowing the entire stack contents and the next input symbol, cannot decide
whether to shift or to reduce {a shift'reduce conflict), or cannot decide which of several
reductions to make (a reduce/reduce conflict). We now give some examples of syntactic
constructs that give rise to such grammars. Technicaily, these grammars are not in the
LR(k) class of grammars; we refer to them as non-LR grammars. The k in LR{k) refers to
the number of symbols of lookahead on the input. Grammars used in compiling usually

falf in the LR(1) class, with one symbol lookahead.

3.11.1 The shift/reduce Ambiguity
An ambiguous grammar can never be LR. For example, consider the
dangling-else grammar
strmt = if expr then stmt
| if exprthen stmt else stmi
i cther
if we have a shift-reduce parser in configuration
Stack Input
... If expr then stmt eilse ... §

We cannot tell whether if expr then simf is the handle, no matter what
appears below it on the stack. Here there is a shift/reduce conflict. Depending
on what follows the else on the input, it might be correct to reduce if expr then
stmt to stmi, or it might be correct to shift else and then to look for another stmt
to complete the altemative if expr then stmt else stmi. Thus, we cannot teil
whether to shift or reduce in this case, so the grammaris not LR{1). More
generally, no ambiguous grammar, as this one certainly is, can be LR{(k) for any
K.

We should mention, however that shift reduce parsing can be easily
adapted to parse certain ambiguous grammars, such as the ifthen-else

grammar above. When we construct such a parser for a grammar containing the

32

two productions above, there wili e a shift/reduce conflict: on else, either shift,
or reduce by stmt = if expr then stmt. if we resclve the conflict in favor of
shifting, the parser will behave naturally.
We could generate CUNF grammar as G = (V, T, P, R, S, $) for
shiftfreduce solution where P consists of
ST $|ITE $| other $
fTE~ITE
T=14T
i = ifexpr
E =+ else iT jelse [TE
T —* then IT | then ITE
if = if
then = then
else = else
other =+ aiher
and set R or context-sensitive ruies consists of
{else I T>IT$ elseITE=ITES ,theniT=>1T$,theniTE>ITE$
}

3.11.2 The reduce/reduce ambiguity
Suppose we have grammar such as:
S AZIBY
Z=CD
Y>CD
A=a
B—=b
C—=c
D—=d
A statement beginning with “a ¢ d” would appear as the token stream “A
C D" to the parser. After shifting the first three tokens onto the stack, a shiﬁ—

reduce parser would be in configuration

33

Stack Input
.ACD $..
CUNF grammar for this reduce/reduce solution wiil be defined as

grammar G = ({A, B, C, D, E, F}, {a, b, ¢, d}, P, R, S, $) where all productions are:

S2F$

F=>AE|BE

E->CD

A—a

B=b

C—c

D—>d

3.11.3 Problem of Special-Case Productions

Sometimes, the ambiguous grammars is useful if we introduce an
additional production to specify a special case of a syntactic construct
generated in a more general fashion by the rest of the grammar. When we add
the extra production, we generate a parsing action conflict. We can often resolve
the conflict satisfactorily by a disambiguating ruie that says reduce by the
special-case production. The semanitic action associated with the additionat
production then ailows the special case to be handied by a more specific
mechanism.

An interesting use of special-case productions was made by (Kernighan
and Cherry, 1975} in their equation-typesetting preprocessor EQN. In EQN, the
syntax of a mathematical expression is described by a grammar that uses a
subscript operator sub and a superscript operator sup, as shown in the grammar
fragment below. Braces are used by the preprocessor to bracket compbund
expressions, and ¢ is used as a token representing any string of text.

(1) E>EsubEsupE
(2) E*EsubE

(3 E>EsupE

(4) E2A{E}

(5) E—~*c

34

Grammar above is ambiguous for several reasons. The grammar does
not specify the associativity and precedence of the operators sub and sup. Even
if we resolve the ambiguities arising from the associativity and precedence of the
sub and sup, by making these two operators of equal precedence and right
associative, the grammar will still be ambiguous. This is because production (1)
isolates a special case of expressions generated by productions (2) and (3),
mainly expressions of the form E sub E sup E. The reason for treating
expressions of this form specially is that many typesetters would prefer to
typeset an expression like & sub i sup 2 as a2 rather than as as aiz. By merely
adding a special case production, Kernighan and Cherry were able to get EQN
to produce this special case output.

We could generate CUNF grammar G for special-case products solution
as {{A, B, C, D, E, char, sub, sup, b, ib}, {{, }, SUB, sup, alphanumerich, P, R, S,
) where P consists of

S—=+char§iC$
A = sub char
B =* sup char|sup C
C = charB
D—=*subC
E=*Croclcharrb
char = alphanumeric | char D | ib E | char A
sub = sub
sup —* sup
b= {
o=}
and set R consists of
{ sub char < char A , sub char < charB, subchar<charD,
sup char < char A, sup char < char B, sup char < charD ,

sub char > charrb, sup char > charrb ,sup C>Crb}

35

3.11.4 Problem of precedence-conflicts
This kind of ambiguity reflects the problem of goal-directed grammars
that try to represent precedences and associativities within grammar. To define
grammars that specify the associativities or precedences is not wrong as in the
following grammar for arithmetic expressions with operators + and *.
E= E+E|E*E|id
This grammar is ambiguous because it does not specify the precedence
of the operators + and *. We can define an unambiguous grammar that
generates the same language, but gives + a lower precedence that *, and
makes both operators left-associative as
E = Eiiin*T
T=2T*F|F
F=(E)}id

To demonstrate the problem of precedence conflicts, let us define a
grammar for arithmetic expression with operator +, * and ~ in ambiguous form
as

E=E+E|E*E|E~E|id

We add 3 additional conditions into grammar by giving + a lower
precedence than *, * a lower precedence than ~ and ~ a lower precedence than
. Then™1 +2* 344" gr«q 4 (2 * (3" 4))" equals to 163, and “1 + 2 ~ 3" or (1
+2) ~ 3" equals to 27 following to all conditions above. In goal-directed
grammars, writing unambiguous grammars for grammars with precedence
conflicts is impossible. But, it could be defined in an unambigucus form using
CUNF grammars,

We could generate CUNF grammar G for precedence conflicts solution
as {{A, B, C, plus, mut, pow, id}, {+,*, *}, P, R, S, $) where P consists of

S=id$
A = pius id

B = mulid

C — powid
plus = +
mut = *
pow —* ©
id -* digit]idA|idB}id C
and R consists of
{plusid <id A,plusid<idB,plusid>idC,
mulid>idA, mulid<idB, mulid<idC,

pow id <id A, powid > id B, pow id<idC}

36

CHAPTER 4
DATA-DIRECTED PARSER

4.1 Data-Directed Parser

A data-directed parser consists of two important parts; free sfructure that
represents derivation tree in computational procéss and recursive programming to
operate on tree. Generally, a data-directed parser is a bottom-up parser. It generates a
parse tree from input symbols or external nodes upward to start symbol or root. What
distinguishes data-directed parsers from other bottom-up parsers is that a data—directed
parsers use a data-directed grammars called CUNF grammars instead of other
grammar formalisms. In fact, CUNF grammars and data-directed parser are two sides of
the same coin. We can define CUNF grammars for any context-free language because
of data-directed parser's power in recursion, and we can parse context-free fanguage in
O(n) due to power of CUNF grammars for its unambiguous forms and rich information

that heips in parsing input symbols.

Although, data-directed parsers and LR parsers c¢an parse context-free
tanguage in O(n), a data-directed parsers are more rigid because they can eliminate all
conflicts; shift/shift conflicts, shift/reduce confiicts and reduce/reduce conflicts using
only CUNF grammars. While users need to derive LR items and LR table respectively
from grammar in order to use LR parser, ones use only CUNF grammars to parse the
same input in time. compiexity equals to Ofn). Besides, its time compiexity does not
depend on a number of products or 2 number of states like LR parser but only a number
of input_symbols, Data-directed parser is a bottom-up parser tha. can scan input
symbols both in forward and backward style. It will process input data following to
grammar based on data-directed paradigm such as CUNF grammars, In fact, its power
comes from the power of CUNF grammars which can define the priority of product rules
to determine which one will be selected in order to build 2 parse trez. Due to the
properties of tree, we can implement data-directed parser that can run in time

complexity equals to O(n).

38

4.2 Tree

Trees are data structures that are generally suitable for the representation of
hierarchical data, and lie at the heart of many important algorithms and have been
studied extensively as mathematical objects. in data-directed parser, tree plays an
important role in representing derivation tree. Due to the properties of hierarchical data,
we have an ancestor-descendant, superior-subordinate, whole-part, or similar
relationship among the data elements including relations among symbaols in syntactic
rules. Then, in this section, we will consider the basic definitions and terminology
associated with trees and the ways of representing trees as a model! in parsing for data-

directed grammar as CUNF grammars.

By definition, a tree is a finite nonempty set of elements. One of these elements
is called the root, and the remaining elements are partitioned into trees which are cailed
the subtrees as in figure 4.1. In addition, it is a coliection of vertices and edges that
satisfies certain requirements. A vertex is a simple object called a node that can have a
name and can carry other associated information; an edge is a connection between two
vertices. A path in a tree is a list of distinct vertices in which successive vertices are
connected by edges in the tree, and one node in the tree is designated as the root. The
defining property of a tree is that there is exactly one path between the root and each of

the other nodes in the tree,

Figure 4.1 Tree Structure

39

4.3 Binary Tree

In particular, the simplest type of tree is the binary tree. A binary tree is an
ordered tree consisting of two types of nodes: external nodes with no children and
internal nodes with exactly two children of each internal node are ordered. Every intemai
node must have both a left and right child, though one or both of them might be an
external node. Due to the definition of CUNF grammars in which right hand side of each
production must have two nonterminal symbols, except those rules used in lexical
analysis, binary tree is the most appropriate data structure for the model of parsing

effectively using data-directed grammar as CUNF grammars.

The purpose of the binary tree is to structure the internal nodes; the external
nodes serve only as place holders. We inciude them in the definition because the most
commonly used representations for binary trees must account for each external node. A
binary tree-could be empty. consisting of no internal nodes and one external node. The
full binary tree is one in which internal nodes completely fill every level, except possibly
the last. A complete binary tree is a fuil binary tree where the internal nodes on the

bottom level ail appear to the left of the external nodes on that level.

The essential differences between a binary tree and a tree are a binary tree can
be empty, whereas a tree cannot. Each element is a binary tree has exactly two
subtrees, but each elemen; in a tree can have any number of subtrees. The subtrees of
each element in a binary tree are ordered. That is, we distinguish between the left and

the right subtrees whiie the subtrees in a tree are unordered.

4.4 Recursicn

Recursion is a fundamental concept in mathematics and computer science. The
simple definition is that a recursive program is one that calls itself and a recursive
_ function is ene that is defined in terms of itself. However, a recursive program can’t cali
itself always, or it would never stop. As well as a recursive function that can’t be defined

in terms of itself always, or the definition would be circular. Another essential ingredient

40

is that there must be a termination condition when the program can cease to call itself,

and when the function is not defined in terms of itself.

A recursive function is a function that invokes itself. In direct recursion the code
for function Z contains a statement that invokes function Z, whereas in indirect recursion,
function Z invokes a function X, which invokes a function Y, and so on untit function Z is
again invoked. Recursive definitions of functions are quite common in mathematics in
which we often define a function in terms of itself. For example, the most familiar
recursive function is the factorial function, defined by the formula

nl=n*{n-1) forn 1with 0l=1.

This definition corresponds directly to the following simple recursive program:

int facteriai{int n)
_{' _ if (n == 0) return 1;

return{n * factorial (n - 1));

This program illustrates the basic features of a recursive program. it calls itself
with a smaller value of its argument, and it has a termination condition in which it directly
computes its resuit. However, there is no masking the fact that this program is nothing
more than a glorified for loep, so it is hardiy a convincing example of the power of
recursicn. Also, it is important te reméfnber that it is a program, not an equation. For
example, neither the equation nor the program above works for negative N, but the
negative effects of this oversight are perhaps more noticeable with the program than
with the equation. The call factorial {-1) results in an infinite recursive loop. This is in fact
a common _bug that can appear in more subtle forms in_moere complicated recursive

programs.

Recurrence relations often arise when we try to determine performance
characteristics of recursive programs. Thus, the relationship between recursive
programs and recursively defined functions is often more philosophical than practical.
Actually, the problems pointed out above are associated not with the concept of

recursion itself, but with the implementation,

41

4.5 Recursive Tree Traversal

Perhaps the simplest way to traverse the nodes of a tree is with a recursive
implementation. For example, the following program visits the nodes of a binary tree in

inorder styie.
traverse{struct node *t)
{ if (ti=2z)
{ traverse(t->1);
visit(t);

traverse(t-=>r);

The implementation precisely mirrors the definition of inorder: “if the tree is
nonempty, first traverse the left subfree, then visit the root, then traverse the right
subtree,’;’Obvious]y, preorder can be implemented by putting the call to visit before thé
two recursive calls, and postorder can be implemented by putting the cali to visit after
the two recursive calls. This recursive implementation of tree traversal is more natural
than a stack-based implementation because trees are recursively defined structures

and because preorder, inorder, and postorder are recursively defined preccesses.

4.6 Simple Recursive Tres Construction

In last section, we know how to traverse the nodes of the free with recursive
impiementation. However, not only traversing the tree can be impiemented using
recursive paradigm but also building the tree that can be implemented due to the fact
that tree is the recursively defined structures. This idea is a basic algorithm for

implementing data-directed parser, so we will describe it in this section as shown below.

Simple Recursive Defined Tree Algorithm

List consists of many nodes linked together {struct node)
Node™ BuiidParseTree (List *))

{ Node *p_node = l->lastNode() ;

p.node = ParseTrea(p_nade);

42

return{p_node);

}

Node* ParseTree(Node *p_right}

{ Node *p_left = p_right->leftNode();
if {p_left == NULL}

retum{p,_right);

Node *p_new = new Node();
Combine nodes pointed by p_lef and p_right;
p_new = ParseTrea(p_new);

return{p_new};

—

Suppose that we have fink fist of input symbols as figure 4.2

4’/‘ ‘\“'
o~ L
- .,
p_left p_mid p_right

Figure 4.2 Linked List

After processed by algorithm above, we will get the tree structure as figure 4.3

Figure 4.3 Parse Tree

Time compiexity required for building tree structure of this case equals to O(n),
where n is a number of nodes in {ist. Suppcse that numoer of nodes in list is 3. After

processing 2 new nodes will be created. Finally, we will have tree structure that contains

43

5 nodes. Generally, we can say that giving link list of n nodes to build tree structure: n-1
new nodes will be created. Eventually, we will have a binary tree that contains 2n - 1

nodes.

4.7 Conditionai Recursive Tree Construction

Sometimes, building the tree structure may not easy as an example above. In
case that there are conditions among nodes, we have to consider these conditions
before any nodes will be combined together. For instance, if we have grammar G= {v,

T, P, S) and set of productions as shown below:
A+B = C
A+C =+ DO
E+D —+ F
E+A 2> G
A+F = H
Besides, we know that refation between nonterminal symbol E and A is less powerful

than the relation of nonterminal symbol Eand Aas E + A< A + C when conflicts occur

between these two rules.

Suppose that we need to parse "A E A C”. Then, we will construct two hashes to
store all information abpve. For the first hash called hash of rules, we wiil store all
production rules in it. So, if we give two inputs as A and B to it, we will get C as a result.
The other hash calied hash of priority , we will store priority of product rules. When we
give E, A and C ta this hash, the result we wiii receive is either ‘L’ or ‘R’ which means eft
pair (£ + A) or right pair (A + C) is selected respectively. From supporting of these two

hashes, we will present algorithm as following one.

Conditional Recursive Defined Tree Algerithm
List consists of many nodes linked together (struct node)
Node* BuildParseTree {List *I}
{ Node *p_node = i->lastNode() ;

p_node = ParseTree(p_node);

retfurn{p_node);

44

Node* ParseTree(Node *p_right}

{ Node *p_mid = p_right->leftNoda(};

Node *p_left = p_mid->leftNode{);
i {(p_right 1= NULL)&&{p_mid = NULL)&&(p_left = NULL})

{

}

String strCase = Priority_Hash{p_left->value(}, p_mid->valus(}, p_righi->value()};

if (strCase == 'L"

{

}

Node *p_new = new Node{);
Combine nodes pointed by p_left and p_mid as p_new ;
p_new = ParseTree{p_right};

return{p_new);

eise if (strCase ==R)

{

}

Node *p_new = new Node{);

Combine nodes pointed by p_mid and p_right as p_new:;
if (p_new->rightNode(} 1= NULL)

{ p_new = ParseTree(p_rew);

}

return(p_new};

else // data docs not exist in hash

{

—

if can combine node pointed by p_left and p_mid
{ Nade *p_new = nsw Node();
Combine nodes pointed by p_left and p_mid as p_new;
p_new = ParseTree(p_right);
return{p_new);
i
else i can combine node peinted by o_mid and p_right
{ Node *p_new = rnew Node();
Combine nodes pointed by p_mid and p_right as p_new;
if (p_new->rightNade(; 1= NULL)
{ p_new = ParseTree(p_new->rightNode()};
}

return(p_new);

}

else

{ Node *p_new = ParseTree(p_left->leftNode());
retum{p_new);

i

else if ((p_right 1= NULL)&&(p_mid != NULL)}

45

{ if can combine node pointed by p_mid and p_right
{ Node *p_new = new Node(};
Combine nodes pointed by p_right and p_mid as p_new,

retum(p_new};

else

{ retern{p_mid);

return{p_right);

4.8 Algorithm of Data-Directed Parser

Generally, data-directed parser’s algorithm is not different from the prior one in
last section except function CanCombine(). This function plays an impcrtant rolg in
algorithm for the priorities among production rules in grammar. It determines whether
parser cculd reduce some symbols at specific position in strings or not. It also considers
which rule will be use in reduction steps when conflicts occur in parsing process.
Algorithm of data-directed parser in backward style implemented using recursive

programming was shown in sectich below.

Data-directed Parse Algorithm—”

function DataDirectedParser

{ set pRight = last node in list;
pRight = DdpParse{pRight);
return{pRight);

function DdpParse{Node* pRight)
{ Node* pMid = pRight->Left();
Node* pLeft = pMid->Left();

if ({pLetft I= NULL)&& (pMid = NULL)&& (pRight 1= NULL}))
{ if {CanCombine{pRight, intDirection, stValue))
{ if ($intDirection == 1) # reduce left pair of symbols

{ Node *pNew = new Node(strvalie);

46

Replace pLeft and pMid with pNew;
If {pRight->Right(} 1= NULL)
{ retum(DdpParse(pRight->Right(}))); }
alse
{ return{ DdpParse(pRight)); }
i
elsif (§intDirection == -1} # reduce right pair of symbols
{ Node *pNew = new Node{strValue);
Replace pMid and pRight with pNew:
if (pNew->Righ#() = NULL)

{ return(DdpParse(pNew->Right(})); }
else
{ return{DdpParse(pNew)); }
1
else
{ return{CdpParse(pRight->Left()):; }

}
else if ((pMid 1= NULL)&& {pRight {= NULLY)
{ E if {CanCombine(pRight, intDirection, strValue))
{ Nede *pNew = new Node(strvalue);
Replace pMid and pRight with piNew:

return(pNew);

eise
{ returm{ DdpPasa(pMid)); }
i

else if {pRight 1= NULL)

{ return{pRight; }
else
{ returnCNULL"; }

4.8 Proving Algorithm of Data-Directed Parser

Consider languages written in the books or news.paper. Have we ever seen the
corresponding grammars attached with them? If there are nothing but the sentential
input symbols, why most of us think that analyzing language should start with start

symbol downward to input symbols? At least, we need to see those symbols first to

47

choose the appropriate grammar because there are many grammars for various

languages.

Data-directed parser is a bottom-up parse that scans input symbols from right to
left. it attempts to constfuct a parse tree for an input string beginning at the leaves and
working up towards the root. The purpose of this process is to reduce a string to the
start symbo! of a grammar. At each reduction step a particular substring matching the
right side of a production is replaced by the symbol on the left of that production.
Hence, in each reduction step, one symbol will be removed from string. That meaﬁs we
need n reduction steps to reach the start symbol or the root of parse tree following to
CUNF grammars, where n is a number of input symbois in sting. Suppose that we have

the input symbols as in figure 4.4, we will proof this algorithm by dividing problems into 3

cases below.
Figure 4.4 Input symbaols represented by linked list
Case |

This case occurs when an input syimibol is sent to parser as in figure 4.5.
There is nothing for us to do with this case because all syntactic rules that used
in reduction steps always need two symbols an the right of produétions
according to CUNF grammars. So, the pointer that ;;oints to current symbal will

be returned.

()

Figure 4.5 Case of one input symbao!

Case il
When there are 2 input symbaols in string as in figure 4.6, we must
consider if these two symbols could be reduced by a syntactic rule in grammar.

If we can find the rule that its right side of production matches these two

48

symbols, then they will be replaced with the symbol on the left side of that
product. It is certain that we have a number of input symbols equal to 2 ét the
beginning. Then, after this reduction step, the rest of input symbois in list will be
1 element as in figure 4.7, and will be sent to case |. However, if we cannot find
one as in figure 4.8, the pointer pointing to current node will be shifted to the left,

and it wiil be sent to case i as well.

Figure 4.6 Case of two input symbols

()
() (2)

Figure 4.7 Case of reducible two symbols

2D

shift left
@))

Figure 4.8 Case of irreducible two symbols

Case lll

When there are 3 input symbols in consideration as in figure 4.9, two
choices that could occur are whether the left pair of symbols or the right pair of
symbols will be reguced foliowing to grammar. In each reduction for this case,
two symbuols will be replaced with one symbol according to syntactic rule. So, if
we have k symbols for input, there will be only & -1 input symbols aﬁerAeach
reduction step. Otherwise, current pointer wili be shift to the ieft and sent to
another case if we cannot find the producﬁon that its right side matched left pair

or right pair of these 3 symbols as in figure 4.10.

49

H—E@—@

Figure 4.9 Case of three input symbols

<N

shift left

Figure 4.10 Case of three irreducible input symbols

in fact, the behaviors of this parser are guite different after reduction step
depend on the position that these 3 symbols appear in string. Suppose that 3
pointers pointing ta 3 current symboals are pLeft, pMid and pRight from left to
right respectively, where pleft points to w,, pMid point to w,, and pRight tc w,
as in figure 4.9. If either left pair or right pair of symbois are reduced, we have to
consider whether the right node of pRight is empty or not. If there is a node
behind pRight, we must shift right before going to another case in next recursion

as shown in figure 4.11 and figure 4.12.

Sometimes, it is possible for DRight as the right most element in list which
means there is no node next to it on the right. After reduction step, the current
right most element in list will be sent to the next recursion. This right most
element could be either w, pointed by pRight as in figure 4.13 or v, pointed by

pNew as in figure 4.14, where pNew will be sentto the next recursion as pRight.

m
shift right
vl m @

3.0/
(—=)

Figure 4.11 Case of shifting right after left reduction

50

o T
shift right
@ () (wa)

s

Figure 4.12 Case of shifting right after right reduction

/
/D shift self

e

Figure 4.13 Case of shifting seif after ieft reduction

q shift self
? &N

Figure 4.14 Case of shifting self after right reduction

Three cases described above are all cases in function DdpParse that we
must encounter while ‘parsing. Besides, there is something that is important in
function CanCombine that we should understand. Suppose that we have three
input symbols sent into CanCombine as in figure 4.9. We need to examine is
whether left pair or right of symbcls could be reduced. Begin with searching
sequence of w,w,w, in context-sensitive rules. If we can find one in hash that
require O(1), that means both left pair and right pair of symbols could be reduce,
but only one will be selected according to value that we retrieve from hash of

context-sensitive rules.

51

However, it is possible that we will find item w,w,w;, in context-sensitive
rules but cannot reduce any one neither left pair nor right pair because of priority
flow in context. Finaily, if there is no item w,w,w, in hash of context-sensitive
ruies, hash of production will be searched for the vaiue w,w, or w,w, respectively

for either left pair or right pair of symbois may be chosen in reduction step.

CHAPTER 5
EXPERIMENT

5.1 Languages used in Experiment

In this experiment, we demonstrated how to apply CUNF grammar with HTML
{Hyper Text Markup Language) version 3.2 as described in (lan, 1997) including a
simple recovery solution. By the experiment, we will prove what we claimed for CUNF
grammar and data-directed parser. Generally, a markup language is a way of
describing, using instructions embedded within a document. Those instructions or
markup elements used in HTML called tags which aie the sections of text enclosed by a
less-than and greater-than sign (<...z), and are the markup instructions that explain
what each part of the document means, where <...> indicates start tag and </...>
indicates enH tag. For example, the tag <TITLE=> indicates the start of a title, while the

</TITLE> tag marks the end of a title. Thus, the text string
<TITLE> Hyper Text Markup Language </TITLE>

marks the string "Hyper Text Markup Language™ as a fitie.

5.1.1 Elemant Attribuies

Due to the definition of HTML, some elemenis can take attributes that
define properties or special information abaut the element. Generally, attributes
are much like variables. They always appear in the start tag of an element, and
are usually assigned values that define these special properties. Far example,
the element

<H1 ALIGN="center"> Element Attributes </H1>

takes an ALIGN attribute, which states that the heading shauld be centered on
the display. Another example, used to include an image within an HTML

document, is found in the IMG eiement, An IMG element appears via the tag:

53

The SRC attribute specifies the name of the image file to be included in
the document, The attribute name, like the element name, is case-insensitive.
Thus the above line could equally well be written as either of:

However, the value assigned to an SRC attribute is case-sensitive; case-
sensitivity can be preservéd by enclosing the string in quotation marks. As we
may have noticed, the IMG element is empty like the BR element, since it merely

inserts an image and does not affect a biock of text.

5.1.2 Structured Languages

HTML is a structured language which means that there are rules for
where elements can and cannot go. These rules are presented to enforce an
overé!l togicai structures upon the document. For example, a heading element
like <H1> ... </H1> can contain text, text marked for emphasis, line breaks,
inline images, and hypertext anchors, but it cannot contain any other HTML
element. As a result, the markup

<Hi><H2> ... {exi... <:-'H2></H1 >

is invalid. Obviously, it does not make sense for a heading to “contain™ another
heading, and the HFML rules reflect this reality. In addition, elements can never

overlap; this means that tag placement like
<H1><H2> Structure Language </H1></H2>

is illegal. There are many such struciural ruies.

5.2 CUNF Grammars for HTML

We can divide the markup tags of HTML into 5 categories as 'S’ for a start tag,
‘E’ for an end tag, T foré biock of text, *C’ for a comment tag and ‘D’ for a declaration
tag respectively. First, 'S’ or a group of start tags which are tags tike <htmi>, <head> or
<body> that each one consists of section of text enclosed by a less-than and greater-

than sign (< ... >). Second, ‘E’ or a group of end tags such as </htmi>, </head> or

54

<body> which are section of text enclosed in (</ ... >). Third, ‘T’ or the section of text

that is not written within a less-than and a greater-than sign like “hyper text markup

language”. Fourth, *C' or a group of comment tags like <i-- comment —> which are any

text written within (<1-- ... —>). And the last one, ‘D’ or a group of declaration tags which

are section of text written in {<! ... >) such as <! declaration >. Besides, we need to

classify them into 3 types in order to generate an appropriate syntactic rules defined in

CUNF grammars as type | rules, type I rules and type il rules respectively.

5.2.1 Type ! Rules
Type | rules are rules for tags that have both the start tag and end tag

like <htmi> ... </html> or <head> ... /head>. We define symboi ‘Sx’ for any start
tag <x> where x is a tag name, and we define symboi ‘Ex’ for any end tag‘</x>
where x is-a tag name. Then symbols that represent <html> and </html> will be
‘Shtm!’ and ‘Ehtm?’ respectively. In reduction step, both ‘SxX* and 'Ex’ will be
reduced to . That means both ‘Shtml’ and ‘Ehtml" will be reduced to ‘htm¥
which characterize as ordinary text in syntactic rules. Hence, tags as <head>
and </head> will be represented as ‘Shead’ and ‘Ehead’ which can be replaced
with *head’ as well. Suppose that there are “<html> <head> example </head>
</html>" in html file, where section of text ‘example’ will be represented with 't' .
We will define grammar rules according to CUNF grammars for these tags as

Shtmi + Ehtm} -—-> html

head + Ehimf > Ehtml

Shead + Ehead -—-> head
t+ Ehead —> Ehead

5.2.2 Type li Rules

Type |l rules are rules for tags that have only start tag such as <base> or
<isindex>. Sometimes, it means that these tags such as <base>, <isindex>,
<link>, or <meta> are complete at first. So, we will define *Sx’ for <x> where x is

a tag name that has only a start tag. However, it is possible to write text after

55

these tags like ‘<link> link’. Then we shail define rules based on CUNF grammar

for these tags as

Slink + t —> Slink

5.2.3 Type il Rules

Type Il rules are rules for tags that have start tag but end tag is optional
such as <> ... or We define symbol 'Sx’ for start tag <x> and
symbol ‘Ex’ .for end tag because end tag is optional. This fact also means only a
start tag is enough, so we define symbol ‘Sx’ for these kinds of tag such as <dt>,
<dd> or <ii>. Suppose that we have * unodered list list item <ut>"
and "“ unodered list list item" in html fites, we shall define grammar

rules for them as
Sul + Eul === ul
t+ Eul —= Eut
li + Eul -—> Eul
Sk + Eli > i
Sli+ t —> Sli
i+ Eli -—> Eli

5.3 Cutput Format -

in the experiment, input sentences will be analyzed by lexical module and
syntactic moduie respectively 10 a produce parse tree for each file of HTML. To
represent the parse tree which consists of nodes and arcs or links between nodes, we
will use flat tree form instead. For example, (S (A B)) as figure 5.1 a) means the parse
tree that has reot S and two children; A and B. Besides, the tree could have subtree like

(S(AB(CD))) asfigure 5.1 b) which means the child B has two children; C and D.

56
a) e b)
g OO0
ONENO

Figure 5.1 Parse tree

Results from the experiment in this stage, a parser will parse input sentences
and displaying its structure in a flat tree form. The parse free will be considered as a
successful one if its roct labeled S, and will be an incoempiete parse tree for its root with

the other symbois.

5.4 Error-insensitive Solution for HTML

It is quite useful for us to understand the concept of solution for
incomplete tags in HTML fite. Due to the nature of HTML which is structured language,
we can divide tags into 5 categories as 'S’ for a start tag, ‘E for an end tag, ‘T" for a block
of text, 'C’ for a comment, and ‘D' for a declaration tag. For tags that have both the start
tag and end tag fike <body> ... </body>, we can reduce them to body. Otherwise, we
cannot reduce them acconjding to CUNF grammars such as <body> ... </head>. In
ordinary parsing, we can reject this input data as an incomplete parse tree, but in error-
insensiti\}e parsing we need to repair them in parsing process to form the complete
parse tree. Hence, we will define three virtual categories of tags for an efror-insensitive
parsing as ‘S’ for a start tag, ‘E* for an end tag, and ‘X' for other tags. Besides, we need
to construct the transition table as shown in table 5.1 for any cases of tags that could
occur in parsing including the way to solve them. The transition table shown in table 5.1
is an example of error-recovery implementation according to HTML rules. it is a solution
with 9 states and some constraints. In error-recovery mode, tag BODY and HTML will be

added to input file automaticaily if they are missing.

57

Table 5.1 Error-Recovery Table for HTML

State| Label Next State

i S8 1.2,3
2 SE 1,2,3,5,8,9
3 SX 1,2,3
4 ES 4,56

5 EE 2,4,5,6,8

B EX 2.5,8
7 x5 7.8,8
8 XE 3,.6,9
- AX 3,6,9

5.5 Common Parsing using Data-Directed Parser

Data-Directed Parser can be appiied to various works that require time
complexity equals to O{n) in parsing while languages used in parsing must be defined
correctly in CUNF grammars, Sometimes, we can think that grammar is a programming
language that controls all processes of parser. So, it is not important whether our
problems will relate to grammer theory and languages or not. The onty important cne is
that if we can transform those of them into CUNF, nothing can prehibit us from our goat.

To apply it with parsing, the exampie of HTML file was shown below as,

Htmi File

<IDOCTYPE HTML PUBLIC "/AW3C/DTD HTML 4.0 Transitional//EN™

<{— saved from uri=(003 1)http:/fwww.w3.0rg/TR/REC-htmi32 —>
<HTML><HEAD><TITLE>HTML 3.2 Reference Specification</TITLE>

<META content="text/htmi; charset=is0-8855-1" hitp-equiv=Content-Type=>
<META content="MSHTML 5.00.2614,3500" name=GENERATOR></HEAD>
<BODY alink=#ff00ff

background="HTML 3_2 Reference Specification_files/recbg.jpg" bgColor=#fff6f0
link=#c00000 text=#000000 vLink=#800000><I--basefont size=3-->

<H2 align=right=132</H2>

<H1 align=center>HTML 3.2 Reference Specification</H1>

<H3 align=center>Abstract</H3>

58

<P>The HyperText Markup Language (HTML} is a simple markup language used to
create hypertext documents that are portabie from one platform {0 another, HTML

documenis are SGML documents with generic semantics that are appropriate for
representing information from a wide range of applications. This specification
defines HTML version.3.2. HTML 3.2 aims to capture recommended practice as of
early "96 and as such to be used as a repfacement for HTML 2.0 (RFC 1866).
<HR>
<H2>Contents</H2>

introduction to HTML 3.2
HTML as an SGML application
<LizThe Structure of HTML documents
The HEAD element and its
children
<LI=The BODY element and its
children
Acknowiedgements</Az
<A hl:ef=’http://mvw.w3.orgl'l' R/REC-htmi32#refs'>Further Reading ...
</JL>
<HR>
<H2> </H2>
</BODY></HTML>

We will dispiay the result of parse tree in the form of flat tree with the root that
labeled himl symbel, which means the process is successful. The result of the

experiment wilt be shown as

Parse Tree

{htmi {d htrf {¢ htmi {(Shtrl Ehtrml (head (Shead Ehead (titie (Stitle Efitle (i Etitie))Ehead (Smeta Ehead (Smeta Ehead
MIERtmI (body (Sbody Ebedy (¢ Ebody {h2 (Sh2 Eh2 (t En2))Ebody {h* (Sh1 Eh1 {{ Eh1 NEbody (h3 (Sh3 Eh3 (t En3
JEbody (Sp Ebody (t Ebody (t Ebody (a (Sa Ea {t Ea))Ebody (t Ebody (Shr Ebody (h2 {Sh2 Eh2 (t Eh2))Ebody (ul (Sus
Eui (Sii (Sli a {Sa Ea (t Ea)))Eul (Sli (Sii a (Sa Ea {t Ea)))Eul (Sl (Sl a {Sa Ea (t Ea }})Eul {Si (Sli a {Sa Ea (¢ Ea))}Eul {SIi
(St a (Sa Ea (t Ea)))Eul (Sli (Sli a (Sa Ea (t Ea)})Eul (i (Sli Eli (a (Sa Ea (t Ea Y)EIi })Eul }))1))Ebody (Shr Ebody {h2
(8hZ Eh2 (t EhZ))Ebody NN NIENRmI)}

<Structure High Level> (html)

59

5.8 Error-Recovery Parsing using Data-Directed Parser

We can also develop the original concept of parser to parse any HTML files that
are incomplete as well by depending on clues or existing tags in context. By applying
an error-recovery table described in previous section, we will have an error insensitive
parser that can roughly removes errors that occur in parsing process. It can also assign
the appropriate tags in order to build a parse tree with the symbol S at the root. The
experiment with the incompiete HTML file with the error-free parser wiii be demonstrated

below as:

Error-Recovery Resuit

S E-> 8§ X recommend to add tag: <h2> for tag: </h2> atiine 9

S E-> 7 Ex recommend to remove iag: <meta> before tag: </nimi> at Line 5
S E -> 7 Ei: recommend o remove tag: <meta> before tag; </html> at Line 4
EE->7E :recommend to remove </title> before tag: </htmi> at line 3

S E-> 7 Ex recommend {c remove tag: <head> before tag: </himl> at Line 3

Hirgl File

1: <IDOCTYPE HTML PUBLIC "-/W3CHDTL HTML 4.0 Transitional//EN">

2 <l saved from url=(0031)http/iwww.w3.0rg/TR/REC-htmi32 -->

3: <HTML><HEAD=>HTML 3.2 Reference Specification</TITLE>

4: <META content="text/ntm}; charset=is0-88563-1" hitp-equiv=Conteni-Typs>

<META content="MSHTML 5.00.2614.3600" name=GENERATOR>

o]

<BODY aLink=#ff00ff

@

7: background="HTML 3_2 Reference Specification_files/rechg.jpg" bgColor=#{ffgf0
8: link=#c00000 text=#000000 vLink=#800000><l--hasefont size=3->

9 132</H2>

10 <H1 align=center>HTML 3.2 Reference Specification</H1>

11 <H3 align=center>Abstract</H3>

12: <P>The HyperText Markup Language {HTML) is a simple markup language used to
13: reate hypertext documents that are portable from one platform to another, HTML
14: documents are SGML documents with generic semantics that are appropriate for
15: representing information from a wide range of appiications. This specification

16; defines HTML version 3.2. HTML 3.2 aims to capture recommended practice as of
17: early '96 and as such to be used as a replacement for HTML 2.0 (<A

18: href="http:/Awww.w3.0rg/TR/REC-htmi32#refs">RFC 1866),

19: <HR>

60

20:
21:
22:
23:
24:
28:
26:
27:
28:
29.
30:
31
32:

<H2>Conients</H2>

< JL>

 Introduction to HTML 3.2
HTML as an SGML application</A=
<LE>The Structure of HTML documents
The HEAD element and its
children

The BODY element and its
children

Acknowledgements

<Ll=<A hrefz"http:/.’www;uﬁ.org/T R/REC-himl32&refs™>Further Reading ...

<HR>

</BODY></HTML>

CHAPTER 6
CONCLUSION AND PERSPECTIVE

6.1 Conclusion

Since the concept of grammars and the hierarchy of grammars was proposed
by Chomsky in (Chomsky, 1956) and {Chomsky, 1959), many parsing techniques have
been developed in 2 distinct concepts; top-down and bottom-up paradigm. Both of
these paradigms refiect 2 important insights in the philosophical tradition; the rationalist
tradition or goal-directed which focuses on the prior knowledge, and the empiricat
tradition or data-directed which focuses on the data. Even though these two parser
paradigms are different, both of them can share the same grammar and reflect different
problems. Top-down parser searches for a parse tree by irying to build from the root
node S dewn to the leaves, but it could fail to match all the symbols in the input. While
bottom-up parser starts form the symbols of the input and tries to build tree until the root

Sis found, but it could fail as well.

To reduce an apparently exponential-time problem to polynomiai-time one by
eliminating the repeative solution of sub-problems inherent in backtracking approaches,
two dynamic programming approach was proposed; Earley’s algorithm and CYK
algorithm. Earley’s a!gorithm is a top-down parser that was proposed by (Earley, 1970)
while CYK algorithm is a bottom-up parser that was proposed by Kasami {Kasami, 1965)
and Younger (Younger, 1967). The dynamic programming approach leads to a worsi-
case behavior of O(ns), where n is the number of words in the input while the criginal
top~-down and bottom-up requires time complexity up to c However, these four parser

techniques are parser that can work using oniy grammars uniike LR parser.

LR parser; the most famous technique used in compiler today which proposed
by Aho (Aho, 1986), needs additionai information called LR parsing table that has iwo
parts; action and goto, in order to parse deterministic context-free grammar in time
complexity equals to O(n). This technique is formally called as LR(k} parsing where L is

for left-to-right scanning of input, R for construction a rightmost derivation in reverse,

62

and k for the number of input symbols of lookahead that are used in making parsing
decisions. From the experiment, we found that time complexity of LR parsing does not
depend on a number of input symbols but depends on states generated from grammars
especiaily when those 'grammars have precedences and associativities. LR parser is
also said that it could use an ambiguous grammar as a seed to generate LR parsing
table; two advantages for using ambiguous grammar is shorter, more natural
specification and for special case optimization. Although this may be interesting, we
often encounter with resolving conflicts occuring in process of generating LR parsing

table such shift/reduce conflicts or reduce/reduce conflicts.

In this research, we try to propose two important parts for syntactic analysis.
Firstly, we propcse a new data-directed grammar formalism called CUNF grammar,
which is unambiguous and could be applied to various problems. CUNF is deﬁned‘as G
={V, T, P, R S, ¥ where Vis a set of non-terminal symbols, T is a set of terminal
symbols, P is a set of productions, R is a set of context-sensitive rules, S is a start
symbol, and § is an end symbol. ii reflects two important parts in grammar formalism;
producticns and priorities in using those productions. Languages with precedence
conflicts which are described in chapter 3 demonstrating the existence of these
pricrities that plays important roles in parsing. As a result, many ambiguous grammars
could be described easily in unambiguous form using CUNF grammars. Problems such
as shiit/shift conflicts, shiftreduce conflicts and reduce/reduce conflict will be rescived
by this grammar formalism and a number of productions defined in CUNF grammars are

often compact following to Chomsky Normal Form.

We present two classes of grammars; context-free grammars and regular
grammars could be written in CUNF grammar. For regular grammar, it is not complex
and there is nothing special for writing them in CUNF grammars. However, for context-
free grammars which consist of two subclasses; non-deterministic and deterministic
context-free grammars, there are some advantages for writing them in CUNF grammar
instead of writing them in other grammar formalisms. Those advantages are that we can
write both ambiguous grammars and unambiguous grammars in unambiguous form.

Besides, for some language, It is possible to produce both non-deterministic and

63

deferministic results from CUNF grammars. For special purpose, when some
deterministic results are preferred, we could defined R,, R,, ... R, for those resuits in
grammars G as the foorm G, = (V, T, P, R,, S. $), G, = (V, T, P, R,, S, §) and so on. In
case that all non-deterministic results are necessary, we can use a bottom-up parser like
CYK parser to parse all possible parse trees using grammar G by omitting context-
sensitive rules or set R. By removing set R or context-sensitive rules, CUNF grammars
will resemble the definition of grammars defined in Chomsky Normai Form, and will be

compatibie with CYK's parser.

Secondly, we propose a data-directed parser which is a bottom-up parser as
well as CYK's parser. Data-directed parser works with CUNF grammars and uses only
information defined in CUNF grammars. Its time compiexity equals to O{n) and does not
depend an states like LR parser but depends on input symbols only. Precedences and
associati\fitiges do not affect data-directed parser as in LR parser, 50 its time complexity
will always equals to O(n). Due to the fact that there are many grammars as well as there
are many stert symbol S's from top-down view, it is gquite difficult to answer why we
choose one start symbol instead of others despite we do not know what input symbols
are at first. As in bottom-up view, there could be many nonterminal symboils from va_rious
grammars which an input symboi could be reduced to. However, we can use some
clues such contextual Enfon}}ation that may be useful in decisions to produce the better

results.

Generally, a data-directed parser may be more attractive than LR parser for its &
foockahead symbols both for the left and right direction where k& is an infinite value
following to syntactic rules defined -in grammars.. Due 1o power of recursive
programming which pilays the important role in the data-directed parser, we can link
priorities of all productions together in parsing while it can maintain time complexity
equals to O(n). With these two concepts; one for a new grammar formalism arid the
other one for a new parser, it could be useful to write grammars both ambiguous and
unémbiguous forms in unambiguous forms using only CUNF grammars only. Each

deterministic result generating from CUNF grammars could be received from the data-

directed parser. Besides, all non-deterministic resuits could be aiso produced by CYK's

parser.

6.2 Perspective

Although those information written in each chapter concentrates on context-free
grémmars and regular grammars, CUNF grammars are powerful enough to deal with
natural languages in deterministic style depends on all information we have. However,
natural language is rather compiex and ambigucus, so using only syntactic rules is not a
good idea. Many techniques especially probabilistic models have been introduced to
natural languages processing tasks based on increasing avaitability of text corpora. In
syntactic parsing, probabilistic technigues are utilized to rank the potentially high
numbers of parses generated for natural language applications, and severai attempts
have been rﬁade to prune meaningless parse trees and aid in the selection of the most

iikely parse from multiple parse candidates.

Fujisaki et al. (Fujisaki et al, 1989) introduced the notion of a probabifistic
context-free grammar (PCFG), with probabilities trained in the Forward/Backward
manner. Wright and Wrigley (Wright and Wrigley, 1991) formalized a method of mapping
PCFG onto LR parsing tables by way of distributing the probabilities originally
assoclated with a given CFG to each corresponding LR parsing action. Briscoe and
Carrolt (Briscoe and Carroll, 1993) proposed the simpler way of incorporating trained
probabilities into each parsing action of the LR table. Probabilities are computed directly
from the frequency of application of each action while it-is parsing the training co'rpus.
Their method seems to be abie to exploit the advantages offered by the context-

sensitivity of GLR parsing.

In addition, it is possible for applying probabilistic models to a data-directed
parser as well as LR parser. By using data-directed parser, we will have unigue
structures for any sequences of input strings that share the same patterns. In additional

experiment with natural languages, we notice some sentences which are really

65

ambiguous even for human. For example, the sentence * iike the red ball and flower.”
which means (red (ball and flower }). But, it may also means { red ball and { flowen)). In
this case, selecting an appropriate grammar for a specific target should be a better
method. In the future, the problem that should be concerned is a semantic problem.
Sometimees, collocation ar knowledge-based approach should have been applied to

produce a better result.

REFERENCES

Aho, A. V., and Uliman, J. D. The Theory of Parsing. Transiation, and Compiling, Vok.1.

(n.p.) : Prentice-Hail, 1972.

Aho, A. V., Sethi, R., and Uliman, J. D. Compilers: Principies, Techniques. and Tgols.
(n.p.} : Addison-Wesley, 1986.

Allen, {. H. Compiler Design in C. New Jersey : Prentic Hall, 1990.
Allen, J. Natural L anguage Understanding. (n.p.) : Benjamin/Cummings, 1995.

Backus, J. The Syntax and Semantics of the Proposed International Algebraic Language

- of the Zurich ACM-GAMM Conference. Information Processing (1960} : 125-132.

Briscoe, T., and Carroll, J. Generalized Probabilistic LR Parsing of Natural Language
(Corpora) with Unification-Based Grammars. Computationai Linguistic 19,1,
(1993) : 25-59.

Chomsky, N. Three Models for the Description of Language. IR Transactions on

Information Thaory 2,3, (1956 : 113-124.

Chomsky, N. On certain formal properties of grammars. information and Controf 2,

_(‘I 959) : 137-167.

Dick, G. et al. Modern Compiler Design. New York : John Wiley and Sons, 2000.

tarley, J. An Efficient Context-Free Parsing Algorithm. Communications of the ACM 6,8,

(1970) : 457-455.

Fujisaki, T. et al. A Probabilistic Parsing Method for Sentence Disambiguation.

Proceedings of 1st Internationat Workshop on Parsing Technigues (1989} : 85-

94.

Gilbert, K. K. Computer Processing of Natural Language. New Jersey. : Prentice-Hall,
1999.

Graham, S. L., Harrison, M. A., and Ruzzo, W. L. On-line context-free Language

Recognition in less than cubic time. Proc. Eighth Annual ACM Symposium on

67

Switching and Automata Theory (1976) : 175-180.

Grune, D., and Jacobs, C. J. H. Parsing Techniques (A practical Guide}. {n.p.) : Ellis
Horwood, 1550.

fan, S. G. HTML Sourcebook. Third Edition. (n.p.} : John wisley & sons, 1897.

John, E. H., and Jeffrey, D. U. Introduction tc Automata Theory, Language, and

Computation. (n.p.) : Addison-Wesley, 1379.

Kasami, T. An Efficient Recognition and Syntax Algorithm for Context-free Languages.

Scientific Report AFCRL-85-785 (1965).

Kasami, T., and Tori, K. . A Syntax Analysis Procedure for Unambiguous Context-free

Grammars. J. ACM 16,3, (1965} : 423-431.

Kernighan, B. W., and Cherry, L. L. . A System for Typesetting Mathematics. Comm.
ACM 18,3, (1975) : 151-157.

Lee, K-H. Table-driven Parsing with Non-LR and Underspecified Grammars. NLPRS' 97

(Incorporating SNLP' 97) Proceeding of the Naturai Language processing

Pacific Rim Symposium {1997} : 175-180.

Shiina, H., and Masuyama, S. Proposa!l of the UGLR Parser for Phrase Structure

Grammars. NLPRS. 97 (incorporating SNLP' 97) Broceeding of the Natural

Language processing Pacific Rim Symposium (1997) : 529-532.

Tomita, M. Generalized LR parsing. Kluwer Academic Publisher, 1991.

Varakulsiripunth, R.; and Junwun, S. The Analysis on Sentence Structure by M-ATN. ,

nnsulsrunngizntg Aaanssuinin 9 annifu AKeR 11 16 1, annfunalulad

T AR (1988): 1-18-1 — 1-18-13.

Varakulsiripunth, R., Junwun S., and Maneenate, N. Thai Syntactical Analysis by M-ATN.

maszgaAenisnis Amneslin afsh 12, snAnerdunenanans (1989).

Variant, L. G. Regularity and Related Problem for deterministic pushdown automata. J.

ACM 22,1, (1975) : 1-10.

Wright, J. H., and Wrigley, E. N. GLR Parsing with_Probability. Kluwer Academic

68

Publishers, 1991.
Yngve, V. H. Syntax and the problem of multiple meaning. Machine Translation of
Languages (1955},

Younger, D. H. Recognition and parsing of context-free languages in time n’. Information

and Controi 10,2, (1967) : 189-208.

AONUUINYUINNS)
ANRINTUNINEAE

APPENDIX A

HTML ELEMENT SPECIFICATIONS

iliustration of the abbreviations used to describe elemants

HTML
HEAD

BODY

DL

oL

UL

MENU

Efement

BASE
1SINDEX
LINK
META
SCRIPT
STYLE
TITLE

ADDRESS

BLOCKQUOTE

CENTER

DIV

H1-H6

HR

MULTICOL

P

PRE

FORM

FIELDSET

KEYGEN

LABEL

INPUT

SELECT
OPTION

TEXTAREA

DT
CD

8]
L}

Li

Description

An HTML Document
Docuhent Meta-information
Base URL of the document
Searchabie document
Reiafionships to cther resources
Meta-Information

Pregram scripts

Document stylesheet
Dacument titie

Document Body

Address information

Block quotation

Centered text

Block division of a document
Heading {1-6)

Horizonial divider
Multicolumn text

Paragraphs

Preformatied text

User input form

" Group related input elemenis

Generate encrypted keys
Label for input elements
Input fields

Selectable fields

Option in selectable field
Text input region
Descriptior/Glossary fist
Term

Description

Ordered list

List item

Unordered fist

List item

Menu list

List item

Flement

Li

CAPTION
coL
COLGROUP
THEAD
TBODY
TFOOT
TR
TD
TH

Semantic Phrage Markup

Element
CITE
CODE
DFN
EM

KBD

Q

SAMP
STRIKE
STRONG
VAR

Physical Phrase Markup

Element

B

BDO
DiG
BLINK
FONT

i
MARQUEE
NOBR
5
SMALL
SPAN
SuB
suUp

Description

Directory list

List item

Table

Table Caption

Columnn properties specifier
Column group specification
Tabie header grouping
Table body grouping

Table footer grouping
Table row

Table data cell

Table header cefl

Description

Citation

Typed computer code
Definition
Emphasized text
Keyboard input

Inline quotation
Sample text
Struck-out text

Strong emphasis

A variable

Description

Bold

Bidirectional override
Bigger text

Blinking text

Font sizefface/color
italics

Scrolling marguee text
No line breaks

Strike through

Smaller text
Stylesheet-specified styling
Subscript

Superscript

71

Element

Element
BR

WEBR
SPACER

inciusion i‘m ATH
Elerment
APPLET
PARAM
MG
 IFRAME
EMBED
NOEMBED
NOSCRIPT
OBJECT »
PARAM
SERVER

Hypertext Relationships
" Element

A

Meta-Information Elements

Element
BASEFONT
BGSOUND
MAP

AREA

N FRAME en
Element
FRAMESET
FRAME
NOFRAMES

72

Description
Fixed-width font

Underiine

Description
Line break
Optional Word Sreak

Horzontal or verticat space

Description

Ernbedded applet

Parameter for appiet

Inling image

Ineert ficating document frame
Embed arbitrary data

HTML alternative to EMBED
HTML atternative to SCRIPT
Embed data and handler
paramater for abject/handler

Server-side scripting

Description

Hyperiext anchor

Description

Base font for document
Background audio/sound
Client-side imagemap

Imagemap data

Description
Declare framed regions
Specify frame contents

Markup for non-frame browsers

73

% Basic Structures of HTML

HTML Etement: An HTML Document

Usage: - <HTML> ... <HTML>
Can Contain: HEAD, BODY
Can Be Inside: nothing

HEAD Element: Document Meta-information

Usage: <HEAD=> ... </HEAD>

Can Centain: BASE, ISINDEX, LINK, META, SCRIPT, STYLE, TITLE
Can Be Inside: HTML

BODY Flement: Document Text Bo

Usage: <BODY=> ... </BODY>

Can Corntain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP,
SCRIPT, iSINDEX, INPUT, SELECT, TEXTAREA, DIR, DL, MENU, GL, UL, P, HR, Hn, ADDRESS,
BLOCKQUOTE, CENTER, DIV, FORM, PRE, TABLE

Can Be Inside: HTML

BASE Flement: Base URL
Usage: <BASE>
Can Contain: empty
Can Be inside: HEAD

ISINDEX Element; Searchable Bocument
Usage: <[SINDEX>
Can Contain: emoly

Can Be Inside: HEAD, BLOCKQUGTE, BOSY, CENTER, DD, DIV, FORM. LI, TD, TH

LINK Element: Relafignship to Other Documents
Usage: <[INK

Can Contain: empty

Can Be Inside: HEAD

META Element; Document Meta-infermation
Usage: <META>
Can Contain: empty

Can Be inside: HEAD

RIPT E! nt; Incl Pri fi
Usage: <SCRIPT> ... </SCRIPT>

Can Contain: script program code {characters)

Can Be Inside: HEAD, BODY, any BODY element that allows content

TYLE Element: Stylesh r Rendering Information
Usage: <STYLE=> ... </STYLE>
Can Contain: characters .

Can Be Inside: HEAD

TITLE Eiement: Document Titi
Usage: <TITLE> ... </TITLE>
Can Contain: characters

Can Be Inside: HEAD

Body Text Bj nd Heading Element

ADDRESS Etement: Address Information

Usage: <ADDRESS> ... </ADDRESS>

Can Contain: characters, character highlighting, A, APPLET. BR, IMG, BASEFGNT, MAP, SCRIPT, INPUT,
SELECT, TEXTAREA, P

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DIV, FORM, TD, TH

BLOCK TE Elem it Block Quotations

Usage: ' <BLCCKQUOTE= ... </BLOCKQUOTE=

Can Contain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, ININDEX,

INPUT, SELECT, TEXTAREA, DIR, DL, MENU, OL, UL, P, HR, Hn, ADDRESS, BLOCKQUOTE,
CENTER, DIV, FORM, PRE, TABLE
Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, TH

CENTER Flement: Ceriter the Enclosed Text Horizantall

Usage: <CENTER=> ... </CENTER>

Can Contain: characters, character highlighting, A, APPLET, BR, iMG, BASEFONT, MAP, SCRIPT, ISINDEX,
INPUT, SELECT, TEXTAREA, DIR, DL, MENU, OL, UL, P, HR, Hn, ADDRESS, BLOCKQUOTE,
CENTER, DIV, FORM, PRE, TABLE

Can Be inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, 7D, TH

DIV Eiement: A Block Division_of the BODY

Usage: <DIV> ... </DiV>

Cari Contain: characiers, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, ISINDEX,
INPUT, SELECT, TEXTAREA, DIR, DL, MENU, OL, UL, P, HR, Hn, ADDRESS, BLOCKQUOTE,
CENTER, Div, FORM, PRE, TABLE

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, TH

74

Hn Elements: Headin

Usage: <Hn> ... </Hn>

Can Contain: characters, character highiighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, INPUT,
SELECT, TEXTAREA

Can Be Inside: BLOCKQUQTE, BODY, CENTER, Div, FORM, TD, TH

HR Element: Horizonta! Rule
Usage: <HR=>
Can Contain: empty

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, TH

P Element: P la}
Usage: <P> . (</P>)
Can Contain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, ISINDEX,

INPUT, SELECT, TEXTAREA
Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, TH

PRE Element: Preformatied Text

Usage: _<PRE> ... <fPRE>

Can Contain: characters, B, CITE, CODE, DEN, EM, §, KBD, S, SAMP, STRIKE, STRONG, TT, U, VAR, A,
APPLET, BR, MAP, SCRIPT, INPUT, SELECT, TEXTAREA

Can Be inside: BLOCKQUIOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, TH

FORM Element: Fill-in Forms

Usage: <FORM> ... </FORM>

Can Contain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, ISINDEX,
INPUT, SELECT, TEXW'IlAREA, DIR, DL, MENY, Gi, UL, P, HR, Hn, ADDRESS, BLOCKQUOQTE,
CENTER, DiV, PRE, TABLE

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, L1, TD, TH

INPUT Element: T X heckboxes, an io Button
Usage: <INPUT>
Can Contain: empty

Can Be inside: ADCRESS, BLOCKQUOTE, BODY, CENTER, DD, DIV, DT, FORM, L}, PRE, TD, TH, P, Hn, A,
CAPTION, character highlighting

SELECT Element: Select from among Multiple Options
Usage: <SELECT> ... </SELECT>

Can Contain: OPTION

75

76

Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DD, DIV, DT, FORM, LI, PRE, TD. TH, P, Hn, A,
CAPTION, character highlighting

OPTION Element: List of Qptions for SELECT

Usage: <OPTION= ... </OPTION=>

Can Centain: characters

Can Be [nside: SELECT

TEXTAREA Flement: Text input Region

Usage: <TEXTAREA> ... </TEXTAREA>

Can Contain: characters

Can Be Inside: -ADDRESS, BLOCKQUOTE, BODY, CENTER, DD, DIV, DT, FORM, LI, PRE, TD, TH, P, Hn, A,
CAPTION, character highlighting

EYGEN Etement; Generate En K N MNavi r Oni
Usage: <KEYGEN=>
Can Contain: empty

CanBeinside: ADDRESS, BLOCKQUOTE, BODY, DD, DV, DT, FORM, LI, PRE, TD, TH, CENTER, Hr, P, A,
" APPLET, CAPTION, character highlighting

v, Lists and List-Related Elements

CL Element: Glos: Li

Usage: <DL> .., </DL>

Can Contain: DT, DD

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DI, FORM, LL 1D, TH

DT Element; Term.in a Giossary L

Usage: <DT> ... {(</DT=)

Can Contain: characters, characier hightighting, A, APPLET, ER, MG, BASEFONT, MAP, SCRIPT, INPUT,
SELECT, TEXTAREA

Can Be Inside: DL

DD Element: fption.i | i

Usage: <DD>... </DD>

Can Caontain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, ISINDEX,

INPUT, SELECT, TEXTAREA, DIR, DL, MENU, OL, UL, P, HR, BLOCKQUOTE, CENTER, DIV,
FORM, PRE, TABLE
Can Be Inside: DL

lement; Ordered Li

Usage: <QL> ...

Can Contain: LI

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD. TH

UL Element: Ljnorgjgrgg' List

Usage: <UL=> ...

Can Contain: Lt

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, Div, FORM, LI, TG, TH

DIR Element: Directory List

Usage: <DiR> ... </DIR=

Can Contain: Lt

Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, Li, TD, TH

MENU Element: Menu List

Usage: <MENU> ... </MENU>

Can Contain: Li

Can Be inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, LI, TD, TH

Li Element: List item -
Usage: <Ll> ..
Can Contain: characters, characier highlighting, A, APPLET, BR, IMG, BASEFONT, MAF, SCRIPT, ISINDEX,
INPUT, SELECT, TEXTAREA, DIR, DL, MENU, OL, UL, P, HR, BLOCKQUOTE. CENTER, DIV,
FORM, PRE, TABLE
- Can Be Inside: DIR, MENU, UL, OL

% Tables and Tabular Structures

TABLE Element; Tables and Tabular Struciures

Usage: <TABLE> ... </T. AE\LE;

Can Contain: CAPTION, COL, COLGROUP, TBODY, TFOOT, THEAD, TR
Can Be Inside: BLOCKQUOTE, BODY, CENTER, DD, DIV, FORM, L. TD, TH

APTION Element: Tabt i
Usage: <CAPTION= ... </CAPTION=>
Can Contain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, INPUT,

SELECT, TEXTAREA
Can Be Inside: TABLE

lement: ify Pr j ium
Usage: <COL>
Can Contain: empty

Can Be Inside: COLGROUP, TABLE

ROUP Element: P ies of a Collection of Columns
Usage: <COLGROUP=> ... </COLGROUP=
Can Contain: CoL
Can Be Inside: TABLE

THEAD Element; Table Header

Usage: <THEAD> ... (</THEAD>}
Can Contain: TR

Can Be Inside: TABLE

TBODY Elemant: Tabl

Usage: <TBODY> ... (</TBODY>)
Can Contain: TR

Can Be Inside: TABLE

TFOQT Element; Table Footer

Usage: <TFOOT> ... (</TFOOT=>)
Can Coniain: TR
Can Be inside: TABLE

TR Element: Table Row

Usage: <TR> ... {(</TR>}

Can Contain: TH, TD

Can Be inside: TABLE, TBODY, TFOOT, THEAD

TH Element: Table Headers

Usage: <TH= ... (</TH>)

Can Centain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, ISINDEX,
INPUT, SELECT, TEXTAREA, DiR, DL, MENU, OL, UL, P, HR, Hn, ADDRESS, BLOCKQUOTE,
CENTER, DIV, FORM, PRE, TABLE

Can Be tnside: TR

TD Element: Table Data
Usage: <TD> ... (</TD>)

Can Centain; characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, iSINDEX,

INPUT, SELECT, TEXTAREA, DIR, DL, MENU, OL, UL, P, BR, Hn, ADDRESS, BLOCKQUOTE,
CENTER, DIV, FORM, PRE, TABLE
Can Be inside: TR

79

% Inclusion Elements

APPLET Element; Inciude an Em Appl
Usage: <APPLET> ... </APPLET>
Can Contain: characters, character highlighting, A, BR, IMG, BASEFONT, MAP, SCRIPT, iNPUT, SELECT,

TEXTAREA, PARAM
Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, PRE, DD, DT,Ll, P, TD, TH, Hn, A,
CAPTION, character highlighting

PARAM Element: Define an Applet Parameter
Usage: <PARAM>

Can Contain: empty

Can Be Inside: APPLET, CBJECT

iMG Eiement; Infline Image:
Usage: <IMG=>
Can Contain: empty

Can Be Inside: ADDRESS, BLOCKQUOTE, BCDY, CENTER, DIV, FORM, DD, DT, LI, P, TD, TH, Hn, A, CAPTION,

character highlighting

A Element: Hypertext Ahcnors

Usage: <A> .

Can Contain: probably: characters, character highlighting, APPLET, BR, iMG, BASEFONT, MAP, SCRIPT,
INPUT, SELECT, TEXTAREA, SPACER, WBR, EMBED, NGEMBED, OBJECT

Can Be Inside: probably; ADDRESS, BLOCKQUOTE, BODY, CENTER, DiV, FORM, PRE, DD, DT, L}, P, TD, TH,
Hn, CAPTION, APPLET, NOEMBED, OBJECT, character highlighting

% Text/Phrase Markup Elemenis
Content Medet for Highlighting Elemen
The context madel for allthe character highlighting elements is largely. the same as the format below white

NAME is one of CITE, CODE, DEN, EM, KBD, SAMP, STRIKE, STRONG, VAR, B, BIG, FONT, |, 5, SMALL, SPAN, SUB,

SUP,TT, or U.
Usage: <NAME> ... </NAME>
Can Contain: characters, character highlighting, A, APPLET, BR, IMG, BASEFONT, MAP, SCRIPT, INPUT,

SELECT, TEXTAREA
Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DiV, FORM, PRE, DD, DT, LI, P, TD, TH, Hn, A,
CAPTION, character highlighting

ighlighting Elements and Their Recomm Eorm

Element Meaning Recommended Formalting
CITE A citation italics

CODE An example of typed code fixed-width font

DFN A definition ltalics

EM Emphasized text italics

KBD Keyboard input-for example fixed-width
SAMP A sequence of literal characters fixed-width
STRIKE Struck-out text iext with line
STRONG Strong emphasis boidface
VAR A variable name italics

Physical Highlighting Elements and Their Recommendead Formaiting

Element Meaning

B boldface

BIG oigger text

FONT font size, face, or color

| itaiics

S strike-through

SMALL smaller-text

SPAN stylesheet-specified formatiing information
suB subscript '
Sup ' superscript #
T fixed-width font

u underlined

% Character-like Elements

BR Element: Line Br

Usage:

Can Contain; empty

Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, PRE, DD, DT, LI, P, TD, TH, Hn, A,
CAPTION, character highlighting

% Meta-informaticn Elements

BASEFONT Element; Sef Default Font Characteristics
Usage: <BASEFONT>

Can Contain: empty
Can Be inside; ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, PRE, DD, DT, LI, P, TD, TH, Hn, A,
CAPTION, character highlighting

MAP Elerment: Client-Side Imagemap Database

Usage: <MAP> .., </MAP>

Can Contain; AREA

Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, PRE, DD, DT, LI, P, TD, TH, Hn, A,
CAPTION, character highlighting

81

AREA Element: Client-Side Imaggman Mapping Areas
Usage: <AREA>
Can Contain: empty

Can Be insids: MAP

% FRAME and Framed Documents

EFRAM ment: Declare a FRAME Documen

Usage: <FRAMESET> ... </FRAMESET>
Can Contain: FRAME, FRAMESET, NOFRAMES
Can Be Inside; HTML

ERAME Element: A FRAME within 2 FRAMESET
Usage: <FRAME>
Can Contain: empty

Can Be inside: FRAMESETY

NOFRAMES FElemment: Markup for FRAME-Incapskie Br
Usage: - <NOFRAMES> ... </NOFRAMES>
Can Contain: charagters, character highlighting, A, APPLET, BR, IMG, MAP, SCRIPT, CENTER, Hn, P, HR,

ISINDEX, DIR, DL, MENU, OL, UL, ADDRESS, BLOCKQUQOTE, DIV, FORM, PRE, TABLE, BODY
Can Be Inside: FRAMESET

% Cormnmen HTML Extensions

BLINK Element: Blinking Text

Usage: <BLINK> ... </BLINK>

Can Contain: Unspecified; probably: characters, character highlighting, A, BASEFONT, B8R, IMG, MAP,
NOSCRIPT, SCRIPT, SPACER, WBR, APPLET, EMBED, NOEMBED, OBJECT

Can Be Inside: Unspecified; probably: ADDRESS, BLOCKQUOCTE, BODY, CENTER, DIV, FORM, MULTICOL,
PRE, Hn, DD, DT, LI, P, TD, TH, APPLET, NOEMBED, OBJECT, A, CAPTION, character
highlighting

EMBED Element: Embed an Arbitrary Data Obiect

Usage: <EMBED>

Can Contain; empty

Can Be Inside: ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, MULTICOL, PRE, Hn, DD, DT, LI, P,
TD, TH, NOEMBED, CBJECT, A, CAPTION, character highlighting

TICQL Element: Multicolumn T
Usage: <MULTICOL> ... </sULTICOL>
Can Contain: Unspecified; probably: characters, character highlighting, A, BASEFONT, BR, IMG, MAP,

NOSCRIPT, SCRIPT, SPACER, ISINDEX, WBR, INPUT, SELECT, TEXTAREA, APPLET, EMBED,

82

NOQEMBED, OBJECT, CENTER, Hn, P, HR, DIR, MENU, OL, UL, ADDRESS, BLOCKQUOTE, Div,
FORM, MULTICOL, PRE, TABLE

Can Be Inside: Unspecified; probably: ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, MULTICOL,
DD, L1, TD, TH, APPLET, NOEMBED, OBJECT

N lement; No Ling Break
Jsage: <NOBR> ... </NOBR>
Can Contain: Unspecified; probably: characters, character highlighting, A, BASEFONT, BR, IMG, MAP,

NOSCRIRT, SCRIPT, SPACER, WBR, INPUT, SELECT, TEXTAREA, APPLET, EMBED, NOEMBED,
OBJECT

Can Be Inside: Unspecified; probably: ADDRESS, BLOCKQUOTE, BODY, CENTER, DIV, FORM, MULTICOL, Hr,
DD, DT, LI, P, TD, TH, APPLET, NOEMBED, OBJECT, A, CAPTION, character highfighting

NOEMBED Flement: HTML Alfernative to EMBED

Usage: <NOEMBED> ... </NOEMBED>

Can Contain: Unspecified; probably: characters, character highlighting, A, BR, IMG, MAP, NOSCRIPT, SCRIFT,
SPACER, ISINDEX, WBR, INPUT, SELECT. TEXTAREA, APPLET, EMBED, NOEMBED, OBJECT,
CENTER, Hn, P, HR, DR, DL, MENU, OL, UL, ADDRESS, BLOCKQUOTE, DIV, FORM, PRE,
TABLE, MULTICOL _

Can Be Inside: Unspecified; probably: ADDRESS, BLOCKQUOTE, BODY, CENTER, DiV, FORM, MULTICOL,
BD, Ui, TD, TH, APPLET, OBJECT

APPENDIX B
CUNF GRAMMARS FCR HTML

Rule No. {Grammar Rutes

1 himi 2 ¢c+ntmt | d+htm! | Shtml+ Ehtml | boady + Ehiml | ¢+ Ehtm! | d + Ehtmi |
frameset + Ehtml | head + Ehtml | {+ Ehimi

2 head : Shead + Ehead |} Sbase + Ehead | c+ Ehead | d+ Ehead | Sisindex + Ehead |
Slink + Ehead | Smeta + Ehead | scripi+ Ehead | style + Ehead t t+ Ehead |
title + Ehead

3 body : Shody + Ebody | a+Ebody | address + Ebody | applet+ Ebody | b+ Ebody |
Sbasefont + Ebody | big + Ebody { blink + Ebody } blockquote + Ebody | Sbr+
Ebody § c©+Ebody | center + Ebady | cite + Ebody | code+ Ebody | d+ Ebody
! dfn+Ebody | dir+ Ebody | div+Ebody | di+Ebody | em+ Ebody |
Sembed + Ebody | font+ Ebody | form -+ Ebody | b1+ Ebody | h2+Ebody | h3
+ Ebody | h4 +Ebody t h5+Ebody | h6+Ebody | Shr+Ebody | i+ Ebody |
Simg + Ebody |- Sinput + Ebody | Sisindex + Ebody | kbd + Ebody i Skeygen +
Ebody | map + Ebody | menu + Ebody | multicol + Ebody | nobr+ Ebody |

‘|noembed + Ebody | oi+Ebody | p+Ebody | Sp+Ebody } pre+Ebody | s+

Ebody | samp + Ebody { script+ Ebody | select+ Ebody | small + Ebody |
span + Ebody 1 strike + Ebody | stong + Ebedy | sub+ Ebody | su

4 Shase : Sbase+c | Shase +1

5] Sisindex : Sisindex + ¢ | Sisindex +1

6 Slink : Slink + ¢ | Slink + t

7 Smeta : Smeta+c | Smeta +1t

8 seript Sscript + Escript | ¢+ Escript | t+ Escript

S style - Sstyle + Estyle | c + Estyle]} t+ Estyle

10 fitle : Stifle + Efitle | ¢+ Etitle | t + Etitle

11 address : Saddress + Eaddress | a +Eaddress | applet+ Eaddress | b+ Eaddress |

Shasefont + Eaddress | big + Eaddress 1 blink + Eaddress | Sbr+ Eaddress | c+
Eaddress | cite + Eaddress | code + Eaddress | din + Eaddress | em + Eaddress
i Sembed + Eaddress | font+ Eaddress | i+ Eaddress | Simg + Eaddress |
Sinput + Eaddress | kbd + Eaddress { Skeygen + Eacdress | map + Eaddress |
melticol + Eaddress | nobr + Eaddress | noembed + Eaddress | p + Eaddress |
Sp + Eaddress | s+ Eaddress { samp + Eaddress | script + Eaddress | sefect +
Faddress | smail + Eaddress | span + Eaddress | strike + Eaddress | strong +
Eaddress | sub+ Eaddress | sup + Eaddress | t+ Eaddress | texiarea +

Eaddress | tt+ Eaddress } u+ Eaddress | var + Eaddrass

84

12

biockquote :

Sbiockquote + Eblockquote | a + Eblockquote | address + Eblockquote | applet +
Eblockquote | b+ Eblockquote | Sbasefont + Eblockquote |} big + Ebiockquote |
blink + Ebiockquote | blockquote + Eblockquote | Sbr + Eblockquote | ¢ +
Eblockquote | center + Eblockquote § gite + Eblockquote | code + Ebtockquote |
dfn + Eblockquote | dir + Eblockquote | div + Eblockquote | di + Ebfockquote |
em + Eblockquote | Sembed + Eblockquote | font + Eblockquete | form +
Eblockquote | ht + Eblockquote | h2 + Eblockquote | h3 + Eblockquote | h4 +
Eblockquate | h5 + Eblockquote | h6 + Ebiockquote | Shr+ Eblockquote | i+
Ebiockguote | Simg + Eblockquote | inindex + Eblockquote | Sinput + Eblockquote
i Sisindex + Eblockquote | kbd + Eblockquote | Skeygen + Ebiockquote | map +
Eblockquote | menu + Eblockguote | muiticol + Eblockquote | nobr + Eblockquote

} noembed + Ebiock

13

ceniar:

Scenter + Ecenter | a+ Ecenfer | address + Ecenter | applet+ Ecenter | b+
Ecenter | Sbasefont+ Ecenter | big + Ecenter | biink + Ecenter | blockguote +
Ecenter | Sbr+ Ecenter | ¢+ Ecenter | center+ Ecenter | cite + Ecenter | code
+ Ecenter | dfn+ Ecenter | dir+ Ecenter | div + Ecenter | di+ Ecenter | em+
Ecenter | Sembed + Ecenter | foni + Ecenter i form + Ecenter | hi + Ecenter |
h2 + Ecenter | h3 +Ecenter [h4 + Ecenter | h5+ Ecenter | h6+ Ecenter | Shr+
Ecenter | i+ Ecenter | Simg + Ecenter | Sinput+ Ecenter | Sisindex + Ecenter |
kbd + Ecenter } Skeygen + Ecenter | map + Ecenter | menu + Ecenter | muilticol +
Ecenier | -naobr+ Ecenter | noembed + Ecenter | oi + Ecenier | p+ Ecenter | Sp
+ Ecenter | pre + Ecenter | s+ Ecenter | samp + Ecenter | script + Ecenter |

select + Ecenter | smail + Ecenter |

14

div:

Sdiv + Ediv | a+Ediv | address + Ediv | applet+Ediv | b+ Ediv] Sbasefont+
Ediv | big + Ediv | blink+ Ediv | blockguate + Ediv | Sbr+ Ediv | c+ Ediv |

center + Ediv ! cite + Ediv | code + Ediv | difn+Ediv | dir+Ediv | div+ Ediv |
dl+Ediv | em+Ediv | Sembed + Ediv | font+ Ediv | form+ Ediv | h1+ Ediv |
h2 +Ediv | h3+Edv | h4+Ediv | h5+Ediv | h6+Ediv | Shr+Ediv | i+ Edv
| Simg+ Ediv | Sinput + Ediv { Sisindex+ Ediv | kbd+ Ediv | Skeygen + Ediv |
map + Ediv | ‘menu + Ediv | multicol + Ediv | nobr + Ediv { noembed + Ecliv | of
+Ediv | p+Edv | Sp+Ediv | pre+Ediv | s+Ediv { samp+ Ediv | script +
Ediv | select+Ediv | small+ Ediv | span+Ediv | strike + Ediv | strong -+ Ediv |

sub + Ediv | sup+ Ediv | 1+ Ediv | table+ Ediv | textarea + Ediv |

15

ht:

Sh1+Eh1 } a+Eh1 | applet+Eht | b+ Eh1 | Sbasefont+ Eh1 | big+Eh1 |
blink + Eni1 | Sbr+Eh1 | ¢+Eh1 | cite+Eh?1 | code+Eh1 | dfn+Eht | em
+Eh1 | Sembed +Eh1 | font+Ent | i+Eh1 | Simg+ Eh1 | Sinput+Eh1 .|

kKbd + Eh1 | Skeygen+Eh1 | map+Eh1 | nobr+ Eh1 | s+Eh1 | samp+Eh1 |
script + Eh1 | sefect+ Eh1 | smail + Eh1 | span+Eh1 | sifke+Eh1 { strong +
Eht |} sub+Eh1 | sup+Eht § t+Eh1 | fextarea+Eh1 | tt+EhY | u+Eht |

var + Eht

16

nz2:

Sh2+Eh2 | a+Eh2 { applet+Eh2 | b+Eh2 | Sbasefont+Ehz | big+Eh2 |

85

blink + Eh2 | Sbr+Eh2 | c+Eh2 | cile+Eh2 j code+Eh2 | din+Eh2 | em
+Eh2 | Sembed+Eh2 | font+Eh2 | i+Eh2 | Simg+Eh2 | Sinput+Eh2 |

kbd+ Eh2 | Skeygen+Enh2 | map+Eh2 | nobr+Eh2 | s+Eh2 | samp+Eh2 |
script + En2 | select+ Eh2 | small+Eh2 | span+ Eh2 | sirike+ Eh2 | strong +
Eh2 { sub+Eh2 | sup +Eh2 | t+Eh2 | tedarea+Eh2 | t+Eh2 | u+Eh2 |

var + £h2

17 |n3: Sh3+Eh3 | a+Eh3 | applet+Eh3 | b+Eh3 | Sbasefoni+Eh3 | big+Eh3 |
blink + Eh3 | Sbr+Eh3 | ¢+Eh3 | cite+ER3 | code+Eh3 | dfn+Eh3 | em
+Eh3 | Sembed +Eh3 | font+Eh3 } i+Eh3 | Simg+Eh3 | Sinput+Eh3 |
kbd + Eh3 | Skeygen+Eh3 | map+Eh3 | nobr+Eh3 | s+Eh3 | samp+Eh3 |
script+ Eh3 | setect+Eh3 | small+Eh3 | span+Eh3 | siike+ Eh3 | stong +
Eh3 | sub+Eh3 | sup+Eh3 | t+Eh3 | textarea+Eh3 | tt+Eh3 | u+Eh3 |
var + Eh3

18 jh4: Sha+Eh4 | a+Eh4 | applet+Eh4 | b+Eh4 | Sbasefont+Eh4 | big+Ehd |
blink+ Eh4 | Sbr+Eh4 | c+Eh4 | cite+Eh4 | code+Eh4 | din+Eh4 | em
+Eh4 | Sembed +Eh4 | font+Eh4 | i+Eh4 | Simg+Eh4 | Sinput+Eh4 |
kbd + Ehd4 | Skeygen +Eh4 i map+Eh4 | nobr+Eh4 | s+Eh4 | samp+Ehd |
script+ End | select+ Eh4 | small+ End | span+Eh4 | strike + Eh4 | sirong +
Eh4 | sub +Ehd | sup+Eh4 | t+Eh4 | textarea+Ehd | tt+Eh4 | u+Eh4 |
var + Ehd

19 h&: Shs+EhS | a+EhS | applet+EhS | b+EhS | Sbasefont+EhS | big +EhS |
blink+ EhS | Sbr+EhS | ¢ +Eh5 | cite + Eh5 | code+Eh5 | dfin+Eh5 | em
+Eh5 | Sembed+Eh5 | font+EhS | i+EhS § Simg+EhS | Sinput+ ERS |
kbd+ Eh5 } Skeygen+Eh5 | map+ERS | nobr+EhS | s+EhS | samp+EhS |
script + EnS | select+EhS | smali+Eh5 | span+EhS | sirike + EnS | strong +
ERS | sub+ERS | sup+EhS | t+EhS | textarea+ERS | tt+EhS | u+EhS |
var + Ehg -

20 |n6: Sh6 +EnG | a+EhG | applet+Eh6 | b+Eh6 | Sbasefont+ Eh6 | big+EhG |
blink + En6 | Sbr+Eh6 | ¢+ EhG §'cite+Eh6 | code+Eh6 | din+Eh6 | em
+ FEh6 | Sembed + Eh6 | font+ Eh6 | i+Eh6 | Simg+Eh& | Sinput+EhS |
kbd + Eh6 | Skeygen+ Eh6 | map+Eh6 | nobr+En6 | s+Eh6 } samp+Eh6 |
script + Eh6 | select + Eh6 | small+EhE | span+ Eh6 | stike+ Eh6 | strong+
Eh6 | sub+EhE | sup+Eh6 | t+Eh6 | textarea +ENh6 | tt+Eh6 | u+Eh6 |
var + Eh6

21 Shr: Shr+c | Shr+t

22 ol Sp+Ep | a+Ep | applet+Ep | b+Ep | Shasefont+Ep | big+Ep | blink+

Ep | Sbr+Ep | c+Ep | cite+Ep | code+Ep | din+Ep | em+Ep |
Sembed +Ep | font+Ep | i+Ep | Simg+Ep | Sinput+Ep | Sisindex+ Ep |
kbd+Ep | Skeygen+Ep | map+Ep | nobr+Ep | s+Ep | samp+Ep |
script+Ep | select+Ep | small+Ep | span+Ep | sirke+Ep | strong+Ep |

sub+Ep | sup+Ep | t+Ep | textarea+Ep | ¥+Ep | u+Ep | var+Ep

86

23

Sp:

Sp+a | Sp+applet | Sp+b | Sp+Sbasefont | Sp+big | Sp+blink | Sp+
Sbr | Sp+c | Sp+cite | Sp+code | Sp+dfn | Sp+em | Sp+ Sembed |
Sp+font | Sp+i | Sp+Simg } Sp+Sinput | Sp+ Sisindex | Sp+kbd | Sp+
Skeygen | Sp+map | Sp+nobr | Sp+s | Sp+samp | Sp+script | Sp+
select | Sp+small | Sp+span | Sp+sirtke | Sp+strong | Sp+sub | Sp+
sup | Sp+t | Sptiextarea | Sp+i | Sp+u | Sp+var

24

pre;

Spre+Epre | a+Epre | applet+Epre | b+ Epre | Sbasefont+ Epre | blink +
Epre | Sbr+Epre | c+Epre | cite+Epre | code+Epre | dfin+Epre | em+
Epre | Sembed+Epre | i+Epre | Sinput+Epre | kbd+Epre | Skeygen + Epre
| map+Epre | s+Epre | samp+ Epre | script+ Epre | selecH'Epre | span +
Epre | strike+ Epre | strong+Epre | &+ Epre | textarea+Epre | t+Epre | u

+ Epre | var+ Epre

25

form :

Sform + Eform | a+ Eform | address + Eform | applet + Eform | b+ Eform |
Sbasefont + Efonn | big + Eforn | blink + Eform | blockguote + Eform | Sbr +
Eform | ¢ + Eform }l center + Eform | cite + Eform | code + Eform | dfn + Eform
| dir+ Eform |-div+Ef0rm | dl+Eform | em+Eform | Sembed + Eform | font+
Eform | form+ Eforn | nh1+Eform { h2 + Eformm §{ h3 + Eform | hd + Eform | hS
+Eform | h6+ Eform | Shr+Eform ! i+Eform } Simg+ Eform | Sinput + Eform
| Sisindex + Eform | kbd + Eform | Skeygen + Eform | map + Eform | menu +
Eform { multicol + Eform | nobr + Eform | noembed + Eform | of+Eform | p+
Eform | Sp+ Eform | pre +Eform | s+ Eform | samp + Eform | script + Eform |
select + Eform | small+ Eform | span + Eform | strike + Eform | strong + Eform |

sup + Eform | sup + Eform |

26

Sinput :

Sinput+¢ | Sinput+t

27

select:

Sselect + Eselect | ¢+ Eselect | opticn + Eselect | Soption + Eselect | t+ Eselect

option :

Soption + Eoption | ¢+ Eoption | t+ Eoplion

29

Scption ;

Soption + ¢ | Soption +1

30

textarea :

Stextarea + Etextarea | ¢ + Etextarea 1 t+ Etextarea

3

Skeygen :

Skeygen+c | Skeygen+t

32

dt:

Sdi+Edl | b+Edl | c+Edl | dd+Edl | Sdd+Edi | di+Edl | dt+Edl | Sdt
+Edl | em+Edi | i+Edl | p+Edl | Sp+Ed | samp+Edi | t+Ed

33

dt:

Sdt+Edt | a+Edt | applet+Edt | b+ Edt | Sbasefont+ Edt | big+ Edt |
blink + Edt | Sbr+Edt | ¢+Edt | cite+Edt | code+Edt | din+Edt | em+
Edt | Sembed + Edt | font+Ed{ | i+Edi | Simg+Edt | Sinput+Edt } kbd+
Ect | Skeygen+Edt | map+Edt | nobr+Edt | s+Edt | samp+Edt | script+
Edt | select+Egdt [smail+ Edt | span+ Edt | sirkke + Edt | strong +Edt | sub
+Edt | sup+Edt | t+Edt | textarea+Edt | tt+Edt | u+Edt } var+Egt

34

Sdt:

Sdt+a | Sdt+applet | Sdt+b | Sdt+ Shasefont | Sdt+big | Sdt+ blink |
Sdt+Sbr | Sdt+c | Sdt+cite | Sdt+code | Sdt+dfn | Sdt+em | Sdt+

Sembed | Sdt+fort | Sdi+i | Sdt+Simg | Sdt+Sinput | Sdt+kbd | Sdt+

87

Skeygen | Sdt+map | Sdt+nobr | Sdi+s | Sdt+samp | Sdt+script | Sdt+
select | Sdt+small | Sdt+span | Sdt+stike | Sdt+strong | Sdt+sub | Sdt
+sup } Sdt+1t | Sdt+textarea | Sdt+ft | Sdt+u | Sdt+var

35 dd: Sdd+Edd | a+Edd | applet+Edd | b+Edd | Sbasefont+ Edd | big+Edd |
blink + Edd | blockquote + Edd § Sbr+Edd | c+Edd | center+Edd | cite-+
Edd | code +Edd | dfn+Edd | dir+Edd | div+Edd | di+Edd | em+ Edd
| Sembed + Edd '} font+Edd | form+Edd | Shr+Edd | i+Edd | Simg+ Edd
| Sinput+Edd | Sisindex +Edd | kbd+ Edd } Skeygen+Edd | map+Edd |
menu + Edd | multicol + Edd | nobr+ Edd | noembed + Edd | ol+Edd | p+
Edd | Sp+Edd | pre+Edd | s+Edd | samp+ Edd | script+Edd j select +
Edd sm_aii+Edd | span+Edd | strike + Edd § strong+ Edd | sub+ Edd |
sup +Edd | t+Edd | table+Edd { fextarea+Edd | tt+Edd | u+Edd | ul+
Edd | var+Edd

36 Sdd . Sdd+a | Sdd+applet | Sdd+b | Sdd+ Sbasefont | &dd +big | Sdd + blink
| Sdd +blockquote | Sdd+Shr | Sdd+c | Sdd+center | Sdd +cite | Sdd +
code | Sdd +dfn | Sdd-+dir.! Sdd+div | Sdd+dl | Sdd+em | Sdd+
Sembed | Sdd+font | Sdd +form | Sdd+Shr | Sdd+i | Sdd+Simg | Sdd +
Sinput | Sdd + Sisindex | Sdd+kbd | Sdd+ Skeygen | Sdd + map | Sdd+
meny | Sdd + multicol | Sdd +nobr | Sdd+ noembed | Sdd+ol | Sdd+Sp |
Sdd+p | Sdd+pre | Sdd+s | Sdd+samp | Sdd+ script | Sdd +select |
Sdd +small | Sdd+span | Sdd +stike | Sdd +strong | Sdd +sub | Sdd+
sup | Sdd+t | Sdd+iable -] Sdd +textarea | Sdd+tt | Sdd+u | Sdd+ul |
Sdd + var

37 ol Sol+Eal | c+Eol | li+Eal | Sli+Eol | t+Eol

38 lui: Sul+Eul § c+Eu | B+Eut | Si+Eut } t+Eul

39 dir: Scir+Edir | c+Edir | #i+Zdir } Sli+Edir | t+Edir

40 menu : Smenu+Emenu | ¢+ Emsnu | li+ Emenu | Sii+Emenu | t+ Emenu

41 [Sli+Ei | a+E#i | applet+EH | b+Efi | Sbasefont+Eli | big+Eli | blink+ Eli
| blockguote + Eli (j Shr+Eli [c+Eli | center+Eli | cite+El | code+Eli |
dfn +Ell | dir+Ei# | div+EE | di+El | em+El ! Sembed+El | font+El |
form+Eli | Shr+Eli | i+Efi | Simg+Elk | Sinput+Eli | Sisindex+EHl | kbd +
Eli | SKeygen+Eli | map+Ei | menu+EE | multicol+ Ei | nobr+Eli |
noembed+El | of+Ell | p+Ei | Sp+Eli | pre+Ell | s+Eli | samp+Eii |
script+ Eli | select+EH | smalf+Eli | span+Eli | stike+Eli | strong+El |
sub+Eli | sup+EE | t+Eli | table+Eli | textarea+El | t+Eli t u+Eli | uf
+Eli | var+El

42 Sli: Shi+a | Si+applet | Sli+b | Sli+8basefont | Sli+big { Sli+blink | Sli+

blockquete | Sii+Sbr | Sli+c | Sli+center | Sli+cite | Sli+code | Sli+dhn
i Sli+dir | Si+div | Si+di | Sli+em | Sii+Sembed } Sh+font | Sh+form

| Shi+Shr | Sli+i | Si+Smg | Sli+Sinput | Sii+Sisindex | Sli+kbd | S+

88

Skeygen | Sii+map | Sli+menu | Sli+multical | Sli+nobr | Sli+noembed |
Sli+ol | Si+8p | Si+p | Sli+pre | Si+s | Sli+samp | Sli+script | Sli+
select § Sli+small } Sli+span | Sli+strike | Sli+strong | Sli+sub | Sli+sup

| Si+t] Sli+table | Si+textarea | Shi+tt | Si+u | Si+ul | Sii+var

43

tabla :

Stable + Etable | ¢+ Etable | caption + Etable | Scol + Etable | colgroup + Etable
| £+ Etable | tbody+ Etable | Stbody + Etable | tfoot+ Etable | Stfoot + Etable |
thead + Etable | Sthead + Eiable | ir+ Etable | Sir+ Etable

44

caption :

T+ Ecaption | big + Ecaption | blink + Ecaption | Sbr+ Ecaption | ¢ + Ecaption }

Scaption + Ecaption | a+ Ecaption | applet+ Ecaption | b+ Ecaption | Sbasefont

cite + Ecaption | code + Ecaption | dfn + Ecaption | em + Ecaption | Sembed +
Ecaption | font+ Ecaption | i+ Ecaption | Simg + Ecaption | Sinput + Ecaption |
kbd + Ecaption | Skeygen + Ecaption { map + Ecapfion | nobr+ Ecaption | s+
Ecaption | samp + Ecaption | script + Ecaption | select + Ecaption | small +
Ecaption | span+ Ecaption | strike + Ecaption | strong + Ecaption | sub+
Ecaption | sup+ Ecaption | %+ Ecaption | textarea + Ecaption | tt+ Ecaption | u

+ Ecaption | var+ Ecaption

45

Scol :

Scol+¢] Scol+¢

46

colgroup :

Scoigroup + Ecolgroup | ¢ + Ecolgroup | Scol + Ecolgroup | t+ Ecolgroup

47

thead :

Sthead + Ethead | ¢+ Ethead | t+ Ethead | ir+ Ethead | Str + Ethead

48

Sthead :

Sthead +¢ | Sthead+t | Sthead +Sir | Sthead +tr

49

tbody :

Stbody + Etbody | ¢+ Etbody | t+Eibody | tr+ Etbody | Str+ Etbody

50

Sibody :

Sthody +c | Stbody +1 | Stbody + Str | Stbody +ir

51

tfoot :

Stfoot + Etfoot | c + Etfoot | t+ Etfcat | tr + Effoot | Str+ Etfoot

52

Stfoot :

Stfoot +¢ | Stfoot+t | Stfoot + Str | Stioot + tr

53

tr:

Str+Efr | c+Etr | t+Er | td+Etr | Std+Er | th+Etr | Sth+Etr

54

Str:

Str+c | Str+t | Sr+8td | Str+td | Sr+Sth | Str+th

th:

Sth+ Eth | a+Eth | address+ Eth | applet+Eth | b+ Eth | Sbasefont+ Eth |
big + Eth | blink+ Eth- } blockquote + Eth | Sbr+Eth { c+Eth | center+Eth |
cte + Eth | code+Eth | din+Eth § dir+Eth | div+Eth | di+Eh | em+ Eth
! Sembed + Eth | font+Eth | form+Eth | h1+Eth] h2+Eth | h3+Eth | h4
+Eth'| hS+Eth | h6+Eth | Shr+Eth | i+Eth | Simg+Eth | Sinput+ Eth |
Sisindex + Eth | kbd+Eth | Skeygen+Eth i map+ Eth | menu+ Eth | muiticol
+Eth | nobr+Eth | noembed+Eth | ol+Eth | p+Eth | Sp+Eth | pre + Eth
| s+Eth | samp+Eth | script+Eth | select+Eth | small+Eth | span+Eth |
strike + Eth | strong +Eth | sub+Eth } sup+Eth | t+Eth | table+Eth__}
textarea + Eth | tt+Eth | u+Eth | ul+Eth | var+Eih

56

Sth:

Sth+a | St +address | Sth+applet | Sth+b | Sth+ Sbasefont | Sth+ big |
Sth+ biink { Sth + blockquote | Sth+3Sbr | Sth+c | Sth+center | Sth+cite |
Sth+code | Sth+dfn | Sth+dir | Sth+div | Sth+d | Sth+em | Sth+

89

Sembed | Sth+font | Sth+form | Sth+h1 | Sth+h2 | Sth+h3 | Sth+hd |
Sth+hs | Sth+h6 | Sth+Shr | Sth+i | Sth+8Simg | Sth+ Sinput | Sth+
Sisindex | Sth+kbd | Sth+ Skeygen | Sth+map] Sth+menu | Sth+ muiticol
| Sth+nobr | Sth+noembed | Sth+ol | Sth+Sp | Sth+p | Sth+pre | Sth
+s5 | Sth+samp | Sth+script | Sth+select | Sth+smalt | Sth+span | Sth+
stike | Sth+strong | Sth+sub | Sth+sup | Sth+t | Sth+table | Sth+
textarea | Sth+tt | Sth+u | Sh+ul | Sth+var

57

e

Std+Etd | a+Etd | address + Etd | applet+Eid | b+Etd | Sbasefont + Etd |
big+ Etd | biink+ Etd | blockquote + Etd | Sbr+Etd | c+Etd | center+Ed |
cite+Etd | code+Ed | dfn+Etd | dir+Etd | div+Etd | di+Ed | em+ Eid
] Sembed+Etd | font+Etd | form+Eid | h1+Eid | h2+Etd | h3+Eid | h4
+Ed } h5+Etd | h6+Etd | Shr+Eid | i+ Etd | Simg+Etd | Sinpui+Etd }
Sisindex+Etd | kbd+Etd | Skeygen-+Etd { map +Etd | menu+ Efd | multicot
+Etd | nobr+Etd § noembed+FEtd | ol+Etd { p+Etd | Sp+Etd | pre+Etd
| s+ Ed | sarﬁp+Etd | script + Eid | sefect+Etd | smali+ Etd | span+Etd |
strike + Etd | strong+ Etd | sub+Eid | sup+Eid | t+Eid | table +Etd |
textarea + Etd | tt+Etd | u+Etd | u'+ Etd | var+ Etd

o8

Std :

Std +a | Sid+address | Std+applet | Std+b | Std + Sbasefont | Std + big |
Std + blink | Std + blockquote | Std+Sbr | Std+c { Std+center | Std+cite |
Std+code | Std+dfn | Std+dir | Std+div | Sid+d | Std+ em i Sid+
Sembed | Std+font | Std+form | Sid+h1 | Std+h2 | Std+h3 | Std+hd4 |
Sd+h5 | Std+h8 | Std+Shr | Sid+i | Std+Simg | Std+ Sinput | Std +
Sisindex | Std+kbd] Std + Skeygen | Std+map | Std+menu | Std+ multicoi
} Std+nobr | Std+noembed | Std+ol | Sid+Sp | Std+p | Sid+pre | Std
+s | Std+samp |} Std+script | Std+ select | Std+small | Std + span]lstd
+strike | Std+strong | Std+sub | Std+sup | Std+t | Sid+table | Std+

textares | Std+it | Std+u | Sid+ul | Std + var

59

appiet :

Sapplet + Eapplet | a+ Ezpplet | Sbasefont + Eapplet | blink + Eappiet | Sbr+
Eappiet | c+ Eapplet | Simg+ Eapplet | Sinput + Eapplet | Skeygen + Eapplet |
map + Eapplet | muiticol + Eapplet | nobr + Eapplet | noembed + Eapplet |
Sparam + Eapplet | script + Eapplet | select+ Eapplet | span+ Eapplet | t+
Eapplet | textarea + Eappiet

60

Sparam :

Sparam +c | Sparam +t

61

Simg :

Simg+c | Simg+t

62

Sa+Ea | applet+Ea | b+Ea | Sbasefont+Ea | big+Ea | blink+Ea | Sbr+
Ea | c+Ea | cite+Ea | code+Ea | dfn+Ea | em+Ea | Sembed+Ea |
font+Ea | i+Ea | Simg+Ea | Sinput+Ea | kbd+Ea | Skeygen+Ea | map
+Ea | nobr+Ea | noembed + Ea | object+Ea | s+léa } samp+Ea | script
+Ea | select+Ea | small+Ea | Sspacer+Ea | span+Ea | stike +Ea |
srong +Ea | sub+Fa | sup+Ea | t+Ea | textarea+Ea | tt+Fa | u+Ea i

var+Ea | Swbr+Ea

20

63 cite : Scite + Ecite | a+Ecite ! applet + Ecite | Sbasefont + Ecite } Sbr+Ecite | c+
Ecite | Simg+ Ecite | Sinput+ Ecite | map + Ecite | script + Ecite | select+
Ecite | t+ Ecite | textarsa + Ecite

64 code : Scode + Ecode | a+Ecode | applet+ Ecode | Sbasefont+ Ecode | Sbr+ Ecode
| ¢c+Ecods | Simg+Ecode | Sinput+ Ecode | map+ Ecode | script + Ecode |
select + Ecode | t+Ecode | textarea + Ecode

65 g : Sdfn + Edin | a+Edfn | applet+ Edfn | Sbasefont+ Edfn | Sbr+Edfn | c+
Edin | Simg+Edin } Sinput+ Edfn | map + Edfn | script+Edfm | select + Edfn
] t+Edfin | textarea + Edfn

66 em: Sem+Eem | a+Eam | applet+Eem i b+Eem | Shasefont+Eem | Sbr+Eem
| c+Eem | Simg+Eem | Sinput+Eem | map+Eem | samp+Eem | scrpt+
EFem | select+Eem | t+Eem | textarea + Eem

67 kbd : Skid + Exbd | a+ Ekbd | applet+Ekbd] Sbasefont+ Ekbd | Sbr+Ekbd | c+
Ekbd | Simg+ Ekbd | Sinput + Ekbd | map + Ekbd | script+ Ekbd | select+
Ekbd | t+Ekbd | texiarea+ Ekbd

68 samp; Ssamp + Esamp | a+ Esamp | applet + Esamp | Sbasefont+ Esamp { Sbr+
Esamp | c+Esamp | em+Esamp | Simg+ Esamp | Sinput+ Esamp | map+
Esamp | script+ Esamp | select+ Esamp | £+ Esamp | texiarea + Gsamp

69 strike : Ssirike + Estrike | a+ Estrike | applet + Estrike | Sbasefont + Estrike | Sbr+
Estrike | ¢ +Estrike | Simg + Estike | Sinput + Estrike | map + Estrike | seript +
Estrike | select + Estrike | t+ Estiike | texiarea + Estrike

70 strong : Sstrong + Estrong | a+Estrong | applet+ Estrong | Sbasafont + Estrong | Sbr +
Estrong | c+ Estrong | Simg + Estrong | Sinput+ Estrong | map + Estrong |
soript + Estrong | select + Estrong | t+ Estrong | textarea + Estrong

71 var Svar+Evar } a+Evar | applet+ Evar | Sbasefont+Evar | Sbr+Evar | c+Evar
| Simg+ Evar | Sinput+Evar | map +Evar | script+ Evar | seiect+Evar | t+
Evar | texiarea + Evar

72 b: So+Eb | a+Eb | applet+Eb | Sbasefont+Eb | Sbr+Eb | c+Eb | font+
Eb | Simg+Eb | Sinput+Eb } map+Eb | script+Eb | select+Eb | {+Eb |
textarea + Eb

73 big : Shig + Ebig | a+ Ebig | applet+Ebig | Sbasefont+Ebig | Sbr+EDbig | c+
Ebig | Simg+ Ebig |} Sinput+Ebig | map + Ebig | script + Ebig | select + Ebig
| t+Ebig | textarsa + Ebig

74 font; Sfont+ Efont | a+ Efont | appiet + Efont | Sbasefont+ Efont | Sbr+Efont | c+
Efont | Simg+ Efont { Sinput+ Efort | map + Efont | script + Efont | select +
Efont | t+Efont | textarea + Efont

75 i Si+E | a+FEi | applet+El § b+E | Sbasefont+Ei | Sbr+Ei | c+E |
Simg+Ei | Sinput+Ei §{ map+E | samp+E | script+Et | select+Ei | sub
+Ei | t+Ei | textarea +Ei

76 S: Ss+Es | a+Es | applet+Es | Sbasefont+Es | Sbr+Es | c+Es | Simg+

Es | Sinput+Es | map+Es | script+Es | select+Es | t+Es | textarea+Es

91

77 small ; Ssmall + Esmall | a+ Esmalt | applet+ Esmall | Sbasefont + Esmalf | Sbr+ Esmali
| c+Esmall } Simg+Esmall | Sinput+ Esmall § map+Esmall | script+ Esmall |
select + Esmall | t+ Esmall | textarea + Esmail

78 span : Sspan + Espan | a+Espan | applet+ Espan | Sbasefont + Espan | Sbr+ Espan
| ¢+Espan } Sembed+ Espan | Simg+ Espan | Sinput+Espan | map + Espan
| noembed + Espan | nescript+ Espan | object+ Espan | script+ Espan | select
+ Espan | Sspacer+Espan | t+Espan | textarea + Espan | Swbr+ Espan .

79 sub : Ssub+Esub | a+Esub | applet+Esub | Sbasefont+Esub | Sbr+Esub | c+
Fsub | Simg+ Esub { Sinput+Esub } map+ Esub | script+ Esub | select +
Esub | t+Esub | textarea+ Esub

80 sup: Ssup+ Esup | a+Esup | applet+Esup | Sbasefont+ Esup { Sbr+Esup | c+
Esup | Simg+ Esup | Sinput+ Esup | map +Esup | script+Esup | seiect+
Esup | t+Esup | textarea + Esup .

81 it: Stt+Ett | a+Cit | applet+Ett | Shasefont+Eft | Sbr+Ett | c+Eit | Smg+
Ett | Sinput+Eft | map+E% | script+Ett | select+Eit | t+Ett | textarea +Elt

B2 u: Su+FEu | @a+Eu | applst+Eu | Sbasefonf+Eu | Sbr+Ev | ¢c+Eu | Simg+
Eu | Sinput+Eu | map+Eu | script+Eu | seiect+Eu | t+Eu | textarea + Eu

83 Sbor: Sbr+c § Sbr+t

84 iSbasefont: [Sbasefont+c | Sbasefont+t

85 map : Smap + Emap | Sarea+Emap | c+Emap | t+Emap

86 Sarea : Sarea+c | Sarea +t

a7 frameset 1 [Sframeset + Eframaset | ¢ + Eframeset | Sframe + Eframeset | frameset + Eframeset
| noframes + Efrarneset | ¢+ Eframeset

as Sframe : Sframe + ¢ | Sirame +t

89 noframes : |Snoframes + Enoframes | address + Enoframes | applet + Enoframes | blockquote
+ Enoframes | t;oderEnoframes | Sbi4 Encframes | c+ Enoframes | center +
Enoframes | dir+ Enoframes | div+ Encframes | dt + Enoframes | form +
Enoframes } h1+ Enoframes { h2+ Enoframes | h3+ Enoframes | h4 + Enoframes
| b5+ Enoframes | hS + Enoframes .| Shr + Enoframes | Simg + Encframes |
Sisindex + Enoframes | map + Enoframes | menu + Enoframes | of + Enoframes |
p+ Enoframes -} Sp + Enoframes | pre + Enoframes. | script + Enoframes. | t+
Encframes | table +Enoframes |- ul + Enoframes

96 blink : Shlink + Eblink | a+ Eblink | appiet + Eblink | Sbasefont + Eblink | Sbr + Eblink |
c+ Ebiink } Sembed + Ebiink | Simg + Eblink | map + Ebiink | noembed + Ebiink
} noscript + Eblink | object + Eblink | script + Eblink | Sspacer + Ebfink | 1+
Eblink | Swbr + Eblink

N Sembed : Sembed +c | Sembed +t

a2 muiticol : Smuiticol + Emulticol | a + Emulticol | address + Emulticoi | applet+EmuIticoI-|

Shasefont + Emulticol | blink + Emulticol | blockquote + Emultical | Sbr + Emulticol

9z

| ¢+ Emuiticol | center + Emuiticol | dir + Emuiticot | div + Emulticol } Sembed +
Emufticol | form + Emulticol | ht + Emulticol | h2 + Emulticol | h3 + Emuliicol §
h4 + Emultical | h5 + Emulticol | h6 + Emuiticol | Shr+ Emutticol | Simg +
Emulticol | Sinput+ Emulticol | Sisindex + Emulticol | map + Emuiticol | menu +
Emuiticol | mutticol + Emuiticol | nobr + Emutticot | noembed + Emulticol |
noscript + Emulticol | object + Emulticol | ol + Emuiticol | p + Emuitical | Sp+
Emulticol | pre + Emulticol | script + Emulticol | select+ Emulticol | Sspacer+
Ernultical | span + Emulticol | t+ Emutticol | table + Emuiticot | textarea +

Emultical | ui+ Emulticol | Swbr+ Emuitic

83 nobr : Snobr + Enobr | a+ Encbr | applet+ Enobr | Sbasefont + Enobr | Sbr + Enobr
¢+ Enobr { Sembed + Enobr | Simg + Enobr | Sinput + Enobr | map + Enobr |
noembed + Enobr | noscript + Enobr | object + Encbr | script + Enobr | select +
Encbr | Sspacer-+ Enobr | t+Enobr | textarea+ Enobr ! Swbr + Enobr

94 noembed : 1Snoembed + Encembed | a + Enoembed | address + Enoembed | applet+

Enoembed | blink + Engembed ¢ biockquote + Enoembed | Sbr+ Encembed '} ¢
+ Enoembed | center + Engembed | dir + Enoembed | div + Enoembed | dt+
Enoembad | Sembed + Engembed | form + Enoembed | h1 +Enoembed | h2+
Enoembed | h3 +Encembed | h4 + Enoembed | h5 + Encembed { h6 +
Enoembed | Shr+ Enoembed | Simg + Enoembed | Sinput+ Encembed |
Sisindex + Enoembed | map + Encembed | menu + Enoembed | multicol +
Enoembed | nobr + Enoembed | noembed + Enoembed | noscript + Enoembed |
object + Encembed | of + Enoembed ! p+Enocembed | Sp+ Engembed | pre+
Enoembed | script+ Enoembed | select+ Encembed | Sspacer + Engembed |
span + Enoembed | i+ Encemoed | table + Enpembed | texiarea + Enoembed |

U + Encembed | Swbr + Encembed

APPENDIX C
DATA-DIRECTED PARSER USER MANUAL

Application Source Code

The source code of application developed in this thesis is distributed in a singie file
named DDP.zip which could be unzipped to directory named "C:ADDP* without changing
any file's contents. However, if user prefers another directory, one need to change the

declaration in file's header as in an example below from 1 to 2 for alf per files {*.pl} .
1) @INC = gw(CiPerllib C:\Perlisiteltib CADDP);
2) @INC = qw{C:\Perf\ib C:\Perfisite\lib C:ANewDirectory);

Perl Interpreter and Module

All files deveioped in this thesis are perl file format, and require a perl interpreter
that works under Windows operating system. Perl interpreter used in an experiment is
Activeperf which could be downioaded from htip://www.activestate.com. Default directory
for perl interpreter should be “C:\Per{", otherwise user need to change all peri's library files

declared in file's header by changing from 1 tc 2
1) @INC = qw(C:\Perliib C:\Perhsitellib CADDLP};
2) @INC = qw(C:ANewPerNip- C:\NewPeri\sitellib C:\NewDirectory);

After that, user need to copy file Tokenizer.pm and HtmiTokenizer.pm from directory
C:\DDP to directory. C:\PerisiteMlip\Html- which both of them were derived from module

Parser.pm and TokeParser.pm respectively.

Using Application
Under the directory that user unzipped application files, then type

pert ddp.pl -i input [-o output] [-r recoveryl {-s structure] [-h help]
such as

pert ddp.pl—i inputhtmi—r1-s1

Note:

94

-i : indicates input file that should be in HTML style.

-0 : this parameter is optional, where it indicates output file's name (default name
is [input].out).

-r : this parameter is optional, where (0 is common parsing and 1 is error recovery
parsing.

-s : display structure, where 1 for all nodes in parse tree, 2 for the highest level
only and 3 for both. This parameter is optional as well.

-h : help information.

95

BIOGRAPHY

The author was born at Ranong province and had his primary school
education at Sriarunothai Schooi. He had a secondary education at Pichairatanakam
School, La Salle College and Samsen Coliege respectively. He received a Bachetor of
Engineering degree in computer engineering program from Chulalongkorn University in
1999. For his parent and interesting in naturai language processing, he continued
fearning in rﬁaster degree of computer engineering. In 2000, the author and his adyisor,
Assoc. Prof. Wanchai Rivepiboon, Ph.D. had one paper; Attribute-based parser for

machine translation, published in SNLP 2000 that was held at Chiangmai province.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I INTRODUCTION
	1.1 Background
	1.2 Purpose of Research
	1.3 Scope of Research
	1.4 Expected Outcome
	1.5 Research Plan

	Chapter II THEORY AND LITERATURE REVIEW
	2.1 Grammar Formallsms
	2.2 Parsing Techniques

	Chapter III CHULALONGKORN UNIVERSITY NORMAL FORM GRAMMAR
	3.1 Languages
	3.2 Languages and Chomsky's Hierarchy of Grammars
	3.3 Derivation and Languages
	3.4 Derivation Tree
	3.5 Goal-directed and Data-directed Paradigm
	3.6 Chomsky Normal Form (CNF)
	3.7 Chulalongkorn University Normal Form (CUNF)
	3.8 Proof of CUNF Grammars
	3.9 Derivation Trees and CUNF Grammars
	3.10 Converting other grammar formallsms to CUNF grammars
	3.11 Problematic Grammars and CUNF

	Chapter IV DATA-DIRECTED PARSER
	4.1 Data-Directed Parser
	4.2 Tree
	4.3 Binary Tree
	4.4 Recursion
	4.5 Recursive Tree Traversal
	4.6 Simple Recursive Tree Construction
	4.7 Conditional Recursive Tree Construction
	4.8 Algorithm of Data-Directed Parser
	4.9 Proving Algorithm of Data-Directed Parser

	Chapter V EXPERIMENT
	5.1 Languages used in Experiment
	5.2 CUNF Grammars for HTML
	5.3 Output Format
	5.4 Error-Insensitive Solution for HTML
	5.5 Common Parsing using Data-Directed Parser

	Chapter VI CONCLUSION AND PERSPECTIVE
	6.1 Conclusion
	6.2 Perspective

	References
	Appendix
	Vita

