CHAPTER 11
QUOTIENTS AND JORDAN-HOLDER THEOREM

We refer the reader to ‘ChapterI (Definition 1.30) for the definition of a
quotient skewring. In this chapter we shall give some theorems of quotients.
Moreover, we shall generalize the five basic isomorphism theorems of group

and ring theory, and the Jordan-Holder Theorem of group theory to skewrings.

Theorem 2.1. (First Isomorphism Theorem)
Let RS be skewrings and f:R—S be a homomorphism. If f is surjective,

R ~
then /((er(f)::s.

Proof. Define ‘p:%er(f) —S by p(x+Ker(f) = f(x) for every x+Ker(f)e
%{er(f)‘ By definition of quotient skewring and f is an epimorphism, ¢ is a

homomorphism and an isomorphism from (%er( ) ,+) to (S,+). Hence
R =
A(er(f ) S.#

Theorem 2.2, (Second Isomorphism Theorem)

Let RS be skewrings and f:R—>S be an epimorphism. Let I be a
normal ideal in S. Then y - =5/,
Iaes Z

Proof. Define cp:R—)% by o(x) = f(x)+] for every xeR. By definition
of quotient skewring and f is an epimorphism, @ is an epimorphism. By group

= §-! 1 1 R = S
theory, Ker(p) =f"[I]. By First Isomorphism Theorem, A = A H
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Proposition 2.3. Let R be a skewring and 1J be normal ideals of R such that
Ic). Define qx% —)% by @(x+l) =x+J for every x+I e%. Then ¢ is an

epimorphism with Ker(@ = %

Proof. Let x+I,y+IeI% such that x+I=y+l. Then x-yelc) and x+J =
y+J, 50 ¢ is well-defined. By definition of quotient skewring, ¢ is a

homomorphism. Clearly, ¢ is surjective. By group theory, Ker(¢) = JI M

Theorem 2.4. (Third Isomorphism Theorem)
Let R be a skewring and 11,12 be normal ideals of R such that Ijc ).

R
Then A/%EA2
I

Proof, Define cp:%-—}%z by @(x+I,) =x+l, for every x+I,e%. By

Proposition 2.3, ¢ is an epimorphism and Kcr((p)=I

A

i l ~ R

Isomorphism Theorem, I/_ Az B
I

Let R be a skewring and K be a subskewring of R.

i By the First

Define RIp(K) = {xeR/kxeK for every keK} and
LIp(K) = {xeR/ xkeK for every keKj.

Since 0eRI(K)NLI(K), RI;(K) and LI(K) are nonempty sets. We shall
show that RI(K) and LI(K) are normal subskewrings of R. Let x,yeRI(K)
and reR. Then kxkyeK for every keK. Let keK. Then k(x-y) = kx-ky, k(xy)
= (kx)yeK, since K is a skewring. Therefore RI,(K) is a subskewring of R.
By Remark 1.5(2), k(r+x-r) = kr+kx-kr =kxeK. So RI (K) is normal. Hence

RIH(K) is a normal subskewring of R and is also true for LI (K).
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Let Ip(K) = RIp(K)NLIp(K). Clearly, Ip(K) is a normal subskewring of R.

Proposition 2.5. Let R be a skewring and K be a subskewring of R. Then
Ir(K) is the largest subskewring of R having K as an ideal.

Proof, Clearly, KERI(K)NLIx(K)=1(K). Then K is a subskewring of
Ii(K). Let rel(K) and keK. Then reRI(K) and reLI(K). Therefore rk.kreK
which implies that K is an ideal in I (K).

Let J be a subskewring of R such that K is an ideal in it. Let xel.
Then kx,xkeK for every keK which implies that xeRI(K)NLI(K) = [.(K).
Hence this proposition holds, # '

Definition 2.6. Let R be a skewring and S be a subskewring of R. The
normalizer of S in R denoted by Np(S) = {xeR/x+s-xeS for every seS}.
Hence every normal subskewring S of R, Np(S) =R.

Remark 2.7. Np(S) is an additive subgroup of R which contains § as an
additive subgroup and is the largest additive subgroup of R containing S as a

normal subgroup.

Theorem 2.8. (Fourth Isomorphism Theorem)

Let R be a skewring and H K be subskewrings of R such that
Np(K)Ip(K) contains H. Then the following statements hold:

(1) H+K is a subskewring of R.

(2) K is a normal ideal in H+K

3 }%HmK)E(HJrK%{'

Proof. (1) Let h,,h,eH, k, k,eK. We shall show that (h,+k)-(h,+k,),
(h,+k))(h,+k,)eH+K. Since HEN(K), h,+k,-k,-h,eK. Then (h,+k,)-(h,+k,)=.
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h,+k,-k,-h, = (h,-h)+(h,+k,-k,-h,)e H+K. Since HgIx(K), kh,,hk,€K. Then
(h+k,)(h,+k;) = hh,+(k;h,+h k,+k k,)e H+K. Hence H+K is a subskewring of R.

(2) Clearly, K is a subskewring of H+K. Let heH and xkeK. Since
Hcl (K), xh,hxeK which implies that x(h+k) = xh+xk , (h+k)x = hx+kxeK.
Since HEN(K), (h+k)+x-(h+k) = hHk+x-k)-heK. Hence K is a normal ideal of
H+K.

(3) Define cp:H-—>(H+K%< by ¢(x) =x+K for every xeH. Clearly, ¢ is

a homomorphism. Since (H+K%{ = {h+k+K/heH keK} = {h+K/heH}, ¢ is

- surjective. By group theory, Ker(g) =HNK. By First Isomorphism Theorem,
H ~ (H+K)
/Hnl() =T %{ #

Corollary 2.9. Let R be a skewring, H a subskewring of R and K a normal
ideal of R. Then the following statements hold:

(1) H+K = K+H is a subskewring of R.

(2) K is a normal ideal of H+K.

(3) HNK is a normal ideal of H.

(4) H is a normal ideal of R implies that H+K is a normal ideal of R.

Proof._Since K is a normal ideal of R, Nx(K)=R and I;(K)=R.
Therefore HEN(K)NI(K).

(1) It is well-known that H+K = K+H. By Theorem 2.8 (1), H+K is a
subskewring of R.

(2) and (3) follow from Theorem 2.8 (2) and (3) respectively.

(4) Suppose that H is a normal ideal of R. By (1), HtK is a
subskewring of R. It is well-known that H+K is normal in (R,+). Let heH, ke
K,reR. Then rh, hreH and rk, kreK. Therefore r(h+k) = rh+rk, (h+k)r = hrtkre
H+K which imply that H+K is a normal ideal of R. #
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Corollary 2.10. Let R be a ring. Let HK be subrings of R such that Hdp(K).
Then (1) H+K is a subring of R,

(2) K is an ideal in H+K,

(3) HAK is an ideal in H and

) }%HAK)E(H_WLK%{'

Proposition 2.11. Let R be a skewring. Then for all leftfright, two-sided]

ideals I, I, {ix,-/nez’, xielyud, for every i€{l,2,...,n}}.

i=l

Proof. Let I = {ixifnez*, x,el, UL, for every ie{l,2,...,n}}. Then (I,+)

is a subgroup of R. Let reR. Since I, and I, are ideals, x,,...,1x,€l,UL. Thus

rx=r(§xi)=rx,+...+rxmel which implies that rxel, so (I,') is a semigroup.

Similarly, xrel. Then I is an ideal.

Let R be a skewring and J(R) be the set of all ideals in R. For all
I I,eJ(R), we define
I if and only if I;)).
Then (J(R),s) is a partially ordered set.
Let NJ(R) be a set of all normal ideals in R. Similarly, we have
(NJ(R),s) is a partially ordered set.

Proposition 2.12. Let R be a skewring. Then

(1) for all left{right, two-sided] ideals I3 lub(,I3) = { i xi/neZ', x;e
=

{
Iy, for every iefl2,...,.n}} and gib(I},I3) = I}, and
(2) for all lefifright, two-sided] normal ideals I.I; lub(I} 1) =1;+I; and
gib(,,15) = 11,
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Proof. (1) By Proposition 2.11, I and I;nI, are ideals in R. Clearly, I
and I;nI, are an upper bound and a lower bound of {I,l,} respectivety. Let J
be an ideal of R such that I,[,<J. Then (I,UL,)<J which implies that I<]J.
Therefore lub(I,I) =1 Let J be an ideal of R such that J<I, and J<I,. Clearly,
J<I,nI,. Therefore glb(I,,I,) =I1,Nl,.

(2) Similarly, we have glb(l,,I,)=I,n]I,. Let J be a normal ideal of R
such thatI,I[,<J. By definition of I,+l,, I,+L,<J. Therefore lub(l,I,) =1+, #

Theorem 2.13. For any skewring R, J(R) and NJ(R) are lattices.
Proof. It follows from Proposition 2.12, #

Theorem 2,14, Let R be a skewring, I be a normal ideal of R.

Let N be the set of all normal ideals of R contains [ and

N'be the set of all normal ideals of %

Then there exists an order-isomorphism @:N-—>N-.

Corollary 2.15. Let R be a skewring and [ be a normal ideal of R.

Let N be the set of all normal ideals of R strictly contains I and

N’be the set of all normal ideals of % except {1}.

Then there exists an order-isomorphism from N to N’

Corollary 2.16. Let R be a skewring and [ be a normal ideal of R.

Let M be the set of all maximal normal ideals of R containing [ and

M’ be the set of all maximal normal ideals of %

Then there exists an order-isomorphism from M to M’

Theorem 2.17. Let R be a skewring and [ be a normal ideal of R.
Let P be the set of all prime ideals of R containing I and
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P’ be the set of all prime normal ideals of %

Then there exists an order-isomorphism from P to P’

Proof. Let ¢ be the function given in Theorem 2.14. Let ®=¢[ ,. We

shall show that @ is a bijection from P to P’

Suppose J is a priﬁe normal ideal in R. Let A',B’ be normal ideals in

1% such that A’B'c®() = J i By Theorem 2.14., there exists normal ideals
A,B in R which containing I such that A’ = % and B' = % . Then AB/I =

(% )(]%)=A'B'g¢(1) = % which implies that ABgJ, Since J is prime, Ac
J or B&J which implies that A'c®(J) or B'c®(J). Hence d(J) is prime.

Conversely, suppose J is a prime normal ideal in I% Similarly as
above, J' = /I for some normal ideal J in R which contains I. Let A,B be

. . ‘. AT B =
normal ideals in R containing I such that ABc®"(J'). Then (% X A )

®(AB)cJ'. Since J' is prime, %QJ'= % or E%_r;J'= % Since ¢ is an
order-isomorphism AcJ or BcJ, so that Ac®'(J") or Bc®d'(J"). Hence
@(J") is prime and this proof is finished. #

Theorem 2,18. Let R be a skewring. Let II'J.J’ be subskewrings of R such
that I’ and J’ are normal ideals of I and J respectively. Then the following
statements hold :

(1) AN J)+I" is a normal ideal in (INJ)+I’

(2 I'n)+J’ is a normal ideal in (INJ)+J"

InT)+T (INT)+T
@ (10 (InJ’)+I'=( A )+/I'n.f)+J"

Proof. (1) By group theory, (InJ')+I' is a normal subgroup in
(NI, +).Let xeln), tzel’ and yeln). Then xtte(InD+l', y+ze(INJ)+1',

x,ye€l, xel] and yeJ'. Then xy, yxel~J' and yt,ty, zx, Xz, zt, tzeI'. Then
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(+2)(xcH) = y(x+tyrz(oit) = ye(ytrzzt) e (NI and (xH)Y(y+z) = (eH)y+HcH)
z=xyHty+xz+tz)e(InJ')+1’. Therefore (In J'HI' is an ideal of
(NI,

(2) Similar proof in (1).

(3) By Corollary 2.9 (3), (INnY)+I)n(INJ) is a normal ideal of INJ.

IN] - (@A) +INT)+T
By Theorem 2.8 (3), (" %([n]’)+1’)n(ln])=(an yranhe )(ImJ')+I"

Since ((InJ)+(InJ')+I%nJ’)+I' o ((InJ)H%ImJ')H"

I _(@AD)+T _
( m%(lml')ﬂ')m(lmj) 7/ %Imf)ﬂ.. PR ()

Clearly, (NN = (AN HI)NI. ... (i)
Claim that (INI'HI)N] =(INIYHI'NT). ... ()

Let yelnJ', zel’ such that y+zel]. Then y+ze((INJ')+I')~]. Then z=
-yHy+z)el, so that zel'n]. Thus y+ze(InJ'H+I'nJ), that is (INI)H')NIc
AN )HI']). Conversely, let xeln)', yeI'n]. Then x+ye(InNI'y+{I'nJ), xel,
xeJ', yel' and yel. Then xtye((InJ"HI)]. Therefore (INJ')+I'N))c
((INT'YHI')~] and hence we have the claim.

o s (@AAT) T
By (i), (ii) and (ifi), ¢ “%I AT S @nh+ %1 AT

- (InD) =(Ir'\J)+y
Similarly, /(I AT+ AD)F A+ Hence we have the

theorem. #

Definition 2.19. Let R be a skewring and p an eqivalence relation on R. Then
p is called a congruence on R if and only if xpy implies (x+z)p(y+z),
(z+x)(z+y), (x2)yvz) and (zx)p(zy) for all x,y,zeR.

Let L(R) be the set of all congruence on a skewring R. Define p<o if
and only if pco for all poeL(R). Then (L(R), <} is a partially ordered set.
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Remark 2.20. Let R be a skewring. Then L(R) is clearly a lattice where for
all p,oeL(R), lub(p,c) = the intersection of all congruences containing plior

and glb(p,0) = pno.

We shall show that the least upper bound of two congruences is easily

computed.

Remark 2.21. Let R be a skewring. Let peL(R) and x,x’y,y’eR. Then the

Jollowing statemants hold:
(1) xpy and x’py’ imply xxpyy’
(2) xpy and xpy’ imply (x+x)p (y+y).
(3 xpy implies (x)p ().

Theorem 2,22, Let R be a skewring, Then there exists an order-isomorphism @

of L(R) to NJ(R) such that the congruence classes of p are the cosels of
Np).

Proof. Let peL(R), define I, = {xeR/xp0}. Let [eNJ(R), define
xpyy if and only if x-yel for all x,yeR.

Stepl. We shall show that [ eNJ(R) and p,eL(R).

Since O€l,, [,#@. Let x,yel, and reR. Then xp0 and yp0. By Remark
2.21 (3) and (2), -yp0 and (x-y)p0 respectively, that is x-yel,. Since xp0,
(rtx-r)p(r+0-r), that is (r+x-r)p0. Then r+x-rel,. Since xp0, (x)p(r0) and
(xr)p(x0), that is (rx)p0 and (xr)p0. Then xr,rxel, Therefore I, is a normal
ideal of R and hence I,eNJ(R).

Let x,y,zeR. Since x-x = 0€l, xp;x which implies that p, is reflexive,
Suppose that xp,y. Then x-yel, that is y-x = -(x-y)el. Thus ypx which implies
that p, is symmetric. Suppose that xp,y and yp;z. Then x-y,y-zel, so x-z=
(x-y)¥(y-z)el. Thus xpz which implies that p, is transitive. Therefore p, is an

equivalence relation. To show that p, is a congruence. Suppose that xp,;y. Then
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x-y€l. Since I is an ideal of R, xz-yz = (x-y)z, zx-zy = z(x-y)€], that is
(xz)pyz) and (zx)py(zy). Since I is normal in R, (z+x)-(z+y) = z+(x-y)-z,
(xt+z)-(y+z) = x+z-z-y = x-y€], that is (z+x)p(z+y) and (x+z)py+z). Therefore
p; is a congruence and hence ‘p,eL(R).

Define ®:L(R)—NJ(R) by ®(p) =I, for every peL(R) and
Y:NJ(R)-L®R) by ¥(I)=p, for every IeNJ(R).

Step2. We shall show that ® and ¥ are bijections.

Claiml. Vo ® =1d,4,.
Let oeL(R). We shall show that c =% ®g) = Py, - Let (x,y)e P, -

Then x-yel,, that is (x-y)o0. Since o is a congruence, (x-y+y)a(0+y), that is

xoy. So Py, SO Conversely, let (X,y)eo. Since o is a congruence,
(x-y,y-y)eo, so (x-y,0)ea. Then x-yel.. By definition of P, » XPp, Y- Therefore
ocp, - Hence o= P, and we have Claiml.

Claim2. ®o¥ =Idy,np,
Let JeNJ(R). We shall show that J=®¥(J)= Ip,- Let xel. Since x-0

=xel, xp,0. By definition of Ip,» X€Ip,» that is Jo Ip, Conversely, let xe Ip, -

Then xp,0, that is x =x-0elJ. Therefore Ip, cJ, so that J= Ip, and we have

Claim2.
By Claiml and Claim2, ® and W are bijections and ¥ = @,

Step3. We shall show that @ and ‘¥ are order-isomorphisms.

Let p,oeL(R) be such that p<c. Then pcg. We shall show that
O(p)cP(o). Let xe®(p)=1.. Then xp0. Since pco, xa0, that is xel, = (o).
Therefore, ®(p)c®(a), that is O(p)<P(o).

Let LJeNJ(R) be such that I<J. Then IcJ. We shall show that W(I)c
Y(J). Let (x,y)e'¥(I) =p,. Then x-yelc). Thus xpyy, so (x,y)ep,=¥(J).
Therefore, ‘W(I)c'P(J), that is W(I)<¥(J). Hence @ and ¥ are both order-

isomorphisms.



32

Next, we shall show that the equivalence classes of p, are the cosets of
I. Note that xp,y if and only if x-yel if and only if xel+y. Thus we see that-
if we know one equivalence class of a congruence on R then we know a
coset. If we know one coset on R then we know the whole congruence.

To summarize, if we know one equivalence class of a congruence on a

skewring then we know all equivalence classes of the congruence. #

Theorem 2.23. For any skewring R, L(R) is commutative with respect to

composition of binary relations.

Proof. By Theorem 2.22, there exists an order-isomorphism
¥:NJ(R)->L(R).

Claim that Py, — P oPy for all I LeNJ(R).

Let I,,,eNJ(R) and (x,y)e Pi+y " Then x-yel,+I,. Thus there exist i,€l,
and i;€l, such that x-y =1i,+i,. Then x-(i,*y) =x-y-i, =4 €l, and (i,+y)-y=1i,€l,.
Then (x,i,*y)e p, and (i,ty,y)e P, and hence (x,y)e P1,°0y, - So that Pr+1, S
P, %Py,

Conversely, let (x,y)e PL Py Then there exists a zeR such that (x,z)e
Py, and (z,y)e Py, Then x-zel, and z-yel,. Thus x-y=(x-z)+(z-y)el,+],, that is
(x,y)€ py,(,and py op SPy,,,- Hence we have the claim.

Let p,,p,€L(R). Since V¥ is surjective, there exist I,,I,eNJ(R) such that
p,=¥(1,)= Py, and p,;=¥(I;) = Py, ¢ Then p;op,= Py, ° Py, = ph+h=‘-P(12+I,) =
Y(I,+L) = Pi+1, = P1, ° Py, = P2oPus by Corollary 2.9 (1). Hence L(R) is

commutative, #

From Theorem 2.23, we see that the composition of congruences is

always a congruence and given two congruences p,,p,, lub(p;, p;) =p,cpP;:-
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. Note. Using the facts that in group theory HK =HvK for normal subgroups in
a group G and AB = AvB (seef3]) for a-convex subgroups of a semifield K,
we get that the above theorem is true for groups and semifields.

Definition 2.24. A finite sequence of skewring homomorphisms,

Ra—f’—)R;_)..._>Rn-;—f"—)Rn, is exact provided Im(f;) = Ker(f;+})

for every i€{l,...,n-1},

For every normal ideal I of a skewring R, by Proposition 1.35,

0 »]— »R—" I% »( is an exact sequence where i is the natural

injection map and w is a canonical epimorphism.
For any skewring R, define [RR] = ((x+y-x-y/x,yeR} .

Consider an element in [R,R]. Let ze[R,R]. Then there exist meZ",

X,¥»Z€R and r,r'; eRUZ for every ie{l,...,m} such that z=

m
2 (Z+ r(xtry Xy~ Z) = E (zi+ rxir + nyii- exr - ryir' ~ z). If reR or
i-_-l l=1

r;eR for some i, by Remark 1.5(2), z,+ rxy;+ryr;-rxyt' - ryr',~z,= 0. Thus

[R,R] = { )"f (Zi+ r(xtye-x-y) - z) / meZ' x,y,z,eR,r,eZ foreveryie{l,...,m}}.

i=l

Theorem 2.25. For every skewring R, [RR] is a normal ideal with the trivial

multiplication. Moreover, % R.R] is a ring.

Proof First, we shall show that [R,R] is a normal ideal with the trivial
multiplication.
Claiml. (x,+y,-x,-y,)(X,tY¥,-X;-y,) =0 for all x,,x,,¥,,y.€R.

Let x;,X;,y;,¥:€R. Then (x,+y,-x,-y }(X;+Y,-X,-¥;) = X, (X, +Y;-X,-y,) +
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Y1ty XoYa) = XXy +Yp-Xa-Ys) - ¥i(Xo+Ya-X5-Y,) = 0, by Remark 1.5 (2).
Hence we have Claim 1. |
Claim2. zz' =0 for all z,z’e[R,R].
Let z,z'€[R,R]. Then there exist m,neZ", X,X'Z,2'€R, 1,5,€ Z where x;=

atbracb;, X'y = a';tb'-a’;-b'; for some a,a',b,b'eR for all ie{l,...,m},je(1,...,n}

be such that z= E (zitrx-z) and z' = i (z';+8x’-z')). Then
i=t Fl

2z = E‘:(z,+rxz92(z+ X'z

i=l

2 (zZ't 28X’ 22 ik Xz TXEX - 1XZ 2.2 28X +27))), by Remark1.5(2)

it

(rxsxj), by Remark 1.5 (2)

I3 Etv2 L3 L

2. r(astb-a-b)sfa’+b'-a’-b")

i

2 (rat b ra- 1b)( s@'jt sb'- s@’- sp’) = 0, by Claiml.

']]_M:: ']_M:: ']_M:: ']]_M::

Hence we have Claim2. Therefore [R,R] is a nommal ideal with the trivial

multiplication and %R R] is a ring. #

Corollary 2.26. If R is a skewring which is not a ring, then R contains a

normal ideal with the trivial multiplication of order>1.
Proof Let R be a skewring which is not a ring. Then there exist x,ye
R such that x+y # y+x. Therefore x+y-x-y = (x+y)-(y+x) # 0. By Theorem 2.25,

({x+y-x-y}), 1s a nonzero normal ideal of R with the trivial multiplication. #

Theorem 2.27. [R,R] is the smallest normal ideal in a skewring R such that

the quotient is a ring.

Proof. By Theorem 2.25, I%R R] is a ring. Let I be a normal ideal of
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R such that f% is a ring. Then (ly,+) is an abelian group. Let x,yeR. Then

(x+D+(y+I) = (y+I)H(x+I) and (x+y)-(y+x+I=1I which implies that x+y-x-yel.
Therefore {x+y-x-y/x,yeR}clI and hence [R,R]cl. #

Definition 2.28, 4 ring S is called a quotient ring of a skewring R if and

only if there exists an epimporphism f:R—S. (i.e. %er( 1) =S.)

Corollary 2.29. Let R be a skewring. If & TRR] =0 then R has the trivial

multiplication.

Proof. Consider the exact sequence
0— [R,R]—R—" I%R,R]—m where i is the natural injection
map and n is a canonical epimorphism. By Theorem 2.25, %R R] is a
quotient ring of R. By assumption, %R,R] =(0 which implies that 0——
[R,R]—i—)-R—"»O is an exact sequence. Therefore [R,R] is isomorphic to

R. Since [R,R] has the trivial multiplication, R has the trivial multiplication. #

Theorem 2.30. Every quotient ring S of a skewring R-is a quotient ring of the

ring R[R,R]‘

Proof. Let S be a quotient ring of a skewring R. Then there exists an

epimorphism f:R—S and so %cr(f)ss. Since S is a ring, %{er(f) is a
ring. By Theorem 2.27, [R,R]cKer(f). Define o: I%R,R]_*I%{cr(f) by

@(x+R,R]) = x+Ker(f) for every x+[R,R]e I%R R} BY Proposition 2.3, ¢ is an
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v . . =R . . . .R
epimorphism. Since S = A{er(f)’ there exists an isomorphism y: A{er(f) —8.

Hence luoqo:l%R’R] —»S is an epimorphism. Therefore S is a quotient ring of

ring Iy[R, R]’

Moreover, we shall show that f= (yog@)en where 1:R— %R R] is the

canonical epimorphism. Let xeR. Then (yeo)}(n(x)) = yw(p(xHR,R])) =
y(x+Ker(f)) = f(x), by the proof of First Isomorphism Theorem. Hence f=
(yop)om.#

Remark 2.31. By the proof of Theorem 2.30, there exists a unique epimorphism

@ from %R R] to § such that f=pon

Proof. Let ¢ and y be epimorphism of to S such that \pon=f =@om.
Let x+[R,R]e By o1 Then wOeHRR]) = w(n()) = f(x) = o(n(x)) = o(x+[RR)).

Hence y=¢. #

Theorem 2,32, Let R be a skewring. Let R’ be a quotient ring of R by an
epimorphism f. Suppose that for every quotient ring R" of R by an
epimorphism g, there exists a unique epimorphism @: R'=>R" such that the the

Sfollowing diagram is commutative.

R

P

R ¢—— R’

~R
Then R'= TR.R]"

Proof. By Theorem 2.30 and Remark 2.31, there exists a unique

epimorphism t such that the following diagram is commutative.
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/\

S M

By assumption, there exists a unique epimorphism ¢:R'— l%R,R]such

that the following diagram is commutative.
R

7
R~ ¥R

That is ton=f and gof=m. Then (to@)ef=1to (pef)=tom=f .......... )
and (@ot)om = @o (tom)=¢@of =m ......... (i)

Consider the commutative diagram,

By assumption and (i), Idgr =T0@. -ceecnnne (iti)

Consider the commutative diagram,

7N
BR.R] NETANE BR.R]

Consider Remark 2.31 and (ii), Id%R RI= POT. cerrnninn (iv)

By (iif) and (iv), ¢ .and T are isomorphisms. Hence R'EI%R,R]' #

For any skewring R, define (R,R) = ({xy-yx/ x.y €R} ).

Remark 2.33. f% R.R) is a skewring with commutative multiplication.
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Proof. Let x,yeR. Then xy-yx+(R,R)=(R,R) which implies that
(HR,R)(YHRR)) = xyHR,R) = yx HR,R) = (yHR,R))(x+H(R,R)). Hence l%R,R)

has commutative multiplication, #

Remark 2.34. (R,R) is the smallest normal ideal in a skewring R such that its

quotient skewring has a commutative multiplication.

Proof. Supposc that i is a normal ideal of a skewring R such that
1}{ has the commutative multiplication. Let x,yeR. Then xy+I= (x+tD(y+]) =

(y+D(x+T) = yx+], so that xy-yxel. Thus (R,R)cl. By Remark 2.33, this remark

is true. #

Theorem 2.35. Let R be a skewring and S be a skewring which has

 commutative multiplication. If there exists an epimorphism f of R to S, then

there exists a unique epimorphism ¢: % R R )—)S such that the following

diagram is commulative.
R
V \x
&«——— R
§ % / R.R)

where m is the canonical epimorphism.

Proof. Suppose that there exists an epimorphism f:R—S8. By the First

. ~ R .
Isomorphism Theorem, S= A{er(f)' Similarly the proof of Theorem 2.30 and

Remark 2.31, there exists a unique (p:I%R R)—-)S such that f=¢@omn.#

Theorem 2.36. Let R be a skewring and (R’f) be a quotient skewring of R

with commutative multiplication. Suppose that for every quotient skewring
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(R",2) of R with the commutative multiplication, there exists a unique
epimorphism w:R‘—R" such that the following diagram is commutative.
R

7

i_,-.._.-R
Then R'%R,R)'

Proof. Since (R',f) is a quotient skewring of R with a commutative

‘multiplication, by Theorem 2.35, there exists a unique epimorphism @:

%R R) —R’ such that the following diagram is commutative.

/ N
R 45— YR

where m is a canonical epimorphism.

By Remark 2.33, I%R R) is a quotient skewring of R with a
commutative multiplication, By assumption, there exists a unique epimorphism
w:R'—)%R R) such that the following diagram is commutative.

R
7N
r ——3 R
R 5> Brw)
That is gon =f and yof=mn. Similar to the proof of Theorem 2.32, ¢

and y are isomorphisms. Hence R'E%R R)" #

Definition 2.37. 4 subnormal series of a skewring R to {0} is a finite chain

of subskewrings
R =Ryp2R;2 ... 2Ry = {0} such that for each ie{0,1, ,n-1}, Rj+; <, Rj.......... (*)



40

A subnormal series is a normal serles if and only if Ri<,R for all i.

The quotient skewring R%: , are called the factors of the series.
+
A length of the series is the number of strict inclusion in the series
(equal the number of nontrivial factors % ) ).
i+

A refinement of (*) is a subnormal series obtained by inserting a finite
number of skewrings.

A refinement is proper if the length is larger.

A subnormal series R =Rg>R;> ... >Ry = {0} is a composition series
(CS) if each factor is simple.

Definition 2.38, Two subnormal series of a skewring R, R =Rp2R;2 ... 2Ry =
{0} and R =Py2P,2... 2P,y = {0} are called equivalent if there exists a

bijective correspondence between { % _ ;/ %1 ! is nontrivial} and
i+ +

{ PhP' l/ % ) is nontrivial} such that the corresponding factors are
i+ i+

isomorphic.

Theorem 2.39. A subnormal series R = Rg2R;2 ... 2Ry = {0} is a composition

series if and only if it has no proper refinement.

Proof. Suppose that R=R2R,>...2R = {0} is a composition series and

has a proper refinement. Then there exists i€ {0,...,n-1} and a subskewring P

of R such that R.,,cPcR,; and R, <, P <y R, Therefore % | is a proper
i+

nontrivial normal ideal of % | which contradicts to the simplicity of
i+

Py .
Ri+i

Conversely, suppose that R=R2R.2... 2R, = {0} is not a composition.
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Then there exists i€ {0,...,n-1} such that % 1 i5 not simple. Then there
1+

exists a s‘ubskcwring P of R such that R, ,cPcR; and PR' 1 is a nontrivial
. I+

subskewring of %_ . So that R=R2R,2..2R2P2R,.2 .. 2R, = {0} s
1+

proper refinement of R=R2R;2... 2R, = {0}. #

Theorem 2.40. [f R = Ry2R,2... 2Ry = {0} is a composition series of a

skewring R, then any refinement is equivalent to itself.
Proof. It follows from Theorem 2.39. #
The following theorem is generalized from Schreier's refinement Theorem

Theorem 2.41 Any two subnormal series for a skewring R have equivalent

refinement.

Proof. Let R=R,>R > ... 2R, = {0} and R=P2P2>... 2P, = {0} be
subnormal series for skewring R. For all ke {0,...,m+1}, i€{0,...,n}, we set
R(i,k) = RAP)+R,,, and for all ke {0,....m}, 1€ {0,...,n+1}, we set P(k,i)=
(RAPY+P,...

Claim that R=R(0,0),>R(0,1),> ... ,>R(O,m+1)=R(},0),>R(1,1),> ... ;>

R(n,0),> ... ;> RO,m+1}= {0}, ..coeoei (i)
and R =P(0,0) ,>P(0,1} ;> ... ,>P(0,n+1) =P(1,0) ,>P(1,1) > ... ;>
P(m,0),> ... ,>P(mn+1)={0}. ............ (ii)

Consider, R(0,0) = (Ry"P,)+R, = (RNR}+R, =R+R, =R and R(nm+1)=
(R,AP_, )*R.., = (RN {0})+{0} = {0}+{0} = {0}. Let ke {0,...,m},ie {0,....n}, s0
we get that R(i,k+1) = (RNP MR, SRAPIHR,,, =R(i,k). Let i€{0,....n-1}, so
we get that R(i,m+1)= (R P Ri, = RN {0})*HR;, = Ry, = (RiAR)IR, ) =
(Ri.,"P)+R,,, = R(i+1,0). By the Fifth Isomorphism Theorem, R(i,k+1)=
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(RAP R an ROPIHR,,, = R(i,k). Hence we have (i). Similarly, we have

(11). So we have the claim.
By Theorem 2.18, R(i’%(i’k +1)§P(k’I)P(k,i +1y’ Hence we have the

proof. #

The following theorem is generalized from Theorem Jordan-Holder Theorem.

Theorem 2.42. Any two composition series of a skewring R are equivalent.
Proof. By Theorem 2.41, any two composition series have equivalent

refinements. By Theorem 2.40, every refinement of a composition is equivalent

to itself. Hence any two composition series are equivalent. #
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