INTRODUCTION

Mathematicians have studied commutative and noncommutative rings
for more than 200 years. All mathematicians assumed that addition is
commutative. The purpose of this research is to study objects which behave
like rings except we do not assume addition is commutative which is called
skewrings. J

We want to see. which theorems in ring theory can be generalize to
skewring theory.

Our first discovery is that normal ideals, not ideals are the most
important objects for us. Using normal ideals we can generalize many theorems

in ring theory. For example, if R is a skewring and I is a normal ideal in R,
then f% has a natural multiplication and addition such that n:R-—)% is an

epimorphism.

In Chapter I, we introduce some notations, give definitions, examples
and fundamental theorems concerning skewrings.

In ChapterII, we give the definition of a guotient skewring and prove
some theorems about quotient skewrings. Moreover, we generalize the four |
basic isomorphism theorems and the Jordan-Holder theorem for skewrings.

In Chapter III, we give some definitions and theorems of sums and
products of skewrings. Moreover, we generalize the Krull-Schmidt theorem to
skewrings.

In Chapter IV, we generalize theorems from ring theory to skewring

theory, for example, the Levitzki theorem.



CHAPTERI
PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems
used in this research. Qur notations are as follows:

Z is the set of all integers,

Z' is the set of all | positive integers,

Id4 is the identity function on a set A,

AcB means that A is a proper subset of B.

For any family of sets {I,/ acA)}, every element of X1a can be

aeAd

represented as the sum of a finite numbers of elements, each in some I,.

Definition 1.1. Let (P,5) be a partially ordered set, P is called a lower{upper]

semilattice if and only if inf{x,y}[sup{x,y}] exists for all x,yeP and is denoted
by xayfxwy]. A lattice P is said to be a lattice if and only if P is both a

lower and upper semilattice. A lattice P is said to be a modular lattice if and

only if for all xy.zeP, if x2y then xA(yvz) = (xay}ve.

Definition 1.2. Let (P,5) and (P'<?) be partially ordered sets. A function
J:P—P’ is said to be isotone if and only if xSy implies that flx)<f(y) for all
x,yeP, [ is said to be an order-isomorphism if and only if f is a bijection
and is isotone and f-! is isotone, In this case P is said to be order-

isomorphic to P’

Remark 1.3. Let (P.<5) and (P’,<)) be partially ordered sets. Let f:P—P’ be an

order-isomorphism. If P is a lattice, then P’ is a lattice.

Definition 1.4. A triple (R,+,) is a skewring if and only if
(1) (R,+) is a group and 0 denotes its identity,



(2) (R,) is a semigroup and
(3) for all x,yzeR, x(y+z) =xy+xz and (y+z)x = yx+zx.

It is clear that every ring is a skewring.

Remark 1.5. Let R be a skewring. Then the following statements hold:
(1) For every xeR, 0x=x0=0.
(2) For all x,y,w,zeR, xytwz =wz+xy.
(3)If R has a left or a right multiplicative identity, then R is a ring.

froof. Let x,y,w,zeR.

(1) Same proof as for rings.

(2) Since xztxytwztwy = x(ztyHw(zty) = (xtw)(zty) = (x+w)zH(xtw)y =
XZtwztxy+twy, Xy+twz = wztxy. |

(3) It follows from (2). #

Example 1.6, Let (R,+) be a group. Define a binary operation - on R as
Jollows: for all xyeR, xy =0
Then (R,+,:) is a skewring. This skewring is called a skewring with the

trivial multiplication.

Example 1.7. Let (R,+,) be a noncommutative ring such that R3 = {0). Define
a binary operation @ on R by x&y =x+y+xy for all x,yeR.
Then (R,®,7) is a skewring. (See Chapter Il for an example of a

noncommutative ring with the property that R3 = {0}.)

Proof. Let x,y,zeR. At first, we shall show that (R,®) is a group.
Consider, (x@y)®z = (x+y+xy)oz = x+y+xy+zH(x+y+xy)z = X+y+xy+z+xz+yz+xyz
and xe(yez) = x@(y+zt+yz) = x+y+z+yz+x(y+z+yz) = x+y+z+yz+xy+xz+xyz. Since
(R,+) is commutative, (x@y)oz = xe(y®z), so the associative law is true for

(R,®). Since xP0 =x+0+x:0=x, 0 is a right identity of (R,®). Note that



x®(-x+x%) = X-x+x+x(-x+x?) = x*>-x*+x’. By assumption we have that x’ =0
which implies that (-x+x2) is a right inverse of x. Therefore (R,®) is a group.
Since there exist x,yeR such xy#yx, (R,®) is not abelian.

Next, we shall show that the distributive law is true for (R,®,").
Consider, (xey)z = (x+y+xy)z = xz+yz+xyz = xz+yz+0 = xztyz+xzyz = xz@yz and x
(yoz) = x(y+z+yz) = xy+xztxyz = xy+xz+0 = xy+xz+xyxz = xy@xz. Hence (R,8,)

is a skewring. #

Example 1.8. Let (G,+) be a nornabelain group, K an abelain subgroup of G
and X be a set such that XG =@ and [X[>1.
Let Map(G X.K) = {f:GUX—>G /flg:G—>K is a homomorphism.}.

For all fgeMap(G X.K), define (f+2)(x) =fix)+tg(x) and (f-g)(x) = (fog)(x) for
all xeGUX. Then (Map(G.X.K),+) is a skewring which is not always a ring.

Proof. Since the zero map O belongs to Map(G,X,X), Map(G,X.K) = @.
Let fghe Map(G,X,K) and x,yeG. At first, shall show that (Map(G,X,K),+) is
a group. Clearly, f+'g and f-g are functions of GuX to G. Since (K,+) is
abelian, (f+'g)(x+y) = fx+y)+g(xty) = fx)+Ry)te(x)te(y) = x)+gx)+y)tgy) =
(f+'g)(x)+H(f+'g)(y). Moreover, f{g(xty)) = f(g()+8(y)) = f(g(x))*+fg(y)). Then f+'g
and f-g are maps whose restrictions to G are homomorphisms. Therefore f+'g,
f-g eMap(G,X X). Clearly, 0 is an additive identity and -f is an inverse of f.
Since G is a group, the associative law is true for (Map(G,X,K),t'). Hence
(Map(G,X,K),+') is a group.

Next, we shall show that the distnbutive law is true for
(Map(G,X,K),+,). Since f{(g+h)(x)) = Ag(x)+h(x)) = f(g(x))+f(h(x)) and
(f+'g)(h(x)) =.f(h(X))+g(h(X)), f(g+'h) = fg+'th and (f+'g)h = fht'gh. Hence
(Map(G,X,K),+,) is a skewring.

Note that f(x) is arbitrary for each xeX. This implies that f+'g may not
be equal to g+'f. #
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Example 1.9. Let (H, +') be a group such that 0’ is its identity and (K,+,)) a
skewring. Let ﬁK—)Aut(H) be a group homomorphism and for every keK, let fi
=f(k). Let R =HxK. For all (h.ki),(ho,k;) €R, we define (h;k;)e(hsky) =
(h+'f ks (h2).ki+ky) and (hki)efhyky) = (0.kiky). Then (R &,®) is a skewring.

Proof. Clearly, (R,é) is a semigroup. Let (h,k,),(h,.k,),(hy.k;)eR.
First, we shall show that (R,®) is a group. Consider,

(b, k)e[(hy k)e(hyky)] = (hk)elth+ £y, (hy)ktky)
=0+ £, (ht' £y, (o)) kit tks)
= (0t £y, ()t £y (Fy, (hy)), (ki tko)+ky)
= (0, g, () £y 44, (o)i(kitky)+ky)
= (b +' £, (hy) ko H)e(hy ky)
= [(hy.k)&(h,k;)leh, ky).

Then the associative law is true for (R,®).

Since (h,k)e(0',0) = (hy+' £ (0),k+0) = (h,+'0"k;) = (b k;), (0',0) is a
right additive identity. Since (hjk)e(fy! (-h), k) =+ £, (£5! h)k<k)=
(h+'Idy(-h,),0) = (h+'(-h,),0) = (0’,0), (f;;il (-h,),-k,) is a right inverse of (h k).
Hence (R,®) is a group.

Next, we shall show that the distributive law is true for (R,9,8).
Consider, [(h;k,)@(h,k;)le(hyk,) =t fy, (hy)ktK)ehy,k,) = (0", +k)k;) =
(0, (k; kK Ks)) = (0'+0 K kyHkoks) = (0+ £ (07K ks Hoky) = (07K k(0 kqks) =
[(hy k)@ (b ky)]el(h, ky)ehy,ky)] and (hyk)e[(hsk)elhs,k;)] =
(hy ket £, (hy)ktks) = (0"k, (k+k,)) = (07, (k k,tk ks)) = (0'+'0" kK, +k k) =
0"+ £k, (0K k) = (0K k)@(0" k ky) = [(hy K J@(hy ky)le[(h, k,Jo(hs ks)).

Hence (R,,8) is a skewring. #



Example 1.10. Let {R,/acA} be a nonempty family of skewrings. Then the

direct product of {Rs/acA} is a skewring under addition and multiplication

componentwise.

Example 1.11. Let R be a skewring. Then the set of all nxn metrices over R,

M(nR), under the usual addition and multiplication of metrices is a skewring.

Proof. It can be proved in the same way as is done for rings. #

Example 1.12, Let R be a skewring and R[x] be the set of all polynomials
which are of the form (apaj,..) where a;jeR for all i. For all p; = (apa,,...)
and p; = (bp.b},...), we define p;+p; = (agtbg,a;+by,...) and p;p2 = (cpcy....)

where ¢; = ¥ ajbi;. Then (Rfx],*,) is a skewring.
05 jsi

Proof, It can be proved in the same way as is done for rings. #

Example 1.13. Let R be a skewring. Define the binary operations on R? as
SJollowss: for all (x;y;).(xay2) € R2, (xpy))*(x2y2) = (x;+x2, y;tyy) and
(xX1y1)(x2.y2) = (ixzy1y2, xpyatyixz). Then (R2,+,) is a skewring.

Proof. Clearly, (R%+) is a group. Let (X;,¥,),(X2:¥2):(Xs,y;)€R% First, we
shall show. that (R%,) is a semigroup. Consider,
[(%1y HXayD))(X5¥s) = (iXa¥1Ya s XYY 1 X2)(XsY5)
= (X XY 1Y) Xy (XY FY XY (XiXoy,¥2)ys (XYY X))
= (XXX Y Y2 Xe Y1 XaYa X Y2Y a5 XiXaY Y1 Y2YsHK Y2 Xty X;Xs)
= (X1XX3mX, Y2Y 5 Y1YaX5-Y 1X2 3 » XiXpYstK, YoXytY 1 X XY YY)
= (Xi(X2X5-Y2Y3)-Y1 (XY HY2Xs) » XiXaY 3Ty aXa Y (%:X50Y,Y5))
= (XY )(X:X5Y3Ys > X2Y3YXs)
= (%,,Y ) (%,Y2)(X5,¥5)]



Therefore (R*) is a semigroup.
Next, we shall show that the distributive law is true for (R%+,).

Consider, _

(XY DXy H(X5Y3)] = (XY )Xo+ Xs,Y2+Ys)
= (X t%,)-Yi (Y2 HYs) » X (Yot Ys Y (Xatx,)
= (XXX Xy Yo Yt ¥a» X Yot sty XatyiXs)
= (XX Y1 Yo X XYY s X Yo Yt Yaty Xs)
= (X1 X7Y1 Y2 XYY XX XY Y5 X, Y5ty Xs)
= (XY )XY X,y MX5y5) and

[0,y (0, Y2 1(%30Ya) = (X 4%, Y2 (%3,Ys)
= ((t)%5=(y 1Y2)Ya) » (i HX)yst (Y1 Y2)%s)
= (X, X1 %X Y, Y3=Y1Ys » X1Ys P XY HY X HYaXs)
= (X XYY t%X YaYs » XiYatY X HYstyoXs)
= (X XY1Ys s XYY (6X0YaYs 5 XoY5tYaXs)
= (XY 1 )(X3:Y3) H(Xas Y2 HXasYs3)-

Hence (R%+,") is a skewring. #

Example 1.14. Let R be a skewring. Define the binary operations on R4 as

SJollows: for all (xp.x),%2x3),(vo.y1.y2y3) €R?,

(xoxpx2.x)+(Vo.y1.y2.Y3) = (Xgtyoxitynxatyaxsty;) and
oxnxax)(Voynyays) =

(XQY0-X 1Y 1=X 2V 2-X3Y 3, XAV | X (Yo EX2Y 3-X3Y, XQV 2 X2V 07 X3V 1=X (Y3, X0V 3 H XY+ X [V 2-X2Y 1)

Then (R4,+,:) is a skewring.

Proof. Clearly, (R;+) is a group. Let (Xo.X;Xp.X3):(YoY1sY2Y5)(Z0rZ)5Z22;) €
R4
First, we shall show that (R') is a semigroup. Consider,
[(%0sX1:X2:X3)(Yor Y 1Y 2:Y3) 20, 21,22, Z5)
= (XoYo X, Y1-X2Y1X3Y3 » XoY1 X YoTXoY37XaY2 » Xo¥ 7 XoYo XY X,

Xo¥ st XsYotX,Ya-Xo¥ N2 Z15220Z5)



= ((XoYoX1Y1X3Y2XsY1)Zo~(XoY 1 X1 Yo+ XaY s-XaY ) Z1=(XoY 2 XY ot XY 1-X, Y3 ) 2o
(XoYs Py Yot X, Y2 Xa¥1)Zy 5 (XoYouX1¥1-X2Y 2 X3Y ) Z HXoY X, Yot Xa Y%, 2 )26+
(XoY2HXaYot XsY X1 Ya)Zy-(XoYsHXa Yo X1 Y XaY 02Ty 5 (XoYorX1Y1-XaYsXsY3) 2+
(XY %Yot %sY X1 Y ZeH (KoY s Xy Yo%, Yo XY )Z-(XoY 1 X, Yot XY 3%, Y0)2Zs
(XoYoX1Y1X,Y 1 %3Y )2y H(XoY XY oK, Yo Xo Y 1 )2 HXoY X, Yot XY 3K, Y2 )2,
(%Y %Yt %Y1 X1 Ya)2)

and (XX, XX ) (YooY 15Y20Y 9N Z0sZ1:20:24)]

= (XX 1, X0 X X YoZo Y1 Z1YoZrYaZs » Yo Y1 ZotYaZa YTy » YoZoTYaZoTYsZi-YiZs
YoZstYsZgtY12,-Y22,)

= (Xo(YoZo-Y121-Y12Z2-Y320) "X (YoZ Y125 Y223 YaZo) - Xo(YoZo t Yo 2ot Y324~ 1 Z)-
(Yot YsZotY1ZYaZ) 5 XolYoZitY 2ot YoZs-Ys )X (YoZo-Y 1 Z1-Y22:-YsZ,)
X (YoZstYs 2ty 20 Yo 20 Xo(YoZs Y 2ot YaZi-Y1Zs) 5 Xo(YoZo 1Y ZeHYsZi-Y1Z0) T
Xo(YoZo-Y1Z1=YZa Y sZs ) X (YoZi M1 ZoH Vo Zs-YaZ))- X (YoZs 1 Ys 2ty 2-Y02))
Xo(YoZstY3Zot Y127 YaZ )T (YoZoY 121 -Ya 2o Ys 2 ) % (YoZo Yo 26 YaZ Y 124) -

X (YoZi tY1261Y225-Y322))-

Then {(X,X1, Xz Xs)YorY 15Y 20 Ya) M Z0rZ1:Z225) = (XX, X0, Xa M (Yo Y15 Y Y3 N Z0s21:20:25) |-

Therefore (R',) is a semigroup.

Next, we shall show that the distributive law is true for (R%+,).
Consider, [(Xg,X1,X;.X3) (YooY 15Y2:Ys ) (Z0sZ0:20:23) = (Koo XiHY 1, X0 Y0 X TYa N 20215220 25)
= ((xeHYo)zo (XY )2 YD) 2 (X34 Y3)zs » (XotYo)z HXHY )Zet (XY o) 23 (X1 Y))2s

(XoHYo)ZH Xy Yy ) ZeH(Xs )2 -(X Y 1)zy , (XotYo)ZeH (X tYs)Zot (X 1Y) )z (X, 1Ys)z))
and (Xo,X;, X, X3 0Z05Z1,25,Z3) T (Yos Y 1Y Ya) (261 21522,Z3)

= (XoZg-X,Z,-X,Z3-X3Z; , XoZ, HX, ZH X, Z57X3Z, s XoZy X ZoHXaZ, X Zy , XoZa P X ZgHX 297X, ) +

(YoZo Y121 Y2 %Y sZs YoZr Y1 26t YaZsYaZos YoZotYaZot Y321 Y 23 Yoy Ty sZot Y 2p-Y,Z))-

Then [(Xo,X1, XX ) HYo0rY 152 Y3) (Z0:Z1sZ0:Z3) = (XosX )X X3 )(Z0,Z1, 2,24+

YorY1:Y2Y3)(ZosZ1522:23)-

Consider, (Xo,X;,X2,X ) (YosY15Y2: Y3 )T (Z0sZ1522:Z3)] = (XX 15X X3 (Yot ZgoY 1 FZ15Ya 2, Y 5 H2Zs)

= (Xo(YotZo)-X1 (Y1121 %Yo 20) X3 (Y3 72Z5) o Xo(Yi P20, (Yo T 2o) T2 (Y5 125)-%,(¥21Zy)
Xo(Y2HZo) o (Yot 2t X (Vi t2)-X (Y5 12y)  Xo(Ys+2:) X5 (YotZ) X (Y2 +2)-%,(Y, H2)))

and (Xg,X;,Xp:Xa ) (Yo ¥ 1YY ) T(Xoo X 15X 20 X3 )20, 2122523



(%Yo X1Y1-X2Y2"XsY1 » Xo¥1 X Yot XaYs-XsY XY o Xa Yot s Y- Xy Y3, KoY st Xs Yot X, Yo XoY, )
F (XoZo"X1Zy"Xy20-XZy o XoZy P X ZgHKsZy X2, , XoZy tRoZgH X0 Zy X Zy  XoZy X 2 HX 20X, ).
Then (xosxlsxzsxs)[(Yo’Y1’Yz:YJ)+(?o-Z1:zzaz:)] = (XX 1 X0 X3 ) (Yoo Y1 Y2 Y )+
(XosX1, X2, X3 (20,Z125,2,3).

Hence (R'+,") is a skewring. #

From [6] we get the following skewring with a commutative

multiplication and a noncommutative addition.

Example 1.15. Let Sy be the symmetric group of degree n where n>l. Define
the binary operations +, -on Sy as follows: for all figeSy, ftg=fog
Id if fis even or g is even,
fe=
(12) if f and g are odd,
where Id is an identity function on {1,2,...n}. Then (Sp,+,) is a skewring.

Proof. Clearly, (S,,+) is a nonabelian group and (S,,)) is commutative
semigroup. Let f,g,heS,. First, we shall show that (S,,") is a semigroup. If
f.gh are odd, then (fg)h=(12)h=(12) and f(gh) =1 2)=(12). Otherwise,
(fg)h =1d = flgh). Then (S, ) is a semigroup.

Next, we shall show that the distributive law is true for (S,+,). If f is
even, then flg+h)=1Id and fg+th=Id+ld=IdoId=1d. If f is odd, then we
consider 4 cases as follows:

Casel. g and h are odd. Then goh is even. Thus f{g+h)=f{g-h) =1Id
and fg+fh=(12)+(12)=(12)(12)=1Id

Case2. g is even and h is odd. Then goh is odd. Thus flg+h) = flg<h)
= (12) and fg+th=Id+(12)=1Ido(12)=(1 2).

Case3. g is odd and h is even. Then goh is odd. Thus f{g+h) = f{geh)
= (12) and fg+th=(12}Id=(1 2)oId=(l 2).
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Cased. g and h arc even. Then goh is even. Thus f{g+h)=f{geh)=1d
and fg+th =Id+ld=1d.Id=1d.
Therefore f{g+h) = fg+th and (f+g)h = h(f+g) = hf+hg = fh+gh. Hence (S, +,’) is a

skewring which has the commutative multiplication. #

Definition 1.16. Let R be a skewring and I be a nonempty subset of R.

(1) If I is a skewring under the operations of R, then I is a
subskewring of R, and it is denote by ISR.

(2) If I is a subskewring of R and {yx/x€l, yeR}cI
[(xy/xel, yeR})c 1], then I is a leftfright] ldeal of R.

If I is both left ideal and right ideal, then I is a two-sided ideal or
ideal of R. '

(3} If I is a subskewring of R and {r+x-r/reR, xel}c I, then I is a
normal subskewring of R.

(4)If I is a lefifright] ideal of R and I is normal, then I is a left
[right] normal ideal of R, and it is denoted by I<pR{I<ppR].

If I is both a left normal ideal and a right normal ideal, then I is a
two-sided normal ideal or normal Ideal, and it is denoted by I<yR.

Note. An arbitrary intersection of subskewrings is a subskewring and an
arbitrary intersection of lefifright, two-sided] normal ideals is a left[right,

two-sided] normal ideal.

Definition 1.17. A skewring R is simple if and only if {0} and R are the only

normal ideal of R.

Example 1.18. (1) For any skewring R, {0} and R are normal ideals of R.
(2) Let R be a skewring and B = {xeR/x" = 0 for someneZ'}.

If (R,) is commutative, then B is a normal ideal of R.
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Proof. Clearly, 0eB. Let x,yeB, reR. Then there exist m,neZ" such
that x"=y"=0. Then (xy)™"=x™""y*"=0 and (x+y)™" =

X™" + Gmn)x'“*""w oot (Z:E_ny‘”"“ +y™ =0 which imply that
Xy, xtyeB. If n is even, (-x)"=x"=0 and otherwise, (-x)"=-x"= 0,50 that -xe
B. Therefore B is a subskewring of R. Since (rx)" = r'’x" =0, rxeB. Similarly,
xreB. Then B is an ideal of R.

Claim that for every t>2, (rix-r)'=x" ([+x-1)’ = (r+x-r)(r+x-r) =
PAIX-PHxrHxr-r-rx+ = x*. Assume that for some k>2, (r+x-)*=x* Then
(r+x-0)*" = (Hx-1)(rHx-r) = X5([1+x-1) = X+ 'xr = x*'. By math induction, we
have the claim. Then (r+x-r)' =x"=0,50 that r+x-reB. Hence B is a normal

ideal of R, #

Definition 1.19. Let R be a skewring and ACR.
The left[right, two-sided] normal ideal of R which Is generated by A
is the intersection of all leftfright, two-sided] normal ideals of R which

contains A, and it is denoted by (A)In [ (A)rn,(A>n ], ‘hence (A)!n[ (A>rn'(A>n ]
= the smallest left[right, two-sided] normal ideal of R which contains A.

For ay,....an€R, denote ({ay,...am})in by (ay ...am)in. For right and

two-sided normal ideals are defined similarly.

For each ACR, let X= {E(xﬁ'ri a;s;—xi)/ meZ’, x€R, 1,5€RVZ,
iml

acA for every ie{l,...,m}} where na=an for all aeR,neZ. We shall show

that X = (A) . Clearly, Xc(A) and AcX. Let xeX. Then there exist meZ’,

x;€R, r,5,€¢RUZ, a,cA for every ie{l,...,m} such that x= )'.ﬂ.'(xa+naisi—xi)-
i=l

m m m
Let reR. Then rx=r}:](Xi+r;aisa-xi)=Z(rxr*'rriaiSi-TXi) = Zl(rriaisi), by
= i:] =

Remark 1.5 (2). Then rxeX which implies that (X,") is a semigroup. Similarly,
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Remark 1.5 (2). Then rxeX which implies that (X,) is a semigroup. Similarly,

m
xreX. Therefore X is an ideal. Consider, r+x-r=r+ X (xj+rjajsi—xj)—r =

i=
m-1

r+x+nas-x-nt _Zz(r+Xi+l'iaiSi —Xi ~O)F T Xt LSy - Xy Ty =
i=

m
Y ((r+x;) *+riajsi—(r +x;)). Then rtx-reX which implies that X is a normal
i=1 '

ideal of R. Since Xc(A) and AcX, X=(A) .

Similarly, we can prove that left[right] normal ideal of R which is

/ :
generated by A are equal to { Y (x;+riaj—xi)/ meZ’, x,eR, r,eRUZ, a,€A for

i=1

m
every ie{l,..,m}} [{(A)_ ={ Z(xi+ajri—xi)/ meZ’, x;€R, r,eRUZ, €A for

i=l

every ie{l,....m}}].#

Definition 1.20. Let R be a skewring. A normal ideal I of R is finitely

generated if and only if there exist aj,..,ame€R such that I = (a,,...amn.
For lefifright] normal ideals, the definition is defined similarly.

Definition 1.21. Let R be a skewring. For all lefifright, two-sided] normal
ideals 1J of R, we define IJ= ((xy/xel, ye})in [ IV = ((xy/xel, yel} )y .

IJ = ({xy/xel, yeli}y ].

We shall show that Definition 1.21 is well-defined. It is sufficient to
show that for any normal ideals [,J of a skew ring R, {{xy/xel, yel}), =
({xy/xel, yel}), ={{xy/xel, yel}),

Let ze({xy/xel, yelJ}),. Then z= i(xi'f'l'iiniSi'—xi) for some meZ",

=l
x;€eR, 1,5,¢RUZ, y,el, z,€J for every i€e{l,....m}. Since J is an ideal, zs,eJ for

every i€ {1,...,m} which implies that ze{{xy/xel, yel}), and ({xy/xel, yel}),
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c {xy/xel, yel}), Clearly, {{xy/xe€l, yel}), c ({xy/xel, yel}), hence they
are equal. Similarly, {({xy/xel, yel}), = ({xy/x€l, yel}),.

Proposition 1.22. For any leftfright, two-sided] normal ideals IJ and K of a
skewring R, (I)K = I{JK).

Proof. Let LYK be normal ideals. By definition 1.21., IJ =
{(Z(xi+ niyizis—x) / meZ’, ,eR, 1,8,eRUZ, yiL, zie] for every ie(l,....m}).
=i
Claim that {xk/xelJ, keK}c I(JK). Let xell. Then there exist meZ’, x,eR,

r,5,€RUZ, yel, zel for every ie{l,...,m} such that x= i(Xi+riiniSi“XE)-
il

Let keK. Then xk = i(xi+riyizm-xl)k= f;.(xik+riy;2isik-xik) =

i=1
3 (riy,zis:k), by Remark 1.5 (2). Then xkeI(JK) and hence we have the claim.
i=l

Since (INK is a normal ideal which is generated by {xk/xell, keK}, (I)Kc!
(JK). The converse is proved similarly, For lefi{right] normal ideals, we can

prove similarly, #

Proposition 1.23. For any normal ideal I of a skewring R and for any meZ",
™M= ({x;..xp/x;el for every ie(l,...m}} ).

This proposition is similar for lefifright] normal ideals.

Proof. We will prove by math induction on m.

If m=1, obvious. Suppose that this proposition is true for m=1.

By Proposition 1.22, I"™"' =I"[ = ({x,...X,/ X;€] for every ie {i,...,m}}),L
Claim that ({x,...x,/x;€l for every ie{l,....m}})I=({x,...x,.// x;€l for every
ie{l,....m+1}}),. Let ye({x,...x,/ x;€l for every ie{l,...,m}}),. Then there

exist keZ", r,eR, s,t,eRUZ, Xx,;,....X €l for every ie{(l,....,k} such that

k k
y=z:.(ri+SiXai---xmiti—ri)- Let zel. Then yz= g(l’iz*‘SiXIi-"Xmitiz“l'iz) =
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k
_Z;(s{x“...x,_,,,- tiz), by Remark 1.5(2). Then yze({{x,...x,.,/ x;€l for every ie

{1,...,m+1}}), which implies that ({x,...x,/xel for every ie{l,...m})I¢c
({%;..-Xmet/ X,€1 for every ie{l,...,m+1}}),. The converse is obvious. Therefore
we have the claim. Hence this proposition is true. For lefi[right] normal ideals,

we can prove it similarly. #

Proposition 1.24. For any lefi[right, two-sided] normal ideals 1.J and K of a
skewring R, I(J+K) = IJ+IK.

Proof. Let 1J and K be normal ideals. Since {i(j+k)/i€l, jelJ, keK} c
D+IK, I(J+K) ¢ II+IK. Since J K c J+K, ILIK ¢ I(J+K) which implies that [J+IK

< I(J+K). Hence we have the proposition, #

Definition 1.25. 4 proper left[right, two-sided] normal ideal M of a skewring
R is called a maximal lefifright, two-sided] normal ideal of R if and only if
every lefi[right, two-sided] normal ideal I of R such that McIC R implies that
I=M or I=R

Remark 1.26. If R is a finitely generated nonzero skewring (as normal ideal),
then every left{right, two-sided] normal ideal I #R is contained in a maximal

left[right, two-sided] normal ideal.

Proof. Let 1 be a proper normal ideal of R and L= {J/J is a proper

normal ideal of R which contains I}. Since IeL, L is not empty. Let {Jo}yen

be a nonempty chain in L. Clearly, |JJ, is a normal ideal and. Claim that
ael

UJa#R. Suppose not. Since R is finitely generated as a normal ideal, there
aEA

exist x;,...,x,€R such that R =(x,,...,X,, ).» Then there exists a,eA such that

XiserosXm€ J o - Then Joo=R, which contradicts Jao €L. Thus UJ,#R which

aeA
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implies that |JJ, is an upper bound of { a}

aeA

By Zom’s Lemma, L has a

aeA’

maximal element. Hence this remark is true. Similarly, we can prove for left
[right] normal ideal. #

Moreover, every finite skewring has a maximal lefi[right, two-sided]

normal ideal.

Definition 1.27. 4 proper lefifright, two-sided] normal ideal P of a skewring R
is called a prime left{right , two-sided] normal ideal of R if and only if for
any leftfright , two-sided] normal ideals 1J of R, such that IJc P implies that
Ig]"’ or JcP.

Definition 1.28. Le‘t R be a skewring and I be a normal ideal of R

(1) For each x€R, x is called a nilpotent element if and only if there
exists neZ" such that x? =0,

(2)1 is called a nilpotent normal ideal if and only if there exists neZ’
such that " = {0} and

(3) 1 is called a normal nilideal if and only if every element in I is a
nilpotent.

Left{right] nilpotent normal ideals and lefifright] normal nilideals are
defined similarly.

Definition 1.29. Let RS be skewrings and f:R—S.

(1) f is called a homomorphism if and only if for all x,yeR, fix+y} =
S+ and f(3) = ).

(2) f is called an epimorphism if and only if f is a surjective
homomorphism.

(3) f is called an isomorphism if and only if f is an injective

epimorphism. In this case R and S are said to be isomorphic, and is denoted
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by R =8.

(4) f is called an endomorphism if and only if R=S and fis a
homomorphism. ‘

(5) f is called an automorphism if and only if f is a sz'ective

endomorphism.

If fR—>S and g:S—5T are homomorphisms of skewrings, it is
casy to see that gofR—T is also a homomorphism. Likewise, the composition
of monomorphisms is a monomorphism ; similarly for epimorphisms and

isomorphisms. Moreover, f{0)=0 and f{-a)=-f{a) for every aeR.

Definition 1.30. Let RS be skewrings. Then R is called a quotient skewring of
S if and only if there exists an epimorphism f:R—S. Denoted by (Rf).

Let R be a skewring and I be a normal ideal of R. Let % =
{x+I/xeR} and define the binary operations +,- on % as follows:

for all x+I, y+fely , (et DD = x+y+I and (x+D+D = xp+,

Then (Iy,+) is a group. We shall show that - is well-defined. Let x+I
, X'+, y+I, y'tle f% be such that x+I =x'+I and y+I=y+l. Since xye(x'+I)
(y'+D) c x'y'+x'I+y' I+l = x'y'+], xy+] =x'y"+]. Then - is well-defined and (1%,-)

is a semigroup. Let x+I, y+I, z+le f% Then (x+I+y+D)(z+]) = (x+y+])(z+]) =

(x+y)z+] = xz+yz+] = xz+[+yz+ = (x+D)(z+D)Hy+I)}(z+]) and (xX+H])(y+I+z+]) = (x+])

(y+z+]) = x(y+z)t] = xy+xz+l = (x+)(y+I)+(x+I)(z+I). Hence the distributive law

is true for (RI ,+,) and it is a skewring.#
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For any normal ideal I of a skewring R, define n’:R—)% by
n(x) = x+I for every xeR. Clearly, m is an epimorphism. = is called the

canonical epimorphism. And we have % is a quotient skewing of R.

Remark 1.31. For any normal ideals 1.J of a skewring R and for any neZ,
I 217
=1

Proof. It follows from Proposition 1.22 and Proposition 1.23. #

Definition 1.32. Let RS be skewrings and f:R—>S be a homomorphism. The
kernel of f is {acR/f(a) = 05} and it is denoted by Ker(}).

Remark 1.33. Let f:R—S be a homomorphism of skewrings. Then
(1)f is a monomorphism if and only if Ker(f) = {0} and
(2)f is an isomorphism if and only if there is a homomorphism

g:5R such that fog =Ids and gof=1dp.

Remark 1.34. Let f*R—>S be a hommomorphism of skewrings. Then Ker(f) is a

normal ideal of R.

Proof. It is well-known that Ker(f) is a normal subgroup of (R,+). Let
x,yeKer(f) and reR. Since f(xy)=f{x)f{y) =0 and f{rx)=f{r)f{x) = f{r)-0 =0,
xy,rxeKer(f). Similarly, xreKer(f). Hence Ker(f) is a normal ideal of R. #

Proposotion 1.35. An ideal I of a skewring R is a normal ideal if and only if

it is the kernel of a homomorphism.
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Proposition 1.36. Let f:R—S be a homomorphlism of skewrings. Then the
Jollowing statements hold:

(D If I is a subskewring of R, then f[I] is a subskewring of S.

(2) If f is surjective and I is a normal ideal of R, Then f[I] is a
normal ideal of S.

(3)If I is a subskewring of R which contains Ker(f), then f~I[f[I]] =1

(4 If I is a subskewring of S, then f~![I] is a subskewring of R which
contains Ker(f).

(5)If I’ is a normal ideal of S, then f~![IT is a normal ideal of R
which contains Ker(}).

Furthermore, this proposition is true for lefifright, two-sided] ideals and
lefi[right] normal ideals.

Proof. (1) Let I be a subskewring of R. It is well-known that f[I] is a
subgroup of (S,+). Let x,yel. Then fx)f(y) = fixy)ef[I]). Hence f[I] is a
subskewring of S.

(2) Suppose that f is surjective and let I be a normal ideal of R. 1t is
well-known that f[I] is a normal subgroup of (S,+). By(l), f[I] is a
subskewring of S. Let seS and xel. Since f is surjective, there exists an reR
such that f{r) =s. Then sf{x) = fir)f(x) = firx)ef[l]. Similarly, f(x)sef[l].
Therefore f[I] is a normal ideal of R.

(3) Let I be a subskewring of R which contains Ker(f). Since I is a
subgroup of (R,4), f'[flI]] =L

(4) Let I' be a subskewring of S. It is well-known that f'[I'] is a
subgroup of (R,4). Let x,yef'[I']. Then f(x),fly)el'. Thus fixy) = f(x)f(y)el'
which implies that xyef'[I'). Hence f"[I’] is a subskewring of R.

(5)Let I' be a normal ideal of S. By (4), f'[I'] is a subskewring of R
which contains Ker(f). It is well-known that f'[I'] is normal subgroup of
(R,4). Let reR and xef'[I']. Then f(r)eS and fix)el'. Then f{rx)=f{r)f(x)el’.

Similarly, f(xr)el'. Therefore rx, xref™'[I') and hence f'[I'] is a normal ideal
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of R which contains Ker(f). #

It is well-known that every group is isomorphic to a subgroup of Sy
for some set X and every ring is isomorphic to a subring of End(A) for some
abelian group A.

We shall show that Map(G,X,K) is a universal skewring in the

following theorem .

Theorem 1.37. Let R be a skewring. Then R isomorphic to a subskewring of
Map(G.X,K) for some group G, some abelain subgroup K of G and some
nonempt}; set X such that X1G = @.

Proof. Let (G#) =(R:+) and (K;) = (R’+) where R’ = {(Txiy/ neZ’,
i=1

x,y;€R for every ie{l,...,n}}. By Remark 1.5 (2), (K.+) is abelian. Let X be a
nonémpty set such that GNX =@. For each reR, define 1:GUX—G by

rif xeX, ‘
1(x) = Then 1, is well-defined for every reR, since GNX=@.
rx if xeG.

We shall show that }|ceHom(G.K). By definition of 1, Im(l}c)cK. Let
x,y€G. Then 1l(x+y) = x+y) = rxtry = e(x)Hrlg (¥)- Therefore 1);eHom(G,K).

Define ®:R—>map(G,X,K) by ®(r) =1, for every reR. We shall show
that @ is a monomorphism. Let r,,r,€éR and xeGUX. If xeX, then 1.,,(X)=
I, = 1n(x)+1rz(x) and 1, (X)= 0L = 1,(r2) = ]n(lrz(x)). If xeG, then
Lo, )= (rH)X = TXATX = 1y () +1,(x) and 1, (X) =HLX =11 (x) =
1n(1n(x)). Then 14y, = | S and 1., = 1%L, » SO & is a homomorphism.
Let reKer(®). Then 1,=®(r)=0. If xeX, then r=1(x) =0 which implies that
Ker(®) = {0}. By Remark 1.31 (1), Pis a monomorphism, #

Definition1.38. A triple (S,+.) is a skewsemifield if and only if
(1) (S,) is a group with 0,
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(2) (5,+) is a commutative semigroup and

(3) for all xy,zeR, x(y+z) =xy+xz and (y+z)x = yx+zx.

Let § be a skewsemifield, Xc'S and C be a normal subgroup of §*
where 5* = 8\{0}. Define Co(X) = {yeS*/yxty%’eX for every y’eS such that
y+y’=1 for all xx’eX} and Ng(C) = {ye§5*/yCy1 = C}.

Next, we shall generalize the following theorem from skewsemifield

theory to the case of skewring.

Theorem 1.39. Let H be a subskewsemifield of a skewsemifield S, C be a
normal subgroup of S*. Suppose that (HC)*< Co(C) and H*c Ng(C). Then

%nch%'

Proof. Claiml. HC is a subskewsemifield of S.
Let h;,h,eH and c,,c,eC. If h;=0 or h,=0, then (h,c,)(h,c;)=0eHC.

If hy =0 and h,#0, then (h,c)(h,c,)= hlhz(hilclhzcg)eHC since Cis a
normal subgroup and (hic,)(ci*h7") =1 = (c7'h{") (hc) where ¢i'h;' =

hi'(hie;'hy!) € HC since C is a normal subgroup. Therefore ((HC)*,) is a
group. If h+h, =0, by Proposition 3.12 in [8], then h, =h,=0. So h,c,+h,, =
O0eHC. If h+h, #0, then (h,c,+h,c,) = (h,+h)((h,+h,) *h,c;+(h,+h,)'h,c,)eHC,
since (h,+h,)"h,+(h;+h,)*h; =1€HC and (HC)*cCo(C). So that (HC,4) is a
semigroup. Therefore HC is a subskewsemifield of S and we have Claiml.
Claim2. C is a normal convex subgroup of (HC)*.

Let h,h,eH and ¢,c,,c,eC be such that h,c,+h,c,=1. Since (HC)*c
Co(C), hjc,c+h,¢, =hc,cth,c, 1€C. Hence C is a normal convex subgroup of
(HC)* and hence we have Claim2.

Define f:H—HC by filh)=hC for every heH. Let h,,h,eH. Then
C
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f{h,+h;) = (hy+h,)C = h,C+h,C = fth, }+Rh,) and fhhy) = (h,)C =h,Ch,C =
fth))Rh,), so f is a homomorphism. Let heH and ceC. Then f{h) =hC =hcC,

so f is an epimorphism. By First Isomorphism Theorem in [9],

%er(f) = H%

Claim3. Ker(f) = HAC.

Let xeKer(f). Then xeH and xC = f{ix)=C, so xeC and xeHNC. Thus
Ker(f)lcHNC. Let xeHNC. Then f{x) =xC=C, so xeKer(f) and HnhCgKer({).
Hence we have Claim3.

Therefore this theorem is true. #
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