จุฬาลงกรณ์มหาวิทยาลัย

ทุนวิจัย กองทุนรัชดาภิเษกสมโภช

รายงานผลการวิจัย

ความสัมพันธ์ของโครงสร้างอนุพันธ์ทรานชินนามิกแอชิด ต่อการยับยั้งเอนไซม์อัลฟากลูโคซิเดส

โดย

ศิรินทร หยิบโชคอนันต์ นาตยา งามโรจนวณิชย์

ลุฬาลงกรณมหาวทยาละ

ตุลาคม 2547

กิดดิกรรมประกาศ

งานวิจัยนี้ได้รับทุนสนับสนุนจาก โครงการวิจัย ทุนวิจัย กองทุนรัชดาภิเษกสมโภช จุฬาลง กรณ์มหาวิทยาลัย

ชื่อโครงการวิจัยความสัมพันธ์ของโครงสร้างอนุพันธ์ทรานขินนามิกแอชิดต่อการ
ยับยั้งเอนไซม์อัลฟากลูโคซิเดสชื่อผู้วิจัยรศ. สพ.ญ. ดร. ศีรินทร
หยิบโชคอนันต์
ผศ. ดร.นาตยา งามโรจนวณิชย์เดือนและปีที่ทำวิจัยเสร็จดุลาคม 2547

บทคัดย่อ

จากการศึกษาความสัมพันธ์ระหว่างโครงสร้างทางเคมีของทรานชินนามิค แอชิด และ อนุพันธ์ต่างๆต่อผลการยับยั้งเอนไซม์อัลฟากลูโคซิเดส พบว่า 4-เมท็อกซี-ทรานชินนามิค แอซิด และ4-เมท็อกซี-ทรานชินนามิค แอซิด เอธิล เอสเทอร์ มีฤทธิ์สูงที่สุดในการยับยั้งเอนไซม์อัลฟากลู โคซิเดส ซึ่งจากการทดลอง พบว่า การแทนที่ตำแหน่งที่ 4 ของทรานชินนามิค แอซิดจะมีผล เปลี่ยนแปลงฤทธิ์ในการยับยั้งเอนไซม์อัลฟากลูโคซิเดส และการเพิ่มความยาว การเปลี่ยนแปลงที่ ดำแหน่ง 4-อัลกอซี รวมทั้งการเพิ่มหมู่ที่ใช้แลกเปลี่ยนอิเล็กตรอนจะมีผลลดฤทธิ์ในการยับยั้งการ ทั่วงานของเอนไซม์ นอกจากนี้ยังพบว่า 4-เมท็อกซี-ทรานซินนามิค แอซิดสามารถยับยั้งการ ทั่วงานของเอนไซม์ นอกจากนี้ยังพบว่า 4-เมท็อกซี-ทรานซินนามิค แอซิดสามารถยับยั้งการทำงาน ของเอนไซม์อัลฟากลูโคซิเดสแบบแข่งขันไม่ได้ ในขณะที่ 4-เมท็อกซี-ทรานชินนามิค แอซิด เอธิล เอสเทอร์ยับยั้งการทำงานของเอนไซม์อัลฟากลูโคซิเดสแบบแข่งขันได้ จากผลการทดลองดังกล่าว สรุปได้ว่าอนุพันธ์ของทรานซินนามิค แอซิดมีแนวโน้มที่จะนำมาพัฒนาเป็นยากลุ่มที่ออกฤทธิ์ ยับยั้งการทำงานของเอนไซม์อัลฟากลูโคซิเดสได้ไนอนาคต

 Project Title
 Structure - activity relationships of trans-cinnamic acid derivatives on inhibitions of alpha-glucosidase

 Name of Investigators
 Sirintorn Yibchok-anun Nataya Ngamrojanavanich

 Year
 October, 2004

Abstract

trans-Cinnamic acid and its derivatives were investigated for the α -glucosidase inhibitiory activity. 4-methoxy-trans-cinnamic acid and 4-methoxy-trans-cinnamic acid ethyl ester showed the highest potent inhibitory activity among those of *trans*-cinnamic acid derivatives. The presence of substituents at 4-position in *trans*-cinnamic acid altered the α glucosidase inhibitory activity. Increasing of bulkiness and the chain length of 4-alkoxy substituents as well as the increasing of the electron withdrawing group have been shown to decrease the inhibitory activity. 4-methoxy-*trans*-cinnamic acid was a non-competitive inhibitor for α -glucosidase, whereas, 4-methoxy-*trans*-cinnamic acid ethyl ester was a competitive inhibitor. These results indicated that *trans*-cinnamic acid derivatives could be classified as a new group of α -glucosidase inhibitors.

Graphical Abstract

The substitution at 4-position in *trans*-cinnamic acid with OH- and OC_2H_6 -group increased the α -glucosidase inhibitory activity. Both 4-methoxy-*trans*-cinnamic acid and 4-methoxy*trans*-cinnamic acid ethyl ester exerted the highest potent inhibitory activity among those of *trans*-cinnamic acid derivatives.

$$4 \text{-methoxy-trans-cinnamic acid}$$

$$4 \text{-methoxy-trans-cinnamic acid}$$

$$4 \text{-methoxy-trans-cinnamic acid ethyl ester}$$

Table of contents

	page
Acknowledgement	11
Abstract	110
Graphical abstract	V
Introduction	1
Materials and methods	2
Results and discussion	3
Conclusion	5
Suggestion for further work	5
การเผยแพร่ผลงานวิจัย	5
References	6
Table 1	8
Figure 1	9
A SALE AND A	

Introduction

Q-Glucosidase inhibitors have been shown to be potentially valuable for treatment of various diseases. Inhibition of Q-glucosidase decreases the blood glucose levels via delaying digestion of poly- and oligosaccharides to absorbable monosaccharides.¹ This leads to a reduction in glucose absorption and, subsequently, the rise of postprandial hyperglycemia is attenuated. Q-Glucosidase inhibitors are also known to be promising as anti-viral, anti-HIV agents, which alter glycosidation of envelope glycoprotein through interference with biosynthesis of N-linked oligosaccharides.^{2,3} In addition, they have recently been used for treatment of B- and C-type viral hepatitis.⁴ Recent studies have shown that tetrachlorophthalimide and 3-O-acyl mesquitol analogues were new examples class of Q-glucosidase inhibitors.

trans-cinnamic acids, originally isolated from plant sources¹⁷, have been reported to possess a variety of biological properties including hepatoprotective¹⁹, anti-malarial¹⁰ and antioxidant activities.¹¹ For example, *trans*-cinnamic acid induces cytostasis and a reversal of malignant properties of human tumor cells in vitro. Furthermore molecular analysis have been shown that the anti-tumor activity of cinnamic acid may be due in part to the inhibition of protein isoprenylation in mitogenic signal transduction.¹² *p*-Coumaric acid or 4-hydroxy-*trans*-cinnamic acid has shown to possess anti-oxidant activity. It minimized the oxidation of low-density lipoprotein (LDL) involving direct scavenger of reactive oxygen species (ROS).¹³ Moreover, the dehydrogenated polymers of *p*-coumaric acid inhibited HIV-1 protease activity.¹⁴ 4-Methoxy-*trans*-cinnamic acid exhibited a potent hepatoprotective activity in rat hepatocytes from toxicity induced by carbon tetrachloride (CCI₄).¹⁵ Consequently, a broad range of biological activities of cinnamic acids have been reported, this leads us to investigate a new pharmacological activity of *trans*-cinnamic acid and its derivatives.

In this study, we studied the α -glucosidase inhibitory activity of *trans*-cinnamic acid and its derivatives which were obtained from a natural source, synthesis and commercially

available compounds. We also discuss their structure-activity relationship and kinetics of inhibitory activity.

Materials and methods

Compound 8-9 were isolated from the rhizomes of Kaempferia galanga.¹⁶ The other transcinnamic acid derivatives (1,2,6,7,10-18) were synthesized by the Perkin reaction between aromatic aldehydes and aliphatic carboxylic acids following the procedure of Chiriac et al.¹⁷ Compound 3-5 were purchased from Fluka Co.Ltd. 1-Deoxynorjirimycin and Q-glucosidase from baker's yeast (EC.3.2.1.20) were purchased from Sigma Chemical Co.Ltd. (St. Louis, M@). Structure of isolated and synthesized compounds were confirmed by spectroscopic data (NMR, MS) and all others chemicals used were of analytical grade. The inhibitory effect of each compound on Q-glucosidase activity was measured according to the literature procedure. Briefly, Q-glucosidase from baker's yeast was assayed using 0.1 M phosphate buffer at pH 6.9, and 1 mM p-nitrophenyl-Q-D-glucopyranoside (PNP-G) was used as a substrate. The concentration of the enzymes was 1 U/ml in each experiment. Fourty microlitre of α -glucosidase was incubated in the absence or presence of various concentrations of trans-cinnamic acid derivatives (10 µl) at 37°C. The preincubation time was specified at 10 min and PNP-G solution (950 LU) was added to the mixture. The reaction was carried out at 37 C for 20 min, and then 1 ml of 1 M Na, CO, was added to terminate the reaction. Enzymatic activity was quantified by measuring the absorbance at 405 nm. One unit of α-glucosidase is defined as the amount of enzyme liberating 1.0 μmol of PNP per minute under the conditions specified. 1-Deoxynorjirimycin was used as the positive control in this study (Table 1). The IC₄₀ values were expressed as mean \pm SE, (n=3). In order to evaluate the type of inhibition using the Lineweaver-Burk plot, the enzyme reaction was performed according to the above reaction with various concentrations of trans-cinnamic acid derivatives (8 and 9).

Results and Discussion

As the results, compound 4-10 and 15-16 inhibited α -glucosidase activity in dosedependent manner. Table 1 showed that the compounds 4-10 and 15-16 had more potent α -glucosidase inhibiting activity than that of 1-deoxynorjirimycin (IC₅₀ = 5.60 ± 0.42 mM) which was used as the positive inhibitor in yeast α -glucosidase. [Note, the IC₅₀ of 1deoxynorjirimycin against α -glucosidase type IV (Sigma G6136) was reported to be 330 μ M)]. *trans*-cinnamic acid (1), its ethyl ester (2) and the 2-hydroxy-*trans*-cinnamic acid (3) were found to be inactive (IC₆ > 5 mM).

4-hydroxy-trans-cinnamic acid (5) had very potent inhibitory activity ($IC_{so} = 0.20 \pm 0.06$ mM). 4-methoxy-trans-cinnamic acid (8) was the most active compound ($IC_{so} = 0.04.^{\circ} \pm 0.006$ mM), while 2-, and 3-methoxy-trans-cinnamic acid (6-7) were less potent ($IC_{so} = 4.34 \pm 0.78$ mM, $IC_{so} = 0.58 \pm 0.15$ mM, respectively). These results suggested that the presence of hydroxy or methoxy group at 4-position on *trans*-cinnamic acid moiety is necessary to enhance α -glucosidase inhibitory activity. When the α -glucosidase inhibitory activities of compound 1, 5 and 8 were compared, it was found that the potency increased in the order of 8 > 5 > 1. The observation revealed that replacement of the 4-hydroxy substitued in the *trans*-cinnamic acid by a methoxy group at *para*-position on *trans*-cinnamate acid ethyl ester (9), the IC_{so} values was 0.05 ± 0.03 mM which was in the same order to that of 4-metoxy-*trans*-cinnamic acid. The evidence supported the previous result (1 and 2), that neither the acid group nor the ethyl ester played any important role on α -glucosidase inhibitor.

The introduction of 4-phenoxy residue to *trans*-cinnamic acid (10) decreased the α -glucosidase inhibitory activity (IC₅₀ = 0.44 ± 0.37 mM). The compounds having larger alkoxy substituent (11-13) were found to have no effect on α -glucosidase inhibition (IC₅₀ >

5 mM). These results suggested that increasing of the bulkiness, or the chain length of the alkoxy substituent at 4-position may decrease the α -glucosidase inhibitiory activity.

While the presence of NO group at 4-position of *trans*-cinnamic acid (14) showed no activity (IC₅₀ > 5 mM), the *trans*-cinnamic acid derivatives having F (15) and CI (16) substituent at 4 position gave moderate activity (the IC, values of 0.27 ± 0.06 , 0.39 ± 0.14 mM, respectively). This obervation supported the notion that a decrease in electron diversity of *trans*-cinnamic acid molety would result in the decrease of α -glucosidase inhibitiory activity. On the other hand, 4-bromo-*trans*-cinnamic acid (17) had no effect on α -glucosidase inhibiting activity.

Lineweaver-Burk plot of Q-glucosidase kinetics is shown in Figure 1. The kinetic result demonstrated that the mechanism of Q-glucosidase inhibition of compound 8 was a noncompetitive with K value of 0.06 ± 0.01 mM. In contrast, 4-methoxy-trans-cinnamic acid ethyl ester (9) was a competitive inhibitor with K value of 0.02 ± 0.01 mM. At this point, K, value was calculated using the values of V ... obtained at 0 and 55.6 µM for compound 8. and the values of K_{max} obtained at 0 and 48.1 µM for compound 9, respectively. To date, the microbial Q-glucosidase is known to be structurally different to those of mammalial origins. The microbial Q-glucosidase inhibitors are not necessarily the mammalial Qglucosidase inhibitors. For example, (+)-catechin, a natural inhibitor of yeast α glucosidase does not show any inhibitory activity on mammalial Q-glucosidase. On the other hand, acarbose and voglibose show very high inhibitory activity on porcine small intestine α -glucosidase, but both of them show very low inhibitory activity on microbial α glucosidase²¹, suggesting that ongoing experiments should be focused on the inhibitory activity of these compounds against mammalian intestinal α -glucosidases. Nevertheless, the inhibition of yeast α -glucosidase by trans-cinnamic acid derivatives served as an interesting structural activity relationship of this group of inhibitors.

Conclusion

In conclusion, 4-methoxy-*trans*-cinnamic acid (8) and 4-methoxy-*trans*-cinnamic acid ethyl ester (9) showed the highest activity on microbial α -glucosidase inhibition among the *trans*-cinnamic acid derivatives. Additional studies on α -glucosidase inhibitory effects of *trans*-cinnamic acid derivatives using x-ray crystallography to evaluate the binding activity as well as inhibitory activity of these compounds on α -glucosidase from mammalial sources and in vivo experiments are in progress. In addition, further studies on the elucidation of molecular mechanisms of the *trans*- cinnamic acid derivatives against α -glucosidase could also be rewarding.

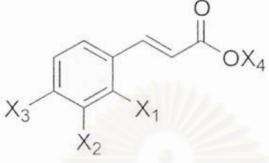
Suggestion for future work

ทางคณะผู้วิจัยได้วางแผนการวิจัยเพื่อศึกษาต่อถึงความสัมพันธ์ระหว่างสูตรโครงสร้างทาง เคมีของสารในกลุ่มทรานซินนามิก แอซิดนี้ต่อการยับยั้งการเข้าสู่เซลล์ของเชื้อไวรัส HIV ซึ่งจะเป็นการ บ่งขี้ถึงกลไกการออกฤทธิ์ที่สำคัญของสารที่อาจพัฒนาไปสู่ยาต้านการติดเชื้อไวรัส HIV ต่อไปใน อนาคต

การเผยแพร่ผลงาน

พร้อมกับการส่งรายงานฉบับสมบูรณ์นี้ ทางคณะผู้วิจัยได้ส่ง manuscript นี้ไปลงตีพิมพ์ในวารสาร นานาขาติ Bioorganic & Medicinal Chemistry Letters และได้รับการตอบรับให้ลงตีพิมพ์เป็นที่ เรียบร้อยแล้ว

จุฬาลงกรณ์มหาวิทยาลย


References

- 1. McCulloch, D.K.; Kurtz, A.B.; Tattersall, R.B. Diabetes. 1983, 6, 483-487.
- Fischer, P.B.; Karlsson, G.B.; Butters T.D.; Dwek, R.A.; Platt, F.M. J. Virol. 1996, 70, 7143-7152.
- Walker, B.D.; Kowalski, M.; Goh W.C.; Kozarsky, K.; Krieger, M.; Rosen, C.; Rohrschneider, L.: Haseltine, W.A.; Sodroski, J. Proc. Natl. Acad. Sci. USA. 1987, 84, 8120-8124.
- Block, T.M.; Lu, X.Y.; Platt, F.M.; Foster, G.R.; Gerlich, W.H.; Blumberg, B.S; Dwek, R.A. Proc. Natl. Acad. Sci. USA, 1994, 91, 2235-2239.
- Sou, S.; Mayumi, S.; Takahashi, H.; Yamasaki, R.; Kadoya, S.; Sodeoka, M.; Hashimoto,
 Y. Bioorg. Med. Chem. Lett. 2000, 10, 1081-1084.
- Rao, R.J.; Tiwari, A.K.; Kumar, U.S.; Reddy, S.V.; Ali, A.Z.; Rao, J.M. Bioorg. Med. Chem. Lett. 2003, 13, 2777-2780.
- Kumazawa, S.: Hayashi, K.: Kajiya, K.: Ishili, T.; Hamasaka, T. J. Agric. Food.Chem. 2002, 50, 4777-4782.
- 8. Mericli, A.H.; Merichi, F.; Ulubelen, A.; Ilarslan, R. Phytochemistry. 1991, 12, 4195-4196.
- 9. Perez-Alvarez, V.; Bobadilla, R,A.; Muriel, P. J Appl Toxicol. 2001, 21, 527-531.
- 10.Wiesner, J.; Mitsch, A.; Wissner, P.; Jomaa, H.; Schlitzer, M; Bioorg. Med. Chem. Lett. 2001, 11, 423-424.
- 11. Natella, F.; Nardini, M.; Di, Felice, M.; Scaccini, C. J. Agric. Food. Chem. 1999 ,47, 1453-1459.
- 12. Liu, L.; Hudgins, W.R.; Shack. S.; Yin, M.Q.; Samid, D. Int. J. Cancer. 1995, 62, 345-350.
- Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Am. J. Physiol. Cell. Physiol. 2000, 279, C954-60.
- Ichimura, T.; Otake, T.; Mori, H.; Maruyama, S. Biosci. Biotech. Biochem. 1999, 63, 2202-2204.
- 15. Lee, E.J.; Kim, S.R.: Kim, J.; Kim, Y.C. Planta Med. 2002, 68, 407-411.

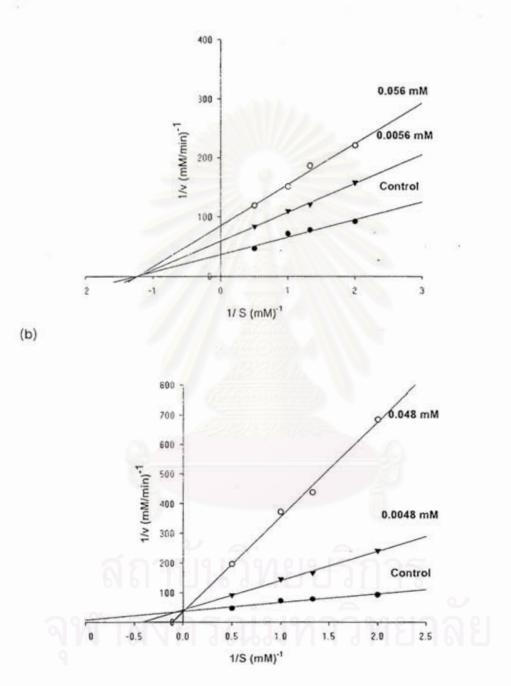

- Pandji, C.; Grimm, C.; Wray, V.; Witte, L.; Proksch, P. Phytochemistry. 1993, 34, 415-419.
- 17. Chiriac, C.I.; Tanasa, F.; Onciu, M. Tetrahedron Letters. 2003, 44, 3579-3580.
- Matsul, T.; Yoshimoto, C.; Osajima, K.; Oki, T. Osajima, Y. Biosci. Biotech. Biochem. 1996, 60, 2019-2022.
- 19. Ali, MS.; Jahangir, M.; Hussan, SS.; Choudhary, MI. Phytochemistry. 2002, 60, 295-299.
- 20. Chiba, S. Biosci. Biotech. Biochem. 1997, 61, 1233-2039.
- 21. Oki, T.; Matsui, T.; Osajima, Y. J. Agric. Food. Chem. 1999, 47, 550-553.
- 22. Kim, YM.; Wang, MY.; Rhee, HI. Carbohyd Res. 2004, 339, 715-717.

Table 1. IC values of *trans*-cinnamic acid and its derivatives for inhibition of α -glucosidase

Compounds	X.	X	X	Х.	IC, (mM)
1	н	Н	н	Н	>5
2	н	н	н	C H	> 5
3	OH	н	н	н	>5
4	н /	OH	Н	н	1.27 ± 0.51
5	н	н	OH	н	0.20 ± 0.06
6	OCH.	н	н	н	4.34 ± 0.78
7	н	OCH,	н	Н	0.58 ± 0.15
8	н	н	ОСН	н	0.04 ± 0.01
9	н	Н	OCH.	C.H.	0.05 ± 0.03
10	н	Н	OPh	Н	0.44 ± 0.37
11	н	H	OCH_Ph	H	>5
12	бн	Н	OC,H _a	н	>5
13	н	Н	OC ₆ H ₁₂	н	>5
14	н	H	NO.	Н	>5
15	Н	н	F	Н	0.27 ± 0.06
16	Н	Н	CI	Н	0.39 ± 0.14
.17.	н	н	Br	Н	>5
-deoxynojirimycin					5.60± 0.42

9

Figure 1. Lineweaver-burk plot analysis of the inhibition kinetics of α -glucosidase inhibitory effects by (a) 4-methoxy-*trans*-cinnamic acid (8), and (b) 4-methoxy-*trans*-cinnamic acid ethyl ester (9).

(a)