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CHAPTER 1

INTRODUCTION

Multicasting refers to the transmission of data from one node (source node) to a
selected group of nodes (member nodes or destination nodes) in a communication
network. Instead of sending a separate copy of the data to each individual group
member, a multicast source sends a single copy to all the members. An underlying
multicast routing algorithm determines, with respect to certain optimization objective, a
multicast tree connecting the source(s) and the group members. Data generated by the
source flows through the multicast tree, traversing each tree edge exactly once. As a
result, multicast is more resource efficient, and is well suited for applications such as
video distribution. Multicast services have been increasingly used by various continuous
media applications. For example, the multicast backbone (Mbone) of the Internet has
been used to transport real-time audio and video for news, entertainment, and distance
learning. With fast development of hardware technologies, commercialization of the
Internet, as well as the increasing demand of quality-of-services (QoS) fueled by
emerging continuous media applications, offering guaranteed and better than best effort
services will add to the competitive edge of a successful service provider. The notion of
QoS was proposed to capture the qualitatively or quantitatively defined performance
contract between the service provider and the user applications. QoS provisioning
entails the development of several essential techniques, i.e. definition and specification
of QoS, design of QoS-driven (or termed elsewhere constrained-based) unicast/
multicast routing ‘protocols, packet scheduling algorithms: for link “sharing, 'as well as
resource reservation and management.

In general, a multicast communication session involves multiple sources
transmitting to multiple destinations. This is the many-to-many multicasting problem.
Videoconferencing is an obvious example of an application involving multiple sources
and multiple receivers. The one-to-many multicasting problem is a special case of the

many-to-many problem, in which the multicast session involves only one source. An



example of one-to-many communication is real-time control application in which a
sensor transmits its readings to more than one remote control stations. One approach to
establish a many-to-many communication session is by setting up multiple one-to-many
sessions. The host group model is defined as a multicast group that is a set of receivers,
identified by a unique group address. The use of a unique group address allows logical
addressing, i.e., a source needs only to know the group address in order to reach all
receivers. It does not need to know the addresses of the individual receivers. In
addition, the source itself need not be a member of the multicast group. Logical
addressing is advantageous for applications with large numbers of sources and
receivers, such as mailing lists or news groups, and for dynamic applications, such as
computer-supported cooperative work, where receivers may join or leave the group at
any time and sources may start or stop transmission to that group at any time.

Most real-time applications of computer networks, such as teleconferencing,
remote collaboration and distance learning, rely on the ability of the network to provide
multicast communication.  These applications may require end-to-end delays, delay
jitter, and loss rate which are expressed as QoS parameters which must be guaranteed
by the underlying network. The upper bound on end-to-end delay from any source to
any receiver in a real-time session is the main QoS parameter we consider during our
investigation in this dissertation. In high-speed wide-area networks, the transmission
delay is small and the queuing delay is also small, because small buffer sizes are used.
Therefore, the propagation delay is the dominant component of the link delay. The
propagation delay is proportional to-the distance traversed by the link. It is fixed,
irrespective of the link utilization. Therefore a route selection algorithm can guarantee an
upper bound on the end-to-end delay by.choosing the appropriated links for the session
being initiated, such that the delay from any source to any receiver does not exceed the
delay bound.

With the advent of multimedia applications, the focus of the communication
network has shifted from initial emphasis on reliable delivery of text to include support
for QoS requirements of continuous media data. Complex control algorithms and
sophisticated routing, scheduling, and resource allocation mechanisms are needed to

support the bandwidth and QoS requirements in a context where the network



transmission speeds are increasing at a rate faster than the processing speed. Thus, the
network control algorithms and protocols must be sufficiently simple to operate at or
near link bandwidth speed, but be flexible enough to support applications with different
QoS requirements.

The “best-effort paradigm” offered by the current datagram service, which
proved to be very successful in the realization of a universal network in a heterogeneous
environment, is not adequate to support real-time traffic. The network protocol offers no
guarantees about timely, reliable, and ordered delivery of packets. Circuit switching,
which is the standard method for providing real-time performance, does not optimize the
utilization of the network resources, and may be very inadequate for variable bit-rate
applications.

To address real-time requirements for multimedia applications in an efficient
manner, the development of new network channel abstractions is required. It is clear
however, that without proper characterization of the network components and without
any resource allocation, it is extremely difficult, if not impossible, to provide predictable
performance guarantees to multimedia applications. Two approaches can be used to
provide network performance guarantees. The first approach is to overengineer the
network to the extent that an application is certain to get the resource it needs. Thus, the
applications can be unconstrained in their resource usages and still receive the
guaranteed level of performance. In a high-speed network, this approach would require
a prohibitively large amount of resources.

The second approach involves. monitoring and. controlling resource allocation
and usage for each application. This approach requires that an application specifies its
resource needs a priori, and unless its needs can be met,.it is blocked or rejected. Once
started, mechanisms are provided to ensure that the application does not use more
resources than requested. Because every application uses only its share resources, all
performance needs can be met. This approach has been adopted in several
frameworks of integrated service packet networks. The service models described in the
integrated service network focus on providing either predictive or guaranteed service for

real-time applications on a one-to-one basis.



In order to support applications’ real-time requirements, the network architecture
should provide a basic framework upon which applications with widely varying traffic
requirements can receive satisfactory service. Building such an architecture requires

investigation of multiple design issued. These issues can be divided as follows:

® [low Specification: The network and the applications require a common language
to specify the requirements for transmitting real-time data. A source transmitting
real-time data needs to inform the network of its QoS requirements. These
requirements are communicated to the network nodes along the path to verify the
feasibility of supporting these requirements.

® Admission Control: Since network resources are finite, the network cannot accept
all connection requests while maintaining QoS requirements. The network has to
verify that there are enough resources before granting any request. However,
when the application does not operate at its peak, expensive network resources

can be underutilized.

® Path Establishment and Routing: The network needs to decide which route to
pick to send the packets of a session. Selecting a route can be harder for real-
time communications where there are some requirements on the Quality of

Service (QoS) that have to be satisfied.

® Policing: In order to verify that applications conform to-their specified rates, a
policing mechanism is needed at the edge of the network. By preventing an
offending application from excessively utilizing the network resources, the
likelihood that this application negatively affects other applications’ QoS is greatly

reduced.

® Scheduling: Scheduling policies specify how resources are allocated to incoming
packets as they arrive at intermediate nodes. A scheduling policy determines
when a packet will be transmitted. Depending on the scheduling policy, different
guarantees can be offered. A scheduling policy can offer guarantees in terms of
bandwidth, delay or both. The types of QoS guarantees provided by a scheduling
policy are classified as deterministic or statistical. A deterministic guarantee

policy ensures all application performance requirements will be met barring



software or hardware failures. In contrast, a statistical guarantee policy provides a
probabilistic guarantee for the application traffic. In other words, given an infinite
time, the statistical guarantee policy ensures that the performance requirements of
a specified percentage of the applications packets will be met on average over

the time.

In the current Internet, fault-tolerant or survivable capability was already incorporated.
Many of the design decisions were taken to ensure that the network would survive the
failure of multiple routing and transmission elements. To increase the system reliability,
additional resources must be reserved as a priori, such as multiple copy schemes,
dispersity routing [7] and spare resource allocation schemes. The major research issue
with these schemes seems to be the reduction of the resource overhead by means of
techniques such as sharing of resources across connections or between disjoint paths
for the same connection. This also points to the main difference between such
proactive schemes, and the reactive ones. With reactive schemes, there is no resource
overhead in the common (no failure) case. Only when a failure occurs does the network
attempt to find the resources necessary to recover from the failure. The inevitable
consequence of this “laziness” is the latency of recovery, and the possibility of being
unable to recover if the network is too highly loaded. We imagine that connections with a
very high requirement for reliability will be set up with a priori guarantees on reliability,
while most of the other connections will be satisfied with quick recovery for most of the
traffic.

With the phenomenal growth of the Internet, ar wide array. of network applications
are being developed for use over the Internet. More and more of these applications
involve transmission -of multimedia -information and use ‘multipoint connections. The
popularity .and availability of these multicast applications has lead to a phenomenal
growth of the multicast backbone or Mbone. Multimedia applications are bandwidth
intensive and real-time in nature on which they impose a greater load to the
internetwork.

Multipoint communication can be implemented as a set of one-to-one

communication which requires the sender to send an individual copy to each



destination sequentially. The increase in the number of destinations in the multicast
increases the load on the wide-area network because copies of packets must be
replicated to send to each destination.

With multicast approach, resource usage is improved whereby a multicast tree is
constructed and used as distribution paths from a source to multiple receivers.
Duplication of information is only performed at the forks in the tree defined for the
multicast. Sending only a single copy saves bandwidth on links and reduces congestion
in the network layer. The information is sent in parallel to the receivers along the
branches of the tree, improving the average latency from the source to the receivers.

Algorithms are needed in the network to compute multicast trees; we call such
algorithms, multicast algorithms. A multicast algorithm constructs a multicast tree by
setting up state in the multicast routing tables of the routers in the computer network.
These tables maintain pointers to neighbors to which multicast packets are forwarded in
order to reach their destinations. Multicast routing can operate either in a distributed or
centralized manner to compute the multicast tree. It is not desirable or feasible to have
a central control in a very large network. In the centralized method, there is a high
communication cost and single point of failure. It may be too expensive in terms of
bandwidth, memory and processing overhead for a central control to have all the
information about the group memberships and carry out all the computation to construct
the multicast tree. Then the central control has to broadcast the information about the
tree to all the routers in the network reliably.

Multicasting has been‘extended. to operate in the wide-area networks by having
the Internet Group Message Protocol (IGMP), to disseminate multicast membership
information to multicast routers and permits routers to-dynamically determine how to
forward messages. A delivery tree is constructed on-demand and is data-driven. The
tree in the existing IP architecture is the reverse shortest-path tree and shortest-path tree
from the source to the group for distance-vector, namely DVMRP (Distance Vector
Multicast Routing Protocol) and link-state routing, namely MOSPF (Multicast Extensions
to Open Shortest Path First), respectively. However, there are several shortcomings with
the existing IP multicast architecture, i.e. DVMRP and MOSPF. First, all routers in the

Internet have to generate and process periodically control messages for every multicast



group, regardless of whether or not they belong to the multicast tree of the group. Thus,
routers not on the multicast tree incur memory and processing overhead to construct
and maintain the tree for the lifetime of the group. Packets that do not lead to any
receivers or sources are periodically flooded throughout the Internet, thereby consuming
and wasting bandwidth. In DVMRP, it is the data packets that are periodically flooded
when the state information for a multicast tree times out. In MOSPF, it is the link-state
packets, containing the state information for group membership, that are periodically
flooded. Second, the multicast routing information in each router is stored for each
source sending to a group. Finally, the IP multicast protocols, being extensions of
unicast routings such as the DVMRP and MOSPF, are tightly coupled to the underlying
unicast routing algorithm. This complicates inter-domain multicasting if the domains
involved use different unicast routing. The unicast routing also becomes more
complicated by incorporating the multicast-related requirements.

Among many multicast algorithms, the core-based tree (CBT) method has
received a great deal of attention. The CBT was proposed to overcome the above
shortcomings [5]. CBT protocol involves having a single node, known as the core of the
tree, from which the branches stretch. These branches form the shortest paths between
the members of the multicast group and the core. CBT also allows multiple Core routers
to be specified which adds a little redundancy in case the core becomes unreachable.
However, the core-based tree method may have a reliability problem. A single point of
failure on the tree will partition the tree and make it difficult, to fulfill the requirement of
multicasting. Core selection method for multicast routing has a significant impact on
performance characteristics such as delay, bandwidth and traffic concentration.

Real-time multicast is a type of multicast which requires that messages be
received by all' destinations within a delay bound. There are many network applications
relying on real-time multicast services, such as interactive voice or video conferencing
systems, real-time control and monitoring systems, and so on. To operate real-time
multicast on CBT, the disadvantages are its poor performance [108] in terms of delay,
compared with other multicast protocol such as DVMRP and its reliability in case of
faulty core router. However, CBT allows us to significantly improve the overall scaling

factor of S x N we have in the source-based tree to just N, where S is the number of



active sources per multicast group, and N is the number of multicast groups present,
which is the result of having just one multicast tree per group as opposed to one tree
per (source, group) pair. We believe that Core Based Trees has the potential to make
more efficient use of resources, and scaling over a number of hosts, provided that time
delay from source to group destinations are bounded. The key issue is to model the
traffic on CBT, the shared multicast tree, so that a delay bound can be derived. In this
dissertation, we attempt to enhance the CBT protocol with fault-tolerant capability while
improving its performance, without violating the end-to-end packet delay and minimizes

the resource consumption of the network.

1.1 Motivation

The Internet has proven to be highly successful in supporting elastic applications, which
adapt to varying delays and packet loss. Much of this success arises from the Internet’s
use of the datagram as a building block, over which other services including end-to-end
reliability are built. At the heart of the Internet are routers that implement best-effort
service; routers do not guarantee delivery or performance. Recently, the Internet has
begun using multicast delivery to support group communications. Multicast delivers
packets from a sender to a group of receivers over multicast tree. The primary
advantage that multicast has over traditional unicast delivery is that the sender transmits
a single packet to reach all of the group members, rather than sending a separate copy
to each receiver. Replication of each packet is handled by the network and is done only
when necessary, i.e. at the branching points in the -multicast tree. Furthermore, the
group model used by the Internet is receiver-oriented; receivers may join a group
independently (i.e. senders do not control membership), and senders ‘do not need to
know the identities of group members. By avoiding the potential bottleneck at the
sender, dynamic multicast applications may grow to encompass very large groups of
receivers.

Another recent development has been the increasing use of real-time
applications in the Internet. Real-time applications impose stringent delay and
throughput constraints on the network, as compared with traditional elastic applications.

When real-time applications communicate across network, data must traverse the



network in time for the application to use it. Thus, the applications’ requirements, such
as the end-to-end delay, delay jitter, and loss rate, are expressed as Quality of Service
(QoS) parameters must be guaranteed by the underlying network. The upper bound on
end-to-end delay from any source to any receiver in a real-time session is the main QoS
parameter we consider in the dissertation.

At the inception of research in fault-tolerant systems as well as in multicast real-
time network, somehow their inter-dependencies were not taken into account. This has
led to the present state where we have a sizable amount of research activities and
results in both fields, which largely tread along parallel paths. The underlying
assumptions for having fault tolerance capability were often seen as conflicting with
those for real-time performance, and vice versa. Due to those conflicts, today we have
very few systems that can be guaranteed to meet critical timing constraints in the
presence of faults. This motivates us to study the issues that consider both fault
tolerance and real-time multicasting in one system.

In constructing a multicast tree, it is necessary to indicate what constitutes a
“good” tree by defining the cost of the tree. There are several popular alternative ways
of defining the cost of the multicast tree. The tree cost can be defined as the total cost of
the links of the tree that spans the destinations in the multicast group. This definition is
pertinent when the objective is to manage network resources efficiently. Another way to
define the tree cost is as the sum of the cost of the path from a designated host, called
the source, to the destinations in the multicast group. This definition of cost is important
for delay-sensitive, real-time and interactive applications. The minimization of this tree
cost is modeled as the shortest-path problems, which can be solved in polynomial time.
In addition to minimizing the cost of the multicast tree to be constructed, another
important consideration is. constraining some properties .of the tree. Constraints on the
multicast tree are commonly intended to guarantee specified performance metrics about
the tree. An important example of this is the delay-constrained multicast tree, where the
multicast tree must satisfy an upper bound on the cost of the path from the root of the
destination. Other constrained tree constructions include degree-constrained and delay-

variation constrained.
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Finally, it has been observed that it is expensive in terms of overhead for the
construction of multicast tree for each sender. In order to conserve network resources, it
is better to construct a group-shared tree, which is used to distribute the information
from all sources sending to the group. Group-shared trees, however, are not appropriate
when the required path metric, such as delay, to destinations has to be minimized. In a
shared tree, the packets from a source do not traverse the shortest-path from the source
to each destination. Moreover, group-shared trees can suffer from traffic concentration,
where the traffic from all sources are concentrated on few links in the network, leading to
increased congestion on the links.

Source-based trees usually contain a shortest delay path between source and
each destination and are therefore appropriate for delay-sensitive applications. The
main shortcomings of source-based trees are the poor scaling property and the
possible high cost of the resulting tree. In this dissertation, we intend to study the issues
involved in the design of fault-tolerant real-time multicast protocol, based on a practical
CBT protocol. We believe our work is different from others which concentrate on source-
based trees, that is suitable for a single source, while ours focus on shared-based tree

with pre-computed disjoint backup paths.

1.2 Problem Statement

Much of the ongoing work related to QoS support of multimedia applications focuses on
point-to-point communication. However, there are additional problems with multicast
communication where unicast solutions. are not necessarily extendable to multicasting.
For example, while it is easy to determine an optimal route for unicast communications, it
has been shown that doing the same for multicast communication is NP-complete. Also,
supporting QoS requirements for _multicast is more difficult than for unicast because
there are multiple receivers as opposed to one receiver in unicast communications.
There is a need to develop efficient routing algorithms to support real-time
multicasting. The algorithms must connect the multicast members with the least-cost
tree and at the same time bounded by end-to-end delay time constraints of the
applications. Link cost can be either a financial liability or can be based upon the

bandwidth utilization, or distance (hop count) of the links. In addition to the cost, network
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links may be associated with delays. A link delay includes CPU processing, queuing,
transmission and propagation time suffered by packet over the link.

Multicasting in a multimedia environment requires satisfying the QoS
requirements, as well as minimizing or reducing the overall cost. In particular,
multimedia multicasting requires bounding the end-to-end delay from the source to
every destination. It is not necessary to minimize the delay on all links spanning from
source to all destinations.

Another aspect of the multicasting problem focuses on the issues that arise
when the nodes join or leave a multicast session dynamically. This involves many
additions and deletions to the multicast session over time. Support for dynamically join
and leave operations brings about new challenges that need to be addressed. As nodes
join and leave the group communication, the multicast tree may need to be updated.
Hence, the routing algorithm that builds the tree connecting the multicast nodes should
maintain efficient connections between the nodes when other nodes join or leave a
multicast session.

Fault tolerance is an approach for ensuring that the system remains to be
functional under faults. The key to fault tolerance in @ multicast network is redundancy of
the paths from source to all multicast group members. In the case of real-time systems,
the stringency of timing requirements, the fault-tolerance requirements and the need for
efficiency are problems which need to be addressed during the design phase of the
system. The task of showing that such systems do simultaneously meet all the
functional, timing and fault-tolerance requirements, remains an extremely challenging

and complicated problems.

1.3 Dissertation Objectives

Given the need to support group communications in real-time environments and to build
efficient multicast communication, the first objective of this dissertation is to design a
bounded-delay multicast algorithm while cost is our secondary concern. So it is to find a
suboptimal solution on multicast routing while delay constraint criteria has to be met. We
apply this concept to a shared tree multicast routing protocol, CBT (core based tree).

CBT is known for its superb quality of scalability in that only one shared tree is required
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for any source, multicast group, as opposed to the poor scalability in the source tree.
However, we have to overcome the problems of meeting end-to-end delay which is a
major drawback of the shared tree. Also, the implication of the shared tree might result
in traffic concentration around the core router. Solutions to the problems will be
proposed in this dissertation. Our algorithms aim at satisfying the following design and

performance criteria:

® [End-to-end delay: The delay of a packet is defined as the summation of the
routing delay, transmission delay and queuing delay. Also, the result should prove
that our protocol can route the packet within time delay constraint of the real-time

application under fault or no fault scenario.

® Network resource usage: Total number of hops a multicast packet travels to

reach all destination in the multicast groups.

® Traffic concentration: Traffic concentration is measured by the maximum number
of flows traversing a unidirectional link (the load of the most congested link.) This

also shows link utilization of our proposed protocol against the CBT v2.

® | oss rate: The loss rate measures the fraction of the transmitted packets that are
not delivered at all or are delivered so late as to be useless for real-time
applications. The loss rate can be seen as the failure rate of our proposed
protocol to construct the delay bound multicast tree.

® [Execution time: The execution time measures the running time of our algorithm

from start until the time the multicast tree is completely formed.

The second objective of this dissertation is addressing the fault-tolerance aspect of our
proposed-real-time-multicast protocol-in addition to meeting the delay constraint values.
A key issue here is to find a pre-computed disjoint backup paths for any two nodes in
the multicast tree and use them as alternative paths when a single link failure is
encountered. All disjoint backup paths must be checked for meeting real-time
constraints before the rerouting of the paths take place. In doing so, the multicast
protocol should check whether the real-time constraint is not violated resulting from the
router reconfiguration. Our fault-tolerant protocol aims at satisfying the performance

criteria mentioned earlier.
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1.4 Dissertation Contributions

Our contributions in this dissertation are the following:

® \We proposed a shortest to the shortest path to optimize the path from source to
the multicast tree thus bypassing the core router. The conventional CBT finds the
shortest path tree from the source node to the core node and uses this path to
route the traffic to all multicast members, resulting in traffic concentration around
the core. With this modification, CBT has more chance to meet the end-to-end
delay constraints, while traffic concentration around core router decreases
significantly.

® \We proposed two new path selection methods to ensure that the paths from
source to all members in the shared multicast tree do not violate the end-to-end
delay constraint condition, while cost of the multicast tree is reduced
substantially. The first path selection method is based on weighted Dijkstra’s path
selection algorithm. The Dijkstra’s Shortest Path Tree algorithm [30] was modified
by substituting the original path selection with the weighted path selection
function in order to create optimal solution balancing cost and delay parameters.
The second path selection method is based on Kompella’'s selection function [66]
which considers residual delay in addition to low cost tree. The new selection
function explicitly uses both cost and delay in its functional form. It tries to choose
low cost paths, but modulates the choice by trying to pick edges that maximize
the residual delay. The idea is to reduce the costof the tree through path sharing.
We used simulation to prove the efficacy of our protocals against the original CBT

V2.

® \We proposed a new fault-tolerant protocol to enhance the proposed optimal real-
time protocol. The idea is to pre-compute disjoint backup paths between each
node pair for all links in the multicast tree. When a certain link on the multicast tree
fails, our protocol will check if there exists a disjoint backup path for that link. The
protocol will also check if the new disjoint backup paths can sustain end-to-end
delay constraints. Then, the protocol verifies if the switching of routes from the

failed link to the backup link takes no more than the maximum time delay allowed.
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® \We used simulation to evaluate the algorithms we proposed. In our simulation, we
imitated the realistic Internet network environment. We conducted the experiment
using ns-2 simulator to simulate a random network. The simulation shows that our
proposed protocol performs well under a single link failure condition with
moderate execution time and lower cost tree compared to that of the original CBT,
while traffic concentration and network resource usage decreased substantially.
Our proposed protocol verifies if the end-to-end delay condition is not violated in

the simulated scenarios.

1.5 Dissertation Outline

Chapter 2 starts with a classification of multicast routing algorithms, followed by the
survey of previous work on various multicast routing and related heuristic algorithms,
based on the problems they address. In chapter 3 we study the shared tree multicast
routing protocol, namely the core-based tree (CBT), its architecture, protocol overview,
protocol format and its functions. We study its advantages and disadvantages
compared with the source-specific multicast tree.

Chapter 4 presents a formal definition of the real-time multicast problems,
previous approaches of the real-time multicast problems, and our proposed
approaches. We also described how the previous approaches work and discuss
advantages and disadvantages of each approach. We then focus on CBT and come up
with a strategy to adapt CBT to a real-time requirement. We introduce a technique of
optimizing the path previously-used by-a source reaching the shared multicast tree by
using the shortest of the shortest path, to a specific on-tree node. Then, we proposed
two new path selection methods, based on Dijkstra’s algorithm [30] and-Residual delay
concept based on Kompella’'s algorithm [66], to find optimal paths for the new multicast
trees whereby the end-to-end delay condition is not violated. With our approaches, the
cost of the multicast tree diminished substantially. We then described our simulation to
prove the efficacy of our protocol which bases on CBT v2. We compared our proposed
protocol with the CBT v2 and show its improvement in terms of average end-to-end
delay, network cost, network resource usage, traffic concentration, loss rate and

execution time.
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Chapter 5 presents the concept of fault-tolerance framework, failure model and
solution to recover the network from failure. We study the concept of dependable
network whereby disjoint backup paths are identified off-line. The resource to the disjoint
backup path will be allocated at runtime. With this scheme, the runtime overhead
remains the same, and therefore, the network performance is not compromised.

In chapter 6, we study the fault-tolerance aspect of the real-time traffic, and
approaches to enhance the reliability of the network under a single link failure condition.
We discuss many approaches to improve the network redundancies and introduce our
fault-tolerant approach to the algorithms proposed in chapter 4. Our approach is based
on first, finding the pre-computed disjoint backup paths and secondly, proposing an
algorithm to switch from the primary link to secondary link within end-to-end delay
constraints imposed by the applications. This involves the admission test of the pre-
computed backup paths prior to switching of the failed path to the backup path. We
show that our proposed approaches can reliably switch the multicast traffic along the
failed link to the backup link within time bound and still performs better than the CBT v2
in terms of the performance metrics, described in previous chapter.

Conclusions and future work are presented in chapter 7. Finally, we summarize

the contributions of the research conducted in this dissertation.



CHAPTER 2

MULTICAST ROUTING PROBLEM

2.1 Introduction

Multicasting refers to the transmission of data from one node (source node) to a
selected group of nodes (member nodes or destination nodes) in a communication
network. Instead of sending a separate copy of the data to each individual group
member, a multicast source sends a single copy to all the members. Multicast routing
requires the establishment of a multicast tree to allow group members to exchange data
efficiently. In some case, the objective of constructing a multicast tree is to ensure that
the QoS requirements of the underlying multicast traffic are met in addition to the data
exchange to the group members.

The chapter is organized as follows. We give a discussion and background of
the Multicast routing in section 2.2, followed by the Multicast problem definition in
section 2.3. In section 2.4, we survey both source-specific multicast protocols, based on
unconstrained and delay constrained conditions, and we discuss share-based multicast
routing protocols. Section 2.5 studies the fault-tolerant aspect in multicast network. The

chapter concludes with section 2.6.

2.2 Multicast Routing

A multicast routing algorithm is a method of selecting paths to connect a set of sources
to one or more destinations. Support for-multicast routing within the scope of a single
local-area network (LAN) is simple. Broadcast LANs include the provision of multicast
addresses at the medium access control level. Hosts can be configured to be a member
of a selected set of multicast groups. Group members take advantage of the broadcast
nature of the LAN to exchange data by transmitting a single copy of the data frame to
the multicast group. Upon recognition of its multicast group address, a host captures
and forwards the transmitted frame to upper layer protocols. The most constraining

aspect of link-layer multicast solutions is the provisioning of multicast groups. Usually,
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multicast groups are statically set up by the network provider and can be change only
by a reconfiguration of the network.

Multicasting is far more complex to support in a wide-area network than a shared
local-area network. Several issues make such a task difficult. Hosts must be able to join
and leave the network without necessarily requiring the intervention of the network
service provider. Furthermore, network multicast routers must be able to identify and
locate members of the multicast group. An efficient multicast routing strategy must,
therefore, be devised to disseminate transmitted data to all of the intended recipients.

Given a multicast group M and possibly a set of optimization objective functions
O, multicast routing is a process of constructing, based on the network topology and the
network state, a multicast tree T that optimizes the objective functions. In the case of
constraint-based multicast routing, a set of constraints C in the form of end-to-end delay
bound, interreceiver delay jitter bound, minimum bandwidth, loss probability and/or a
combination thereof, is given. The resulting multicast tree must provide not only
reachability from source(s) to a set of destinations, but also certain QoS merits on the
routes found in order to satisfy the constraints. The optimization objectives sought for
are usually defined in the form of minimizing the cost of a multicast tree, where the cost
may be the total bandwidth used and/or a monotonically non-decreasing function of
network utilization. The constraints imposed can be classified into two categories, as

follows:

® |ink constraints: The link constraints are restrictions on the use of links for route
selection. For example, one may request that the bandwidth-or buffer available on

a link be greater than or equal to a pre-determined value.

® Tree constraints:. The tree constraints are either (i) bounds on the combined value
of aperformance metric along each individual path from the source to a receiver
in a multicast tree, e.qg. the end-to-end delay bound on the paths from the source
to all the receivers, or (ii) bounds on the difference of the combined value of a
performance metric along the paths from the same source to any two different
receivers, e.g. the inter-receiver delay jitter bound defined as the difference

between the end-to-end delays along the paths from the same source to any two
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different receivers. In the case of heterogeneous QoS, a different constraint may

be imposed for each receiver.

Depending on how a tree constraint is derived from the corresponding link metrics, tree

constraints can be further classified into the following three types:

® Additive tree constraints: For any path Pjuyv) = (u, I, j, ...k, V), the tree

constraint is additive if:

m(u,v) =m(u, i) + m{, j) +....... m(k,v). 2.1)

For example, the end-to-end delay d(u,v) from node u to node v, is additive and is equal

to the sum of individual link metric d (7, j) along the path P (u,v).

® Multiplicative tree constraints: The tree constraint is multiplicative if:

m(u,v) =m(u, i) xm(i ,f) x....... m(k,v). (2.2)

For example, the probability, 1-p, (u,v), for a packet to reach node v from node u along
P,(u,v) is multiplicative and is equal to the product of individual link metric 1-p, (i),

along the path Pj(u,v).

® (Concave tree contraints: The tree constraint is concave if:

m(u,v) = min [m(u, i) , m(i, j)...... , -m(k, v)]. (2.3)

For example, the bandwidth b(u;v), available along a path from node u to node v, is
concave and is equal to the minimum bandwidth among the links on path P(u,v).
Depending on the link /tree constraints imposed and the objective function used,

a multicast routing problem can be formulated as:

® |ink constrained problem: A link constraint is imposed to construct feasible
multicast trees, e.g. bandwidth constrained routing.
® Multiple link constrained problem: Two or more link constraints are imposed to

construct feasible trees, e.g. bandwidth and buffer constrained routing.
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Tree constrained problem: A tree constraint is imposed to construct feasible
multicast trees, e.g. delay constrained routing.

Multiple tree constrained problem: Two or more tree constraints are imposed to
construct feasible multicast trees, e.g. delay and inter-receiver delay jitter
constrained routing.

Link and tree constrained problem: A link constraint and a tree constraint are
imposed to construct feasible multicast trees, e.g. delay and bandwidth
constrained routing.

Link optimization problem: A link optimization function is used to locate an optimal
multicast tree, e.g. maximization of the link bandwidth over on-tree links in a
multicast tree.

Tree optimization problem: A tree optimization function is used to locate an
optimal multicast tree, e.g. minimization of the total cost of a multicast tree. This is

also known as the Steiner tree problem.

Link constrained link optimization problem: A link constraint is imposed and a link
optimization function is used to locate an optimal multicast tree that fulfills the

constraint, e.g. the bandwidth constrained buffer optimization problem.

Link constrained tree optimization problem: A link constraint is imposed and a
tree optimization function is used to locate an optimal multicast tree, e.g. the
bandwidth constrained Steiner tree problem.

Tree constrained link optimization routing problem: A tree constraint and a link
optimization_function is' used to locate an optimal multicast tree, e.qg., the delay
constrained bandwidth optimization problem.

Tree constrained tree optimization routing problem: ‘A tree constraint and a tree
optimization function is used to locate an optimal multicast tree, e.g. the delay
constrained Steiner tree problem.

Link and tree constrained tree optimization routing problem: Link and tree
constraints and a tree optimization function is used to locate an optimal multicast

tree, e.g. the bandwidth and delay constrained tree optimization problem.
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No optimization Link optimization Tree optimization
Null constraint (6) link optimization (7) tree optimization NP-
polynomial time complexity | complete complexity
Link constraint (1)1 link c.0111stralnt13d " (8) link constrained link (9) link constrained tree
?g)ﬁﬁfglﬁei?rﬁpcgﬁlsgaine ] opitmization polynomial optimization NP-complete
P time complexity complexity

polynomial complexity

(3) tree constrained
polynomial time complexity
(4) multiple tree constrained
NP-complete complexity

(10) tree constrained link | (11) tree constrained tree
optimization polynomial optimization NP-complete
time complexity complexity

Tree constraint

(12) link & tree constrained
tree optimization NP-
complete complexity

Link & tree (5) link & tree constrained
constraints polynomial time complexity

Table 2.1: A taxonomy of multicast routing problems.

Table 2.1 gives a summary of these problems. In our formulation which falls in
the category of “Tree constrained problem”, we are interested in finding the shared
multicast tree which satisfies the maximum end-to-end delay bound condition and its
backup paths of such tree, such that the overall tree cost is reduced. In many cases,
this problem is classified as the “delay constrained multicast routing” problem. Delay
constraints and Cost constraints are both considered additive metrics.

To satisfy multiple constraints, a single mixed metric has been proposed in
current networks. One possible approach might be to define a function and generate a
single metric from multiple parameters. The idea is to mix various pieces of information
into a single measure and use it as the basis for routing decisions. For example, a mixed
metric M may be produced with bandwidth B, delay D and loss probability L with a
formula f(p) = %A path with a large value is likely to be a better choice in terms of
bandwidth, delay-and loss probability. However, by ‘mixing parameters of different
composition rules, there may not be a-simple composition rule for the selected function.
Another alternative to a single mixed metric is the multiple metrics approach, but finding
a path subject to multiple constraints is inherently hard. Polynomial-time algorithms for

the problem may not exist. We will explore this idea further in chapter 4.
2.3 Multicast problem Definitions

A point-to-point communication network is represented as a directed, connected, simple

network G = (V, E), where V is a set of nodes and E is a set of directed links. The
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existence of a link e = (u, v) from node u to node v implies the existence of a link & = (v,
u) for any u, v € V, i.e., full duplex in networking terms. A link (u, v) € E is an outgoing
link for node u € V and an incoming link for v € V. Any link e = (u, v) € E has a cost
C(e) (same as C(u, v)) and a delay D(e) (same as D(u, v)) associated with it. C(e) and
D(e) may take any nonnegative real values. The link cost C(e) may be either a monetary
cost or some measure of the link’s utilization. The link delay D(e) is a measure of the
delay a packet experiences when traversing the link e. Thus it may consist of queuing,
transmission, and propagation components. Because of the asymmetric nature of
computer networks, it is often the case that C(e) # C(&) and D(e) # D(&). If the network
is symmetric, it can be represented as an undirected network in which C(e) = C(&) and
D(e) = D(&) for all e € E.

We define a path as an alternating sequence of nodes and links P(v,, v,) = v,, e,,
€, Vy ..., Vi €0 V,, such that every e, = (v, v) € E, 1 < i< kA path contains
loops if some of its nodes are not distinct. If all nodes are distinct, then the path is loop-
free. In the remainder of this dissertation, it will be explicitly mentioned if a path contains
loops. Otherwise a “path” always denotes a loop-free path. We will use the following
notation to represent a path: P(v,, v,) ={v, =2 v, —~ ... —> v,, — v,}. The cost of a

path P(v,, v,) is defined as the sum of the costs of the links constituting P(v,, v,) :

Cost (P(vy.v) = 2 Cle). 2.4)

ecP(v,, v,)

Similarly, the end-to-end delay along the path P(v,, v,) is defined as the sum of the

delays on the links constituting P(v; v,,):

Delay(P(vy, v ) = | 2 D@ (2.5)
eeP(v,, v,)
The definitions given below apply for a multicast session with a single source. A
multicast group G = {g,, ..., g,} & V, where n = |G||V | is a set of nodes participating in
the same network activity, and is identified by a unique group address /, A node s € V
is a multicast source for the multicast group G. A multicast source s may or may not be

itself a member of the group G. A source-specific multicast tree T(s, G) C E, is a tree



22

rooted at the source s and spanning all members of the group G. The total cost of a tree

T(s, G) is simply the sum of the cost of all links in that tree.

Cost(T(s,G) = 2. C(e) (2.6)
ecT (s, G)
In general, an algorithm that minimizes the total cost of a multicast tree will encourage
the sharing of links. The maximum end-to-end delay of a multicast tree is the maximum
delay from the source to any multicast group member.

Max Delay (I(s, G))= max( 2, D (e)), 2.7)
geG ecP (s, g)

where P(s, g) is the path from s to g along the tree T(s, G).
2.4 Survey of Multicast Routing Algorithms

Multicast routing algorithms are grouped together in compliance with the classification
provided in the previous section. For simplicity purposes, we will consider two multicast
routing tree construction namely, source-based trees and shared-based trees. The
taxonomy of various types of approaches to the multicasting problems is shown in figure

2.1 and figure 2.2.

Multicast routing algorithms

/

Source Shared
based tree based tree
Unconstrained Delay Unconstrained Delay
/ \ y mﬂn< / \ }ns tr%
Shortest Minimum - Shortest Minimum ~ CBT = PIM-SM Centef selection  Qptimize path Fault tolerant
pathtree  steinertree path tree steiner tree (Diameter selection protocol

Constrained) /)(/

Weighted Dijkstra ~ Residual delay
path selection (Modified
(Modified CBTyp,) CBTyp)

Figure 2.1: Tree structures of solution approaches to the multicasting problems
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As for the fault-tolerant protocol of our proposed approach, we follow the fault-tolerant

tree structure shown in figure 2.2, as follows:

Fault-tolerant
protocol

/ \
Single link Multiple link
failure failure

P TTTRS

Real-time Non-real-time

SN

Pre-computed On-demand
disjoint backup

Admission test
of backup path

Figure 2.2: Fault-tolerant protocol description

Full detail of our fault-tolerance study can be found in chapter 5.
2.4.1 Source-specific Multicast trees

We conducted our multicast routing survey on source-specific multicast tree problem
which is classified into unconstrained and delay constrained algorithms. Each
classification can be subdivided further into Shortest Path algorithms and Minimum

Steiner algorithms.

® Unconstrained Shortest Path Algorithms

As the name indicates, a shortest path algorithm minimizes the sum of the‘lengths of the
individual links on each individual path from the source node to a multicast group
member. The properties of a shortest path tree depend on the metric the link length
represents. If unit link lengths are used, the resulting shortest path tree is a minimum-
hop tree. If the link length is set equal to the link cost, then a shortest path algorithm,
denoted as the least-cost (LC) algorithm in this case, computes the LC tree. The

objective of an LC algorithm can be expressed mathematically as follows:



24

min Cost (P , Vgegq, 2.8
s O s 6 € (Pr(s.,8)) g (2.8)
where T (G) is the set of trees at s and spanning all nodes in G. The total cost of an LC
tree is not necessarily optimal. If the length of a link is a measure of the delay on that
link, then a shortest path algorithm, denoted as least-delay (LD) algorithm in this case,
computes the LD tree. The objective function of an LD algorithm is to:

s Gr;lér; (6 Delay (P;(s,g)) VgeG. (2.9

An LD tree is optimal with respect to end-to-end delay. In case of real-time applications,
if the LD tree cannot satisfy the imposed delay constraint, no other multicast tree can.

Bellman-Ford algorithm [16] and Dijkstra algorithm [31] are two well known
shortest path algorithms. Both algorithms are exact and run in polynomial time. The
worst case time complexity of the Bellman-Ford algorithm is O(|V|3) where |\/| is the
number of nodes in the network. An exact, distributed version of the Bellman-Ford
algorithm is given in [18]. It requires only limited information about the network topology
to be kept at each node. Awerbuch et al. [2] show that the worst case message
complexity of the exact, distributed Bellman-Ford algorithm may grow exponentially with
the number of nodes. To avoid this excessive complexity, they propose two approximate
distributed versions of the algorithm. For Dijkstra’s shortest path algorithm, only
centralized versions exits. Its execution time is O(|V|2) time in the worst case. Efficient,
nondistributed versions of both Bellman-Ford and Dijkstra’s algorithms have comparable
average running times [17]. Both algorithms remain exact for asymmetric networks.

The reverse path forwarding (RPF) algorithm proposed by Dalal and Metcalfe
[25] is an algorithm for broadcasting in datagram networks. ' Each packet is forwarded
from the source to the receivers over the reverse shortest paths, i.e., the shortest paths
from the receivers back to the source. Thus RPF creates an optimal shortest path
broadcast tree only if the network is symmetric. Deering [26, 27] generalized the RPF
algorithm (TRPB) algorithm and the reverse path multicasting (RPM) algorithm. The

objective function of TRPB and RPM can be stated as:
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s, et (s, G) eePz(s o ) rese @D
r(s,
where e = (u, v) and & = (v, u). TRPB and RPM do not suffer from some of the limitations
which RPF suffers form with respect to its applicability to multi-access networks. RPF,
TRPB, and RPM are distributed algorithms that rely on limited information at each node
in the network. They scale well with the size of the network, and dynamic

implementations of these algorithms exist.

® Unconstrained Minimum Steiner Tree Algorithms

The objective of the minimum Steiner tree problem is to minimize the total cost of the
multicast tree, i.e.,

T Bes( sy ot (5, G)). 2.11)

This problem is known to be NP-complete [66]. Hwang [44] provided and extensive
survey of both exact and heuristic minimum Steiner tree algorithms. As earlier survey
was given by Winter [112]. Very few algorithms have been proposed for the minimum
Steiner tree problem in asymmetric networks, and all of them operate under special
assumptions, e.g. acyclic networks. If the multicast group includes all nodes in the

network, the minimum spanning tree problem in symmetric networks can be solved in

O(|\/|2) time in the worst case using Prim’s algorithm [82].  Unconstrained minimum
Steiner tree algorithms do not attempt to optimize the end-to-end delay at all. Therefore
they may not be suitable for real-time applications. The best known minimum Steiner
tree heuristics were proposed by Kou, Markowsky, and Berman (KMB:heuristic) [69],
Takahashi and Matsuyama (TM heuristic) [96], and Rayward-Smith (RS heuristic) [85].
The KMB heuristic [69] uses Prim’s minimum spanning tree algorithm [82] during
its computation. Prim’s algorithm is optimal only for symmetric networks. Thus the cost
performance to the KMB heuristic may be affected if it is applied to asymmetric
networks. The worst case time complexity of the KMB heuristic is O(|G| |\/|2), where |G|
is the size of the multicast group. Wall [102, 103] proposed a distributed version of the

KMB heuristic. The total cost of trees generated using KMB heuristic in symmetric
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networks is on the average only 5% worse than the cost of the optimal minimum Steiner
tree [32, 33].

The TM heuristic [96] starts with a tree that contains the source node only. Then
it adds the multicast group members, one at a time, to the existing tree via the cheapest
LC path to any node already in the tree. TM heuristic runs in O(|G| |\/|2) time in the worst
case.

The RS heuristic [85] starts with a forest of trees, with each multicast group
member constituting a tree. Then the heuristic unites trees that are closest to each other
(in terms of cost) by adding the appropriate links until it ends up with a single tree.
Using a limited number of simulations, Rayward-Smith and Clare [84] showed that RS
heuristic yields tree costs that are closer to optimal than KMB and TM heuristics.
Unfortunately, however, RS heuristic was designed for symmetric networks, and we can
not envision and efficient method for implementing it in case of asymmetric networks.

Jiang [52] presented modified versions of KMB heuristic and RS heuristics that
construct multicast trees with lower costs than the original heuristics. The author used
heterogeneous link capacities in the symmetric, random networks he simulated, and he
defined the link cost as function of the utilized link bandwidth. The same author also
proposed a distributed minimum Steiner tree heuristic in [53].

Recently, Ramanathan [83] proposed a heuristic for constructing minimum
Steiner trees in asymmetric networks. This heuristic permits trading off low tree cost for
fast execution time by proper selection of a parameter k.- The author showed that
Dijkstra shortest path algorithms, KMB-minimum Steiner-tree heuristic, and TM minimum
Steiner tree heuristic are particular cases of the proposed heuristics when k is set to 1,
(|G|+ 1), and |\/| respectively.

Many other heuristics for constructing minimum Steiner trees in.communication
networks were proposed. See for example Chow [23], Leung and Yum [70], and Bauer

and Varma [14].

® Delay-Constrained Shortest Path Algorithms

Delay-constrained shortest path algorithms minimize the cost of each path, i.e., the sum

of the link costs, from the source node to a multicast group member subject to an end-
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to-end delay constraint. Thus the tree is a delay-constrained LC tree. An algorithm for
solving the delay-constrained LC problem has the same objective function as that of the

unconstrained LC problem, stated in equation 2.5, with the added constraint that:

Max Delay( T(s,G)) < A, (2.12)

where A is the value of the imposed delay constraint. The delay-constrained shortest
path problem is NP-hard [42]. A few algorithms for solving that problem were proposed
recently, motivated by the increasing importance of end-to-end delay as a QoS
constraint for real-time applications. We summarize the distinguishing characteristics of
each algorithm below. Note that the delay-constrained multicast routing algorithms
surveyed in this section and in the next section are only applicable for the construction
of source-specific trees.

Widyono [111] presented the constrained Bellman-Ford (CBF) algorithm. CBF
performs a breadth-first search to find the delay-constrained shortest path tree. CBF is
optimal and therefore its running times grow exponentially with the size of the network.
Widyono used CBF as a basis for several delay-constrained minimum Steiner tree
heuristics which will be surveyed in the next section.

Sun and Langendoerfer [95] proposed a delay-constrained shortest path
heuristic. We call it the constrained Dijkstra heuristic (CDKS) because it is based on
Dijkstra shortest path algorithm. This heuristic computes an unconstrained LC tree. |If
the end-to-end delay to any group member violates the delay constraint, the path from
the source to that-group-member is replaced with the-LD- path.—Thus if the LC tree
violates the delay constraint, and LD tree must be computed, and the two trees are

merged.~This algorithm always finds-a constrained-multicast tree if-one-exists. CDKS

runs in O(|\/|2) time, the same as Dijkstra’s algorithm. The authors compared the cost
performance of their heuristic to LD and KPP (a delay-constrained minimum Steiner tree
heuristic which will be presented in the next section) using simulation over random
networks. They used unit link costs and integer link delays ranging in value from 1 to 5.
Wi and Choi [110] presented a distributed LD algorithm and proposed to use it

for solving the delay-constrained shortest path problem. They used simulation to
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evaluate its performance and execution times relative to KPP for 20-node symmetric

networks.

® Delay-Contrained Minimum Steiner Tree Algorithms

The delay-constrained source-specific minimum Steiner tree problem was first for
mulated by Kompella, Pasquale, and Polyzos [65, 66]. The authors proved the NP-
completeness of the problem. The objective of the problem is to minimize the total cost
of the tree, equation 2.11, without violating the imposed delay constraint, equation 2.12.
Optimal algorithms for this problem exist. For example, Noranha and Tobagi [77]
proposed an algorithm, based on integer programming, which constructs the optimal
source-specific delay-constrained minimum Steiner trees for multiple multicast sessions
simultaneously. However, this algorithm is rather complex and is useful only as a
reference to evaluate heuristic solutions for the same problem.

The first heuristic for the delay-constrained minimum Steiner tree problem was
given by Kompella, Pasquale, and Polyzos [65, 66]. We label this the KPP heuristic.
KPP assumes that the link delays and the delay constraint, A, are integers while the link
costs may take any positive real value. The heuristic is dominated by computing a
constrained closure graph which takes time O(A|V]). Thus KPP takes polynomial time
only if A has a fixed value.—When-the link delays and A take noninteger values,
Kompella et al. propose to multiply out fractional values to get integers. Following this
approach, KPP is guaranteed to construct a constrained tree if one exists. However, in
some cases the granularity of the delay constraint becomes very small, and hence the

number of bits required to represent if increases considerably. '‘As a result the order of

complexity, O(A|\/|3), may-become too high. To-avoid-prohibitively-large computation
times, a fixed granularity may be used. However, fixing the granularity has side effects.
When the granularity is comparable to the average link delays, KPP’s accuracy is
compromised and in many cases it fails to construct a constrained multicast tree when
one exists. The authors proposed two alternative objective functions for KPP to use
during tree construction. The first is a function of the link cost only. The second

objective function is a function of both the link cost and the residual delay if this link is
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added to the tree. The authors used simulation of random, symmetric networks with up
to 100 nodes to evaluate their heuristic.

Similar to KMB, KPP uses Prim’s algorithm [82] to obtain a minimum spanning
tree of a closure graph. Prim’s algorithm is only optimal for symmetric networks. This
might affect the performance of KPP when applied to asymmetric networks.

Kompella, Pasquale, and Polyzos also proposed a distributed heuristic solution
for the delay-constrained minimum Steiner tree problem [68]. The heuristic is based on
Prim’s algorithm [82], but it involves the making and breaking of cycles during the
construction of the multicast tree. It runs in O(|V|3) time, and is guaranteed to find a
multicast tree, if one exists.

Widyono [111] propesed four delay-constrained minimum Steiner tree heuristics.
The four delay-constrained heuristics are based on the CBF algorithm described in the
previous section. Therefore all of them have worst case scenarios with exponentially
growing execution times. Widyono’s constrained adaptive ordering (CAQO) heuristic
yields better performance than the other three constrained heuristics he proposed. In
CAO, the CBF algorithm is used to connect one group member at a time to the source.
After each run of CBF, the unconnected member with the cheapest constrained LC path
to the source is chosen and is added to the existing subtree. The costs of links in the
already existing subtree are set to zero. CAO is always capable of constructing a
constrained multicast tree, if one exists, because of the nature of the breadth-first search
CBF conducts. Widyono defined the link cost as a function of the available bandwidth,
the residual buffer space, and'the link’s-delay. The link-delay was defined as the sum of
the queuing, transmission, and propagation delays along the link. The author evaluated
his heuristics using simulation of eight mesh networks.

The bounded shortest multicast algorithm (BSMA) was proposed. by Zhu, Parsa,
and Garcia-Luna-Aceves [114]. BSMA starts by computing an LD tree for a given
source and multicast group. Then it iteratively replaces superedges in the tree with
cheaper superedges not in the tree, without violating the delay constraint, until the total

cost of the tree cannot be reduced any further. BSMA uses a kth-shortest path

algorithm to find cheaper superdges. It runs in O(k|\/|3/og |V |) time. In case of large,

densely connected networks, k may be very large, and it may be difficult to achieve
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acceptable running times. It is possible to tradeoff multicast tree cost for fast execution
speed when using BSMA by either limiting the value of k in the kth-shortest path
algorithm or by limiting the number of superedge replacements. BSMA always finds a
constrained multicast tree, if on exists, because it starts with an LD tree. The authors
defined the link cost as a function of the link utilization and defined the link delay as the
sum the queueing delay, transmission delay, and propagation delay over the link. They
evaluated the performance of BSMA and compared it to KMB and LD. Random
networks with up to 100 nodes generated using Waxman’s random network generator
[107] were used.

We consider the minimum Steiner tree heuristic proposed by Waters [105] to be
semi-constrained, because it uses the maximum end-to-end delay from the source to
any node in the network (not to any group member) as the delay constraint. Note that
this constraint is not related directly to the application’s QoS constraints, and that,
depending on the network delays, this internally computed constraint may be too strict
or too lenient as compared to the QoS requirements of the application. The heuristic
then constructs a broadcast tree that does not violate the internal delay constraint.
Finally the broadcast tree is pruned beyond the multicast nodes. The authors call this
the semiconstrained (SC) heuristic. In [89], they implemented the original algorithm
proposed in [105] which resembles a semi-constrained minimum spanning tree, and the
authors also implemented a modified version which is closer to a semi-constrained
shortest paths broadcast tree. Simulation results given in [89] showed that the modified
version, denoted as the modified semiconstrained (MSC) heuristic always performs
better than the original heuristic with respect to tree costs, end-to-end delays, and
network balancing. SC and MSC is dominated by the computation of the-internal delay
bound. ‘This computation uses an extension to Dijkstra’s algorithm, and therefore it
takes O(|V[") time in the worst case.

In addition to the algorithms surveyed above, many other variations of the
multicast routing problem have been studied over the years. Research reports on the
dynamic multicast routing problem, in particular, appeared frequently in the literature.

We dedicate the next section to previous work on that problem.
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® Dynamic Multicast Routing Algorithms

Dynamic multicast routing algorithms were proposed to avoid rerouting an entire
multicast tree whenever a node joins or leaves a multicast session. In dynamic multicast
routing algorithms, when a node leaves a multicast session, the path connecting that
node is simply pruned from the tree if it is not used to connect any other multicast group
members. The situation is more difficult when a node joins an existing multicast session.

Waxman [89, 107] presented a greedy dynamic multicast routing algorithm. The
algorithm has a weighting parameter w that varies from 0 to 0.5. When w = 0, a node
joins an existing source-specific multicast tree via the shortest path to the tree. When w
= 0.5, the node is added to the existing tree via the shortest path to the source.
Waxman evaluated his algorithm using simulation over randomly generated 56-node
and 60-node networks. He proposed an algorithm for generating random networks the
resemble realistic networks. This random network generator has been adopted by many
researchers in subsequent years.

Doar and Leslie [33] investigated a naive approach that always connects a
joining node to the existing tree via the shortest path from the source. They simulated
this mechanism using randomly generated networks, both flat and hierarchical. Their
random network generator is a modified version of Waxman’'s generator. Simulations
over 100-node networks showed that the naive approach constructs trees that are on
the average 50% more expensive than costs of trees constructed using the static KMB
heuristic.

Kadirire [54] definedthe geographic spread as the shortest distance from any
node in the network to the existing tree averaged over all nodes not in the tree. He
proposed a geographic spread dynamic multicast (GSDM) algorithm that maximized the
performance of GSDM and compared it to Waxman'’s heuristic and Doar and Leslie’s
heuristic in [55] using simulation over random networks with up to 100 nodes. He
showed that GSDM and Waxman’s heuristics yield similar performance and are
consistently better that Doar and Leslie’s naive approach.

Biersack and Nonnenmacher [19] proposed a dynamic, distributed multicast

routing algorithm named WAVE. WAVE uses a weighted function of the cost and the
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delay to attach a joining node to the existing tree. The authors evaluated their algorithm
in comparison to static algorithms only.

Bauer and Varma [12] presented a dynamic multicast routing algorithm: ARIES.
The operation of ARIES is similar to Waxman’s dynamic algorithm. In addition, however,
a subtree of the multicast tree multicast tree is completely reconstructed each time a
pre-specified number of joins and leaves affects that subtree. The subtree
reconstruction ensures that the cost of the multicast tree remains close to optimal.
ARIES was evaluated using simulation over 200-node random networks. The authors

used a modified version of Waxman’s random network generator.

® Other Multicast Routing Algorithms

In this section, we briefly survey a few more multicast routing algorithms that do not
belong to any of the categories listed in the previous subsections.

Bharath-Kumar and Jaffe [10] presented a tradeoff algorithm between the
minimum Steiner tree and the LD tree. This algorithm constructs the minimum Steiner
tree; then it locates the receiver with the largest difference between the delay along its
path in the minimum Steiner tree and the delay along the LD path from the source to that
receiver. The algorithm then replaces the minimum Steiner tree path with the
corresponding LD path. The same authors also proposed two distributed multicast
routing heuristics which are based on local information from nearby nodes only.

Rouskas and Baldine [86] studied the problem of constructing multicast trees
subject to both an end-to-end delay .constraint and a delay variation constraint. They
defined the delay variation constraint as the maximum difference, that can be tolerated,
between the end-to-end delays along the paths from the source to any two receivers.
The authors proved that this problem is NP.complete; then they proposed a heuristic
solution.

Research on the degree-constrained multicast routing problem is motivated by
the fact that current multicast capable high-speed switches have limited copy capability.
In addition, limiting the maximum degree at any node in the multicast tree results in
more evenly distributed load among all nodes in the network. Tode et al. [99] proposed

two algorithms for degree-constrained multicast routing. The first algorithm minimizes
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the average degree of the multicast tree it constructs, while the second algorithm
attempts to construct a low-cost multicast tree subject to a given maximum degree
constraint. The authors set the link costs equal to the link delays when evaluating the
performance of their heuristics.

Bauer and Varma [13] investigated a variation of the degree-constrained
multicast routing problem in which the degree-constraint may vary for the different
nodes in the network. Using simulation, they showed that many of the existing
unconstrained minimum Steiner tree heuristics are capable of constructing degree-
constraint multicast trees. The authors also proposed a simple degree-constrained
heuristic which performs better than all other algorithms of the same or lesser
complexity.

Ammar et al. [1] studied the problem of routing virtual paths (VP) for multicast
communication in ATM networks. =~ When constructing a multicast tree, they took into
account the bandwidth cost, the switching cost, and the connection establishment cost.
The authors studied different types of VPs. They formulated the problem as an integer
programming problem and proposed heuristic solutions based on the transshipment
simplex algorithm. The authors used a single 16-node network for evaluating their
heuristics.

Kim [63] studied a similar problem. He proposed an optimal solution to the

problem of routing multiple multicast connections simultaneously in ATM networks.

2.4.2 Shared Multicast trees

Many network applications involve. multiple sources. and multiple receivers, e.q.,
videoconferencing. The multicast routingproblem for these applications is'known as the
many-to-many problem. There are two alternate approaches to address this problem.
One approach is to consider the many-to-many problem as multiple one-to-many
multicast routing problems, and to construct a source-specific multicast tree for each
source. The other approach is to use a single shared multicast tree, which is
constructed for a particular source, multicast group. In this approach, traffic streams
from multiple source share the links of the same tree and hence gives the name shared

multicast trees. Table 2.2 compares the number of router state between the source-
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specific multicast tree to that of the shared multicast tree in many-to-many multicasting
scenario. The shared multicast tree offers more scalable solutions in terms of router

states at larger multicast group size.

Number of multicast
groups

10 100 1,000

Multicast group size

(number of members) 20 40 60

Number of sources
per group

10% | 50% [ 100% | 10% | 50% | 100% [ 10% | 50% 100%

Number of source tree

. 20 100 200 400 (2,000 [ 4,000 [ 6,000 [30,000 |60,000
router entries

Number of shared tree

. 10 100 1,000
router entries

Table 2.2: Comparison of source and shared multicast tree router state.

Shared Multicast Trees versus Source-Specific Multicast Trees

Both source-specific multicast trees and shared multicast trees have their advantages
and disadvantages. Shared multicast trees have the following advantages over source

specific multicast trees.

® |t takes less overhead to construct and maintain one shared tree per multicast
session than to construct a source-specific multicast tree for every source
transmitting to that session. With shared multicast trees, when a new source starts
transmitting to an already. existing multicast session, it does not have to construct
an entire source-specific tree. It merely has to find a path to connect itself to the
existing shared tree of that session. Similarly, when a node joins an existing
multicast session as a receiver, it merely has to find a path to connect itself to that
session’s shared tree. If source-specific are used instead, the new receiver will
have to join the source-specific trees of each source transmitting to the already

existing multicast session.
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® \When using shared multicast trees, a source node does not have to keep an
explicit list of the members of the multicast session. Similarly, when a node is a
member in a multicast session, it does not have to keep an explicit list of all

sources.

On the other hand, shared multicast trees suffer from the following disadvantages as

compared to source-specific multicast trees.

® High traffic concentration. Traffic streams from different sources share the links of
the same tree, which results in high traffic concentration on these links. The traffic

of a given multicast session will be concentrated on the links of the shared tree.

® [End-to-end delays along shared trees are longer than the corresponding delays
when source-specific trees are used. An example, comparing the delays along a

shared tree to the delays if source-specific trees are used instead.

Intensive development efforts are currently under way in the standard bodies to evolve
efficient scalable multicast routing protocols, and shared multicast trees, namely PIM-
SM and CBT are included in the specifications of these protocols. In both protocols,
receivers join the shared multicast tree via the forward shortest paths towards the
center, and sources transmit to the shared tree via the forward shortest paths towards
the center. Thus receivers receive the sources’ traffic streams via the shortest reverse
paths from the center. The difference between the shared modes on PIM-SM and CBT is
mainly in the mechanisms used to maintain the tree.

CBT permits the use of multiple cores. A receiver has to join only one core, and
a source unicasts its packets towards one core only. As soon as the packets arrive at
any node in the shared tree, they are multicast towards all destinations. In CBT, there is
one primary core. The other cores join the primary core via the shortest paths to
construct a core backbone. The result is a single shared tree with multiple cores. Figure

2.3 illustrates the multiple core-based tree structure.
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@ = core router

O

= = core tree (CBT "backbone")

= non-core router

Figure 2.3: Multiple core-based trees structure

An earlier draft of PIM-SM permitted the use of multiple RPs (Rendezvous points) per
group. Each source sends packets towards each of the RPs, but receivers only join
towards a single RP. This results in RP having its own shared tree that spans only a
subset of the multicast group members. The motivation for having multiple RPs was to
achieve fault tolerant operation in case of RP failures. The most recent draft of PIM-SM,
however, no longer permits the use of multiple RPs. Currently, a multicast session
selects an RP list from a prespecified RP set. Only one node from the RP list is the active
RP. Not much robustness is sacrificed, since the other nodes in the RP list act as
multiple backup RPs, and recovery time after an RP failure is small.

In PIM-SM;-an-RP-is chosen randomly from the-candidate RPs list, and in CBT
cores are placed by hand based on the topological distribution of the group
membership at ‘session initiation-time. : Previous: work- on -shared- based trees are
reviewed as follows.

David Wall [102] investigated the problems of broadcasting and multicasting
(selective broadcasting) in his PhD dissertation. His main focus was on broadcasting
and not multicasting. The only cost function he considered was link delays. Therefore
his shortest path trees were least-delay trees. He dedicated two chapters for
broadcasting and multicasting over shared trees. He proposed different criteria to be

optimized in a shared tree, e.g., the average end-to-end delay or the maximum end-to-
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end delay. He also described the optimum shared tree corresponding to each criterion
he proposed. The optimum solutions were complicated and in some cases even NP-
complete. To avoid this excessive complexity, Wall proposed three heuristic algorithms

to select the center of a broadcast (or a multicast) tree.

® The first heuristic algorithm selects the node to be the center whose shortest path
tree spanning all members has the least maximum delay to any member. This is

the graph theoretical center.

® The second heuristic algorithm selects the node to be the center whose shortest
path tree spanning all members has the least average delay to all members. This
is the graph theoretical median.

® The third heuristic algorithm selects the node to be the center whose shortest path
tree spanning all members has the least diameter. Wall defined the diameter of a

tree as the maximum delay between any two nodes in the tree.

In his dissertation, Wall also compared the delays along shared trees to the delay if
source-specific shortest path trees were used instead. He established several upper
bounds on the average and maximum delays that can be achieved by shared trees. His
most important result is that if the shortest path tree of a randomly chosen center node is
used as a shared tree, then the maximum- delay between any two nodes along that tree
is at most two times the maximum delay achieved if source-specific trees were used
instead.

Finally, Wall proposed a distributed implementation scheme for his three
heuristics. This scheme consists of two phases.. First, each node in the network
computes_its criterion_(maximum._ delay, average delay, or_ diameter) based on the
information it 'has. Then each node broadcasts its criterion value to all other-nodes. The
values are compared distributedly and the node with best criterion is selected to be the
center. To implement his scheme efficiently, Wall proposed that when a node receives
the criterion values from two or more other nodes, that node should compare all these
values and only continue broadcasting the best value it received so far. In Wei and
Estrin’s work [108, 109], they studied the tradeoffs between source-specific multicast

trees and shared multicast trees using simulation. A shared tree was compared to the



38

corresponding source-specific trees based on the maximum end-to-end delay, the
average end-to-end delay, the tree costs, and the resulting traffic concentration. They
defined maximum traffic concentration as the number of traffic streams from different
sources which traverse the same link. The authors used both real networks and random
networks of up to 200 nodes in their simulations. Each link had a delay and a cost.
Several shared tree algorithms and source-specific algorithms were studied. Some
algorithms optimized cost while others optimized delay.

Wei and Estrin’s simulation results showed that source-specific least-delay trees
achieve, on the average, up to 20% smaller maximum delays and up to 30% less traffic
concentration than shared trees. However, the cost of a shared trees was approximately
10% less than that of a source-specific least-delay tree. The authors also proposed
algorithms that restrict the choice of the multicast centers to the set of multicast group
members, and they showed that this restriction does not significantly affect the
performance of the resulting shared trees. In [109], Shukla et al. proposed a protocol for
constructing multicast trees in asymmetrically loaded networks. Their protocol allows the
use of either source-specific trees or shared trees. The authors defined the cost of a link
as a function of both the link’s delay and its utilization. They proposed a center selection
protocol for shared multicast trees based on a tournament. A simplified version of the
tournament works as follows. Each receiver is paired with a source in decreasing order
of distance. The node at the middle of the shortest path between each pair is the winner
of that pair. All winners are then paired together, and the next group of winners is
computed, and so on until only one winning node remains. This node is the center of the
shared tree. The authors also proposed a shared tree routing algorithm to be applied
after selecting the center. Unlike PIM and-CBT, the resulting shared trees are completely
forward shortest path trees. However, the term “tree” is not appropriate to describe the
output of the proposed routing algorithm. Suppose we are given a node n that is both a
source and a receiver and also given a center c. In an asymmetric network the forward
shortest path from the source n to the center c is not necessarily the same as the
forward shortest path from the center ¢ to the receiver n, since the two paths are not
necessarily identical, but their end points are the same, their superposition may result in

a loop. The authors attempt to include both paths in their routing structure, and therefore
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the result may contain loops, and hence it may not always be a tree. The authors’
experience indicates that constructing a shared tree in asymmetric networks and trying
to optimize it in both directions, from all sources towards the center and from the center
towards all receivers, is very complicated.

Next, we studied the previous work by Calvert, Zegura, and Donahoo. In [20],
the authors compared different algorithms for selecting a center with respect to their
effect on bandwidth and delay. They used simulation over random networks in their
study. They concluded that there is no single best algorithm for selecting a center.
Trade-offs between performance (bandwidth and delay) and the required information
must be considered when choosing a center selection algorithm. The authors also
studied the effects of center selection algorithms on traffic concentration. They showed
that when center selection algorithms, which distribute the centers uniformly over all
nodes in the network, are used, the traffic concentration resulting from shared trees is as
good as the traffic concentration resulting from source-specific trees. In another paper,
Donahoo and Zegura [34], proposed an algorithm that permits dynamic center migration
in order to efficiently support multicast sessions in which sources and destination are
allowed to join and leave dynamically.

Distributed center selection protocols were proposed in [97] Thaler and
Ravishankar proposed two distributed center selection protocols and two versions of
each protocol. The two versions differ in the amount of information each of them uses for
its computation. Either one of the proposed protocols can be applied to select more
than one center for a given multicast session. However;. these protocols do not attempt
to distribute the centers evenly throughout the network. The proposed protocols allow
the centers to migrate from one node to another dynamically as the group membership
changes or the load on the network changes. The authors evaluated their algorithms
and most of the previously proposed algorithms using simulation over random networks.
In their simulations, they selected only one center for each multicast session. The
authors also compared the amount of information required at each node for distributed

implementation of the previously proposed algorithms.



40

2.5 Fault-tolerant in Multicast Network

The issue of providing fault-tolerance in Multicast Network has become a problem of
growing importance. This motivates the need for survivable networks in multicast
environment, the network which have the capability to tolerate or detect and recover
from faults. Survivable networks can be classified into two broad categories: (i)
protection based networks and (i) restoration based networks. In protection based
networks, dedicated protection mechanisms, are provided to cope up with faults. These
networks use forward recovery approach. It is an example of a protection mechanism in
which multiple copies of a packet (or enough redundant information to recover from the
loss of a packet) are sent simultaneously over disjoint paths to mask the effect of faults.
The approach used in a unicast network is very similar to the multicast network. The
advantage of this approach is that it transparently handles faults without service
disruption. However, it incurs extra cost in terms of the extra bandwidth used to achieve
fault-tolerance. Traffic dispersion is a mechanism in which the traffic from a source node
is dispersed along multiple paths to a destination(s).

In restoration based networks, on the occurrence of a fault, an attempt is made
to acquire to resources necessary for restoring the channel from fault. These networks
use detect and recovery approach. The detect and recovery approach can be further

classified into two categories:

® Reactive methods, wherein; a new link or channel is established upon detection of
a fault. This has low overhead in the absence of faults, but has more restoration

time.

® Spare resource reservation methods, wherein, to avoid/minimize resource

shortage during recovery, spare resources are reserved a priori.

While there has been a lot of research in fault-tolerant unicast communication,
fault-tolerant multicast communication has received less attention. While the idea of
dispersity routing or multipath routing has been around for many years, the traditional

uses of dispersity routing have been at the physical layer of network communication. In
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[9], a dispersity scheme was proposed for fault-tolerant real-time channels. Some others
use dispersity schemes to provide multiple paths between a pair of source and
destination nodes; one of the paths is used as the primary paths under normal
conditions, and others are used as backup paths if the primary path fails. In chapter 3,
we will report on how CBT originally deals with fault. In this dissertation, we complement
the previous work by addressing issues related to enhancing the CBT protocol with the
fault-tolerant capability while improving the overall protocol end-to-end delay

performance.

2.6 Conclusions

In this chapter, we classified the multicast routing algorithms into different categories
based on the problems they address. Then we presented important criteria to be
considered when summarizing the features of a multicast routing algorithm. This chapter
was dedicated to surveying previous work on multicast routing algorithms. However,
different researchers have made different assumptions when evaluating the
performance of the algorithms they proposed. So in our survey, the assumptions of each
researcher must be understood to realize the different characteristics of each multicast
routing algorithms.

The objective of this dissertation is to study the fault-tolerant multicast routing
algorithms for real-time applications with end-to-end delay bound. A number of delay-
constrained multicast routing algorithms have been proposed during the past few years.
But the focus was on the source-specific routing tree, whereby ours focuses on shared
tree which is more appropriate to the sparse-like network such as the Internet. Besides,
the shared tree can scale better than the-source-specific.tree despite its disadvantages
on the end-to-end delay. bound. While performing our survey of multicast routing
algorithms, 'we noticed that the concept of shared tree can work well with the real-time
traffic if some modification to the shared tree has been made. In addition, with the
concept of pre-computed backup off-line, it is possible to enhance the shared multicast
tree with the fault-tolerant capability. This motivates us to study both cases in more
detail. In chapter 3 we study CBT concept extensively and later propose our CBT

modification that suits the real-time traffic in chapter 4. We then study the problems of
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fault-tolerance in chapter 5 and propose our approach to further enhance our protocol

with disjoint backups in chapter 6.
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CHAPTER 3

CBT — THE PROTOCOL

3.1 Introduction

The Core Based Tree (CBT) multicast architecture differs quite considerably from the
existing IP multicast architecture in that it utilizes a single, shared delivery tree that
spans a group’s receivers. Multicast data is sent and received over the same delivery
tree, irrespective of the source. A Core Based Tree involves having a single node, or
router, which acts as a core of the tree (with additional cores for robustness), from which
branches emanate. These branches are made up of other routers, so-called non-core
router, and the core. A router at the end of a branch is known as a leaf router on the tree.
The core router need not be topologically centered between the nodes on the tree,
since multicasts vary in nature, and correspondingly, so should the form of a group’s
delivery tree. CBT is unique in that it allows the multicast tree to be built to reflect the
nature of the application.

CBT takes full advantage of various aspects of the existing multicast
infrastructure, such as class D IP addresses, used for identifying multicast groups, and
the Internet Group Management Protocol (IGMP), which is used by multicast routers to
establish group member presence of directly-connected subnetworks. A class D
address identifies a single host group. The class D-address space is separate portion of
the IP address space, defined to be between 224.0.0.0 and 239.255.255.255 inclusive.
A small number of class D, or group,-addresses are reserved for use by various routing
protocols, such as 224.0.0.1- the all-systems address, to which all multicast-capable
UNIX end-systems are permanently subscribed.

In CBT, a “core router” (or just “core”) is a router which acts as a “meeting point”
between a sender and group receivers. The term “rendezvous point (RP)” is used
equivalently in some contexts. A core router need not be configured to know it is a core

router.
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A router that is part of a CBT distribution tree is known as an “on-tree” router. An
on-tree router maintains active state for the group. We refer to a broadcast interface as
any interface that supports multicast transmission.

An “upstream” interface (or router) is one which is on the path towards the
group’s core router with respect to this interface (or router). A “downstream” interface
(or router) is one which is on the path away from the group’s core router with respect to
this interface (or router). Other terminology is introduced in its context throughout the
chapter.

Whenever a host wishes to subscribe to a particular group, it sets its network
interface so as to receive all packets whose destination address corresponds to a
particular class D address. All end-systems wishing to participate in multicast must have
a directly connected multicast-capable router. This is true both for CBT and PIM, and
older scheme like DVMRP.

IGMP is the protocol implemented in hosts and routers on LANs to monitor
multicast group presence on a subnetwork. One router per LAN is elected as
membership interrogator. This election is implicit in the IGMP protocol and happens at
start-up time. At fixed intervals the elected interrogator sends a non-group-specific
membership query to the all-systems multicast group. Hosts receiving this query do not
respond immediately, but rather randomise their response over a ten second interval.
On expiry of this interval a host sends a group membership report, once for each group
it is affiliated to and addressed to the corresponding group. All local multicast routers
receive this report. If a group report arrives at a host before its own response interval
expires, the corresponding membership report is cancelled at the receiving host. In this
way, the membership interrogating router learns of subnetwork group presence, and
subnetwork bandwidth.consumption due to membership reporting is minimized.

This chapter describes the CBT protocol in detail. The chapter is organized as
follows. CBT functional overviews are described in section 3.2, followed by the protocol
specification details in section 3.3. In section 3.4, we discuss the protocol overviews
and its functionalities. We describe the process of setting up a core based delivery tree,
as is typically instigated by one group member — the so — called group initiator. We also

describe how a new group member joins an existing CBT delivery tree, and how
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branches of a tree are removed when receivers (directly connected to such branches by
a CBT router) leave the group. We follow with an extensive description of tree
maintenance issues, showing how a CBT delivery tree adapts to router, and core failure.
We go on to present some simple heuristics for core placement, and so-called
designated router (DR) election on a multi-access subnetwork. In section 3.5, we
describe the CBT’s packet and message types in detail. Section 3.6 focuses on core
router discovery and discusses the “bootstrap” mechanism. We give a brief discussion
on node failure in section 3.7, followed by discussion on loop detection in section 3.8.
We also show how a loop-free tree is formed despite the possible presence of transient
loops in a CBT router’s database. The chapter concludes with section 3.9.

A core based tree is shown in figure 3.1. Only one core is shown for
demonstration purpose. The dotted arrowed lines indicate how a CBT multicast packet,
sent from a non-member sender, spans a CBT tree

Incoming "multicast" packet

containing CORE address -
and group-id. s

@ - CORE ROUTER
——» = Path taken by multicast packet

O ° =Non-core router

Figure 3.1: A CBT multicast delivery tree

The CBT protocol is built so as to reflect the CBT architecture, just described.
This architecture allows for the enhancement of the scalability of the multicast algorithm,

in terms of group-specific state maintained in the network, particularly for the case
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where there are many active senders in a particular group. The CBT architecture offers
an improvement in scalability over existing source-specific tree by a factor of the
number of active sources.

The reason for the scalability improvement is because the forwarding of
multicasts over a shared tree does not depend on the source of those multicasts, unlike
source-specific tree schemes. Routers that comprise a source-rooted maintain source-
specific group information. Thus, if within some timeframe, all members of a group
become active senders or send simultaneously, a mesh of trees results, with network
routers having to keep state for each source tree. Figure 3.2 illustrates the mesh of

multicast delivery tree.

—> = Each distinct arrow represents state maintained in the networl
@® = group sender

Figure 3.2: Mesh of multicast delivery trees.

Therefore, a core-based architecture allows us to significantly improve the
overall scalability of S X N-we have-in the source-based tree architecture, to just N. This
is the result of having just one multicast tree per multicast group as opposed to one tree
per (source, multicast group) pair.

It is also interesting to note that routers between a non-member sender and the
CBT delivery tree need no knowledge of the multicast tree (i.e. multicast group)
whatsoever in order to forward CBT multicasts, since packets from non-member senders
are unicast towards the core. This two-phase routing approach is unique to the CBT
architecture. One such application that can take advantage of this two-phase routing is
resource discovery, whereby a resource, for example, a replicated database, is

distributed in different locations throughout the Internet. The databases in the different
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locations make up a single multicast group, linked by a CBT tree. A client need only
know the address of (one of) the cores for the group in order to send (unicast) a request
to it. Such a request would not span the tree in this case, but would be answered by the
first tree router encountered, making it quite likely that the request is answered by the
“nearest” server. This is an example of anycasting. The other main driving the CBT
approach is that it is unicast routing protocol independent, meaning that the correct
operation of the multicast protocol is not linked to the existence of a particular
underlying unicast protocol. For example, DVMRP is a multicast protocol that relies on

such features. We will discuss the functional overviews of the CBT next.

3.2 CBT Functional Overview

The CBT protocol is designed to build and maintain a shared multicast distribution tree
that spans only those networks and links leading to interested receivers.

To achieve this, a host first expresses its interest in joining a group by
multicasting an IGMP host membership report across its attached link. On receiving this
report, a local CBT aware router invokes the tree joining process by generating a
JOIN_REQUEST message, which is sent to the next hop on the path towards the group’s
core router. This join message must be explicitly acknowledged (JOIN_ACK) either by
the core router itself, or by another router that is on the path between the sending router
and the core, whichritself has already successfully joined the tree.

The join message sets up transient join state in the routers it traverses, and this
state consists of <group, incoming-interface, outgoing interface>. “Incoming interface”
and “outgoing interface” may be “previous hop” and “next hop”, respectively, if the
corresponding links do not support multicast transmission. “Previous hop” is taken from
the incoming control packet's IP source address, and “next hop” is gleaned from the
routing table - the next hop to the specified core address. This transient state eventually
times out unless it is “confirmed” with a join acknowledgment (JOIN_ACK) from
upstream. The JOIN_ACK traverses the reverse path of the corresponding join
message, which is possible due to the presence of the transient join state. Once the
acknowledgement reaches the router that originated the join message, the new receiver

can receive traffic sent to the group.
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Loops cannot be created in a CBT tree because there is only one active core
per group, and tree building/maintenance scenarios which may lead to the creation of
tree loops are avoided. For example, if a router's upstream neighbor becomes
unreachable, the router immediately “flushes” all of its downstream branches, allowing
them to individually rejoin if necessary. Transient unicast loops do not pose a threat
because a new join message that loops back on itself will never get acknowledged, and
thus eventually times out.

The state created in routers by the sending or receiving of a JOIN_ACK is bi-
directional - data can flow either way along a tree “branch”, and the state is group
specific - it consists of the group address and a list of local interfaces over which join
messages for the group have previously been acknowledged. There is no concept of
“incoming” or “outgoing” interfaces, though it is necessary to be able to distinguish the
upstream interface from any downstream interfaces. In CBT, these interfaces are known
as the “parent” and “child” interfaces, respectively. A router is not considered “on-tree”
until it has received a JOIN_ACK for a previously sent JOIN_REQUEST.

With regards to the information contained in the multicast forwarding cache, on
link types not supporting native multicast transmission an on-tree router must store the
address of a parent and any children. On links supporting multicast however, parent
and any child information is represented with local interface addresses (or similar
identifying information, such as an interface “index”) over which the parent or child is
reachable.

Data from non-member senders must be encapsulated (IP-in-IP) by the first-hop
router, and is unicast to the group's core router. Consequently, no group state is
required in the network between the first hop router.and the group’s core. On arriving at
the core router, the data packet's router encapsulating header is removed and the
packet is disseminated over the group shared tree as described below.

When a multicast data packet arrives at a router, the router uses the group
address as an index into the multicast forwarding cache. A copy of the incoming
multicast data packet is forwarded over each interface (or to each address) listed in the

entry except the incoming interface.
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Each router that comprises a CBT multicast tree, except the core router, is
responsible for maintaining its upstream link, provided it has interested downstream
receivers, i.e. the child interface list is not NULL. A child interface is one over which a
member host is directly attached, or one over which a downstream on-tree router is
attached. This “tree maintenance” is achieved by each downstream router periodically
sending a CBT “keepalive” message (ECHO_REQUEST) to its upstream neighbor, i.e. its
parent router on the tree. One keepalive message is sent to represent entries with the
same parent, thereby improving scalability on links which are shared by many groups.
On multicast capable links, a keepalive is multicast to the “all-CBT-routers” group (IANA
assigned as 224.0.0.15); this has a suppressing effect on any other router for which the
link is its parent link. If a parent link does not support multicast transmission, keepalives
are unicast.

The receipt of a keepalive message over a valid child interface prompts a
response (ECHO_REPLY), which is either unicast or multicast, as appropriate. The
ECHO_REPLY message carries a list of groups for which the corresponding interface is
a child interface.

It cannot be assumed all of the routers on a multi-access link have a uniform
view of unicast routing; this is particularly the case when a multi-access link spans two
or more unicast routing domains. This could lead to multiple upstream tree branches
being formed (an error condition) unless steps are taken to ensure all routers on the link
agree which is the upstream router for a particular group. CBT routers attached to a
multi-access link participate.in an explicit election mechanism that elects a single router,
the designated router (DR), as the link’s upstream router for all groups. Since the DR
might not be the link's best next-hop-for a particular.core router, this-may result in join
messages being re-directed back across a multi-access link. [f this happens, the re-
directed join message is unicast across the link by the DR to the best next-hop, thereby
preventing a looping scenario. This re-direction only ever applies to join messages.
Whilst this is suboptimal for join messages, which are generated infrequently, multicast
data never traverses a link more than once (either natively, or encapsulated).

In all but the exception case described above, all CBT control messages are

multicast over multicast supporting links to the “all-CBT- routers” group, with IP TTL 1.
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The IP source address of CBT control messages is the outgoing interface of the sending
router. The IP destination address of CBT control messages is either the “all-CBT-
routers” group address, or a unicast address, as appropriate. All the necessary
addressing information is obtained by on-tree routers as part of tree set up.

If CBT is implemented over a tunneled topology, when sending a CBT control
packet over a tunnel interface, the sending router uses as the packet's IP source
address the local tunnel end point address, and the remote tunnel end point address as

the packet's IP destination address.

3.3 Protocol Specification Details

Details of the CBT protocol are presented in the context of a single router

implementation.

3.3.1 CBT HELLO Protocol

The HELLO protocol is used to elect a designated router (DR) on broadcast-type links.
It is also used to elect a designated border router (BR) when interconnecting a CBT
domain with other domains. = Alternatively, the designated BR may be elected as a
matter of local policy.

A router represents its status as a link’'s DR by setting the DR-flag on that
interface; a DR flag is associated with each of a router’'s broadcast interfaces. This flag
can only assume one of two values: TRUE or FALSE. By default, this flag is FALSE.

A network manager can preference a router's DR eligibility by optionally
configuring an. HELLO preference, which is included in the router's HELLO messages.
Valid configuration values range from 1 to 254 (decimal), 1 representing the “most
eligible” value. 'In the absence of explicit configuration, a router assumes the default
HELLO preference value of 255. The elected DR uses HELLO preference zero (0) in
HELLO advertisements, irrespective of any configured preference. The DR continues to
use preference zero for as long as it is running.

HELLO messages are multicast periodically to the all-CBT- routers group,

224.0.0.15, using IP TTL 1. The advertisement period is [HELLO_INTERVAL] seconds.
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HELLO messages have a suppressing effect on those routers which would
advertise a “lesser preference” in their HELLO messages; a router resets its
[HELLO_INTERVAL] if the received HELLO is “better” than its own. Thus, in steady
state, the HELLO protocol incurs very little traffic overhead.

The DR election winner is that which advertises the lowest HELLO preference, or
the lowest-addressed in the event of a tie.

The situation where two or more routers attached to the same broadcast link are
advertising HELLO preference 0 should never arise. However, should this situation
arise, all but the lowest addressed zero advertising router relinquishes its claim as DR
immediately by unsetting the DR flag on the corresponding interface. The relinquishing
router(s) subsequently advertise their previously used preference value in HELLO

advertisements.

® Sending HELLOs

When a router starts up, it multicasts two HELLO messages over each of its
broadcast interfaces in succession. The DR flag is initially unset (FALSE) on each
broadcast interface. This avoids the situation in which each router on a multi-access
subnet believes it is the DR, thus preventing the multiple forwarding of join-requests
should they arrive during this start up period. If no “better” HELLO message is received
after HOLDTIME seconds, the router assumes the role of DR on the corresponding
interface.

A router sends an HELLO message whenever its [HELLO_INTERVAL] expires.

Whenever a router sends an HELLO -message, it resets its hello timer.

® Receiving HELLOs

A router does not respond to an HELLO message if the received HELLO is
“better” than its own, or equally preference but lower addressed.

A router must respond to an HELLO message if that received is lesser
preference (or equally preference but higher addressed) than would be sent by this

router over the same interface. This response is sent on expiry of an interval timer which
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is set between zero (0) and [HOLDTIME] seconds when the lesser preference HELLO

message is received.

3.3.2 JOIN_REQUEST Processing

A JOIN_REQUEST is the CBT control message used to register a member host’s interest

in joining the distribution tree for the group.

® Sending JOIN_REQUESTs

A JOIN_REQUEST can only ever be originated by a leaf router, i.e. a router with
directly attached member hosts. This join message is sent hop-by-hop towards the core
router for the group. The originating router caches <group, NULL, upstream interface>
state for each join it originates. This state is known as “transient join state”. The
absence of a “downstream interface” (NULL) indicates that this router is the join
message originator, and is therefore responsible for any retransmissions of this
message if a response is not received within [RTX_INTERVAL]. It is an error if no
response is received after [JOIN_TIMEOUT] seconds. |If this error condition occurs, the
joining process may be re-invoked by the receipt of the next IGMP host membership
report from a locally attached member host.

Note that if the interface over which a JOIN_REQUEST is to be sent supports
multicast, the JOIN_REQUEST is multicast to the all-CBT-routers group, using IP TTL 1.
If the link does not support multicast, the JOIN_REQUEST is unicast to the next hop on

the unicast path to the group’s core.

® Receiving JOIN_REQUESTSs

On broadcast "links, JOIN_REQUESTs which are multicast may only be
forwarded by the link's DR. Other routers attached to the link may process the join (see
below). JOIN_REQUESTs which are multicast over a point-to-point link are only
processed by the router on the link which does not have a local interface corresponding
to the join’s network layer (IP) source address. Unicast JOIN_REQUESTs may only be
processed by the router which has a local interface corresponding to the join's network

layer (IP) destination address.
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With regard to forwarding a received JOIN_REQUEST, if the receiving router is
not on-tree for the group, and is not the group’s core router, and has not already
forwarded a join for the same group, the join is forwarded to the next hop on the path
towards the core. The join is multicast, or unicast, according to whether the outgoing
interface supports multicast. The router caches the following information with respect to
the forwarded join: <group, downstream interface, upstream interface>. Subsequent
JOIN_REQUESTSs received for the same group are cached until this router has received
a JOIN_ACK for the previously sent join, at which time any cached joins can also be
acknowledged.

If this transient join state is not “confirmed” with a join acknowledgment
(JOIN_ACK) message from upstream, the state is timed out after
[TRANSIENT_TIMEOUT] seconds.

If the receiving router is the group’s core router, the join is “terminated” and
acknowledged by means of a JOIN_ACK. Similarly, if the router is on-tree and the
JOIN_REQUEST arrives over an interface that is not the upstream interface for the
group, the join is acknowledged.

If a JOIN_REQUEST for the same group is scheduled to be sent over the
corresponding interface (i.e. awaiting a timer expiry). the JOIN_REQUEST s
unscheduled. If this router has a cache-deletion-timer [CACHE_DEL_TIMER] running on

the arrival interface for the group specified in a multicast join, the timer is cancelled.

3.3.3 JOIN_ACK Processing

A JOIN_ACK is the mechanism by.which an interface is added to a router's multicast

forwarding cache; thus, the interface becomes part of the group distribution tree.

® Sending JOIN_ACKs

The JOIN_ACK is sent over the same interface as the corresponding
JOIN_REQUEST was received. The sending of the acknowledgment causes the router
to add the interface to its child interface list in its forwarding cache for the group, if it is

not already.
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A JOIN_ACK is multicast or unicast, according to whether the outgoing interface

supports multicast transmission or not.

® Receiving JOIN_ACKSs

The group and arrival interface must be matched to a <group, ...., upstream
interface> from the router's cached transient state. If no match is found, the JOIN_ACK
is discarded. |If a match is found, a CBT forwarding cache entry for the group is
created, with “upstream interface” marked as the group’s parent interface.

If “downstream interface” in the cached transient state is NULL, the JOIN_ACK
has reached the originator of the corresponding JOIN_REQUEST; the JOIN_ACK is not
forwarded downstream. If “downstream interface” is non-NULL, a JOIN_ACK for the
group is sent over the “downstream interface” (multicast or unicast, accordingly). This
interface is installed in the child interface list of the group’s forwarding cache entry.

Once transient state has been confirmed by transferring it to the forwarding

cache, the transient state is deleted.

3.3.4 QUIT_NOTIFICATION Processing

A CBT tree is “pruned” in the direction downstream-to-upstream whenever a CBT

router’s child interface list for a group becomes NULL.

® Sending QUIT_NOTIFICATIONs

A QUIT_NOTIFICATION is sent to a router's.parent.router on the tree whenever
the router’s child interface-list becomes ‘NULL.If the link over which the quit is to be
sent _supports-multicast transmission, if the sending-router-is the link's.DR the quit is
unicast, otherwise it is multicast.

A QUIT_NOTIFICATION is not acknowledged; once sent, all information
pertaining to the group it represents is deleted from the forwarding cache immediately.

To help ensure consistency between a child and parent router given the
potential for loss of a QUIT_NOTIFICATION, a total of [MAX_RTX] QUIT_NOTIFICATIONs

are sent, each HOLDTIME seconds after the previous one.
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The sending of a quit (the first) also invokes the sending of a FLUSH_TREE

message over each downstream interface for the corresponding group.

® Receiving QUIT_NOTIFICATIONs

The group reported in the QUIT_NOTIFICATION must be matched with a
forwarding cache entry. If no match is found, the QUIT_NOTIFICATION is ignored and
discarded. If a match is found, if the arrival interface is a valid child interface in the
group entry, how the router proceeds depends on whether the QUIT_NOTIFICATION
was multicast or unicast.

If the QUIT_NOTIFICATION was unicast, the corresponding child interface is
deleted from the group's forwarding cache entry, and no further processing is required.
If the QUIT_NOTIFICATION was multicast, and the arrival interface is a valid child
interface  for the specified group, the router sets a cache-deletion-timer
[CACHE_DEL_TIMER].

Because this router might be acting as a parent router for multiple downstream
routers attached to the arrival link, [CACHE_DEL_TIMER] interval gives those routers
that did not send the QUIT_NOTIFICATION, but received it over their parent interface,
the opportunity to ensure that the parent router does not remove the link from its child
interface list. Therefore, on receipt of a multicast QUIT_NOTIFICATION over a parent
interface, a receiving router schedules a JOIN_REQUEST for the group for sending at a
random interval between 0 (zero) and HOLDTIME seconds. If a multicast
JOIN_REQUEST is received over-the corresponding interface (parent) for the same
group before this router sends.its own scheduled JOIN_REQUEST, it unschedules the
multicasting of its own JOIN_REQUEST.

3.3.5 ECHO_REQUEST Processing

The ECHO_REQUEST message allows a child to monitor reachability to its parent router
for a group (or range of groups if the parent router is the parent for multiple groups).

Group information is not carried in ECHO_REQUEST messages.

® Sending ECHO_REQUESTs
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Whenever a router creates a forwarding cache entry due to the receipt of a
JOIN_ACK, the router begins the periodic sending of ECHO_REQUEST messages over
its parent interface. The ECHO_REQUEST is multicast to the “all-CBT-routers” group
over multicast-capable interfaces, unless the sending router is the DR on the interface
over which the ECHO_REQUEST is being sent, in which case it is unicast (as is the
corresponding ECHO_REPLY).

ECHO_REQUEST messages are sent at [ECHO_INTERVAL] second intervals.
Whenever an ECHO_REQUEST is sent, [ECHO_INTERVAL] is reset.

If no response is forthcoming, any groups present on the parent interface will
eventually expire [GROUP_EXPIRE_TIME]. This results in the sending of a QUIT_
NOTIFICATION upstream, and sends a FLUSH_TREE message downstream for each

group for which the upstream interface was the parent interface.

® Receiving ECHO_REQUESTSs

If an ECHO_REQUEST is received over any valid child interface, the receiving
router schedules an ECHO_REPLY message for sending over the same interface; the
scheduled interval is between 0 (zero) and HOLDTIME seconds. This message is
multicast to the “all-CBT-routers” group over multicast-capable interfaces, and unicast
otherwise.

If a multicast ECHO_REQUEST message arrives via any valid parent interface,
the router resets its [ECHO_INTERVAL] timer for that upstream interface, thereby

suppressing the sending of its own-ECHO_REQUEST over that upstream interface.

3.3.6 ECHO_REPLY Processing

ECHO_REPLY messages allow a child to-maonitor the reachability of its parent, and help

ensure the group state information is consistent between them.

® Sending ECHO_REPLY messages

An ECHO_REPLY message is sent in response to receiving an ECHO_REQUEST
message, provided the ECHO_REQUEST is received over any one of this router’s valid

child interfaces. An ECHO_REPLY reports all groups for which the link is its child.
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ECHO_REPLY messages are unicast or multicast, as appropriate.

® Receiving ECHO_REPLY messages

An ECHO_REPLY message must be received via a valid parent interface. For
each group reported in an ECHO_REPLY, the downstream router attempts to match the
group with one in its forwarding cache for which the arrival interface is the group’s
parent interface. For each successful match, the entry is “refreshed”. If however, after
[GROUP_EXPIRE_TIME] seconds a group has not been “refreshed”, a
QUIT_NOTIFICATION is sent upstream, and a FLUSH_TREE message is sent
downstream, for the group.

If this router has directly attached members for any of the flushed groups, the
receipt of an IGMP host membership report for any of those groups will prompt this

router to rejoin the corresponding tree(s).

3.3.7 FLUSH_TREE Processing

The FLUSH_TREE (flush) message is the mechanism by which a router invokes the
tearing down of all its downstream branches for a particular group. The flush message
is multicast to the “all-CBT-routers” group when sent over multicast-capable interfaces,

and unicast otherwise.

® Sending FLUSH_TREE messages

A FLUSH_TREE message is.sent.over each downstream (child) interface when a
router has lost reachability “with its ‘parent-router for ‘the group (detected via
ECHO_REQUEST and ECHO_-REPLY. messages).. All group. state is.removed from an
interface over which a flush messageis sent. ‘A flush can specify a single group, or all

groups (INADDR_ANY).

® Receiving FLUSH_TREE messages

A FLUSH_TREE message must be received over the parent interface for the

specified group, otherwise the message is discarded. The flush message must be
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forwarded over each child interface for the specified group. Once the flush message
has been forwarded, all state for the group is removed from the router's forwarding

cache.

3.4 Protocol Overview

This section describes how CBT works in terms of its functionality, as follows.

3.4.1 CBT Group Initiation

Like any of the other multicast schemes, one user, the group initiator, or group leader,
initiates a CBT multicast group. The procedures involved in initiating and joining a CBT
group involves a little more user interaction than current IP multicast schemes, for
example, it is necessary to supply information such as desired group score so that the
group’s cores can be selected appropriately within the desired region. The current
implementation makes use of three configuration files which correspond to the three
currently-defined group scopes: local, national, and international. Each of these files
contains an ordered list of cores which are used for all groups selecting that group
Scope.

Explicit core rankings help prevent loops when the core tree is initially set up. It
also assists in the tree maintenance process should the tree become partitioned.

Group initiation could be carried out by a network management center, or by

some other external means, rather than have a user act as group initiator

3.4.2 Tree Joining Process

Once the cores have been selected by a group’s initiator, the group-initiating host sends
a special CORE-NOTIFICATON message to each of them, which is acknowledged. The
purpose of this message is twofold: firstly, to communicate the identities of all of the
cores, together with their rankings, to each of them individually: secondly, to invoke the
building of the core backbone. These two procedures follow on one to the other in the
order just described. New receivers attempting to join whilst the building of the core
backbone is still in progress have their explicit JOIN-REQUEST messages stored by

whichever CBT-capable router, involved in the core joining process, is encountered first.
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Routers on the core backbone will usually include not only the cores themselves, but
intervening CBT-capable routers on the unicast path between them. Once this set up is
complete, any pending joins for the same group can be acknowledged.

All the CBT-capable routers traversed by a JOIN-ACKnowledgment change their
status to CBT-non-core routers for the group identified by group-id. The JOIN-ACK
follows the reverse of the path traced out by the corresponding JOIN-REQUEST. 1t is
the JOIN-ACK that actually creates a tree branch. The tree branch is a reverse-shortest
path rooted at the node where the corresponding JOIN-REQUEST originated.

The JOIN-ACK carries the complete core list for the group, which is stored by
each of the routers it traverses. Between sending a JOIN-REQUEST and receiving a
JOIN-ACK, a router is in a state of pending membership. A router that is in the join
pending state cannot send join acknowledgements in response to other join requests
received for the same group, but rather caches them for acknowledgment subsequent
to its own join being acknowledged. Furthermore, if a router in the pending state gets a
better route after canceling its previous join (this is required to deal with unicast transient
loops).

Non-member senders, and new group receivers, are expected to know the
address of at least one of the corresponding group’s cores in order to send to/join a
group. The current specification does not state how this information is gleaned, but it
might be obtainable from a directory such as “sd” (the multicast session directory) or
from the Domain Name System (DNS).

In accordance with exiting-IP multicast schemes, CBT multicasting requires the
presence of at least one CBT-capable router per subnetwork for hosts on that
subnetwork to utilize CBT multicasting: Only one local router, the designated router, is
allowed to send to receive from uptree (i.e. the branch leading to/from the core) for a
particular group. We therefore make a clear distinction between a group membership
interrogator-the router responsible for sending IGMP host-membership queries onto the
local subnet, and the designated router. However, they may not be one and the same.
LAN specifics are discussed later on in the chapter.

Once the most appropriate designated router (DR) has been established, i.e. the

router that is on the shortest-path to the corresponding core, the new receiver (host)
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sends a special CBT report to it, requesting that it join the corresponding delivery tree if
it has not already. If it has, then the DR multicasts to the group a notification to that
effect back across the subnet. Information included in this notification includes whether
the DR was successful in joining the corresponding tree, and actual core affiliation. If
the local DR has not joined the tree, then if proceeds to send a JOIN-REQUEST and
awaits an acknowledgement, at which time the notification, as described above, is

multicast across the subnetwork.

3.4.3 Tree Leaving Process

A QUIT-REQUEST is a request by a CBT router to leave a group. A QUIT-REQUEST
may be sent by a router to detach itself from a tree if and only if it has no members for
that group on any directly attached subnets, and it has received a QUIT-REQUEST on
each of its child interfaces for that group (if it has any). The QUIT-REQUEST can only be
sent to the parent router. The parent immediately acknowledges the QUIT-REQUEST
with a QUIT-ACK and removes that child interface from the tree. Any CBT router that
sends a QUIT-ACK in response to receiving a QUIT-REQUEST should itself send a
QUIT-REQUEST upstream if the criteria described above are satisfied.

Failure to receive a QUIT-ACK despite several re-transmissions gives the
sending router the right to remove the relevant parent interface information, and by

doing so, removes itself from the CBT tree for that group.

3.4.4 Tree Maintenance Issues

Robustness features/mechanisms have been built into the CBT protocol as have been
deemed appropriate to ensure timely‘tree re-configuration in the event of a node or core
failure. These mechanisms are implemented in the form of request-response messages.
Their frequency is configurable, with the trade-off being between protocol overhead and

timeliness in detecting a node failure, and recovering from that failure.

3.4.5 Core Placement

As it stands, the current implementation of CBT (version 2) uses trial heuristic algorithms

for core placement. Careful placement of core(s) no doubt assists in optimizing the
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routes between any sender and group members on the tree. Depending on particular
group dynamics, such as sender/receiver population, and traffic patterns, it may well be
counter-productive to place a core(s) near or at the center of a group. In any event,
there exists no polynomial time algorithm that can find the center of a dynamic multicast
spanning tree [102].

One suggestion might be that cores be statically configured throughout the
Internet-there need only be some relatively small number of cores per backbone
network, and the addresses of these cores would be “well-known”.

Alternatively, and possibly more appropriately, any router could become a core
when a host on one of its attached subnets wishes to initiate a group. This particularly
attractive for a one-to-many “broadcast” where the sender remains constant, since, if the
sender is the core, the multicast tree formed will be a shortest-path spanning tree rooted
at the sender.

We have stressed that the placement of a group’s core should positively reflect
that group’s characteristics. In the absence of any better mechanism, CBT adopts the
“hand-selection” approach to selecting a group’s cores, based on a judgment of what is
known about the network topology between the current members.

A fast and scalable algorithm for locating “distribution centers” was used in
simulations [91]. This algorithm takes into account network load, and participants’
resource requirements. However, it requires a priori knowledge of participants’

locations.

3.4.6 LAN Designated Router

As we have said, there must onlycever exist one DR (Designated Router) for any
particular group that is responsible for uptree forwarding/reception of data packets. A
group’s DR is elected by means of an explicit mechanism. Whenever a host
initiates/joins a group, part of the process is for it to send a CBT-DR-SOLICITATION
message, addressed to the CBT “all-routers” address, which is a request for the best

next-hop router to a specified core.
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If the group is being initiated, a DR will almost certainly not be present on the
local subnet for the group, whereas if a group is being joined, the DR may or may not be
present, depending on whether there exist other group members on the LAN (subnet).

If a DR is present for the specified group, it responds to the solicitation with a
CBT-DR-ADVERTISEMENT, which is addressed to the group.

If no DR is present, each CBT router inspects its unicast routing table to
establish whether it is the next best-hop to the specified core.

A router which considers itself the best next-hop does not respond immediately
with an advertisement, but rather sends a CBT-DR-ADV-NOTIFICATION to the CBT “all-
routers” address. This is a precautionary measure to prevent more than one router
advertising itself as the DR for the group (it is conceivable that more than one router
might think itself as the best next-hop to the core). If router with the lowest address
winning the election. The lowest addressed router subsequently advertises itself as DR

for the group.

3.4.7 Non-member Sending

For non-member senders wishing to send multicasts beyond the scope of the local
subnetwork, the presence of a local CBT-capable router is mandatory. The sending of
multicast packets from a non-member host to a particular group is two-phase: the first
phase involves a host unicasting the packet from the originating host to one of the
group’s cores (the destination field of the IP header carries the unicast address of the
core”. The second phase‘is the dissemination of the packet by the receiving router to
neighboring (adjacent” routers _on the corresponding tree. Similarly, when an on-tree
neighbor receives the packet, it distributes it in the same fashion.

Before the multicast leaves the originating subnetwork, it is necessary for the
local CBT DR to append d CBT header to the packet (behind the IP header), and
change the IP destination address field from a multicast address to the unicast address
of a core for the group. How does the CBT DR know that this multicast address is
associated with a CBT group? The answer is that there must be some form of mapping

mechanism, which has information about which group address correspond to CBT
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multicast groups. This mechanism maps an IP multicast address to a unicast core
address.

Packets sent from a non-member sender will first encounter the corresponding
delivery tree either at the addressed core, or hit an on-tree router that is on the shortest-
path between the sender and the core. CBT’s 2-phase routing is the catalyst behind the
CBT solution to “anycasting”. So, now should multicast packets reach the correct
distribution tree if they are simply sent destined to a multicast address? The answer is
that the first-hop multicast router should be incorporated with functionality that
distinguishes between CBT multicasts and “other” multicasts. There are two obvious
possible ways to implement this functionality in routers: firstly, a separate part of the
multicast address space could be set aside for CBT multicast. Whenever a multicast
capable router receives a multicast packet, if the group address in the destination field
of the IP header falls within a particular range, the router could instigate a lookup in an
advertising service such as “sd”, which should hold (core, group) mappings. If a group
address corresponds to a mapping, then the unicast core address specified in the
mapping is placed in the IP header, and the router appends a CBT header behind the IP
header, inserting the necessary information into the given CBT header fields.

The second approach does not involve segmenting the group address space,
but would instead involve a multicast router performing a lookup for every distinct
multicast address in an attempt to find a mapping entry in the session advertising
service. If none is found, it is assumed the multicast is to be forwarded using the default
multicast protocol operating.in the router.

Both schemes have their advantages and disadvantages-segmenting the
multicast address space is an administrative burden, whilst having-multicast routers
perform a lookup for every distinct multicast address has a performance impact. Both
schemes require all multicast routers to have a minimum CBT functionality. This enables
CBT multicast to remain invisible to the end-systems. No host changes are required for
CBT. CBT hosts are simply required to run the CBT application-level software that

provides the CBT user group management interface.
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3.4.8 Data Packet Forwarding

In this section we describe in more detail how multicast data packets span a CBT tree.
CBT uses the Internet Group Management Protocol (IGMP) in much the same way as
traditional IP schemes, namely to establish group presence on directly-connected
subnets, and to exchange CBT routing information. A new IGMP message type has
been created for exchanging CBT routing messages. Some slight modifications have
been made to IGMP specifically for CBT in order to significantly reduce leave latency
(although the new version of IGMP can be easily adopted by other multicast protocols.

It has been an important engineering design goal for CBT to be backwards
compatible with IP-style multicast. Until the interface with other multicast protocols is
clearly defined, CBT routing information is not exchanged with that of any other
schemes.

IP-style multicast data packets arriving at a CBT router are checked to see if
they originated locally. If not, they are discarded. Otherwise, the local CBT DR for the
group first sends a copy of the IP-style packet over any directly-connected subnetworks
with group member presence (provided the TTL allows), then appends a CBT header to
the packet for forwarding over outgoing tree interfaces.

CBT-style packets arriving at a CBT router are forwarded over tree interfaces for
the group, and sent IP-style over any directly-connected subnetworks with group
member presence. The conversion from a CBT-style packet to an IP-style packet
requires the copying of various fields of the CBT header to the IP header.

The child (ren)-or-parentiof-a CBT router may be reachable over a multi-access
LAN. This is the case where a subnetwork and a tree branch are one and the same. In
this case, the forwarding of the CBT-style packets is achieved with- multicast as opposed
to unicast. End-systems subscribed to the same group may receive these packet, but
they will be discarded, since end-systems will not recognize the upper-layer protocol
identifier, i.e. CBT. It was an engineering design decision to multicast data packets with
a CBT header on multi-access links-the case of unicasting separately from parent to n
children is clearly more costly. Multicasting also reduces traffic-when a parent receives

a packet from the multi-access link, it does not need to re-send the packet to any of its
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other children that may be present on the multi-access link, since they will have received
a copy from the child’s multicast.

Data arriving at a CBT router is always multicast IP-style onto any directly-
connected subnets with group member presence, and only subsequently unicast

(multicast on multi-access links) to parent/children with a CBT header.

The primary forwarding rules for CBT-capable routers are simple, and are as follows:

® o data packet is only forwarded if a CBT header is present in the packet.

® o data packet is only forwarded by a CBT-capable router if there is a forwarding
information base (FIB) entry for the group specified in the CBT header of the data
packet, i.e. the CBT router must be on-tree for the group. CBT does not forward
data packets if they do not have a CBT header. The forwarding router must be

the designated router for the group on the subnetwork.

Exception: if a data packet originates on a directly-connected subnetwork, the
local multicast-capable router may be required to append a CBT header, if that
router has established that the specified group is a CBT group. In order to

forward such a packet, a CBT-capable router need not be on-tree for the specified

group.

A FIB entry is shown below.

32-bits 4 4 4 4 | 4
. . parent parent No. of .
group indentifier addr index vif index children Children...
child child
Group identifier-- analogous to a class-D address addr 1.ndex V1f1r.1dex
child child
Vif--Virtual interface.. A physical interface may addr index|. vif index
act as a virtual interface for a tunnel. child child
Several such tunnels can be configured on addr index | vifindex

one physical interface. ek

Figure 3.3: A CBT FIB entry in the author’s implementation

The CBT DR for the specified group fills In the CBT and IP headers as follows:



66

® The multicast group address (group-id) is inserted into the group-id field of
the CBT header.

® The unicast address of a core router for the corresponding group is placed
in the core address field of the CBT header.

® The IP address of the originating host is inserted into the origin field of the
CBT header.

® The proto field of the CBT header is set to identify the upper-layer (transport)
protocol.

® The ttl field of the CBT header is set to the value reflected in the packet’s IP
header (if the packet originated locally).

® The on-tree field of the CBT header is set (provided this CBT router is on-
tree for the specified group). It is left unset otherwise.

® The source address field of the IP header is set to the unicast address of the
originating host (the IP source address changes as the CBT-style packet is
passed router-to-router on a CBT tree).

® The destination field of the IP header is set to the unicast address of the on-
tree neighbor (set to group address if more than one neighbor is reachable
over the same interface).

® The protocol field of the IP header is set to the CBT protocol value.

® The TTL value of the IP header is set to the value specified in the packet

from the original source.

This packet is'now ready for 'sending. ‘Once this packet arrives at a CBT router, the
packet is “reverse-engineered”. (using.the_ information carried in the CBT header) to
produce an IP-style multicast -for sending ‘on directly-connected subnets with group
presence. For forwarding CBT-style over on-tree interfaces, only the IP header need be
manipulated, as would be expected (i.e. source address, destination address, TTL
value).

What happens to a multicast packet originated on a subnetwork is illustrated in

figure 3.4
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2. On receiving the packet, the DR for
the group proceeds as follows:

1. Originating host multicasts data 2) forwa.rd pa_cket IP-style over any

onto subnetwork (IP-style). ogtgomg directly-attached subnets

with group member presence.
b) performs a look-up in its (group-id,

A core-addr) mapping table => if no
mapping exists, passpacket on to
"other" module.
if mapping exists, create CBT hdr,
manipulate various fields of IP hdr,
unicast to upstream neighbour, and
multicast to children over multi-

C

~

Q E{l DR access link.
A |__L| MULTI-ACCESS LAN |__L| B

N 3. On receiving IP-style packet originated
locally, routers A and B forward packet
to any outgoing directly-connected
subnets with group member presence.

4. On receiving CBT-style multicast from

YW DR, A and B forward CBT-style packet to

outgoing neighbours as specified by their

FIB entries for group. This involves

unicasting to neighbours reachable over

pt-to-pt links, or multicasting to

neighbours reachable over multi-access

links.

NOTE: Items 2 and 3 occur simultaneously.

Figure 3.4: CBT Data Packet Forwarding on a LAN (originating case)

Figure 3.5 illustrates how a CBT router handles an incoming CBT data packet, and

generates an IP-style multicast.
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3. CBT routers B and C forward received
IP-style multicast (from step 1) to any 1. CBT router caches a copy of received
outgoing directly-attached subnetworks CBT-style packet.

with group member presence. .
group P A One copy is taken and converted to an

IP-style multicast packet, by copying
various fields of the CBT hdr to the IP
hdr. The CBT header is removed,
and the IP-style packet is multicast
over the subnetwork.

4. Routers B and C forward
rec'd CBT-style pkt
(from step 2) and
forward to any
neighbours, as

specified by C Y
their FIBs. []
B A
I_—Ll C) I_—Ll IP header
CBT header
payload
Arriving data packet
[l - CBT-capable router
O - end-system 2. CBT router multicasts cached copy
of data packet (i.e. with CBT header)

—> - CBT tree branches N

—— - multi-access LAN

Figure 3.5: CBT Data Packet Forwarding on a LAN (receiving case)

3.4.9 Lower Group Leave Latency

One of the design goals of CBT was to modify the Internet Group Management Protocol
(IGMP) to reduce group leave latency, i.e. the time between the last claim to a group on
a particular subnet being relinquished, and the time group traffic is no longer forwarded
onto that subnet. Using DVMRP as an example, this takes around four and a half
minutes. The reason.leave latency.is currently so-long-is-because this is the shortest
time considered reasonable for multicast routers to implicitly deduce, from the absence
of group: membership- report-messages, that -there. are: no:longer. any; claims to a
particular group on a subnet.

CBT introduces an explicit IGMP group leave message to drastically reduce
leave latency. It was considered an important design goal since, over the last few
years, multicast has been adopted as the preferred transport mechanism for many high-
bandwidth applications, including multimedia applications. Now, even comparatively

resource-rich LANs are not immune to the congestion problems usually only withnessed
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on slower, wide-area links. It is therefore essential that, once there are no longer any
receivers on a subnet, the corresponding traffic flow should cease as soon as possible
thereafter.

As we have said, lower leave latency is possible through the introduction of a
new IGMP message type: IGMP-HOST-MEMBERSHIP-LEAVE. When host relinquishes
its last claim to a particular group membership, it multicasts a IGMP-HOST-
MEMBERSHIP-LEAVE message to the “all-CBT-routers” address. This message
contains the multicast address of the group being relinquished. Irrespective of whether
any of the receiving CBT routers is the subnet’'s membership interrogator, a CBT router
responds to the LEAVE message by sending an IGMP-HOST-MEMBERSHIP-QUERY to
the “all-systems” multicast address. Only one CBT router actually responds with a
query, since the responses are randomized over an interval of five seconds, and the
receipt of a query cancels out a CBT router’s pending query.

From the moment the LEAVE message arrives at a CBT router, a timer starts
running for the group being relinquished, and is only cancelled if, subsequent to the
query, a report arrives before the timeout period, which currently is around 12 seconds.
This is comprised of the 10 seconds randomized response interval of hosts after hearing
a query, plus a 2 second safety margin.

Leave latency could be further reduced if hosts’ randomized response intervals
were shortened to, say, 5 seconds. The trade-off then is between increased protocol
over-head/bandwidth consumption of more frequent IGMP messages, and a shorter

group leaving time.

3.5 CBT Packet Formats and Message Types

CBT packets travel in'|P datagrams.. For clarity, we distinguish between three types of
CBT packet: those directly concerned with tree building, and re-configuration-so called
primary maintenance messages; those concerned with general tree maintenance-so
called auxiliary maintenance messages, those carrying multicast data.

All of the above message types are encapsulated in a CBT header. Primary and
auxiliary maintenance messages are additionally encapsulated in a CBT control header.

All packets then, data and control, carry the CBT header, but control packets only



70

require the parsing of four of the fields of the CBT header. The reason a CBT header is

present even partially in control packets is partly administrative-it requires the definition

of just one protocol number. This protocol number was set to be 7. Control packets

therefore, travel inside (a portion of) a CBT header, and are identifiable as such by the

contents of the TYPE field in the CBT header (TYPE can only be “control” of “data”).

® (BT Header Format

The CBT header is illustrated below:

0 7.8 15,16 23,24 31
Vers | Unused type hdr length protocol
checksum IP TTL on-tree | unused

group identifier

core address

packet origin

flow-identifier
security fields (T.B.D.)

& %k sk

Figure 3.6: CBT Header

We proceed to describe each of the fields of the CBT header:

Vers: Version number-this release specifies version 1.

Type: indicates whether the payload is data or control information.
Hdr length: length of the header, for purpose of checksum calculation.
Protocol: upper-layer protocol number.

Checksum: the 16-bit one’s complement of the one’s complement of the

CBT header, calculated across all fields.

IP TTL: TTL value gleaned from the IP header where the packet originated.

It is decremented each time it traverses a CBT router.

On-tree: indicates whether the packet is on - or - off-tree. Once this field is
set (i.e. on-tree), it is non-changing.

Group identifier: multicast group address.

Core address: the unicast address of a core for the group. A core address

is always inserted into the CBT header by an originating host, since at any
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instant, it does not know if the local DR for the group is on-tree. If it is not,

the local DR must unicast the packet to the specified core.
® Packet origin: source address of the originating end-system.
® Flow-identifier: value uniquely identifying a previously set up data stream.

® Security fields: these fields (T.B.D) will ensure the authenticity and integrity

of the received packet.

® (Control Packet Header Format

Figure 3.7 shows a CBT control packet header. The individual fields are
described below. It should be noted that the contents of the fields beyond “group

identifier” are empty in some control messages:
® \Vers: Version number-this release specifies version2.

® Type: indicates control message type.

0 7.8 15,16 23 24 31
Vers | unused type code unused
header length checksum

group identifier

packet origin

core address
Core #1
Core #2
Core #3
Core #4
Core #5

Resource Reservation fields (T.B.D.)
k %k ck k%

security fields (T.B.D.)

& ok sk sk ook

Figure 3.7: CBT Control Packet Header

® Code: indicates sub-code of control message type.
® Header length: length of the header, for purpose of checksum calculation.

® Checksum: the 16-bit one’s complement of the one’s complement of the

CBT control header, calculated across all fields.
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® Group identifier: multicast group address.

® Core address: desired/actual core affiliation of control message.

® Core # Z: Maximum of 5 core addresses may be specified for any one
group.

® Resource reservation fields: these fields (T.B.D.) are used to reserve
resources as part of the CBT tree set up procedure.

® Security fields: these fields (T.B.D.) ensure the authenticity and integrity of

the received packet.

® Primary Maintenance Message Types

There are six types of CBT primary maintenance message, namely:

® JOIN-REQUEST: invoked by and end-system, generated and sent (unicast)
by a CBT router to the specified core address. Its purpose is to establish the
sending CBT router as part of the corresponding delivery tree.

® JOIN-ACK: an acknowledgement to the above. The full list of core
addresses is carried in a JOIN-ACK, together with the actual core affiliation
(the join may have been terminated by an on-tree router on its journey to the
specified core, and the terminating router may or may not be affiliated to the
core specified in the original join). A JOIN-ACK traverses the same path as
the corresponding JOIN-REQUEST, and it is the receipt of a JOIN-ACK that
actually creates a tree branch.

® JOIN-NACK: " a negative acknowledgement, indication that the tree join
process has not been successful.

® QUIT-REQUEST: a request, sentfrom a child to a parent, to be removed as
a child to that parent.

® QUIT-ACK: acknowledgement to the above. If the parent, or the path to it is
down, no acknowledgement will be received within the timeout period. This
results in the child nevertheless removing its parent information.

® FLUSH-TREE: a message sent from parent to all children, which traverses a

complete branch. This message results in all tree interface information
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being removed from each router on the branch, possibly because of a re-

configuration scenario.

The JOIN-REQUEST has three valid sub-codes, namely JOIN-ACTIVE, RE-JOIN-
ACTIVE, and RE-JOIN-NACTIVE.

A JOIN-ACTIVE is sent from a CBT router that has no children for the specified
group.

A RE-JOIN-ACTIVE is sent from a CBT router that has at least one child for the
specified group.

A RE-JOIN-NACTIVE originally started out as an active re-join, but has reached
an on-tree router for the corresponding group. At this point, the router changes the join
status to non-active re-join and forwards it on its parent branch, as does each CBT
router that receives it. Should the router that originated the active re-join subsequently
receive the non-active re-join, it must immediately send a QUIT-REQUEST to its parent
router. It then attempts to re-join again. In this way the re-join acts as a loop-detection

packet.

® Auxiliary Maintenance Message Types

There are eleven CBT auxiliary maintenance message types:

® CBT-DR-SOLICITATION: a request sent from a host to the CBT “all-routers”
multicast address, for the address of the best next-hop CBT router on the
LAN-to the core as specified in the solicitation.

® CBT-DR-ADVERTISEMENT: "a reply to' the above. Advertisements are
addressed to the “all-systems” multicast group.

® CBT-CORE-NOTIFICATION: unicast from a group initiating host to each
core selected for the group, together with their core ranking. The receipt of
this message invokes the building of the core tree by all cores other than the
highest-ranked (primary core).

® CBT-CORE-NOTIFICATION-REPLY: a notification of acceptance to

becoming a core for a group, to the corresponding end-system.



74

® CBT-ECHO-REQUEST: once a tree branch is established, this message
acts as a “keepalive”, and is unicast from child to parent.

® CBT-ECHO-REPLY: positive reply to the above.

® CBT-CORE-PING: unicast from a CBT router to a core when a tree router’s
parent has failed. The purpose of this message is to establish core
reachability before sending a JOIN-REQUEST to it.

® CBT-PING-REPLY: positive reply to the above.

® CBT-TAG-REPORT: wunicast from an end-system to the designated router
for the corresponding group, subsequent to the end-system receiving a
designated router advertisement (as well as a core notification reply if group-
initiating host). This message invokes the sending of a JOIN-REQUEST if the
receiving router is not already part of the corresponding tree.

® CBT-CORE-CHANGE:  group-specific multicast by a CBT router that
originated a JOIN-REQUEST on behalf of some end-system on the same
LAN (subnet). The purpose of this message is to notify end-systems on the
LAN belonging to the specified group of such things as: success in joining
the delivery tree; actual core affiliation.

® CBT-DR-ADV-NOTIFICATION: multicast to the CBT "all-routers” address,
this message is sent subsequent to receiving a CBT-DR-SOLICITATION, but
prior to any CBT-DR-ADVERTISEMENT being sent. It acts as a tie-breaking
mechanism should more than one router on the subnet think itself the best
nest-hop.to the addressed core. | It also prompts an-already established DR
to announce itself as such if it has not already done so in response to a CBT-

DR-SOLICITATION.

3.5.1 CBT Control Packet Formats

CBT control packets are encapsulated in IP. CBT has been assigned IP protocol

number 7 by IANA. CBT packet types are summarized as follows:

® CBT Common Control Packet Header



75

All CBT control messages have a common fixed length header.

0 1 2 3
01234567890123456789012345678901
e e S S S S S S S S S
| vers |type | addrlen | checksum |

S

Figure 3.8: CBT Common Control Packet Header

This CBT specification is version 2. CBT packet types are:

*type 0: HELLO

*type 1: JOIN_REQUEST

*type 2: JOIN_ACK

*type 3: QUIT_NOTIFICATION

*type 4: ECHO_REQUEST

* type 5: ECHO_REPLY

* type 6: FLUSH_TREE

* type 7: Bootstrap Message (optional)

* type 8: Candidate Core Advertisement (optional)

* Addr Length: address length in bytes of unicast or multicast addresses carried in the
control packet.

* Checksum: the 16 bit one’s complement of the one’s complement sum of the entire

CBT control packet.

HELLO Packet Format
0 1 2 3
01234567890123456789012345678901
e e S S S S S S S S S
| CBT Control Packet Header |

e s e s st e s
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| Preference | option type | optionlen | option value |

S e

Figure 3.9: HELLO Packet Format

HELLO Packet Field Definitions:
® preference: sender’'s HELLO preference.
® option type: the type of option present in the “option value” field. One option
type is currently defined: option type 0 (zero) = BR_HELLO; option value 0
(zero); option length O (zero). This option type is used with HELLO messages
sent by a border router (BR) as part of designated BR election (see [4]).
® option len: length of the “option value” field in bytes.

® option value: variable length field carrying the option value.

JOIN_REQUEST Packet Format
0 1 2 3
01234567890123456789012345678901
e s e e e e e =
| CBT Control Packet Header |
e e o S oy e SR S
| group address |
e i o T R i o S S S R S
| target router |
e e e S e e
| originating router |
T s
| option type | optionlen | option value |

e s e s st e s

Figure 3.10: JOIN_REQUEST Packet Format



JOIN_REQUEST Field Definitions

® group address: multicast group address of the group being joined.

“wildcard” join (see [4], this field contains the value of INADDR_ANY.
® target router: target (core) router for the group.
® originating router: router that originated this JOIN_REQUEST.

® option type, option len, option value.

JOIN_ACK Packet Format
0 1 2 3
01234567890123456789012345678901
e s s o =
| CBT Control Packet Header |
e s e o L o &
| group address |
T s o L s e SECL S S S S S
| target router |
T s S T ai S B L S S S R
| option type | optionlen | option value |

e S S S S T SRS

Figure 3.11: JOIN_ACK Packet Format

JOIN_ACK Field Definitions

® group address: multicast group address of the group being joined.

7

For a

® target router: router (DR) that originated the corresponding JOIN_REQUEST.

®  option type, option len, option value.

QUIT_NOTIFICATION Packet Format
0 1 2 3
01234567890123456789012345678901
e s e s st e s

| CBT Control Packet Header |



s i e e S i e s SR
| group address |
s i e e S i e s SR
| originating child router |

S e

Figure 3.12: QUIT_NOTIFICATION Packet Format

QUIT_NOTIFICATION Field Definitions

® group address: multicast group address of the group being joined.

® originating child router: address of the router that originates

QUIT_NOTIFICATION.

ECHO_REQUEST Packet Format
0 1 2 3
01234567890123456789012345678901
e S e e e s
| CBT Control Packet Header |
e L L st i R S
| originating child router |

Fot -ttt -t FF A FFFFFFFFFFFFF T+

Figure 3.13: ECHO_REQUEST Packet Format

ECHO_REQUEST Field Definitions

® originating child router: address of _the router that - originates

ECHO_REQUEST.

ECHO_REPLY Packet Format
0 1 2 3
01234567890123456789012345678901
e e S S S S S S S S S
| CBT Control Packet Header |

e s e s st e s
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| originating parent router |
e S S e
| group address #1 |
e T s S S
| group address #2 |
e T s S S
L |
e e
| group address #n |

e e s SN S S ST LS T S T S S S

Figure 3.14: ECHO_REPLY Packet Format

ECHO_REPLY Field Definitions
® originating parent router: address of the router originating this ECHO_REPLY.

® group address: a list of multicast group addresses for which this router

considers itself a parent router w.r.t. the link over which this message is sent.

FLUSH_TREE Packet Format
0 1 2 3
0123456789012345678901234567890 1
e ot SRR S S S
| CBT Control Packet Header |
e e B e e T i o e SRS
| group address |
a2 i e o SECT R e
| Q@ @ ... |
s e e e e e S SRS S
| group address #n |

S e

Figure 3.15: FLUSH_TREE Packet Format



FLUSH_TREE Field Definitions
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® group address(es): multicast group address(es) of the group(s) being “flushed”.

Bootstrap Message Format

0 1 2 3
01234567890123456789012345678901

s i e e S i e s SR
| CBT common control packet header |

e s S S s
|  For full Bootstrap Message specification, see [36] |

e e A s it S A

Figure 3.16: Bootstrap Message Format

Candidate Core Advertisement Message Format
0 1 2 3
01234567890123456789012345678901
e e SR s S SR
| CBT common control packet header |
e st o S e o s
| For full Candidate Core Adv. Message specification, see [36] |

e e i S e e e e o

Figure 3.17: Candidate Core Advertisement Message Format

3.5.2 Timers and Default Values

This section provides a summary of the timers described above, together with their

recommended default values. Other values may be configured; if so, the values used

should be consistent across all CBT routers attached to the same network.

* [HELLO_INTERVAL]: the interval between sending an HELLO message.

Default: 60 seconds.

* [HELLO_PREFERENCE]: Default: 255.
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* [HOLDTIME]: generic response interval. Default: 3 seconds.

* [IMAX_RTX]: default maximum number of retransmissions. Default 3.

* [RTX_INTERVAL]: message retransmission time. Default: 5 seconds.
*[JOIN_TIMEOUT]: raise exception due to tree join failure. Default: 3.5 times
[RTX_INTERVAL].

*[TRANSIENT_TIMEOUT]: delete (unconfirmed) transient state. Default:
(1.5*RTX_INTERVAL) seconds.

*[CACHE_DEL_TIMER]: remove child interface from forwarding cache.
Default: (1.5*HOLDTIME) seconds.

*[GROUP_EXPIRE_TIME]: time to send a QUIT_NOTIFICATION to our non-
responding parent. Default: (1.5* ECHO_INTERVAL).

*[ECHO_INTERVAL]: interval between sending ECHO_REQUEST to parent
routers. Default: 60 seconds.

*[EXPECTED_REPLY_TIME]: consider parent unreachable. Default: 70

seconds.

3.6 Core Router Discovery

There are two available options for CBTv2 core discovery; the “bootstrap” mechanism
(as currently specified with the PIM sparse mode protocol [35]) is applicable only to
intra-domain core discovery, and allows for a “plug & play” type operation with minimal
configuration. The disadvantage of the bootstrap mechanism is that it is much more
difficult to affect the shape, and thus optimality, of the resulting distribution tree. Also, to
be applicable, all CBT routers within ‘a domain must implement the bootstrap
mechanism.

The other option is to manually configure leaf routers with <core, group>
mappings (note: leaf routers only); this imposes a degree of administrative burden - the
mapping for a particular group must be coordinated across all leaf routers to ensure
consistency. Hence, this method does not scale particularly well. However, it is likely
that "better" trees will result from this method, and it is also the only available option for

inter-domain core discovery currently available.
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3.6.1 "Bootstrap" Mechanism Overview

It is unlikely that the bootstrap mechanism will be appended to a well-known network
layer protocol, such as IGMP [37], though this would facilitate its ubiquitous (intra-
domain) deployment. Therefore, each multicast routing protocol requiring the bootstrap
mechanism must implement it as part of the multicast routing protocol itself. A summary
of the operation of the bootstrap mechanism follows (details are provided in [36]). It is
assumed that all routers within the domain implement the "bootstrap" protocol, or at least
forward bootstrap protocol messages.

A subset of the domain's routers are configured to be CBT candidate core
routers. Each candidate core router periodically (default every 60 secs) advertises itself
to the domain's Bootstrap Router (BSR), using "Core Advertisement" messages. The
BSR is itself elected dynamically from all (or participating) routers in the domain. The
domain's elected BSR collects "Core Advertisement' messages from candidate core
routers and periodically advertises a candidate core set (CC-set) to each other router in
the domain, using traditional hop- by-hop unicast forwarding. The BSR uses "Bootstrap
Messages" to advertise the CC-set. Together, "Core Advertisements" and "Bootstrap
Messages" comprise the "bootstrap" protocol.

When a router receives an IGMP host membership report from one of its directly
attached hosts, the local router uses a hash function on the reported group address, the
result of which is used as an index into the CC-set. This is how local routers discover
which core to use for a particular group. Note the hash function is specifically tailored
such that a small-number: of consecutive; groups- always -hash to the same core.
Furthermore, bootstrap messages can carry a "group mask", potentially limiting a CC-set
to a particularrrange of groups. This .can help reduce traffic concentration at the core.

If a BSR detects a particular core as being unreachable (it has not announced
its availability within some period), it deletes the relevant core from the CC-set sent in its
next bootstrap message. This is how a local router discovers a group's core is
unreachable; the router must re-hash for each affected group and join the new core after
removing the old state. The removal of the "old" state follows the sending of a

QUIT_NOTIFICATION upstream, and a FLUSH_TREE message downstream.
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3.6.2 Core Failure

Once the core free has been established as the initial step of group initiation, core router
failure thereafter is handled no differently than non-core router failure, with a core
attempting to re-connect itself to the corresponding tree by means of either a join or re-
join.

When a core router re-starts subsequent to failure, it will have no knowledge of
the tree for which it is supposed to be currently a core. The only means by which it can
find out, and therefore re-establish itself on the corresponding tree is if some other on-
tree router sends it a CBT-CORE-PING message. This message, by default, always
contains the identities of all the cores for a group, together with the group-id.

On receipt of a CBT-CORE-PING, a recently re-started core will re-join the tree
by means of a JOIN-REQUEST.

It had been considered to just send a JOIN-REQUEST, rather than the apparent
overhead of sending a CBT-CORE-PING first. The reason this design option was
chosen was because a JOIN-REQUEST instantiates state along the path from the
sending router all the way to the core (or an on-tree router on the way to it). If the target
core was down, a mechanism would have to be introduced to explicitly remove that
state- a disadvantage of not using the “soft state” approach. However, the unicast CBT-

CORE-PING instantiates no such state.

3.7 Node Failure

The CBT protocol-treats .core- and-non-core failure-in-the-same way, using the same
mechanisms to re-establish tree connectivity.

Each child node .on a CBT tree monitors the status of «its parent/parent link at
fixed intervals by means of a “keepalive” mechanism operating between them. The
“keepalive” mechanism is implemented by means of two CBT control messages: CBT-
ECHO-REQUEST and CBT-ECHO-REPLY.

For any non-core router, if its parent router, or path to the parent, fails, that non-

core router is initially responsible for re-attaching itself, and therefore all routers
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subordinate to it on the same branch, to the tree (Note: re-joining is not necessary just
because unicast calculates a new next-hop to the core).

Subsequent to sending a QUIT-REQUEST on the parent link, a non-core router
initially attempts to re-join the tree by sending a RE-JOIN-REQUEST (see under “Loop
Detection” in this section) on an alternate path (the alternate path is derived from unicast
routing) to an arbitrary alternate core selected from the core list. The corresponding
core is tested for reachability before the re-join is sent, by means of the control
message: CBT CORE-PING. Failure to receive a response from the selected core will
result in another being selected, and the process continues to repeat itself until a
reachable core is found.

The significance of sending a RE-JOIN-REQUEST (as opposed to a JOIN-
REQUEST) is because of the presence of subordinate routers, i.e. there exists a
downstream branch connected to the re-joining router. Care must be taken in this case
to avoid loops forming on the tree. If the joining router did not have downstream routers
connected to it, it would not be necessary to take precautions to avoid loops since they
could not occur (this is explained in more detail below).

It was an engineering design decision not to flush the complete (downstream)
branch when some (upstream) router detects a failure. Whilst each router would join via
its shortest-path to the corresponding core, it would result in an overall longer re-
connectivity latency.

A FLUSH-TREE control message is however sent if the best next-hop of the re-

join is a child on the same tree.

3.8 Loop Detection

The CBT protocol incorporates an explicit loop-detection mechanism.. Loop detection is
only necessary when a router, with at least one child, is attempting to re-connect itself to
the corresponding tree.

We distinguish between three types of JOIN-REQUEST: active; active re-join;
and non-active re-join.

An active JOIN-REQUEST for group A is one which originates from a router

which has no children belonging to group A.
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An action re-join for group A is one which originates from a router that has
children belonging to group A.

A non-active re-join is one that originally started out as an active re-join, but has
reached an on-tree router for the corresponding group. At this point, the router changes
the join status to non-active re-join and forwards it on its parent branch, as does each
CBT router that receives it. Should the router that originated the active re-join
subsequently receive the non-active re-join, a loop is obviously present in the tree. The
router must therefore immediately send a QUIT-REQUEST to its parent router, and
attempt to re-join again. In this way the re-join acts as a loop-detection packet.

Another scenario that requires consideration is when there is a break in the path
(tunnel) between a child and its parent. Although the parent is active, the child believes
that the parent is down-the child cannot distinguish between the parent being down and
the path to it being down. If the path failure is short-lived, whilst the child will have
chosen a new route to the core, the parent will be unaware of this, and will continue
forwarding over its child interfaces, the potential risk being apparent.

We guard against this using a parent assert mechanism, which is implicit, i.e.
involves no control message overhead, in the reception of CBT-ECHO-REQUESTSs from
a child. If no CBT-ECHO-REQUEST is heard, after a certain interval the corresponding
child interface is removed by the parent.

As an additional precaution against packet looping, multicast data packets that
are in the process of spanning a CBT's delivery tree branches (remember, we
distinguish between actual tree branches and attached subnetworks, although there are
cases when they are one and the same) carry an on-tree indicator in the CBT header of
the packet. Provided a data packet-arrives via a-valid tree interface, all routers are
obliged to check that the on-tree indicator is set accordingly. A data packet arriving at
the tree for the first time from a non-member sender will have the on-free indicator bits
set by the receiving router. These bits should never subsequently be modified by any
router. Should a packet be erroneously forwarded by an on-tree router over an off-tree
interface, should that packet somehow work its way back on tree, it can be immediately
recognized and discarded, since it will have arrived via a non-tree interface, but will

have its on-tree bits set.
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3.8.1 Unicast Transient Loops

Routers rely on underlying unicast routing to carry JOIN-REQUESTSs towards the core of
a core-based tree. However, subsequent to a topology change, transient routing loops,
so called because of their short-lived nature, can form in routing tables whilst the routing
algorithm is in the process of converging or stabilizing.
These are two cases to consider with respect to CBT and unicast transient
loops, namely:
® 3 join is sent over a transient loop, but no part of the corresponding CBT tree
forms part of that loop. In this case, the join will never get acknowledged and
will therefore timeout. Subsequent re-tries will succeed after the transient loop

has disappeared.

® 3 join is sent over a transient loop, and the loop consists either partly or entirely
of routers on the corresponding CBT tree. |If the loop consists only partly of
routers on the tree and the join originated at a router that is not attempting to re-
join the tree, then the JOIN-REQUEST will be acknowledged. No further action is
necessary since a loop-free path exists from the originating router to the tree. If
the loop consists entirely of routers on the tree, then the router originating the
join is attempting to re-join the tree. In this case also, the join could be
acknowledged which would result in a loop forming on the tree, so we have

designed a loop-detection mechanism which is described below.

3.9 Conclusions

In this chapter, we introduced the CBT multicast protocol, and described in detail the
specifics of its operation, such.as CBT tree-building, tree maintenance, tree teardown,
LAN designated router election, and data packet forwarding and reception. We
discussed the protocol functionalites in detail, to understand the states of the CBT
protocol and its protocol data units used in the CBT routing processes. Packet formats
and message types were also presented. We described the various types of control

packets and their functions.
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The fundamental motivation behind the design of the CBT architecture was the
ability to significantly improve multicast scalability. This improvement does not come
without its cost, and in the case of CBT the primary disadvantage of the architecture is
the potential for increased delay between two multicast receivers — a consequence of
the absence of source-based shortest path trees. The trade-offs introduced by the CBT
architecture focus primarily between a reduction in the overall state the network must
maintain and the potential increased delay imposed by a shared delivery tree. However,
because of CBT’s “hard-state” approach to tree building, i.e. group tree link information
does not time out after a period of inactivity, as opposed to the “soft-state” approach (for
example: DVMRP), CBT branches do not automatically adapt to underlying multicast
route changes. This is in constrast to the “soft-state” or “data-driven” approach-while
data always follows the path as specified in the routing table. In addition, “hard-state”
requires the incorporation of control messages that monitor reachability between
adjacent routers on the multicast tree. This control message overhead can be quite
considerable unless some form of message aggregation is employed.

The maximum delay bound of a CBT has been proven to be twice that of a
shortest-path tree, which may not be acceptable for real-time applications, such as
voice conferencing. However, with some modifications to the original CBT protocal, it is
possible to satisfy the end-to-end time delay imposed by the real-time applications.
Another disadvantages of CBT is that the cores for a particular group, especially large,
widespread groups, can potentially become traffic “hot-spots” or “bottlenecks”.

In summary, the ‘CBT architecture has several advantages compared with
existing schemes, which include

® CBT architecture eliminates the source scaling factor of-the source-based

architecture, in terms of group-specific state maintained in the network.

® No state is maintained by the network between a non-member sender and

the delivery tree.

® CBT's two-phase routing approach means that it is a candidate for

information discovery applications. CBT can offer an efficient solution to

“anycasting”.
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We also looked at the implications of shared multicast delivery trees, and conclude that
they also offer several disadvantages, including:
® Shared delivery trees do not optimize delay, which is critical to some
multicast applications.
® (CBTs can result in so-called “traffic concentration” or “hot spots” around
core routers.
® (CBTs require the selection of a small number of core routers by a group’s
initiator. Core selection and placement, i.e. core management, are not

required in existing IP multicast schemes.

Despite its disadvantages from our study, we still think, with its relatively simple protocol
structures, its scalability and low overhead, CBT has the potential for real-time multicast
applications in the Internet, provided that an improvement to the original CBT be
incorporated without sacrificing its advantages. Hence, this motivates us to conduct the
research towards the modification of the original CBT to adapt to the real-time multicast
traffic with low cost. In the next chapter, we will formulate the real-time optimal multicast
routing problems and propose a solution based on the CBT protocol. We then propose
the strategy to optimize the path from source to the shared tree. And we later propose
two path selection algorithms thus optimizing the overall CBT trees to balance the tree

cost factor and subject to the end-to-end delay constraints.



CHAPTER 4

REAL-TIME OPTIMAL MULTICAST ROUTING

Overview

The Internet has begun using multicast delivery to support group communication.
Multicast delivers packets from a sender to a group of receivers over a multicast tree.
The primary advantage that multicast has over traditional unicast delivery is that the
sender transmits a single packet to reach all of the group members, rather than sending
a separate copy to each receiver. Replication of each packet is handled by the network
and is done only when necessary, i.e. at the branching points in the multicast tree.
Another recent development has been the increasing use of real-time applications in the
Internet. Real-time applications impose stringent delay and throughput constraints on
the network, as compared with traditional elastic applications. When real-time
applications communicate across a network, data must traverse the network in time for
the application to use it. Likewise, a real-time application often needs a certain amount
of throughput, below which it does not receiver adequate service. Because of these
characteristics, real-time applications require new mechanisms, beyond TCP and best-
effort service, to cope with delay and loss.

One approach to improving the performance of real-time applications over the
Internet is to design new. adaptive techniques, similar to the use of TCP for elastic
applications. These techniques include adapting a receiver's audio playback point and
varying a receiver's subscription toclevels of hierarchically encoded video. Another
approach is to upgrade the best-effort service model of the Internet to include enhanced
levels of service characterized by reduced delay or increased bandwidth. Many
researchers in this area have proposed an integrated services architecture that uses a
combination of scheduling algorithms, admission control, and a reservation protocol to
control access to these services levels. Huge efforts are currently under way, at both the

algorithm and protocol levels, to develop multicast routing mechanisms which:
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® Satisfy the QoS requirements of the rapidly evolving real-time applications,
® Are capable of managing the network resources efficiently, and,

® Scale well to large network sizes.

Researchers have proposed the core-based trees (CBT) and protocol
independent multicasting (PIM) protocols to route multicast data on internetworks.
Algorithms utilizing CBT construct a single tree for each group, regardless of the
number of senders. However, the end-to-end delivery delay is larger for CBT than for a
source-based tree (SBT). In this chapter, we presents a real-time optimal Multicast
routing based on modified CBT v2 protocol. The proposed protocol can sustain the
scaling advantage of CBT without letting the delay from source to any destination
exceeds a real-time constraint.

We adopted a strategy called “the shortest of the shortest path” to optimize the
path from source to the shared multicast tree, replacing the original approach of CBT,
which uses a shortest path from source to a core router. In addition to selecting a path
in a multicast tree which does not violate the end-to-end deadline, we present two new
path selection methods that take both cost and delay into consideration. By changing
the path selection function, the overall cost of the multicast tree can be reduced
significantly while satisfying the real-time delay constraint of the applications. Our
simulation results show significant improvement for our proposed protocol over the CBT
v2. On average our proposed protocol allows us to achieve the balance of optimizing

cost and delay of the shared multicast group tree.

4.1 Introduction

Multicasting is a communication service that allows an application to. efficiently transmit
copies of a data packet to a set of receivers that are members of a multicast group. The
group is identified by a location independent multicast group address. Senders use this
address in the destination field of the packet; multicast routers forward the packet to
group members using routing table entries for this address. The entries form a tree,
which may be a source-based tree or a center-based tree depending on the multicast

routing protocol. Multicast group members may be spread across separate physical



91

networks, they may join and leave a group during the life of the group, and they may be
members of multiple groups. Multicast routing has been performed by a multicast-
capable, virtual network running on top of the internet called the multicast backbone
“Mbone”. The Mbone uses the distance vector multicast routing (DVMRP) or the
multicast extensions for open shortest path first protocol (MOSPF) to route multicast
traffic. Common uses of multicasting include audio and video conferencing, distributed
interactive simulation (DIS) activities such as tank battle simulations, and exchanging
experimental data and weather maps. DVMRP and MOSPF depend on features of
underlying point-to-point (unicast) routing protocols. Efforts to remove this dependency
and to develop point-to-multipoint (multicast) routing protocols that operate in a
hierarchical manner which subnet multicast routing protocols led to the development of
the core-based tree (CBT) protocol [5, 6] and the sparse mode of the protocol
independent multicasting (PIM) protocol [28].

In multicast communication, there is a source node s and a set of destination
nodes D. The multicast routing is to find a routing tree which is rooted from s and
contains all nodes in D. Multicast routing has two important requirements: minimal
network cost and shortest network delay. The network cost is the overall network cost of
transmitting a message to all destinations; and the network delay is measured by the
longest delay from the source to any destinations. In real-time applications, there often
exists a real-time constraint and it is required that the communication be done within the
constraint. There is no need to achieve the shortest delay to each of the destinations.

We propose a realtime -multicast routing. algorithm which reduces overall
network cost without letting the delay from a source to any destination exceed a real-
time constraint. Simulation results have shown that our algorithm has a significant
improvement over the original CBT v2.

The rest of the chapter is organized as follows. Section 4.2 presents the brief
previous research in real-time multicast network. Section 4.3 describes multicast routing
background and our two proposed path selection functions are discussed in section 4.4
and section 4.5. Section 4.6 describes the modification to the original CBT v2, with the

flow chart demonstrating the modification detail. Section 4.7 shows the simulation setup
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demonstrating the capability of our proposed protocol, followed by the discussion of the

simulation results in section 4.8. The chapter concludes with Section 4.9.

4.2 Previous Work

Detail survey of the multicast routing problems can be found in chapter 2. We briefly
discussed some of the multicast routing algorithms which are relevant to the context of
real-time multicast routing problems. Optimal algorithms for constructing delay-
constrained minimum Steiner trees exist, but their execution times are prohibitively large,
because the problem is NP-complete [56]. Several delay-constrained Steiner tree
heuristics have been proposed during the past few years. The heuristics proposed in
[111] use a delay-constrained Bellman-Ford shortest path algorithm during the
computation of the delay-constrained Steiner tree. [30] presented a delay-constrained
heuristic based on Dijkstra shortest path algorithm. A heuristic that constructs a
Multicast tree subject to both an upper bound on end-to-end delay and on delay
variation is given in [86]. In KMB algorithm [69], a network is abstracted to a complete
distance graph consisting of edges that represent the shortest paths between the
source node and each destination node. The KMB algorithm constructs a minimum
spanning tree in the complete distance graph, and the Steiner tree of the original
network is obtained by achieving the shortest paths represented by edges in the
minimum spanning tree. Kompella, Pasquale, and Polyzos [65] proposed two heuristics
that address delay-bounded multicast trees, called KPP. In their formulation, the delay
bound for all destinations is the same; furthermore, the algorithm assumes that link
delays and the delay bound are integer valued and that link costs and delays are
symmetric. KPP extends the KMB algorithm by taking into account the constraint of the
specified delay bound in the construction of the complete distance graph. [81]
proposed the bounded shortest multicast algorithm (BSM) algorithm for constructing
minimum-cost multicast trees with delay constraints. BSMA handled asymmetric link
characteristics and variable delay bounds on destinations, specified as real values, and
minimizes the total cost of a multicast routing tree. But BSMA is not suitable for large-
scale networks whereby hierarchical routing should be applied to cope with network

size such as OSPF (Open shortest path first) routing protocol.
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[93] proposed a hybrid multicast routing algorithm of the CBT and PIM-SM. The
proposed algorithm builds a bidirectional shared tree centered around a rendezvous
point as in the CBT and also builds a shortest path tree rooted at a sender as in the PIM-
SM if the message transmission rate from that sender is above a threshold. The
message transmission delay is lower than both the CBT and the PIM-SM. However, the
overheads due to control messages to build and maintain these trees are slightly higher
than the PIM-SM and much higher than the CBT. Similar idea was proposed by [64] in
coping with the disadvantages of CBT whereby a non-cored based tree (NCBT) is used.
With this scheme no core nodes are assigned, but a multicast node among on-tree
nodes is assigned to each new incoming member. This multicast node is selected such
that the length of the path from the incoming user to a multicast node and the maximum
end-to-end delay on the tree are jointly minimized. [101] proposed QoS guaranteed on
CBT with member join/leave admission tests so as to provide adequate QoS. However,
it is interesting to find an appropriate threshold level at which the advantage of
completely reconstruction the multicast tree (e.g. higher probability of approving more
join requests) offset the corresponding overnead. Recent works on real-time multicast
routing were described in [51, 100, 104].

We believe that our work is different from previous real-time multicast algorithms
which focus on the Steiner trees, that is suitable for a single source and static multicast
group environment, while ours bases on more practical shared trees and more scalable

multicast routing protocol such as CBT.

4.3 Multicast Routing-Protocols

4.3.1 Source-Based Trees and Shared Trees

Data packets addressed to a multicast group may be routed on a tree that is specific to
the particular sender and group or a tree that is shared by all of the senders to the
group. The first approach uses a source-based tree (SBT) that is a shortest-path tree
rooted at a sender. The branches of the tree are the shortest paths from the sender to
each of the group members. A separate tree must be constructed for each sender to

each active multicast group. A protocol that implements SBT is the dense mode of PIM
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(PIM Dense Mode) [28]. The shared tree approach uses a single centered-based tree or
core-based tree to route traffic from all senders to the group. The tree is a shortest-path
tree rooted at one or more predefined nodes in the network called “Core” nodes. A
protocol based on center-based trees is CBT [5, 6]. CBT sets up and maintains a single
shared tree for every multicast group that is active in the network. When a multicast
router is notified via IGMP that a local host would like to join group, the router sends a
join message for that group toward the Core node via the shortest path. A tree rooted at
the Core is constructed as the acknowledgments to the join messages are processed.
The resulting tree is a bidirectional acyclic graph that reaches every group member.
Forwarding packets to the group members using CBT is straightforward. When a node
on the tree receives a packet addressed to the group, it forwards copies of the packet
on all branches of the group’s tree except for the branch on which the packet arrived.
There is currently some debate over which type of tree provides the best performance.
Algorithms that use CBT construct a single tree for each group, regardless of the
number of senders. Because the packets are not guaranteed to travel the shortest path,
one expects the end-to-end delay to be larger for CBT algorithms than for SBT ones.
Another drawback is the traffic concentration near the core router. However, SBT
algorithms scale poorly for large numbers of senders because the router resources
required to maintain knowledge of the tree structure are considerable.

Real-time multicast refers to a multicast in which a message will be received by
all destinations within a specified time delay. In real-time communication, a channel
must be established before any user's message can be transmitted. During the channel
establishment, the system selects a route along which sufficient resources can be
reserved to meet the user specified ‘requirements; such as network bandwidth and
maximum message delay. This is an important step to guarantee a real-time message to
be delivered to destinations on time. These real-time routing algorithms aim to find a
route whose delay is within a user-specific constraint. The network cost of the route is

not a primary concern.

4.3.2 Real-time multicast Network Model

The real-time multicast routing is defined as follows:
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Given a network graph G(V,E), a source node s € V, a set of destination nodes
D C V, and a real-time constraint A, a real-time routing tree for multicast connections is
a subtree of the graph G(V,E) rooted from s, that contains all of the nodes of D and an

arbitrary subset of nodes of D, and the delay from s to any node in D is within the time

constraint A . The best known of route selection protocols subject to the cost constraint
which can be minimum delay bound or minimum number of links are: Dijkstra algorithm
and Bellman-Ford algorithm. The former algorithm minimizes the cost of the route, while
the latter minimizes the number of links in the path, subject to cost constraint. As
mentioned earlier that, if we can set the cost of a link to the minimum delay bound which
can be offered on that link, the Bellman-Ford algorithm can satisfy the requirement of
real-time traffic, assuming that the resource state information are available in the routing
tables.

In CBT routing, one node of the multicast group is selected as the “core” and the
routing tree is the shortest path trees rooted from the core to all the other group
member. With our modification to the CBT, we use the shortest to the shortest path trees

[46], if we can find them under the condition that the end-to-end delay from a source to

all nodes in the multicast group does not violate the delay bound A, then the condition
of real-time CBT can be fulfilled. Detail of the CBT modification is mentioned in the
subsequent section. In the next section, we propose two path selection functions which
will take into account both the cost and the delay factors. This path selection can be

applied to various multicast tree building algorithms.
4.4 Weighted Dijkstra’s Shortest Path Tree Algorithm

For real-time multicasting, the network delay of the path to _each destination in a
multicast 'routing ‘tree should ' not ‘exceed a delay constraint imposed by the time-
sensitive applications. Unfortunately, the objectives of optimizing the network cost and
optimizing the network delay are often conflicting in nature as the two parameters are
assumed to be independent from each other. For example, a multicast tree based on
the minimum-cost Steiner Tree may contain paths with unacceptable path delay, while a
multicast tree based on the Shortest Path Tree may yield high overall network cost. A

compromise is needed between the two objectives.
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Since building a real-time multicast tree requires optimizing of the network cost
while meeting the delay constraint, both the cost and delay factors should be
considered at the time of building the multicast tree. Therefore, a path selection function
which is based on both cost and delay is proposed [76]. The path selection function is
defined by means of the “Weighted path selection criterion”. Basically, it selects an
optimal path by weighting the path cost against its path delay. The optimal path is

defined as :

(Cw * Path Cost) + (Dw * Path Delay). @.1)

The path cost and the path delay are assumed to be two independent network
parameters, although, in reality, they may be closely related and are inversely
proportional to each other. The Cost Weight, Cw, and Delay Weight, Dw, simply reflect
the relative importance of the network cost against the network delay. They allow us to
specify the desired balance between optimizing the network cost and optimizing the
network delay. In some case, either one of them can be set to zero to ignore either the
network cost or the network delay.

In this dissertation, we intend to use the path selection function in the Dijkstra’s
Shortest Path Tree Algorithm whereby cost function represents “hop count” or “distance”
between router nodes. As a result the Weighted Dijkstra’s Shortest Path Tree can be
generated. Note that the word “shortest” here refers to the smallest combined path cost
and path delay. We modified the Dijkstra’s Shortest Path Tree algorithm by substituting
the original path selection with weighted path 'selectionfunction in order to create
optimal solution balancing cost and delay parameters. By properly assigning the value
of Cw and Dw, the overall cost of the multicast-tree can be reduced significantly while
satisfying the end-to-end delay constraint. As the weighted path selection function does
not guarantee that a path can meet the delay constraint, in the situation when the path
generated between a new node and the source cannot meet the delay constraint, the
Weighted Shortest Path algorithm will use the shortest path based on path delay only.
Although this path may have significantly higher cost, it can be easily computed and it is

the absolute shortest path from the new node to the source node with the best chance of
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meeting the timing requirements. Since the Weighted Shortest Path Tree algorithm is

basically a modified Dijkstra’s algorithm, the complexity of this algorithm is also O(|V|2).

10.

11.

Weighted Dijkstra’s Shortest Path Tree algorithm:

Definitions:

G = set of nodes in a network
S = set of nodes in the Weighted Shortest Path Tree

S = source node
Cost, , = Accumulated path cost from node X to node y, or 90 if no path exist yet

Delay, , = Accumulated path delay from node x to node y or 9O if no path exist yet

CD,, =(Cw.* Cost,, ) + ( Dw * Delay, , ) (4.2)

S<{s}
Cost{n] = Cost Y n#s
Delay[n] = Delay, Y n#s
/* Find next node not in S and nearest to source node */
while S# G
Find w & Ssuchthat CD,, =minCD, V' j & S
S S U{w}
Foralln & S, /*Update least cost paths */
If(co,, +Cb,, <CD,,)
Cost[n] = Cost, ,+ Cost[w],
Delayln] = Delay, , + Delay [w]
For'each destination node, if the path delay > delay constraint A,
replace the path by the shortest path based on delay only

Remove all branches leading to non-destination nodes

4.5 Residual delay path selection function

In previous section, we presented a new path selection function to find an optimal path

connecting the source via a new on-tree node which does not violate the real-time delay



98

constraint values, with reduced cost tree. However, the cost of the multicast tree is not
optimal. To further decrease tree cost, we propose another path selection function to
optimize cost and delay based on Kompella’s algorithm [65], called “residual delay path
selection function”. The new selection function explicitly uses both cost and delay in its
functional form. It tries to choose low-cost edges, but modulates the choice by trying to

pick edges that maximize the residual delay. It is given by

Co,w)
A-P®)-Dv,w)

Path selection function (v, w) = if P(v)+Dmv, w) <A

(4.3)

Where C(v, w) = cost of the link (v, w)
D(v, w) = delay on the link (v, w)

P(v) = delay on the path from s to v in the tree

This new path selection function has two components, C(v,w), which if
minimized would lead to a low cost solution, and the denominator, which we call the
residual delay, the remainder of the delay left over after traversing the path from s to w
that can be used to reach other nodes without violating the bounds A. If the function is
minimized, then the residual delay would tend to increase. This vyields a larger
probability of being able to select an edge out of w to another destination. Thus, while
maintaining the delay bound, we are presented with the opportunity of path sharing, i.e.,
the overlapping of paths from source to more than one destination. This, in turn, leads to
lower tree costs, .in. contrast to:divergent paths: that usually-tend to raise tree costs.
However, this new selection function has a tendency to optimize on delay also, in that it
may find paths with delays lower than A at the expense of added cost to the tree. In
conclusion, the selection function can be used to simultaneously minimize the cost of
the path and maximize the residual delay. We modified the Dijkstra’s Shortest Path Tree
algorithm by substituting the original path selection with the residual delay path
selection function in order to create optimal solution balancing cost and delay

parameters. In the next section, we will describe the modification of the CBT v2.
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4.6 CBT modifications

In our formulation, the original CBT version 2 was modified to optimize the transmission
path from a source which is off-tree to the on-tree node of the shared multicast tree. To
improve network performance, we propose a new method: for an off-tree router, we first
find the shortest paths from the source router to all the nodes on the multicast tree.
Then, we select the path that is the shortest among these shortest paths and use it to
route a multicast packet from this source router to the shared tree.

This on-tree node will be used as a new access point from the source to the
shared tree. This method is called “shortest of the shortest path” [46].

After the shortest of the shortest path is obtained, then we apply our Weighted
Dijkstra’s Shortest Path Tree algorithm to find the paths to all nodes in the multicast

group so that the total path delay from the source node via an on-tree node to each

multicast node in the group does not exceed the maximum end-to-end delay A. By
simply replacing the path selection function in the multicast tree building algorithms with
the proposed weighted path selection function, the overall cost can be reduced
significantly while the real-time constraint can still be maintained. We then use our
residual delay function to replace the path selection of the Dijkstra’s algorithm and
compare the results from our experiments between the two path selection functions. The

flow chart of our proposed approaches is shown in figure 4.1.
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Assumptions :
@ 1. Static MC Group
2. All nodes must have Network

Topology Information
3. Symmetric Tree

\ 4

Construct a core-based, shared tree
using conventional CBT protocol

Y

Compute "Shortest-to the-Shortest [ Dijkstra’s algorithm
Path" (SSP) from source to on-tree [€
node

SSP Exists ?

Y

Use SSP as a new path from source
to shared tree (Replacing core

router)
[©) v l @
Compute Multicast tree rooted from Compute New MC tree similar to @
source via SSP to all members that using "Residual delay selection
satisfy delay bound, low cost, < function" to find delay bounded, low [€—
"Weighted Dijkstra's algorithm" cost tree
N 1 v

N

v Z

elay bound satisfied ?
Low cost ?

»<Try all paths ?

Y
Y
Refine the multicast tree [« Iceih gig
delay bound

Figure 4.1: Flow chart of our proposed protocol with two path selection functions

The proposed method takes more off-line time to collect locations of nodes and
compute the shortest paths. Once the route is determined, the runtime overhead is

slightly higher than that in the CBT v2 [64].
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In implementing our protocol, however, the network requires an additional
capability. All nodes in the network should maintain the current tree information, since
one of the on-tree nodes is selected as an access point to the shared tree in lieu of the
core node in CBT. In the CBT approach, all nodes in the network must keep the
information of the core node location. To do this, the bootstrap router (BSR), broadcasts
the information of candidate core nodes onto all CBT routers. Similarly, in our
formulation, the information of on-tree node is broadcasted to all routers. The additional
overhead is the address of the designated on-tree node for each source and each
multicast group. Note that the overhead required for the tree building and maintenance
is nearly the same for both approaches.

To prove that our proposed protocol is loop-free, we assume that the existing
tree does not contain a loop, and prove informally that a newly added branch does not
create a loop [5]. In our proposed protocol, we assume that every on-tree node has the
same information that the core node has. So all on-tree routers simulate the role of the
core, i.e. the whole multicast tree shows the same input and output as a huge core,
which has edges connected to all routers adjacent to the tree. Thus, the establishment
of a new branch in our proposed protocol simulates building the first branch in a CBT.

Thus, if CBT is loop-free, then ours is also loop free.
4.7 Simulation

In this section, we will describe the simulation results and discuss the performance of
our protocol. We adopted the Waxman approach-in [107] to construct our network
graph. In our experiments, we used an average node degree of 4, which is close to the
average node degree of the current Internet. We distributed n nodes randomly across a
Cartesian coordinate grid of size 100 by 100. Nodes in the network graph represent the
communication endpoints. The edges connecting the nodes represent links. Edges

between nodes are added by considering the probability function

P(u,v) = Bexp (-d(u,v)/ La) (4.4)
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for all possible pair (u,v) of node, where d(u,v) is the Euclidean distance between the
nodes u and v, L is the maximum possible distance between any two nodes, and £, &
are parameters in the range (0,1). Large values of f increases the number of edges
from each node while smaller values of « increases the number of connections to nearer
nodes compared to nodes further away. In our simulation, we set fto 0.25 and «a to 0.2
to simulate a large network such as the Internet. To simulate the propagation delay, we
assigned to each edge a network delay equivalent to the Euclidean distance between
the two nodes. An example of a randomly generated network of 20 nodes and an
average degree of 4 is shown in figure 4.2. In terms of network cost, we experimented
with random cost value in the range 0 to 99 to each edge, and with unit cost equates to
hop count for each edge. We found that using unit cost produces similar results to that

of the random cost.

Figure 4.2: A randomly generated network, 20 nodes, average degree 4.

CBT version 2's specifications described in RFC 2189 is also simulated on ns-2 [75] as
a baseline. The simulation environment is depicted in Table 4.1. At each simulation the
multicast group size and the real-time constraint values A vary. Each time the source
node and the destination set were randomly selected from the network graph. We used
a static multicast model in our experiment. We assumed in our experiment that the

network is symmetric, i.e., link cost and link delay in both directions are the same. This
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can be represented as an undirected network in which C(e) = C(&) and D(e) = D(¢&) for
all e € E. The experiment was run repeatedly until the confidence interval for the
number of all measured quantities are less than 5% using the 95% confidence level. On
the average, 300 different networks were simulated in each experiment in order to reach
such confidence levels. The label “Modified CBT,,," denotes our proposed modified

CBT protocol using Weighted Dijkstra’s path selection method, while label “Modified

CBTgp" corresponds to our proposed modified CBT protocol using the residual delay

path selection function.

Simulation Sy
Description
components
CPU Pentium III 733 Mhz, 256 MB RAM, 30 GB Hard Disk
Operating System Linux Red Hat 6.2
ns2 ns-2.1b7

Table 4.1: Simulation environment.

The following performance metrics are considered:

® [nd-to-end delay bound: Time elapsed between the generation of a packet at a
source and the reception of that packet by a group member. The average
propagation delay is compared between our proposed protocol to its counterpart
in CBT v2. Also, the results should prove that our protocol can route the packet
within a time delay bound of the real-time: application (maximum end-to-end
delay)..

® Network resource usage: Total number of hops'a multicast packet travels to reach
all destination in the multicast groups. It is computed by dividing the total number
of hops measured in a simulation by the number of packets received.

® Traffic concentration: Traffic concentration is measured by the maximum number
of flows traversing a unidirectional link (the load of the most congested link). The

distribution of traffic is observed and compared with that of the CBT v2, also the
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change in the maximum link load of each multicast tree. This also shows link

utilization of our proposed protocol against that of the CBT v2.

® | 0ss Rate: The loss rate measures the fraction of the transmitted packets that are
not delivered at all or are delivered so late as to be useless for real-time
applications. This also shows the effectiveness of our protocol in constructing the

acceptable multicast tree for a given delay bound.

® [xecution time: The execution time measures the running time of our algorithm

from start until the time the multicast tree is completely formed.
4.8 Performance evaluation

The simulated traffic is with burst size 1 MB, and average rate of 1 Mb/s. The maximum
length of the packet was set to 1000 bytes. The link capacity of all the links in the
network was chosen randomly from the set of {2, 4 and 8} Mb/s. We repeated our
experiment with different link capacity. The results have similar trends. We would like to
mention here that the choice of our traffic is not to be emphasized in this study since our
goal is to compare the performance produced by our proposed protocol under identical

network conditions.

4.8.1 Average end-to-end delay

Average end-to-end delay is the average period for a data packet to be routed through
the network from the application where it was created to a destination application.
Different values of Cw and Dw in-our Weighted Dijkstra’s Shortest Path Tree algorithm
were experimented in order to obtain the best total network cost performance. Then, we
repeated the.experiment using the residual delay path selection function to create the
multicast tree. Figure 4.3 and figure 4.4 show the results of our proposed protocols to
their counterparts in CBT v2 in terms of total network cost against maximum network
end-to-end delay for multicast group sizes of 50 and 100. They reveal that our proposed
protocols yield better cost and delay performance than those of the original CBT for both
multicast group sizes. It is evident from figure 4.3 that CBT yields the worst network cost

tree, which is up to three times the network cost of our modified protocols. At all delay

constraint values, modified CBT; can consistently sustain a lower cost tree than that of
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the modified CBT,,5. It can be seen from figure 4.3 that modified CBT., can produce up

to 40 % less cost tree than that of the modified CBT,.

We are interested in comparing the overall network cost against real-time
constraint A. For a smaller A, no routing tree which satisfies the real-time constraint

exists. A is incremented, until the network cost almost levels off. Figure 4.5 and figure

4.6 show the histograms of the ratio of the average end-to-end delay in CBT, modified
CBT,,p and modified CBTg, respectively. It reveals that the both modified CBT,,, and
modified CBT,, have better delay performance than that of the CBT. On average,

modified CBTg, performs best in terms of utilizing a shorter delay paths, while

maintaining lower cost tree.
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Figure 4.3: Total network cost against end-to-end delay constraint, multicast group

member = 50.
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Figure 4.4: Total network cost against end-to-end delay constraint, multicast group

member = 100.
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4.8.2 Network resource usage

A simple method to route a packet to all interested receivers is to unicast the packet to
each receiver. However, unicasting is likely to route several copies of the same packet
over links in the network. Multicast protocols send only a single copy of a packet over
any link in the network and require fewer hops to deliver the packet than unicasting in
most cases. Our simulation compares the modified CBT and CBT v2 in which protocol

delivers a copy of a packet to all group members in the fewest number of hops. Figure

4.7 and figure 4.8 show the-result-of the network resource against A whereby multicast
group size are set-at 50 and 100. The simulation results show that the network resource
usage of our proposed protocols arewithin 15% less than that of the CBT. With relaxed
end-to-end delay values, all protocols can easily find less hop count path to each
member. Hence, there are more alternate paths that minimize the number of hop counts
which indirectly decrease the delay along that path. We conducted our experiment by
varying different end-to-end delay time constraint values and found that our modified
protocols, while complying to end-to-end time delay, use fewer hop counts than their

counterpart. We performed another set of experiment to compare network cost at fixed

A with different multicast group sizes. Figure 4.9 shows that as multicast group size
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increases, our proposed protocols produces less costly network than that of the CBT.
Our modified CBT,, performs better than the modified CBT,, in all cases in terms of
network cost at all multicast group sizes. Modified CBT,, can achieve up to 10% less

network cost tree than that of the modified CBT,,, at a larger multicast group size.
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Figure 4.7: Network resource usage against end-to-end delay constraint values,

multicast group member = 50.
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Figure 4.8: Network resource usage against end-to-end delay constraint values,

multicast group member = 100.
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Figure 4.9: Network cost against number of multicast group size.

4.8.3 Traffic concentration

We define a flow to be the stream of packets from a particular sender to a multicast
group. We assumed that each source of the multicast group generates traffic at
constant unit rate. The total number of unit traffic flows that traverse a link is counted.
Traffic concentration is measured by the maximum number of flows traversing a
unidirectional link (the load of the most congested link). The overall rate of source traffic
is at 1 Mb/s. We averaged out the simulation results of the multicast group size of 50
and 100. Figure 4.10, figure 4.11 and figure 4.12 show the traffic distribution in CBT,
modified CBT;, and maodified CBT, respectively. Table 4.2 also summarizes the traffic
flows in all cases. Note that in the CBT simulation, some link appears to be overloaded
(450 flows) while -others are underutilized (0 flows). On the other hand, the modified
CBT,,p, and modified CBT,, show good link utilization. The maximum link load has
decreased to more than half its value in CBT, which decreases the possibility of

congestion. Modified CBTg, performs well in distributing load to more links than that of

the modified CBT,,5, which is the results of our residual delay path selection. It shows
that the residual delay function can find better paths comparing to our Weighted

Dijkstra’s path selection.
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CBT Modified CBT \;, | Modified CBT ;, | Ratio CBT _/CBT | Ratio CBT , /CBT
Max link load Max link load Max link load

432 180 174 0.42 0.40

448 189 180 0.42 0.40

431 170 170 0.39 0.39

438 185 181 0.42 0.41

444 180 170 0.41 0.38

445 179 169 0.40 0.38

450 200 190 0.44 0.42

Table 4.2: The Ratio of the Maximum link load in modified CBT,,, and modified CBTj to
that in CBT
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Figure 4.10: Traffic Concentration in CBT.
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4.8.4 Loss Rate

We measured the loss rate of the packets by examining the packet arrival time at the

destination node versus the time the packet was generated at the source node. The
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Figure 4.12: Traffic Concentration in Modified CBTg.
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number of packets arrived within the time bound, which is the real-time constraint was
recorded. Since delay bound violation is one of the reasons to reject a multicast tree.
Therefore, loss rate is defined as the ratio of the total number of loss packets or
late packets, to the total number of packets transmitted. The results, which are given in
figure 4.13 and figure 4.14, show that our proposed protocols have up to 15% less loss
rate compared with the loss rate in CBT. As the end-to-end delay becomes less
stringent, the loss rate declines. We compare the loss rate performance of both

protocols for different multicast group size of 50 and 100. We can see similar results in

both cases.
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Figure 4.13: Loss rate against end-to-end delay constraint values, multicast group

member = 50.
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Figure 4.14: Loss rate against end-to-end delay constraint values, multicast group

member = 100.

4.8.5 Execution Time

In figure 4.15, we present the average execution time of all algorithms, namely CBT,
modified CBT,,; and modified CBT,, with the multicast group sizes up to 100 members.
Note, however, that our code for these algorithms was not optimized for speed. Thus,
the improvement of the execution time can be further improved using the optimized
code. We observed from the experiment that the average execution times of all
heuristics grow at the same rate and are always within the same order of magnitude,
with CBT being canstantly slower than both madified CBT,,, and modified CBT,. Both
our modified CBT heuristics are slower than CBT, which is the ‘result of CBT tree
refinement with real-time delay constraints. The running time of our modified CBTg, is
quite large and grows relatively faster than that of the modified CBT,,;, as the multicast
group size increases. CBT is obviously quite efficient with larger multicast group in

terms of its fast execution time.
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Figure 4.15: Execution time against multicast group size.

4.9 Conclusions

In this chapter, we proposed a new multicast routing protocol, based on the Core-Based
Tree, whereby, shortest of the shortest paths or a “non-core” scheme has been
incorporated.  With time delay of real-time traffic imposed as one of the protocol
constraint, our proposed- approach which is based on the idea of Core-based trees
version 2, are built with bounded time delay thus, sustaining the real-time traffic
requirements of the applications. In this chapter, we also proposed two path selection
methods which take into account of both the cost and the delay. These path selection
functions can be ‘applied to various multicast tree building algorithms to build the
optimal multicast _routing protocols.  We _incorporated the weighted path selection
function into the Dijkstra’s shortest path algorithm. Then we proposed a residual delay
function as another path selection function, and substitute this path selection function in
the Dijkstra’s shortest path algorithm.

In comparison with the conventional CBT protocol version 2, a simulation result
is presented to prove the efficacy of our protocol. Our protocol has a critical advantage
to the original CBT version 2, in that the core node selection problem does not need to

be addressed. Also, it is difficult to select an optimal core node since the locations of
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group members are not known a priori for most real-time applications. In addition, the
performance of the CBT strongly depends on the selected core node. However, with our
proposed protocol, the network requires an additional capability whereby all nodes must
maintain the current tree information, since one of the current on-tree nodes is selected
as a distribution point for each new incoming member. This multicast node is selected
such that the length of the path from the incoming user to a multicast node and the
maximum end-to-end delay on the tree are jointly minimized. Thus, the proposed
protocol can overcome the drawback of CBT. In the experiment, we considered a static
set of multicast group members. Allowing nodes to join and leave an existing multicast
group dynamically is another feature that should be considered in our future work, as
well as the investigation of the network resources such as sizes of the routing tables
maintained and the average number of messages exchanged between nodes for each
topology changed.

We anticipate that additional work is needed to minimize the memory and
processing power of each node maintaining the current tree information. The concept of
hierarchical routing can be applied in this context because the underlying routing
mechanisms used to disseminate topology data require the aggregation of information
in order to cope with growing network size. Our proposed protocol can also be
extended to have fault-tolerant capability, in case of a node failure or “core” router
failure which is the subject of chapter 5. In the next chapter, we will investigate and
study the fault-tolerant concept for real-time traffic, and find the strategy to couple the

fault-tolerant features into our proposed protocol.



CHAPTER 5

FAULT-TOLERANT PROTOCOL

5.1 Introduction

Survivability has been an important topic of research in the context of
telecommunication networks and data networks [61]. This interest has been fueled by
the commercial importance of providing fault-free service to the users of the telephone
network, and the military advantages of fault-tolerant distributed computing and data
communications. However, real-time multicast applications makes it harder for the
recovery of the network, which is subject to the time delay constraints imposed by the
application between sender and many receivers belong to a multicast group.

The fault recovery mechanisms are intended to restore real-time connectivity
with the original performance guarantees to the affected links. However, when a fault
occurs, depending on the load in the network, all the affected links may not be
successfully routed. Rerouting as much traffic as possible is an important objective, and
this defines another metric for comparison of recovery schemes. The effect of the
rerouting process on the ability of the network to accept more channels immediately
after recovery process terminates is also a consideration. We would like the recovery
process to used resources as efficiently as possible. The objectives of fault recovery are

as follows:
® Use no extra resources during normal operation

® Restore original performance guarantees to channels or link between

sender and receivers

® Recover as much traffic as possible within deadline (maximum end-to-end

delay)
® Minimize switching time from primary path to the backup path

® Use resources efficiently during rerouting
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The rest of the chapter is organized as follows. We investigate three rerouting
approaches in case of faults in the next section. Section 5.2 describes the failure model
and assumptions used in this dissertation. In section 5.3, we present the fault-tolerant
concepts using dispersity, redundancy and disjointness. Section 5.4 and 5.5 present the
proposed fault-tolerant multicast approaches, followed by the fault-tolerant real-time
multicast techniques and some brief discussion on DCM routing algorithm [80], used to
find disjoint backup paths under real-time constraints in section 5.6. We go on to
present the approach to cope with multiple link faults in section 5.7. Section 5.8
concludes the chapter.

Approaches to rerouting are classified along three schemes: Centralized vs.
Distributed Schemes, Pre-computed vs. Dynamic (on-demand) computation of routes,

and Global vs. Local Knowledge Schemes.

5.1.1 Centralized vs. Distributed Schemes

A centralized scheme gathers all the important network state at one computer, where a
new configuration for the network is computed. Since all the information is available, it is
possible to compute a configuration that is optimal according to some target function.
This optimal scheme might be able to reroute more channels successfully under heavy-
load conditions. However, this gain comes at the expense of a possibly higher delay,
since the time to gather the network state to one location and then distribute the network
configuration to the routers must be added to the time to run the algorithm. The time to
gather the network state has to be considered here; since, unlike the cross-connect
networks, real-time networks have a. very dynamic load, with connections coming and
going as applications are started and ended.

Centralized = algorithms  are susceptible to single-point failures, since all
recoveries would be stalled by a failure of the central computer, or of the control network
which connects the central computer to the routers. In the telecommunication networks,
this problem is mitigated by having more than one fault recovery computer and having
redundancy in the control network, so that the control network itself is fault-tolerant.
However, this increases the cost of the solution. We do not assume a separate control

network; rather, the recovery action is carried out over the data network itself. However,
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this makes the centralized approach much less desirable, since the failures in the
network that we need to recover from, make collection and distribution process itself
unreliable. The distributed algorithms deal explicitly with the problem of failed links. For
example, the exchange of control messages with neighbors may be used as part of the
process to determine the working topology of the network, since the inability to
exchange messages indicates a failure of the corresponding link.

A distributed algorithm also scales better to larger networks, since the
processing power available increases with the network size. The centralized scheme, on
the other hand, must run an optimization algorithm of exponential complexity on a single
computer. Thus, the major disadvantage of using a centralized solution (i.e., finding an
optimal solution) is infeasible for all but the smaller networks. Thus, in this dissertation,
we adopted the distributed fault recovery scheme, with local network topology
information.

A distributed algorithm would find a non-optimal solution based on a limited
exchange of information faster than a centralized scheme and without relying on a
single central computer. This comes at the expense of possibly finding a solution
considerably worse than the optimal. Since the distributed elements may have
inconsistent views of the network, the overall behavior of the system may be hard to
understand for an implementor, and may be far from the expected and desirable
behavior, even though each individual element has a simple and understandable
behavior. In spite of these disadvantages, this approach appears more feasible for the

case of real-time networks, and will be explored here.

5.1.2 Pre-computed vs. Dynamic (on-demand) computation of routes

The task of rerouting may be partially. pre-computed in order to decrease the response
time of the recovery after a failure. This idea has been explored in the context of the
cross-connect layer of telecommunication networks. But in the context of real-time
communication networks, multimedia traffic is expected to be much more dynamic than
the configuration presented by the cross-connect connections. A trunk is a relatively
long-lived connection. As such, the requirements of a set of trunks, characterized by

source, destination, and bandwidth, are fairly static. After the set of required trunks has
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been decided, the current configuration, as well as the recovery configurations for all
likely fault combinations, may be computed and stored. On the other hand for a real-
time network, the set of active connections changes much more dynamically.

Most previous research on fault-tolerant, QoS routing has investigated on-
demand policies that compute a path at connection arrival. Recent works considers pre-
computation of backup resources that attempt to amortize the overheads of route
computation by reusing the paths for multiple connection requests. Thus, backup path
pre-computation introduces a trade-off between processing overheads and the quality
of the routing decisions. However, in our dissertation, the concept of pre-computed

backup links will be explored.

5.1.3 Global vs. Local Knowledge Schemes

The extent to which knowledge is universally shared among the elements of a
distributed algorithm can have a tremendous impact on the performance and
correctness of the algorithm. At one extreme, we might allow all nodes to gain complete
information about any change in the network state before computing the next step in the
algorithm. Since this would imply that all nodes have completely up-to-date knowledge
of the network state and topology information throughout the reconfiguration process.
This is equivalent to a centralized algorithm in terms of goodness or optimality of the
solution. At the other extreme, we may choose to allow all nodes to run their
reconfiguration algorithms with the view of the network state that they had at the moment
of the fault, without allowing any additional communication. This would have the fastest
response time of any algorithm, but would reroute fewer.connections successfully, since
the inconsistencies among the network views of the separate elements-would lead to
poor cooperation between the nodes. Thus, by allowing-more time for communication,
we can improve the success of the rerouting algorithm. In our formulation, we assumed
that all on-tree nodes maintain global information of all multicast group information.
However, at rerouting time, only the local routers involved in the failed link may be
reconfiguration rather than reconfiguring all the routers. We then just reconfigure the

routers that are on the involved backup paths.
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5.2 Failure Model

We place certain restrictions on the failures being studied and investigated. We only
focus our attention to a single link failure in this dissertation. Node failures can be
considered more severe and treated as simultaneous multiple link failures of all links
connecting to the failed node, which is not the subject of this dissertation. We assumed
that a single link failure is a fail-stop failure, in which the failed component does not
continue to transmit bad messages into the rest of the network. And after a single link
fault period is over, it is possible for another (single) link fault to start, but not
simultaneously. We further assumed that when a link fails, it simply stops transmitting

data.

5.3 Fault-tolerant capability

There exists a body of graph-theoretic work that is useful in characterizing the fault-
tolerant capability of the network. A network is said to be k-node connected if every
source and destination is connected by k node-disjoint paths [8]. The edge-connectivity
of a graph is the equivalent measure if we consider edge-disjoint paths. A minimal
cutset of a graph is the smallest number of links, the removal of which breaks the graph
into two disconnected components. Similarly, an articulation set is a set of nodes. The
removal of which break the graph into two disconnected components. It can be shown
that the cardinality of the minimal cutset of a graph is the same as its edge-connectivity,
and the cardinality of the minimal articulation set is the same as the node-connectivity.
The problem of designing-minimal-cost networks with a.given.degree of connectivity is
known to be NP-hard, but known heuristics and algorithms with-good average case
behavior.can,solve-many real-world: network design. problems [42]. Tree-structure of our

fault-tolerant protocol is shown in figure 5.1 as follows.
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Figure 5.1: Tree structure of our fault-tolerant protocol

The schemes of fault tolerance can be characterized by three approaches: dispersity,

redundancy, and disjointness.
5.3.1 Dispersity

Dispersity is the idea of sending information across a number of paths in the network. In
a real-time network, we also make reservation on each of the paths to guarantee
performance on the dispersity system. The information to be sent is divided uniformly
across the paths, either by fragmenting each message, or by sending them round-robin
on the paths. The advantages of spreading the information out on N paths are:

® The load on any one specific path is smaller and the effect of bursts is

spread out over the network.

® |n the event of a network failure, the transmission capacity of the aggregate
system is only partially‘affected.

® |f the message is fragmented, transmission time is reduced to 1/Nth of its

single-path value. This is less important in high-speed networks.

However, this system is not transparently fault-tolerant. It merely reduces the effect of
the failure on the client. For example, a JPEG video stream, partitioned into multiple

streams such that all the data for a frame follows the same path, but separate frames are
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sent on different paths, would have this property. If one of the paths fails, every Nth
frame would be lost, but the resulting video stream would be usable. The number of
paths chosen, N, is one of the variables that characterized a dispersity system.

The basic idea behind the dispersity schemes is to make reservations on
multiple paths through the network so that in the event of failure the available bandwidth
of the system is not reduced to zero. A range of fault tolerant services can be offered
based on this idea. For example, Forward Error Correction (FEC) techniques can be
used in conjunction with multi-path reservation to provide a transparently fault tolerant

service.

5.3.2 Redundancy

Redundancy is the idea of sending more information than the message, in order to be
able to reconstruct the message in the event of loss in the network. In a dispersity
scheme, we can send the redundant information along a separate path from the rest of
the data. For example, of the N paths, only K may carry the message stream. Thus, for a
given message, the system could break it into K equal submessages and transmit them
on the K paths. The rest of the paths may be used to transmit redundant information,
which would be used to reconstruct the original message in the event of loss of some of
the K original pieces of the message. A simple redundant system can be designed with
K = N — 1 . In this case, the single redundancy sub-channel carries a bitwise parity
calculated over the N — 7 pieces of the message. If any one of the sub-messages is lost,
the destination can compute its-value from the remaining sub-messages and the parity
sub-message. Error correction codes which work for arbitrary N and K exist. In the case
of maximum distance separable codes, if any N — K of'the sub-messages are received,
the message can be recovered.

The variable K in relation to N defines the degree of redundancy. K = 1
corresponds to duplicating the same information on N channels, uses N times the
bandwidth of a non-fault-tolerant realtime channel, and has the largest fault tolerance. K
= N corresponds to a dispersity system without redundancy. A dispersity system with
redundancy requires N/K times the bandwidth of a non-fault-tolerant realtime channel

with the same traffic and performance requirements. When redundancy is used in
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combination with dispersity, we get the following additional advantages as compare to a
dispersity system without redundancy:

The system is tolerant to transmission errors. A certain number of the pieces of
the message can be corrupted or lost without affecting the decoding of the message.
The number depends on N, K, and the error-correcting code. It can be no larger than N
- K

The system is transparently fault-tolerant. A certain fraction of the paths can be
affected by failure, without interrupting the flow of the information. Again, the specifics of
the error-correcting code determine the number of failures that can be tolerated.

Moreover, since the service of the underlying real-time channels is realtime, we
obtain performance bounds on the service provided by the dispersity system. The
application sees fault tolerant realtime service, with guarantees on packet-delivery that
continue to hold in the presence of a restricted number of faults. The restriction on the
number of faults covered depend on the level of redundancy of the system, and the

nature of the FEC code used.

5.3.3 Disjointness

In general, the routing algorithm in the network must be able to recognize channels
belonging to a dispersity system, and place them on disjoint paths. If the paths are not
disjointed, the failures of the paths are no longer independent, since, if a shared link
fails, two or more paths can simultaneously stop transmitting data. However, disjointness
is a very stringent restriction, especially as N approaches the degree of edge
connectivity of the network topology.. By allowing some links to be shared, we might be
able to set up many more connectionstin the network.-We would like to answer the
question; can any of the advantages of dispersity routing still be provided after relaxing
the disjointness criterion ? If the constraint is completely relaxed, then it is possible for a
link to be shared by all the paths in a dispersity system, leading to the undesirable
characteristic that if that link fails, the capacity of the system is reduced to zero.
Therefore, we must put in some constraint, which while looser than the strict disjointness
constraint, should still allow the dispersity system to have good tolerance

characteristics. If we allow a link to be used by at most two channel routes, then we
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know that a single failure will not affect more than two of the paths. Then, by imposing

the restriction N-K 2 2, the system can continue to be tolerant to single faults, assuming
maximum distance separable codes. In terms of our characterization, we can define a
variable S, which places a limit on how many paths can share a link. The routing
algorithm in the network must take the variable S into account while routing channels
which belong to a dispersity system. Of course, even if the system allows links to be
shared, the routing algorithm should try to find paths which do not share links, and only

use paths with shared links if no disjoint paths meeting the delay constraint exist.
5.4 Fault-Tolerant Multicast Protocol

For any non-core router in CBT, if its parent router or path to the parent fails, that non-
core router has one of two options for failure recovery. It can either attempt to re-join the
tree by sending a JOIN-REQUEST to the highest-priority reachable core, thus keeping
the failure transparent to the rest of the downstream branch. Alternatively the router
subordinate to the failure can send a FLUSH-TREE message downstream, thus allowing
each router to independently attempt to re-attach itself to the tree, possibly via a better
route than previously. Routers must always attempt to join the highest priority reachable
core. Fault-tolerant multicast  protocol is responsible for detecting faults and
reconfiguring the multicast network once faults are detected. Thus, it provides
necessary infrastructure for the multicast protocol to deliver multicast packets. Consider
that at runtime a component on the CBT becomes faulty. Alternative routes for the
multicast packets, must be utilized. A predefined backup paths will be used to bypass
the faulty components.. This approach is considered “local approach” as opposed to the
“global approach” which core-based trees are rebuilt and all routers are-reconfigured.
Then, all the packets that were supposed to be transmitted over the faulty link will be
routed via the backup paths.

The basic idea of our fault tolerant protocol is as follows:

Each router (R) on the tree keeps monitoring the status of the upstream link. If a
nonalive status is detected, then either the link and/or the father have failed. This means
that the subtree rooted at R is disconnected from the rest of the tree. To repair the

damaged tree, we connect R to the rest of the tree by its backup path. In summary, the
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fault tolerant protocol performs the Initialization tasks (to select backup paths), Fault
Detection tasks (to continuously monitor the status of upstream link router if it is in the
faulty state), Backup path invocation (to start notifying the state of faults to all the routers
on its backup paths) and Router Configuration tasks (to reroute all traffic via the backup

paths).

5.4.1 Initiation tasks

To select the backup paths, this can be done with a global approach and a local
approach. With global approach, all routers in the network will be informed of the faulty
status. The core-based trees will be rebuilt and all the routers will be reconfigured. The
runtime overhead including the notification of the faulty state and reconfiguration of
routers may be too large to make this approach practical.

Rather than rebuilding the core-based tree and reconfiguring all the routers,
(which is considered “global approach”) predefined backup paths approach, a local
approach, will be used. Backup paths are identified off-line, using the DCM algorithms
[78] which will be discussed in section 5.6.2. So at runtime, only routers on the backup
paths are required to be reconfigured. The local approach is simple and involves small
runtime overhead in comparison with the global approach. The routers on a backup
path can be divided into three kinds, namely owner, terminator, and on-path routers.
The owner is the first router on the backup path that will initiate the invocation of the
backup path when the owner router detects a fault. The terminator router is the router at
the other end of a backup path. The on-path router is the router in between the owner

and the terminator.

5.4.2 Fault Detection tasks

When a network component, such as a router in the multicast network fails, we assume
that the faulty state of the router can be detected by its neighboring routers. This can be
achieved by a “keep-alive” mechanism operating between adjacent router. A keep-alive
mechanism may be implemented by ICMP echo request/reply messages. We assume
that each router is continuously monitoring the status of upstream link and router. For

any non-core router, if its parent router or path to the parent fails, that non-core router
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has one of two options for failure recovery: it can either attempt to re-join the tree by
sending a JOIN_REQUEST to the highest-priority reachable core, thus keeping the
failure transparent to the rest of the downstream branch. Alternatively, the router
subordinate to the failure can send a FLUSH_TREE message downstream, thus allowing
each router to independently attempt to re-attach itself to the tree. Routers must always

attempt to join the highest priority reachable core.

5.4.3 Backup path invocation tasks

For the owner router, if a nonalive status is detected, the owner router starts the process
of invoking the backup path. The owner waits until a positive confirmation message
comes back. Once receiving such a message, it reconfigures its routing table to reflect
the usage of the backup path. After it is done, it must go back to monitoring the faulty
state again.

For the on-path router, the on-path router will wait for the message of setting up
the backup path. Upon receiving such message, it still forwards it upstream and waits
for the positive confirmation message. When this message is received, the on-path
router forwards it downstream and reconfigures itself to reflect the usage of the backup
path.

For the terminator router, after the initialization, it waits for the message of setting
up the backup path. Upon receiving such message, it sends the positive confirmation
message back downstream and reconfigures itself to reflect the usage of the backup

path.

5.4.4 Router Configuration tasks

After all the routers on the backup path have confirmed their backup route, they will be
configured to reroute the traffic on their backup paths. As new routes are established,
the network state at the nodes change. So the routing tables on all nodes must be
updated to reflect the changed network state. Since the success of a following
establishment attempt depends on the accuracy of the routing tables on which the route

computation is based, the mechanism to maintain the routing information is important.
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5.5 Backup Path selections

We propose the real repair method in such a way that all the routing tables of routers on
the backup path will be changed to reflect the new topology of the tree. Packets are
routed in accordance with the newly adjusted routing table. More detail on real repair

and virtual repair method can be found in section 5.5.2 and section 5.5.3.
5.5.1 Backup Core Router

For reasons of robustness, we need to consider what happens when a primary core
fails. There are two approaches we can take, namely: single-core CBT trees and
multiple-core CBT trees. For the case of single-core CBT trees, paths as well as cores
themselves can fail, which may result in parts of the network being partitioned from
others. In the presence of CBT trees, this means a single tree itself becomes partitioned.
To cater for tree partitions, we have multiple “backup” cores to increase the probability
that every network node can reach at least one of the cores of a CBT tree. At any one
time, a non-core router is part of a single-core CBT tree. For multi-core CBT trees, each
core is then strategically placed where the largest “pockets” of members are located so
as to optimize the routes between those members. Each of the cores must be joined to
at least one other, and a reachability/maintenance protocol must operate between them.
There exists no ordering between the multiple cores, and senders who send multicast
preferably to the nearest core. The essential difference between multi-core and single-
core trees is that single-core trees have no explicit protocol operating between the
“backup” cores and for. any sender at-any-instant, there .is. one.core to which it must
attempt to send its multicast packets. We assumed in our formulation, single-core trees
are more appropriate with less complex failure scenarios and iless -overhead of an
explicit protocol operating between the cores. The basic idea of backup core selection
is as follows:

For any two routers (R and R ’) on the core-based tree, R is a son of R “and R is
the father of R if there is a link between R and R’ and R ”is closer to the core than R. R”
is the grandfather of R “if R”is the father of R’ and R ”is the father of R. Core router has

neither father nor grandfather. The sons of the core router have a father but have no
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grandfather. All other routers have both father and grandfather. One of the sons of the
core is selected to be the backup core that will become core if the core fails. In
practice, it may be selected from network administrative point of view, as suggested in

selecting core [5].

5.5.2 Backup Paths with virtual repair

With our repair method, every router on the tree except the core, owns a predefined
backup path. For a router that has a grandfather, its backup path is a path that connects
itself to its grandfather. A constraint on the backup path of a router is that the path does
not contain the father of the owner. For a router that has no grandfather, its backup path
is a path that connects this router to the backup core. For the backup core router, its
backup path is a path that connects itself to the core, by bypassing the link between
itself and the core. We assume that for each router on the tree, at least one backup path
exists. It is easy to verify that if @ noncore router does not have any backup path, then
the network is not single-fault tolerable. For a router, if multiple backup paths exist, we
select the one with the shortest distance. With this method, no routing table is to be
changed on the invoked backup path. Instead, a preprogrammed agent will be installed
at the two end routers. The agent will encapsulate a multicast packet, which was
supposed to be transmitted via the faulty component. The encapsulated packet will be
source routed (via the backup path) to the other end of the backup path, once receiving
the encapsulated packet, will unencapsulate it and transmit algon the normal paths
where the packet should be ‘dispatched. Thus, the topology of the multicast tree is

virtually unchanged, except that the faulty component is bypassed.

5.5.3 Backup Paths with real repair

With virtual repair method, the shortest path from a router to its grandfather is used as its
backup path. However, if the backup path of a router transverses another partitioned
subtree, a loop may occur [5]. Thus, the selection of backup path with the real repair
method is not a trivial task. In particular, a loop in the network must be prevented. With

this method, all the routing tables on the backup path will be changed to reflect the new
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topology of the multicast tree. Packets are routed in accordance with the newly adjusted
routing table.

Figure 5.2 shows an example of using these two methods. Figure 5.2a shows a
portion of the network with the original core-based tree. Assume that there is a fault on
the link between R4 and R6. Let the backup path that is used to reconnect the disjoint
tree be < R6, R5, R3>. Figure 5.2b shows the situation after virtual repair. In this case,
the agent on R3 will encapsulate the multicast packets and source-route encapsulated
packets to R6 via R5, and vice versa for the packets from R6 to R3. However, R3 still has
to send multicast packets to R5. Hence, the load between R3 and R5 is doubled
because the tree is virtually repaired. The situation improves when the real repair
method is used as shown in figure 5.2c¢. In this case, R5 and R6 will be reconfigured to
recognize that while R5 continues to be a son of R3, R6 is now a new son of R5. Hence,
the packets between R3 and R5 will not be transmitted twice.

[46] observed that from their simulation, real repair method always performed
better than that with the virtual repair method because the real repair method explicitly
takes into account the new topology after a fault occurs and hence, better utilizes the
system resources. Our formulation has adopted the real repair method over the virtual

repair method as our reconfiguration strategy in selecting the backup paths.

(a) The Original CBT (b) The CBT after Virtual Repair (¢) The CBT after Real Repair

Link with fault

Link of CBT - Link on virtual path Other Link

Figure 5.2: Reconfiguration method
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5.6 Fault-tolerant in real-time communication

The delivery delay in a point-to-point switching network is difficult to control due to the
contention among randomly-arriving packets at each nodes and multihops a packet
must travel between its source and destination. It is even harder for the multicasted
network to maintain consistent end-to-end delay for each source-destination pairs.
Despite this difficulty, there are an increasing number of applications that require
packets to be delivered reliably within specified delay bounds.

The approach of real-time channel, first proposed by Ferrari and Verma [38], is
to provide delay bound guarantees to real-time connections. With the real-time channel
approach, each packet is assigned a deadline over each link on its route and the
transmission of packets over a link is scheduled according to their deadlines. Using a
proper deadline assignment policy, the network will first serve those packets of the
channels that require tight delivery delays and/or high link bandwidths. One important,
yet under explored, problem is the fault tolerance associated with the concept of real-
time channel. For ease in controlling the end-to-end packet delays, the static routing
approach is used for real-time channels. All packets of a real-time channel are
transmitted along the same path. This, unfortunately, is more susceptible to component
failures than a dynamic routing approach, since a single component failure may disable
the whole channel, while packets can be easily routed around the broken components
with a dynamic routing approach. There have also been proposed forward-recovery
approaches where multiple copies of a message are sent via disjoint paths to mask
component failures. A variation of these-approaches coupled with the ‘error-correction
coding scheme can be found in [30]. The methods proposed in [39] requires all failures
to be broadcast to the entire network. When a source node is notified of the failure of its
channel, it tries to establish a new channel from scratch. Since no resource is reserved
in advance for the fault tolerance purpose, this method has a small overhead in the
absence of faults. However, it does not give any guarantee on failure recovery. The
channel reestablishment attempt for failure recovery can be rejected, even when there

are sufficient resources, as a result of the contention among several simultaneous
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recovery attempts. Moreover, successive attempts of channel reestablishment may
extend the recovery delay significantly.

Most real-time communication scheme share three common properties: QoS
contracted, connection-oriented, and reservation-based. A contract between a client
and the network is established before messages are actually transferred. To this end,
the client must first specify its input traffic behavior and required QoS. Then, the network
computes the resource needs (e.g. link and CPU bandwidths, and buffer space) from
this information, selects a path, and reserves necessary resources along the path. If
there are not enough resources to meet the QoS requirement, the clinet's request is
rejected. The client's messages are transported only via the selected path with the
resources reserved, and this virtual circuit is often called a real-time channel. While this
reservation-based approach has been successful in providing “hard” guarantees on
timeliness QoS, it causes a serious difficulty in achieving fault tolerance (because the
approach relies on static routing). Traditional failure-handling techniques for datagram
services are inadequate, because a real-time message is allowed to traverse only the
path on which resources are reserved a priori for it and, hence, cannot be detoured
around failed components on the fly. Instead, a new channel which does not use the
failed components should be established before resuming the data transfer. However,
establishing a new channel is usually a time-consuming process, which can result in a
long service disruption. Moreover, such an approach cannot make any guarantee on
successful failure recovery, because there may not exist a proper detour.

To assure successful rerouting and avoid-. the time-consuming channel
reestablishment process, one or more backup channels are set up a priori, in addition to
each primary channel. That is a dependable real-time connection consists of a primary
channel and one or more backup channels. A backup channel remains.a cold-standby
until it is activated. In other words, it does not carry any data in a normal situation, so
that the resources reserved for the backup channel may be used by other traffic.
However, backups degrade the network’s capability of accommodating real-time
channels, because they reserve resources which can be used to accommodate other

real-time channels otherwise.
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5.6.1 Dependable Network

The idea of providing an efficient scheme to quickly restore real-time channels from link
failures has been studied by many researchers. To assure successful rerouting and
avoid the time-consuming link reestablishment process, one or more backup links are
set up a priori, in addition to each primary link. This is called, a dependable real-time
network or dependable real-time connection, consists of a primary link and one or more
backup links. A backup link remains a cold-stanby until it is activated. In other words, it
does not carry any data in a normal situation, so that the resources reserved for the
backup link may be used by other traffic. A dependable network is a network with at
least two disjoint routing paths between any two nodes in the network G. In other words,
a dependable network is a two-edge-connected according to the Menger’s theorem [73]
that the removal of any one edge does not disconnect G. We will investigate an
algorithm that implements the concept of dependable network called “DCM routing

algorithm”.

5.6.2 DCM Routing Algorithm

In this dissertation, a routing algorithm used in determining and routing an alternate path
is based on the DCM Routing Algorithm by Parris and Banerjea [79]. The first objective
of DCM routing algorithm is to establish an alternate link, conforming to the specified
QoS parameters, which in our case is the end-to-end delay constraints. This disjoint
backup link is established in the presence of the primary link on which the host is
currently active. When it'encounter the failure situation, this‘backup resource will be
invoked and go through admission test, to check if the network resource is readily
available before the route changes (routing reconfiguration) from primary to backup link
is established.

As mentioned earlier that, this algorithm determines a route from the source
node to the destination node taking into consideration the traffic and the performance
characteristics of the connection (i.e. end-to-end delay value). Another goal of the DCM
routing algorithm is to balance the network load and obtain routes in a timely manner,

also to maximize the probability that the route provided by the algorithm will be
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successfully established. The routing algorithm calculates a minimal-cost route where
the cost of the route is the sum of costs of the links comprising the route. The cost of a
link is a delay value, which is the sum of the queuing delay, the transmission delay and
the propagation delay.

The DCM routing algorithm proceeds in two steps. In the first step, a directed
graph is created in which the nodes correspond to switches and hosts in the network
and the edges to the links connecting these switches and hosts. The weights attributed
to each edge represents the link cost. The link cost are computed just prior to applying
the algorithm thereby using the most recent link information obtained from routing
update messages. In the second step, a constrained, modified version of the Bellman-
Ford algorithm is then applied to this graph to determine a possible disjoint backup

links. In this algorithm, consecutive searches are performed on all 1,2,...N-2 hop paths

from the source to the destination nodes until the delay condition A is satisfied. The
DCM routing algorithm maximizes throughput by minimizing the number of intermediate
nodes encountered along the path from the source to destinations. Detail of DCM

routing algorithms can be found in [80].
5.7 Multiple Link faults

The proposed fault-tolerant protocol was designed to handle a single link fault that
occurs on CBT paths. We now discuss how to extend it to deal with the cases of multiple
faults that will not only impact paths on the CBT, but also off-tree nodes. Let us first
discuss the extension of our designed-protocol so that-even if multiple simultaneous link
faults occur, the CBT can still function properly. The major extension has to deal with the
methods of disjoint backup paths selection and backup path invocation. In order to
tolerate m simultaneous faults, a trivial extension to backup paths selection is to select
m disjointed backup paths for each router. These paths connect the router to its
grandfather. However, this is insufficient, for example, if m = 2, then both father and
grandfather can fail. In figure 5.3, assume that both R3 and R4 become faulty and that
R7 has two backup paths from itself to its grandfather R3:< R7, R10, R11, R5, R3 > and
< R7, R6, R3 >, Since R3 is faulty, these two backup paths cannot be used to reconnect

the multicast tree. That is, the CBT will be broken. Thus, in order to tolerate m faults, for
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each router, we need additional backup paths to connect not only to its grandfather but
also other ancestors. For example, consider the network in figure 5.3. In order to tolerate
2 faults, R7 needs not connect to only two paths form itself to its grandfather, but also a
backup path to the father of grandfather R1: < R7, R6, R1>. This backup path will be
invoked in the case that both R3 and R4 are faulty. Note that the two paths from R7 to R3
should be disjointed. But a backup path from R7 to R1 does not have to be disjointed

with ones from R7 to R3.

R, core
3 : \
R, R, R,
R, Ry
/
R, Ry R, R,
R, | Faulty Router == Link on CBT —— Other Link

Figure 5.3: Backup path selection for multiple faults tolerance

Similarly, if m = 3, for each router on‘the CBT, we need one backup path to connect to
the grandfather of grandfather two-disjointed backup paths to connect to the father of
the grandfather, and three disjointed backup paths to connect to the grandfather. Once
again, note that the backup paths to the different ancestors do not have to be disjointed
with each other. In general case, when m = n, for each router on CBT we need j (i =
1,2,3,....,n) disjointed backup paths to connect to the (n+2-i)-th ancestor if it exists.

Now we discuss how to extend backup path invocation algorithms to handle the
case of multiple simultaneous link faults. Since there are multiple faults and they may
occur anywhere (including on some backup paths), invocation of a backup path may

not always be successful. A timer should be used to time-out an invocation process.



135

This way, if indeed a fault happens on the path, the owner of the path can invoke
another path.

The second issue of backup path invocation is loop elimination. Given that
several routers may invoke several overlapped paths simultaneously, a loop could
occur. This kind of loop can be prevented by properly trimming the involved backup
paths during the invocation process. A simple rule for trimming is that whenever a path
invocation message reaches an on-path router that has been configured due to the
invocation of some other paths, the current invocation process terminates. That is, the
rest of the path is trimmed. It can be easily proven that this method results in a correct
CBT that is loop free.

Finally, we consider how to deal with faults that impact off-tree paths. To let an
off-tree path recover from faults, we may take a similar approach as we did when we
deal with faults that impact the CBT. This is because a simple path (from one router to
another router) can be regarded as a special tree. Given that an off-tree path is the one
used to route a message from its source to one node on the core-based tree, the
selection of backup paths can take some advantages. That is, a backup path may not
need to connect to the routers on the broken path. As long as the backup path leads to
the core-based tree, the protocol will function correctly.

In summary, with these extensions our protocol can provide efficient and
effective fault-tolerant communication in any faulty situation. However, our fault-tolerant
protocol has to check if the end-to-end delay condition still holds. The more backup

invocation, the less likely that the 'delay-constraints can still be maintained.

5.8 Conclusions

In this chapter, we have studied the fault-tolerance framework and formulated the
systematic ‘study of recovery of real-time traffic. The fault tolerance framework was
proposed which focus on rerouting traffic before the deadline expires, and minimizing
the network resource used in the process. The approach to rerouting of the primary link
to the backup link can be classified in: Centralized vs. Distributed Schemes, Link
rerouting vs End-to-end rerouting, and Pre-computation vs dynamic (on-demand)

computation of routes. We have proposed dispersity routing as a mechanism to provide
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fault tolerance to real-time communication network. We investigated the rerouting of
guaranteed performance service connections on the occurrence of link faults, focusing
on the aspects of route selection, disjoint backup paths and routing table
reconfiguration in the network. The fault-tolerance strategy of the original CBT was
described. Our strategy to improve the fault-tolerance feature of CBT was studied. The
concept of dependable network was discussed and studied. The DCM routing algorithm
was proposed to find the disjoint backup path between each node pair, i.e., source and
destination node in each multicast group. The algorithm determines an alternative path
from the source node to the destination node taking into consideration the traffic and
other performance characteristics of the connection. The DCM routing algorithm
maximizes throughput by minimizing the number of intermediate nodes encountered
along the path from the source to the destinations. When a single failure occurs, DCM
algorithm also checks if the disjoint backup path, which was pre-computed, can meet
the time delay constraint, and verifies if there is enough network resource, before
rerouting all routers involved in the failure. Last, we analyse the multiple simultaneous
fault situation, whereby multiple disjoint backup paths between the involved routers and
to its grandfather must be specified. We conclude that to tolerate m simultaneous faults,
for each router, we need additional backup paths to connect not only to its grandfather
node, but also other ancestors.

We will implement the fault-tolerant protocol and principal mentioned throughout
this chapter, and apply them to the proposed real-time optimal protocol based on CBT
v2 mentioned in chapter 4, and proved by simulation the efficacy of our proposed

approach which is the subject of chapter 6.



CHAPTER 6

FAULT-TOLERANT REAL-TIME MULTICAST ROUTING PROTOCOL

Overview

Development of efficient multicasting algorithms which support both real-time traffic and
fault-tolerant capability are crucial to the successful deployment of multimedia
applications. Emerging multimedia technologies introduce the prevalent multicast
transmission, and the multicast tree is determined using the time-invariant network
parameters. For reliable multicasting, some mechanism is required to recover from
faults. If one of the group members fails or one of the nodes or links used in the
multicast tree fails, the multicast tree can become disconnected. It is impossible for
messages from the core to reach the members of the disconnected subtree. However,
the recovery process which involves the rerouting of the existing traffic to a backup
channel must be achieved before the applications’ deadlines. In this chapter we
propose the fault-tolerant multicast routing algorithm which is capable of determining an
alternative path for real-time applications under a single link failure condition. We study
the problem of core-based tree and propose an enhancement to guarantee end-to-end
delay real-time constraints while sustaining the shared tree characteristics of scalability.
Then, we propose a strategy to find the back up paths that meet the end-to-end delay
guarantee and propose the algorithms-to switch from-the fault tree to the new tree so
that the application end-to-end delay time is bound. ' The algorithm performs an
admission test of the backup paths to verify that the end-to-end delay constraint of the
real-time ~applications. is .not violated. Simulation results show that our proposed
algorithm performed relatively well in terms of meeting the end-to-end delay constraints,
network resource, traffic concentration, loss rate and execution times when there is a
single link failure in the network.

The rest of this chapter is organized as follows. Section 6.1 and 6.2 give a brief
introduction of the multicast routing algorithm. Real-time multicast routing is discussed

with problem definition in section 6.3 and 6.4. Section 6.5 discusses our proposed fault-
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tolerant protocol and the implementation of our fault-tolerant features to couple with the
real-time multicast protocol previously proposed in chapter 4. We then describes the
simulation setup to compare the efficacy of our proposed approaches in section 6.6.
Section 6.7 gives the simulation results and discussion of the performance metrics. A

conclusion to this chapter is presented in section 6.8.

6.1 Introduction

Multicasting refers to the transmission of data from one node (source node) to a
selected group of nodes (member nodes or destination nodes) in a communication
network. Instead of sending a separate copy of the data to each individual group
member, a multicast source sends a single copy to all the members. Multicast routing
requires the establishment of a multicast tree to allow group members to exchange data
efficiently. In some case, the objective of constructing a multicast tree is to ensure that
the QoS requirements of the underlying multicast traffic are met in addition to the data
exchange to the group members. An underlying multicast routing algorithm determines,
with respect to certain optimization objective, a multicast tree connecting the source(s)
and the group members. Data generated by the source flows through the multicast tree,
traversing each tree edge exactly once. As a result, multicast is more resource efficient,
and is well suited for applications such as video distribution.

Multicast services have been increasingly used by various continuous media
applications. For example, the multicast backbone (Mbone) of the Internet has been
used to transport real-time audio and video for news, entertainment, and distance
learning. With fast development of hardware- technologies, commercialization of the
Internet, as well as the increasing demand of quality-of-services (QoS) fueled by
emerging continuous media applications, offering guaranteed and better than best effort
services will add to the competitive edge of a successful service provider. The notion of
QoS was proposed to capture the qualitatively or quantitatively defined performance
contract between the service provider and the user applications. QoS provisioning
entails the development of several essential techniques, i.e. definition and specification

of QoS, design of QoS-driven (or termed elsewhere constrainted-based) unicast/
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multicast routing protocols, packet scheduling algorithms for link sharing, as well as
resource reservation and management.

In general, a multicast communication session involves multiple sources
transmitting to multiple destinations. This is the many-to-many multicasting problem.
Videoconferencing is an obvious example of an application involving multiple sources
and multiple receivers. The one-to-many multicasting problem is a special case of the
many-to-many problem, in which the multicast session involves only one source. An
example of one-to-many communication is real-time control application in which a
sensor transmits its readings to more than one remote control stations. One approach to
establish a many-to-many communication session is by setting up multiple one-to-many
sessions. The host group model is defined as a multicast group that is a set of receivers,
identified by a unique group address. The use of a unique group address allows logical
addressing, i.e., a source needs only to-know the group address in order to reach all
receivers. It does not need to know the addresses of the individual receivers. In
addition, the source itself need not be a member of the multicast group. Logical
addressing is advantageous for applications with large numbers of sources and
receivers, such as mailing lists or news groups, and for dynamic applications, such as
computer-supported cooperative work, where receivers may join or leave the group at
any time and sources may start or stop transmission to that group at any time.

Most real-time applications of computer networks, such as teleconferencing,
remote collaboration and distance learning, rely on the ability of the network to provide
multicast communication. These applications may require end-to-end delays, delay
jitter, and loss rate which are expressed as QoS parameters which must be guaranteed
by the underlying network. The upper bound on end-to-end delay from any source to
any receiver in a real-time session is the main QoS parameter we consider during our
investigation of various routing problems. In high-speed wide-area networks, the
transmission delay is small and the queuing delay is also small, because small buffer
sizes are used. Therefore, the propagation delay is the dominant component of the link
delay. The propagation delay is proportional to the distance traversed by the link. It is
fixed, irrespective of the link utilization. Therefore a route selection algorithm can

guarantee an upper bound on the end-to-end delay by choosing the appropriated links
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for the session being initiated, such that the delay from any source to any receiver does
not exceed the delay bound.

Multicast trees can be classified into two categories: source-based trees and
shared-based trees. Source-based tree is a tree composed of the shortest paths
between the sender and each of the receivers in the multicast group. Multicast
algorithms that use source-based tree require that a separate tree be constructed for
each source in each multicast group. The share-based tree, on the other hand, uses a
single shared tree for all senders in a given multicast group. This tree is a shortest path
tree rooted at a specific node known as the Core. Share-based multicast routing
provides a good mechanism for scalable multicasting since a single shared tree is

created for all members of a given multicast group.

6.2 Multicast Routing Algorithm

Multicast routing requires some distribution tree rather than a simple point-to-point path
through the network. The objective of multicast routing algorithms is to construct and
maintain the distribution tree, called the multicast tree. The routing algorithms can
broadly be classified as source routing and distributed routing. In the source routing,
each router maintains the complete global state of the network. Based on the global
state, the multicast tree is locally computed at the source router. In distributed routing,
the tree is computed by an algorithm distributed over different routers in the network.
Most of the previous algorithms for constructing multicast tree generate a
source-rooted tree for each (source, -group) pair. These approaches are suitable for
single sender/fixed recipient scenarios. However, for multiple senders/multiple recipient
cases, it is more appropriate to use a single shared tree that can be used by all group
members- to send and receive the multicast packets. The Core Based Tree (CBT)
algorithm is an example of this approach [6]. A single router (or a set of routers) is
chosen to be the core router of the delivery tree. When a host wants to receive
messages from and /or send messages to a multicast tree, it joins the cores of the
multicast group. Since CBT constructs only one delivery tree for each multicast group,
routers are required to keep less information as compared with other algorithms. CBT

also conserves network bandwidth by forwarding packets only along the shared tree (it
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does not use flooding). However, using a single tree for each group may lead to traffic
concentration and bottlenecks around the core router. Selection and management (in
case of the core failure) of the core router are additional problems. This approach has
also been used in the PIM-SM protocol [29].

A multicast routing protocol uses one or more routing algorithms to construct
and maintain the multicast tree. Some of the most widely used protocols are reviewed in
this section. The Distance Vector Multicasting Protocol (DVMRP) is a distributed
algorithm that dynamically generates a multicast delivery tree for each (source, group)
pair using the RPM technique. It is an extension of the Routing Information Protocol (RIP)
and can be summarized as a “broadcast and prune” multicast routing protocol. In this
approach, the first datagram for any (source, group) pair is flooded across the entire
Internet to create a spanning tree. The initial datagram is delivered to all leaf routers,
which transmit prune messages back towards the source if there is no multicast group
member on their directly attached leaf subnetwork. The prune messages remove all
branches from the tree that do not lead to group members, thus creating a source-
rooted shortest path (based on distance vector) tree with all leaves having group
members. After a period of time, the pruned branches grow back (called grafting), and
the next datagram for the (source, group) pair is forwarded across the entire Internet,
resulting in a new set of prune messages. This method takes care of changes in the
multicast group membership over time. DVMRP supports tunnel interfaces and is
currently deployed in the majority of Mbone routers.

As discussed earlier, the CBT protocol builds a-shared multicast distribution tree
per multicast group. As all the routers connect to the core, the protocol may lead to
traffic concentration and a performance bottleneck around the core router. Several core
management approaches, e.g. core selection, core failure handling, and core migration
[6] have been proposed to avoid these problems. Another solution to avoid the
performance bottleneck is to use multiple cores. Unfortunately, when multi-core
architecture is used, the CBT protocol can form loops and thus fail to build a connected
multicast tree, even when the underlying routing is stable. The Ordered Core Based

Tree (OCBT) protocol [92] eliminates these deficiencies. The performance bottleneck
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around the core router can also be eliminated by allowing the new members to join any

one of the on-tree routers instead of joining the core [57].

We summarize several multicast routing algorithms that can be used to solve the

problems in previous section. A taxonomy of these multicast routing algorithms is given

in table 6.1.
Algorithm Centr./Dist. | Initiator | Tree Type Complexity Problem Solved
Shortest path tree | Dijkstra [30] Centralized | Source Source O(|Ellog|V) Tree constrained
Minimum Prim [82] Centralized | Source Source O(|Ellog|V) Tree optimization
spanning tree Gallager [41] Distributed | Receiver | Source [V |log, |V [ Tree optimization
Steiner tree Kou [69] Centralized | Source Source oM Tree optimization
Takahashi [96] Centralized | Source Source oM|"?) Tree optimization
Bauer [15] Distributed | Receiver Source oD M@ Tree optimization
Maxemchuk [72] || Centralized | Source Source (0] 2 Tree optimization
P
Constrained Zhu [114] Centralized | Source e OKV P log|7)) Del.ay.cor%stramed tree
Steiner tree ODptll mization T
Kompella [66] Centralized | Source Source oV >A® clay constrained tree
optimization
Haberman [43] Centralized | Source Source O(kIM||V |*)@ Delay/dg lqyjl.tter constrained
tree optimization
Kompella [67] Distributed | Source Source oV |3® Del.ay.cor}stralned tree
optimization
Jia [47] Distributed | 50" | Source o@ -mpyo | Delay constrained tree
Receiver optimization
. 2 Delay constrained tree
Bauer [13] Centralized | Source Source oM|IN°) optimization
x:;ﬁgﬁll tree Shacham [91] Centralized | Source Source O(|Ellog|V) Link optimization
Misc. Rouskas [87] Centralized | Source Source O(kIM||V [#)D Delay/dg lqyjl.tter constrained
tree optimization
Chen [22] Distributed ;‘;‘:gﬁer Source O(M|E|®) Bandwidth/delay constrained

(1) Message complexity: O(|V/ {log,|V [ +E]).

()

3)
“

®)
(©)
@)

®

D is the one-way trip time over the longest path between two nodes in the network or the diameter of the network. Message
complexity: O(M||V]) .

A is the delay requirement. The time complexity is polynomial if A is a bounded integer.

k is the number of paths in the initial least cost path tree; /is the number paths tried when adding a path to a multicast
group member.

Message complexity: O(|V]°) .

Message complexity: O(2 - |M]) .

k and / are constants in the algorithm. A larger k of 1 results in a higher probability of finding a feasible tree and a higher
overhead.

Message complexity: O(|E]) .

Table 6.1: A taxonomy of multicast routing algorithms.

We start out with the review of some multicast routing algorithms which is

relevant to the work in our dissertation, as follows. Some of the survey material was

previously described in detail in chapter 2.
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Shortest Path Tree

A shortest path algorithm minimizes the sum of the weights on the links along each
individual path from the source to a receiver in the multicast group. If the unit weight is
used, the resulting tree is a least hop tree. If the weight represents the link delay, then
the resulting tree is a least delay tree. Bellman-Ford algorithm and Dijkstra algorithm [24]
are the two well known shortest path algorithms, both of which are exact and run in
polynomial time. Shortest path algorithms can be used to solve tree constrained (e.g.

delay constrained) problems.

Minimum Spanning Tree

A minimum spanning tree is a tree that spans all the group members and minimizes the
total weight of the tree. The well-known centralized minimum spanning tree algorithm is
Prim’s algorithm [24], and a distributed version was proposed by Gallager et al. [41]. In
Prim’s algorithm, the tree construction starts from an arbitrary root node and grows until
the tree spans all the nodes in the network. In each step, a least cost edge connecting
an off-tree node to the partial tree is added to the tree. The algorithm is greedy since the
tree is augmented with an edge that contributes the minimum amount possible to the
tree’s total cost. Minimum spanning tree algorithms can be used to solve tree

optimization problems.

Steiner Tree

The Steiner tree based problem aims to.minimize the total cost of a multicast tree, and is
known to be NP-complete [44, 112]. If the multicast group includes all nodes in the
network, -the- Steiner tree -problem. reduces to. the -minimum. spanning-tree problem.
Unconstrained Steiner tree algorithms can be used to solve tree optimization problems.
However, they do not attempt to fulfill the tree constraints on an end-to-end basis, hence
may not be well-suited for applications with such requirements. We summarize the KMB
algorithms to the Steiner tree problem, next.

The KMB heuristic was proposed by Kou, Markowsky, and Berman. KMB
applies Prim’s minimum spanning tree algorithm to the complete distance graph, where

the complete distance graph is a graph that contains all the nodes in the network and
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has an edge between every pair of nodes representing the shortest path between them.
The heuristic works as follows: (1) it creates a complete distance graph H from the
original network topology G; (2) it finds the minimum spanning tree U for the graph H, (3)
it builds a connected subgraph V by convertring every node of U into its equivalent
shortest path; (4) it applies the minimum spanning tree algorithm to subgraph V to
create a spanning tree T ; and (5) it prunes T of non-multicast leaves until no non-
multicast leaves remain. It has been shown in [69] that the KMB heuristic finds a tree
whose cost is within twice the cost of the corresponding Steiner tree. In addition to KMB,
Takahashi et al. [96] proposed a heuristic that constructs a tree whose cost is also within
twice that of the Steiner tree, and Bauer and Verma [15] proposed a distributed

algorithm for solving the Steiner tree problem.

Constrained Steiner Tree

The Steiner tree problem has been extended to include other side constraints, for
example, delay, delay jitter, or a combination thereof. These problems are also NP-
complete, and heuristic algorithms are sought for. Previous researches on some

heuristic algorithm in the context of constrained Steiner Tree are presented as follow:

Zhu's algorithm: Zhu et al [114] proposed a heuristic algorithm, called the bounded
shortest multicast algorithm (BSMA), to solve the delay constrained tree optimization
problem. They defined the link cost as a function of the link utilization. They also
defined a superedge of a tree as the longest simple path whose internal nodes (i.e.,
excluding the end-nodes-onthe jpath)-are relay nodes-and. each relay node connects
exactly two tree edges. The algorithm starts by computing a least delay tree rooted at a
given source 'and spanning all-the group members. . ‘It then ~iteratively replaces
superedges in the tree with cheaper superedges not in the tree while not violating the
delay constraint, until the total cost of the tree cannot be further reduced. Cheaper
superedges are located by using a k-th shortest path algorithm. BSMA always finds a
delay constrained multicast tree if one exists because it starts with a least delay

spanning tree.
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Kompella’s centralized algorithm: Kompella et al. [66] proposed a heuristic algorithm,
called the KPP heuristic. They assumed that the link delay, d(u, v), of link (u, v) and the
delay constraint D are integers, while the link cost, C(u, v), of link (u, v) may take any
positive real value. They defined (i) a constrained cheapest path between two nodes u
and v as the least cost path from node u to node v that has delay less than D (the cost
and delay on such a path are denoted as P (u, v) and P (u, v), respectively); and (i) a
closure graph G’ of a graph G = (V, E) as a complete graph over the nodes in V, with
edges representing constrained cheapest paths.

Given the source s and a multicast group M, KPP first computes a delay
constrained closure graph G’ over {s} \U M using dynamic programming. The
constrained cheapest path from node u to node v is then located. Then, KPP uses
Prim’s algorithm [24] to obtain a minimum spanning tree of the closure graph G .
Starting with the source node, the tree is incrementally expanded by adding an edge
one at a time until all the receiver nodes are included. The edge selected each time is
the one which (1) connects an on-tree node and an off-tree nod, (2) does not violate the
delay constraint, and (3) minimizes a selection function. KPP proposed two selection
functions: one is the link cost, and the other strikes a balance between cost minimization
and delay minimization. Finally, KPP replaces the edges in the minimum spanning tree

with paths in the original graph G. Loops if any are removed.

Haberman’s algorithm: Haberman et al. [43] considered the Steiner tree problem under
the delay and delay jitter constraints. The algorithm first constructs a reference tree, T,,
of least cost paths' from the source node s to all receiver -nodes,” Second, for each
receiver node d; € M, the algorithm attempts to construct a tree, T, that initially contains
the path in T, from node's to node d. Then, the algorithm augments T, by adding
“good” paths from on-tree nodes to off-tree receiver nodes, until all the receiver nodes
are included. If more than one feasible tree is eventually constructed, the one with the

least cost is selected.

Kompella’s distributed algorithm: Kompella et al. [67] proposed a distributed heuristic
algorithm to construct delay constrained Steiner trees. The algorithm requires that very

node maintain a distance vector of the minimum delay to every other node in the
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network. It starts with a tree that initially contains the source node, and augments the
tree by adding receivers one at a time, until all the receivers are included in the tree.
The approach used to select a receiver for inclusion is as follows: the source node s
multicasts a find message via the partial tree. Upon receipt of a find message, a node
locates an outgoing link that connects to an off-tree receiver, does not violate the delay
constraint, and minimizes a selection function. The node then sends back to the source
a response message the contains the identify of the candidate link. Upon receipt of all
the responses, node s decides the best link / be added to the tree. The algorithm

requires multiple passes of control messages.

Jia’s distributed algorithm: Jia [47] presented another distributed algorithm to solve the
delay constrained tree optimization problem. It is assumed (perhaps unrealistically) that
the least cost path between two nodes is always the shortest delay path between them.

To facilitate distributed implementation, a table is used to keep track of the
following information for each receiver d: (i) whether or not node d is currently on tree,
(i) the on-tree node, n, at which which a tree branch should be grafted to connect to
node d; the tree branch is a shortest path P from node n to node that incurs the least
cost and fulfills the delay constraint, and (iii) the least cost incurred in P.

The algorithm starts with a tree that contains only the source node. For each
receiver node d, the source node s constructs a least delay path P from itself to node d.
If such a least delay path P satisfies the delay constraint, node s records in the table
itself as the on-tree node at which a tree branch (i.e., P) is grafted to connect to node d.
Node s then selects ‘@ receiver whose: least ‘delay path incurs the least cost (let the
receiver be denoted receiver j), composes a setup message that carries this table and
the cumulative delay from node s, D (which'is initialized to 0), and sends the message to
receiver J. ‘The message is sent, hop by hop, along the shortest path to receiver |.

Upon receipt of a setup message, an intermediate node u updates and
remembers the parameter D. In addition, node u checks for each currently off-tree
receiver, i, if a constraint-satisfying path with a smaller cost (than the one currently
recorded in the table) exists. If so, for each such receiver i, node u updates the table to

reflect that a tree branch to receiver i should be grafted from node u. After the setup
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message reaches receiver J, receiver j selects the next receiver to join the multicast tree

as the one whose least-delay path to an on-tree node incurs the least cost.

Bauer’s algorithm: By imposing constraints on the number of outgoing links that can be
used for a multicast group (which was termed as the copying ability) at each individual
node, Bauer and Varma [13] proposed a node degree constrained Steiner tree
algorithm. They proposed to modify six existing unconstrained Steiner tree heuristics.
All the heuristics have a common property: a multicast tree is constructed by connecting
different components. Each heuristic merges two components of a graph by the
shortest path between two components. In the degree constrained case, one or more
such shortest paths may exhaust the allowable degree of a node. Thus, the heuristics
are modified as follows: when a node’s degree constraint is violated by a partial tree, the
node and its remaining edges are eliminated from further consideration. This modified
topology may alter the shortest path information for the remaining algorithm steps. As a
consequence, modified heuristics must re-evaluate the shortest paths between nodes
when nodes and/or edges are eliminated. The authors also proposed an alternative
heuristic, called shortest path heuristic with iteration (SPH-R). Construction of a tree
begins with an arbitrary starting point, and an edge that is closest to the partial tree is
added, one at a time. The shortest path heuristic is repeatedly applied to the network

graph for different starting points. SPH-R terminates when it generates a solution.

Maximum Bandwidth Tree

Shacham [90] proposed- a maximum: bandwidth ~tree— algorithm for distributing
hierarchically-encoded data. It uses a Dijkstra-like algorithm to compute the maximum
single-path. bandwidth to_all destinations: Their algorithm works: as follows:: First, they
compute the maximum available bandwidth paths to all receivers from the source. The
set of links connecting the nodes on the paths to the receivers form a maximum
bandwidth tree by construction. Second, receivers are classified into different
categories according to their receiving capabilities. A quality value is assigned for each
layer of data. The satisfactory level of a receiver is measured by summing up the quality

value over all intended layers that are received. The rate at which each receiver will
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receive is then determined to maximize the sum of the satisfactory level of all receivers.
This optimization procedure gives for each individual receiver the intended rate at which
it will receive from the source. The link bandwidth will then be allocated appropriately
on the maximum bandwidth tree. The maximum bandwidth tree algorithm solves the link

optimization problem.

Miscellaneous Trees

Rouskas et al. [87] studied and proposed a heuristic algorithm to the problem of
constructing source-based multicast trees to meet the delay and inter-receiver delay
jitter constraints. Chen et al. [22] proposed a distributed receiver initiated probe-based
multicast routing algorithm to construct a multicast routing tree with certain QoS

requirements.

Tree Rearrangement in Response to Member Join/Leave

A multicast group member may join or leave a multicast session dynamically. It is thus
important to ensure that member join/leave will not disrupt the on-going multicast
session, and the multicast tree after member join/leave still remains near-optimal and/or
satisfies the QoS requirements of all on-tree receivers. If a multicast tree is re-
constructed each time a member joins or leaves, on-tree nodes may not switch to the
new tree simultaneously and a seamless transition may not be possible. One may
handle dynamic member join/leave by incrementally changing the multicast tree. When
a new member intends to join_ the distribution tree, a.tree branch connects the new
member to the nearest tree node. When a member leaves the multicast group, only the
corresponding tree branch is torn down.- This incremental change approach suffers
from that the quality of the multicast tree maintained may deteriorate over time in terms
of, for example, the total tree cost.

Several researchers addressed the multicast tree rearrangement issue, among
which the edge-bounded algorithm (EBA) [45], Bauer and Varma’s algorithm [11],
Narvaez's algorithm [74], and Sriram’s algorithm [94] may have received the most

attention. The main idea is to define and monitor certain damage index to the multicast
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tree as members join/leave, and trigger tree rearrangement when the index exceeds

certain threshold.
6.3 Real-time Applications

Real-time applications impose stringent delay and throughput constraints on the
network, as compared with traditional data applications. When real-time applications
communicate across a network, data must traverse the network in time for the
application to use it. Many in the research community have investigated solutions to the
real-time multicast routing within the context of QoS routing. A typical QoS routing
scheme globally distributes topology, link resource availability, group membership and
per-flow resource usage. A source'’s first-hop router then uses this information to
compute a multicast tree that is known a priori to have available resources. Because
these QoS routing approaches require global distribution and synchronization of such
rapidly varying quantities, we do not believe they are applicable to interdomain routing,
where issues of scale are paramount. A global database of topology alone scales
linearly with the size of the network; neither group membership not the number of flows

is limited by the size of the network.
6.3.1 Real-time Multicast routing Model

The real-time multicast routing is defined as the following:

Given a network graph G(V, E), a source node s € V, a set of destination nodes
D C V, and a real-time constraint A, ‘areal-time routing tree for multicast connections is
a subtree of the graph G(V,E) rooted from s, that contains all of the nodes of D and an
arbitrary subset.of (V-D), whose leaf set consists only of a subset of nodes of D, and the
delay from s 'to any node in D 'is within the time constraint A. However, the multicast
trees obtained from such conditions may have a high cost.

So, the optimal real-time multicast was proposed. The optimal real-time multicast
satisfies (1) the overall network cost is reduced; and (2) the maximum delay from the
source to any destinations is within a specified real-time constraint A. The network cost
of multicasting a message to a group of destinations is proportional to the sum of the

cost of all links in the tree. We define the network cost of a multicast routing tree as:
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Network Cost (7) = ZC(I)- (6.1)

leT

The bounded delay requirement can be expressed as the following, where P(s, u), u €

D, is the path from s to u along the routing tree D and A is the delay bound.

Network Delay () = Z d() <A (6.2)
[eP(s,u)

The three major difficulties in routing for real-time multicast connections are: fully
distributed routing, delay-bounded suboptimal routing, and integration of routing with

connection configurations. We now discuss some existing solutions to those problems.

Distributed Steiner Tree Heuristics: Some widely adopted distributed heuristics are
based on minimum spanning tree (MST) heuristics. An MST heuristic is to generate an
MST of the network graph G(V, E), spanning all nodes in V. Then an approximate Steiner
tree is obtained by removing, from the MST, subtrees containing no nodes in {s} U D.
Basically, there are two types of distributed MST algorithms [47]. One type is based on
the Prim’s MST algorithm. Prim’s algorithm [24] initializes the tree as the source node
and then grows the tree by successively adding the next closest node to the tree, until
all nodes are in the tree. The other type is based on Kruskal's MST algorithm [24].
Kruskal's algorithm initializes each of the nodes as a subtree and joins subtrees pairwise
repeatedly until all the nodes are in a single tree. There are two disadvantages to these
algorithms. First, all the nodes in the network are involved in the execution of the MST
algorithms, which'is very costly in large networks. Second, it takes two steps to produce
a routing tree; 1) generate an MST of the whole network and 2) prune'the MST to the
routing tree. It costs more network messages and takes a longer time to establish a

connection.

Delay-Bounded Suboptimal Routing: The cost requirement often conflicts with the delay
requirement in multicast routing. A Steiner tree with optimal network cost may have a
long delay to the farthest destination. Whereas a shortest path tree (SPT), in which each

path from the source to a destination is a shortest path (in terms of delay), has the
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shortest delay, it may incur a high network cost. A tradeoff algorithm between optimal
network cost and minimum average delay was proposed by Kumar et al [10]. It
generates two routing trees, an SPT T and a Steiner tree T. A k-degree tradeoff (k is a
positive integer specified by the user) is achieved by first identifying out k destinations
to whom the difference between the delay in T and the delay in T’ is the largest. Then the
paths to k destinations in 7" are replaced by the corresponding shortest paths in T,
obtaining a less optimal routing T’, but with a shorter average delay. This idea can be
extended to delay bounded routing by replacing those paths in the Steiner tree whose
delay exceeds the bound by their shortest paths. In multimedia applications, there is
actually no need to minimize the average delay to all destinations. It often requires that
the delay to any destinations hall be within a bound. A recent survey of delay-bounded
routing algorithms and the evaluations of them can be found in [88]. Kompella et al.
proposed two centralized heuristics in [66]: the cost-delay heuristic and the cost
heuristic. Both of them are based on Prim’s MST algorithm. A routing tree grows up from
the source s. Each time when selecting the next nontree node v to all to the tree, the
cost-delay heuristic uses the following function to convert the cost and delay of a link

into the weight

If (D[u] + flu, v]) < A

Then wlu, V] = c[u, V] L(A- (D[u] + flu, V1))
Otherwise
wlu, v] = oC

Where c.and. t are-the cost matrix-and. delay matrix, respectively; u-is a-tree node and
D[u] is the delay from's to u along thetree. Then it selects node vwhich has the smallest
w [u, v] and adds it to the tree. The cost heuristic simply selects node v whose cost to
the tree is minimal under the condition D[v] < A and adds it to the tree.

These two heuristics are later extended to distributed versions in [48]. In their
distributed versions, the two heuristics of selecting edges remain the same. But each

time of selecting an edge, adding to the tree, it takes one round trip along the tree
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formed so far: a FIND message is first sent from s down to the tree leaves, node by
node, to determine the best out-going edge at each node; then the best outgoing edge
is propagated from the leaves back to s, replaced by a better choice along the way.
This is a time-consuming and message-costly procedure.

Jia et al. [50] proposed a centralized algorithm which improves the performance
of Kompella’s cost heuristic. When selecting node v to add to the tree, if D[v] > A, it
backtracks the tree formed so far to find a structure of the tree which can link v to the
tree with the least cost under the condition D[v] < A. 1t then restructures the tree to
include v into the tree. Shu et al. proposed another centralized algorithm called the
bounded shortest multicast algorithm (BSMA) in [114]. BSMA starts with an SPT to all
destinations. It then iteratively replaces super-edges in the tree with lower cost paths not
in the tree without violating the delay bound. A super-edge is a path in the tree between
two branching nodes, two destinations, or a branching node and a destination. The
operation continues until the total cost of the tree cannot be reduced any further. The
computation cost of searching the best replacement of a super-edge ender the delay
constraint is very high. The computing complexity is O (Kn3 log n), where K is the
convergence number in searching a delay-bounded shortest path (shortest in terms of

cost) for a super-edge, and nis |V.

Integration of Routing with connection configuration: In a distributed environment,
routing operation must be integrated with the operation of connection configuration so
that a connection can be established faster. This is because connection configuration
needs to be done node by node along the direction from the rootto all leaf nodes. If the
routing operation is separate from the root to all leaf nodes. If the routing operation is
separate -from the configuration, it would ‘take-an ‘extra traverse of the whole tree to
configure the connection, which is costly in both time and network messages.
Centralized algorithms compute routing trees at a central node, so they need another
phase for connection configuration. Some distributed heuristics, such as those based on
Kruskal's MST algorithm [14, 41], construct routing trees in parallel. The input output

directions at a tree node are not known during the tree construction until the whole tree
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is generated. Therefore, they also need a separate phase to configure the connection

after the routing tree is generated.

6.4 Real-time optimal multicast routing

We adopted the two path selection methods from chapter 4. and applied the same
modification to the CBT v2, using the modified Dijkstra’s shortest path algorithms to
obtain the optimum paths that satisfied the real-time delay constraints with reduced
cost. We later enhance the real-time optimal multicast routing algorithm with the fault-
tolerant protocol which we discuss in section 6.5. Figure 6.1 shows the flow chart of our
proposed protocol with Weighted Dijkstra’s path selection method and Residual delay

path selection function. The flow chart looks similar to the one in chapter 4 (figure 4.1.)
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Figure 6.1: Flow chart of our proposed real-time multicast protocol

Figure 6.1 illustrates the real-time optimal protocol part of our proposed approaches
which is similar to the one presented in chapter 4. We then extend our approach to
immune our proposed protocol with the fault-tolerance capability which is shown in

figure 6.2
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Figure 6.2: Flow chart of our proposed fault-tolerance protocol

6.5 Fault-tolerant Multicast Protocol

For reliable multicasting, some mechanism is required for a network to recover from
faults. If one of the group members fails' or one of the nodes-or links used in the
multicast tree fails, the multicast tree can become disconnected. It is then impossible for
messages from the core to reach the members of the disconnected subtree.

The main schemes to provide fault tolerance in routing are dispersity routing or multipath
routing. While the idea of dispersity routing has been around for many years, the
traditional uses of dispersity routing have been at the physical layer of network
communication. Many dispersity schemes were proposed for fault-tolerant real-time
channels in [3, 21]. Some others use dispersity schemes to provide multiple paths

between a pair of source and destination nodes; one of the paths is used as the primary
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path under normal conditions, and others are used as backup paths if the primary path
fails [3, 21]. Dispersity routing is also used to split the traffic into multiple paths, in order

to increase network throughput and to decrease message delay [3, 21].

6.5.1 Backup Paths with real-time constraints

The main schemes to provide fault tolerance in routing are dispersity routing or multipath
routing. One important, yet under explored, problem is the fault tolerance associated
with the real-time constraint of meeting end-to-end delay guarantee. As mentioned
earlier that, we can enhance the multicast routing protocol with fault tolerance capability
by finding the node-disjoint paths between each pair of nodes in the network. However,
finding two node-disjoint paths between any pair of nodes were proposed in [40]. Given
a graph G = (V,E) and a set of k pairs of vertices in V, we are interested in finding for
each pair, a path connecting each node pair such that the set of k paths so found is
edge disjoint. For arbitrary graphs the problem is NP-complete, although the problem
can be solved in polynomial time if k is fixed [40].

In our formulation, we are interested in finding a backup path for every node pair
that satisfies the end-to-end delay constraint. First, we assume that at least one disjoint
backup path exists between any two nodes (except the core node) in a shared tree.
This problem has been studied in the context of dependable network G whereby, G is
dependable if at least two disjoint routing paths between any nodes in G exist. In other
words, a dependable network is 2-edge connected according to the Menger’s theorem
that the removal of any one edge does not disconnect G [73]. This condition is very
important since if @ noncore node does not have such disjoint backup path, then the
network is not single-fault tolerable. If multiple backup-paths exist, we select the one
with the shortest distance (less hop counts).

In our future work, in order to tolerate multiple simultaneous faults, an extension
to backup paths selection is needed to select multiple disjointed backup paths (e.g. 2
backup paths for each node pair). These paths connect the router to its grandfather.
However, this is not sufficient and requires additional backup paths to connect not only
to its grandfather but also other ancestors. For multiple faults tolerance, this will be

explored in our future work. Then we run the backup paths through the admission tests
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by using the Dynamic Connection Management (DCM) Routing algorithm proposed by
Parris and Ferrari in [80] to verify if the backup paths fulfill the end-to-end delay
constraints. DCM utilizes a constrained, modified version of the Bellman-Ford algorithm
to guarantee the time delay constraint conformance on the backup paths with minimum
cost paths. That is, the path will have the lowest cost possible without violating the delay
constraint. If the path fails the admission test, the algorithm will conduct search until the
path under the delay constraint value is found, if such path exists. If such path does not
exist, then it is not possible to form the multicast tree, resulting in loss traffic.

Since providing end-to-end delay guarantee involves firstly, fault detection, node
rerouting and router configuration. Our problem in this case is to find the backup paths
that guarantee not only the propagation delay from source to destination but the excess
delay value from node rerouting and routing reconfiguration time mentioned earlier, has
to be considered, as well. To define the excess delay value, E, it is associated with each
edge (x,y), in addition to cost C and delay A. The excess delay value is apportioned to
the edge during the backup paths admission phase. Its value is calculated in a such a
way that along any backup path from the source to a destination node, the sum of

delays and excess delays is bounded by A,
Dix,y) + E(x,y) < A (6.3)

The results will be the backup paths that immune the network from any single
failure in the shared tree. We assume that the link between source and the designated
on-tree node does not fail. It should be observed that if no fault is detected in the
network, our proposed protocol will try-to optimize the path with both delay and cost
constraint_by using the weighted Dijkstra’s algorithm and residual path selection
function. In case of a single fault detection, the algorithm will ‘attempt to admit the pre-
defined backup paths, hence, to verify that the time delay constraints condition of the

multicast tree still holds.
6.6 Simulation results

In this section, we will describe the simulation results and discuss the performance of

our protocol. We used the same network topologies, cost and delay functions and traffic
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source which we used in the experiments of chapter 4. Therefore, a brief summary of the
experimental setup suffices. We simulated a random network with an average node
degree of 4, which is close to the Internet environment. We distributed n nodes
randomly across a Cartesian coordinate grid of size 100 by 100. Nodes in the network
graph represent the communication endpoints. The edges connecting the nodes

represent links. Edges between nodes are added by considering the probability function

P(u,v) = Bexp (-d(u,v)/ L) (6.4)

for all possible pair (u,v) of node, where d(u,v) is the Euclidean distance
between the nodes u and v, L is the maximum possible distance between any two
nodes, and S, o are paramenters in the range (0,1). Large values of f increases the
number of edges from each node while smaller values of & increases the number of
connections to nearer nodes compared to nodes further away. In our simulation, we set
f 10 0.25 and & to 0.2 to simulate a large network such as the Internet. To simulate the
propagation delay, we assigned to each edge a network delay equivalent to the
Euclidean distance between the two nodes. In terms of network cost, we assign the cost
value similar to that in our experiment in chapter 4.

Faults are also randomly generated with X being the average life-time of a single

link fault, and Y being the average interarrival time of faults, as follows.

Pf = Pr (The system is in the fault state) = X/Y (6.5)

That is, Pf is the probability that'the system is in a faulty state. The network performance
will be measured as a function of Pf. We assume that a single link failure uses a fail-stop
link failure model, resulting in a sudden stop of a functioning link, and therefore resulting
in a single link failure.. We assume  that after a single link fault period is over, it is
possible for another (single) link fault to start, but not at the same time. The same link
can fail more than once but with average failure time of X. The case of multiple
simultaneous link faults will be studied in our future work.

CBT version 2’s specifications described in RFC 2189 is also simulated on ns-2
[75] as a baseline. We also modify the existing CBT version 2 with the feature described

in section 6.4 and section 6.5. Backup paths were calculated off-line and each backup
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path has to go through the admission tests at run time to verify the end-to-end delay
acceptance before the switching of the paths take place.

At each simulation the multicast group size and the real-time constraint A vary.
Each time the source node and the destination set are randomly selected from the
network graph. We used a static multicast model in our experiment. The experiment was
run repeatedly until the confidence interval for the number of all measured quantities are
less than 5% using the 95% confidence level. On the average, 300 different networks
were simulated in each experiment in order to reach such confidence levels. The

following performance metrics are considered as follows:

® [End-to-end delay bound: The delay of a packet is defined as the summation of the
routing delay, transmission delay and queuing delay. Ratio of the average and
maximum propagation delay in our proposed protocol to its counterpart in CBT
v2. Also, the result should prove that our protocol can route the packet within time
delay constraint (maximum end-to-end delay) of the real-time application under
fault or no fault scenario.

® Network resource usage: Total number of hops a multicast packet travels to reach
all destination in the multicast groups.

® Traffic concentration: Traffic concentration is measured by the maximum number
of flows traversing a unidirectional link (the load of the most congested link.). Link
distribution is also observed and compared with the original CBT v2. This also
shows link utilization of our proposed protocol against the CBT v2.

® | 0ss Rate: The loss rate measures the fraction of the transmitted packets that are
not delivered at all or are delivered so late as to be useless for real-time
applications. The loss rate can be seen as the failure rate of our proposed

protocol to construct the delay bound multicast tree.

® [Execution time: The execution time measures the running time of our algorithm

from start until the time the multicast tree is completely formed.
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6.7 Performance evaluation

The simulated traffic is with burst size 1 MB, and average rate of 1 Mb/s. The maximum
length of the packet was set to 1000 bytes. The link capacity of all the links in the
network was randomly chosen from the set of {2, 4, 6, 8} Mb/s. This traffic is the same

set that we used in chapter 3.
6.7.1 Average end-to-end delay

Average end-to-end delay is the average period for a data packet to be routed through
the network from the application where it was created to a destination application. With
real-time end-to-end delay constraint, the results should show that our protocol can
route the application within such constraint, that is, within the maximum delay bound A.
Figure 6.3 and figure 6.4 show the results of our proposed protocol to their counterparts
in CBT v2 in terms of total network cost against maximum network end-to-end delay with
multicast group size of 50 and 100. They reveal that our proposed protocol has better
delay performance than that of the CBT and yet sustaining better cost and delay
performance than the original CBT in both cases. Figure 6.3 shows that at a tight delay
constraint value, our modified CBT,, can produce a multicast tree three times less cost

than that of the CBT. Figure 6.5 and figure 6.6 show the histograms of the ratio of the
average end-to-end delay in CBT and modified CBT,, and modified CBT.,
respectively. It reveals that the both modified CBT,,, and modified CBT, have better
delay performance than that of the CBT. On average, modified CBTy, performs best in
terms of utilizing ashorter delay: paths, while maintaining lower cost tree.

We conducted another experiment to verify the effect of a single link failure in
our random network. The fault probability was set to 0.1 and 0.5 respectively while

similar parameters in previous experiment were applied.
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Figure 6.7 and figure 6.8 show that as the delay constraint is relaxed, the total cost of

network decreases which is consistent with the previous experiment when there is no
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fault. When the delay constraint is tight, it limits the algorithms’ ability to construct cheap
trees, because there are not many possible solutions for the problem. As the delay
constraint value increases, its effect on restricting the algorithms’ efficiency in
constructing cheap tree diminishes, and the algorithms are capable of constructing
cheaper trees.

We also found that with higher fault probability, the total network cost also
increases. It is obvious that our modified protocol incurs up to 30% less costly tree than
the CBT protocol. Since our algorithm uses weighted Dijkstra’s algorithm and residual
delay path function to optimize the multicast trees, as we expected, it is obvious that
both of our proposed protocols obtain better cost tree than that of the CBT under fault
condition.

We repeated the experiment with a variable fault probability with multicast group
size fixed at 50 and then 100. In the next experiment we compare total network cost of
CBT v2, modified CBT with Jia’s algorithm [47], which is also suitable for delay-sensitive
applications. Jia’s algorithm is based on distributed algorithm which is suitable for large
network. The algorithm’s performance is stable and it generates good quality of routing
trees with low network cost. Jia's algorithm constructs multicast routing trees using
Prim’s Minimum Spanning Tree algorithm in combination with a distributed shortest path
algorithm [24].

We simulated variable fault probability values but with fixed multicast group size
at 50 and fixed delay constraint value of 100 ms. The results are shown in figure 6.9 and
figure 6.10 for different group sizes. ~We show the percentage excess cost of each
algorithm relative to Jia's algorithm. The percentage excess cost of a tree generated by

our proposed protocol relative to Jia’s algorithm is calculated as follows:

Cost of tree under modified CBT - Cost of tree under Jia's algorithm

x 100 (6.6)
Cost of tree under Jia's algorithm
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With higher fault probability, the cost of network increases, but the rate of
increase of our proposed protocol is less compared with that of the CBT. We can see
that with fault probability of less than 0.5, the cost of our modified CBT,, protocol is
around 25% worse than Jia’'s algorithm, as shown in figure 6.10. The experiment was
repeated with different multicast group sizes and different delay constraint values. The
results are shown in figure 6.11 and figure 6.12. Figure 6.11 illustrates the cost effect of
our proposed protocols compared with Jia’s algorithm in terms of different delay
constraint values of the modified CBT,,, while figure 6.12 demonstrates the cost effect
on the modified CBT,.

We measured the relative cost of network compared with Jia’s algorithm and
found that it is consistent with the previous experiment where smaller group size of 20,
modified CBT,, produces within 25% higher cost tree compared with Jia’s algorithm.

Our proposed protocol performs worse as the multicast group size increases.
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Figure 6.11: Total cost of a modified CBT,,, multicast tree relative to Jia’s algorithm with

multicast group size 20, 50 and 100, at Pr (fault) = 0.1
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6.7.2 Network resource usage

A simple method to route a packet to all interested receivers is to unicast the packet to
each receiver. However, unicasting is likely to route several copies of the same packet
over links in the network. Multicast protocols send only a single copy of a packet over
any link in the network and require fewer hops to deliver the packet than unicasting in
most cases. Our simulation. compares-the modified CBT and .CBT v2 in which protocol
delivers a copy of a packet to all group members in the fewest number of hops.

The experiment we ran, compares the total network resource (hop counts) of
CBT and our proposed protocol under different fault probability. Figure 6.13 and figure
6.14 show the results for different fault probability of 0.1 and 0.5 respectively. The
experiment was repeated with different delay constraint values to verify the effect on the
network resource under fault condition, while multicast group size is fixed at 50. It is
shown that the network resource improves as the delay constraint becomes looser

which is similar to CBT. Our protocol shows some improvement over the CBT. It should
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be noted, however that, with higher fault probability, the network resource remains

almost constant at any end-to-end delay constraint value.

60
J Pr (fault) = 0.1
50 +
= 1
=
S 40
5
5 1
9 30 +
g 1
2
g 20
2 | —A—CBT v2
o .
Z 104 —- Modified CBT WD
—— Modified CBT
0
100 200 300 400 500
(Delay - ms)

Figure 6.13: Total network resource of the modified CBT,, Pr (fault) = 0.1, Multicast

group size = 50

Pr (fault) = 0.5

A—‘\‘\‘\A
-, ——.

[e)]
o
|

Ul
o
|

M
o
|

Network resource ( Hop count )
w
)
L

20 -
i —A—CBTv2
10 —- Modified CBT
. WD
1 —— Modified CBT
RD
0
100 200 300 400 500
(Delay- ms)

Figure 6.14: Total network resource of the modified CBT,, Pr (fault) = 0.5, Multicast

group size = 50



169

We then study the effect of faults on CBT v2, our proposed protocol and Jia’s
algorithm is used as a baseline. The percentage excess network resource (hop count) of

a tree generated by our proposed protocol relative to Jia’s algorithm is calculated as

follows:

Network resource under modified CBT - Network resource under Jia's algorithm y
Network resource under Jia's algorithm

100 (6.7)

Figure 6.15 shows that our protocol consumes network resources at 10% worse
than Jia’s algorithm at smaller fault probability and can get up to almost 60% with higher
fault probability. However, we can see some improvement over the CBT v2 from figure
6.15 and figure 6.16. We observe that with larger multicast group size results in slightly

higher network resource consumed, as shown in figure 6.16.
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Figure 6.17 and figure 6.18 show the effects of many different multicast group
sizes 20, 50 and 100 on relative network resource at different delay constraint values of
our modified CBT,,, and modified CBT.,. We found that as the multicast group size
increases, our proposed protocol consumed more network resource. The required
network resources decreases as the delay constraint value increases. Our modified
CBT,,p protocol’'s performance is almost 30% worse than Jia’'s algorithm when the group
size is small and.its performance deteriorates fast as-the group-size increases. Our
modified CBTg, performance is slightly better than that of the modified CBT,, in all

cases.
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6.7.3 Traffic concentration

We define a flow to be the stream of packets from a particular sender to a multicast
group. Assuming that each source of the group generates traffic at constant rate (1
Mb/s), the total number of traffic flows that traverse a link is counted. Therefore, traffic
concentration is measured by the maximum number of flows traversing a unidirectional
link (the load of the most congested link). For the same graph and groups, the
simulation on CBT and modified CBT were conducted.

We show the result of the experiment with both CBT and our modified protocol
with fault probability of 0.1 and 0.5. Figure 6.19, figure 6.20 and figure 6.21 show the
results of traffic concentration of CBT, modified CBT,,, and modified CBT, respectively
at the fault probability of 0.1. While figure 6.22, figure 6.23, and figure 6.24 show the
traffic concentration of the same set of protocols at the higher fault probability of 0.5. We
can see that many links are underutilized with O flow, while some of the links are
overutilized. However, there is no significant change in traffic concentration with larger
fault probability. We observe that the distribution of traffic is more evenly with our

modified protocols, also results in the decrease of the maximum link load.
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We conducted another experiment to verify the effect of fault probability and the
relative maximum link load of CBT and modified CBT. The experiment was conducted
repeatedly with different group sizes of 20, 50 and 100. Figure 6.25 and figure 6.26
show that our modified protocol maintained relative constant maximum link load

compared to that of CBT.
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6.7.4 Loss Rate

We measured the loss rate of the packets by examining the packet arrival time at the
destination node versus the time the packet was generated at the source node. The
number of packets arrived within the time bound, which is the real-time constraint was
recorded. Since delay bound violation is one of the reasons to reject a multicast tree.
Therefore, loss rate is defined as the ratio of the total number of loss packets or late
packets, to the total number of packets transmitted.

We conduct the experiment to compare the relative loss rate with Jia’s algorithm
to verify the effectiveness of our protocol at 0.1 fault probability and under different
delay constraint values. The results, which are given in figure 6.27 and figure 6.28, show
that our proposed protocols have less loss rate compared with that of CBT. As the end-

to-end delay becomes less stringent, the loss rate declines.
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Figure 6.27: Total loss rate relative to Jia’s algorithm, Pr (fault) = 0.1, multicast group

size = 50
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Figure 6.28: Total loss rate relative to Jia’s algorithm, Pr (fault) = 0.5, multicast group

size = 50

Our protocol performs relatively better with larger fault probability shown in figure 6.21.

We compare the loss rate performance of both protocols in different multicast group
sizes of 20, 50 and 100 which is shown in figure 6.29 and figure 6.30. We can see
similar results in all cases. We then repeated the experiment to compare the effect of
fault probability on our protocol relative to Jia's algorithm. The percentage excess loss
rate of a tree generated by our proposed protocol relative to Jia’s algorithm is calculated

as follows:

Loss rate under modified CBT - Loss rate under Jia's-algorithm % 100 6.8)
Loss rate under Jia's algorithm )
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We found that the loss rate of our proposed protocol is around 10% worse than
Jia's algorithm and its performance deteriorates within 20% when the multicast group
size increases to 100. With tighter end-to-end delay constraint values, our proposed
protocol may not be able to find the backup paths that fulfill such conditions which
results in high loss rate. At a fixed fault probability, the relative loss rate of our proposed
protocol increases as multicast group size increases. As expected, the relative loss rate
is worse with higher fault probability. We found that Jia’s algorithm performance
deteriorates when the fault probability is relatively high because it has to recompute the

multicast tree every time a fault is encountered, thus resulting in high loss rate.

6.7.5 Execution Time

Figure 6.31 and figure 6.32 show the growth of the execution time with the multicast
group sizes up to 100 members at fault probability of 0.1 and 0.5 respectively. The
running time of Jia’s algorithm is quite large and grows relatively fast as the multicast
group size increases. Our proposed protocol did relatively well but took more time to
build the complete multicast tree than the original CBT, since all disjoint backup paths
must be verified by the admission tests. Hence, it takes more time than that of the CBT.
With higher fault probability, our proposed protocol did very well and shows the best
performance in terms of execution times. Jia’s algorithm and CBT are less efficient with
larger multicast group at the higher fault rate. This shows the effectiveness of our

protocol in handling the fault-tolerant scenario.
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6.7 Conclusions

We proposed the fault-tolerant features on top of our real-time protocol in chapter 4, to
cope with a single link failure in the network. The pre-defined backup paths were
computed as alternate paths for all node pair in the multicast group. Then the alternate
paths are tested to verify that they passed the end-to-end delay constraint. Our protocol
is responsible for invoking the backup paths and rerouting the network such that the

excess delay value along with the delay value does not violate the real-time constraint

A

We have proposed dispersity routing as a mechanism to provide fault tolerance
to real-time communication network. We investigated the rerouting of guaranteed
performance service connections on the occurrence of link faults, focusing on the
aspects of route selection, disjoint backup paths and routing table reconfiguration in the
network. The fault-tolerance strategy of the original CBT was described. Our strategy to
improve the fault-tolerance feature of CBT was studied. The concept of dependable
network was discussed and studied. The DCM routing algorithm was proposed to find
the disjoint backup path between each node pair, i.e., source and destination node in
each multicast group. The algorithm determines an alternative path from the source
node to the destination node taking into consideration the traffic and other performance
characteristics of the connection. The DCM routing algorithm maximizes throughput by
minimizing the number of intermediate nodes encountered along the path from the
source to the destinations. When a single failure occurs, DCM algorithm also checks if
the disjoint backup path, which was pre-computed, can-meet.the time delay constraint,
and verifies if there is enough network resource, before rerouting all routers involved in
the failure.

Last, we analyzed the multiple simultaneous fault situation, whereby multiple
disjoint backup paths between the involved routers and to its grandfather must be
specified. We conclude that to tolerate m simultaneous faults, for each router, we need
additional backup paths to connect not only to its grandfather node, but also other

ancestors.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we studied a number of routing problems for real-time
communication on the Internet. Real-time applications, e.g. multimedia and real-time
control, have QoS service requirements which must be guaranteed by the underlying
network. A guarantee is a contract between an application and the service provider to
satisfy a requested level of QoS requirements. However, the “best-effort paradigm”
offered by the current datagram service, which proved to be very successful in the
realization of a universal network in a heterogeneous environment, is not adequate to
support real-time traffic. The network protocol offers no guarantee about timely, reliable,
and ordered delivery of packets.

One QoS requirement, the end-to-end delay constraint, can be guaranteed in
wide-area networks by using the appropriate routing algorithms. However, another
approach to support applications’ real-time requirements, is to use the combination of
scheduling algorithms, admission control, and a reservation protocol, which is not the
subject of this dissertation. Support for multicast communication will play a prominent
role in the future as the deployment of real-time multicast-based applications will
continue to grow. It is, therefore, important that network developers be aware of the
design issued related to real-time multicast communication in order to avoid impacting
the performance of the multimedia applications. Itiis absolute necessary to enhance the
reliability of applications in such nature.

To further increase the reliability ‘of the real-time multicast applications, we
investigate- and study the failure handling and recovery of the multicast routing
protocols. We believe that to increase the tolerance to failure, it is possible to
incorporate useful fault-recovery and failure handling in designing a real-time multicast
routing protocol. The objective is to obtain the desired QoS even when the network

faces a failure situation.
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In chapter 2, we surveyed previous work on multicast routing with no constraint
and under time delay constraint. Chapter 3 starts with the descriptions of the core-
based tree (CBT), its architecture, protocol overview, protocol format and its functions.

Chapter 4 presents a formal definition of the real-time multicast problems,
previous approaches of the real-time multicast problems, and our proposed
approaches. We also described how the previous approaches work and discuss
advantages and disadvantages of each approach. We introduce a technique of
optimizing the path previously used by a source reaching the shared multicast tree by
using the shortest of the shortest path, to a specific on-tree node. Then, we proposed
two new path selection methods, bases on Dijkstra’s algorithm and Residual delay
concept by Kompella’s algorithm, to find optimal paths for the new multicast trees
whereby the end-to-end delay condition is not violated. With our approaches, the cost
of the multicast tree diminished substantially. We then described our simulation to prove
the efficacy of our protocol which bases on CBT v2. We compared our proposed
protocol with the CBT v2 and show its improvement in terms of average end-to-end
delay, network cost, network resource usage, traffic concentration, loss rate and
execution time.

Chapter 5 presents the concept of fault-tolerance framework, failure model and
solution to recover the network from failure. We study the concept of depedable network
whereby disjoint backup paths are identified off-line. The resource to the disjoint backup
path will be allocated at runtime. The runtime overhead will be reduced significantly
without compromising the network performance.

In chapter 6, we study the fault-tolerance aspect of the real-time traffic, and
approaches to sustain the reliability of the'network under a single link failure condition.
We discuss many approaches to improve the network redundancies and introduce our
fault-tolerant approaches to the algorithms proposed in chapter 4. Our approach is
based on first, finding the pre-computed disjoint backup paths and secondly, proposing
an algorithm to switch from the primary link to secondary link within end-to-end delay
constraints imposed by the applications. This involves the admission test of the pre-
computed backup paths prior to switching of the failed path to the backup path. We

show that our proposed approaches can reliably switch the multicast traffic along the
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failed link to the backup link within time bound and still performs better than the CBT v2

in terms of the performance metrics, described in previous chapter.

7.1 Future Work

Although we have made important progress in studying and implementing the fault-
tolerant real-time multicast protocols based on the core-based tree, a number of issues

still need to be explored further, as follows.

® (BT v3: In this dissertation, we based our experiment on CBT v2 which is
well-known and resource rich.  CBT v3 which improves the loop removal in
the protocol should be explored in the future research. By distributing cores
throughout the network and by maintaining logical level topological
information, CBT v3 allows for a flexible multicast group in which the core
structure does not have to be fixed in advance. We anticipate that more
overhead in detecting the tree loop will be introduced, if our enhancement is

implemented using CBT v3 protocol.

® Resource reservation and admission control: Another approach to
improving the performance of real-time applications is to integrate resource
reservation and admission control into the routing protocol. Applications use
the reservation protocol to request resources from routers and are either
accepted or rejected by admission control at each router. We suggest that
future work on real-time multicast routing should take this aspect into

consideration.

® Hierarchical structure of state information exchange: We anticipate that
additional - work is needed to minimize the memory and processing power of
each node maintaining the current tree information. The concept of
hierarchical routing can be applied to the routing protocol because the
underlying routing mechanisms used to disseminate topology data require
the aggregation of information in order to cope with growing network size.

® Dynamic join and leave/Tree arrangement: In the dissertation, we

considered a static set of multicast group members. One may handle
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dynamic member join/leave by incrementally changing the multicast tree.
When a new member intends to join the distribution tree, a tree branch
connects the new member to the nearest tree node. When a member
leaves the multicast group, only the corresponding tree branch is torn down.
The main idea of the multicast tree rearrangement issue, is to define and
monitor certain damage index to the multicast tree as members join/leave,
and trigger tree rearrangement when the index exceeds certain threshold.
Allowing nodes to join and leave an existing multicast group dynamically is

another feature that should be considered in our future work.

Multiple simultaneous faults: The proposed fault-tolerant protocol was
designed to handle a single link fault that occurs on CBT paths. In order to
tolerate m simultaneous faults, a trivial extension to backup paths selection
is to select m disjointed backup paths for each router. These paths connect
the router to its grandfather. This should be explored in the future research
work on fault-tolerant multicast.

Implementation of our modified CBT protocols: In this dissertation, we have
presented the modified CBT protocols that can sustain the maximum delay
bound condition imposed by the applications and tolerate a single fault in
the network by simulation. However, in order to prove the usefulness of our
approach, it.is important to investigate the performance of our proposed

protocols through experiments in a real network such as the Internet.

7.2 Summary of Main Contributions

Our contributions in this dissertation are the following:

We proposed a shortest to the shortest path to optimize the path from
source to the multicast tree thus bypassing the core router. The
conventional CBT finds the shortest path tree from the source node to the
core node and uses this path to route the traffic to all multicast members,
resulting in traffic concentration around the core. With this modification, CBT
has more chance to meet the end-to-end delay constraints, while traffic

concentration around core router decreases significantly.
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We proposed two new path selection methods to ensure that the paths from
source to all members in the shared multicast tree do not violate the end-to-
end delay constraint condition, while cost of the multicast tree is reduced
substantially. The first path selection method is based on weighted dijkstra’s
path selection algorithm. The Dijkstra’s Shortest Path Tree algorithm was
modified by substituting the original path selection with the weighted path
selection function in order to create optimal solution balancing cost and
delay parameters. The second path selection method is based on
Kompella’s selection function which considers residual delay in addition to
low cost tree. The new selection function explicitly uses both cost and delay
in its functional form. It tries to choose low cost paths, but modulates the
choice by trying to pick edges that maximize the residual delay. The idea is
to reduce the cost of the tree through path sharing. We used simulation to

prove the efficacy of our protocols against the original CBT v2.

We proposed a new fault-tolerant protocol to enhance the proposed optimal
real-time protocol. The idea is to pre-compute disjoint backup paths
between each node pair for all links in the multicast tree. When a certain link
on the multicast tree fails, our protocol will check if there exists a disjoint
backup path for that link. The protocol will also check if the new disjoint
backup paths can sustain end-to-end delay constraints. Then, the protocol
verifies if the switching of routes from the failed link to the backup link takes

no more than the maximum-time delay allowed.

We used simulation to: evaluate the algorithms we proposed. In our
simulation, we imitated the realistic Internet network environment. We
conducted the experiment using ns-2 simulator ‘to simulate a random
network. The simulation shows that our proposed protocol performs well
under a single link failure condition with moderate execution time and lower
cost tree compared to that of the original CBT, while traffic concentration
and network resource usage decreased substantially. Our proposed
protocol verifies if the end-to-end delay condition is not violated in the

simulated scenarios.
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