
แบบจําลองเมทาดาตาของซอฟตแวรคอมโพเน็นตที่นํากลับมาใชใหมไดในอินเทอรเน็ต

 นางสมใจ บุญศิริ

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2544

ISBN 974-03-1644-1
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

A METADATA MODEL FOR REUSABLE SOFTWARE COMPONENTS ON THE INTERNET

Mrs. Somjai Boonsiri

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic year 2001
ISBN 974-03-1644-1

Thesis Title A Metadata Model for Reusable Software Components on the
Internet

By Mrs. Somjai Boonsiri
Field of Study Computer Engineering
Thesis Advisor Yunyong Teng-Amnuay, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the
Requirements for the Doctor’s Degree

……………………………………….. Dean of Faculty of Engineering
(Professor Somsak Punyakeow, D.Eng.)

THESIS COMMITTEE

……………………………………………….. Chairman
(Associate Professor Wanchai Rivepiboon, Ph.D.)

………………………………………….……. Thesis Advisor
(Yunyong Teng-Amnuay, Ph.D.)

……………………………………………….. Member
(Associate Professor Somchai Thayarnyong)

……………………………………………….. Member
(Assistant Professor Supoj Sutanthavibul, Ph.D.)

……………………………………………….. Member
(Charumatr Pinthong)

iv

นาง สมใจ บุญศิริ : แบบจําลองเมทาดาตาของซอฟตแวรคอมโพเน็นตที่นํากลับมาใชใหม
ไดในอินเทอรเน็ต . (A Metadata Model for Reusable Software Components on the
Internet) อ. ที่ปรึกษา : อาจารย ดร. ยรรยง เต็งอํานวย, จํานวนหนา 106 หนา.
ISBN 974-03-1644-1.

การพัฒนาซอฟตแวรในปจจุบันเปนการพัฒนาระบบจากการเลือกแลวรวมซอฟตแวรคอม
โพเน็นตเชิงพาณิชย (commercial off-the-shelf components) เพื่อใหทํางานรวมกัน ดังนั้นคอม
โพเน็นตที่เลือกมาตองตรงตามความตองการ และตองสามารถทํางานรวมกับคอมโพเน็นตอ่ืนๆได
ดวย ซึ่งการคัดเลือกและการรวมคอมโพเน็นตนี้เปนปญหาที่ยังไมมีคําตอบที่แนชัด เนื่องจากไมมี
มาตรฐานในการกําหนดคําอธิบายคอมโพเน็นตที่ใชในการคัดเลือกและการรวมคอมโพเน็นตเปน
หนึ่งเดียวกัน

งานวิจัยนี้ไดเสนอแบบจําลองเมทาดาตาของซอฟตแวรคอมโพเน็นตที่นํากลับมาใชใหมได
เพื่อใหผูคาคอมโพเน็นตใชในการอธิบายรายละเอียดเพื่อประกาศคอมโพเน็นต และใหผูพัฒนา
ระบบใชในการกําหนดคุณสมบัติของคอมโพเน็นตที่ตองการคัดเลือก รวมทั้งสรางระบบตนแบบที่
ใชเมทาดาตาซึ่งประกอบดวยเขตขอมูลที่อธิบายคุณสมบัติการทํางานรวมกันของคอมโพเน็ต เขต
ขอมูลเหลานี้สามารถใชระบุระดับการทํางานรวมกันของคอมโพเน็นตที่นํามารวมกันได ดวยตน
แบบนี้คําอธิบายความตองการของผูพัฒนาระบบจะถูกนําไปเปรียบเทียบกับคําอธิบายคอมโพ
เน็นตที่ประกาศไว คอมโพเน็นตที่มีคุณสมบัติตรงกันจะถูกคัดเลือก แลวนํามาจัดเปนกลุมที่ผาน
การคัดเลือก กลุมเหลานี้จะถูกจัดคะแนนความเขากันไดระหวางคอมโพเน็นตในกลุม โดย
พิจารณาจากกฎการรวมคอมโพเน็นตที่ไดกําหนดไว ผูพัฒนาระบบสามารถนําคะแนนเหลานี้ชวย
ในการตัดสินใจเลือกกลุมคอมโพเน็นตที่เหมาะสมที่สุดได เปนที่คาดหวังวาเมทาดาตาที่กําหนด
จากงานวิจัย และแนวทางการรวมคอมโพเน็นตนี้จะเปนจุดเริ่มตนของการพัฒนาการอธิบายคอม
โพเน็นตไปสูความเปนมาตรฐานไดในอนาคต

 ลายมือช่ือนิสิต………………………………
 ลายมือช่ืออาจารยที่ปรึกษา…………………..
 ลายมือช่ืออาจารยที่ปรึกษารวม........................
ภาควิชา
วิศวกรรมคอมพิวเตอร…………….
สาขาวิชาวิศวกรรม

v

4171823021 : MAJOR COMPUTER ENGINEERING
KEYWORD : COMPONENT METADATA / COMPONENT INTEGRATION / ENSEMBLE EVALUATION
/ SOFTWARE REUSABLE COMPONENT / COMPONENT-BASED SOFTWARE DEVELOPMENT

SOMJAI BOONSIRI : A METADATA MODEL FOR REUSABLE SOFTWARE COMPONENTS
ON THE INTERNET. THESIS ADVISOR : YUNYONG TENG-AMNUAY, PH.D.,
106 pp. ISBN 974-03-1644-1.

The software development trend by selecting and assembling commercial off-

the-shelf (COTS) components is widely accepted. This approach implies that the

selected components must not only match application requirements but also work well

with each other. These component selection and integration issues are not much

addressed in research and commercial world as there is no standardized way to

specify component descriptions that will be used for selection and integration of

components.

This research proposes a metadata model for reusable software components

that can be used by component vendors to describe components to be published and

by system integrators to specify search criteria for required components. A prototype

of the model has been developed to employ the proposed metadata description which

comprises integration-related attributes, all of which can be used to determine the

degree of compatibility between integrated components. With this prototype,

specifications of required components are compared with specifications of published

components, and the results are the candidate ensembles that match requirement

specifications. These ensembles are then ranked by compatibility scores according to

predefined integration rules. System integrators can make further decision on the

ensemble that best suits their applications based on the results from the prototype. It is

expected that this metadata model and its integration approach can be a starting point

for a more standardized component specification and deployment in the future.

Department Computer Engineering
Field of Study Computer Engineering
Academic year 2001……………….

 Student’s signature ……………………
 Advisor’s signature……………………..
Co-advisor’s signature…………………

vi

ACKNOWLEDGMENTS

I wish to express my grateful thanks to my thesis advisor, Dr. Yunyong Teng-

Amnuay for his intellectual advice, and consistent support throughout the course of

this research. Special thanks to my thesis committee for their helpful comments and

suggestion, Associate Professor Dr. Wanchai Rivepiboon, Associate Professor

Somchai Thayarnyong, Assistant Professor Dr. Supoj Sutanthavibul, and Lecturer

Charumatr Pinthong. I would also like to extend my thank to my supervisors at the

Software Engineering Institute, Mr. Robert C. Seacord, and Mr. David A. Mundie for

their great efforts and patience to help me achieve the research goal. I greatly

appreciate the excellent suggestions by Assistant Professor Dr. Perapon Sophasathit,

and Dr. Twittie Seniwongse who reviewed an earlier draft of this research. I am

thankful to Mrs. Achara Kuwinpant, Mr. Thiengtrong Vangpatnakuljai, and Miss.

Titayarat Intawong for their great help in English writing.

I am very grateful for the assistance from the staff of Department of

Mathematics, faculty of science, Chulalongkorn University, Center of Academic

Resources (CAR), the SEI, and those I don’t mention their names here for their

supports and encouragement. I also thank to the ministry of university affairs for

financial supporting.

I deeply want to thank Mr. Teera Boonsiri for his love, patience and

understanding, financial and technical supports throughout my graduate study.

Finally, I wish to thank my parents for their endless love and supporting.

S. Boonsiri

April, 2002.

 TABLE OF CONTENTS

ABSTRACT (THAI)…..…………………………………………………… iv

ABSTRACT (ENGLISH)…………………………………………………... v

ACKNOWLEDGMENTS………………………………………………….. vi

LIST OF TABLES………………………………………………………….. ix

LIST OF FIGURES………………………………………………………… x

CHAPTER I PROBLEM STATEMENT

1. Motivation…………………………………………………… 1

2. Research Objectives…………………………………………. 3

3. Research Scope……………………………………………… 3

4. Research Methodologies…………………………………….. 4

5. Benefits of the Research…………………………………….. 4

CHAPTER II RELEVANT TECHNOLOGIES

1. Component Background…………………………………….. 6

1.1 What is a component? ……………………………….. 6

1.2 Benefits of components……………………………… 7

1.3 Component technologies…………………………….. 8

1.4 Component-based software development approach… 14

2. Rule-Based Expert Systems………………………………... 16

3. eXtensible Markup Language (XML)………………………17

CHAPTER III RELATED WORK

1. Cataloguing………………………………………………… 19

2. Reusable Software Library………………………………… 21

3. Component-Based Software Engineering…………………. 22

CHAPTER IV METADATA MODEL DESIGN

1. Metadata Model Design……………………………………. 26

1.1. Component Metadata Design...................................... 26

1.2. Integration Rule Metadata Design………………….. 40

2. The Prototype Architectural Design……………………….. 43

2.1. System Architecture……………………………..….. 43

viii

2.2. System Requirements Specification………………… 44

2.3. Component Ensemble Evaluator……………………..44

CHAPTER V PROTOTYPE

1. The Prototype Problem…………………………………….. 48

2. Development Environment.………………………………... 49

3. Component Specification…………………………………... 51

4. System Requirements Specification……………………….. 52

5. Integration Rules…………………………………………... 53

6. Structure of the Prototype …..…………………………….. 56

7. Populating the Prototype…………………………………… 57

7.1. Component Selection………....…………………..... 57

7.2. Ensemble Formation………………………………... 57

8. Result………………………………………………………. 58

CHAPTER VI CONCLUSION AND FUTURE WORK

1. Conclusion…………………………………………………. 60

2. Future Work…………………………………………………62

REFERENCES….…………………………………………………………. 65

APPENDICES

Appendix A……………………………………………………. 71

Appendix B……………………………………………………. 81

Appendix C…………………………………………………….. 93

Appendix D…………………………………………………….. 95

Appendix E…………………………………………………… 105

BIOGRAPHY………………………………….…………………………. 106

ix

LIST OF TABLES

Table Page

2-1 Comparison of Component Technologies……………………. 13

3-1 Elements of Dublin Core Metadata …………………………… 20

4-1 General Information Attributes ……………………………….. 29

4-2 Protocol Information Attributes ……………………….……… 34

4-3 Tree Structure of Security Information ………………………. 37

4-4 Tree Structure of Security Information……………………….. 42

5-1 Comparison of Gema, Sed, Awk, and Perl……………………. 50

5-2 Ensembles Compatibility Scores……………………………… 59

6-1 List of Interviewed Companies………………………………... 63

6-2 List of Other Contacted Companies…………………………… 64

x

LIST OF FIGURES

Figure Page

1-1 A Life Cycle of Software Component Model………………… 3

2-1 CORBA Object Model…………………………………… 12

2-2 Web Services Architecture……………………………….. 14

2-3 Component-Based Software Development………………. 15

2-4 A Rule-Based Expert Systems Applied ………………….. 17

3-1 Structured Abstract Sample..…………………………….. 21

3-2 CIMO Architecture……………………………………….. 22

3-3 CBSD Process Using Design Patterns……………………. 24

3-4 AGORA Architecture…………………………………….. 25

4-1 Tree Structure of Component Metadata………………….. 27

4-2 Tree Structure of General Information …………………… 28

4-3 Tree Structure of Protocol Information …………….……. 33

4-4 Tree Structure of Security Information ……………...…… 36

4-5 Integration Rules Collection……………………………… 41

4-6 System Architecture ……………………………………… 43

4-7 A Template for System Requirements Specification…….. 44

4-8 Component Selection Process……………………………. 45

4-9 Ensemble Formation Process……………………………... 46

4-10 Component Ensemble Evaluator Processes………………. 47

5-1 System Architecture………………………………………. 48

5-2 A part of Component Specification DTD………………… 52

5-3 System Requirements Specification DTD………………… 53

5-4 SRS in XML document ……………………….………….. 53

5-5 Data Flow Diagram of Creating Integration Rules……….. 54

5-6 ILOG JRules Rule Structure……………………………… 54

5-7 Language Compatibility Rule…………………………….. 55

5-8 Data Flow Diagram……………………………………….. 56

5-9 Component Selection….………………………………….. 57

5-10 Ensemble Formation…………………………………….... 58

CHAPTER I

PROBLEM STATEMENT

The current software development trend, component-based software

development, is introduced comparing to traditional software development. However,

the challenging problems are raised and problem solving is proposed including its

detail.

1. Motivation

Software requirements of enterprise, complex, and distributed software

systems cause software development industry to change from traditional software

development approach to component-based software development approach. This

approach is based on developing software systems from existing software components

or commercial-off-the-shelf (COTS) components, and it is widely adopted in software

engineering community. It can reduce cost and time-to-market for software and make

reuse more efficient.

 The former focuses on building software systems from scratch, whereas the

latter focuses on building new systems by selecting and assembling a set of COTS

components for an appropriate software architecture.

Traditional software development requires that application developers or

system integrators possess medium to high level computer capabilities and specific

application experiences. Such demanding prerequisites entail the acquisition of

capable developers. Component-based approach, on the contrary, simplifies

somewhat the task of built complex software to a certain extent, thus lessening the

requirements of competent developers. Nevertheless, the developers are required to

have the detailed information of each software component which is quite impossible

since software components in the market are “black box” components.

Component-based software development approach by reuse of software

components has a great potential for 1) significantly reducing the cost and time to

market of large-scale and complex software systems, 2) improving system

2

maintainability and flexibility by replacing new components to the old ones, 3)

enhancing software reliability as components have been undergone evaluation during

each use, and 4) enhancing system quality by allowing components and systems to be

developed by those who are specialized in the application area and component-based

software development (Penix, 2000).

Nevertheless, there are many challenging problems in component-based

software development. Two of the major problems are identifying the appropriate

components for integration and combining components. This can be accomplished by

means of a metadata model for reusable software components defined to effectively

identify the right components for system integration.

 A metadata means data which describes other data and it is used in many

fields such as document cataloguing, database structure, etc. Metadata is the stuff of

card catalogues, television guides, taxonomies, tables of contents, so it is quite

simply, data about data (Dornfest, 2001).

Therefore, to be successful in component-based software development,

software component metadata model and description as shown in Figure 1-1 must be

defined and used by component vendors. As depicted in Figure 1-1, metadata model

shows the composition of the metadata. Metadata description describes all aspects of

metadata, i.e. what attributes, fields, and details of each attribute that represent the

components. The component broker collects component information from all

component developers and lists this information in metadata form. The system

integrator searches the required components by specifying component features in the

same format and retrieves metadata of the required components for further execution

in building application software systems.

3

Model
Developer

Metadata
Model

Metadata
Description

Component
Broker

Component
Metadata

Component
Developer

Component
Developer

Software
Systems

System Integrator

Specify

Define

Internet
Component
Information

Build

Search Metadata

Build

Component
Developer

Component

Request
(Purchase) Delivery

Figure 1-1. A Life Cycle of Software Component Model

2. Research Objectives

Based on the above model, the following tasks are proposed to attain efficient

application of software component:

2.1 Define a reusable software component metadata specified in component

integration for enterprise component-based software development

approach,

2.2 Construct a software component metadata model as defined, and

2.3 Conduct an experiment on the model in component ensemble evaluation

prototype.

3. Research Scope

3.1 Survey software component vendors on the Internet,

3.2 Specialize component definition for this research,

3.3 Define a specification for software component metadata,

3.4 Limit software component to component-based software development

setting,

4

3.5 Design a software component metadata model adopts the metadata, and

3.6 Construct a metadata model as defined.

4. Research Methodologies

4.1 Literature survey on research trend.

4.2 Study component-based software development and engineering.

4.3 Study component technologies, methodologies and techniques.

4.4 Study component characteristics and how to define metadata from various

component vendors on the Internet.

4.5 In-depth study∗ on the followings:

4.5.1 Study domain analysis to specific area,

4.5.2 Study component integration and related topics,

4.5.3 Extract related information from various organizations,

4.5.4 Generalize information to define software component metadata,

4.5.5 Experiment using defined metadata for component ensemble

evaluation,

4.5.6 Paper writing and submission.

4.6 Plan for future work.

4.7 Documentation

5. Benefits of the Research

The component metadata model can be applied in many software engineering

and development activities, particularly in the area of COTS components for Internet

applications. Consequently, the benefits for this model are as follows:

5.1 The specification forwarded from this research can be used as a basis in

forming the standard for component metadata found on the Internet. This

can speed up the deployment and availability of COTS components.

∗ Research as a visiting scientist of the COTS-Based Systems (CBS) initiative at

Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, U.S.A. for 1 year (May 2000 – April 2001).

5

5.2 This model can support software component distribution on the Internet.

The component vendors and users specify components’ characteristics

under common understanding, so required components can be retrieved

and applied more than before.

5.3 The prototype developed in this research can be thought as an expert

system to help system integrators identify the right components with high

compatible possibility.

5.4 The metadata model constructed can be used as the fundamental of

component integration and system prediction research development.

Consideration of components’ common attributes to measure component

interoperability enables system integrators to understand the overall

software systems in setting up the environment properly.

This dissertation is outlined as follows: Chapter 2 presents concepts of

relevant technologies; Chapter 3 elucidates some related work; Chapter 4 describes

component metadata model design and prototype architectural design; Chapter 5

explains all implementation of the prototype and the result as well; Chapter 6

discusses a conclusion and future work.

CHAPTER II

RELEVANT TECHNOLOGIES

Many technologies are developed rapidly to improve software engineering

methodologies and tools. This research is also based on some of those technologies.

In order to have common understanding on basis, component and related topics are

described. Furthermore, relevant technologies are explained in brief in this chapter.

1. Component Background

Instead of building software systems from scratch, pre-built or existing

software components are used in building new software systems in current market.

1.1 What is a component?

The answer to this question depends on whether selecting on a narrow

definition or a broad definition. The narrow and wide views lead to a different

appreciation of the relationship between component technology and object-oriented

development. Some of the component definitions are as follows:

CBS team at the SEI (Bachman et al., 2000) defines a component as (1) an

opaque implementation of functionality, (2) subject to third-party composition, and

(3) conformant with a component model.

D’Souza and Wills (D’Souza, 1999) define a software component as “A

coherent package of software implementation that (1) can be independently developed

and delivered, (2) has explicit and well-specified interfaces for the services it

provides, (3) has explicit and well-specified interfaces for the services it expects from

others, and (4) can be composed with other components, perhaps customising some of

their properties, without modifying the components themselves.”

Szyperski (Szyperski, 1997) defines a software component as “a unit of

composition with contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and is subject to

composition by third parties.”

7

Heineman and Councill (Heineman, 2001) define a software component as a

software element that conforms to a component model and can be independently

deployed and composed without modification according to a composition standard.

According to current UML specification, UML 1.3 defines a component as a

physical, replaceable part of a system that packages implementation and provides the

realization of a set of interfaces. A component represents a physical piece of

implementation of a system, including software code (source, binary or executable) or

equivalents such as scripts or command files (Kobryn, 2000).

A component definition provided by CBDi forum is an identifiable piece of

software that describes and/or delivers a set of meaningful services that are only used

via well-defined interfaces (Lamela, 2000).

In this research, a component is defined to have a common understanding as

code implementation as an independent unit which is not a complete system but can

be deployed or assembled with other components. Because enterprise, distributed and

complex software application is major consideration in this research so each software

component must be only a piece of code or software and composable with other

components. Component vendors, platforms, or other business aspects are out of

consideration for this research.

1.2 Benefits of components

Over the past decade, many researchers have attempted to improve software

development practices by improving design techniques, developing more expressive

notations for capturing a system’s intended functionality, and encouraging reuse of

pre-developed system pieces rather than building from scratch. Component-based

development delivers the benefits that have generally eluded low-level object-oriented

development. These include (Hurwitz, 1998):

1.2.1 Increased productivity

Support for leveraging prebuilt and existing software assets in the

form of components allows developers to focus on highly

productive application assembly instead of low-level programming.

1.2.2 Integration of legacy software assets

8

Encapsulation or wrapping is a technique that allows developers to

turn legacy systems into components by hiding the legacy code

behind well-defined component interfaces.

1.2.3 Better business focus

Higher levels of abstractions allows developers and business

managers to work together to plan, design, and build the

application in high-level business terms.

1.2.4 Faster/easier changes

Increased modularity and a lack of dependencies allows developers

to modify, add, delete, or swap components quickly as the business

needs change.

1.2.5 Investment protection

Through interoperability standards, developers can be assured that

standard-based components will work with other components now

and in the future.

1.2.6 Ease of use, ease of learning

Through supplier/consumer assembly development models, in

which there is a division of labor within IT organizations,

developers can quickly become productive in component-based

development without extensive retraining.

1.3 Component technologies

Many technologies are presented to solve different problems in each field of

computer science. In component-based software development community, there are

also many accepted component technologies for solving development problems. In

this section, an overview of many popular technologies is provided for preliminary

understanding. These includes Microsoft’s component technology, Sun

Microsystems’ JavaBeans, OMG’s CORBA, and Web services technology. They are

all discussed in sections that follow.

1.3.1 COM, COM+, DCOM, and .NET

Component Object Model (COM) is a general architecture for

component software introduced in 1993 (Microsoft, 2000). It

provides platform-dependent, based on Windows and Windows

9

NT, and language-independent component-based applications.

COM defines how components and their clients interact. This

interaction is defined such that the client and the component can

connect without the need of any intermediate system component.

Specially, COM provides a binary standard that components and

their clients must follow to ensure dynamic interoperability. This

enables on-line software update and cross-language software reuse.

COM+ is the cornerstone of a framework of technologies

designed to support the development of large-scale distributed

applications on the Windows platform (Heineman, 2001). There

are two versions of the framework called Windows Distributed

Internet Applications Architecture (DNA) and .NET. COM+

provides run-time services to objects based on their classes’

declared needs. COM+ implements its services by intercepting

calls between contexts within a single process or across process

boundaries. Objects interact with run-time services using object

context and call context. COM+ works with both classic COM and

the new Common Language Runtime (CLR). Developers can use

the COM+ runtime environment as a foundation for building

scalable distributed enterprise applications.

Microsoft® .NET is a set of Microsoft software technologies
for connecting information, people, systems, and devices. It
enables an unprecedented level of software integration through the
use of XML Web services: small, discrete, building-block
applications that connect to each other—as well as to other, larger
applications—via the Internet. .NET connected software delivers
what developers need to create XML Web services and stitch them
together. The benefit to individuals is seamless, compelling
experiences with information sharing (Microsoft, 2002). The .NET
Framework is the infrastructure for the overall .NET Platform. The
common language runtime and class libraries combine together to
provide services and solutions that can be easily integrated within
and across a variety of systems. The .NET Framework provides a
fully managed, protected, and feature-rich application execution

10

environment, simplified development and deployment, and
seamless integration with a wide variety of languages.

As an extension of the COM, Distributed COM (DCOM), is a

protocol that enables software components to communicate directly

over a network in a reliable, secure, and efficient manner. DCOM

is designed for use across multiple network transports, including

Internet protocols such as HTTP. When a client and its component

reside on different machines, DCOM simply replaces the local

interprocess communication with a network protocol. Neither the

client nor the component is aware the changes of the physical

connections.

1.3.2 JavaBeans and Enterprise JavaBeans

Sun’s Java-based component model consists of two parts: the

JavaBeans for client-side component development and the

Enterprise JavaBeans (EJB) for the server-side component

development. The JavaBeans component architecture supports

applications of multiple platforms, as well as reusable, client-side

and server-side components (Sun, 2000).

Java platform offers an efficient solution to the portability and

security problems through the use of portable Java applets. Java

provides a universal integration and enabling technology for

enterprise application development, including 1) interoperating

across multi-vendor servers; 2) propagating transaction and

security contexts; 3) servicing mutilingual clients; and 4)

supporting ActiveX via DCOM/CORBA bridges.

1.3.3 Common Object Request Broker Architecture (CORBA)

CORBA is an open standard for application interoperability

that is defined and supported by the Object Management Group

(OMG), an organization of object technology user companies

(OMG, 2000). CORBA manages details of component

interoperability, and allows applications to communicate with one

11

another despite of different locations and designers. The interface

is the only way that applications or components communicate with

each other. Interface Definition Language (IDL) is the most

important part of the CORBA standard and the basis for every

specification that the OMG adopts. It was first standardized by

OMG in 1991. This interface is comparable to component

metadata of this research but they are in different formats. IDL is a

universally applicable notation for application program interfaces

(API). IDL defines an opaque boundary between client code and

object implementation (or services) (Mowbray, 1997).

IDL interfaces define the exposed details of distributed objects.

Each IDL interface defines a new object type. IDL interfaces can

inherit from other interfaces. The complete set of definitions are

inherited, and the inherited identifiers cannot be redefined without

causing a conflict. The following example defines three interfaces:

a common interface for account and more specialized interfaces for

checking and savings accounts. The IDL indicates that the

checking and savings interfaces inherit all the definitions from the

account interface.

interface Account {

 // Account definitions

};

interface Checking: Account {

 // Inherits all Account definitions

 // Then adds Checking definitions

};

interface Savings: Account {

 // Inherits all Account definitions

 // Then adds Savings definitions

};

12

IDL supports multiple inheritance; an interface may inherit

from several other interfaces. The inherited definitions must not

conflict and must be unambiguous.

The major part for interoperability of CORBA system is the

Object Request Broker (ORB). The ORB is the middleware that

establishes the client-server relationships between components.

Using an ORB, a client can invoke a method on a server object,

whose location is completely transparent. The ORB is responsible

for intercepting a call and finding an object that can implement the

request, pass its parameters, invoke its method, and return the

results. The client does not need to know where the object is

located, its programming language, its operating system, or any

other system aspects that are not related to the interface. In this

way, the ORB provides interoperability among applications on

different machines in heterogeneous distributed environments and

seamlessly interconnects multiple object systems as shown in

Figure 2-1.

Client

IDL Stubs

Object (Servant)

IDL Skeletons

Object Adapter

ORB Core

In args

Operation()
Out args + return value

ORB
Interfaces

Figure 2-1. CORBA Object Model

13

Comparison among those component technologies is shown in Table 2-1.

Table 2-1. Comparison of Component Technologies

COM/DCOM EJB CORBA

Development

environment

Supported by a wide

range of strong

development

environments

Emerging Underdeveloped

Binary interfacing

standard

A binary standard for

component interaction

is the heart of COM

Based on COM; Java

specific

No binary standards

Compatibility &

portability

Not having any concept

of source-level

standard of standard

language binding

Portable by Java

language specification;

but not very

compatible.

Particularly strong in

standardizing language

bindings; but not so

portable

Modification &

maintenance

Microsoft IDL for

defining component

interfaces, need extra

modification &

maintenance

Not involving IDL

files, defining

interfaces between

component and

container. Easier

modification &

maintenance

CORBA IDL for

defining component

interfaces, need extra

modification &

maintenance

Services provided Recently supplemented

by a number of key

services

Neither standardized

nor implemented

A full set of

standardized services;

lack of

implementations

Platform dependency Platform dependent Platform independent Platform independent

Language dependency Language independent Language dependent Language independent

Implementation Strongest on the

traditional desktop

applications

Strongest on general

Web clients

Strongest for traditional

enterprise computing

1.3.4 Web Services

Web services, an independent application components, are

published on to the Web in such a way that other Web application

can find and use them. They take the Web to its next stage of

evolution, in which software components can discover other

14

software components and conduct business transactions (Roy,

2001).

Major vendors like IBM, Microsoft, Hewlett-Packard, and Sun,

are investing heavily in Web services technology. Web services

bring the promise of flexible, open-standards-based, distributed

computing to the Internet.

Service
Providers

Service
Requesters

Service
Brokers

Figure 2-2. Web Services Architecture

Figure 2-2 shows the interaction between service providers,

service brokers, and service requesters in the publication,

discovery, and consumption of Web services.

Web services are essentially founded upon three major

technologies: Web Services Description Language (WSDL);

Universal Description, Discovery and Integration (UDDI); and the

Simple Object Access Protocol (SOAP).

WSDL is a language which programmers can use to describe

the programmatic interfaces of Web services. UDDI lets Web

services register their characteristics with a registry so that other

applications can look them up. SOAP provides the means for

communication between Web services and client applications.

1.4 Component-based software development approach

Modern software systems become more and more large-scale, complex and uneasily

controlled, resulting in high development cost, low productivity, unmanageable software

quality and high risk to move to new technology. One of the most promising solutions today

is the component-based software development (CBSD) approach. This approach is based

on the idea that software systems can be developed by selecting appropriate off-the-

15

shelf components and then assembling them with a well-defined software architecture

(Pour, 1998). These COTS components can be developed by different developers

using different languages, different platforms and published on the Internet. This can

be shown in Figure 2-3, where COTS can be identified or selected from a component

repository, and assembled into a new software system.

Component
repository

Component 2

Component 1

Software system

Component n

...

..

.

AssembleSelect

Qualified COTS
components

Figure 2-3. Component-Based Software Development

Component-based software development can significantly reduce development

cost and time-to-market, and improve maintainability, reliability and overall quality of

software systems (Pour, 1999). This approach has raised a tremendous amount of

interests both in the research community and in the software industry. Therefore, in

the marketplace, more than 99 percent of all executing computer instructions come

from COTS products (Basili, 2001).

Component-based software development approach is building new software

systems from pre-built components rather than building the systems from scratch, thus

the life cycle of component-based software development is different from that of the

traditional software development. It can be summarized as follows: (Pour, 1998)

(Morisio, 2000) 1) Requirements analysis; 2) Software architecture selection,

construction, analysis, and evaluation; 3) COTS component identification and

customization; 4) System integration; 5) System testing; 6) Software maintenance.

16

2. Rule-Based Expert Systems

An expert system is an advanced computer program that can solve difficult problems

requiring the use of expertise and experience; it accomplishes this by employing knowledge

of the techniques, information, heuristics, and problem-solving process that human expert use

to solve such problems (Prerau, 1990).

Rule-based expert systems represent problem-solving knowledge as if…then… rules

(Luger, 2002). It is one of the oldest techniques for representing domain knowledge in an

expert system. The goal-driven problem solving for analysis of automotive problems is

demonstrated below. The example contains four simple rules.

Rule 1: if

 the engine is getting gas, and

 the engine will turn over,

 then

 the problem is spark plugs.

Rule 2: if

 the engine does not turn over, and

 the lights do not come on

 then

 the problem is battery or cables.

Rule 3: if

 the engine does not turn over, and

 the lights do come on

 then

 the problem is the starter motor.

Rule 4: if

 there is gas in the fuel tank, and

 there is gas in the carburator

 then

 the engine is getting gas.

There are two premises in rule 1, both of which must be satisfied to prove the

conclusion true. In the other word, it can be concluded that the problem is spark plugs

if the conditions: the engine is getting gas and the engine will turn over are true.

17

Real World

Knowledge

Component
Ensemble
Evaluator

Integration
Rules

Experience

Domain Expert

Knowledge
Acquisition

Implementation

Figure 2-4. A Rule-Based Expert Systems Applied

A domain expert who are experienced component-based software developer in

the real world records his knowledge for solving problems in the form of integration

rules. Component ensemble evaluator extracts these rules to solve problems in the

same conditions.

3. eXtensible Markup Language (XML)

XML is a project of the World Wide Web Consortium (W3C). The development of

the XML specification is done under the supervision of W3C’s XML Working Group. It is an

open specification (non-proprietary) and the current specification (version 1.0) was accepted

by the W3C as a Recommendation on Feb 10, 1998. A Recommendation by the W3C

indicates that the specification is appropriate for widespread use.

XML is a subset of the Standard Generalized Markup Language (SGML), a complex

standard for describing structure and content in documents. It is a meta-language – a

language for describing other languages. It is a markup (tag-based) language that is designed

to organize data rather than format it. XML looks like HTML, but not exatly the same. It

also has start and end tags but instead of defining a bunch of tags, XML allows users to create

their own tag pairs and use them in their documents to impart meaning on the data.

These tags can be read and used by other’s applications as well (Gulbransen, 2000).

18

XML files are ASCII text, there is no problem incorporating text into XML. XML

follows specific rules and is pretty easy to create and parse (read into a program).

That makes XML a good choice to use to store internal formats for files that are not

usually read by people, but by software instead. Example of BOOK element can be

written as follow:

<BOOK>

<ISBN>0-7897-2311-5</ISBN>

<TITLE> The Complete Idiot’s Guide to XML</TITLE>

<AUTHOR>David Gulbransen</AUTHOR>

<PUBLISHER>QUE</PUBLISHER>

<COPYRIGHT>2000</COPYRIGHT>

<PRICE unit=”$”>24.99</PRICE>

</BOOK>

The BOOK element, called root element, has 6 sub-elements: ISBN, TITLE,

AUTHOR, PUBLISHER, COPYRIGHT, and PRICE and their values are shown

between start and end tag of each attribute. An attribute can be duplicated if

specified.

XML has the following advantages: 1) XML defines the structure of the data

and allows XML-based application developers to define their own tags while HTML

uses predefined tag, 2) Using XML, document structures can be nested to any level of

complexity, 3) any XML document can contain an optional description of its grammar

for the use of applications that are required to perform structural validation (Chang,

1998). In addition, the use of XML in enterprise application development reduce

complexity and minimizes the coupling between the program and its data. XML has

great potential to revolutionize data interchange, presentation, and search on the

Internet and Intranet.

Relevant technologies i.e. component background, rule-based expert systems,

and XML are explained for fundamental understanding. Related work is discussed in

the next chapter.

CHAPTER III

RELATED WORK

There are many principle areas of related work: cataloguing, reusable software

library, and component-based software engineering. These topics are described

below.

1. Cataloguing

Cataloguing is carried at as part of library documentation for systematic and

efficient storage and retrieval. The standard cataloguing methods such as Anglo-

American Cataloguing Rules, second edition (AACR2), USMARC are often used.

Perhaps one of the most prominent catalogue example is the Internet which is the

largest source of electronic information and document. Storing and retrieval formats

change from traditional catalogue card to online searching. This leads to the

poliferation of software distribution and, hence, shorter software development life

cycle. The paradigm of software development alters from building the entire system

from scratch to assembling existing components on the Internet. As a consequence,

efficient and systematic approaches for storing and retrieval of software components

shave many common characteristics with document cataloguing. The latest standard

for digital document cataloguing is called Dublin Core, supported by OCLC (Online

Computer Library Center), consisting of 15 labeled descriptive elements, namely,

title, creator, subject, description, publisher, contributor, date, type, format, identifier,

source, language, relation, coverage, and rights. The Dublin Core has the following

positive features (Gorman, 1999): simple to learn, repeatable elements, optional

elements, extensible to complex applications, embedded invisibly in Web pages, and

recognizable by the World Wide Web Consortium. Murphy (Murphy, 1998)

described these elements in Table 3-1.

20

Element

COVERAGE

CREATOR

DATE

DESCRIPTION

FORMAT

LANGUAGE

OTHER CONTRIBUTOR

PUBLISHER

RELATION

RESOURCE IDENTIFIER

RESOURCE TYPE

RIGHTS MANAGEMENT

SOURCE

SUBJECT

TITLE

From the e

to the component

requires descripti

publications. How

of the publication
Table 3-1. Elements of Dublin Core Metadata
Description Examples

The spatial location and/or duration characteristics

of the resource.

North America: 18th century; before

1922.

The person(s) or organizations primarily responsible

for the intellectual content of the resource.

Authors; artists; photographers;

illustrators.

The date the resource was made available in its

present form.

December 3, 1996 (or 19961203)

A textual description of the content of the resource. Abstracts for document-like objects or

content descriptions for visual resources.

The data representation of the resource. Text/HTML; ASCII; Postscript file;

executable application; JPEG image;

MIME type.

Language of the intellectual content of the resource. English; French; Japanese.

S Person(s) or organization(s) in addition to those

specified in the CREATOR element who have made

other significant intellectual contributions to the

resource but whose contribution is secondary to the

individuals or entities specified in the CREATOR

element.

Editors; illustrators; translators;

convenors.

The entity responsible for making the object

available in its current form.

Publisher; university department;

corporation.

Relationship to other resources. Chapters in a book; images in a

document; items in a collection.

String or number used to uniquely identify the

resource.

URL; ISBN; any unique resource file

name or key.

The category of the resources. [Author’s note: The

original (1995) description called this the “genre” of

the resource.]

Home page; novel; poem; working

paper; preprint; technical report; essay;

dictionary.

A link to a source that provides information about

terms and conditions for use and rights of that use.

Copyright notice; rights-management

statement.

The work, either print or electronic, from which this

objects is derived, if applicable.

Paper version from which electronic

source was transcribed; earlier version

of same document.

The topic of the resource, or keywords or phrases

that describe the subject or content of the resource.

Selections from controlled vocabularies

such as the Library of Congress Subject

Headings.

The name of the resource given by the CREATOR

or PUBLISHER.

“The Elements of Style”; “Form 1040”.

xample of Dublin core metadata, many of the fields are applicable

 since a component can be considered as a published material and

ve and functional attributes similar to conventional books and

ever, these attributes will require much adaptation to fix the nature

in software.

21

2. Reusable Software Library

Storing, searching, and retrieving software from a repository of reusable

components is central to the practice of reuse. Each of these activities relies on the

existence of a systematic method of organizing the components so reusers can match

existing reusable parts to their current needs (Poulin, 1993).

Poulin (Poulin, 1999) has pointed that large amounts of library metadata that

help retrieve components waste time, money, and are difficult to contribute software

or retrieve. Reuse libraries should consist of well-designed, domain-specific, and

high-quality components.

For software component, there is no good structure or a set of industry

standard specifications that provide the necessary information for evaluation of off-

the-shelf components (Pour, 1998). In the mean time, the massive amount of software

components on the Internet is growing rapidly. Many related research interests have

been applied as follows:

Poulin and Werkman (Poulin, 1995) have offered Structured Abstracts (SA),

information set required by component users. It consists of 7 items: Computer

language and Component type, Domain, Function, Data, Operating System, (Element,

…, Element), and Contact. The structure can be written in the form of text as follows:

A (Component Language) (Component Type) for (Domain) that provides (Function)

on (Data) data running on (Operating System). Principal elements include (Element,

…, Element). Contact (Contact) for more information. The entire schema is shown

in Figure 3-1.

Figure 3-1. Structured Abstract Sample

C++ classes that provide text buttons and
slide bars for the GUI domain. Runs on OS/2
and AIX. Includes documentation, abstract,
and test cases. Contact John Smith
(smithj@abc.ifs.loral.com)

22

 According to their experiment with software component using WAIS-indexed

database, the result pointed out that the scheme matched user requirements better

than keyword search mechanisms.

In this research, component attributes are defined within the realm of

component integration so as to allow system integrators making the appropriate

decisions on what required components should be integrated to fit well together.

3. Component-Based Software Engineering

Although there are many attempts to define a body of knowledge, code of

ethics, accreditation guidelines, and licensing programs but software engineering,

while recognizable, is still immature – as evidenced by the significant gap between

vision, education, and standard practice (Pour et al., 2000). Many organizations

launch these issues Interests of developing component-based software development

are described as follows:

Xia et al. (Xia, 2000) developed the Component Integration Model (CIMO),

which is a software platform that allows the components written by different software

programmer to be integrated and operated into an application without re-compiling.

This framework is proprietary structure because a CIMO component is a Microsoft

COM object, thus it supports only COM technology. CIMO architecture can be

depicted in Figure 3-2 and described in following section.

App Object11 App Object12 App Object21 App Object22

Component11 Component12 Component21 Component22

Container1 Container2

Configurator System Manager

CIMO
Component

Layer

CIMO
Service
Layer

Figure 3-2. CIMO Architecture

23

CIMO architecture is divided into 2 layers: CIMO Component Layer and

CIMO Service Layer. CIMO Component Layer contains CIMO components, which

work together and make up a CIMO application. CIMO Service Layer consists of

CIMO service components – CIMO Configurator, CIMO Manager, CIMO

Containers, and CIMO System. CIMO will provide all the classes in CIMO Service

Layer and instructions for application composers to establish the application

components. Application composers will write application components and scripts

for configuring the application system. Application users will use the final

application.

This work differs from this research in that it did not address problems of

compatibility among those components.

Yau and Dong (Yau, 2000) presented an approach to use design patterns to

automatic generation of the component wrappers for component integration. Their

goal is to facilitate CBSD by partially automating component-based software design

and implementation. Figure 3-3 described processes of the approach.

Design patterns are organized in a design pattern repository, components and

their descriptions can be retrieved from a component repository. According to the

user requirements and application specific constraints, components are identified and

design patterns are selected to specify component interactions. Software design is

generated by instantiating design patterns based on the design pattern instantiation

information. If the generated design is consistent with the selected design patterns

and satisfies application specific constraints, component wrappers are automatically

generated to produce application software. The application software is tested to make

sure user requirements and application specific constraints are satisfied.

This work differs from this research in that it generated component wrappers

automatically using design patterns in specifying component interactions, while this

research only suggests possible component ensemble sets to system integrators.

24

Requirements & Application Specific Constraints

Identify Components Select Design Patterns

Prepare Design Pattern Instantiation Information

Instantiate Patterns

Verify Application Specific Constraints

Verify Pattern Consistency

Generate Wrappers

Test Requirements & Application Specific Constraints

OK

Not OK

Software Design

Verify Design

OK

Not OK

Figure 3-3. CBSD Process Using Design Patterns

To solve the problem of searching the right components, Seacord (Seacord et.

al. 1998) developed AGORA, a specialized search engine that automatically generates

and indexes a worldwide database of software products. It supports two basic

processes: data collection and data search and retrieval. Data collection consists of

two sub-processes: location and indexing. Location involves finding components on

the Internet. Indexing collects interface information about these components and

records it in a local database that serves as a component index. AltaVista is used as a

search engine. The overall architecture is depicted in Figure 3-4.

25

Filter
AltaVista

Search index
server

Index

AltaVista
Query server

Java Web
Server

JavaBeans
agent

JavaBeans
introspector

CORBA
agent

CORBA
introspector

ActiveX
agent

ActiveX
introspector

Internet

Submit Refine

Search for Component in Domain maching

Figure 3-4. AGORA Architecture

Their work directly influences this research in the area of searching software

components on the Internet but instead of automatically indexing, the well-defined

component metadata approach was focused.

Related work is described to an overview of research status in this field, but

none of them is identical to this research. Architectural design of the research is

described in the next chapter.

CHAPTER IV

METADATA MODEL DESIGN

To design reusable software component attributes or metadata for component

integration, many related researches, relevant technologies, and component vendors

on the Internet were surveyed and studied, the result of these studies are used to

design the knowledge-based ensemble evaluator of component. This chapter is

divided into 2 parts: metadata model design and the prototype architectural design.

1. Metadata Model Design

Two metadata models are designed. The first covers the component metadata

for describing component attributes that system integrators can use as criteria in

component searching. The other one covers integration-rule metadata for

compatibility evaluation between components.

1.1 Component Metadata Design

Prieto-Diaz and Freeman suggested that the characterization of a software

component’s functionality and its environment suffice for classification (Prieto-Diaz,

1987). The component specification includes information about functionality and

environment, and also additional information regarding component characteristics that

may affect integration with other components. Gorman stated that the inclusion of

additional attributes may improve the effectiveness of component search (Gorman,

1999). It is important to justify the inclusion of these attributes in the component

specification and not just add them extemporaneously. Poulin suggests that collecting

large amounts of metadata to help retrieve components wastes time and money, and

makes the library both difficult to contribute to and difficult to retrieve from (Poulin,

1999). It is therefore necessary to limit the selection of attributes to those that have a

significant impact on the suitability of a component for integration. The availability

of language bindings, for example, is an important attribute that greatly influences the

degree of difficulty involved in integrating a component.

For understanding in notations based on XML document type definition

pattern, cardinality operators are described below (Anderson, 2000).

27

Cardinality operators Meaning

? Optional; may or may not appear

* Zero or more

+ One or more

 If no cardinality operator is used, the cardinality is one.

The component metadata or specification has a tree structure as shown in

Figure 4-1. The top level or root element i.e. components contains one or more

element i.e. component. For example, a component metadata is composed of 50

components; the root “components” contains 50 “component” elements. Each

component element represents software component attributes which contains a

component identifier and three main information groups: general information,

protocol, and security mechanism information. Each group of information is

presented in the form of both tree structure and table in following sections.

<components>

<component+>

<general_info> <protocol>cpid=“xxx” <security>

Figure 4-1. Three Structure of Component Metadata

28

General information is composed of 14 elements: name, version, vendor,

platform, function, framework, language, space_req, domain, keywords, gui, cost,

license, and lang_support. Vendor element contains 5 sub-elements: name, phone,

address, url, and contact. Address element contains 4 sub-elements: street, city, state,

and zip. Contact element contains one or more email element. Space_req element

contains 2 sub-elements: disk_space and memory_space. Keywords element contains

one or more keyword element. Tree representation of general information element

can be shown in Figure 4-2.

<general_info>

<vendor>

<platform+><version><name><function+>

<framework> <language>

<space_req>

<gui><cost> <domain+><license>

<keywords> <lang_support+>

<name>

<phone+>

<address>

<url>

<contact>

<keyword+>

<disk_space>

<memory_space><street>

<city>

<state>

<zip>
<email+>

Figure 4-2. Tree Structure of General Information

29

The attributes of general information can be represented in the form of table as

shown below (the plus sign in tree structure is represented in the column attribute

value type with value “multiple” instead).

Table 4-1. General Information Attributes

Attribute Description Data Type Attribute

Value Type

Sample Value

cpid* component identifier character unique 101

general_info

name* component name character single Input

version* component version character single 3.5.2

function* functions of the component character multiple Input

platform* platform which the

component runs on

character multiple Windows

vendor

 name* component vendor name character single ABC

phone security provider phone

number

character multiple 1 412 2687608

address

street provider street address character single 1234 Fifth Ave.

city provider city character single Pittsburgh

state provider state character single PA

zip provider zip code character single 15267

url provider’s web page address character single www.abc.com

contact

email contact person’s email

addresses

character multiple brown@abc.com

framework* component framework character single CORBA

language* component implemented

language

character single Java

space_req

disk_space component required disk

space

numeric single 920 KB

memory_space component required memory

space

numeric single 370 KB

domain* application domains which

the component applied

character multiple Financial

application

keywords

keyword component keyword character multiple report

gui* Graphical User Interface of

the component

character single Swing

http://www.abc.com/
mailto:brown@abc.com

30

Table 4-1. General Information Attributes

Attribute Description Data Type Attribute

Value Type

Sample Value

cost cost of the component numeric single $350

license license term of the

component

character single One time license

lang_support languages which the

component supports

character multiple German, Thai

Note * is a required attribute

From Table 4-1 the significance of various attributes can be expressed as

follows.

The cpid attribute identifies the component in the component repository; it is a

unique and required value. Component identifiers can be referenced from other

component specifications—allowing a component’s interface to be defined in terms of

another component.

The name attribute of general_info element is used to identify and locate the

component. The data type is character with single value.

The version attribute identifies version of the component in the popular form

of Major.Minor.Revision such as 1.1.8. The data type of this element is character

string with single value.

The name of vendor element identifies component vendor name such as

Microsoft, Flashline, etc. The data type is character.

The street element under address of vendor element identifies street address of

component vendor usually head office. The data type is character string with single

value.

The city element under address of vendor element specifies the city that

component vendor is located. The data type is character.

The state element under address of vendor element specifies the state that

component vendor is located. The data type is character.

The zip element under address of vendor element specifies the zip code that

component vendor is located. The data type is character.

31

This address information is based on address in the United States, it can be

modified to appropriate attributes.

The contact element of vendor element provides contact information such as

sale representatives. The data type of this element is character string. This attribute is

borrowed from Poulin’s Structured Abstract (Poulin, 1995), item named “Contact”.

The email element under contact of vendor element provides email addresses

for business contact. The data type of this element is character string.

The platform attribute specifies what platform which this component runs on.

The plus sign means that the component can run on multi-platform, so this element

may have one or more platform values. This attribute is borrowed from Poulin’s

Structured Abstract (Poulin, 1995), item named “Operating System” because it is very

important to specify an operating system or platform which the component works on.

The function attribute defines component functionality. A component may

perform more than one function, so more than one value can be defined in this

attribute. The data type of this element is character. The functional requirements

alone are often specified for system requirements specification. This attribute is also

borrowed from Poulin’s Structured Abstract, item named “Function” because function

attribute is always specified in the system requirement.

The framework attribute specifies framework which the component is

conformant to such as CORBA or EJB. The data type is character.

The language attribute identifies implemented language of the component

such as Java, VB. This attribute is also borrowed from Poulin’s Structure Abstract,

item named “Computer language” or programming language because it affects

compatibility between components.

The space_req attribute is composed of disk_space and memory_space

attributes. They specify minimum disk and memory spaces used by the component

respectively. In the other hand, the system integrator may specify disk and memory

size of required component in system requirements specification.

The domain attribute specifies area of application which the component is

applied such as financial application domain, manufacturing application domain.

Application domain of the component may have more than one domain; therefore,

value in this attribute can be repeated. This attribute is also borrowed from Poulin’s

Structured Abstract, item named “Domain” or environment because it affects the

component’s performance.

32

The keywords attribute is composed of one or more keyword attribute. The

keyword attribute specifies keyword of the component. The system integrator may

use keyword as constraints in system requirements specification. The data type is

character.

The gui attribute identifies Graphical User Interface used by the component.

The gui attribute value affects compatibility between components. The data type is

character.

The cost attribute identifies cost of the component. It is one of factors that

affect system integrator’s decision. If this attribute is defined in system requirements

specification, it bounds maximum budget of integrator for the component. The data

type of this element is numeric.

The license attribute specifies license term of the component. This element

also affects system integrator’s decision because it is a part of component’s cost. The

data type is character string.

 The lang_support attribute identifies languages which this component

supports. Some components support more than one language, so that this attribute

values can be repeated. The data type of the element is character.

33

Protocol information is composed of a credential and 4 sub-elements: name,

version, provider, and RMI_protocol. Provider element contains 5 sub-elements:

name, phone, address, url, and contact. Address element contains 4 sub-elements:

street, city, state, and zip. Contact element contains one or more email element. Tree

representation of protocol element is shown in Figure 4-3.

<protocol>

<version>

<provider>

<name>credential=”xxx”

<name> <phone+>

<address>

<url><contact>

<street> <city>

<state> <zip>

<email+>

<RMI_protocol>

Figure 4-3. Tree Structure of Protocol Information

The elements can be shown in the form of table below.

34

Table 4-2. Protocol Information Attributes

Attribute Description Data Type Attribute

Value Type

Sample Value

protocol

credential Information sources character single provider

name* communication protocol name character single IIOP

version* communication protocol

version

character single 2.0

provider character single

 name component vendor name character single NetCo

phone protocol provider phone

number

character multiple 1 624 1680608

address

street provider street address character single 905 Henrry Street

city city character single Glendale

state state character single AZ

zip zip code character single 76823

url provider’s web page address character single www.netco.com

contact

email contact person’s email

addresses

character multiple dixon@netco.com

RMI_protocol* Remote Method Invocation

protocol version

character single RMI1.2

Note * is a required attribute

From Table 4-2 the significance of various attributes can be expressed as

follows.

The name attribute under protocol attribute specifies communication protocol

name which the component uses. Components can communicate with each other via

the protocol. The widely used protocols are IIOP (Internet Inter-ORB Protocol),

TCP/IP (Transmission Control Protocol/ Internet Protocol) etc.

The version attribute under protocol attribute specifies communication

protocol version in the popular form of Major.Minor.Revision such as 3.2.1. The data

type of this element is character string with single value.

The name of provider attribute under protocol attribute provides protocol

provider name such as Inprise.

http://www.abc.com/
mailto:dixon@netco.com

35

The street element under address of provider element identifies street address

of component vendor usually head office. The data type is character string with

single value.

The city element under address of provider element specifies the city that

protocol provider is located. The data type is character.

The state element under address of provider element specifies the state that

protocol provider is located. The data type is character.

The zip element under address of provider element specifies the zip code that

protocol provider is located. The data type is character.

This address information is based on address in the United States, it can be

modified to appropriate attributes.

The contact element of provider element provides contact information such as

sale representatives. The data type is character string. The data type of this element

is character string. This attribute is borrowed from Poulin’s Structured Abstract

(Poulin, 1995), item named “Contact”.

The email element under contact of provider element provides email

addresses for business contact. The data type is character string.

The RMI_protocol attribute identifies Remote Method Invocation protocol

version used by the component.

36

Security element contains zero or more elements of confidentiality,

authentication, and nonrepudiation (represented by question mark). Each of which

contains a credential and 2 sub-elements: name, and provider. Provider element

contains 5 sub-elements same as “vendor” and its child elements. This tree structure

of security element can be shown in Figure 4-4. In this research, all elements of

security element are optional because integration rule database does not contain

compatibility rules on security mechanism.

<security>

<confidentiality?> <authentication?>
<nonrepudiation?>

<provider>

<name>

credential=”xxx”

<name>

<phone+>

<address>

<url>

<contact>

<street>

<city>

<state>

<zip>

<email+>

credential=”xxx”credential=”xxx”

<name><name>

<provider>

<name>

<phone+>

<address>

<url>

<contact>

<street>

<city>

<state>

<zip>

<email+>

<provider>

<name>

<phone+>

<address>

<url>

<contact>

<state>

<zip>

<email+>

<street>

<city>

Figure 4-4. Tree Structure of Security Information

The attributes can be shown in the form of table as follow.

37

Table 4-3. Security Information Attributes

Attribute Description Data Type Attribute

Value Type

Sample Value

security

confidentiality

credential Information sources character single testing

name confidentiality mechanism

name

character single encryption

provider character single

name security provider name character single Securicor

phone security provider phone

number

character multiple 1 810 3485653

address

street provider street address character single 45 Bayard Street

city city character single Sanfrancisco

state state character single CA

zip zip code character single 35678

 url provider’s web page address character single www.securicor.com

contact

email contact person’s email

addresses

character multiple anderson@secure.com

authentication

credential Information sources character single provider

name authentication mechanism

name

character single PKI

provider character single

name security provider name character single Securicor

phone security provider phone

number

character multiple 1 810 3485653

address

street provider street address character single 45 Bayard Street

city city character single Sanfrancisco

state state character single CA

zip zip code character single 35678

url provider’s web page address character single www.securicor.com

contact

email contact person’s email

addresses

character multiple anderson@secure.com

nonrepudiation

credential Information sources character single provider

38

Table 4-3. Security Information Attributes

Attribute Description Data Type Attribute

Value Type

Sample Value

name nonrepudiation mechanism

name

character single certificates

provider character single

name security provider name character single Certify

phone security provider phone

number

character multiple 1 524 8986543

address

street provider street address character single 89 Melwood Ave.

city city character single Philadelphai

state state character single PA

zip zip code character single 22267

url provider’s web page address character single www.certify.net

contact

email contact person’s email

addresses

character multiple wallnau@certify.net

From Table 4-3 the detail of various attributes can be expressed as follows.

The credential element of confidentiality of security attribute provides

sources of information about this mechanism such as provider, testing.

The name attribute under confidentiality of security attribute specifies name

of confidentiality mechanism used by the component. Confidentiality assures that

unintended third parties cannot view information sent between two communication

parties. Encryption is the most widely used mechanism for providing confidentiality

over an insecure medium (Wallnau, 2002).

The name of provider attribute under security attribute provides security

provider name such as NetSecure.

The street element under address of provider element identifies street address

of security provider usually head office. The data type is character string with single

value.

The city element under address of provider element specifies the city that

security provider is located. The data type is character.

The state element under address of provider element specifies the state that

security provider is located. The data type is character.

39

The zip element under address of provider element specifies the zip code that

security provider is located. The data type is character.

This address information is based on address in the United States, it can be

modified to appropriate attributes.

The contact element of provider element provides contact information such as

sale representatives. The data type of this element is character string. This attribute is

borrowed from Poulin’s Structured Abstract (Poulin, 1995), item named “Contact”.

The email element under contact of provider element provides email

addresses for business contact.

The credential element of authentication of security attribute provides

sources of information about this mechanism such as provider, testing.

The name attribute under authentication of security attribute specifies name

of authentication mechanism used by the component. Authentication always comes

with Identification (I&A). This includes how to access private assets such as a

computer account, the widely used mechanism is Public Key Infrastructure (PKI)

(Wallnau, 2002).

The name of provider attribute under security attribute provides security

provider name such NetSecure.

The street element under address of provider element identifies street address

of component vendor usually head office. The data type is character string with

single value.

The city element under address of provider element specifies the city that

component vendor is located. The data type is character.

The state element under address of provider element specifies the state that

component vendor is located. The data type is character.

The zip element under address of provider element specifies the zip code that

component vendor is located. The data type is character.

This address information is based on address in the United States, it can be

modified to appropriate attributes.

The contact element of provider element provides contact information such as

sale representatives. The data type of this element is character string. This attribute is

borrowed from Poulin’s Structured Abstract (Poulin, 1995), item named “Contact”.

The email element under contact of provider element provides email

addresses for contact.

40

The credential element of nonrepudiation of security attribute provides

sources of information about this mechanism such as provider, testing.

The name attribute under nonrepudiation of security attribute specifies name

of nonrepudiation mechanism used by the component. Nonrepudiation is the inability

to disavow an act. In other words, evidence exists that prevents a person from

denying an act. Systems that use mechanism for nonrepudiation are more secure than

those that do not. Basis mechanisms for nonrepudiation i.e. public/private key

cryptography, digital signatures, and certificates (Wallnau, 2002).

The name of provider attribute under security attribute provides security

provider name such NetSecure.

The street element under address of provider element identifies street address

of component vendor usually head office. The data type is character string with

single value.

The city element under address of provider element specifies the city that

component vendor is located. The data type is character.

The state element under address of provider element specifies the state that

component vendor is located. The data type is character.

The zip element under address of provider element specifies the zip code that

component vendor is located. The data type is character.

This address information is based on address in the United States, it can be

modified to appropriate attributes.

The contact element of provider element provides contact information such as

sale representatives. The data type of this element is character string. This attribute is

borrowed from Poulin’s Structured Abstract (Poulin, 1995), item named “Contact”.

The email element under contact of provider element provides email

addresses for contact.

1.2 Integration Rule Metadata Design

Components in each ensemble are evaluated for compatibility based on a

repository of software engineering integration rules. The integration rule repository

may be extended by system integrators and component vendors. Integration rules

typically reflect known compatibilities and incompatibilities between products. The

discovery and refinement of these rules is a normal part of the system integration

41

process. This makes it necessary to provide mechanisms for adding new integration

rules to the repository, and to modify and delete existing rules as shown in Figure 4-5.

Domain Experts
(system integrators or
component vendors)

Knowledge
Acquisition Integration Rules

Insert, delete,
update

Figure 4-5. Integration Rules Collection

 Component attributes define characteristics that impact compatibility with

other components, for example, the protocols supported by the component.

Integration rules define how attributes affect component integration in terms of

compatibility score. These rules identify both those attribute combinations that

simplify – and those that complicate – system integration. Table 4-4 identifies

integration rules with compatible score level. The higher the score, the better the

compatibility.

In practice, each attribute could be assigned different weight to account for

individual rule precedence. For example, the system integrator could assign a weight

factor of 10 which is the maximum value for function attribute, 9 for platform

attribute, and 1 which is the minimum value for language attribute, etc. Hence, the

qualified components could be selected by multipling these weight factor (wi) to the

corresponding score level (si) of each matched rule. The result would yield a closer

compatibility score required by the user. This procedure can be straightforwardly

carried out as follows:

)is*
n

1i iw(Scoreity Compatibil ∑
=

=

where i denotes matched rule i

Due to its inherent arbitrary assignment of weight factor, this research did not

incorporate the above procedure into the design of metadata system.

42

Table 4-4. Integration Rules

Rule Name Value 1 Value 2 Score level

Language1 JDK 1.1 JDK 1.2 +9

Language2 JDK 1.1 C++ +1

Language3 JDK 1.1 C +6

Language4 JDK 1.2 JDK 1.2 +10

Language5 JDK 1.1 JDK 1.1 +10

Language6 JDK 1.0 JDK 1.0 +10

Language7 JDK 1.0 JDK 1.2 +7

Language8 JDK 1.0 JDK 1.1 +8

Language9 JDK 1.2 C +6

Language10 JDK 1.0 C -10

Language11 JDK 1.2 C++ +1

Language12 JDK 1.0 C++ -10

Platform1 Solaris Java classes +10

Platform2 MS Windows Java classes +10

Platform3 Solaris libraries Solaris C Code +10

Platform4 Windows DLL Windows binaries +10

Platform5 Windows DLL Solaris -10

Platform6 MS Windows Solaris libraries -10

Platform7 UNIX UNIX +10

Platform8 UNIX Mac +7

RMI_protocol1 RMI 1.1 RMI 1.0 +10

RMI_protocol2 RMI 1.0 RMI 1.0 +10

RMI_protocol3 RMI 1.1 RMI 1.1 +10

RMI_protocol4 RMI 1.2 RMI 1.2 +10

RMI_protocol5 RMI 1.2 RMI 1.1 -10

RMI_protocol6 RMI 1.2 RMI 1.0 -10

GUI1 AWT AWT +10

GUI2 Swing Swing +10

GUI3 Swing AWT -5

These rules specific on component compatibility such as if component A is

written in JDK 1.0 and component B is written in JDK 1.1, and weight of language

attribute is 7, seven is multiplied by eight points and then added to compatibility score

of the ensemble. This score is accumulated until all rules are fired and all components

in that ensemble are compared.

43

2. The Prototype Architectural Design

The two metadata models described above from the basis for an expert-system

tool that automates the finding of suitable components and ranking the appropriate set

of possible ensembles from these components. In this section, architectural design of

the prototype is described with the details of its prototype outlined in the next chapter.

2.1 System Architecture

There are a number of component attributes defined for component

integration. In order to verify these attributes of their suitability, a test evaluator

system has been designed, as shown in Figure 4-6, and its prototype, described in the

next chapter, has been built.

Component
Specification
(metadata)

Integration
Rules

Query Server

Component
Ensemble
Evaluator

System
Requirements
Specification

(SRS)

Query

Ranked
Ensembles

Qualified
Components

System Integrator

Figure 4-6. System Architecture

The system, as depicted in Figure 4-6, consists of four subsystems in its design.

There is a repository of component specifications or metadata that is searchable and already

described in section 1.1 above. The integration rule database contains constraints or rules

which guide the ensemble evaluator in deciding the appropriateness of each component

44

ensemble. It is also described in section 1.2 above. There is a query server which

accepts requirements specification and queries the repository for suitable components.

Lastly, the component ensemble evaluator uses rules in the rule database to evaluate

the matching of component selected and ranks the resulting ensembles. All these are

driven by the system requirements specification specified by the system integrator.

Each subsystem is described in details in the sections that follow.

2.2 System Requirements Specification

The System Requirements Specification or simply SRS consists of one or

more component specifications and a set of system constraints. In an actual system

this SRS may in fact be simply one element of a larger artifact. System constraints

use the same collection of attributes as individual components. For example, Java

may be specified as the language of choice for the system. This produces a tension

between search constraints and search results and, correspondingly, between

requirements and available components. As search constraints are relaxed, additional

but less-qualified components will be identified. As additional constraints are added,

a smaller group of better-qualified components will be identified. System constraints

may compose of language, platform, and function attributes as shown in Figure 4-7.

Figure 4-7. A Template for System Requirements Specification

After these constraints are executed, components which written in Java language, run

on Windows NT platform, and function Input/Output, Rules engine, and XML/Java converter

are identified.

2.3 Component Ensemble Evaluator

Component ensemble evaluation process involves making several trade-off decisions

to determine if each candidate component is compatible with other components in the

required software system. To make those crucial decisions, information such as

Constraints:
 language : Java
 platform : WindowsNT
 function : Input/Output
 function : Rules engine
 function : XML/Java converter

45

quality attributes of components are necessary. However, most COTS components are

delivered as “black box” components; therefore, component interfaces are almost the only

source of information available to system developers. Component metadata and integration

rules defined in this research provide the information required for evaluation of off-the-shelf

components. The component ensemble evaluator uses this information in comparison for

component compatibility. It is written in Java programming language. Candidate components

have been identified by component selection process as shown in Figure 4-8.

C1

C2

C3

Function3

Function2
Component
specification

A1

A2

A3

Function1

search
B1Function1

Function2
Function3

System Requirements
Specification

Figure 4-8. Component Selection Process

A sample component selection in Figure 4-8 contains 3 functional requirements:

Function1, Function2, and Function3. Three Function1 components: A1, A2, and A3, one

Function2 component: B1, and three Function3 components: C1, C2, and C3 are matched the

requirements.

The system integrator must discover an ensemble—a collection of compatible

components— that satisfies the functional requirements. When multiple components are

found that match the requirements, however, the number of possible ensembles increases

according to the factor of the cardinality of each set of qualified components. This

relationship can be formulaically expressed as:

∏
∈ As

s#

46

where A is the set of component sets.

According to the above requirements and the formula, S consists of

S1 = {A1, A2, A3},

S2 = {B1}, and

S3 = {C1, C2, C3}

Therefore, all possible ensembles (A) are 3 x 1 x 3 = 9 ensembles and can be

depicted in Figure 4-9. Those ensembles are:

Ensemble 1 consists of components A1, B1, and C1,

Ensemble 2 consists of components A1, B1, and C2,

Ensemble 3 consists of components A1, B1, and C3,

Ensemble 4 consists of components A2, B1, and C1,

…

C1

C2

C3

Function3

Function2

A1

A2

A3

Function1

B1

A1 B1 C1
A1 B1 C2

A1 B1 C3

A2 B1 C1

A2 B1 C2

A2 B1 C3

A3 B1 C1

A3 B1 C2

A3 B1 C3

possible ensembles

Figure 4-9. Ensemble Formation Process

This file is converted into objects in JRules, which corresponds to actual Java

objects. To be evaluated by a rule, the object must exist in working memory. These

ensembles are evaluated in working memory one by one resulting in compatibility

score. These processes can be shown in Figure 4-10.

47

It can be seen that there is a danger of exponential explosion of combinations

of components into possible ensembles. This exemplifies the importance of Poulin

observation (Poulin, 1999). Further investigation is necessary in order to stream line

the process and reduce the chance of such a difficulty.

Convert to
Objects in

JRules

Candidate
ensembles

Compare in
working
memory

Integration Rules

Move to

Ranked
Ensembles

Figure 4-10. Component Ensemble Evaluator Processes

As described above, all databases are designed carefully using many reliable

references including domain experts. The implementation details of the prototype

constructed from this design are presented in the next chapter.

 CHAPTER V

PROTOTYPE

As described in the previous chapter, the prototype has been built to verify the

applicability of designed software component attributes. Prototype details are

elucidated in the order of implementation below.

1. The Prototype Problem

To build the prototype, a model problem for building a compiler software is assigned.

The system integrator specifies the SRS which requires 3 functional components: lexer,

parser, and code generator. These requirements are converted into query then compared to

component specification. Qualified components are grouped into ensembles and ranked

compatibility score using integration rules defined by a domain expert. The result is returned

to the system integrator for making further decision. This can be depicted in Figure 5-1.

Component
Specification
(metadata)

Lexer

code generator

parser

Integration
Rules

Query Server

Component
Ensemble
Evaluator

System
Requirements
Specification

(SRS)

Constraints

System
Integrator

Query

Ranked
Ensembles

XML

XQL (fxql)

Java

Qualified
Components

ILOG JRules 3.0

Figure 5-1. System Architecture

Figure 5-1 is the realization of the model presented in the previous chapter.

The major components of the prototype are:

49

1) Component specification,

2) System Requirements Specification (SRS), and

3) Integration rules.

2. Development Environment

This prototype was implemented at the Software Engineering Institute (SEI) of

Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A. All equipments and licensed

softwares were also provided by the SEI. Detail are as follow.

Workstation Pentium III 600 MHz

 RAM 256 MB

 Harddisk 20 GB

Operating System WindowsNT 4.0

Rule engine software ILOG JRules version 3.0

Java compiler JDK 1.1.8

Script language Gema

XML Query Language (XQL) fxql

1.1 Rule engine software

ILOG JRules (ILOG, 2001) provides the expert system engine to drive the integration

rules. It is packaged as a set of Java class libraries. As a Java class, the rule engine can be

implemented directly, or derived from to add application specific data members and methods.

More details are described in integration rules section.

1.2 Java compiler

JDK or JavaTM Development Kit (Sun, 2002), contains software and tools that

developers need to compile, debug, and run applets and applications written using the Java

programming language. The JDK software and documentation is free per the license

agreement. JDK 1.1.8 is used because complete support is provided by the Sun

Microsystems.

1.3 Script language

Gema (Gray, 1995) is a general purpose text processing utility based on the

concept of pattern matching. In general, it reads an input file and copies it to an

50

output file, while performing certain transformations to the data as specified by a set

of patterns defined by the user. It can be used to do the sorts of things that are done

by UNIX utilities such as cpp, grep, sed, awk, or strings. It can be used as a macro

processor, but it is much more general than cpp because it does not impose any

particular syntax for what a macro call looks like. Unlike utilities like sed or awk,

gema can deal with patterns that span multiple lines and with nested constructs. It is

also distinguished by being able to use multiple sets of rules to be used in different

contexts. Gema was selected in this prototype because there were many operations to

be completed by the prototype such as formatting text, appending text, Java program

running etc. A comparison between Gema, Sed, Awk, and Perl is shown in Table 5-1.

Table 5-1. Comparison of Gema, Sed, Awk, and Perl

Gema Sed Awk Perl

Regular expressions x x x x

Non-line-oriented x

Non-procedural and rule-based x x

Recognizers x x

User-defined recognizer x

Unification of matching and function definition x

Multiple rule sets x

Context-sensitive matching x

Recursive patterns x

Dynamic patterns x

User-specified match position x

User-definable syntax x

General-purpose programming x x x

OS Interface x x

Command-line extension x x

1.4 XML Query Language (XQL)

The XQL (Wattle, 2000) is a notation designed to address XML documents

just as SQL is used to access relational databases. There are a number of functions to

51

the XQL. XML Document Matching examines if XML documents match XQL query

statements. XML Document Query retrieves data from XML documents according to

XQL query statements. Query Result Output dispatches XQL query results to

specified destinations. To identify all the components in the component repository

that satisfy the SRS, the set of constraints is extracted from the SRS and transformed

into XQL (Robie, 1999) queries. Although XQL is one of several XML query

language proposals that enjoys the support of several commercial products.

Once constructed, XQL queries are run against the component repository to

identify a set of candidate components. For example, the SRS may specify a

functional requirement for a spell checker component as shown below:

<function>spell checker</function>

This would be extracted as an XQL query as follows:

“//component/general_info/function[spell checker]”

Running this query against the component repository generates a working set

of components that implement this functionality. A subset of XQL called fxql is used

for the same command format in this prototype.

3. Component Specification

The component specification is represented in XML. It is well suited for this

application as it provides a formal language for mapping values to attributes and is

fully extensible.

52

<?xml encoding="UTF-8"?>

<!DOCTYPE components SYSTEM “component.dtd”>

<!-- Root element contains one or more components-->

<!ELEMENT components (component+)>

<!ELEMENT component (general_info, protocol, security)>

<!ATTLIST component cpid ID #REQUIRED>

<!ELEMENT general_info (name, version, vendor, platform+, function+, framework, language,

space_req, domain+, keywords, gui? , cost, license, lang_support+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!ELEMENT platform (#PCDATA)>

…

Figure 5-2. A Part of Component Specification DTD

Root element in Figure 5-2 is components which may consist of one or more

element component. The component element contains component identifier (cpid) and

3 sub-elements: general_info, protocol, and security elements. Element general_info

contains 14 sub-elements: name, version, vendor, platform, function, framework,

language, space_req, domain, keywords, gui, cost, license, lang_support. Element:

name, version, and platform are character data type, and so on.

Full component specification in DTD and XML documents are shown in

Appendix A.

4. System Requirements Specification (SRS)

The system requirements specification is also represented in XML. Figure 5-3

shows SRS DTD which root element is constraint, system integrator can specify only

functional requirement since other attributes are optional.

53

A

compon

docume

system.

?xml ve

<?xml-s

<constra

 <func

 <func

 <func

</constr

T

automati

accomm

5. Integ

A

reposito

Figure 5
<?xml encoding=”UTF-8”?

<!DOCTYPE constraint SYSTEM “SRS.dtd”>

<!ELEMENT constraint (function+, platform?, language?, protocol?)>

<!ELEMENT function (#PCDATA)>

<!ELEMENT platform (#PCDATA)>

<!ELEMENT language (#PCDATA)>

<!ELEMENT protocol (#PCDATA)>
Figure 5-3. System Requirements Specification DTD

ttributes specified in the SRS for individual components similarly limit

ent candidates to those that match the requirement. Figure 5-4 is an XML

nt of the SRS which contains 3 functional requirements of compiler software

rsion=”1.0” encoding=”UTF-8”?>

tylesheet type=”component/xsl” href=”component.xsl”?>

int>

tion>Lexer</function>

tion>parser</function>

tion>code_generator</function>

aint>

Figure 5-4. SRS in XML document

he ability to modify requirements and re-execute a search is a major benefit of

ng this process. This allows system integrators to adjust system requirements to

odate changes in market realities in real time.

ration Rules

fter required components are selected from component specification

ry, their characteristics are compared for compatibility using integration rules.

-5 depicts the process of knowledge acquisition from a domain expert.

54

Domain Expert

Knowledge
Acquisition

Integration Rules
(ensemble.ilr)

Figure 5-5. Data Flow Diagram of Creating Integration Rules

The rules used in this prototype are extracted from the senior technical

researcher at the SEI, Mr. Robert C. Seacord, who has 17 years of software

development experience in industry, defense, and research. His principal areas of

expertise includes component-based development, graphical interface design, human

factors. He defines integration rules for component integration and score level of

compatibility. Compatibility score of +10 means those two components have high

possibility in working well together.

Before starting this prototype, the trial version of rule engine software named

“JRules” from ILOG company was tried for thirty days and found that it is suitable

for implementation because it is easy to use, and is an object-oriented rule-based

programming language in which XML document can be converted into Java objects

and compared with integration rules in the same format.

ILOG JRules is a rich and flexible product aimed at enabling software

developers to create applications that can be maintained with minimal effort. It

allows developers to combine rule-based and object-oriented programming to add

business rules to new and existing applications. It fully supports JDKv1.1 through

J2SDKv1.3, J2SE, and J2EE. A JRules application consists of a set of rules and a

collection of objects. Each rule is composed of three parts: a header, a condition part,

and an action part as shown in Figure 5-6.

Figure 5-6. ILOG JRules Rule Structure

rule ruleName { (priority = value;)
 (packet = packetName;)

when { conditions …}

then { [actions …] }

};

55

The header defines the name of the rule, its priority and packet name. It starts

with the keyword rule. The condition part begins with the keyword when, and is also

referred to as the left-hand side (LHS) of the rule. It defines the conditions that must

be met in order for the rule to be eligible for execution. The action part, which begins

with the keyword then, is referred to as the right-hand side (RHS) of the rule. When

all of the LHS conditions are met, the RHS of the rule is executed (or ‘fires’) (ILOG,

2001). Objects in JRules correspond to actual Java objects. To be evaluated by a rule,

the object must exist in working memory. Placing an object in working memory is

accomplished in JRules through the use of an ASSERT statement.

A sample rule for evaluating language compatibility is shown in Figure 5-7.

This rule evaluates language compatibility between components written in Java, JDK

1.1 and JDK1.2. In this example, if component ?c1 is implemented using JDK1.1

and component ?c2 is implemented in JDK1.2, nine points are added to the

compatibility score for the ensemble. This value is added because a well-defined

interface exists between JDK1.1 and JDK1.2.

rule LanguageCompatible1
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.1"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.2"); ?i2:id ; ?i1 !=

?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 9;}

 }
};

Figure 5-7. Language Compatibility Rule

All integration rules are shown in Appendix B.

56

6. Structure of the Prototype

All processes and files in implementation can be described using data flow

diagram as shown in Figure 5-8. Line with arrow specifies sequence of processes

and/or direction of input/output file. All processes are described as follows:

1) System integrator specifies a system requirements specification (SRS.xml) that

incorporates elements of the system requirements and architecture, as well as

creates component specification (component.xml) that describes each

component and also creates integration rule file (ensemble.ilr).

2) Required components are matched with component specification in a

repository with component selection process.

3) Components are grouped into ensembles (ensemble.xml).

4) Ensembles are evaluating using integration rules (ensemble.ilr) in the

knowledge-base.

5) Ranked ensembles are returned to the system integrator.

SRS.XML
Defining
System

Constraints

Component
Selection

Component.xml

Component
Grouping

Qualified
Components
(XML Files)

Ensemble.xml

Creating
Integration

Rules

Ensemble
Evaluation

Ranked
Ensembles

Ensemble.ilr

Creating
Component
Specification

Figure 5-8. Data Flow Diagram

57

7. Populating the Prototype

Required components in the component repository are populated in the

manner as described in section 7.1. Qualified components are populated to form an

ensemble as described in section 7.2.

7.1. Component Selection

Constraints are extracted from the system requirements specification and converted

to XQL queries. These queries are run against the component specification repository to

identify a set of candidate components.

parser
Component
specification

searchLexer
parser
code generator

System Requirements
Specification

code
generator

Lexer

C2

C1

B3

B5
B1

B2
B4

A2

A3

A1

Figure 5-9. Component Selection

The SRS consists of 3 functional requirements: Lexer, parser, and code generator.

The component specification repository contains 3 Lexers: A1, A2, and A3, 5 parsers: B1,

B2, B3, B4, and B5, and 2 code generators: C1, and C2 as shown in Figure 5-9.

7.2. Ensemble Formation

As described in the previous chapter, ensembles are formed according to the

formula as shown in Figure 5-10.

58

A1 B1 C1
A1 B1 C2

A2 B1 C1

A2 B1 C2

A3 B1 C1

A3 B1 C2

possible ensembles
parser

code
generator

Lexer

C2

C1

B3

B5
B1

B2
B4

A2

A3

A1

A1 B2 C1
A1 B2 C2

A2 B2 C1

A2 B2 C2

A3 B2 C1

A3 B2 C2

A1 B3 C1
A1 B3 C2

A2 B3 C1

A2 B3 C2

A3 B3 C1

A3 B3 C2

A1 B4 C1
A1 B4 C2

A2 B4 C1

A2 B4 C2

A3 B4 C1

A3 B4 C2

A1 B5 C1
A1 B5 C2

A2 B5 C1

A2 B5 C2

A3 B5 C1

A3 B5 C2

Figure 5-10. Ensemble Formation

8. Result

In the prototype implementation, the component specification contains 3

lexers, 5 parsers, and 2 code generators. Therefore, all candidate ensembles that meet

the requirements are 3 x 5 x 2 = 30 ensembles. Each ensemble is compared to

integration rules as described in the previous section. The result is compatibility score

and it is accumulated until all components in that ensemble are performed. Table 5-2

shows ensemble compatibility scores of 26 ensembles in descending sequence

including component identifiers of each ensemble. These ensembles are selected

from a component repository containing 3 lexers (component IDs: 100, 115, 210), 5

parsers (component IDs: 105, 106, 107, 109, 1001) and 2 code generators (component

IDs: 101, 103).

59

Table 5-2. Ensembles Compatibility Scores

Ensembles 20 and 21 both share a high score of 39. These scores resulting

from the application of the integration rules to the set of attributes defined for the

components included in each ensemble. Components in both of the highly ranked

ensembles share a number of attributes, and the remaining attributes are not highly

incompatible, resulting in relatively high overall scores for the ensembles.

In this chapter, all implementation details and result of the prototype are

discussed and described. Conclusion and future work are discussed in the next

chapter.

Ensemble Component IDs Score
21 (115 101 107) 39
20 (210 101 107) 39
 8 (210 101 106) 29
26 (210 101 105) 29
24 (115 101 105) 29
 3 (115 103 106) 20
10 (115 101 1001) 20
11 (100 103 106) 18
 4 (100 101 105) 14
 6 (100 101 106) 11
 2 (100 103 107) 11
 7 (210 103 100) 10
 5 (100 103 1001) 1
 9 (100 101 1001) -5
 1 (100 101 109) -15

CHAPTER VI

CONCLUSION AND FUTURE WORK

It is apparent from prototype verification that the proposed system will serve

as software component repository. The contribution will be utmost important to

software reuse and component-based development. The conclusion of this research

and future work are discussed in the sections that follow.

1. Conclusion

A metadata model of software components has been defined and constructed

to be used by component developers and users to describe and select the required

software components. Component selection is one of the key activities in component-

based software development to ensure that appropriate components are selected for

integration when constructing high-quality software systems. If the component

structure or metadata in the component repository is a well-defined structure,

components can be found and reused effectively.

The prototype so developed for this research presents an ensemble

compatibility evaluation using defined software component metadata and a set of

integration rules. The overall system was designed and a prototype built to evaluate

the concept. The prototype includes the construction of component specification or

metadata, system requirements specification, and integration rule databases.

Component specification or metadata describes attributes of each component

and is in the form of an XML document that can be created by any text editor or

specific XML editor. It contains all software component information necessary for

component integration such as communication protocol, written language, platform,

framework, etc.

System requirements specification, provided by system integrators, defines

system constraints. Attributes specified in the system requirements specification for

individual components limit components candidates to those that match the

requirement. The system requirements specification is also an XML document and is

converted to an XQL command prior to the component selection process.

61

Integration rules define how attributes affect component integration. To

implement these rules, the rule engine software called ILOG JRules software, was

utilized and used. The integration rules are kept in a “.ilr” file and called by the rule

engine software to compare how compatible the components are. The compatibility

score is accumulated until all rules are fired. The results are returned to system

integrators for further consideration.

The prototype allows system integrators to explore a broader component space

than what is possible when using manual techniques. It also quickly eliminates

components that are overly difficult to integrate.

In addition to aiding in the evaluation of component ensembles, the prototype

provides a mechanism for preserving, sharing and re-using hard-won system

integration knowledge. System integrators can use this information to identify

compatible ensembles of components and actively expand upon it as additional

insights into the rules that govern system integration have emerged.

The greatest challenge of this model is not the feasibility of automating the

process, but the ability to collect the data necessary to drive the process. First, it is

required to populate the component repositories with a sufficient number of

component specifications to guarantee that an SRS can be satisfied from the pool of

available components. Second, it is required to identify, through successive rounds of

refinement, the attributes that are used to describe each component and the set of

system integration rules that are used to compute the compatibility of ensembles.

It is hoped that component brokers, who market third-party components, may

initially provide component search engines based on the model. Component

consumers will benefit from this service to discover components that can be easily

integrated into their systems and begin to rely on these component brokers.

Component producers may then feel compelled to define component specifications

that are compatible with this approach. Hopefully, this process will culminate in a

standard component repository and component specification format.

Although this research contributes a software component metadata model to

software engineering community especially component-based software development

approach, there are some limitations in the prototype that should be modified or added

as follows:

62

• Integration rules come from only one domain expert in component-based

software development at the SEI. If rules come from several domain

experts, various kinds of compatibility scores can be expanded.

• Only functional requirements of the system constraints are considered in

this prototype. This may cause a vast number of candidate components in

the ensembles. It is expected that if various aspects of the constraints are

specified, the smaller the group of better-qualified candidates will be

identified.

2. Future Work

There are many significant work left to be achieved before a robust ensemble

evaluator can be produced. Many future research areas are possible:

• Implementation with real world component models such as EJB, CORBA,

or DCOM to evaluate this approach against their characteristic.

• Scale up this prototype by expanding component specification repository

size. But vast numbers of candidate components will be involved in the

evaluation and can result in exponential explosion of possibilities.

• Integration rule extension. As discussed in previous section: the more

rules we have, the more categories of compatibility are measured. The

main problem is the lack of experienced system integrators or domain

experts in Thailand where this research is performed. We can solicit

expert opinion by broadcasting the questionnaires on the Internet.

• Component ensemble feedback database. From ranked compatibility score

of each ensemble set which has been suggested to the system integrator, it

is believed that if an ensemble set is implemented by different system

integrators, the results of the software systems are not the same. As the

result depends on the capability and experience of the system integrator in

defining an environment. Therefore, it is very useful for future system

integrators if experienced integrators record all relevant information on

working environments of integration. In this way, system integrators who

63

want to use previous ensemble set can review the comments on

integration of the ensemble set from the feedback database.

For the last two approaches, experiences from system integrators play an

important role in collecting data. To try this, a number of software development

companies in Bangkok have been contacted for an interview about component-based

software development in Thailand. Unfortunately, the information from the

interviews is not enough for further research because software companies in Thailand

tend to use in-house components rather than components from other vendors, to

develop application software systems. Their reasons are as follows:

• Buying components is prohibitively expensive. This not only

involves a one-time cost, but continuous expenses such as license

term and maintenance contract must be considered,

• Labor wages in Thailand is quite low compared to post-

industrialized countries like the United States. It is not too

difficult to find good programmers, and

• Most components in the market do not meet developers’

requirements so it is better to build their own.

Table 6-1 lists the three companies that provide information on the states of

the component market.

Table 6-1. List of Interviewed Companies

Company Name Business Activity

IBM Corperation (Thailand) System integrator / Software developer /

Consultant / Programming/ Database /

Embedded Systems

ProSolutions Asia Pacific

Co., Ltd.

System integrator / Software developer /

Consultant / Programming/ Database /

Embedded Systems

PSP (Thailand) Co., Ltd. System integrator / Software developer /

Consultant / Programming/ Database /

Embedded Systems / Software Value Added

Reseller

64

Preliminary interviews have been conducted where a number of companies

were contacted. It was found that there were many various reasons to refuse the

interview. Thus, the information given by companies listed in Table 6-1 and 6-2 may

not reflect the true needs of commercial sector.

Table 6-2. List of Other Contacted Companies.

Company Name Business Activity

BizCuit Co., Ltd. System integrator / Software developer /

Consultant / Programming

Computer Science

Corporation Limited

Software Developer / Programming / Database

/ Web Authoring and Design

Data Express Co.,Ltd. System Integrator / Consultant / Software

Value Added Reseller, Dealer, or Distributor

Express Software Group Co.,

Ltd.

Software Developer/ Programming / Database

Golden International

Information Co., Ltd.

System integrator / Software developer /

Consultant / Programming/ Database

Headway Technology Co.,

Ltd.

Software Developer/ Programming / Database

System Plus Group Co., Ltd. System integrator / Software developer /

Consultant / Programming/ Database / Web

Authoring and Design

Ultimax Co., Ltd. System integrator / Software developer /

Consultant / Programming/ Database

It is quite apparent from this effort that CBSE, especially in low labor-wage

countries, is still in its infancy and it will be difficult for some time to find sufficient

empirical data concerning the use of CBSE enough to populate the model in order to

evaluate its accuracy and usefulness. Nevertheless, the model built here will

contribute to the future efforts in organizing and using components in CBSE.

REFERENCES

Anderson, R. et. al. Professional XML. (n.p.): Wrox Press, 2000.

Bachmann, Felix; Bass, Len; Buhman, Charles; Comella-Dorda, Santiago;

Long, Fred; Robert, John; Seacord, Robert; & Wallnau, Kurt.

Technical Concepts of Component-Based Software Engineering,

Volume II. (CMU/SEI-2000-TR-008, ADA379930). Pittsburgh, PA.:

Software Engineering Institute, Carnegie Mellon University, 2000.

Basili, V. R. and Boehm, B. COTS-Based Systems Top 10 List. IEEE Computer

34, 5 (May 2001) : 91-93.

D’Souza, D. and Wills, A.C. Objects, Components and Frameworks with UML:

The Catalysis Approach. Reading: MA: Addison-Wesley, 1999.

Chang, D. and Harkey, D. Client/Server Data Access with Java and XML. (n.p.):

Wiley, 1998.

Clark, James. XSL Transformations (XSLT) Version 1.0. W3C Recommendation,

Available from: http://www.w3.org/TR/xslt. visited date: 11/ 1999.

Component Registry Company. Available from:

http://www.ComponentRegistry.com. visited date: 10/2001.

Dornfest, Rael and Brickley, Dan. The Power of Metadata. Available from:

http://www.openp2p.com/pub/a/p2p/2001/01/18/metadata.html. visited

date: 01/2002.

Garlan, D.; Allen, R.; and Ockerbloom, J. Architectural Mismatch: Why Reuse is

So Hard. IEEE Software. 12, 6 (Nov.1995): 17-26.

Gorman, Michael. Metadata or Cataloguing? A False Choice. Journal of Internet

Cataloging. 2, 1 (1999): 5-22.

http://www.w3.org/TR/xslt
http://www.componentregistry.com/
http://www.openp2p.com/pub/a/p2p/2001/01/18/metadata.html

66

Gray, D. N. gema - the general purpose macro processor. Available from:

http://www.ugcs.caltech.edu/gema. April, 1995.

Gulbransen, D. The Complete IDIOT’S Guide to XML. QUE, 2000.

Henning, M. and Vinoski, S. Advance CORBA Programming with C++. Reading:

Addison-Wesley, MA. 1999.

Heineman, George T. and Councill, William T. Component-Based Software

Engineering Putting the Pieces Together. (n.p.): Addison-Wesley, 2001.

Hurwitz, Judith. Preparing for Component-Based Development. white paper,
March 1998.

ILOG Company. ILOG JRules White paper ILOG. Available from:

http://www.ilog.com. May 2001. visited date: 02/2002.

Kobryn, Cris. Modeling Components and Frameworks with UML.

Communications of the ACM. Vol. 43 No. 10 (October 2000): 31-38.

Luger, George F. Artificial Intelligence: Structures and Strategies for Complex

Problem Solving. Fourth Edition. (n.p.): Addison-Wesley, 2002.

Mili, Rym; Mili, Ali; & Mittermeir, Roland T. Storing and Retrieving Software

Components: A Refinement Based System. IEEE Transaction on

Software Engineering . 23, 7 (July 1997) : 445-460.

Maurer, Peter M. Components: What if they gave a revolution and nobody came?.

IEEE Computer . 33, 6 (June 2000) : 28-34.

Microsoft: Available from: http://www.microsoft.com/isapi. Mar 2000.

Microsoft: Available from: http://www.microsoft.com/net/. 2002.

Morisio, M. et al. Investigating and Improving a COTS-Based Software

Development Process. Proceedings of the 22nd international conference

on Software Engineering June 2000 : 31-40.

http://www.ugcs.caltech.edu/gema
http://www.ilog.com/
http://www.microsoft.com/isapi
http://www.microsoft.com/net/

67

Mowbray, T. J. and Ruh, W. A. Inside CORBA Distributed Object Standards and

Applications. (n.p.): Addison-Wesley, 1997.

Murphy, Lisa D. Digital Document Metadata in Organizations: Roles, Analytical

Approaches, and Future Research Directions. Proceedings of the Thirty-

First Hawaii International Conference on System Science (1998): 267-

276.

Object Management Group. The Common Object Request Broker: Architecture

and Specification. Version 2.4, 2000.

OMG: Available from: http://www.omg.org/corba/whatiscorba.html. Mar 2000.

Ogbuji, Uche. RIL: A Taste of Knowledge. Available from:

http://www.xml.com/pub/2000/10/11/rdf/ril.html. October 2000.

Penix, John et al. Automating Component Integration for Web-Based Data

Analysis. Proceedings of IEEE Aerospace Conference. (2000).

Poulin, Jeffrey S. Reuse: Been There, Done That. Communications of the ACM

Vol. 42 No. 5 (May 1999) : 98-100.

Poulin, Jeffrey S. and Yglesias, Kathryn P. Experiences with a Faceted

Classification Scheme in a Large Reusable Software Library (RSL).

Proceedings of Computer Software and Applications Conference

COMPSAC 93, 1993.

Pour, Gilda. Component-Based Software Development Approach: New

Opportunities and Challenges. Proceedings of Technology of Object-

Oriented Language (TOOLS 26) 1998 : 376-383.

Pour, Gilda. Enterprise JavaBeans, JavaBeans & XML expanding the Possibilities

for Web-Based Enterprise Application Development. Proceedings of

Technology of Object-Oriented and Systems (1999) : 282-291.

http://www.omg.org/corba/whatiscorba.html
http://www.xml.com/pub/2000/10/11/rdf/ril.html

68

Pour, Gilda; Griss, Martin L; Lutz, Michael. The Push to Make Software

Engineering Respectable. IEEE Computer. 33, 5 (May 2000) : 35-43.

Poulin, Jeffrey S. and Werkman, Keith J. Melding Structured Abstracts and the

World Wide Web for Retrieval of Reusable Components. Proceedings of

the 17th international conference on software engineering on Symposium

on software reusability. (1995) : 160-168.

Prieto-Diaz, R. & Freeman, P. Classifying Software for Reusability. IEEE

Software. 4, 1 (January 1987) : 6-16.

Robie, Jonathan. XQL (XML Query Language). Available from:

http://www.ibiblio.org/xql/xql-proposal.html. August, 1999.

Roy, J. and Ramanujan, A. Understanding Web Services. IT Professional. 3, 6

(Nov. – Dec. 2001) : 69-73.

Sauer, Ly Danielle et al. Meta-Component Architecture for Software

Interoperability. Proceedings of International Conference on Software

Methods and Tools SMT 2000 : 75-84.

Seacord, Robert C.; Wallnau, Kurt; John, Robert; Comella-Dorda, Santiago; &

Hissam, Scott A. Custom vs. Off-the-Shelf Architecture. Proceedings of

the 3rd International Enterprise Distributed Object Computing

Conference. Mannheim, Germany, September 27-30, 1999.

Seacord, Robert C.; Hissam, Scott A.; Wallnau, Kurt C. AGORA: A Search

Engine for Software Components. IEEE Internet Computing.

(November-December 1998) : 62-70.

Sun Microsystems. Available from: http://java.sun.com/products/javabeans/docs/.

and http://java.sun.com/products/ejb/. Mar, 2000.

Sun Microsystems. Available from: http://java.sun.com/products/jdk/1.1. 2002.

http://www.ibiblio.org/xql/xql-proposal.html
http://java.sun.com/products/javabeans/docs/
http://java.sun.com/products/ejb
http://java.sun.com/products/jdk/1.1

69

Szyperski, Clements. Component Software: Beyond Object-Oriented

Programming. (n.p.): Addison-Wesley, 1997.

Traas, Vincent and Hillegersberg, Jos Van. The Software Component Market on

the Internet Current Status and Conditions for Growth. ACM SIGSOFT,

Software Engineering Notes. 25, 1, January 2000 : 114-117.

Wallnau, K. C.; Hissam, S. A.; Seacord, R. C. Building Systems from

Commercial Components. (n.p.): Addison-Wesley, 2002.

Wang, Nanbor; Schmidt, D. C.; and O’Ryan, Carlos. Overview of the CORBA

Component Model. Component-Based Software Engineering: Putting

the pieces together. (n.p.): Addison-Wesley, 2001.

Wattle Software. Available from:

http://www.xmlwriter.net/user_tools/fxql.shtml. Sept., 2000.

Yakimovich, Daniil; Bieman, James M.; Basili, Victor R. Software architecture

classification for estimating cost of COTS integration. Proceedings of

the 1999 international conference on Software Engineering. May 1999.

Yau, Stephen S. and Dong, Ning. Integration in Component-Based Software

Development Using Design Patterns. Proceedings of Computer Software

and Applications Conference. 2000 : 369-374.

http://www.xmlwriter.net/user_tools/fxql.shtml

APPENDICES

71

APPENDIX A

The component specification is divided into 2 parts: Document Type

Definition and XML document which describes component metadata. The first is a

file “component.dtd” as shown below:

<?xml encoding="UTF-8"?>

<!-- Root element contains one or more components-->

<!ELEMENT components (component+)>

<!-- each component has 3 group elements-->

<!--general_info, protocol, and security-->

<!ELEMENT component (general_info,

 protocol,

 security)>

 <!ATTLIST component cpid ID #REQUIRED>

<!ELEMENT general_info (name,

 version,

 vendor,

 platform+,

 function+,

 framework,

 language,

 space_req,

 domain,

 keywords,

 gui,

 cost,

 license,

 lang_support+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!ELEMENT platform (#PCDATA)>

<!ELEMENT function (#PCDATA)>

<!ELEMENT framework (#PCDATA)>

72

<!ELEMENT language (#PCDATA)>

<!ELEMENT domain (#PCDATA)>

<!ELEMENT space_req (disk_space,

 memory_space)>

<!ELEMENT disk_space (#PCDATA)>

 <!ATTLIST disk_space unit ID #REQUIRED>

<!ELEMENT memory_space (#PCDATA)>

 <!ATTLIST memory_space unit ID #REQUIRED>

<!ELEMENT keywords (keyword+)>

<!ELEMENT keyword (#PCDATA)>

<!ELEMENT gui (#PCDATA)>

<!ELEMENT cost (#PCDATA)>

<!ELEMENT license (#PCDATA)>

<!ELEMENT lang_support (#PCDATA)>

<!ELEMENT vendor (name,

 phone,

 address,

 url,

 contact)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT address (street,

 city,

 state,

 zip)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ELEMENT contact (email+)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT protocol (name, version, provider, RMI_protocol)>

73

 <!ATTLIST protocol credential CDATA #REQUIRED>

<!ELEMENT RMI_protocol (#PCDATA)>

<!ELEMENT provider (name,

 phone,

 address,

 url,

 contact)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!ELEMENT security (confidentiality?,

 authentication?,

 nonrepudiation?)>

<!ELEMENT confidentiality (name, provider)>

 <!ATTLIST confidentiality credential CDATA #REQUIRED>

<!ELEMENT authentication (name, provider)>

 <!ATTLIST authentication credential CDATA #REQUIRED>

<!ELEMENT nonrepudiation (name, provider)>

 <!ATTLIST nonrepudiation credential CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT provider (name,

 phone,

 address,

 url,

 contact)>

The second part is component XML document. It contains component

metadata, its file name is component.xml. A component metadata file is so large, so

only three metadata of components are represented below:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="component/xsl" href="component.xsl"?>

<!--DOCTYPE components SYSTEM "component.dtd"-->

<!--This is XML document for software component uses component.dtd-->

<components xmlns="x-schema:ComponentsMSSchema.xml">

 <component cpid="100">

74

 <general_info>

 <comp_name>JLex</comp_name>

 <version>1.2.5</version>

 <vendor>

 <name>abc</name>

 <phone>412-455-6233</phone>

 <address>

 <street>250 Fifth Ave.</street>

 <city>Pittsburgh</city>

 <state>Pennsylvania</state>

 <zip>15213</zip>

 </address>

 <url>www.abc.com</url>

 <contact>

 <email>jim@abc.com</email>

 </contact>

 </vendor>

 <platform>Unix</platform>

 <function>Lexer</function>

 <framework>CORBA</framework>

 <language>JDK1.2</language>

 <space_req>

 <disk_space unit="bytes">1200</disk_space>

 <memory_space unit="MB">50</memory_space>

 </space_req>

 <domain>general</domain>

 <keywords>

 <keyword>sequence</keyword>

 <keyword>sort</keyword>

 </keywords>

 <gui>Swing</gui>

 <cost unit=”$”>995</cost>

 <license>on_agreement</license>

 <lang_support>English</lang_support>

75

 <lang_support>Thai</lang_support>

 </general_info>

 <protocol credential="provider">

 <name>IIOP</name>

 <version>2.0</version>

 <provider>

 <name>Inprise</name>

 <phone>1-800-123-5213</phone>

 <address>

 <street>101 Number One Street</street>

 <city>Norwell</city>

 <state>Massachusetts</state>

 <zip>02061</zip>

 </address>

 <url>www.inprise.com</url>

 <contact>

 <email>info@inprise.com</email>

 </contact>

 </provider>

 <RMI_protocol>RMI1.2</RMI_protocol>

 </protocol>

 <security>

 <confidentiality credential="testing">

 <name>SSL</name>

 <provider>

 <name>Inprise</name>

 <phone>1-800-123-5213</phone>

 <address>

 <street>101 Number One Street</street>

 <city>Norwell</city>

 <state>Massachusetts</state>

 <zip>02061</zip>

 </address>

 <url>www.inprise.com</url>

76

 <contact>

 <email>info@inprise.com</email>

 </contact>

 </provider>

 </confidentiality>

 </security>

 </component>

 <component cpid="101">

 <general_info>

 <name>comm_pro</name>

 <version>1.0</version>

 <vendor>

 <name>communication technology company</name>

 <phone>301-455-4623</phone>

 <address>

 <street>250 Number Two Ave.</street>

 <city>Mytown</city>

 <state>Pennsylvania</state>

 <zip>15213</zip>

 </address>

 <url>www.communicate.com</url>

 <contact>

 <email>support@communicate.com</email>

 </contact>

 </vendor>

 <platform>Windows DLL</platform>

 <function>code_generator</function>

 <framework>CORBA</framework>

 <language>JDK1.1</language>

 <space_req>

<disk_space unit="bytes">1650</disk_space>

 <memory_space unit="MB">90</memory_space>

 </space_req>

77

 <domain>communication</domain>

 <keywords>

 <keyword>Internet</keyword>

 <keyword>network</keyword>

 </keywords>

 <gui>AWT</gui>

 <cost unit=”$”>1350</cost>

 <license>one-time</license>

 <lang_support>English</lang_support>

 <lang_support>Japanese</lang_support>

 </general_info>

 <protocol credential="provider">

 <name>TCP/IP</name>

 <version>3.0</version>

 <provider>

 <name>Net service</name>

 <phone>1-800-643-7213</phone>

 <address>

 <street>1245 Number Two Street</street>

 <city>Norwell</city>

 <state>Massachusetts</state>

 <zip>02061</zip>

 </address>

 <url>www.inprise.com</url>

 <contact>

 <email>info@inprise.com</email>

 </contact>

 </provider>

 <RMI_protocol>RMI1.0</RMI_protocol>

 </protocol>

 <security>

 <confidentiality credential="testing">

 <name>Kerboros</name>

 <provider>

78

 <name>Inprise</name>

 <phone>1-800-123-5213</phone>

 <address>

 <street>101 Number Two Street</street>

 <city>Norwell</city>

 <state>Massachusetts</state>

 <zip>02061</zip>

 </address>

 <url>www.inprise.com</url>

 <contact>

 <email>info@inprise.com</email>

 </contact>

 </provider>

 </confidentiality>

 </security>

 </component>

 <component cpid="105">

 <general_info>

 <name>XParser</name>

 <version>2.2</version>

 <vendor>

 <name>Parser technology company</name>

 <phone>301-455-4623</phone>

 <address>

 <street>250 Number Two Ave.</street>

 <city>Mytown</city>

 <state>Pennsylvania</state>

 <zip>15213</zip>

 </address>

 <url>www.communicate.com</url>

 <contact>

<email>support@communicate.com</email>

 </contact>

79

 </vendor>

 <platform>Windows</platform>

 <function>parser</function>

 <framework>ActiveX</framework>

 <language>JDK1.2</language>

 <space_req>

 <disk_space unit="bytes">1247</disk_space>

 <memory_space unit="MB">850</memory_space>

 </space_req>

 <domain>Web application</domain>

 <keywords>

 <keyword>XML</keyword>

 <keyword>Parser</keyword>

 </keywords>

 <gui>Swing</gui>

 <cost unit=”$”>860</cost>

 <license>one-time</license>

 <lang_support>English</lang_support>

 </general_info>

 <protocol credential="provider">

 <name>TCP/IP</name>

 <version>3.0</version>

 <provider>

 <name>Net service</name>

 <phone>1-800-643-7213</phone>

 <address>

 <street>1245 Number Two Street</street>

 <city>Norwell</city>

 <state>Massachusetts</state>

 <zip>02061</zip>

 </address>

 <url>www.inprise.com</url>

 <contact>

 <email>info@inprise.com</email>

80

 </contact>

 </provider>

 <RMI_protocol>RMI1.1</RMI_protocol>

 </protocol>

 <security>

 <confidentiality credential="testing">

 <name>Kerboros</name>

 <provider>

 <name>Inprise</name>

 <phone>1-800-123-5213</phone>

 <address>

 <street>101 Number Two Street</street>

 <city>Norwell</city>

 <state>Massachusetts</state>

 <zip>02061</zip>

 </address>

 <url>www.inprise.com</url>

 <contact>

 <email>info@inprise.com</email>

 </contact>

 </provider>

 </confidentiality>

 </security>

 </component>

</components>

81

APPENDIX B

All 27 representative integration rules extracted from the domain expert as

described in Chapter 5 in the form of ILOG JRules rule structure are shown below.

import component.*;

setup
{
 assert Evaluation() {

score = 0; }

};

rule LanguageCompatible1
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.1"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.2"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 9;}

 System.out.print("\n\nRule LC1: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible2
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.1"); ?i1:id);
 ?c2: Component(lang.equals("C++"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 1;}

82

 System.out.print("\n\nRule LC2: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible3
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.1"); ?i1:id);
 ?c2: Component(lang.equals("C"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 6;}

 System.out.print("\n\nRule LC3: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible4
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.2"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.2"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule LC4: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

83

rule LanguageCompatible5
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.1"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.1"); ?i2:id ; ?i1 > ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule LC5: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible6
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.0"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.0"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule LC6: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible7
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.0"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.2"); ?i2:id ; ?i1 != ?i2);

84

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 7;}

 System.out.print("\n\nRule LC7: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible8
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.0"); ?i1:id);
 ?c2: Component(lang.equals("JDK1.1"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 8;}

 System.out.print("\n\nRule LC8: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible9
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.2"); ?i1:id);
 ?c2: Component(lang.equals("C"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 6;}

85

 System.out.print("\n\nRule LC9: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule LanguageCompatible10
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.0"); ?i1:id);
 ?c2: Component(lang.equals("C"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score -= 10;}

 System.out.print("\n\nRule LC10: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule LanguageCompatible11
{
 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.2"); ?i1:id);
 ?c2: Component(lang.equals("C++"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 1;}

 System.out.print("\n\nRule LC11: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule LanguageCompatible12
{

86

 priority = high;
 when
 {

 ?c1: Component(lang.equals("JDK1.0"); ?i1:id);
 ?c2: Component(lang.equals("C++"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score -= 10;}

 System.out.print("\n\nRule LC12: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule PlatformCompatible1 {
 priority = high;
 when
 {

 ?c1: Component(platform.equals("Solaris"); ?i1:id);
 ?c2: Component(platform.equals("Java"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PC1: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule PlatformCompatible2 {
 priority = high;
 when
 {

 ?c1: Component(platform.equals("MS Windows"); ?i1:id);
 ?c2: Component(platform.equals("Java"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }

87

 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PC2: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule PlatformCompatible3 {
 priority = high;
 when
 {

 ?c1: Component(platform.equals("Solaris libraries"); ?i1:id);
 ?c2: Component(platform.equals("Solaris C Code"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PC3: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule PlatformCompatible4 {
 priority = high;
 when
 {

 ?c1: Component(platform.equals("Windows DLL"); ?i1:id);
 ?c2: Component(platform.equals("Windows binaries"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PC4: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

88

rule PlatformCompatible5 {
 priority = high;
 when
 {

 ?c1: Component(platform.equals("Windows DLL"); ?i1:id);
 ?c2: Component(platform.equals("Solaris"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score -= 20;}

 System.out.print("\n\nRule PC5: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule PlatformCompatible6 {
 priority = high;
 when
 {

 ?c1: Component(platform.equals("MS Windows"); ?i1:id);
 ?c2: Component(platform.equals("Solaris libraries"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score -= 20;}

 System.out.print("\n\nRule PC6: Component " + ?i1 + " and component " + ?i2 + ":
new score " + e.score + "...\n");

 }
};

rule ProtocolCompatible1 {
 priority = high;
 when
 {

 ?c1: Component(protocol.equals("RMI1.1"); ?i1:id);
 ?c2: Component(protocol.equals("RMI1.0"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }

89

 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PrC1: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule ProtocolCompatible2 {
 priority = high;
 when
 {

 ?c1: Component(protocol.equals("RMI1.0"); ?i1:id);
 ?c2: Component(protocol.equals("RMI1.0"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PrC2: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule ProtocolCompatible3 {
 priority = high;
 when
 {

 ?c1: Component(protocol.equals("RMI1.1"); ?i1:id);
 ?c2: Component(protocol.equals("RMI1.1"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PrC3: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule ProtocolCompatible4 {

90

 priority = high;
 when
 {

 ?c1: Component(protocol.equals("RMI1.2"); ?i1:id);
 ?c2: Component(protocol.equals("RMI1.2"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule PrC4: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule ProtocolCompatible5 {
 priority = high;
 when
 {

 ?c1: Component(protocol.equals("RMI1.2"); ?i1:id);
 ?c2: Component(protocol.equals("RMI1.1"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score -= 10;}

 System.out.print("\n\nRule PrC5: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule ProtocolCompatible6 {
 priority = high;
 when
 {

 ?c1: Component(protocol.equals("RMI1.2"); ?i1:id);
 ?c2: Component(protocol.equals("RMI1.0"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

91

 modify ?e {score -= 10;}

 System.out.print("\n\nRule PrC6: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule GUICompatible1 {
 priority = high;
 when
 {

 ?c1: Component(gui.equals("AWT"); ?i1:id);
 ?c2: Component(gui.equals("AWT"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule GC1: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule GUICompatible2 {
 priority = high;
 when
 {

 ?c1: Component(gui.equals("Swing"); ?i1:id);
 ?c2: Component(gui.equals("Swing"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score += 10;}

 System.out.print("\n\nRule GC2: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

rule GUICompatible3 {
 priority = high;

92

 when
 {

 ?c1: Component(gui.equals("Swing"); ?i1:id);
 ?c2: Component(gui.equals("AWT"); ?i2:id ; ?i1 != ?i2);

 ?e: Evaluation();

 }
 then
 {

 modify ?e {score -= 5;}

 System.out.print("\n\nRule GC3: Component " + ?i1 + " and component " + ?i2 +
": new score " + e.score + "...\n");

 }
};

93

APPENDIX C

Java programs that perform comparison between components in each

ensemble and integration rules in the database compose of 3 programs: Main.java,

Component.java, and Evaluation.java as shown below.

// Main.java
// The main function for the default version of the Component Analyzer

package component;

import java.io.*;
import ilog.rules.engine.*;

public class Main
{
 private static void waitReturnKey()
 {

 String stop = System.getProperty("IlrWaitReturnKey");
 if (stop != null) {
 System.out.println("Press return to continue . . .");
 try {

 System.in.read();
 } catch (IOException e) {

 // Does nothing.
 }
 }

 }

 public static void main(String[] args)
 {

 String filename = "data/ensemble.ilr";
 if (args.length > 0) filename = args[0];

 IlrRuleset ruleset = new IlrRuleset();
 boolean parsed = ruleset.parseFileName(filename);

 if (!parsed) return;

 IlrContext context = new IlrContext(ruleset);

 IlrRuntime.self.timeSnapshot();
 int nrules = context.fireAllRules();
 IlrRuntime.self.timeSnapshot();

 IlrRuntime.self.printTimeUsage(nrules);

 context.retractAll();
 context.end();
 waitReturnKey();

 }
};

94

// Component.java

package component;

public class Component
{
 public int id;
 public static String func, lang, platform, protocol, gui, framework;
 public int score[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 public int f(int i) {

return i+1; }

 public void show_scores() {
int k;
System.out.println("\nScores for component " + id + ":");
for (k=0; k<= 8; k++) {
 System.out.println("Score[" + k + "] is " + score[k]);
}

 }

 public Component()
 {

 func = "";
 lang = "";
 platform = "";
 protocol = "";
 gui = "";
 framework = "";

 }
};

// Evaluation.java

package component;

public class Evaluation
{

 public int score;

 public Evaluation()
 {
 }
};

95

APPENDIX D

The output from running the prototype is in the form of component identifiers

of each ensemble, number of rules fired and compatibility score (new score) as shown

below.

<component id='100'>

<component id='101'>

<component id='109'>

Rule PrC2: Component 101 and component 109: new score 10...

Rule PrC6: Component 100 and component 109: new score 0...

Rule GC3: Component 100 and component 101: new score -5...

Rule PrC6: Component 100 and component 101: new score -15...

4 rules fired in 0.009999999776482582 seconds.

400 rules per second.

<component id='100'>

<component id='103'>

<component id='107'>

Rule GC2: Component 100 and component 107: new score 10...

Rule LC4: Component 100 and component 107: new score 20...

Rule PrC3: Component 103 and component 107: new score 30...

Rule PrC5: Component 100 and component 107: new score 20...

Rule LC11: Component 100 and component 103: new score 21...

Rule PrC5: Component 100 and component 103: new score 11...

6 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='115'>

<component id='103'>

96

<component id='106'>

Rule GC2: Component 106 and component 115: new score 10...

Rule PrC3: Component 103 and component 106: new score 20...

2 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='100'>

<component id='101'>

<component id='105'>

Rule GC2: Component 100 and component 105: new score 10...

Rule LC1: Component 101 and component 105: new score 19...

Rule LC4: Component 100 and component 105: new score 29...

Rule PC6: Component 100 and component 105: new score 39...

Rule PrC5: Component 100 and component 105: new score 29...

Rule GC3: Component 100 and component 101: new score 24...

Rule PrC6: Component 100 and component 101: new score 14...

7 rules fired in 0.009999999776482582 seconds.

700 rules per second.

<component id='100'>

<component id='103'>

<component id='1001'>

Rule PrC4: Component 100 and component 1001: new score 10...

Rule LC11: Component 100 and component 103: new score 11...

Rule PrC5: Component 100 and component 103: new score 1...

3 rules fired in 0.009999999776482582 seconds.

300 rules per second.

<component id='100'>

97

<component id='101'>

<component id='106'>

Rule GC2: Component 100 and component 106: new score 10...

Rule LC1: Component 101 and component 106: new score 19...

Rule LC4: Component 100 and component 106: new score 29...

Rule PC6: Component 100 and component 106: new score 36...

Rule PrC5: Component 100 and component 106: new score 26...

Rule GC3: Component 100 and component 101: new score 21...

Rule PrC6: Component 100 and component 101: new score 11...

7 rules fired in 0.009999999776482582 seconds.

700 rules per second.

<component id='210'>

<component id='103'>

<component id='1001'>

Rule PrC1: Component 103 and component 210: new score 10...

1 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='210'>

<component id='101'>

<component id='106'>

Rule GC2: Component 106 and component 210: new score 10...

Rule LC1: Component 101 and component 106: new score 19...

Rule PrC1: Component 106 and component 210: new score 29...

Rule PC5: Component 101 and component 210: new score 19...

Rule PrC2: Component 101 and component 210: new score 29...

5 rules fired in 0.009999999776482582 seconds.

98

500 rules per second.

<component id='100'>

<component id='101'>

<component id='1001'>

Rule PrC4: Component 100 and component 1001: new score 10...

Rule GC3: Component 100 and component 101: new score 5...

Rule PrC6: Component 100 and component 101: new score -5...

3 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='115'>

<component id='101'>

<component id='1001'>

Rule PrC4: Component 115 and component 1001: new score 10...

Rule LC5: Component 115 and component 101: new score 20...

2 rules fired in 0.009999999776482582 seconds.

200 rules per second.

<component id='100'>

<component id='103'>

<component id='106'>

Rule GC2: Component 100 and component 106: new score 10...

Rule LC4: Component 100 and component 106: new score 20...

Rule PC6: Component 100 and component 106: new score 27...

Rule PrC3: Component 103 and component 106: new score 37...

Rule PrC5: Component 100 and component 106: new score 27...

Rule LC11: Component 100 and component 103: new score 28...

Rule PrC5: Component 100 and component 103: new score 18...

99

7 rules fired in 0.020999999716877937 seconds.

333 rules per second.

<component id='115'>

<component id='101'>

<component id='1001'>

Rule PrC4: Component 115 and component 1001: new score 10...

Rule LC5: Component 115 and component 101: new score 20...

2 rules fired in 0.009999999776482582 seconds.

200 rules per second.

<component id='100'>

<component id='101'>

<component id='1001'>

Rule PrC4: Component 100 and component 1001: new score 10...

Rule GC3: Component 100 and component 101: new score 5...

Rule PrC6: Component 100 and component 101: new score -5...

3 rules fired in 0.009999999776482582 seconds.

300 rules per second.

<component id='100'>

<component id='103'>

<component id='1001'>

Rule PrC4: Component 100 and component 1001: new score 10...

Rule LC11: Component 100 and component 103: new score 11...

Rule PrC5: Component 100 and component 103: new score 1...

3 rules fired in 0.009999999776482582 seconds.

300 rules per second.

<component id='210'>

100

<component id='103'>

<component id='1001'>

Rule PrC1: Component 103 and component 210: new score 10...

1 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='100'>

<component id='103'>

<component id='107'>

Rule GC2: Component 100 and component 107: new score 10...

Rule LC4: Component 100 and component 107: new score 20...

Rule PrC3: Component 103 and component 107: new score 30...

Rule PrC5: Component 100 and component 107: new score 20...

Rule LC11: Component 100 and component 103: new score 21...

Rule PrC5: Component 100 and component 103: new score 11...

6 rules fired in 0.009999999776482582 seconds.

600 rules per second.

<component id='210'>

<component id='101'>

<component id='105'>

Rule GC2: Component 105 and component 210: new score 10...

Rule LC1: Component 101 and component 105: new score 19...

Rule PrC1: Component 105 and component 210: new score 29...

Rule PC5: Component 101 and component 210: new score 19...

Rule PrC2: Component 101 and component 210: new score 29...

5 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

101

<component id='100'>

<component id='101'>

<component id='1001'>

Rule PrC4: Component 100 and component 1001: new score 10...

Rule GC3: Component 100 and component 101: new score 5...

Rule PrC6: Component 100 and component 101: new score -5...

3 rules fired in 0.019999999552965164 seconds.

150 rules per second.

<component id='100'>

<component id='103'>

<component id='107'>

Rule GC2: Component 100 and component 107: new score 10...

Rule LC4: Component 100 and component 107: new score 20...

Rule PrC3: Component 103 and component 107: new score 30...

Rule PrC5: Component 100 and component 107: new score 20...

Rule LC11: Component 100 and component 103: new score 21...

Rule PrC5: Component 100 and component 103: new score 11...

6 rules fired in 0.019999999552965164 seconds.

300 rules per second.

<component id='210'>

<component id='101'>

<component id='107'>

Rule GC2: Component 107 and component 210: new score 10...

Rule LC1: Component 101 and component 107: new score 19...

Rule PC4: Component 101 and component 107: new score 29...

Rule PrC1: Component 107 and component 210: new score 39...

102

Rule PC5: Component 101 and component 210: new score 29...

Rule PrC2: Component 101 and component 210: new score 39...

6 rules fired in 0.010999999940395355 seconds.

545 rules per second.

<component id='115'>

<component id='101'>

<component id='107'>

Rule GC2: Component 107 and component 115: new score 10...

Rule LC1: Component 101 and component 107: new score 19...

Rule PC4: Component 101 and component 107: new score 29...

Rule LC5: Component 115 and component 101: new score 39...

4 rules fired in 0.009999999776482582 seconds.

400 rules per second.

<component id='100'>

<component id='101'>

<component id='109'>

Rule PrC2: Component 101 and component 109: new score 10...

Rule PrC6: Component 100 and component 109: new score 0...

Rule GC3: Component 100 and component 101: new score -5...

Rule PrC6: Component 100 and component 101: new score -15...

4 rules fired in 0.009999999776482582 seconds.

400 rules per second.

<component id='100'>

<component id='101'>

<component id='1001'>

Rule PrC4: Component 100 and component 1001: new score 10...

103

Rule GC3: Component 100 and component 101: new score 5...

Rule PrC6: Component 100 and component 101: new score -5...

3 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='115'>

<component id='101'>

<component id='105'>

Rule GC2: Component 105 and component 115: new score 10...

Rule LC1: Component 101 and component 105: new score 19...

Rule LC5: Component 115 and component 101: new score 29...

3 rules fired in 0.0 seconds.

9223372036854775807 rules per second.

<component id='100'>

<component id='101'>

<component id='105'>

Rule GC2: Component 100 and component 105: new score 10...

Rule LC1: Component 101 and component 105: new score 19...

Rule LC4: Component 100 and component 105: new score 29...

Rule PC6: Component 100 and component 105: new score 39...

Rule PrC5: Component 100 and component 105: new score 29...

Rule GC3: Component 100 and component 101: new score 24...

Rule PrC6: Component 100 and component 101: new score 14...

7 rules fired in 0.009999999776482582 seconds.

700 rules per second.

<component id='210'>

<component id='101'>

104

<component id='105'>

Rule GC2: Component 105 and component 210: new score 10...

Rule LC1: Component 101 and component 105: new score 19...

Rule PrC1: Component 105 and component 210: new score 29...

Rule PC5: Component 101 and component 210: new score 19...

Rule PrC2: Component 101 and component 210: new score 29...

5 rules fired in 0.009999999776482582 seconds.

500 rules per second.

105

106

BIOGRAPHY

Name – Last Name : Somjai Boonsiri

Current Profession : Assistant Professor at Department of Mathematics,

 Faculty of Science, Chulalongkorn University.

Education : M. Sc. Computer Science, Chulalongkorn University (1992)

: B. Sc. Mathematics, Chiang Mai University (1984)

Research Areas : Component-based software engineering, Software reuse,

 Distributed system, Database systems

Training : 1. Researched at the Software Engineering Institute (SEI),

 Carnegie Mellon University, Pittsburgh, U.S.A. 1 year.

 2. UNIX-LAN System Design and Development training at

 Center of the International Cooperation for Computerization

 (CICC), Japan 2 months.

Experiences : Lecturer at Payap University (1986-1989)

 : Lecturer at Chulalongkorn University (1993-1995)

Publications : 1. Boonsiri, S. and Pattarakosol, P.,”Starting to Computer”

 (in Thai), AR Information & Publication, 1997.

 2. Boonsiri, S. et al., “Internet: Variety Services” (in Thai),

 S.D.Press Ltd., 1996.

 3. Robert C. Seacord, David Mundie, and Somjai Boonsiri,

 “K-BACEE: Knowledge-Based Automated Component

 Ensemble Evaluation”, Proceedings of the 27th IEEE

 EUROMICRO Conference, September 2001.

 4. Somjai Boonsiri, Robert C. Seacord, and Russ Bunting,

 “Automated Component Ensemble Evaluation”, to be

 published in the International Journal of Information

 Technology (IJIT) in volume 8.

