CHAPTER 1V
POSITIVE TOTALLY ORDERED O-SEMIFIELDS

Definition 4,1. Let R be a positive ordered semiring. R is called a positive
totally ordered semiring iff for evrey X,y € R, X<y or y<x.

Remark 4.2, Let K be a positive ordered semifield. Then the following
statements hold :

(1) K is a positive totally ordered iff K=P U P U (0}.

(2 K is a positive totally ordered iff for all x e K, x=1 or
x< 1.

(3) Suppose that K is a positive totally ordered and C an o-convex
subgroup of K. Then C is a convex subgroup of K.

Proof (1) and (2) are obvious,

To prove (3), let C be an o-convex subgroup of K. Let x € C and
a,b e K be such that a+b=1.
Case 1. x<1. Then ax<a, so ax +bsSa+b=1. Since x S 1, x'121.
Then bx 2b, s0 (ax+bjX =a+bx 2a+b=1 Hece ax+b2x. By
the o-convexity of C and x<ax+b<1l, ax+be C
Case 2. x 2 1. The proof is similar to the proof of Case 1.

‘Therefore C is a convex subgroup of K, 4

We shall give some examples of positive totally ordered semifields,

Examples 4.3. (1) Q:,, }R:, are positive totally ordered semifields.
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(2) From the Example 1.24. (3), {2' ] ne Z) U {0} is a
positive totally ordered semifield.
(3) From the Example 2.6. (5), K-x L-u ((0,0)} with <* is
a positive totally ordered semificld where K and L are positive totally
ordered semifields.
Let K be a positive totally ordered semifield and C a convex
subgroup of K. Then K/~ is a positive totally ordered semifield. To prove

this, . clearly K/~ is a positive ordered semifield. Let o € Ky~. Choose x € q.

Case 1. x<1. Then a <C.
Case 2, x21. Then azC. By Remark 4.2. (2), K/C is a positive totally

ordered semifield. M

Theorem 4.4. Let S be a commutative positive totally ordered semiring with
multiplicative zero O which is the M.C. property and satisfies the property
that for every x,y,z € 8, xz <yz implies that x <y. Then S can be

embedded into a positive totally ordered semifield.

Proof By Theorem 2.7., we have that K=3§ x (S - {0}y is a
positive ordered semifield. To show that K is a positive totally ordered
semifield, let o € K. Fix ae S - {0}. Choose (x,y) € 0. Then xa< ya or

ya S'xa which implies that a =[(x,y)]<[(a,a)] or [(a,a)] Sx,y)l=a.
So by Remark 4.2. (2), K is a positive totally ordered semifield. #

Proposition 4.5. (13)) Let {K; | i e I} be a family of positive totally ordered
semifields. Then I-IGIIKl s a positive totally ordered semifield if and only if

either I={i} and K, is a positive totally ordered semifield or there exists
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i € I such that K, is a positive totally ordered semifield and IKIl =2 for

all iel- (i

Proof See {31, pp. 46..

Let K be a semifield and A a nonempty subset of K .
let ¥={BcK | AcB and B has the property that
1) t €B, |
2) B2_<; B,
3) B+Kc B and
4) B is an a-'convex subset of K}. % # @ since K-e%"f Then

the smallest subset of K satisfying 1) - 4) exists.

Definition 4.6, Let K be a semifield A a nonempty subset of K. The
hull_of A, denoted by H(A), is the smallest subset of K satisfying 1) - 4).
And A has property (*) iff for every x,,x,...X, € K there exist

€1» €55 e &, € {1, 1} such that HP U{ X%, x32, . X)) is conic. From now

on we shall use H(P, x}!, X32, ... , x.°) instead of H(P U {x}!,x32 ..., x.%}).

Lemma 4.7. ({2]) Let K be a positive ordered semifield and P the positive
cone of K. Suppose that P satisfies property (*). Then for every x e K'
either. H(P, x) or H(P, xﬁl) satisfies (1) - (4) of Theorem 2.11. and also

satisfies property (*).

Proof Let x € K . Suppose that H(P,x) and H®P,x ) do not

satisfy the property (*). Then there exist a, 8, .,a,b,b, ..,b, € K- such
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5

-1
that HOHEP , x), 2, 82, ..., a™) and H(H(P , x'), bl%, by?, .., by™) are not

conic for every choice &, £ wu €4 8y 8y ooy B '
Claim that H(P X ,a’l, a7, ..., &) = HH(P , x).a;}, a, ... , a,") for

every choice of ¢, €, ... 5, Lt €, € s € € {-1, 1}. Clear that

HP x, a0, a2, ..., a" < HHP , %), 2}, a7%, ... , a%). Since HP,X) ¢

HP x,a!, a2 ...,a") and a,a, .. aeHP X, a;l, 85, ... , &),

€f

H(HP , X), a2, 82, .., a") c H(P x , a;', &%, ... , 2,").  Therefore

€

HH(P , X), 2}1, 8%, .., ") = H(P x, a;’, &% ..., a,"). So we have the claim.
‘ . -1
Similarly, HH® , x ), b%, b2, ..., bim) = HP x , b3, b2, ..., b") for
“all choice 3,, 8y, ..., 5, Then we get that H(P x,a}', a? ..., ") and
-1 5] 62 Bm . 8 & 8
H(P x ,b, b% ..., b, ™) are not conic. We shall show that H(P x ,a ", a,%
e 2D ,b?‘, bgz, bi’“) is not conic for every choice ¢, €,, ..., €, 8, 8,, ...,

3

m®

Case 1. e=1. Since H(P x, a?‘, a;", = :") is not conic, there exists

1
y € H(P x ,afl, a;'Z, L., a:“) ~H(P, x, afl, a;Z, v 4 a:") and y = 1. Hence

5

y € HP x°at, a2, ..., bl b2, .., b2%) A HP % 8], a2, ..., ™ b, b,

By !

€ 8 8 5, .5 & . .
v b®) , so HP X%, a1}, 85% ., a7, b, b2, ., b.™) is not conic.

Case 2. & =-1. Similarly to case 1.

It contradicts to property (*) of P, hence H(P,x) or H(P, x.l)
satisfies (*). If H(P, x) satisfies (*) then H(P, x) = HH(® , x), 1) is conic.
Therefore H(P , x) is a positive cone of K. By Theorerﬁ 2.11.,, H(P, x)
defines a positive compatible partial order on K. '

Similarly, it HP,x) satisfios (*). 4
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Theorem 4.8. Let K be a positive ordered semifield and P the positive
cone of K. Then <,(from Theorem 2.11.) can be extended o a totally

order on K iff P satisfies the property (*).
Proof Assume that P can be extended to totally order of K, say Q. -

»

Let X, X, ..., X, € K. Choose g, &, ..., €&, € {-1, 1} such that x; € Q for alli.

To show that H(P, xi}, x32, ..., ;") is conic, let x € HEP, 57!, x32, .. , ) N

-1
HP, x, x32, ... , X;") and suppose that x # 1.

Case L x <1.Then x & H(P,x%% x2, ..., x) since H(P, x}%, x% ..., xMcQ,
a contradiction.

-1 -1
Case 2.x>1. Then x <1 and x & HP, x{!, %% ..., ;¥ , 2 contradiction.

Therefore x =1, so HP, x}', x';’, N x;") is conic.

Conversely, let €= (Q1Q is a positive cone of K containing P and
satisfies (¥)). Then @ # @ since P € & Let (Qlie1} be a chain in &
Clear that }é’;Qi is a positive cone of K containing P which is an upper

bound of {Qili € I}. Suppose that ki.é'lQi does not satisfy (¥), there exist

-
E . .
X, % X, € K such that HOZ Q. x,', X2, .. , X%) is not conic for

every choice €,, €y, vy €, SO there js an X € H(ki.é'[Qi s x':‘,  SCRNN ﬁ;“) 'a)

-1 |
H(2 Q- X7 X2, .., X%} such that x 1. Then X, x ‘e HO Qs K X s
x:")- Choose k large enough so that x, x'l e H(Q,, X:I’ x;z’ N, x:n) Ca

contradiction since Q, satisfies (*) and x 3 1. Hence gé'IQi satisfies (*).
1

By Zom's Lemma, % has a maximal element, say Q. By Lemma 4.7., for
. 3
x € K,HQ,x) or H(Q,x ) € C, so by the maximality of Q, either
“
x€Q or x e Q. Therefore Q defines a total order on K. 4
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Theorem 4.9. Let K be a positive ordered semifiedd and P the positive
cone of K. Then <, is the intersection of all total order which are
extension of <, iff for x € K there exist X X wes X, € K sUCh that

-l - a -
HP, x , x';‘, x;2, s x:'“) is not conic for every choice €, €y, ..., €,€l1, -1}

implies that x € P.

Proof Assume that P =Q[Qi where Q, is a total order that is an
extension of P for all iel Let x e K‘. Suppose that x ¢ P. Then there
exist i, € I such that x & Q{G, .so x‘l € Qio. Let y e HP, x-l) ~HEP, x_l)-l.
Thus vy, y~1 € HP, x—l) c Qi;], so y = 1. Therefore H(P , x'l) is a positive
cone of K which can be extended to a toal order Q. By Theorem 4.8.,
H(P,x') satisfies (*).

Conversely, it is clear that Pc QIQi . Let x ¢ P. By assumption for
every nonzero X,, X,, ..., X, € K, there exist e, €5, ..., €, € {-1, 1} such that
"H(P, x}', 2, ... X®) is conic. By Theorem 4.8., there is a total order Qin
which is an extension of P. Thus x—l € Qia1 so X g Q o This prove that
qui c P. Hence P = Qin- g
Definition 4.10. Let K be a ‘semifield. K is said to be O -semificld iff
there exists a positive compatible total order on K.

Proposition 4.11. If a semifield K is an 0.-semiﬁeld then for every X, X,,

w X €K , there exist €, &,, ..., g,€(-1, 1} such that H(x';1 , xz" R xﬁ“) is conic.

Proof Assume that K is an O -semifield. Then there exists the

[ ]

positive cone P of K such that K=PUP U (0). Let X, Xy ..X, € K.
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Then choose €, €,, ..., £,€ {-1, 1} such that x;' € P for all i€ {1,2,..,n}.
a1 1
Thus HE', X2, v X A HGS!, X2, oy x™) € P NP = (1}, hence

8 g 4 . .
H(x !, x.2, ..., x.") is conic.
1 2 n

#

Definition 4.12. Let K be 2 positive ordered semifield. K is called a vector

semifield iff it is a subbdirect product of positive totally ordered semifields.
Let {K, [ i eI} be a family of positive ordered semifield. Let K be

th s . .
a subsemifield of %Ki. Then the j projection map from K into K, is

isotone for all j € L. -
To prove this, fet (X)), o,>(¥) ;.; €Kbe such that (X} ;= (¥):icr

Then x,<y, for all i € . Let j € L Then Hj((xi) je) EX Y= I'[J.((xi) ier)

Therefore I'[j is isotone.

Theorem 4.13. Let K be a positive ordered semifield. Then K is a vector
semifield iff its posiive conre can be represented as the intersection of T,
where for each i € [,

(1) T, is a convex multiplicative subsemigroup containing P,

* A
(2) x e K ~ T, implies that x € T, and

3) 1+KcT.

m Assume that K is a vector semifield. Then K is a
subsemifield of E,Ki where K, is a positive totally ordered semifield for all
iel

 Let T,=TI, (P) where P.is a positive cone of K. for all i e I Let

iel
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(1) Let x,y € T, Then IL(x), IL(y) € P,. So I (xy) = ILOIL(y) € P,
so xy € II'(P) =T, Let a,be K be such that a+b = 1Then Tia) + ()
- T(a +b) = I{1) = 1, Then Ti(ax +by) = I@ILX) + ILG)L() € P, since
P, is an a-convex subset of K, Thus ax + by el'li-l(Pi)=T

Let z € K ze such that x<2<y. Since IL is isotone, IL(x)<Il(2)
<TI(y). By the o-convexity of P, F(z) € P, Hence z ¢TI, (B) =T,

Let pe P. Then Ti(p) € P, so pe l'li-l(P.l) =T, Therefore T, is a

convex multiplicative subsemigroup containing P.

@) Let x€X =T, Then x ¢ T, so IL(x) ¢ P, Since P, is totally
order, TI(x) € P.". So TI(x") = M) & P, hence x e II, (B) =T,

(3) Let x € K. Then 1+ x € P, Since II(P) cP; for all iel,
l+xe=I®) =T, for all iel Hence P\ T, Let y € 0T, Then
yeT, for all iel, so I(y)e P, for all i el which implies that y € P.
Hence Ql T,cP. Therefore P = QI T.

Conversely, assume that P =T, let N;=T,n T, for all i € L To

show that N, is convex subgroup of K, let ie L Let x,y € N. Then Xx,y,
x-l, y-‘ e T.

Then xy, (xy).1 € T. Hence xy € T, N T-1 = N,. Clearly that X-l e N.
Let a,b € K be such that a+b =1. Then ax+byeT and (ax+by)
(a +b)ax + by) = [ax (ax +by) 1x + [by(ax +by) ]y € T.
Hence ax + by € T, Ti =N..

Let ze K be such that x<z<y. Then y <z <X, by the
o-convexity of Ti,' ze TN Ti'1 =N.

Therefore N, is a convex subgroup of K. Thus N Ny=n (T;N Ti'l) =
T AT =PAP =11}, o qN={1}. Let K= Ky, for al il

Then K, is a positive ordered semifield. Define f:K "’H,Ki by
1€



76

f(x) = (xN;) for all x € K. Then we have that f is a monomorphism.

Next, let P,=TILof(T) for all i € l. To show that P, is the positive

iel

cone of K for all iel, Jet iel -

(1) Let a, P € P, Then there are a, b € T, such that Ilof(a)=a
and TLof(b) = B. Then aN,= o and bN;=@. Hence o = (@N)BN) = (@b)N,
=TI1of(ab) € ILof(T,) since ab e T,

(2) Let @ € P.AP, . Then there are a, b e T, such that aN, =
Mof(a) = o and bN,= [lof(b) = . So (ab)N,= @N)(BN) = aa =N, hence
abe N=T,AT . Thus b, (ab) €T, Since aeT, b =a@b) e T,
Therefore b € T,AT, =N,..Sinceb € N, aN,=abN, Since abN,=N, a =
aN, = N,

(3) Let a, P € P. then there are a, b € T, such that aN,=a and
bN,=fB. Let C,D €K be such that C+ D =N, Since 1 € N;, there exist
ceC and d e D such that 1 =c +d. Since T, is aconvex, ca+db € T,
Then Ilof(ca + db) = (ca+ db)N, = (eN)(@N,) + (dN)(®BN,) = Ca + D,

Ca + DB € [of(T) =P,

(4) Let a € K,. choose x € a. by assumptior, x +1 € T. Thus
Mef(x + 1) =(x + DN;=xN,+ N.=a +N,, so a +N, e [L.f(T) =P, By
Theorem 2.11., P, is a possitive cone of K for all 1 e L

Finally, to show tliat P, is totally order for all i € I, let i € I. Let
@ € K;. Choose x € 0. If x €T, then & =xN,=TLof(x) € [Lof(T) =P,
Suppose x # T, By assumption, X € T, So (x )N, =ITof(x ) € ILof(T) =

P. Therefore o =xN, e Pi-l. 4

Corollary 4.14. 1et K be a positive ordered semifield. If K is a vector
semifield then its positive cone P satisfies the property that for every

. € € £
X, X, . X, € K, "H(P, x,1, x,2 x=P for £,¢,..,6 € {-1,1}.
1 2 5 ey R 1* =2 n
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Proof Assume that K is a vector semifield. By Theorem 4.13.,

P=NT, where T, satisfies (1) - (3) all iel Let X, Xp 0y X € K. By
i€1

property (2) of T, we can choose €, €5, . &, € {-1,1] such that x?li :
X2 . xMeT, for all i€l Therefore H(P, X34, X35 xm) o T, for

all iel since P T,

Then Pc AHP, 3L x2 . X @i, SIS SC I WX = BN
1 1
£
=P, "nH(P, x}, x,2, . X = P, 4

Theorem 4.15. Let K be a positive lattice ordered semifield. Then K either

a positive totally ordered semifield or K is subdirectly reducible.

Proof Let K be a positive lattice ordered semificld. Suppose that K
is not a positive totally ordered semifield. Then there are X,y € K' such
that x |ly. Then nyHI.Lela:xy'l.Then (av1)>1 and @nl) >1, so
<avi1>, and <(aal) > #{1}. Since le@ava@al) =
lavilial(@a 1).] I. by Proposition 3.24., <av1> N<(@na 1}-1>L= {1}.

Let £={1 |1 is an L-ideal of K except {1)}. Suppose that &
has the minimum element, say I_. Since <av1>, <(aa 1).1>Le Z,

I c<av i, <@A 1>, Ths L iE<aviz a<@al)> =1}, s
1_= {1}, a contradiction. Hence -2 has no a minimum element. By

Proposition 1.62., K is subdirectly reducible. 4

Theorem 4.16. Let K be a positive lattice ordered semifield. Then K is a

subdirect product of positive totally ordered semifields.

Proof Let K be a positive lattice ordered semifield. By Theorem

1.66.," K is a subdirect product of subdirectly irreducible positive lattice
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ordered semifield which are also positive totally ordered semifield, by

Theorem 4.15.. 4

Definition 4.17. Let K be a positive totally ordered semifield. K is said to
be Archimedian iff for every x,y e I(‘, if x <y then
(1) there exists an n € Z+ such that y <nx and

(2) there exists an n € Z such that x <yn if x=#1.

Proposition 4.18. Let K be an Archimedian positive totally ordered semifield
such that 1+ 1= 1 and K _c K, the prime semifield of K is order
isomorphic to Q;. Then the following statements hold :

(1) 1=inf{l +n | neZ)

(2) For every X,y € K, x <y implies that there exists an nez -
suéh that nx + 1 <ny.

(3) For every x € K, there exists an n € Z such that n-1<x<n.

Proof (1) Let K_ be the prime semifield of K. Claim that for every
peK, there exists an N e Z such that p<N(N+1) .

Let p € K. Then there exist m, n € Z:, such” that p = mn-1 and n =z (.
Let N=4(m +n). Then N € Z+ and N=4(m+a)>(m+n) +2 {(m+n)>
(m+mN' +2Nm+mN =(m+0)1+2NN, so N > (@ +n)1 + 2N).
Therefore Nz(ZN + l).1 >m+n> mn | % p- So we have the claim.

Clear that 1 is a lower bound of {1+n-1 |nEZ+}. Let ze K be
such that z<l+n—] for all neZ. To show that z <1, suppose that

2
z>). Then z<z.
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Case 1. Suppose that there exists an M € Z  such that 1+M‘1 <z. Since
s<lan foral neZ, 2<U+n) for alln € Z (*). By the
claim, there exists an N € Z+ such that M <N2(2N + 1)—1. Thus

QN+ DN" <M, it follows that 1+ (2N + DN’ <1+M: Therefore

A+ NV =(N+2N+ DN <1+M . Since 1+ M <z, Q+NY <z
which is contradicts to (*).

Case 2. Suppose that zz<1+n-1 for all n€ 7", Since z<2 and K is

Archimedian, there exists m € Z such that 2<z . Then m2 3.

k 4 + +
Claim that Z <l+n <z for all neZ, for all keZ and k227

For k=2.
+ 2 -1
Let n € 7', There exists an N € Z such that n <N(2N +1) .
- - - -1
Thus (1+Nl)2<1+n°1. Since zz<1+n1 for all neZ+, z4<(1+n )2for
'+ 4 g A4 m . . 2?
al neZ. Thus z <(1 +N ) <1+n, <z . Since n,is arbitrary, z =

4 .

yA <1+n]<z‘m for all neZ+.Suppose that the claim is true for k-122,
,kl 4 + k k-t 12

Then z <1+4n <z for all neZ . Hence z =(z )<{(l+n) for

Let n € Z+. There exists an N € Z+ such that n_ < N2(2N+ 1)-1.
a2 a . 2% a2 2F m .
Thus (1+N ) <1+n_ . Since z <{(1+N), z <l+n,<z. Since n_ 13
k - +
arbitrary, z2 <1+nl<:zm i_’or all n €eZ. So we have the claim.
2 : P

Since mz 3, z <z. By K is an Archimedian, zm<(zz) for some p € Z.
Then ‘p 2 2, which contradicts to the claim.

Therefore z < 1. This shows that 1 =inf {1 +n.] Ine Z+}.

(2) See the proof of [5], pp. 35.

(3) Clearly. ,
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Proposition 4.19. Let X be an Archimedian positive totally ordered semifield
such that 1+ 1= 1 and K <K, the prime semifield of K is order

isomorphic to Q;. Then K, is dense in K.

Proof Let x,y € K be such that x <y. We shall show that there
exists p € K, such that x <p<y. By Proposition 4.18, (2), there exists
neZ such that nx + 1< ny. By Proposition 4.18. (3), there exists
meZ and m-1<nx<m. since m-1<nx, m<nx+1. Since nx+1<

-1
ny and nx <m, nx <m<ay. Thus x <mn <y.#

Theorem 4.20. Let X be an Archimedian positive totally ordered semifield
such that 1+ 1= 1 and K ,c K, the prime semifield of K 1s order
isomorphic to Q:). Then K can be embedded into a complete positive
totally ordered semifield.

Proof Let K, be the prime semifield of K which is K =o Q;.
By Proposition 4.19., K is dense in K.

Let X be the set of all subsets D of K  with the following
properties that

(1) DNK, =2,

(2) there exists a p € K, such that p ¢ D,

(3) for every d € D there exists a p € K, such that d <p and

(4) for every p,qe K, p<q and q € D imply that p € D.

First to show that I={x ek, | x<1) e K

(1) Since 1<2, 2 <1 So 2 eInK,

(2) Since 1 <2 and 2€ K, 2¢L
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(3)Let re ). Then r<1.Since L, reK,l+reK_.So (r+ 1)2-15 K..
Since r<1,2r=r+r<r+l1<1+1=2 Thus r<(r+l)2-1<1,(r+1)2-lel.

(4) Let p,qe K, be such that p<q and q € I. Then q <1, hence
pel

Therefore | € ¢ @. Let A= X U ({0}]. Define binary + and .
on @% as follow : let C,D e X

C+D={c+d|ceC and d e D} and
CD ={cd|ceC and deD)

Step 1. To show that + is well-defined, claim that for every p,q € K,
p <q implies there exists r € K  such that p+r=gq. Let p,q € K, 'be
such that p <q. Since KosoQ:,, q-peK,. Let r=q-p. Then p+r=
pP+(q-p)=q. So we have the claim.

Let C,D e K. suppose that C, D # {0}.

(1) Since CNK, #& and DN K #3, (C+D)NK_ #@.

(2) Let pe K —-C and qe K ~D. Then x<p and y<gq for all
xeCand yeD, so x+y<p+q for all xeC and y € D.
Hence p+q& C+D.

(3) Let x € C+D. Then x =c; +d,  for some ¢c; € C and d,e D.
Since C and D are in <X there exist c,€ C and d, e D such that ¢,<c,
and d,<d,. Thus X =¢,+d,;<c,+d, e C+D. |

(4) Let p,qe K, be such that p<q and qe C+D. Then q=c+d
for some ¢ e C and de D. Thus p<q=c+d.
Case 1. p<d. Then peD. p=p+0e C+D.
Case 2, p=d. Then pe D, so pe C+D.
Case 3. p>d. Then there exists an r € P such that p=d+r<c+d, so
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r<c. Hence € C, so p=d+r1 & C+D. Therefore + is well-def'mcd.
Step 2. To show that . is well-defined, let C, D € <K Suppose that
C,D = {0}.

(1) Lt ce CnK, and de DK, cde CDNK #0O.

(2) Let ce K ,—C and d e K, - D. then cd € K, Then x <c and
y<d for all xeC and y e D, so xy{cd for all x € C and d € D.
Hence cd ¢ CD.

(3) Let x € CD. Thg:n x =c,d, for some ¢, e C and d, € D. Since
C and D are in X, there exist c, € C and d, € D such that ¢, <c, and ~
d, <d,. Therefore x =cd, <c,d, € CD.

(4) Let p,q € P be such that p<q and q € CD. Then there exist
ceC and d € D such that g =cd. Since p<g=cd, pc'l<d. Thus
pc' € D. Hence p =c(pe ) € CD.

Thererfore . is well-defined.
Step 3. To prove that DI=D for all D e <X, let D e &X,. If D ={0)
then done. Suppose that D # {0]. Choose de D. Let p € l-. Then p<1,
so pd <d. Since d € D, pd € D. Hence DIc D. Let d € D. Then there
exists p € D such that d l<p, 50 dp'1 < 1. It follows that dp'1 € 1. Since

A
d=p(dp ), d e DI. Thus' D ¢ DI Therefore DI =D for all D e A,

Step 4, Let D e X Let D'l={peK°|there exists q € K, - D such that
-1 -1
p<q }. We shall show that D e X
() Let peD and pe K, Let x=2p. Then x € K, and x €K,
Since p<2p=x, x-l<p-l. Thus :l(—1 € D_l.
(2) Let deD. Then d<x for all x €K, ~D, so x <d for all

xeK, -D. Hence d 2D .
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- -1
(3) Let d € D'. Then there exists a q € K, — D such that d<q .

-1 -
Hence there exists a p € K, such that d<p<q, so peD .

-1
(4) Let p,qe K_ be such that p<q and q € D . Then there exists

-1 -1 -1
an x € K, - D such that g<x , hence p<x . Hence p € D .

Therefore D-1 e cA.

Step._ 5. To show that DD'1=I for all D e X, let D € ¢X. Claim that for

every x € K there exists a g € K, - D such that g-x e D.

Letx € K. Suppose that nx € D for neZ. Let p € K. Since Kis
Archimedian, there exists an‘ N eZ such that p < Nx. Since Nx € D, -
p € D. This prove that K, c D, a contradiction. Therefore there exists a
n €Z such that nx ¢ D.

Let n,= min {neZ | nx ¢D). Then n,>1 and (n,- I)x € D.

Take q =nXx. So we have the claim.

Let ae D and beD . Then there exists a y € P - D such that
-1 -1 -1
b<y . Hence a<y, so ay <1. Hence ab<ay <1, ab eI Therefore

-1 *
DD cl Let peK, Then p<1l, so 1-p>0. Choose aec D, so a>0.

Thus a(l - p)>0. By the claim, there exists a y € K, — D such that
y - a(l - p) € D.
Since y & D, O0<a<y. Then a(l - p)<y(l -p)=y-yp hence
yp <y - a(1 - p). Then p(y+dp'1)=yp+d=y—a(l - p) for some d € D,
so p=[y-a(l -p)lay + dp.])-l. Since 0 <y<y+ dp.l, (y + dp-l)'1 < y'].
Hence (y + dpﬁl)-1 € D-l, 50 p € DD-I. Therefore 1 c DD-I, thus I= DD-I.
Clearly, the commutative, associative and distributive laws hold. Also
D+ {0} =D and D{0) = {0} for all D e X,
Therefore (<X, +,.) is a semifield.
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Step_6. Define a relation < on ¥, by D<C iff Dc C forall C,D e &,
Then < is a compatible partial order on <A, and obviously, {0} <D for
all D e &4,

Hence we have that cX, is a positive ordered semifield.
Step 7. We shall show that ¥ is a positive totally ordered semifield. Let
C,D ecdX, Suppose that C=D.

Case 1. There exists a de€e D~C. Thus x<d for all x € C, so xe€D
for all x € C. Therefore C < D.

Case 2. There exists ¢ € C —D. Similarly to Case 1.

Case 3, There exists ceC-D and d e D-C. Since ce C-D, d<c.
Since ¢ € C, d € C which is a contradiction.

Therfore <X, is a positive totally ordered semifield.
Step 8. To show that & is complete, let (D, | i eI} be a family in
A, such that D,;< C for all iel Claim that ikEJIDi is a least upper bound
of {D;|iel) Let D=UD,

(1) Since DNP#0, PAD=0.

(2) Since C € X, there exists a ¢ € P — C. Hence ¢ ¢ D, for all
iel, so cegD.

(3) Let d € D. Then there exists an i, €1 such that d € D;. Since
Dio € &X|, there exists a dio € Dio c D such that d < djo.

(4 Let p,qeP be such that p<q and q € D. there exists an
i,€ I such that q € D,. Hence p e D; ¢ D. Therefore D € X,

Clearly, D is a least upper bound of (D, | i e I}. Therefore Hy s

complete,
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Step 9. Define f:K —» X by f(x)=L, where L= {p e K,/ p<x) and
f(0) = {0}. To show that f is an order monomorphism, let X,y € K be
such that f(x) =f(y). Then L,=L,. Suppose that x #y. Without loss of

generality, suppose that x <y. Then there exists an r € K, such that

x<r<y. Thus reL,~L, & contradiction. Hence x =y, so f is 1-1.

Let x,y € K. Claim that LL =L and L,+L =L, . Let a€lL,
and beL, Then a<x and b<y. So a+b<x+y, hence L+L, L,
Let ceL,,,.Then c<x +y and there exists p € P such that c<p<Xx+Y.
Thus ¢ = c(pp'l) < (cp-l)(x +Y)= cxp‘1 + cyp.l. Since ¢ < p, cp-1 <1, s0 cx;)-l< X.
Hence cxp-l <q,<x for some g e K. Similarly, there exists a q,€ P such
that cyp-l <q,<Yy. Then ¢ =c(g, + 9,)(q, + q,) = ¢q,(q, +g,) +cq,(q, + g,)-
Since c < Cxp-l + cyp'1 <q,+q, c(g+ qy)-1 < 1. Thus cq(q, + qy)-1 < q, and
cq,(q, + qy)-]l <q, $0 c=cq(g, + qy)'1 +¢q,(q, + g y)‘1 € L, + L, since q,<x
and q <y. Therefore ¢ € L, +L,. Hence L =L,+L,

Next, let ae L, and be L, Then a<x and b<y, so ab<xy.
Thus ab <xy. Let ¢ € L. Then c<xy, so X < y. Then there "exists
p € P such that cxhl <p<y. Thgn pelL, Since c:p-1 € K, and cp-‘< X,
cp.l € L,. Hence ¢ = (cpq)p'e L,L,. therefore L, =LL. So we have the
claim. This show that f is a homomorphism,

Finally, to show that f(Py) =Py, cleary that f is isotone. Thus
f(Py) € Py, Let D €Pgy,. Then D = 1. Since P,m;f(K). L =f(x)=D for
some x € K. If x21 then D e f(P;). Suppose that x <1. Thus L, =Dc],
a contradiction since D = 1. Hence Pf(mgf(PK), so f(Py) = Py

Therefore K is embedded into a complete positive totally ordered semifield. 4
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