CHAPTER II

REVIEW OF LITERATURE

The natural habitats of microorganisms are exceedingly diverse (Brock and Madigan, 1988). In many cases, we have found that the chemicals produced by these microorganisms exhibit various biological activities especially antibacterial and antifungal activities. Most of antibiotics were produced from actinomycetes especially soil actinomycetes (Jensen and Fenical, 1994). Although many antibiotics have been developed in the last few decades (Tortora, Funke, and Case, 1982), relatively few are used in chemotherapy. This is because many antibiotics damage normal cells in concentrations needed to kill pathogenic microorganisms. At present, drug resistance of bacteria and widespread of human immunodeficiency viruses are increasing, so researchers have been trying to find new antibiotics to control these problems (Service, 1995). Many scientists hope that novel antibiotics will be discovered in new or unusual microorganisms isolated from the marine ecosystems, which are quite different from terrestrial ones (Okami, 1986).

1. Characterization of gram-positive endospore-forming rods, Bacillus

The bacterial isolation is one of the most important part of new drug discovery. It is convenient to divide bacteria into two major groups, gram-positive and gramnegative bacteria, based on the reactions of the microorganisms to gram's method of staining (Barrow and Feltham, 1993). The gram-positive endospore-forming rods are the genera *Bacillus* and *Clostridium*. *Bacillus* species are aerobes, whereas *clostridium* species are obligate anaerobes (Barrow and Feltham, 1993). Several species of the genus *Bacillus* produce antibiotics, while many species of the genus *Clostridium* produce toxins.

The endospore-forming bacteria, most of which are gram-positive motile rods, a diverse assemblage that is a grouping of convenience. At present it can be grouped the aerobic, anaerobic and facultative endospore-forming rods into eight genera, *Paenibacillus, Bacillus, Sporolactobacillus, Amphibacillus, Halobacillus, Brevibacillus, Aneurinibacillus, and Alicyclobacillus* (Shida *et al.*, 1997). The morphology, physiology, biochemical reactions, and G+C content of the genera of endospore-forming rods are summarized in Table 1.

With recent descriptions of numerous new members, the genus *Bacillus* has become unwieldly though many of the species can still be identified by conventional tests (Barrow and Feltham, 1993). An identification table (Table 2) has been used to identify the *Bacillus* species (Barrow and Feltham, 1993).

Bacteria in the genus *Bacillus* are cells, rod-shaped, straight or nearly straight; endospores, very resistant to many diverse conditions; sporulation not repressed by exposure to air; gram-positive, or positive only in early stages of growth, or negative; flagella, peritrichous or degenerately peritrichous; aerobic or facultatively anaerobic; colony morphology and size very variable; pigments may be produced on certain media; exhibit a wide diversity of physiological ability; and some strains are salt tolerant, others have specific requirements for salts. Catalase is formed by most species; oxidase-positive or negative. The cell wall peptidogly'can of most species belongs to the directly crosslinked *meso*-diaminopimelic acid type. The G+C content of the DNA is 32-69 mol%. Aerobic endospore-forming bacteria of the genus *Bacillus* can be isolated from almost all natural habitats and from many other sources. They are most commonly found in soil and in plant litter where they play an important role in the biological cycling of carbon and nitrogen. Other habitats like freshwater, polluted seawater, deep-sea sediments, foods, milk, pharmaceuticals, may have acquired these organisms from soil by runoff, from dust, from infected plant materials. Such habitats may provide conditions suitable for the growth of *Bacillus* strains or may only harbor spores which, due to their remarkable power of resistance and dormancy, may survive in any habitat for long periods (Berkeley and Claus 1986). Thus, it is generally not possible to draw any conclusion from the site of isolation of a *Bacillus* strain as to its real natural habitat, although they are a few exceptions to this generation.

> สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 1. Characteristics of the genera of aerobic, anaerobic and facultative endospore-forming rods

Characteristics"	Paenibacillus	Bacillus	Sporolaciobacillus	Amphibacillus	Halobacillus	Brevibacillus	Aneurinibacillus	Alicyclobacillus
cell shape	rođ	rod	rod	rod	rod or spherical to oval			
spore shape	oval	oval or spherical	oval	oval	oval	oval	oval	oval
sporangia	swollen	swollen or not swollen	swollen	swollen	swollen	swollen	swollen	swollen or not
anacrobic growth	v	v	+	+	•		······	
catalase	٧	++			++	+	+	+
hydrolysis of thiamine	NT	NT	NT	NT	NT		+	NT
production of lactic acid	NT	v	+	+	NT	NT	NT	NT
Voges-Proskauer test	v	·v	NT	NT	}			v
pH in Voges-Proskauer broth	<6.0	v v	NT	NT	NT	>7.0	>7.0	NT
growth in the presence of 10% NaCl	· · · · · · · · · · · · · · · · · · ·	v						
optimum growth conditions	······				·····			
рН	7.0	v (7.0-9.5)	7.0	9.0	7.5	7.0	7.0	3.0
temperature (°C)	23-37	v (15-55)	30	37	35	30-48	37	65
i+C content (mol%)	39-54	32-69	39	36-38	40-43	46-\$7	42-43	52-60

^aData from Shida et al., 1997.

-, Negative reaction; +, Positive reaction; NT, Not tested; v, Variable reaction.

12

Table 2. Characteristics of Bacillus species

Characteristics"		2	3	4	5	6	7	8	9	10	1 II	12	13	14	15	16	17	18	19	20	21	22	23	24
gram reaction	+	+	+	+	d	+	+	+	+	+	+	d	d	d		d	+			d	+	d	d	d
chains of cells	+	+	+	+	d	d	+	+	d	d	d	d	d	d		d			<u> </u>		+		<u> _</u>	d
motility*	-	+	<u>-</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +	- <u>-</u>	- <u>-</u>	+	+	+
cell length > 3 µm		+	++	+ 1	1.	+	d			-	-	+	-	+	d	d		d	d	+	 +	-		-
spore position and shape		VX	- vx	VX	vx	vx	vx	vx	vx	vx	vx	vtx	tyx	vx	vx	vtx	vx	vx	vx	ty	vtx	νx	VX	vt
swelling of cell body by spore		+	† .	-	d	d	-	-	-	-		d	+	+	+	+	+	+	 	+	-	d	+	+
growth at 50°C		-	+ -	┿╌┥	•		-	d	+	+	+	+	+	-	+	d	-	+			d	+	+	┝
growth in J0% NaCl	+	d	d	d	_+		-	+	d	-	+	-	+					-						+ -
inacrobic growth	+	+	+	+	•	-	-	-		+		+	+	+		+	+	+	+		<u> </u>		<u> </u>	+
carbohydrates, acid from		┼──	╂──	<u> </u>	<u> </u>																┞	ļ	 	╞
glucose	+	+	+	+	+		+			+	+	+	+	•	<u>-</u>	+	+	+	+	··· <u>·</u> ··	<u>.</u>			+;
cellobiose			d	d		d	+		+	+	+	ď		+	···	+	d	+			<u>-</u>			
galactose		}	d			ď	-		d	+	d	d	<u>-</u>		 -	·····		· • • • • • • • • • • • • • • • • • • •	+	<u>-</u>	•- <u>-</u>		<u>-</u>	
mannose	••••	}		ď	d		d		+	+	d	+	d	ď		·	 d	+	+		<u>-</u>			
melibiose						ď	 +	d	d	d	 d	 +				+		 +	 +		<u>-</u>			
raffinose		 -		<u></u>	• •		d	+	+	d	+	•••••		·····		+		 +						+
salicin		+	d	d		 d	••••• +	+	+	+	+		ď	ď		+	d		 +				+	l d
xylose			·· <u>·</u> ·	·- <u>-</u>		·· <u>·</u> ··	····	··		+	ď		<u>.</u>			+		 +		••••		ď	+	
NPG		I	d	-	d	+	+	+	+	+	d	d	d	d	d	+		+	+			d		+ -
ilization of citrate		d	d	+		•	+	+	+	+	d	d			d		_		d	d				.

-

Table 2. Characteristics of Bacillus species (continued)

Characteris	ucs"		i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
urease				<u>d</u>	d	†	- 1	+	d	-	-	d	-	<u>+-</u>	-	d	<u> </u>					d	<u> -</u> -	-		
indole			-	<u> -</u>		+ -	•	-	-		-				<u> </u>		-		<u> -</u> -			┣	<u> </u>		[_	-
Voges-Proskauer test			+	+	+	++		-	-	+	+	d		d	d d		<u> </u>	d d		d	+		<u> </u> .	d		
nitrate reduction	<u> </u>		+		+	<u> </u>	+	-	d		+	+	+	d	d		d		 	+	+	d	<u> </u>	- -		
hydrolysis of :			 	<u> </u>													<u> </u>	<u> </u>	<u> </u>				<u> </u>			u
Casein	•••••			 +	+	+ +	+			+	+	+	+	+	<u>.</u>	 	 	 	 				 	·	<u>-</u>	d
hippurate		• • • • • • • • • • • • • • • • • • • •		<u>-</u>	-	+- <u>-</u> -+	+	+		+	d			+			 +		đ	d				+		+
starch			+	+	+	+ +	+	+	+		+	+	+	+	 	+		+		+	+			+-	}	+
oxidase			đ	đ	đ	d	·	+	-	•	-	-		•	d	+	•	•	-	+	-	+	d		-	-
B. anthracis	5	B. firmus			9	B. subi	tilis			13	B. p	antothe	nticus	L	17	B. Iai	lerospo	rus	2	L	l 3. badii	L	L	L	l	<u> </u>
B. cereus	6	B. lentus			10	B. lich	eniforn	us		14	B. a	lvei			18	В. та	icerans	;	2	2 E). stear	otherm	ophilus	(Grou	p I)	
B. mycoides	7	B. megateri	ium		11	B. amy	lolique	faciens		15	B. b	revis			19	В. ро	lymyxa	,	2				ophilus			

16

B. circulans

20

B. sphaericus

24

B. stearothermophilus (Group 111)

^aData from Barrow and Feltham, 1993.

8

4

B. thuringiensis

*All motile species may produce non-motile variants.

B. pumilus

ONPG, o-nitrophenyl-β-D-galactopyranoside.

+, 85-100% Strains are positive; d, 16-84% Strains are positive; -, 0-15% Strains are positive;

B. coagulans

t, Spore terminal; v, Spore central/subterminal; x, Spore oval (ellipsoidal); y, Spore round.

12

2. Bioactive natural products from Bacillus

The function of antibiotics in the producing organisms has been the subject of considerable speculation and discussion. Still under current consideration (Katz and Demain, 1977) is the possibility that antibiotics function to kill or to inhibit the growth of other organisms in nature, thereby providing a competitive advantage to the producing species. A further variation of the competitive hypothesis involves the excretion of the antibiotic during spore germination in order to eliminate competitors in the immediate environment of the germinating spore. An additional hypothesis currently states that synthesis of an antibiotic (or other secondary metabolites) is a method of avoiding cell death due to unbalanced growth. With respect to the unbalanced growth hypotheses, it is assumed that the overproduced primary metabolites can be converted to the antibiotics which are released from the cell. The detoxification hypothesis proposed that certain toxic metabolites can be converted to the antibiotics which are not toxic to the producing It has been unclear about the function of antibiotics in the producing organisms. microorganisms. Whatever the true function of antibiotics, many mechanisms exist whereby organisms can protect themselves from the antibiotics they elaborate. Permeability changes, compartmentalization, and the presence of an inactive form of the antibiotic intracellularly may all play a role in preventing self-annihilation.

Bacteria in the genus *Bacillus* is one of the most important natural resources of antibiotics. A review on the compounds, species, structures, and biological activities of antibiotics obtained by strains of *Bacillus* species is shown in Table 3.

Table 3. Antibiotics elaborated by strains of Bacillus species.

Compounds	Strains	Structures	Activities	References
102804	B. cereus	ND	against gram-	Kageyama,
	102804		positive and gram-	Burg, and
			negative bacteria	Perlman, 1977
333-25	B. circulans	acylpeptide	against gram-	Shoji et al.,
	333-25	containing	positive and gram-	1976
		2,4-diamino-	negative bacteria	
	ļ	butyric acid		
339-29	B. pumilus	peptide	against gram-	Shoji et al.,
	339-29		positive bacteria	1976
61-26	Bacillus sp.	peptide	against gram-	Shoji et al.,
	61-26		positive bacteria	1975
			and fungi	
ADP-III	B. subtilis	acylpeptide	inhibition of cyclic	Hosono and
	C756	a-j-p-pa-c	adenosine-3',5'-	Suzuki, 1983
1			monophosphate	
			(cAMP)	1
			phosphodiesterase	
alboleutin	B. subtilis	ND	ND	Omura et al.,
aiboicuim	AF-8	RD	ND .	1980
alahastatia	********************	ND	inhibition of alles	
alphostatin	B. megaterium BMG 59-R2	ND	inhibition of alka-	Aoyagi et al.,
	+		line phosphatase	1989
alvein	B. alvei	polypeptide	against gram-	Glasby, 1993
		arrend surry	positive and gram-	
			negative bacteria	
ambutyrosine	B. biterinus	ND	against gram-	Glasby, 1993
B			positive bacteria	
amicoumacins	B. pumilus	ND	against gram-	Itoh et al.,
A-C	BN-103		positive bacteria,	1981
			antiinflammatory,	
			and antiulcer	
20-O-demeth-	B. megaterium	ansamycin	against tumor cells	Izawa <i>et al.</i> ,
yl ansamito-	IFO 12108			1981
cin, 20-0-			רוזגוו	
demethyl		POOTE		
ansamitocin P-	00000	J J J J J J J J J J J J J J J J J J J		
3, 1,15-hydro-	กาลงก	521319	หาวุ่งเยา	
xyansamitocin	I I DI I I	000001		
P-3, and N-				
demethyl ansa				
-mitocin P-3				
antibiotic 60-6	<i>B. cereus</i> 60-6	ND	against gram-	Glasby, 1993
			positive bacteria	
antibiotic	unclassified	ND	against gram-	Glasby, 1993
61-26	Bacillus		positive bacteria	
antibiotic	B. pumilus	ND	against gram-	Glasby, 1993
339-29	_	1	positive bacteria	

Compounds	Strains	Structures	Activities	References
antibiotic	B. lacterospo-	ND	against Klebsiella	Glasby, 1993
340-19-II	<i>rus</i> No. 340-19		pneumoniae and	
			Staphylococcus	
			aureus	
antibiotics	B. subtilis	ND	against gram-	Glasby, 1993
1316-B1-B3	AJ 1316		positive bacteria	,
	ĺ	1		
antibiotic 1998	B. brevis	ND	against gram-	Glasby, 1993
	AS1998		positive bacteria	01009,1775
antibiotic 2725	B.licheniformis	polypeptide	against gram-	Glasby, 1993
undoiotic 2125	2725	polypeptide	positive and gram-	012309, 1995
			negative bacteria	
antibiotic	B. pumilus	ND		Clash-1002
	D. pumitus	ND	gastroprotective	Glasby, 1993
AI-77B	Dural	NID		
antibiotic	B. polymyxa	ND	against gram-	Glasby, 1993
AR-110	AR-110		positive bacteria	
antibiotic	B. circulans	polypeptide	against gram-	Glasby, 1993
B-43			positive and gram-	
	·		negative bacteria	
antibiotic	B. circulans	polypeptide	against gram-	Glasby, 1993
BN-7	BN-7	Salanda.	positive and gram-	•
		9.4 <u>44.0</u>)123	negative bacteria	
antibiotic	B. pumilus	ND	against gram-	Glasby, 1993
BN-103	BN-103	and the second	positive bacteria	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
antibiotic	Bacillus sp.	ND'	against gram-	Glasby, 1993
BN-175	BN-175	ALE NUMBER	positive bacteria	
			and Candida	}
			species	
antibiotic	B. circulans	polypeptide	against gram-	Clasher 1002
Bu-1880	Bu-1880	polypeptide		Glasby, 1993
antibioic	B. circulans,	ND	positive bacteria	<u></u>
Bu-1975-A1	· · ·		against gram-	Glasby, 1993
Du-1775-Aj	B. croceus, B.	\frown	positive bacteria	
	biotinicus and	917979	เปรการ	
antiki ati a	B. proteophilus			
antibiotic	B. circulans	ND 🚽	against Escherichia	Glasby, 1993
Bu-1975-C ₁	หำลงก	รกเขต	coli and Klebsiella	ลย
			pneumoniae	
antibiotic q	B. circulans	polypeptide	against a number of	Glasby, 1993
EM-49	ATCC 21656		bacteria, fungi, and	
			protozoa	1
antibiotic	B. cereus	ND'	against	Glasby, 1993
FR-900493			Staphylococcus	······································
			aureus	
antibiotic	B. cereus G-15	ND	against gram-	Glasby, 1993
G-15 I-II			positive bacteria	0, 1990

•

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

Compounds	Strains	Structures	Activities	References
antibiotic	B. cereus	ND	against gram-	Glasby, 1993
GIF-2			positive bacteria	
antibiotic	B. cereus	ND	against gram-	Glasby, 1993
Gp-3	Gp-3		positive bacteria	
antibiotic	Bacillus	ND	against fungi	Glasby, 1993
KBS3-P1004	species]		
antibiotic	B. aurantinus	ND	against bacteria and	Glasby, 1993
KM-214			fungi	•
antibiotic	B. biterinus	ND	against	Glasby, 1993
MX-A	Z-1159, and B.		Pseudomonas	
	circulans V-7		aeruginosa	
antibiotic P2	B. subtilis 260	ND	against fungi	Glasby, 1993
antibiotic P4	B. subtilis 060	ND	against fungi	Glasby, 1993
antibiotic	B. subtilis	peptide	against gram-	Glasby, 1993
TL-119			positive, gram-	0,100,1995
			negative bacteria,	
			and inhibit enzyme	
antibiotic	Bacillus sp.	ND	against	Glasby, 1993
Y-05460M	Y-05460M		Flavobacterium	Glasuy, 1995
		1 8 Q. A	633, <i>K</i> .	
		100201	pneumoniae, and S.	ļ
		3.44.01.03	aureus	
antibiotic	B. bungoensis	peptide	***************************************	Clarby 1002
Y-8495	D. Dungoensis	peptide	against gram-	Glasby, 1993
1-0475		Manager Branning	positive and gram-	
N-5-hydroxy-	Bacillus sp.	modified	negative bacteria	
L-arginine	XB-13248	amino acid	against bacteria	Maehr et al.,
aurantinin B	B. aurantinus	ND,		1973
	D. aurantinus		against bacteria	Konda <i>et al.</i> , 1988
aurantinin	B. aurantinus	conjugated	against gram-	Nishikiori et
(KM-214)		triene	positive bacteria	al., 1978
ayfivin	B. lichenifor-	peptide	against gram-	Glasby, 1993
·	mis	9 9 9 9 9	positive and gram-	Glasby, 1995
			negative bacteria	
azoxybacillin	B. cereus	ND 🕝	against fungi	Fuin at al
<u> </u>	NR 2991	ດ້ວາງອາດ	"Bannor Tungi	Fujiu <i>et al.</i> , 1994
B-43	B. circulans	peptide	against gram-	*****************
<u> </u>	B-43	Popudo	positive and gram-	Shoji <i>et al.</i> , 1976
			· · · · ·	17/0
bacillin	B. subtilis	ND	negative bacteria	
~~~~	No. KM-208		against gram-	Glasby, 1993
	140. KIVI-200		positive and gram-	Atsumi, Oiwa,
			negative bacteria	and Omura,
	·		<b></b> ]	1975

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

ī

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

Compounds	Strains	Structures	Activities	References
bacillipin A	B. subtilis	ND	against gram- positive and gram-	Glasby, 1993
			negative bacteria	
bacillomycin B	B. subtilis AF 1	polypeptide	against fungi	Glasby, 1993
bacillomycin C	B. subtilis AF 2	polypeptide	against fungi	Glasby, 1993
bacillomycins	B. subtilis	cyclic	against fungi	Besson and
Fb-Fc	I-164	lipopeptides	0 0	Michel, 1988
bacillomycin	B.subtilis	cyclic	against fungi	Eshita <i>et al.</i> ,
Lc	FS94-14	lipopeptide	-Grander trange	1995
bacillopeptins	B. subtilis	cyclic	against fungi	Kajimura,
A-C	FR-2	lipopeptide	uguinst tungt	Sugiyama, and
		inpopeptide		Kaneda, 1995
bacillomycin	B. subtilis	cyclic	against fungi	
D	Di outriti	lipopeptide	against tungi	Peypoux <i>et al.</i> , 1980
bacillomycin F	B. subtilis	cyclic	against fungi	
ouomoniyemi	I-164		against tungi	Mhammedi <i>et</i>
bacilysin	B. subtilis	lipopeptide		<i>al.</i> , 1981
Uden y Sin	D. SUDITIS	peptide	against gram-	Glasby, 1993
		3. 4000004	positive and gram-	
bacimethrin	D		negative bacteria	
	B. megaterium	ND	against gram- positive bacteria	Glasby, 1993
baciphelacin	B. thiaminoly-	ND	against bacteria and	Okazaki et al.,
	ticus IFO	CHER CON	leukemic cells	1975
	3967/B-1-7			
bacithrocins	B. lacterospo-	N-acyl-L-	inhibit thrombin	Kamiyama et
A-C	rus Laubach	phenylalanyl-		al., 1994
	NR 2988	DL-arginals		
bacitracin A-G	B.licheniformis	polypeptides	against gram-	Ikai <i>et al.</i> ,
	and B. subtilis		positive and gram-	1995
	สกาย	9179761	negative bacteria	
bagougera-	B. circulans	nucleosides	against bacteria and	Takahashi <i>et</i>
mines A-B	TB-2125		spotted spider mite	al., 1986
biocerin	B. cereus	ND	against gram-	Glasby, 1993
<b>N V</b>		1 10 10 1	positive and gram-	Uldsby, 1995
9			negative bacteria	
BMY-28160	B. circulans	peptide	against fungi	Sugawara,
	H 913-B4	P-P	agamst tungt	Konishi, and
				,
				Kawaguchi, 1984
bresseine	B. brevis	peptide	against bacteria	*****************************
		r · P·····	"Builde Udelella	Katz and
brevin	B. brevis	peptide	against bacteria	Demain, 1977
		P - P - I - P - I - P - P - P - P - P -	"Burnot vacicita	Katz and
••••••••••••			·	Demain, 1977

ſ

Compounds	Strains	Structures	Activities	References
brevistin	B. brevis	peptide	against gram-	Shoji et al.,
( 	342-14		positive bacteria	1976
BU-1709E1-	B. circulans	aminoglyco-	against bacteria	Tsukiura et al.,
E2	YQW-B6	sides		1973
BU-2470 A,	B. circulans	octapeptides	against bacteria	Sugawara et
B1, B2a, and	Bu-2470	*	}	al., 1983
B2b				Konishi et al.,
ĺ	1			1983
BU-2743E	B. circulans	ND	inhibition of	Kobaru et al.,
	J725-B93		leucine	1983
			aminopeptidase	-
butirosin B	B. circulans	ND	against gram-	Glasby, 1993
			positive and gram-	0.000, 1775
			negative bacteria	
2-hydroxy-	B. circulans	ND	against gram-	Glasby, 1993
butirosin	deoxystrepta-		positive and gram-	
	mine-lacking		negative bacteria	
	mutant		nogen to customa	
6'-deamino-6'-	B. circulans	ND	against bacteria	Takeda <i>et al</i> .,
hydroxy .	MCRL 5003		against bacteria	1978
butirosin and		Salana.		1978
3',4'-dideoxy-		2. 1 46 (C) 122 4		
6'-C-methyl				
butirosin B	i 🥖	Section Start		
4'-deoxybuti-	B. circulans	aminoglyco-	against bacteria	Kawaguahi
rosin A-B	No. C. 308-B4	sides	agamst bacteria	Kawaguchi et al., 1974
butirocin	B. circulans	ND	against bacteria	*********************
derivatives	mutant		against Dacteria	Taylor and
cerexins A-B	B. cereus Gp-3	peptides	against anon	Schmitz, 1976
	D. cereus Op-5	peptides	against gram-	Shoji et al.,
cerexins C-D	B. cereus Gp-3	montida	positive bacteria	1975
COCKIII3 C-D	D. cereus Op-5	peptides	against bacteria	Shoji et al.,
circulin	D oiroulaus			1976
cheum	B. circulans	peptide	against bacteria	Katz and
aispontagin	D	ND		Demain, 1977
cispentacin	B. cereus	ND	against fungi	Konishi et al.,
adiating	L450-B2			1989
colistins	B. polymyxa	ND,	against bacteria	Kimura,
pro-A-C 9	subsp.			Kitamura, and
difficial-li-	colistinus			Hayashi, 1982
difficidin	B. subtilis	polyene	against gram-	Glasby, 1993
	MB 3575	macrolide	positive bacteria	
diprotins A-B	B. cereus	ND	inhibition of	Umezawa et
	BMF 673-RF1		dipeptidyl	al., 1984
·····			aminopeptidase IV	

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

Compounds	Strains	Structures	Activities	References
edeine Al	B. brevis Vm4	peptide	reversibly binding	Glasby, 1993
	1		to polynucleotides	
			in vitro, and	
			inhibition of DNA	
			and protein	·
			synthesis in vivo	
edeine B1	B. brevis Vm4	ND	reversibly binding	Glasby, 1993
	and mutant		to polynucleotides	}
	587		in vitro, and	
			inhibition DNA	1
			and protein	
			synthesis in vivo	
EM-49	B. circulans	peptide	against parasites	Katz and
	ATCC 21656	populo	against parasites	Demain, 1977
				Mayers <i>et al.</i> , 1973
endosubtylisin	B. subtilis	ND	against answ	
endosabtynsm	D. Subillis		against gram-	Glasby, 1993
eseine	D buquin		negative bacteria	
eseine	B. brevis	peptide	against bacteria	Katz and
			• <mark>••••••••••</mark> ••••••	Demain, 1977
esperine	B. mesenteri-	peptide	against gram-	Glasby, 1993
	cus		positive bacteria	
eumycin	B. subtilis	ND	against fungi	Glasby, 1993
fengycin	B. subtilis	lipopeptide	against filamentous	Vanittanakom
	F 29-3	1	fungi	et al., 1986
fenycin	B. subtilis	lipopeptide	ND	Taraz et al.,
				1999
fluvomycin	B. subtilis	ND	against bacteria and	Glasby, 1993
			fungi	
FR 901537	Bacillus sp.	pathetheine	aromatase inhibitor	Oohata et al
	3072	naphthol		1995
	- O_	derivative		1775
fusaricidin A	B. polymyxa	depsipeptide	against gram-	Kaiimuna and
-	KT-8	esponpeptide	positive bacteria	Kajimura and
			and fungi	Kaneda, 1996
fusaricidins	B. polymyxa	depsipeptides		17 - 11
B-C	KT-8	depsipeptides	against gram-	Kajimura and
20	111-0		positive bacteria	Kaneda, 1997
galantins I-II	R nulvifaciona	nontidos	and fungi	
garantins 1-11	<i>B. pulvifaciens</i> 52-33	peptides	against gram-	Shoji et al.,
	32~33	a	positive, acid-fast,	1975
			and gram-negative	
gatavalin	Date		bacteria	
gatavalin	B. polymyxa	peptide	against fungi	Nakajima et
	subsp.			<i>al.</i> , 1972
	colistinus			

21

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

ı

Compounds	Strains	Structures	Activities	References
3-amino-3-	B. aminoglyco-	ND	against bacteria	Umezawa et
deoxy-D-	sidicus A-4722	{		al., 1967
glucose				
glysperins	B. cereus	ND	against gram-	Kawaguchi et
A-C	F173-B61		positive and gram-	al., 1981
	1		negative bacteria	,
gramicidin S	B. brevis	peptide	against bacteria	Katz and
0		F-F	Benner	Demain, 1977
gramicidins	B. brevis	ND	against bacteria	Nozaki and
S2-S3	D. 07 CT15	I.D	ugunist odeterra	Marumatsu,
52-55				1984
4-keto-5-ami-	B. cereus	ND		
		ND	against gram-	Perlman et al.,
no-6-hydroxy-	102804		positive and gram-	1981
hexanoic acid	D		negative bacteria	
isohalobacillin	Bacillus sp.	complex of	Inhibition of acyl-	Hasumi et al.,
	A1238	cyclic acyl-	CoA : cholesterol	1995
		peptide	acyltransferase	
iturin AL	B. subtil <mark>is</mark>	cyclic	against fungi	Winkelmann e
	A114	lipopeptide		al., 1983
iturins C2-C4	Bacillus sp.	cyclic	inhibitors of	Park, Hasumi,
	A 2822	lipopeptides	oxidized low	and Endo,
			density lipoprotein	1995
		A Carlanda I	(LDL) binding	
iturins D-E	B. subtilis	cyclic	against fungi	Besson and
		lipopeptides	-Barrise range	Michel, 1987
jolipeptin	B. polymyxa	peptide	against gram-	Ito and
Jewbehun.	subsp.	peptide	positive and gram-	
	colistinus	]	negative bacteria	Koyama, 1972
	ATCC 21830	•	negative vacteria	
KM-214				
KIV1-214	B. aurantinus	ND	against bacteria	Omura et al.,
1 4	KM-214			1976
lacterospora-	<i>B</i> .	non-peptide	against gram-	Glasby, 1993
mine	lacterosporus	1171/12	positive and gram-	
			negative bacteria	
lacterosporin	В.	ND 🕣	against Mycobacte-	Glasby, 1993
A ag	lacterospous	รถเขเ	rium phlei and S.	
		d b kod	aureus	
lakacidin C 🌱	B. megaterium	lankacidin	inhibition of tumor	Nakahama,
	IFO 12108		cell growth	Harada, and
		1		Igarasi, 1975
aterospora-	В.	non-peptidic	against gram-	Shoji <i>et al.</i> ,
mine	lacterosporus	structure	positive and gram-	1976
	340-19		negative bacteria	1770
euhistin	B. laterosporus	ND'	inhibition of	Aoungi at al
				Aoyagi et al.

Compounds	Strains	Structures	Activities	References
licheniformin	B. licheniformis	ND	against <i>M. phlei</i> and <i>S. aureus</i>	Glasby, 1993
mersacidin	Bacillus sp.	peptide	against gram-	Chatterjee et
	HIL Y-85,	containing	positive bacteria	al., 1992
	54728	beta-methyl-		
		lanthionine		
mycobacillin	B. subtilis	peptide	against fungi	Katz and
2		{ • •		Demain, 1977
micrococcin P	B. pumilus	peptide	against bacteria	Katz and
				Demain, 1977
hydroxymycot	Bacillus sp.	ansamycin	inhibition of tumor	Hosokawa et
rienins A-B	BMJ 958-62F4		cell growth	al., 1996
34-hydroxy-	B. megaterium	ansamycins	ND	Sugita et al.,
mycotrienin-II	AHU 1375			1985
and 22-0-				
beta-gluco-				
pyranosyl-				
mycotrienin-II				
N-4909	Bacillus sp.	cyclic	inhibition of tumor	Hiramoto <i>et</i>
	4691	acylpeptide	cell growth	al., 1996
octapeptin D	Bacillus sp.	peptide	against gram-	Shoji et al.,
oempeptin D	JP-301	pepilde	positive and gram-	1980
			negative bacteria	1700
octopyrin	B. thiaminoly-	peptide	against bacteria	Katz and
(thianosine)	ticus	pepilde	against bacteria	Demain, 1977
oxetanocin	B. megaterium	ND	against viruses	Shimada et al.,
onotanoom	NK 84-0218	THE STATE	against viruses	1986
permetin A	B. circulans	peptide	against gram-	Takahara et
permetin /	AJ 3902	pepilde	positive and gram-	-
	AJ 5702		negative bacteria	al., 1979
plipastatin	B. cereus	ND	R	T 7
phpastath	BMG 302-F67	IND	inhibition of	Umezawa et
PM-94128	********************		phospholipase A2	al., 1986
F WI-94120	Bacillus sp. PHM-PHD-	isocoumarin	inhibition of tumor	Canedo et al.,
	090		cell growth	1997
polymixins A,		mahumantidaa		
B, D, E, F, M,	B. polymyxa	polypeptides	against gram-	Glasby, 1993
P, S, T			positive and gram-	
*********************	D		negative bacteria	
polymyxin F	B. circulans	peptide	against bacteria	Parker et al.,
noluminin D	ATCC 31228			1977
polymyxin P	B. polymyxa	peptide	against bacteria	Kimura et al.,
nolumenia TI	T-39			1969
polymyxin TI	B. polymyxa	peptide	against bacteria	Shoji, Kato,
	E-12			and Hinoo.
	J			1977

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

Compounds	Strains	Structures	Activities	References
polypeptin	B. circulans	peptide	against bacteria	Katz and
				Demain, 1977
proticin	B. lichenifor-	phosphorus-	against E. coli,	Prave,
	<i>mis</i> subsp.	containing	Proteus mirabilis,	Sukatsch, and
{	mesen	structure	and Streptococcus	Vertesy, 1972
	-tericus ATCC		haemolyticus	
	21552			
pumilacidins	B. pumilus M	cyclic acyl-	against Herpes	Naruse et al.,
A-G	937-B1	heptapeptides	simplex virus type I	1990
pumilin	B. pumilus	peptide	against bacteria	Katz and
2	D			Demain, 1977
2-methyl-4-	B. cereus	ND	poly(ADP-ribose)	Yoshida et al.,
[3]-quinazoli-	BMH225-MF1		synthase inhibitor	1991
none	Della			
S-11-A	B. circulans	1-deamino-1-	against bacteria	Fujiwara et al.,
	S-11 mutant	hydroxy		1980
anttoho ain	D	xylostasin		
sattabacin,	Bacillus sp.	ND	against Herpes	Lampis et al.,
hydroxy- sattabacin,	B-60		simplex viruses	1995
sattazolin, and			type I and II	
methyl-		3. 1. 6. ()		
sattazolin		1 MARIAN		
simplexin	D simular	NID		
-	B. simplex	ND	against Rhizoctinia solani	Glasby, 1993
SP 127	B. brevis	peptide	against	Kikuchi and
	ATCC 8185		Pseudomonas	Nakao, 1977
			aeruginosa	
spergualin	B. laterosporus	ND	against tumor cells	Takeuchi et
00.04.010				al., 1981
SQ 26,517	Bacillus sp.	beta lactone	against bacteria	Parker,
	11480			Rathnum, and
				Liu, 1982
subsporins	B. subtilis	peptides	against Piricularia	Glasby, 1993
A-C	PCI 219	<b>G 1</b>	oryzae and	Ebata,
ລາ	งาลงก	รถเขา	Trichophyton	Miyazaki, and
	A 101 A 1		mentagrophytes	Takahashi,
anhtilia.	D 1			1969
subtilin	B. subtilis	ND	against	Glasby, 1993
			Lactobacillus	
			casei, Micrococcus	
			conglomeratus, and	]
·····	······	·	S. aureus	

.

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

Compounds	Strains	Structures	Activities	References
subtilysin	B. subtilis	ND	against Clostridium edematiens, E. coli, Pasturella species, Salmonella gardneri, and V. comma	Glasby, 1993
tatumine	<i>B. brevis</i> Vm 4-572-403	peptide	inhibition of tumor cell growth	Heaney and Kurylo, 1980
tetain	B. pumilus	peptide	against bacteria	Katz and Demain, 1977
thianosine	B. thiaminoly- ticus	ND	against gram- negative bacteria	Glasby, 1993
thiocillin III	B. badius AR-91	ND	against gram- positive bacteria	Shoji <i>et al.</i> , 1976
thiocillins I-II	B. megaterium I-13	ND	against gram- positive bacteria	Shoji <i>et al.</i> , 1976
TL-119	Bacillus sp. TL-119	peptide	against gram- positive bacteria	Shoji <i>et al.</i> , 1975
tridecapeptins A-C	B. polymyxa E-23	acyl trideca- peptides	against gram- positive and gram- negative bacteria	Shoji <i>et al.</i> , 1978
tyrocidin	B. brevis	polypeptide	against gram- positive and gram- negative bacteria	Glasby, 1993
xanthobacidin	B. subtilis	ND	against Xanthomonas species	Glasby, 1993
xylostatin	B. circulans	peptide	against bacteria	Katz and Demain, 1977
YM-47522	Bacillus sp. YL-03709B	ND	against fungi, Rhodotorula acuta, and Pichia angusta	Shibazaki <i>et</i> <i>al.</i> , 1996

Table 3. Antibiotics elaborated by strains of Bacillus species (continued).

ND, No data.

จุฬาลงกรณ์มหาวิทยาลย

#### 2.1 Chemistry of peptides

Most of peptide antibiotics elaborated by species of the genus *Bacillus* are described in Table 3. In general, these antibiotics are produced by strains of *Bacillus subtilis* and *Bacillus brevis*. Polymyxin and the closely related colistin, bacitracin, the tyrothricin complex (linear gramicidin plus tyrocidine), and gramicidin S have been used, to some extent. for antibacterial therapy. Most of the peptide antibiotics produced by bacilli are active against gram-positive bacteria. However, compounds such as polymyxin, colistin, and circulin exhibit activity almost exclusively upon gram-negative bacteria, whereas bacillomycin and mycobacillin are effective agents against molds and yeasts.

Frequently. peptide antibiotics contain amino acids, which are unique and are not found in proteins (Bodanszky and perlman, 1964). D-amino acids, basic amino acids (ornithine, diaminobutyric acid),  $\beta$ -amino acids, dehydroamino acids (dehydroalanine), and sulfur-containing amino acids (lanthionine) are often present (Lewis and Snell, 1951). Most of peptides are cyclic structures, however, a few are linear structures. Besides the cyclic nature of a molecule, there may be unusual linkages or arrangements of the amino acids in the antibiotics. There are many reports on cyclic peptides having oxazole and/or thiazole ring(s) from tunicates and terrestrial microorganisms. Very few peptides containing conjugated oxazole or thiazole ring(s) have been isolated from natural origin (Kobayashi *et al.*, 1995). Some marine *Bacillus* spp. produce peptide antibiotics such as halobacillin, a cyclic acylpeptide antibiotic, isolated from marine *Bacillus* sp. (Trischman, Jensen, and Fenical, 1994). Although bacilli mainly synthesize peptides, one should not lose sight of the fact that antibiotics belonging to other chemical classes are also produced by these microorganisms.

ł

#### 2.2 Chemistry of macrocyclic lactone

A wide variety of natural compounds, exhibiting antibacterial, antihelminthic, antitumor, and immunosuppressive activities, contain a polyketidederived skeleton (Donadio et al., 1993). The polyene macrolide antibiotics are a large group of natural products with over 200 members (Rychnovsky, 1995). Several members of this class, such as amphotericin B, nystatin, and pimaricin, are important antifungal agents and have been used extensively in medicine. All of these natural products are macrolides that incorporate a conjugated polyene ranging from three to seven double bonds in length. They also contain a polyol section made up of a sequence of 1,2-, 1,3-, and 1,4-diols with 1,3-diols being the most common. Several members of this class have a sugar, usually the amino sugar  $\beta$ -mycosamine, attached by a  $\beta$ -linkage to one of the alcohols in the macrolide ring. The polyene macrolide antibiotics can be further divided into two groups: those that have the polyene across the ring from the lactone carbonyl and those that have the polyene in conjugation with the lactone. The oxo polyene macrolide antibiotics have been isolated from actinomyces soil bacteria, usually of the genera Streptomyces. The oxo polyene macrolides are listed in Table 4.

Species ^a	Antibiotics ^a
S. viridogriseus Thirum	dermostatin B
S. ruber	mycoticin B
S. roseoflavus ARIA 1951 subsp. jenesis JA 5068	roflamycoin
Actinomyces roseoflavus subsp. roseofungini	roseofungin
Streptomyces sp. X-14994	roxaticin
A. surgutus	surgumycin

Table 4. Some oxo polyene macrolide antibiotics produced by Streptomyces species

"Data from Rychnovsky, 1995.

Macrolide natural products (Table 4) generally possess even-numbered macrocyclic lactone rings (Kobayashi, Takahashi, and Ishibashi, 1995). However, several odd-numbered macrolides were recently isolated from the laboratory-cultured marine dinoflagellates *Amphidinium* sp., which are found in Okinawan marine flatworms, *Amphiscolops* sp. Some marine macrolides have other unique structural features such as having a variety of novel backbone-skeletons, which cannot be accounted for the normal polyketide biosynthesis produced by terrestrial microorganisms.

#### 2.3 Chemistry of nucleosides

Nucleoside natural products are important chemical models for drug discovery and therapeutic intervention in human diseases including cancer, fungal infections, and viral infections related to human immunodeficiency viruses (HIVs). More than 200 known naturally occurring nucleoside antibiotics including several highly modified nucleosides isolated from marine invertebrates. Since the Bergmann's pioneering work on isolation of marine nucleosides from a Caribbean sponge in the 1950's, which led to the development of a recognized drug, Ara-C, several biologically active nucleosides have been reported from marine organisms, including sponges, gorgonians, nudibranchs, and seaweeds (Kato *et al.*, 1985).

#### 2.4 Chemistry of diketopiperazines (DKPs)

2,5-Diketopiperazines, 2,5-dioxopiperazines, cyclic dipeptides and their derivatives are widely distributed in nature as secondary metabolites and some of them have unique bioactivities such as antimicrobial and antitumor activities (Kanzaki *et al.*, 1997). DKPs are ubiquitous throughout nature and are most commonly isolated from terrestrial yeast, lichen and fungi culture filtrates and are also observed in the culture

broths of marine bacteria and marine actinomycetes (Adamczeski, Reed, and Crews, 1995). Other examples of DKPs from marine sources include the isolation of cyclo-(glycyl-L-prolyl) from the starfish Luidia clatharata and of cyclo-(alanyl-prolyl) from marine bacteria associated with sponges. To date, DKPs have also been isolated from the following marine sponges: Jaspis sp., Tedania ignis, Dysidea fragilis, Dysidea herbacea, Geodia baretti, and Leucophloeus fenestrata. These unique compounds were very minor constituents of the extracts and this fact, together with the structural characteristics of the compounds, has provided a basis for hypothesis that such metabolites might actually be produced by microorganisms living on the invertebrates. Support for this idea is provided in report that cyclo-(prolyl-leucyl), cyclo-(prolyl-valyl), and cyclo-(prolyl-glycyl) are produced by a bacterium Micrococcus sp. associated with sponge Tedania ignis. The significance of isolating these DKPs from a marine bacterium associated with T. ignis resides in Schmitz's report of these same DKPs from extracts of the sponge. Given the propensity of microorganisms to produce low yield of DKPs and the consistent association of this Micrococcus with T. ignis, there is substantial cause to believe that these compounds are actually produced by the bacterium living in association with the sponge. However, it is now known' that most culturable unicellular marine bacteria produce similar or identical DKPs (Unson and Faulkner, 1993). It seems reasonable to propose that the production of secondary metabolites by a symbiont would benefit a host if the chemicals deter potential predators and/or competitors.

The marine organisms live in unique association with a larger amount of symbionts such as bacteria than of their cell (Hirata and Uemura, 1986). As expected, the unusual metabolites of marine microorganisms may be concentrated in the whole body. Although many of the metabolites of marine microorganisms are similar to or identical

with those of terrestrial microorganisms, it would be necessary to multiply examples because of difficulties in the definition of a marine microorganism. In order to find the metabolites of marine microorganisms which differ from those of terrestrial microorganisms, it is necessary to study on minor bioactive constituents screened with the major compounds, on the basis of ecology of the marine organisms. For example, westiellamide isolated from terrestrial blue-green alga Westiellopsis prolifera (Prinsep et al., 1992) appears to be identical to cycloxazoline isolated from marine ascidian Lissoclinum bistratum (Hambley et al., 1992). The fact that the same cyclicpeptide occurs in a terrestrial cyanophyte and a marine symbiotic alga provides evidence that this compound isolated from marine ascidian originate from the symbiotic microorganisms. Marine natural products are generally assumed to be produced by the organism from which they are extracted. This assumption, which provides the basis for chemotaxonomy, is not always justified since marine invertebrates can accumulate bioactive metabolites from their microbial symbionts (Bewley, Holland, and Faulkner, 1996). However. despite considerable speculation, it is rare to find the major metabolites of an marine invertebrate located exclusively in associated microorganisms.

During the course of experiments conducted at the Marine Natural Products Research Unit, Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, diketopiperazines, macrolactins, cyclic tetrapeptide and 2'deoxyadenosine have been isolated from marine bacteria collected from Sichang Island. An overall review on the structures, sources, and biological activity of these compounds (diketopiperazines, macrocyclic lactones, cyclic peptides, and purine nucleosides) is shown in Tables 5-8.

<u>No.</u>		Sources	Activities	References
la	cyclo-(L-Pro-L-Leu)	bacterium	antimicrobial	Johnson,
		Streptomyces	activity against	Jackson, and
		griseus and	S. aureus	Eble, 1951
		fungus		
		Aspergillus	ł	
		fumigatus		
la	cyclo-(L-Pro-L-Leu)	algae	ND	Luedemann et
2a	cyclo-(L-Pro-L-Val)	Scenedesmus		al., 1961
		sp.		
2a	cyclo-(L-Pro-L-Val)	bacterium	ND	Ogura,
		Streptomyces		Furuhata, and
		sp. No. K-73		Furuhata 1975
		sponge		Omar et al,
		Leucophloeus		1988
		fenestrata		
1a	cyclo-(L-Pro-L-Leu)	sponge	ND	Schmitz et al.
2a	cyclo-(L-Pro-L-Val)	Tedania ignis		1983
3	cyclo-(Pro-Ala)	bacterium		Stierle,
		Micrococcus		Cardellina,
		sp.		and Singleton,
				1988
4	cyclo-(Pro-Gly)	starfish	ND	Pettit et al.,
		Lucidia		1973
		clathrata		1975
1	cyclo-(Pro-Leu)	roasted cocoa	bitter taste	Pickenhagen
3	cyclo-(Pro-Ala)	bean		et al., 1975
4	cyclo-(Pro-Gly)			er an., 1975
5	cyclo-(Pro-Phe)			
5	cyclo-(Val-Phe)			
7	cyclo-(Ala-Val)			
3	cyclo-(Ala-Gly)		<u>.</u>	
)	cyclo-(Ala-Phe)			
0	cyclo-(Gly-Phe)	00000	FOOS	
	cyclo-(Pro-Leu)	fungus	[5a and 12]	Rai auto
2	cyclo-(Pro-Val)	Alternaria		Stierle,
	cyclo-(Pro-Ala)	alternata	host-specific phytotoxic	Cardellina,
ia -	cyclo-(L-Pro-L-Phe)	4	activity against	and Strobel,
b	cyclo-(L-Pro-D-Phe)		spotted	1988
1	cyclo-(Pro-Hle)		knapweed,	
2	cyclo-(L-Pro-L-Tyr)		Centaurea	] ]
	[maculosin]		maculosa Lam.	
2	<i>cyclo</i> -(L-Pro-L-Tyr)	sponge Jaspis	ND	
	[maculosin]	digonoxea		Rudi et al.,
3	cyclo-(trans-4-hydroxy-L-	meunoxeu		1994
	Pro-L-Phe)	1	1	1

No.	Compounds	Sources	Activities	References
13	cyclo-(trans-4-hydroxy-L-	unidentified	ND	Adamczeski et
	Pro)-L-Phe)	Jaspidae		al., 1989
		sponge		
la	cyclo-(L-Pro-L-Leu)	sponge-	inactive against	Jayatilake et
2a	cyclo-(L-Pro-L-Val)	associated	cytotoxic and	al., 1996
5a	cyclo-(L-Pro-L-Phe)	bacterium	antimicrobial	
12	cyclo-(L-Pro-L-Tyr)	Pseudomonas	activities	
	[maculosin]	aeruginosa		
14a	cyclo-(L-Pro-L-Ile)			
15a	cyclo-(L-Pro-L-Met)		6	
1b	cyclo-(L-Pro-D-Leu)	cyanobacteri-	ND	Adamczeski et
1c	cyclo-(D-Pro-D-Leu)	um (symbiosis		al., 1995
2Ъ	cyclo-(L-Pro-D-val)	with sponge		
5c	cyclo-(D-Pro-D-Phe)	Calyx cf.		) ·
14a	cyclo-(L-Pro-L-Ile)	podatypa)		
16	cyclo-(4-methyl-D-Pro-L-	1 11 1		
	Nva)			]
17	cyclo-(L-Pro-L-Trp)	fungus	ND	Birch and
	[brevianamide-F]	Penicillium		Russell, 1972
		brevi-		Russen, 1972
		compactum		
		Dierckx		
		bacterium		Kobayashi at
		Vibrio sp.		Kobayashi et
		(symbiosis		al., 1994
	· (2)	with sponge		
		Hyrtios altum	The second se	
18	prolyl-2-(1',1'-dimethylallyl)	terrestrial	ND	Ø44 4 1
• •	tryptophyldiketopiperazine	fungus	141	Scott <i>et al.</i> ,
19	12,13-dehydropropyl-2-	Penicillium		1974; and
. /	(1',1'-dimethylallyl)	italicum		Ogura,
	tryptophyldiketopiperazine	muncum	รการ	Furuhata, and
	a prophylaric topiperazille		61110	Furuhata,
20	1-N-methylalbonoursin	mhutanatha		1975
20		phytopatho-	ND	Liebermann et
	6 1 1 <i>M</i> <b>M M M M M M M M M M</b>	genic fungus Alternaria	9 <b>1 1 1</b> 1 6	al.1988; and
	9			Gurney and
i		alternata		Mantle, 1993
		bacterium		Robins and
	· · ·	Streptomyces		Sefton, 1984
	L	albus		

 Table 5. Sources of diketopiperazines (continued)

 Table 5. Sources of diketopiperazines (continued)

No.		Sources	Activities	References
21	<i>cyclo</i> -(L-Pro-L-thioPro)	sponge Tedania ignis	inactive against brine shrimp cytotoxic, phytotoxic, plant growth regulatory, antimicrobial,	
			and insecticidal activities	
22- 23	polychlorinated diketopiperazines	cyanobacteriu m Oscillatoria spongeliae (symbiosis with sponge Dysidea	ND	Unson and Faulkner, 1993
24	<i>cyclo</i> -(L-Arg- dehydrotyrosine)	herbacea) sponge Anthosigmella aff. raromicro- sclera	metamorphosis inducer on ascidian larvae	Tsukamoto et al., 1995
25	3-benzylidene-6- isobutylidene-2,5- dioxopiperazine	bacterium Streptomyces	ND	Brown, Kelley, and
26 27	3,6-dibenzylidene-2,5- dioxopiperazine 3-benzyl-6-benzylidene-2,5-	noursei		Wiberley, 1965
28	dioxopiperazine 3,6-dibenzyl-2,5- dioxopiperazine	1	3	
29	neoechinulin	fungus Aspergillus amstelodami	ND	Barbettea et al., 1969
30	cryptoechinuline A	fungus Aspergillus amstelodami	ND	Cardillo <i>et al.</i> , 1974
31	cycloechinulin	fungus	reduction in	Guzman and
32 33	N-methylepiamauromine epiamauromine	Aspergillus ochraceus	weight gain of corn earworm	Gloer, 1992
34	austamide	(NRRL 3519) fungus Aspergillus ustus	Helicoverpa zea toxic metabolite to ducklings	Steyn, 1971
35	lanosulin	fungus Penicillium Ianosum	ND	Dix, Martin, and Moppett, 1972

No.		Sources	Activities	References
36	2-benzyl-1,4-dimethyl-5-	unidentified	antifungal and	DeVault and
	hydroxymethyl-2,5-epi-	fungus	antibacterial	Rosenbrook,
	dithia-3, 6-diketopiperazine		activities	1973
37	2-benzyl-1,4-dimethyl-5-			
	hydroxymethyl-2,5-epi-			
	trithia-3, 6-diketopiperazine			
38	bisdethiadi (methylthio)	}		
	analogue of 2-benzyl-1,4-			
	dimethyl-5-hydroxymethyl-	a da da da da		
	2,5-epi-dithia-3,6-			
	diketopiperazine			
39	***************************************		•••	
37	tryptophan-dehydrobutyrine	bacterium	reverse	Kakinuma and
	diketopiperazine	Streptomyces	transcriptase	Rinehart, 1974
		spectabilis	inhibitor	
40	diketopiperazine derived	sponge	ND	Kazlauskas et
	from trichloroleucine	Dysidea		al., 1978
		herbacea		
41	verruculogen	fungus	causing severe	Uramoto et
42	acetoxyl derivative of	Penicillium	tremorgenic	al., 1982
	verruculogen	verruculosum	reaction in mice	u., 1902
43	gliotoxin E	fungus	Immunomodula	Waring at al
	8	Penicillium		Waring et al.,
		terlikowskii	-ting activity	1987
44	gliotoxin			
	Buotovili	fungus	antifungal	Kaouadji et
		Dichotomomy-	activity against	al., 1990
		ces cejpii	C. albicans and	
4.5			C. tropicalis	<b></b>
45	gliovictin	marine fungus	ND	Shin and
		Asteromyces		Fenical, 1987
		cruciatus		
46	verrucofortine	fungus	inactive	Hodge, Harris,
	6	Penicillium	neurotoxic	and Harris,
	สถางเง	verrucosum	activity	1988
		var. cyclopium		1,00
47	etzionin	unidentified	antifungal	Uirach at a
	0000000	Red sea		Hirsch <i>et al.</i> ,
	AM INVIA	tunicate	activity against	1989
48	aurantiamine	terrestrial	C. albicans	
. 🗸			ND	Larsen,
		fungus		Frisvad, and
		Penicillium		Jensen, 1992
		aurantiogrise-		
9	dunomida 4	um		
	dysamide A	sponge	ND	Su et al., 1993
0	dysamide B	Dysidea		
1	dysamide C	fragilis		
2	dysamide D		[ [	Fu et al., 1997

I

 Table 5. Sources of diketopiperazines (continued)

No.	Compounds	Sources	Activities	References
53	fructigenine A	fungus	ND	Boyes-Korkis
		Penicillium		et al., 1993
		aurantiogrise-		
		um		
54	Sch 54794	terrestrial	[55] platelet	Chu et al.,
55	Sch 54796	fungus	aggregating	1993
		Tolypocladium	factor (PAF)	
		sp.	inhibitors	
56	WIN 64821	soil fungus	substance P	Barrow et al.,
57	WIN 64745	Aspergillus sp.	(SP) antagonists	1993
58	leptosin A	marine fungus	cytotoxic	Takahashi et
59	leptosin B	Leptosphaeria	activity against	al., 1994
60	leptosin C	sp. (symbiosis	P388 tumor	
61	leptosin D	with algae	cells	
62	leptosin E	Sargassum		
63	leptosin F	tortile)		1
64	diketopiperazine of N-	soil bacterium	calpain inhibitor	Alvarez et al.,
	methyltyrosine	Streptomyces		1994
		griseus		
		(SC 488)		
65	TAN-1496 A	soil fungus	mammalian	Funabashi et
66	TAN-1496 B	Microsphaerop	DNA	al., 1994
67	TAN-1496 C	-sis	topoisomerase I	un, 1774
68	TAN-1496 D	sp. FL-16144	inhibitors	
69	TAN-1496 E	Sp. 12-10144	minoriors	
70	1'-(2-phenyl-ethylene)-	fungus	substance P	Barrow and
, ,	ditryptophenaline	Aspergillus	antagonist	Sedlock, 1994
		flavus SC1661	anagomst	JULIULK, 1774
 71	Sch 52900	fungus	inhibitors of c-	Chu et al.,
72	Sch 52901	Gliocladium	fos protoonco-	1995
		sp. SCF-1168	gene induction	177J
73	macrophominol	fungus	**********************	Trices Deve
, ,		Macrophomina	phytotoxic	Trigos, Reyna,
	61611111		activity	and Matamo-
41	verneulogen	phaseolina	Mahaat	ros, 1995
41 74	verruculogen fumitremorgin B	fungus	M phase	Cui, Kakeya,
75	fumitremorgin C	Aspergillus	inhibitors of the	and Osda,
75 76	demethoxyfumitremorgin C	fumigatus BM 939	mammalian cell	1996
70 77	· · ·	דנד	cycle	
	12,13-dihydroxyfumitremor- gin C			
78	tryprostatin A			
79	tryprostatin B			
80	spirotryprostatin A	fungus	cell cycle	Cui, Kakeya,
81	spirotryprostatin B	Aspergillus	inhibitors	and Osda,
		fumigatus	· · -	1996

## Table 5. Sources of diketopiperazines (continued)

,

No.	Compounds	Sources	Activities	References
82 83 84 85	cyclotryprostatin A cyclotryprostatin B cyclotryprostatin C cyclotryprostatin D	fungus Aspergillus fumigatus BM939	cell cycle inhibitors	Cui, Kakeya, and Osda, 1997
86	pallidin	sponge Rhaphisia pallida	ND	Su et al., 1996
87 88	XR330 XR334	soil bacterium Streptomyces sp.	inhibitors of plasminogen activators	Bryans <i>et al.</i> , 1996
89	dipodazine	fungus Penicillium dipodomyis	ND	Sorensen <i>et</i> <i>al.</i> , 1999

 Table 5. Sources of diketopiperazines (continued)

ND, No data.

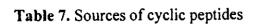
# สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 6. Sources of macrocyclic lactones

No.	Compounds	Sources	Activities	References
90	flavofungin A	bacterium	antifungal	Bognar et al.,
91	flavofungin B	Streptomyces	activity	1970
		flavofungini		
92	swinholide A	Red sea sponge	antifungal and	Carmely and
		Theonella	cytotoxic	Kashman,
		swinholei	activities	1985; and Doi
			against L1210	M et al, 1991
			and KB tumor	
			cells	
92	swinholide A	Okinawan	cytotoxic	Kobayashi et
93	swinholide B	sponge	activity against	<i>al.</i> , 1970; and
94	swinholide C	Theonella	KB tumor cells	Kobayashi <i>et</i>
95	isoswinholide A	swinhoei	RD tullor cells	<i>al.</i> , 1989
96	swinholide D	Qkinawan	autotonia	
97	swinholide E		cytotoxic	Tsukamoto <i>et</i>
98	swinholide F	sponge	activity against	al., 1991
98 99		Theonella sp.	L1210 and KB	
	swinholide G		tumor cells	
100	tedanolide	Caribbean	cytotoxic	Schmitz et al.,
		sponge	activity against	1984
		Tedania ignis	KB tumor cells	
101	acutiphycin	freshwater	cytotoxic	Barchi,
102	20,21-didehydroacutiphycin	blue-green	activity against	Moore, and
		algae	KB and murine	Patterson,
	100	Oscillatoria	Lewis lung	1984
		acutissima	tumor cells	
103	kabiramide C	unidentified	antifungal	Matsunaga,
		nudibranch	activity	Fusetani, and
		eggmasses		Hashimoto,
		00		1986
104	kabiramide A	eggmasses of	cytotoxic	Matsunaga et
105	kabiramide B	nudibranch	activity against	al., 1989
106	kabiramide D 🔍	Hexabranchus	L1210 tumor	<i>u</i> ., 1909
107	kabiramide E	sp.	cells and	
108	dihydrohalichondramide	SP.	inhibition of	
109	33-methyldihydrohalichon-		cell division of	
1.07	dramide			01
		I LLIN I	fertilized sea	1 X
110	halichondramide	Danifia	urchin eggs	
108		Pacific sponge	antifungal	Kernan and
111	dihydrohalichondramide isohalichondramide	Halichondria	actvity against	Faulkner,
112		sp.	C. albicans and	1987; and
112	imide of halichondramide		T. mentagro-	Kerman et al.,
102			phyte	1988
103	kabiramide C	Spanish		Kernan,
108	dihydrohalichondramide	nudibranch		Molinski, and
113	tetrahydrohalichondramide	Hexabranchus		Faulkner,
		sanguineus		1988

No.	Compounds	Sources	Activities	References
114	ulapualide A	eggmasses of	cytotoxic	Roesener and
115	ulapualide B	nudibranch	activity against	Scheuer, 1986
		Hexabranchus	L1210 tumor	,
		sanguineus	cells and anti-	
		-	fungal activity	
			against C.	
			albicans	
116	amphidinolide A	marine	cytotoxic	Kobayashi,
117	amphidinolide B	dinoflagellate	activity against	Ishibashi, and
118	amphidinolide C	Amphidinium	L1210 and	Hirota, 1986;
119	amphidinolide D	sp. (symbiosis	L5178Y tumor	Ishibashi et
120	amphidinolide E	with Okinawan	cells	al., 1987;
		flatworm		Kobayashi et
		Amphiscolops		al., 1988;
		sp.)		Kobayashi et
				al., 1989;
				Kobayashi et
		1		al., 1990; and
				Kobayashi, et
				al., 1991
121	amphidinolide F	marine	cytotoxic	Kobayashi et
122	amphidinolide G	dinoflagellate	activity against	al., 1991; and
123	amphidinolide H	Amphidinium	L1210 and KB	Kikuchi et al.,
	110	sp. (symbiosis	tumor cells	1991
		with Okinawan		
		flatworm		
		Amphiscolops		
		magniviridis		
124	bistheonellide A	sponge	cytotoxic	Kato et al.,
125	bistheonellide B	Theonella spp.	activity against	1987; and
126	bistheonellide C		L1210 and KB	Kobayashi et
127	isobistheonellide A		tumor cells and	al., 1991
128	bistheonellic acid A	79761914	inhibit embryos	
129	bistheonellic acid B		of starfish	
		<u>م</u>	Asterina 🔍 🔍	,
			pectinifera	01
130	bistratene A	tunicate	cytotoxic	Degnan et al.,
131	bistratene B	Lissoclinum	activity	1989
		bistratum		
132	prorocentrolide	marine	toxin	Torigoe et al.,
		dinoflagellate		1988
		Prorocentrum		
l	l	lima	j	

t


.

No.	Compounds	Sources	Activities	References
133	iejimalide A	Okinawan	cytotoxic	Kobayashi et
134	iejimalide B	tunicate	activity against	al., 1988; and
135	iejimalide C	Eudistoma cf.	L1210 and	Kikuchi et al.,
136	iejimalide D	rigida	L5178Y tumor	1991
			cells	
137	goniodomin A	rock pool	antifungal	Murakami et
		dinoflagellate	activity against	al., 1988
		Goniodoma	C. albicans and	
		pseudogoniau-	inhibition of	
		lax	cell division of	
			fertilized sea	
			urchin eggs	
138	macrolactin A	unidentified	antibacterial	Gustafson,
139	macrolactin B	gram-positive	activity against	Roman, and
140	macrolactin C	marine	S. aureus and B.	Fenical, 1989;
141	macrolactin D	bacterium	subtilis;	and
142	macrolactin E	outerrain	antiviral activity	
143	macrolactin F	3 200 9	against Herpes	Rychnovsky,
				et al., 1992
			simplex viruses;	
		162.62	and cytotoxic	
		a company	activity against B16-F10 tumor	
		A ALALANA	cells	
144	scytophycin A	terrestrial blue-	cytotoxic	Ishibashi <i>et</i>
145	scytophycin B	green algae	activity against	
146	scytophycin C	Scytonema	KB and P388	al., 1986; and
147	scytophycin D	pseudohofman-	tumor cells and	Carmeli <i>et al.</i> ,
148	scytophycin E	ni	antifungal	1990
		///		
			activity against	
			pathogenic	
145	scytophycin B	terrestrial blue-	fungi	
149	6-hydroxyscytophycin B		cytotoxic	Carmeli,
149		green algae	activity against	Moore, and
150	6-hydroxy-7-O-methyl-	Scytonema	KB and LoVo	Patterson,
151	scytophycin E	mirabile	tumor cells and	1990
121	totytoxin	(Dillwyn)	antifungal	2
1		Bornet (strain	activity against	
	Ч	BY-8-1)	pathogenic	
			fungi	
145	scytophycin B	terrestrial blue-		
149	6-hydroxyscytophycin B	green algae		
152	19-O-demethyl-scytophycin	Scytonema		
140	B	burmanicum		
48	scytophycin E	Skuja (strain		
150	6-hydroxy-7-O-methyl-	DO-4-1)		
51	scytophycin E			
	tolytoxin	1 1		1

No.	Compounds	Sources	Activities	References
150	6-hydroxy-7-O-methyl-	terrestrial blue-	cytotoxic	Carmeli,
	scytophycin E	green algae	activity against	Moore, and
151	tolytoxin	Scytonema	KB and LoVo	Patterson,
152	19-O-demethylscytophycin	ocellatum	tumor cells and	1990
	B	Lyngbye ex	antifungal	
		Bornet &	activity against	
		Flahault (strain	pathogenic	
		FF-66-3)	fungi	
151	tolytoxin	terrestrial blue-		
		green algae		
		Scytonema		
		ocellatum		
		Lyngbye ex		
		Bornet &		
		Flahault (strain		
		FF-65-1 and		
		DD-8-1)		
153	aplyronine A	sea hare Aply-		
155	aphyronine A	sia kurodai	cytotoxic	Ojika <i>et al.</i> ,
154	sphinxolide A	Caledonian	activity	1993
155	sphinxolide B		cytotoxic	D'Auria et al.,
155	-	sponge	activity against	1993
150	sphinxolide C	Neosiphonia	NSCLC-N6,	
157	sphinxolide D	superstes	P388, KB, and	
		REPERT PROVING	HT29 tumor	
158			cells	
	reidispongiolide A	Caledonian	cytotoxic	D'Auria et al.,
159	reidispongiolide B	sponge	activity against	1994
		Reidispogia	various human	
		coerulea	tumor cells	
160	zooxanthellatoxin A	symbiotic	vasoconstrictors	Nakamura,
		marine		Asari, and
	0	dinoflagellate		Murai, 1995
		Symbiodinium	รการ	
160	zooxanthellatoxin A	sp. (strain Y-6)	d I I d	Nakamura et
161	zooxanthellatoxin B	<b>.</b>	- e	al., 1995
162	callipeltoside A	Lithistida	cytotoxic	Zampella et
		sponge	activity against	al., 1996
ĺ	9	Callipelta sp.	NSCLC-N6 and	
			P388 tumor	
<b></b>			cells	
163	callipeltoside B	Lithistida	cytotoxic	Zampella <i>et</i>
164	callipeltoside C	sponge	activity against	al., 1997
	-	<i>Callipelta</i> sp.	P388 and KB	un, 1777
		T T T	tumor cells and	
			antiviral activity	
			against HIV	
••	• • • • • • • • • • • • • • • • • • • •			

No.	Compounds	Sources	Activities	References
165	ossamycin	bacterium	cytotoxic	Kirst et al.,
		Streptomyces	activity	1996
		hygroscopicus		
		var.		
1.44		ossamyceticus		
166	halishigamide A	Okinawan	cytotoxic	Kobayashi et
167	halishigamide B	sponge	activity against	al., 1997
168 169	halishigamide C	Halichondria	L1210 and KB	
109	halishigamide D	sp.	tumor cells and	
			antifungal	
			activity against	
			T. mentagro-	
170	dolabellide C	Inneres	phytes	
171	dolabellide D	Japanese sea hare Dolabella	cytotoxic	Suenaga, et
1/1	dolabellide D	auricularia	activity	al., 1997
172	lyngbyaloside	marine cyano-	ND	Killing of all
172	lyngoyaloside	bacterium	ND	Klien <i>et al.</i> , 1997
		Lyngbya		1997
		bouillonii		
173	amphilactam A	sponges	nematocidal	Ovenden et
174	amphilactam B	Amphimedon	activity against	al., 1999
175	amphilactam C	spp.	nematode	
176	amphilactam D	free card a proportion of	Haemonchus	
	-		contortus	
177	streptovaricin C	soil bacterium	antimutagenic	Ooka et al.,
		Streptomyces	activity against	1999
		sp. KMI-30	various	
<b></b>			mutagens	
178	methamycin B	bacterium	phytotoxic	Mukhopadh-
		Actinomycete	activity	yay et al.,
	<i>u</i>	sp. Y-8620959	-	1999
179	tetrin C	soil bacterium	antifungal	Ryu et al.,
		Streptomyces	activity against	1999
	~	sp. GK9244	Mortierella 🌼	
		รกเขเหว	ramanniaus	6

ND, No data.



No.	Compounds	Sources	Activities	References
180	tentoxin	phytopatho- genic fungus Alternaria tenuis Auct.	causing severe chlorosis in the cotyledons	Meyer <i>et al.</i> , 1971; Steele <i>et al.</i> , 1976; Pinet <i>et al.</i> , 1996; and Pinet <i>et al.</i> , 1996
181	dihydrotentoxin	phytopatho- genic fungus Alternaria alternata	phytotoxic activity	Liebermann et al., 1988
182	Cyl-2	phytopatho- genic fungus Cyclindrocladi -um scoparium	ND	Hirota <i>et al</i> ., 1973
183 184	ulicyclamide ulithiacyclamide	tuniate Lissoclinum patella	ND	Ireland and Scheuer, 1980
184 185	ulithiacyclamide ascidiacyclamide	unidentified ascidian	[185] cytotoxic activity against L1210 tumor cells	Hamamoto <i>et</i> <i>al.</i> , 1983; Ireland and Scheuer, 1980; and Hamada, Kato, and Shioiri, 1985
186	bacillomycin D	bacterium Bacillus subtilis	antifungal activity	Peypoux <i>et al.</i> , 1981
187 188 189	patellamide A patellamide B patellamide C	tunicate Lissoclinum patella	cytotoxic activity against L1210 tumor cells	Ireland <i>et al.</i> , 1982
190 191 192 193	patellamide D lissoclinamide 4 lissoclinamide 5 lissoclinamide 7	วทยบ' กเ์มหา	cytotoxic activity against MRC5CV1 and T24 tumor cells	Degnan, <i>et al.</i> , 1989; and Schmitz, <i>et</i> <i>al.</i> , 1989 Hawkins <i>et</i>
193 194 195	lissoclinamide 8 HC-toxin	terrestrial fungus Helminthospo- rium carbonum	phytotoxic activity	Hawkins <i>et</i> <i>al.</i> , 1990 Liesch <i>et al.</i> , 1982

No.	Compounds	Sources	Activities	References
196	discodermin B	sponge	antimicrobial	Matsunaga,
197	discodermin C	Discodermia	activity against	Fusetani, and
198	discodermin D	kiiensis	P. aeruginosa,	Konosu, 1985
			E. coli, B.	
			subtilis and M.	
			smegmatis, and	,
			inhibit embryo	
		1	development of	
		s de la de la compañía	starfish Asterina	
			pectinifera	
199	scytonemin A	soil blue-green	calcium	Helms et al.,
		algae	antagonist	1988
		Scytonema sp.	unugothist	1700
200	cyanogenosin-LA	cyano-	hepatotoxic	Painuly et al.,
200	cyanogenosin-RR	bacterium	activity	1988
201	- Juno Bollo Sull-IVI	Microcystis	activity	1700
		-		
202	fenestin A	aeruginosa		
202	fenestin B	Sponge	inactive	Omar <i>et al.</i> ,
205	Tenesun B	Leucophloeus	cytotoxic	1988
		fenestrata	activity against	
		A STICITION A	P388 and HT29	
			tumor cells	
204	puwainaphycin C	terrestrial blue-	[204] positive	Moore et al.,
205	puwainaphycin D	green algae	cardiotonic	1989
		Anabaena sp.	activity in isola-	
			ted mouse atria	
206	bistratamide A	tunicate	cytotoxic	Degnan et al.,
207	bistratamide B	Lissoclinum	activity	1989
208	bistratamide C	bistratu <b>m</b>	depressant	Foster et al.,
209	bistratamide D		activity	1992
210	cyclotheonamide A	sponge	thrombin	Fusetani et al.,
211	cyclotheonamide B	Theonella sp.	inhibitors	1990.
212	orbiculamide A	9109001919	cytotoxic	Fusetani,
	61611U	U U U I V 6 M	activity against	Sugawara, and
		~	P388 tumor	Matsunaga,
	200220	Shieles	cells	1991
213	keramamide A	sponge	sarcoplasmic	Kobayashi et
	9	Theonella sp.	reticulum Ca ²⁺ -	al., 1991
		i i i i i i i i i i i i i i i i i i i	ATPase	usi, 1771
			inhibitor	
214	keramamide B	•••••	inhibit	Vohava-bi
215	keramamide C		superoxide	Kobayashi et
216	keramamide D		-	al., 1991
			generation	
			response of human	
l			neutrophils	

 Table 7. Sources of cyclic peptides (continued)

No.	Compounds	Sources	Activities	References
217	keramamide E	sponge	cytotoxic	Kobayashi et
218	keramamide G	Theonella sp.	activity against	al., 1995
219	keramamide H		L1210 and KB	
220	keramamide J		tumor cells	
221	tawicyclamide A	tunicate	cytotoxic	MaDonald et
222	tawicyclamide B	Lissoclinum	activity against	al., 1992
		patella	human colon	
			tumor cells	
223	westiellamide or	terrestrial blue-	cytotoxic	Prinsep et al.,
	cycloxazoline	green algae	activity against	1992
ł		Westiellopsis	KB and LoVo	
		prolifica	tumor cells	
		tunicate	cytotoxic	Hambley et
		Lissoclinum	activity against	al., 1992
		bistratum	MRC5CV1 and	,
ľ			T24 tumor cells	
224	hormothamnion A	cyano-	cytotoxic and	Gerwick et al.,
		bacterium	antimicrobial	1992
		Hormotham-	activities	
		nion entero-		
		morpholides		
225	mollamide	ascidian	cytotoxic	Carroll et al.,
		Didemnum	activity against	1994
		molle	P388, HT29 and	
			CV1 tumor	
		SUN AND	cells and inhibit	
			RNA synthesis	
226	schizotrin A	terrestrial	antibacterial	Pergament and
		cyano-	activity against	Carmeli, 1994
		bacterium	S. aureus, S.	
	~	Schizotrix sp.	albus, E. coli,	
	0		and B. subtilis,	
	สภาแม	<u> </u>	and antifungal	
	ыылым		activity against	
		e-	S. cerevisiae, C.	
	าสมาราช	<b>219192</b>	ablicans, C. tro-	191
		o はち ヽ l	picalis, R. ruba,	
	9		S. rolfsii, R.	
			solani, F. oxy-	
		[	sporum and C.	
			gloeosporioides	
22 <b>7</b>	dolastatin E	sea hare	cytotoxic	Ojika et al.,
		Dolabella	activity	1995
		auricularia		

 Table 7. Sources of cyclic peptides (continued)

No.	Compounds	Sources	Activities	References
228	oscillamide Y	terrestrial	chymotrypsin	Sano and
		cyano-	inhibitor	Kaya, 1995
		bacterium		
		Oscillatoria		
		agardhii		
229	cyclodidemnamide	ascidian	cytotoxic	Boden,
		Didemnum	activity against	Norley, and
		molle	human colon	Pattenden,
			tumor cells	1996
230	P951	cyano-	antifungal	Bewley et al.,
		bacterium	activity	1996
		Aphanocapsa		
		feldmanni		
		(symbiosis		
		with sponge		
		Theonella		
		swinhoei)		
231	raocyclamide A	marine cyano-	[231] inhibit	Admi, Afek,
232	raocyclamide B	bacterium	cell division of	and Carmeli,
		Oscillatoria	sea urchin	1996; and
		raoi	embryos	Freeman and
			(Paracentrotus	Pattenden,
		AVS/6X8/A	lividus)	1998
233	apicidin	fungus	antiprotozoal	Darkin-
	_	Fusarium spp.	activity against	Rattray et al.,
		(ATCC 74289	Apicomplexan	1996
		and ATCC	parasites and	
		74322)	antimalarial	
			activity against	
			Plasmodium	
			berghei	
234	anabaenopeptin B 🔍	cyano-	rat aortic	Shin et al.,
235	anabaenopeptin E	bacterium	relaxant	1997
236	anabaenopeptin F	Oscillatoria		
		agardhii	ė Q	<i>y</i>
	ຸລາແລລາຄ	(NIES-204)	างกยาว	191
237	loloatin A	tropical marine	antimicrobial	Gerard et al.,
238	loloatin B	bacterium	activity against	1999
239	loloatin C		methicillin	
240	loloatin D		resistant S.	
	1		aureus,	
			vancomycin-	
			resistant	
			enterococci, and	
			drug-resistant S.	
			pneumoniae	

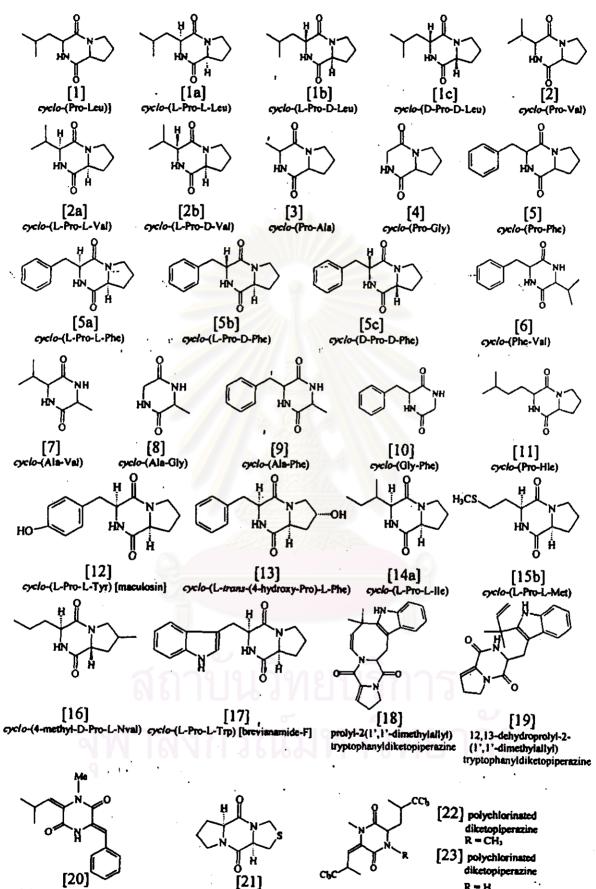
Table 7. Sources of cyclic peptides (continued)

*

ND, No data.

 Table 8. Sources of purine nucleosides and derivatives

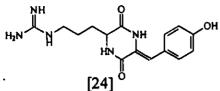
No.	Compounds	Sources	Activities	References
241	1-methylisoguanosine	sponge	reduced muscle	Quinn et al.,
		Tedania	relaxation and	1980
		digitata	hypothermia in	
			mice; hypoten-	
			sive, bradycar-	
			dia, antiinflam-	
l			matory and	
			anti-allergic	
			activities in rats	
242	mycalisine A	sponge Mycale	inhibit cell	Kato et al.,
243	mycalisine B	sp.	division of	1985
			fertilized	
			starfish eggs	
244	doridosine (N-methylpurine	nudibranch	hypotensive and	Fuhrman et
	riboside)	Anisodoris	bradycardia	al., 1980
		nobilis	activities	
245	isoguanosine (oxyadenosine	nudibranch	hypotensive and	Fuhrman et
	or crotonoside)	mollusc	bradycardia	al., 1981
{		Diaulula	activities;	
		sandiegensis	relaxation of	
			smooth muscle;	
		144001121914	and stimulate	ĺ
			accumulation of	
		1410/3 19 19 19 A	cyclic adeno-	
		1	sine-3',5' mono-	[ [
	and the	WWWWWW	phosphate phos-	
]			phodiesterase in	
			brain tissue	
246	aplysidine	Okinawan	adenosine A ₁	Kondo et al.,
		sponge	receptor	1992
		Aplysina sp.	antagonist	
247	7-deazainosine	ascidian	inactive	Kim et al.,
	สภาเย	Aplidium	cytotoxic	1993
		pantherinum	activity against	
			P388 tumor cell	/
248	tubercidin	marine	antiviral activity	Kazlauskas et
		bacterium	9110 161	al., 1983
	9	Streptomyces		
		sp.		
249	5-iodo-5'-deoxytubercidin	red algae	muscle relaxant	Kazlauskas et
		Hypnea	and blocker of	al., 1983
		valendiae	polysynaptic	,
			and monosynap	
			-tic reflexes	
250	5'-deoxy-3-bromotubercidin	ascidian	ND	Mitchell et al.,
251	5'-deoxytubercidin	Didemnum		1996
		voeltzkowi		


Table 8. Sources of purine nucleosides and derivatives (continued)

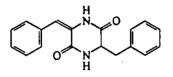
No.	Compounds	Sources	Activities	References
252	angustmycin A (decoyinine)	marine bacterium Streptomyces hygroscopicus var. decoyicus	antibacterial activity against Streptococcus feacalis and cytotoxic activity	McCarthy et al., 1968
253	aristeromycin	marine bacterium Streptomyces citricolor	inhibitory activity against <i>Pyricularia</i> oryzae and Xanthomonas oryzae	Kishi <i>et al.</i> , 1972
254	adenosine	sponge Tethya aurantia	cardiodepressor	Weber <i>et al.</i> , 1981
255	9- $\beta$ -D-arabinofuranosyl- adenine (ara A)	gorgonian Eunicella	antiviral activity	Cimino, Rosa, and Stefano,
256	3'-O-acetyl-9-B-D-arabino- furanosyladenine	cavolini		1984
257	9-[5'-deoxy-5'-(methylthio)- $\beta$ -D-xylofuranosyl]adenine	nudibranch mollusc Doris verrucosa	ND	Cimino <i>et al.</i> , 1986
258	5'-deoxy-5'-dimethyl- arsinyladenosine	kidney of giant clam Tridacna maxima	ND	Francesconi et al., 1991
259 260	2'-deoxyguanosine 2'-deoxyinosine	acom worm Ptychodera flava	ND	Sakemi, and Higa, 1985; and Dematte et al., 1985
261 262	trachycladine A trachycladine B	sponge Trachycladus laevispirulifer	[261] cytotoxic activity against leukemia, colon, and breast tumor cells; [262] ND	Searle and Molinski, 1995

ND, No data.

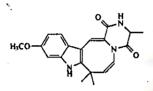
.


งกรณ์มหาวิทยาลัย

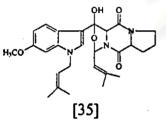



1-N-methylalbonoursia

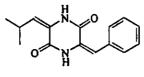
cyclo-(L-Pro-L-thioPro)


R = H

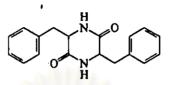



cyclo-(I-Arg-dehydrotyrosine)

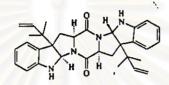



[27] 3-benzyl-6-benzylidene-2,5-dioxopiperazine

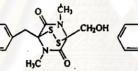



[31] cycloechinuline

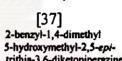



lanosulin




[25] 3-benzylidene-6-isobutylidene-2,5-dioxopiperazine

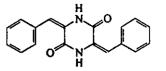



[28] 3,6-dibenzyl-2,5-dioxopiperazine

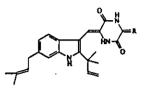


[32] N-methylepiamauromine, R = CH3 [33] epiamauromine, R = H

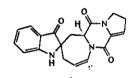



[36] 2-benzyl-1,4-dimethyl-5-hydroxymethyl-2,5-epi-

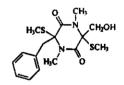



dithia-3,6-diketopiperazine trithia-3,6-diketopiperazine

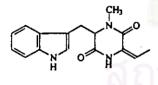
ÇH₃


CH₂OH

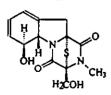



[26] 3,6-dibenzylidene 2,5-dioxopiperazine

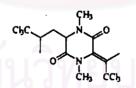



[29] neocchinuline, R = 0[30] crytoechinuline A,  $R = CH_2$ 

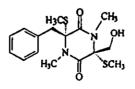



[34] austamine

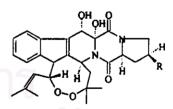



[38] bisdethiadi(methylthio) analog of 2-benzyl-1,4-dimethyl-5-hydroxymethyl-2,5-epi-dithia-3,6-diketopiperazine

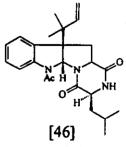



[39] trypthophan-dehydrobutyrine

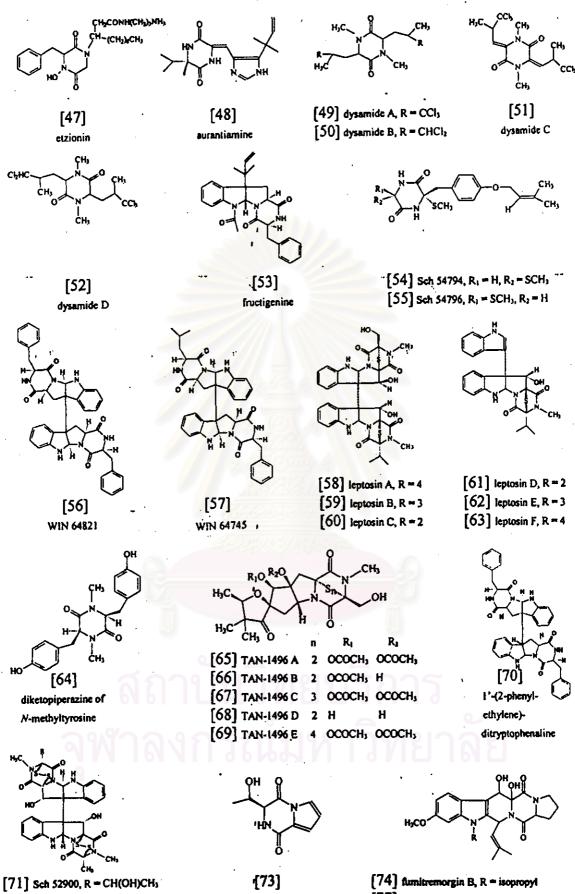



[43] gliotoxin E, n = 3 [44] gliotoxin, n = 2




[40] diketopiperazine derived from trichloroleucine

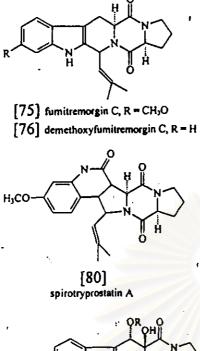


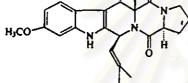

[45] gliovictin



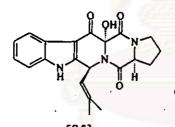
[41] verruculogen, R = H [42] acetoxyl derivative of verruculogen, R = OCOCH₁



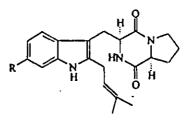

verrucofortine



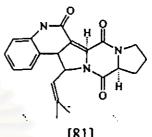

[72] Sch 52901, R = CH₂CH₃


macrophominol

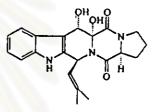
[77] 12,13-dihydroxyfumitremorgin C, R = H



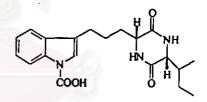




[82] cyclotryprostatin A, R = H [83] cyclotryprostatin B, R = CH₃

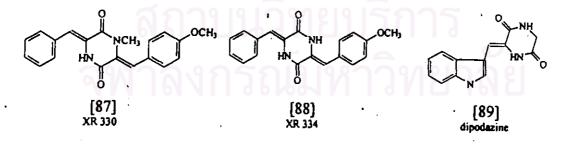


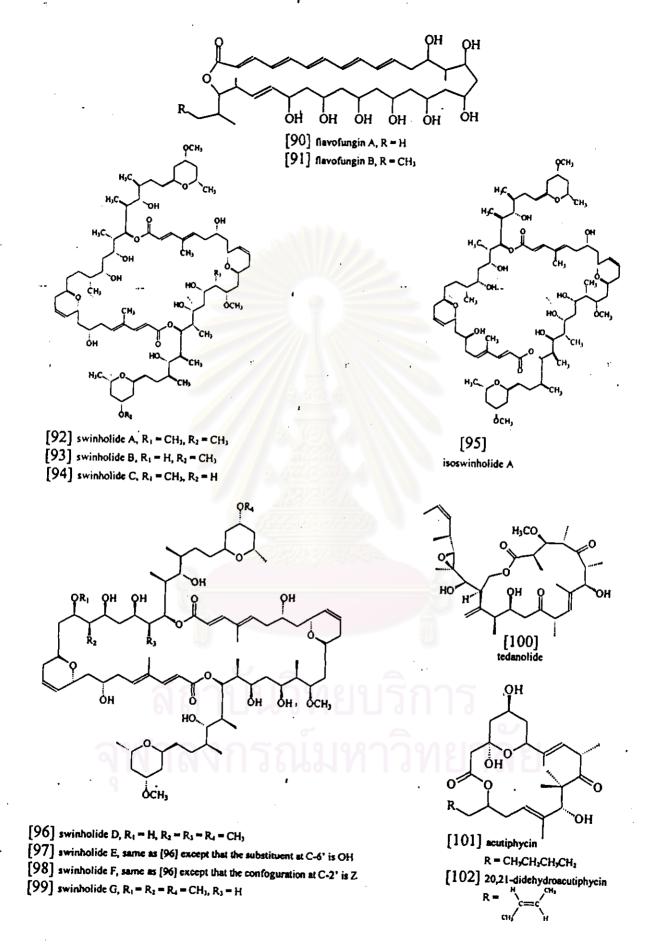


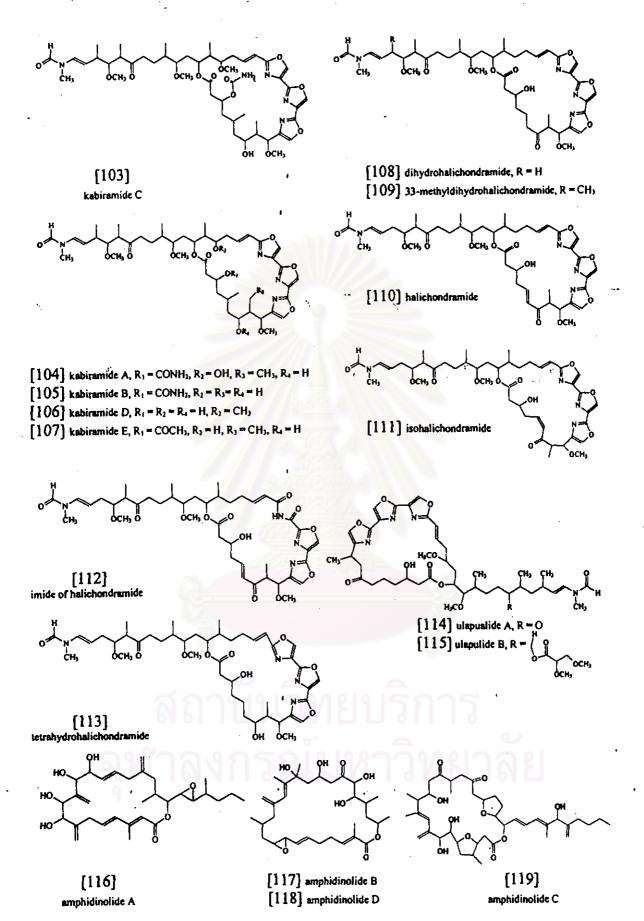




[78] tryptostatin A, R = CH₃O
[79] tryptostatin B, R = H



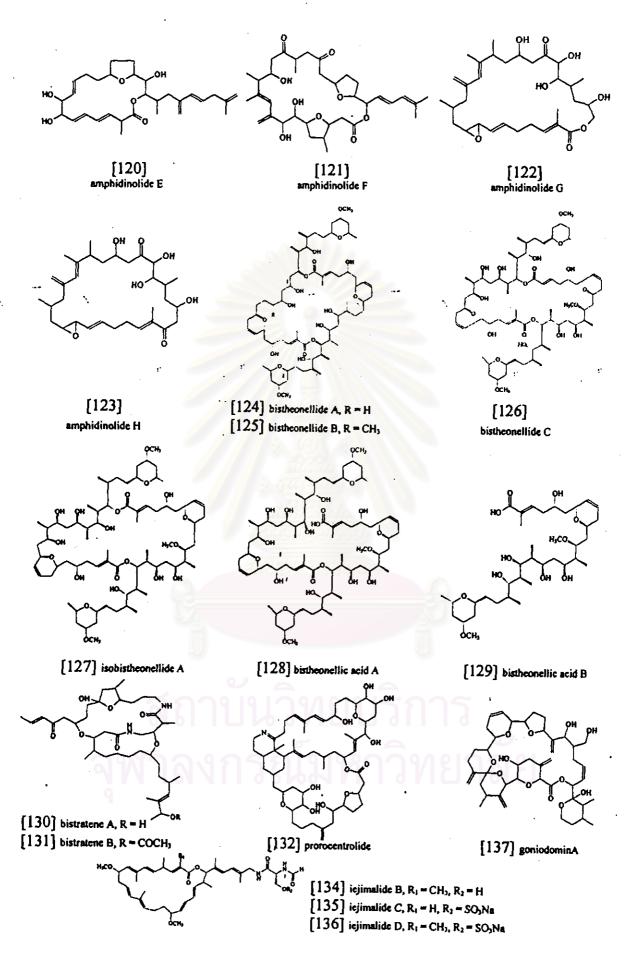

[81] spirotryprostatin B

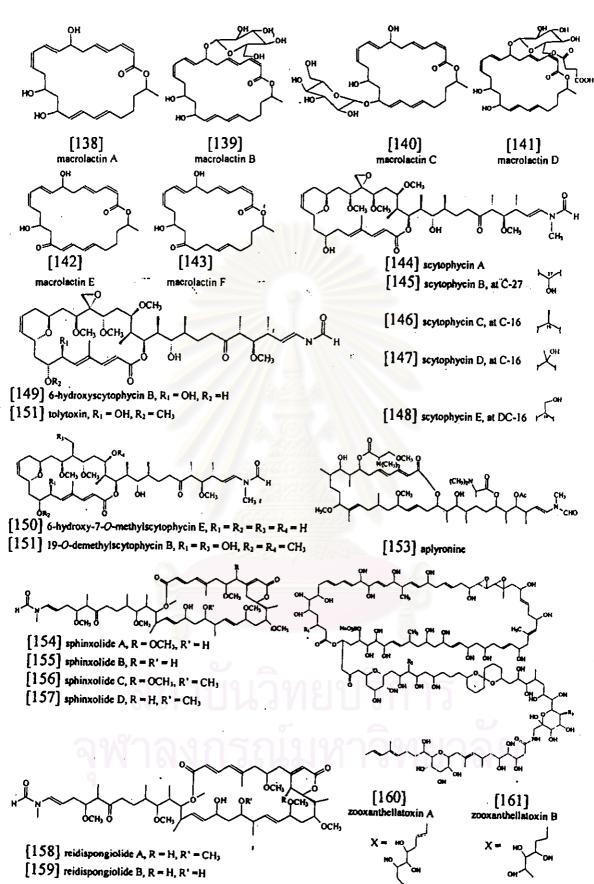




[84] cyclotryprostatin C



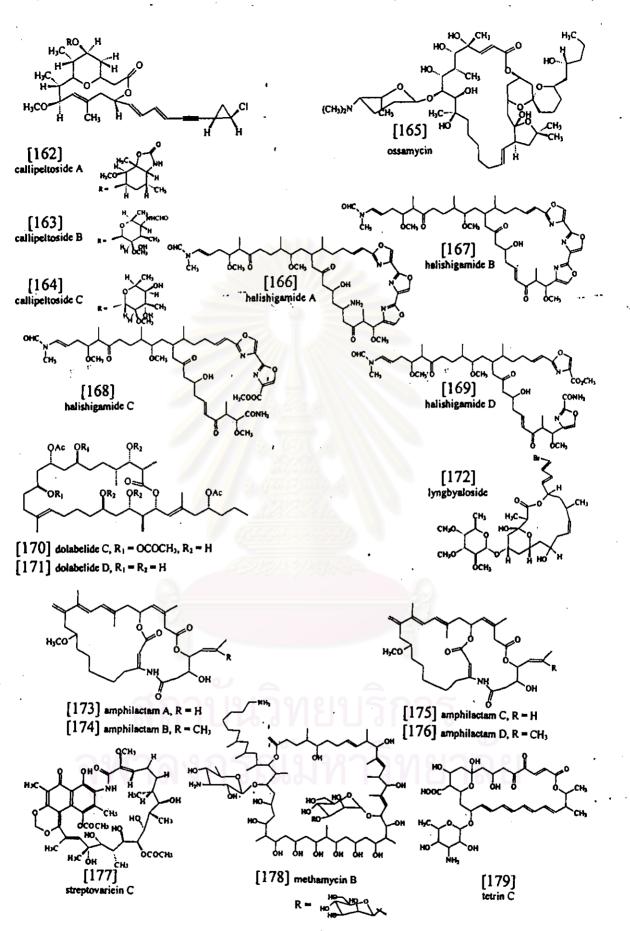
[86] pallidin



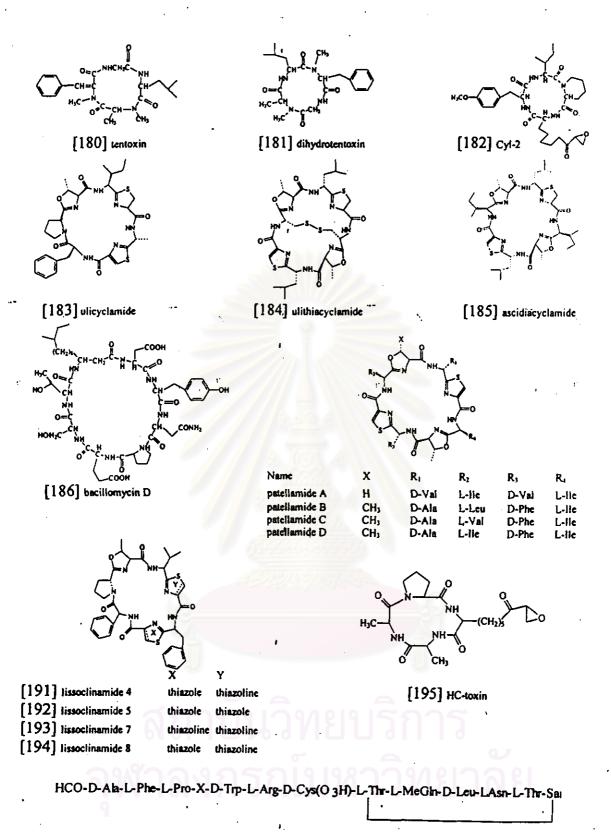





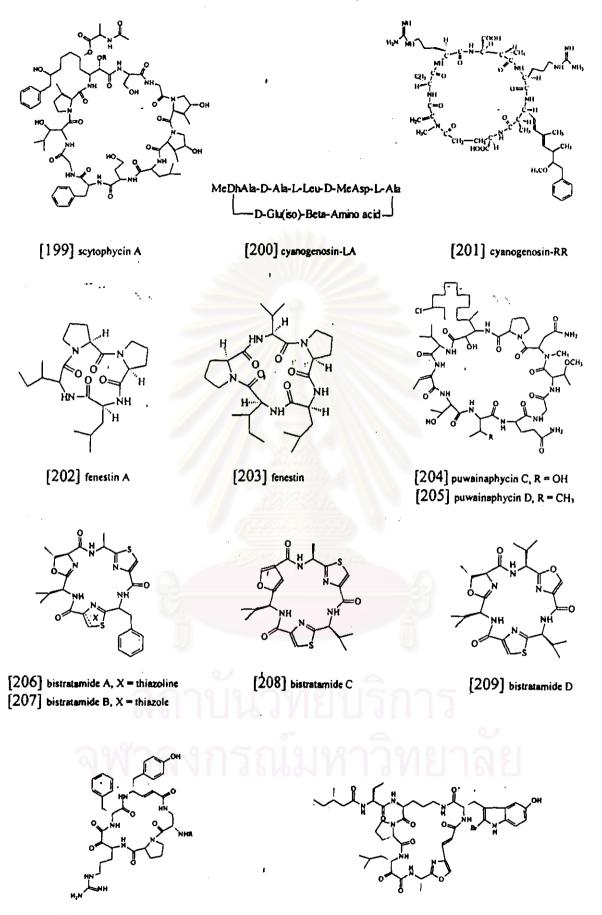

.53


.





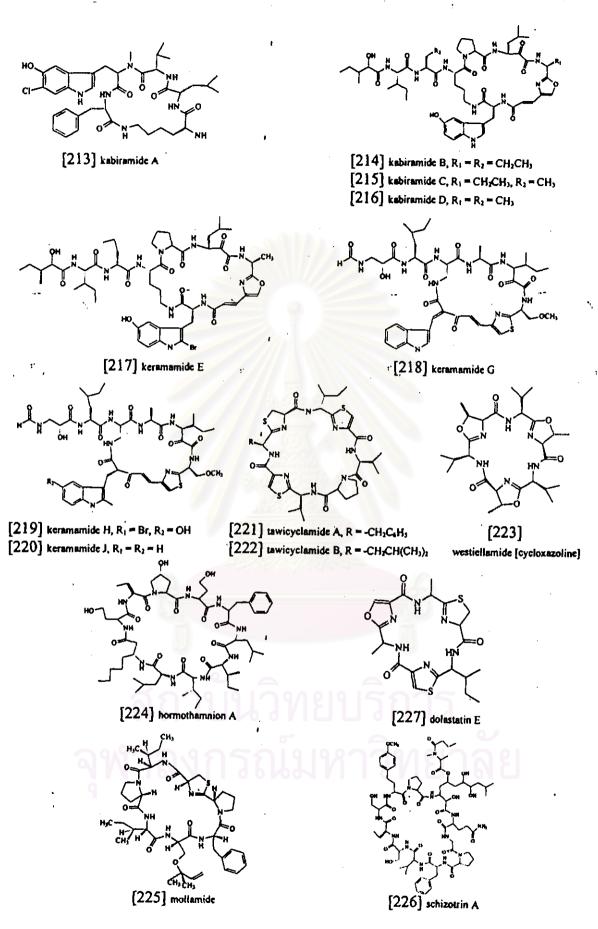

R1 = H, R2 = OH, R3 = OH

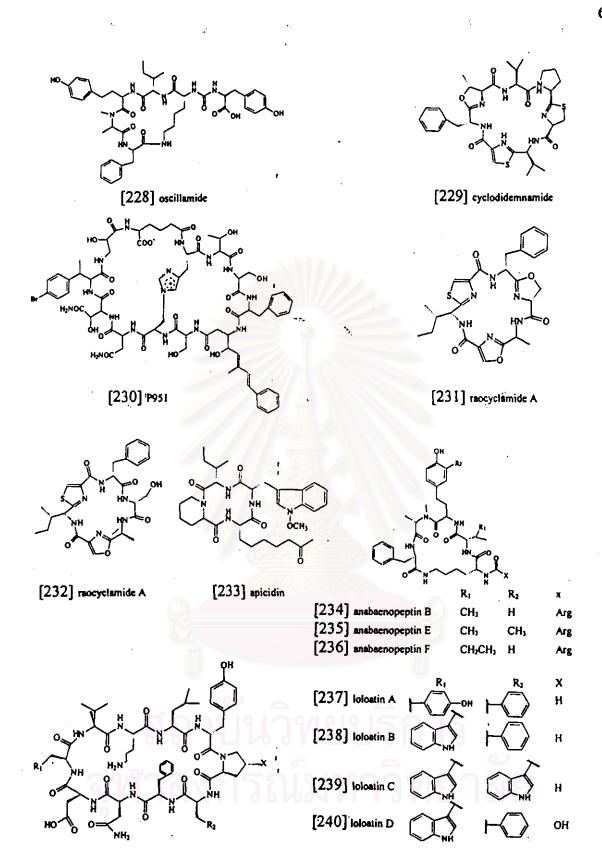

 $R_1 = OH, R_2 = H, R_3 = H$ 



. **5**6




- [196] discodermin B, X = D-Vai-L-t-Leu[197] discodermin C, X = D-t-Leu-L-Vai
- [198] discodermin D, X = D-Val-L-Val

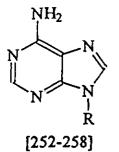



[210] cyclotheonamide A, R = CHO [211] cyclotheonamide B, R = OCOCH₁

[212] orbiculamide A

**58** . .






٠.

60

----

NH II NH2 NH2 CN CN H₁C 0[°] O Ñ N 0 0 HO HO H₂C= H₂C≈ њсо ю́н н₅со юн нο ОН юн HO [244] doridosine [245] [242] mycalisine A [243] mycalisine B isoguanosine H₃C HO х-Y = ОН нο юн HO ОН NH2 Ri R₁ R₂ X Compounds H [248] tubercidin [249] 5-iodo-5'-deoxytubercidin 1 Y [250] 5'deoxy-3-bromotubercidin Br Y  $\dot{R}_2$ HÓ ЮH [251] 5'deoxytubercidin н Y [247] 7-deazainosine [248-251] H₂C .0 ______ HO HO HO'



ŅΗ2

,0

[241] I-methylisoguanosine

ÇH₃

n

HÓ

[246] aplysidin

ЮH

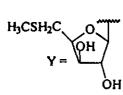
HO

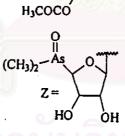
T =

HO

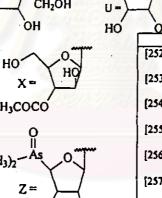
H₃C

0

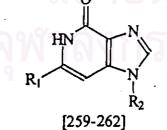

HO

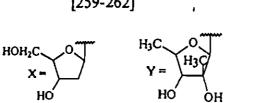

C

H₃C⁻


HO

HO




**CH**₂OH



( v=)(	w =
он но он	но
Compounds	R
[252] augustmycin	Ť
[253] aristeromycin	U
(254) adenosine	. 🛛 🔽
[255] 9-&D-arabinofuranosytade	nine W
[256] 3'-O-acetyl-9-β-D-arabino	furanosyladenine X
[257] 9-[5'-deoxy-5'-(methylthio xylofuranosyl]adenine	)- <i>β</i> -D- Υ
[258] 5'-deoxy-5'-dimethylarsiny	vladenosine Z





Compounds	R	R ₂
[259] 2'-deoxyguanosine	NH2	X
[260] 2'-deoxyinosine	н	x
[261] trachycladine A	СІ	Y
[262] trachycladine B	Н	v