CHAPTER III

ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON PARTIALY ORDERED SETS WHICH ARE NOT CHAINS

In this chapter, we study regularity of order – preserving transformation semigroups $PT_{OP}(X)$, $T_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$, $V_{OP}(X)$ and $W_{OP}(X)$ where X is a partially ordered sets which is not a chain.

Let X be a partially ordered sets which is not a chain. There are two main results in this chapter. The first one is to prove that if S is one of $PT_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$, and $W_{OP}(X)$, then S is regular if and only if X is isolated. The second one is to give some necessary conditions and some sufficient conditions for X such that $T_{OP}(X)$ is regular.

The following lemmas are required.

Lemma 3.1. Let X be a partially ordered sets which is not a chain. If X is not isolated, then X contains a subposet of the forms

$$\begin{bmatrix} a & & & e \\ b & & c \end{bmatrix}$$
 or $\begin{bmatrix} c & & \\ d & & \\ \end{bmatrix}$

Proof. Since X is not isolated, there exists $a \in X$ such that a is not an isolated point of X. Then there exists $b \in X$ such that a < b or b < a. Without loss of generality, we assume that a < b. Let M be a maximal chain of X containing a and b. Since X is not a chain, $M \neq X$. Let $c \in X - M$. By maximality of M, the subposet $M \cup \{c\}$ is not a chain of X. Hence for all $x, y \in M$,

$$x < y$$
 implies that $x \not< c$ or $c \not< y$ (*)

Case 1: c is not comparable with any element of M. Then

$$\begin{bmatrix} a \\ b \end{bmatrix}$$
.

is a subposet of X.

Case 2: d < c for some $d \in M$. If for every $x \in M$, d < x implies that x < c, then $M \cup \{c\}$ is a chain which contradicts the maximality of M. Thus there exists $e \in M$ such that d < e and $e \not\in c$. Since d, $e \in M$ and d < c, by (*), $c \not\in e$. Hence e and c are not comparable. Therefore

is a subposet of X.

Case 3: c < d for some $d \in M$. If for $x \in M$, x < d implies that c < x, then $M \cup \{c\}$ is a chain which is a contradiction since M is a maximal chain containing a and b. Consequently, there exists $e \in M$ such that e < d and $c \not\in e$. Since d, $e \in M$ and c < d, by (*), $e \not\in c$. Therefore e and c are not comparable. Hence

is a subposet of X.

The lemma is completely proved. \square

Lemma 3.2. If X is a partially ordered set containing a subposet of the forms

then any of $PT_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$ and $W_{OP}(X)$ is not regular.

Proof. Let S be $PT_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$ or $W_{OP}(X)$.

Case 1: X contains

as a subposet. Let $\alpha \in PT(X)$ be such that $\Delta \alpha = \{b, c\}$, $\nabla \alpha = \{a, b\}$, $b\alpha = a$ and $c\alpha = b$. Then $\alpha \in S$. Suppose that $\alpha \beta \alpha = \alpha$ for some $\beta \in S$. Then $a = b\alpha = b\alpha \beta \alpha = (a\beta)\alpha$ and $b = c\alpha = c\alpha \beta \alpha = (b\beta)\alpha$ which implies that $a\beta = b$ and $b\beta = c$.

Since b < a and $c \not< b$, β is not order – preserving, a contradiction. Hence α is not a regular element of S.

Case 2: X contains

as a subposet. Let $\alpha \in PT(X)$ be such that $\Delta \alpha = \{a, c\}$, $\nabla \alpha = \{a, b\}$, $a\alpha = a$ and $c\alpha = b$. Then $\alpha \in S$. Suppose that there exists $\beta \in S$ such that $\alpha \beta \alpha = \alpha$. Then $a = a\alpha = a\alpha\beta\alpha = (a\beta)\alpha$ and $b = c\alpha = c\alpha\beta\alpha = (b\beta)\alpha$, so $a\beta = a$ and $b\beta = c$. This implies that β is not order—preserving since b < a but $a \not< c$. Therefore α is not a regular element of S.

Case 3: X contains

as a subposet. By Case 2, $T_{OP}((X, \leq_{opp}))$ is not regular. By Proposition 1.5 (2), $T_{OP}(X)$ is not regular.

Hence the lemma is proved. D

Theorem 3.3. Let X be a partially ordered set which is not a chain and let S be $PT_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$ and $W_{OP}(X)$. Then S is regular if and only if X is isolated.

Proof. If X is isolated, then $PT_{OP}(X) = PT(X)$, $I_{OP}(X) = I(X)$, $U_{OP}(X) = U(X)$ and $W_{OP}(X) = W(X)$, so S is a regular semigroup.

On the other hand, assume that X is not a chain and X is not isolated. By Lemma 3.1, X contains a poset of the forms

By Lemma 3.2, S is not regular. \square

Theorem 3.4. Let X be a partially ordered set containing disjoint components C_1 and C_2 with $|C_1| > 1$, then $T_{OP}(X)$ is not regular.

Proof. Since $|C_1| > 1$, there exist $a, b \in C_1$ such that a < b. Define $\alpha \in T(X)$ by

$$x\alpha = \begin{cases} a & \text{if} \quad x \in C_1, \\ b & \text{if} \quad x \in C_2, \\ x & \text{if} \quad x \in X - (C_1 \cup C_2). \end{cases}$$

Then $\alpha \in T_{OP}(X)$. Suppose $\alpha = \alpha \beta \alpha$ for some $\beta \in T_{OP}(X)$. Let $c \in C_2$. Then $a = a\alpha = a\alpha \beta \alpha = (a\beta)\alpha$ and $b = c\alpha = c\alpha \beta \alpha = (b\beta)\alpha$ which imply that $a\beta \in C_1$ and $b\beta \in C_2$. Since C_1 and C_2 are disjoint components, $a\beta$ and $b\beta$ are not comparable. It is a contradiction since $\beta \in T_{OP}(X)$ and $\alpha < b$. Hence α is not regular in $T_{OP}(X)$. \square

Theorem 3.5. If a partially ordered set X contains a subposet of the forms

then $T_{OP}(X)$ is not regular.

Proof. First, let X have the subposet

Define $\alpha: X \to X$ by $a\alpha = c$, $b\alpha = a$, $c\alpha = d$ and $d\alpha = d$, i.e.,

and for $x \in X - \{a, b, c, d\}$,

$$x\alpha = \begin{cases} x & \text{if } x > a \text{ and } x > b, \\ c & \text{if } x > a \text{ and } x \neq b, \\ a & \text{if } x \neq a \text{ and } x > b, \\ d & \text{if } x \neq a \text{ and } x \neq b. \end{cases} \dots (**)$$

To show that α is order – preserving, let y, $z \in X$ be such that y < z. Because of that x < y, the following cases are all possible cases.

Case 1: $y, z \in \{a, b, c, d\}$. By (*), $y\alpha \le z\alpha$.

Case 2: y = a and $z \notin \{a, b, c, d\}$. Then z > a > c. By (*), $y\alpha = c$ and by (**),

 $z\alpha \in \{z, c\}$. Then $y\alpha \le z\alpha$.

Case 3: y = b and $z \notin \{a, b, c, d\}$. Then z > b. By (*), $y\alpha = a$. If z > a, then by (**), $z\alpha = z > a = y\alpha$. If z > a, then by (**), $z\alpha = a = y\alpha$.

Case 4: y=c or d and $z \notin \{a, b, c, d\}$. Then z>d. By (*), $y\alpha=d$. By (**), $z\alpha \in \{z, a, c, d\}$, so $z\alpha \ge d = y\alpha$.

Case 5: z = a and $y \notin \{a, b, c, d\}$. Then y < a and $z\alpha = c$. Since $a \not> b$, $y \not> b$. Therefore $y \not> a$ and $y \not> b$. Then $y\alpha = d < c = z\alpha$.

Case 6: z = b and $y \notin \{a, b, c, d\}$. Then y < b and $z\alpha = a$. Since $y \not> b$, $y\alpha \in \{c, d\}$. Therefore $y\alpha \le z\alpha$.

Case 7: z=c or d and $y \notin \{a, b, c, d\}$. Then y < a and $z\alpha = d$. Since $a \ne b$, $y \ne b$. We have that $y \ne a$ and $y \ne b$. Then $y\alpha = d = z\alpha$.

Case 8: y > a and $z \notin \{a, b, c, d\}$. Then z > a, so $z\alpha \in \{z, c\}$. If y > b, then z > b. so $y\alpha = y < z = z\alpha$. If $y \ne b$, then $y\alpha = c < a < z$, so $y\alpha \le z\alpha$.

Case 9: y > a and $z \notin \{a, b, c, d\}$.

Subcase 9.1: y > b and z > a. Then z > b. Thus $y\alpha = a < z = z\alpha$.

Subcase 9.2: y > b and $z \ne a$. Then z > b. Thus $y\alpha = a = z\alpha$.

Subcase 9.3: y > b, z > a and z > b. Thus $y\alpha = d < a < z = z\alpha$.

Subcase 9.4: $y \ne b$, z > a and $z \ne b$. Thus $y\alpha = d < c = z\alpha$.

Subcase 9.5; y > b, z > a and z > b. Thus $y\alpha = d < a = z\alpha$.

Subcase 9.6; y > b, z > a and z > b. Thus y = a = z = a.

Next, to show that α is not regular, suppose it is.

Then $\alpha = \alpha\beta\alpha$ for some $\beta \in T_{OP}(X)$. Since $c = a\alpha = a\alpha\beta\alpha = (c\beta)\alpha$ and $a = b\alpha = b\alpha\beta\alpha = (a\beta)\alpha$, by (*) and (**), $c\beta = a$ or $(c\beta > a)$ and $c\beta \neq b$ and $a\beta = b$ or $(a\beta \neq a)$ and $a\beta > b$. Then case that $c\beta = a$ and $a\beta = b$ can not occur because a and b are not comparable. If $c\beta = a$, $a\beta \neq a$ and $a\beta > b$, then $c\beta \neq a\beta$, so $a = c\beta = a\beta > b$, a contradiction. If $c\beta > a$, $c\beta \neq b$ and $a\beta = b$, then $a < c\beta \leq a\beta = b$, a contradiction. If $c\beta > a$, $c\beta \neq b$, $a\beta \neq a$ and $a\beta > b$, then $a < c\beta \leq a\beta$, a contradiction. Hence α is not regular, so $T_{OP}(X)$ is not a regular semigroup.

If X contains a subposet of the form

then by the above proof, $T_{OP}((X, \leq_{opp}))$ is not regular and hence by Proposition 1.5 (2), $T_{OP}(X)$ is not regular. \square

Lemma 3.6. If a partially ordered set X contains a subposet of the forms

then $T_{OP}(X)$ is not regular.

Proof. First, let X have the subposet

Define $\alpha: X \to X$ as follows: $a\alpha = a$, $b\alpha = c$, $c\alpha = d\alpha = d$, i.e.,

and for $x \in X - \{a, b, c, d\}$,

$$x\alpha = \begin{cases} x & \text{if } x > a \text{ and } x > b, \\ a & \text{if } x > a \text{ and } x \neq b, \\ c & \text{if } x \neq a \text{ and } x > b, \\ d & \text{if } x \neq a \text{ and } x \neq b. \end{cases} \dots (**)$$

To show that α is order – preserving, let $y, z \in X$ be such that y < z. Because of that y < z, the following cases are all possible cases.

Case 1: $y, z \in \{a, b, c, d\}$. By (*), $y\alpha \le z\alpha$.

Case 2: y = a and $z \notin \{a, b, c, d\}$. Then z > a. By (*), $y\alpha = a$ and by (**), $z\alpha \in \{a, z\}$, so $y\alpha \le z\alpha$.

Case 3: y = b and $z \notin \{a, b, c, d\}$. Then z > b. By (*), $y\alpha = c$. By (**), we have that z > a implies $z\alpha = z > a > c > y\alpha$ and $z \not> a$ implies $z\alpha = c = y\alpha$.

Case 4: y = c or d and $z \notin \{a, b, c, d\}$. Then z > d. By (*), $y\alpha = d$. By (**), $z\alpha \in \{z, a, c, d\}$, thus $z\alpha \ge y\alpha$.

Case 5: z = a and $y \notin \{a, b, c, d\}$. Then y < a and $z\alpha = a$. Since $y \ne a$, $y\alpha \in \{c, d\}$. Then $y\alpha < z\alpha$.

Case 6: z = b and $y \notin \{a, b, c, d\}$. Then y < b and $z\alpha = c$. Since $b \ne a$, $y \ne a$. Then $y \ne a$ and $y \ne b$. Therefore $y\alpha = d < c = z\alpha$.

Case 7: z=c or d and $y \notin \{a, b, c, d\}$. Then y < a and $z\alpha = d$. Since $a \ne b$, $y \ne b$. We have that $y \ne a$ and $y \ne b$. Then $y\alpha = d = z\alpha$.

Case 8: y > a and $z \notin \{a, b, c, d\}$. Then z > a, so $z\alpha \in \{z, a\}$. If y > b, then z > b. so $y\alpha = y < z = z\alpha$. If $y \ne b$, then $y\alpha = a$ which implies that $y\alpha \le z\alpha$.

Case 9: $y \ne a$ and $z \notin \{a, b, c, d\}$.

Subcase 9.1: y > b and z > a. Then z > b. Thus $y\alpha = c < a < z = z\alpha$.

Subcase 9.2: y > b and $z \ne a$. Then z > b. Thus $y\alpha = c = z\alpha$.

Subcase 9.3: $y \ne b$, z > a and z > b. Thus $y\alpha = d < a < z = z\alpha$.

Subcase 9.4: y > b, z > a and z > b. Thus $y\alpha = d < a = z\alpha$.

Subcase 9.5; $y \ne b$, $z \ne a$ and z > b. Thus $y\alpha = d < c = z\alpha$.

Subcase 9.6; $y \ne b$, $z \ne a$ and $z \ne b$. Thus $y\alpha = d = z\alpha$.

Next, to show that α is not regular, suppose it is.

Then $\alpha = \alpha \beta \alpha$ for some $\beta \in T_{OP}(X)$. We have that $c\beta \leq \alpha \beta$.

Since $a = a\alpha = a\alpha\beta\alpha = (a\beta)\alpha$, $a\beta = a$ or $(a\beta > a$ and $a\beta \ne b)$. Since $c = b\alpha = b\alpha\beta\alpha = (c\beta)\alpha$, $c\beta = b$ or $(c\beta \ne a$ and $c\beta > b)$. The case that $a\beta = a$ and $c\beta = b$ can not occur because a and b are not comparable. If $a\beta = a$, $c\beta \ne a$ and $c\beta > b$, then $b < c\beta \le a\beta = a$, a contradiction. If $a\beta > a$, $a\beta \ne b$ and $c\beta = b$, then $a\beta \ne c\beta$, so $c\beta = a\beta$ and therefore $a < a\beta = c\beta = b$, a contradiction. If $a\beta > a$, $a\beta \ne b$, $a\beta \ne a$ and $a\beta \ne a$, and $a\beta \ne a$,

This proves that $T_{OP}(X)$ is not a regular semigroup. If X contains a subposet of the form

then by the above proof, $T_{OP}((X, \leq_{opp}))$ is not regular and hence by Proposition 1.5 (2), $T_{OP}(X)$ is not regular. \square

Theorem 3.7. If a partially ordered set X contains a subposet of the forms

(ii) a c e and $\{a, e\}$ has no upper bound in X, then $T_{OP}(X)$ is not regular.

Proof. First, let X contain a subposet

where $\{a, e\}$ has no lower bound in X and let this subposet be denoted by Y. If X is not connected, by Lemma 3.4, $T_{OP}(X)$ is not regular. If X contains a subposet of the forms

by Lemma 3.5 and Lemma 3.6, $T_{OP}(X)$ is not regular. Assume that

(1) X is connected

and

(2) X does not contain subposet of the forms

By (1) and (2),

(3) for $x \in X$, x is a maximal element or a minimal element of X. Define $\alpha: X \rightarrow X$ by $a\alpha = a$, $b\alpha = d\alpha = c\alpha = b$, $e\alpha = c$, i.e.,

and $x\alpha = b$, for all $x \in X - Y$. Then

 $x\alpha = b$ if x is a minimal element of X

and

...(*)

 $x\alpha \in \{a, c, b\}$ if x is a maximal element of X.

If $y, z \in X$ are such that y < z, then by (3), y is a minimal element and z is a maximal element of X, so by (*), $y\alpha \le z\alpha$.

Suppose their exists $\beta \in T_{OP}(X)$ such that $\alpha = \alpha \beta \alpha$. Then $a = \alpha \alpha = \alpha \alpha \beta \alpha = (\alpha \beta) \alpha$ and $c = e \alpha = e \alpha \beta \alpha = (c \beta) \alpha$ which imply that $\alpha \beta = a$ and $c \beta = e$. Since b < a, $b \beta \le a \beta$, so $b \beta \le a$. Since b < c, $b \beta \le c \beta$, so $b \beta \le e$. Then $b \beta$ is lower bound of $\{a, e\}$, a contradiction. Hence α is not regular, so $T_{OP}(X)$ is not regular.

If X contains a subposet of the form (ii), by the above proof, $T_{OP}((X, \leq_{opp}))$ is not regular. By Proposition 1.5 (2), $T_{OP}(X)$ is not regular. \square

Theorem 3.8. Let X be a partially ordered set and M(X) and m(X) denote the set of all maximal elements of X and minimal elements of X, respectively. If (i) $X = M(X) \cup m(X)$ and (ii) for $x \in m(X)$ and $y \in M(X)$, x < y, then $T_{OP}(X)$ is regular.

Proof. Let $\alpha \in T_{OP}(X)$. Since α is order – preserving and for $x \in m(X)$ and $y \in M(X)$, x < y, it follows that

- (i) if $x \in \nabla \alpha \cap M(X)$, then $x\alpha^{-1} \cap M(X) \neq \emptyset$ and
- (ii) if $x \in \nabla \alpha \cap m(X)$, then $x\alpha^{-1} \cap m(X) \neq \emptyset$.

For $x \in V\alpha$, choose $d_x \in x\alpha^{-1}$ which satisfies the following properties

- (1) If $x \in M(X)$, choose $d_x \in M(X)$.
- (2) If $x \in m(X)$, choose $d_x \in m(X)$.
- (1) and (2) can be obtained because of (i) and (ii). Define $\beta: X \to X$ by

$$x\beta = \begin{cases} d_x & \text{if } x \in \nabla \alpha, \\ x & \text{if } x \notin \nabla \alpha. \end{cases}$$

Then for $x \in X$, $x\alpha\beta\alpha = d_{x\alpha}\alpha = x\alpha$. thus $\alpha = \alpha\beta\alpha$. To show that β is order—preserving, let $x, y \in X$ be such that x < y. Then $x \in m(X)$ and $y \in M(X)$.

Case 1: $x \notin \nabla \alpha$ and $y \notin \nabla \alpha$. Then $x\alpha = x < y = y\alpha$.

Case 2: $x \in V\alpha$ and $y \notin V\alpha$. Then $y\beta = y \in M(X)$. By (2), $d_x \in m(X)$. Then $x\beta = d_x < y = y\beta$.

Case 3: $x \notin \nabla \alpha$ and $y \in \nabla \alpha$. Then $x\beta = x \in m(X)$, By (1), $d_y \in M(X)$. Then $x\beta = x < d_y = y\beta$.

Case 4: $x \in V\alpha$ and $y \in V\alpha$. Then $d_x \in m(X)$ and $d_y \in M(X)$. Thus $x\beta = d_x < d_y = y\beta$. \square

Theorem 3.9. Let X be a partially ordered set. If X has a maximum element a and a minimum element b such that for all distinct x, $y \in X - \{a, b\}$, x and y are not comparable, then $T_{OP}(X)$ is regular.

Proof. Let $\alpha \in T_{OP}(X)$. Since α is order – preserving, we have that

- (i) if $a \in \nabla \alpha$, then $a \in a\alpha^{-1}$ and
- (ii) if $b \in \nabla \alpha$, then $b \in b\alpha^{1}$.

For $x \in \nabla \alpha$, choose $d_x \in x\alpha^{-1}$ which satisfies the following properties

- (1) If x = a, then $d_x = a$.
- (2) If x = b, then $d_x = b$.

(1) and (2) can be obtained because of (i) and (ii), respectively.

Define $\beta: X \to X$ by

$$x\beta = \begin{cases} d_x & \text{if} \quad x \in \nabla \alpha, \\ x & \text{if} \quad x \notin \nabla \alpha. \end{cases} \dots (*)$$

For $x \in X$, $x\alpha\beta\alpha = (d_{x\alpha})\alpha = x\alpha$, so $\alpha = \alpha\beta\alpha$.

To show that β is order – preserving, let y, $z \in X$ be such that y < z. Then y = b or z = a.

Case 1: z = a. If $z \notin \nabla \alpha$, then by (*), $z\beta = z = a$. If $z \in \nabla \alpha$, then by (1) and (*), $z\beta = d_1 = a$. Since a is the maximum element of X, $y\beta \le z\beta$.

Case 2: $z \neq a$. Then y = b. If $y \notin \nabla a$, then by (*), $y\beta = y = b$. If $y \in \nabla a$, then by (2) and (*), $y\beta = d_y = b$. Since b is the minimum element of X, $y\beta \leq z\beta$. Hence β is order – preserving.

This proves that $T_{OP}(X)$ is regular. \square

Example. For each $n \in \mathbb{N}$, let $X_n = \{1, 2, 3, ..., n\}$. Under the natural partial order, X_n is a finite chain for every $n \in \mathbb{N}$, so $T_{OP}(X_n)$ is regular for all $n \in \mathbb{N}$. Define the partial order \leq_d on \mathbb{N} by

 $a \leq_d b$ if and only if $a \mid b$.

The pictures of (X_1, \leq_d) , (X_2, \leq_d) , (X_3, \leq_d) and (X_4, \leq_d) are as follows:

$$(X_1, \leq_d)$$
:
$$(X_2, \leq_d)$$
:
$$(X_3, \leq_d)$$
:

and

Since (X_1, \leq_d) and (X_2, \leq_d) are finite chains, $T_{OP}((X_1, \leq_d))$ and $T_{OP}((X_2, \leq_d))$ are regular. By Theorem 3.6, $T_{OP}((X_4, \leq_d))$ is not regular. By Theorem 3.8, $T_{OP}((X_3, \leq_d))$ is regular. Hence we have that for $n \in \mathbb{N}$, $T_{OP}((X_n, \leq_d))$ is regular if and only if $n \leq 3$.

Example. For each $n \in \mathbb{N}$, let $Y_n = \{(x, y) | x, y \in \{1, 2, 3, ..., n\}\}$.

Define the partial order \leq on $N \times N$ by

 $(a,b) \leq_c (c,d)$ if and only if $a \leq c$ and $b \leq d$.

The pictures of (Y_1, \leq_c) , (Y_2, \leq_c) and (Y_3, \leq_c) are as follows:

Then $T_{OP}((Y_1, \leq))$ is regular and by Theorem 3.9, $T_{OP}((Y_2, \leq))$ is regular. By Theorem 3.6, $T_{OP}((Y_3, \leq))$ is not regular. Hence we have that for $n \in \mathbb{N}$, $T_{OP}((Y_n, \leq))$ is regular if and only if $n \leq 2$.