CHAPTER 1I

ORDER-PRESERVING TRANSFORMATION SEMIGROUPS
ON CHAINS

The fact that Toe(X) is regular if X is a finite chain which we refer
as Proposition 1.3 appears in [3] as an exercise. We generalize this fact by
proving that if X is a chain which is order - isomorphic to a subset of Z, then
Tor(X} is regular. ‘

Let A be a interval in R. If |4|> 1, then A is not order - isomorphic
to any subset of Z, It is proved that To4) is regular if and only if A4 is of
the form [a, b] for some a, b e R '

We refer from [1] as Proposition 1.4 that if X is a finite chain, then
Iop(X}) is a regular semigroup. The author of [1] quoted this fact without proof.
In fact, it is not difficult to see this result. This result is generalized. We prove
in this chapter that for any chain X, Jop(X), Wor(X), PTop(X), Uor(X) and
Vor(X) are regular.

Lemma 2.1. Let X be a chain, a € PTopX), and a, b € Va such that a <b.
Then x <y for all x € ac’ and y € ba’.

Proof. Let x e ac”’ and y & ba'. Then xa=a and ya = b, Since X is a chain,
x<y orxzy Il x2y, then xa2ya since a is order - preserving which implies

that @ 2 b, a contradiction, Hence x<y. O

Theorem 2.2. Let X be a chain. If X is order - isomorphic fo a subset of Z,
then To(X) is a regular semigroup.

Proof. First we note from the property of X that for any nonempty subset A
of X, (1) if A has an upper bound in X, then max(4) exists and (2) if 4 has



a lower bound in X, then min(X) exists. Then from this fact and Lemma 2.1,
we have that for a € PTop(X) and a € Va, (i) if a<b for some b € Va, then
max(ac’) exists and (ii) if b<a for some b € Va, then min( aa’) exists.

Let ae TorX). If |Va| =1, then & = @, so a is regular. Suppose
that |Va|>1. Since Vagc X, by the property of X, there exists a set J such
that 7= {J, 2, 3,..,n) where n>1, I=N, =2 or I =127 such that Va=
{a;)iel} and a;<a; if i<j in I. Assume that /= {1, 2, 3, 4,.;.,n}, I=N or
I=17. Let f:X— X be defined as follows:

(1) If I={4, 2, 3., n) where n>1, define

max(a,a”) if ¥ <a,
xf = {min(a,,a”) if a < x Sa,for iel-{n},
min(a,a”) if x 2a,.

(2) If I=N, define

5 - {“‘.“" G vk \ .
mina,,c”') if @ < x S a, foriel
and
| (3) If 1 =Z, define xB = mad(a.a") if aj<x<a. for all iel
To show that afia = @, let x € X. Then xa € Va, so there exists k € I such
that xa =a. By (1)-(3), af = min{aza’’) or max(a;a’). Then af € ma’
which implies that ayfa = a:. Hence xafia =xa.

Next, to show that /-is order - preserving, let x, y € X be such that
x <. | ' |
Case 1: [ is in (1) or (2) and x, y Saj. Then xf =yf = max(ma’).

Case 2: gy <x<y< e for some k€I such that k+1 e Then by (1)-(3),
xf=yp= min(ax.;a) or max(a., ad). |

Case 3: ay<x<au <a<y <au. for some k I e such that k+1, I+1 e/
‘and k+1<1 Then by (1)~ (3), xf = min(@..a") or max(a.,c”) and yf =
mima; 6" or ma(ama®). Since k+1 <1, by Lemma 2.1, for all ¥ € ana’
and v € @', u<v. But xf e aa’ and yB € arad’, so xf<yp.

This proves that Toa(X} is regular if [ is finite, /=Z or J=N.
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If 7=N, by Proposition 1.5 (2) and the above proof, Fop((X, <)) is regular.
But (Z',<) and (N, <) are order — isomorphic where < is the natural partial
order, so Top(X) is regular if I=Z". [

The converse of the Theorem 2.2 is not true. For d, beR, a<b,
we have that [a, b) is not isomorphic to any subset of Z. We show in the
“next theorem that Top(fa, b)) is regular for all a, b € R such that a<b. It is
also shown in this theorem that if X is an interval in R which is not a closed
and bounded interval, then PTop(X) is not regular. '
All nonempty intervals in R are of the forms
() R
(2) (a,») where a € R,
(3) [a,x) where a e R,
(4)' (-0, a) where a € R,
(5) (-0, a] where a € R,
(6) (a, &) where a, b€ R such that a<,
(7) [a, b) where a, b € R such that a<b,
(8) (a, ] where a, e R such that a<bd
and |
(9) [a, b] where a, b € R such that a<b.
The theorem is proved by dividing it up into 7 lemmas. We know that the sets
(1) - (8) have the same cardinality. The proofs of the lemmas also show that if
X is one of the sets (1) -(8), then [{a € T(X) | a is not regular}| 2 |R|. We
have that for any partially ordered set X, all constant transformations of X are
regular elements of TopX). These imply that if X is one of the set (1)-(8),
then |[{a € Topn(X) | « is regular}| 2 |R| and |[{a € T,(X) | @ is not regular}| 2 R
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Lemma 2.3. Top(R) is not a regular semigroup.

Proof. Let r € (1,) and @: R —= R be such that xa=/r" for all x € R. Then
ae ToofR), Va=R" and a is 1-1. Suppose there exists f € Tor(R) such thét
a = afia. Then .for all x € R, xa=xafa. Since a is 1-1, x =xaf} for every
xcR, so Ff=x for all xe R. Thus R'f=R. Since .0F € R, there exists

a e R such that 08 =aB. Let b € R be such that 0 <b <a. Since a and § is
order - preserving, 0fa < bfa<afa. Since 0f = af, bfa=afa Since Va=R'
and a, b € R’, there exist x, y € R such that xa=a and ya=b. Consequently,
a = xa = xafa = afa = bfa = yafia = ya= b, a contradiction. Hence a is not a

regular element of Top(R), so Top(R) is net a regular semigroup. [
Lemma 2.4. For any a e R, Top(fa, ) is not a regular semigroup.

Proof. Let ac R and /e R'. Define

| xa=x+] for all x e(a, o).
Thenl a € Torfta, ), Va=(a+l, ) and a is -1-1. Suppose that o =-gfa
for some B € Top((a, 20)). Then xa=xafa for all x € (a, o) which implies that
x = xaf _for all x € (g, ) since g is 1-1. Since Va=(a+J, ®), @+, o) =
(a, ©). Since a+1>a, a-+le(a, «), so there exists b € (@ + /, ) such that
bf=(a+DB Let.ce(a~l,b) Then b, c& Vaand c<b Letx ye(a,)
be such that xa=»5 and ya= c Since a and f are order-preserving and
a+l<e (a+ Dfa<cPa Then b =xa=xapa=>bfa=(a+ Dfa<cfa=yapa
=ya=c, a contradiction. Thus & is not a regular element of Tor(fa, x)).
Hence Top(fa, =0)) is not a regular semigroup. [

Lemma 2.5. For any a € R, Top((~o0, a)) is not a regular semigroup.

- Proof. Let < be the natural partial order on R and <uy its opposite partial
order. Let a € R. Then ((-, a), <) and ((-a, ) <) are order — isomorphic.
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By Proposition . 1.5 (2) and Lemma 2.4, Tor({-a, ), Xy is not regular. Hence
Tor((-0, a), 5) is not a regular semigroup. [

Lemma 2.6. For any a € R, Top(fa, «0})) is not a regular semigroup.

Proof. Let ac R and / € R". Define

xa=a+ for all x € [a, »).

x—-a+l

Then Va=[a,a+ ). Since the derivative of the function on (a, «)

x—a+!

m’; and m>0 for all x € [a, o), 1t

with respect to x is
follows that a is increasing and 1-1. Therefore a € Top(fa, «}). To show that a
is not regular in Top(fa, )}, suppose on the contrary that there exists f e
Tor(fa, x0)) such that @= afa. Then xa =xafa for all x € [a, »). Since a is
1-1, xgf=x for all x € [a, o). Thus [a,a+ I)ﬂ"—-[a, o) since Va = [a, a+ I).
This implies that (a + /)f =bf for some be[a,a+]). Let ce (b,la + I).
Then b <c<a + 1, so bf<cf<(a+ I)f since P is order - preserving. But

(a-+- DB =bf, so bf=cP. Since b,c e [a,a+ ])= Va, there exist x, y € da
such that xa=>5 and ya =c, Consequently, x <y since b <c. Now we have

xa =xafa = bfa = cfa = yafa = ya which implies that x =y since a is 1-1
which is a contradiction. Hencé a is not a regular element in Toxfa, x0)). O

Lemma 2.7. For any a e R, Tox((-c0, aj) is not a regular semigroup.
Proof. Since for a € R, (-0, a), <) and ([-a, ©0) ,<y,) are order - isomorphic

where < is the natural partial order on R, by Proposition 1.5 (2) and

Lemma 2.6, Tor(f-0, aj) is not a regular semigroup. [
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Lemma 2.8. If a, b € R such that a <b, then To}((a, b)) is not regular

semigroup.

Proof. Let / e (0, b-a). Define

!
b-a

I
) + P for all xe @, b).

xa=(1- b—a

|
Since 1 - —— >0, a is increasing and 1-1. Then (a, d)a=(a+!, b c(a, d),

so Va=(a+1,b). Suppose that a is regular in Tpp(X). Then there exists

B € TopX) such that a=apfa. Since a is 1-1, x=xaf for all x € (a, b).
Then (a, b) = (Va)f. This implies that Vaf =(a+!,b)p=(a,b). Since
a+le(a,b), (@+DBe(a,b). Then there exists ¢ € (a, b) such that a+/<c
and ¢f =(a+ NP Let de (@+/c). Then d eVa. Since B is ‘order-preserving
and a+l<d<c, (@a+Dfsdf<ch. But (a+)f=ch, so_dﬁ=cﬁ. Let x, ye X
be such that xa=c and ya=d. Consequenily, c =xa=xafa=cfa=dpa=
yafa=ya=d which is a contradiction. Hence £ is not a regular element in
Tor(X). O

Lemma 2.9. If a, b € R are such that a <b, then Toxfa, b)) is not a
regular semigroup.

Proof. Let / € (0, b-a). Define

—( ! ) + la for all b
%@ T \GT ¥ IR for x € [a, b).

)
Then [a, b)a=[a,a+]). Since i a >0, a 18 increasing and 1-1. Therefore

o € Top(fa, b)). Suppose there exists f € Top(fa, b)) such that a =afa. Then
xa=xafa for all xe [a,b). Since a is 1-1, x=xaf for all x € [a, b). Thus
[a,a+DB=[a,b). It followsthat there exists c € [a,a+]) such that cf=
(@+Dp. Let de(c,a+1). Then c<d<a+l, so ¢, deVa. Since B is

" order - preserving, cA<dfi<(a+1)B which implies that cB =df} since cf=
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(@+DP. Let x, y efa, b) be such that xa=c and ya=d. Hence we have ¢ =xa
=xafa=cfa=dfa=yafa=ya=d, a contradiction. Hence a is not a regular
element of Top(fa, b)). Hence Top(fa, b)) is not regular. [

Lemma 2.10. /f a, b € R are such that a <b, then Topf(a, b]} is not
a regular semigroup.

Proof. Let @, b c R be such that a<b. Then ((a, 3], <) and ({-b, ~a) ,Zup)
are order — isomorphic where < is the natural partial order on R. By
Proposition 1.5 (2) and Lemma 2.9, Top((@, b)) is not regular. [

Lemma 2.11. Let a, b € R be such that a<b, a € Io{fa, b]) and
x €(aa, ba). If A,=[a, x]a’ and B, = (x, bjc’, then A, =¢ and B, = ¢,
A, UB.=[a b], A."B;=¢ and ¢ <d for all c €A, and d € B,

Proof. Since x € (aa, ba), asaa<x and x<ba<sb, soae [a,x]a’ and
be(x,bla'. Then aeA, and b e B We have that [a,b]=[a,bla" =
([a,x]u (x, b)a' =[a,x]a’ U(x, bla" =4: U B.. Since [a,x]n(x,b]=4,
[a,x]a'ln(x,b]a'1=¢, We get that 4,~B,=¢. Let c € 4, and d € B,. Then
caela,x] and da e (x, b]. Therefore ca<da. Since ¢ € (ca)a’ and

d e (da)a’, by Lemma 2.1, ¢<d. O
b

We know the following facts of real numbers.
() If A and B are nonempty subsets of R such that
AnB=¢ and x<y for all xe A and y € B, then sup(4) < inf(B).
- (2) If ] is an interval in R and 4 and B are nonempty subsets
of R such that AUB=], AnB=¢ and x<y for all xe 4 and y € B,

then either max(4) exists or min(B) exists.
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Lemma 2.12. If a, b € R are such that a <b, then Top{a, b)) is a regular

semigroup.

Proof. Let a € Topffa, b}). Since a is order - preserving, aa < ba and
Vac [aa, ba). We define d. for each x € [a, b] as follows: .

() Ifxe[a,aaq), let d=a.

@iy If x e (ba, B], let d:=b.

(i) If x € Ve, choose d. € xa’.

Let x € (aa, ba) - Va. Define 4.=[a,x}a”’ and B, =(x,b]a". By
Lemma 2.11, A, # ¢, B.# ¢, A, wB,=[a,bd), 4:nB.=¢ and c<d for all
c € A, and d € B, Therefore sup(4.) < inflB:) and either max(A4,) exists or
min(B.) exists. Define |

oo o ffa ot i

min(B,) if min(B,) exists.

Next, define xf=d, for all x € [a, d]. If x € {a, b], then xaeVa
which implies by (iii) that d,.c=xa and hence xafa=((xa)f)a=d.a=xa.
This proves that a= afia in T(fa, bj).

To show that A is order - preserving, let x, y € [a, b] be such that
x<y. Then x € [a, )] and y € (x, b]. |
Case 1: x<aa. Then xf=d,=a by (i), so xf<yp.

Case 2: y>ba By (ii), yf=5. Then xfsyp.

Case 3: xe Va and y € Va. By (iii) and Lemma 2.1, d.<d,. Then xf<yp.
Case 4 x& Va and y € (aa, ba) - Va. Then d. e xa@' c [a,))a’ =4, If
max(A,) exists, then dy < max(4,) and by (), d,=max(4,). If min(B,) exists,
then d,=min(B,) by (iv), so by Lemma 2.11, d; <d,. Thus xf<ypB.

Case 5: x € (aa,ba)- Va and y € Va. Then d, e ya' c (x, bla’ =B.. If
min(B,) exists, then min(B,) < d, and by (iv), d:=min(B;). If max(As) exists,
then by (iv) d.=max(4,), so by Lemma 2.11, d;<d,. Thus xf<yp.

Case 6: x € (aa,ba)-Va and y € (aa, ba) -Va.
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Case 6.1: [x,y) "Va=¢. Then [a,x]a’=[a,yla’ and (x,b)a" =
(. bla", s0 A.=A, and B.=B, By (v), d.=d, Hence xf=yp.
Case 6.2: [x,y] "Va# ¢ Then there exists ¢ € Va such that
x <c<y. Since ¢ € Va, there exists p € [a, b] such that pa=c. Then
pela,yla’ n(x,bla’. Thus p € B,nA4,. Therefore sup(A;) < inflB.)<p <
sup(A,) < inf(B,). Hence by (iv), d:<d,, so we have xf<yf. [

From Lemma 2.2-2.10 and Lemma 2.12, the following theorem is

obtained.

Theorem 2.13. For any interval X of R, Top(X) is regular if and only if X is
a closed and bounded interval.

Theorem 2.14. If X is a chain, then PIop(X) is a regular semigroup.

Proof. Let a e PTop(X). For each a € Va, choose d, € aa”. Then d,a=a

for all a € Va. Define B PTop(X) by af=d, for all ae Va. Then 46= Va,
Aafa=Aa and for every x € 4a, xafa={(xa)fa=(d.)a =xa. Therefore
afa = a. To show that § is order - preserving, let a, b € A8 be such that a < b.
Then a b € Va and a<b. By Lemma 2.1, d,<d;. Then af<bp. Hence

B € PTop(X). This proves that PTop(X) is regular, as required. [

Theorem 2.15. If X is a chain, then Upp(X) is a regular semigroup.

Proof. Let @ € Uop(X). Then s(a) is finite. For each a € Va, choose d, € aa’.
Then d,a=a for all @ € Va. Define g € PT(X) by af=d, for a € Va. Then
AB= Va. By the proof of Theorem 2.14, a = afia and f is order — preserving.
By Proposition 1.2 (1), aa” = {a} for all a € Va-s(a)a Then a= d, =ap for
all a e Va-s(ga Then s(B) < s(a)a. Since s(a) is finite, s(a)a is finite. Thus
s(g) is finite, so F € Uop(X). Hence Uop(X) is a regular semigroup. [
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Theorem 2.16. If X is a chain, then IoyX) is a regular semigroup.

Proof. Let @ e Iop(X). For each a € Va, choose d, € ac’. Then d,a=a for all
a € Va. Define S e PI(X) by af=d, for all a e Va. Then 4f=Va By the

- proof of Theorem 2.14, afa = a and B € PTop(X). Since for distinct x, y € Ve,
xa® and yo' are disjoint, it follows that £ is 1-1. Then S€ Jop(X). This proves
that Jop(X) is regular. [7 :

Theorem 2.17. If X is a chain, then Wop(X) is a regular semigroup.

Proof. Let a € WoprX). Then a € Jop(X) and s(a) is finite. Therefore s(@)a is
finite. By Proposition 1.2 (2), s(a) is finite. Then o' € Wop(X). Hence Wop(X)

is a regular semigroup. [

Lemma 2.18. Let X be a partially ordered set, o € PTonX) and a € Aa Then
{x € Aajaa <x <a} cs(a) and {x € Aaja <x <aa} < s(q).

Proof. Let x € Ac be such that aa<x <a. Since a is order- preserving and
x<a, xasaa. If xa=x, then x<ac, a contradiction. Thus xa=x which
implies that x € s(a). Hence {x € da|aa<x<a} C s(a). The fact that

{x € daja<x<aa) cs(a) can be proved similarly.

Lemma 2.19. Let X be a partially ordered set, a € PTop(X) and A ¢ Va
(1) If max(A) and max(Ac’) exist, then max(4) = max(da’)a
(2) If min(4) and min(Ac’) exist, then min(4) = min(Ad’)a

Proof. (1) Since max(4) € A c Va, there exists x € da such that max(4) =xa.
Then x € Aa’, so x<max(Aa™). Since a is order-preserving, xa < (max(da™))a.
Then max(4) < (max(Aa™))a. Since max(4a’) € Aa” and 4 ¢ Va,

(max{da))a € (4a")a=A. This implies that ‘(mar(Aa'l))aSmax(A). Hence
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max(4) = (max(Aa™))e.
(2) can be proved similarly.

Lemma 2.20. Let X be a partially ordered set, a €ePTop(X) and A, Bc Va
such that max(4), max(B), max(Aa’) and max(Ba’') exist.
(1) If max(A) = max(B), then max(Ac’) = max(Ba').
(2) If X is a chain and max(A) <max(B), then max(Aa’) <max(Ba').
(3) If min(4) = min(B), then min(Ac") = min(Ba’).
(4) If X is a chain and min(4) <min(B), then min(Ac’) <min(Ba’).

Proof. (1) By Lemma 2.19 (1), max(4a")a=max(4) and max(Ba"')a=max(B).
Since max(4) = max(B), max(4) € A and max(B) € B, it follows that
max(Ac')a € B and max(Ba)a € A. These imply that max(4¢™") € Ba' and
max(Ba') € Ac’*. Thus madAa") < max(Ba") and max(Ba') < max(Aa’).
Hence max(4a") = max(Ba’™).

(2) By Lemma 2.19 (1) and the assumption, we have

max(Aa*)a = max(4) < max(B) = max(Ba')a *

Since X is a chain, max(da’) < max(Ba') or max{Ba') < max(Aa™). Since a is
order - preserving, it follows that if max(Ba") <max(4a"), then max(Ba™)a <
mad{Aa)a which contradict (*). Hence max(4a™) <max(Ba®).

(3) and (4) can be proved similarly. J

Theorem 2.21. If X is a chain, then Vox(X) is a regular semigroup.

Proof. Let a € Vop(X). Since X -Vag s(a) by Proposition 1.1 (1) and s(a) is
finite, we have that X - Va is finite. Since s(a) is finite, for every a € Va, aa’
is finite by Proposition 11 (2). Consequently, max(aci’) exists for every ae€ Va
since X is a chain. For each x € X, define d; € X as follows: Let x € X.

Case 1: x € Va. Define

d, = max(xa’). ™
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Case II: x € X-Va. Then x € s(a) since X -Va g s{a). Therefore xa=x which
implies that xa<x or x<xa since X is a chain. By Lemma 2.18, both
{yeX|xa<y<x} and {y € X|x<y<xa} are subsets of s(a). It follows that
each of {yeXIxa<y<xj and {y € X|x<y<xa)} is finite. Thus each of
{veVa|xa<y<x} and {y e Va|x<y<xa} isfinite. Since for every a € Vg,
aa’ is finite, we have that both {y e Va|xa<y<x}q’ and
(y eVa|x<ysxaja' are finite. If xa<x, then {y e Va|xasy<x} # ¢, so
max({y € Va|xasy<x}a’) exists. If x <xa, then {y e Va|x<ysxa} =4, so
min({y € Va|x<y<xa}a') exists. Define .
i {max({y eVa !/ xasy< x}a™) if xa< x, **
min({y eVa / x <y<xala™)if x <xa. **")
From defining d, for all x € X, we have from Casel that dyz=x
for all x e Va. Next define S: X —> X by xf=d, for all xe X. If x € X, then
xae Va, so xafa=(xa)fa=d.,a=xa This proves that a= agfa. To show
s(f) is finite, it suffices to show that {x € Va|xf#x} is finite since s(f) &
X-Va)u {xeVa|xf+x} and X-Va is finite. By the definition of 8, we
have {x € Va|xf#x) = {x e Va|max(xa') % x} c {x € l'f'f.l:l:cd1 # {x}}. But
{x e Va|xa" # {x}} is finite by Proposition 1.1(2),s0 {xe Va | xB=x} is
finite. Hence s(f) is finite.
Finally, we shall show f is order - preserving. Let a, b € X be such
that a<b. Then aa< ba.
Case 1: a,_beVa From (*), d, € ad’ and d; € ba’, Since a<b, by
Lemma 2.1, d, <d}.
Case 2: ae Va and b ¢Va. Since beVa, bazb, so ba<b or b<ba.
Case 2.1: ba<b. If ae {y eVa|basy<b), then aa'
{r e Pa|basy<b}a' which implies that max(aa™) <
max({y € Va|ba<y<b}a'). By (*) and (**), d.<d, Next assume that
ag{yeValba<sy<b}. Since ae€Va and a<y for all y € Va such that
ba<y<b. By Lemma 2.1, we havé that v € ag™ and v e
{r evalbasy<b}a’ imply u<v. Hence max(aa™) <
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max({y € Va|ba<y<b}a'). By (*) and (**), we have that d, <d;.

Case 2.2: b<ba Then a<b<ba, so a<y for all y € Vg such that

.b<y<ba By Lemma 2.1, max(aa™) <min({y € Va|b <y < ba}a’). Hence
d, <dy by (*) and (***), | |
Case 3: a¢ Va and b e Va. Then aaz=a, s0 aa<a or a<aa.

Case 3.1: aa<a. Since a<bd, it follows that for y e Vo, aa<y<a
implies y <b. By Lemma 2.1, max({y € Va|aa<y <a}a") <max(ba). By (**)
and (*), d.<dp

Case 3.2: a<aa Since a<b, a<b<aa or ag<b. if a<b<aq, then
ba' ¢ {y eVa|a<y<aa}a’ which implies that min({y € Va|a<y<aa}a®)<
max(bc’). Then d,<d, by (***) and (*). If aa<b, then y<b for all y € Va
such that a<y<aa. By Lemma 2.1, we have that u {y € Va|a <y <aa}a’
and v € ba” imply u <v. Hence min({y € Va|a<y<aa}a™) <max(ba®). By
(***) and (*), we have that d, <d,.

Case 4: a¢Va and b ¢ Va. Since a ¢ Va, aa<a or a<aa. We also have
ba<b or b<ba since b ¢ Ve

| Case4,1: aa<a and ba<bh. Since X is a chain and aa < ba,
max({y € Va|aa<y<b})=max({y e Va|ba<y < b}). From the fact that a<bh,
we have {y eValaa<y<a}) g {y e Va|aa<y<b}. Consequently,
max({y e Va|aa<sy<a}) smax({y e Va|aa<y <b}) =
max({y e Va|ba<y<b}). By Lemma 2.20 ((1) and (2)),
max({yeValaaSy<a}a”)Srﬁax({yeValba$y<b}a"), so d;<dy by (**).

Case 4.2: gaa<a and b <ba. Then aa<a<b<ba, so for all v
{reValaa<y<a} and v € {y eVa|b<y<ba}, u<u. Thus ve
{y eValaa<y<a}a’ and Ve {y e Va|b<y<ba}a’, v<V. Then
max({y e Va|aa<y<a}a') <min({y e Va|b <y < ba}a’). Hence d.<d, by
(**) and (***).

Case 4.3: a<aa and ba<b. Then a<aa<ba<b. Thus for all v e

{veVala<y<aa) and v’ € {y e Va|ba<y<b}, u<u. Then
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ma({y € Va|a <y <aa)) < max({y e Va|ba<y<b)). By Lemma 2.20,((1) and
(2)), max({y eVa|a<y<aa}a')<max({y e Va|ba<y< b}a") which implies
that min({y € Va|a<y<aa}a') <max({y e Va|ba<y< bja'). Hence d;<d,
by (***) and (**).

| Case 4.4: a<aa and b<ba. Since X is a chain and aa<bda .
min{({y eVala<y<aa})=min({y eVala<y=< ba}). By Lemma 2.20 (3),
min({y € Va|a<y<aa)a')=min({y e Va|a<y s ba}a’). But
{yeValb<ysbajc (yeVala<y<bal sinoé a<bh so
min({y € Va|a <y < ba}) <min({y e Va|b <y < ba}). Therefore
min({y e Va|a<y<aaj} &‘)Smin({y e Va)b<y<ba}a'). Hence by ("“),'
d, <dy. |

Therefore we have d,<d, for all possible cases, so af < bp.

Hence the theorem is completely proved. [
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