CHAPTER I

PRELIMINARIES

Let S be a semigroup. An element a of S is said to be regular if a = aba for some $b \in S$. If every element of S is regular, then S is said to be a regular semigroup.

For any set A, we let I_A denote the identity map on A. If $\alpha: A \rightarrow B$, then for $C \subseteq A$, let $\alpha|_C$ denote the restriction of α to C.

Let X be a set. A partial transformation of X is a map from a subset of X into X. The empty transformation of X is the partial transformation with empty domain and it is denoted by 0. For a partial transformation α of X, let $\Delta\alpha$ and $\nabla\alpha$ denote the domain and the range of α , respectively. Let PT(X) be the set of all partial transformations of X. For α , $\beta \in PT(X)$, define the product $\alpha\beta$ as follows: If $\nabla\alpha \cap \Delta\beta = \phi$, let $\alpha\beta = 0$. If $\nabla\alpha \cap \Delta\beta \neq \phi$, let $\alpha\beta$ be the composition of the maps $\alpha|_{(\nabla\alpha \cap \Delta\beta)}|_{\alpha=1}$ and $\beta|_{(\nabla\alpha \cap \Delta\beta)}$. Then PT(X) is a semigroup having 0 and I_X as its zero and identity, respectively and for α , $\beta \in PT(X)$, $\Delta\alpha\beta = (\nabla\alpha \cap \Delta\beta)\alpha^{-1} \subseteq \Delta\alpha$, $\nabla\alpha\beta = (\nabla\alpha \cap \Delta\beta)\beta \subseteq \nabla\beta$. The semigroup PT(X) is called the partial transformation semigroup on X.

By a transformation semigroup on X, we mean a subsemigroup of PT(X).

By a transformation of X, we mean a map of X into itself. Let T(X) be a set of all transformations of X, that is,

$$T(X) = \{\alpha \in PT(X) \mid \Delta \alpha = X.\}.$$

Then T(X) is a subsemigroup of PT(X) containing I_X and it is called the full transformation semigroup on X.

Let I(X) be the set of all 1-1 partial transformations of X, that is, $I(X) = \{\alpha \in PT(X) \mid \alpha \text{ is } 1-1.\}.$

Then I(X) is a subsemigroup of PT(X) containing θ and I_X , and it is called the I-I partial transformation semigroup or the symmetric inverse semigroup on X. We have that for $\alpha \in I(X)$, $\alpha = \alpha \alpha^{-1} \alpha$, $\alpha^{-1} = \alpha^{-1} \alpha \alpha^{-1}$, $\Delta \alpha^{-1} = \nabla \alpha$, $\nabla \alpha^{-1} = \Delta \alpha$,

 $\alpha \alpha^{-1} = I_{A\alpha}$ and $\alpha^{-1} \alpha = I_{\nabla \alpha}$

It is well-known that PT(X), T(X) and I(X) are all regular.

The shift of $\alpha \in PT(X)$ is defined to be the set $\{x \in \Delta \alpha \mid x\alpha \neq x\}$ and it is denoted by $s(\alpha)$. For $\alpha \in PT(X)$, α is said to be almost identical if $s(\alpha)$ is finite.

From the definition of shift, the following two propositions are obtained and they will be used later. The first one clearly holds.

Proposition 1.1. Let X be a set. Then the following statements hold.

- (1) For $\alpha \in PT(X)$, $\Delta \alpha \nabla \alpha \subseteq s(\alpha)$.
- (2) For $\alpha \in PT(X)$, if $s(\alpha)$ is finite, then for each $x \in \nabla \alpha$, $x\alpha^{1}$ is finite and $\{x \in \nabla \alpha \mid x\alpha^{1} \neq \{x\}\}\$ is finite.

Proposition 1.2. Let X be a set. Then the following statements hold.

- (1) If $\alpha \in PT(X)$, then for every $a \in \nabla \alpha s(\alpha) \alpha$, $a\alpha^{-1} = \{a\}$.
- (2) If $\alpha \in I(X)$, then $s(\alpha^{-1}) = s(\alpha)\alpha$
- **Proof.** (1) Let $\alpha \in PT(X)$ and $a \in V\alpha s(\alpha)\alpha$. Let $x \in a\alpha^{-1}$. Then $x\alpha = a$. Since $a \notin s(\alpha)\alpha$, $x \notin s(\alpha)$. Therefore $x\alpha = x$ which implies that x = a. This proves that $a\alpha^{-1} \subseteq \{a\}$. Since $a \in V\alpha$, $a\alpha^{-1} \neq \phi$. It follows that $a\alpha^{-1} = \{a\}$.
- (2) Let $\alpha \in I(X)$. From (1) we have that $\alpha \alpha^{-1} = \alpha$ for all $\alpha \in \nabla \alpha \cdot s(\alpha) \alpha$. This implies that $s(\alpha^{-1}) \subseteq s(\alpha) \alpha$ since $\Delta \alpha^{-1} = \nabla \alpha$. This proves that $s(\beta^{-1}) \subseteq s(\beta) \beta$ for all $\beta \in I(X)$. Then $s(\alpha) = s((\alpha^{-1})^{-1}) \subseteq s(\alpha^{-1}) \alpha^{-1}$, so $s(\alpha) \alpha \subseteq s(\alpha^{-1}) \alpha^{-1} \alpha = s(\alpha^{-1})$ since $\alpha^{-1} \alpha = I_{\nabla \alpha}$. \square

Let X be a set and let

U(X) = the set of all almost identical partial transformations of X,

V(X) = the set of all almost identical transformations of X

and

W(X) = the set of all almost identical 1-1 partial transformations of X.

5

Then

$$U(X) = \{ \alpha \in PT(X) \mid s(\alpha) \text{ is finite.} \},$$

$$V(X) = \{ \alpha \in T(X) \mid s(\alpha) \text{ is finite.} \}$$

and

$$W(X) = \{ \alpha \in I(X) \mid s(\alpha) \text{ is finite.} \}.$$

We have that 0, $I_X \in U(X)$, $I_X \in V(X)$ and 0, $I_X \in W(X)$. In fact, U(X), V(X) and W(X) are regular semigroups.

The following notations will be used.

R = the set of real numbers,

 R^+ = the set of positive real numbers,

Z = the set of integers

N = the set of positive integers and

Z = the set of negative integers.

In this research, the partial order on any subset of R always mean the natural partial order on R if we do not define a particular partial order for it.

Let X and Y be partially ordered sets. A map $\varphi: X \rightarrow Y$ is said to be order-preserving if for all $a, b \in X$, $a \le b$ in X implies $a\varphi \le b\varphi$ in Y. We call a map φ an order-isomorphism from X onto Y if φ is a bijection from X onto Y and φ and φ^{-1} are order-preserving. X and Y are said to be order-isomorphic if there exists an order-isomorphism from X onto Y. Then the following statements hold.

- (1) X is a finite chain if and only if X is order-isomorphic to $\{1, 2, 3, ..., n\}$ for some positive integers n.
- (2) X is order-isomorphic to a subset of Z if and only if X is one of the four following forms:

$$\{x_1, x_2, x_3, ..., x_n\}$$
 where $n \in \mathbb{N}$ and $x_1 < x_2 < x_3 < ... < x_n$, $\{x_i \mid i \in \mathbb{N}\}$ where $x_i < x_j$ if $i < j$, $\{x_i \mid i \in \mathbb{Z}^r\}$ where $x_i < x_j$ if $i < j$

and

$$\{x_i \mid i \in \mathbb{Z}\}$$
 where $x_i < x_j$ if $i < j$.

Let X be a partially ordered set. An element a of X is said to be an isolated point if for every $x \in X$, $x \le a$ or $x \ge a$ implies x = a. X is said to be isolated if every point of X is isolated. For $A \subseteq X$, let inf(A), sup(A), min(A) and max(A) denote the infimum, the supremum, the minimum element and maximum element of A, respectively if they exist. By a subposet of X, we mean a partially ordered set Y such that $Y \subseteq X$ and for a, $b \in Y$, $a \le b$ in Y if and only if $a \le b$ in X. By a chain of X we mean a subposet of X which is a chain. For a, $b \in X$, let $a \le b$ denote $a \le b$ or $b \le a$. X is said to be connected if for all a, $b \in X$, there exist $x_1, x_2, x_3, ..., x_n \in X$ such that $a \le x_1 \le x_2 \le x_3 \le a$... $x_n \le x_n \le b$. By a component of X, we mean a maximal connected subposet of X.

A transformation semigroup on X is said to be order-preserving if all of its elements are order-preserving. For a transformation semigroup S(X) on X, let

$$S_{OP}(X) = \{ \alpha \in S(X) \mid \alpha \text{ is order - preserving.} \}$$

which is a subsemigroup of S(X) if it is nonempty. Then $PT_{OP}(X)$, $T_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$, $U_{OP}(X)$, $U_{OP}(X)$ and $W_{OP}(X)$ are subsemigroups of PT(X), T(X), I(X), U(X), V(X) and W(X), respectively and

$$U_{OP}(X) = \{\alpha \in PT_{OP}(X) \mid s(\alpha) \text{ is finite.}\},$$

 $V_{OP}(X) = \{\alpha \in T_{OP}(X) \mid s(\alpha) \text{ is finite.}\}$

and

$$W_{OP}(X) = \{ \alpha \in I_{OP}(X) \mid s(\alpha) \text{ is finite.} \}.$$

In general, $PT_{OP}(X)$, $T_{OP}(X)$, $I_{OP}(X)$, $U_{OP}(X)$, $V_{OP}(X)$ and $W_{OP}(X)$ need not be regular. It will be shown in Chapter II and Chapter III.

The following statements are known.

Proposition 1.3 ([3]). If X is a finite chain, then $T_{OP}(X)$ is regular.

Proposition 1.4 ([1]). If X is a finite chain, then $I_{OP}(X)$ is regular.

Let (X, \leq) be a partially ordered set. Define the partial order \leq_{opp} on X as follows: For $x, y \in X$,

 $x \leq_{opp} y$ if and only if $y \leq x$.

We call \leq_{opp} the opposite partial order of \leq . Then we have that for $\alpha \in PT(X)$, α is order – preserving with respect to \leq if and only if α is order – preserving with respect to \leq_{opp} . Hence following propositions hold.

Proposition 1.5. Let (X, \leq) be a partially ordered set and \leq_{opp} the opposite partial order of \leq

- 1. $PT_{OP}((X, \leq)) = PT_{OP}((X, \leq_{opp}))$ and $PT_{OP}((X, \leq))$ is regular if and only if $PT_{OP}((X, \leq_{opp}))$ is regular.
- 2. $T_{OP}((X, \leq)) = T_{OP}((X, \leq_{opp}))$ and $T_{OP}((X, \leq))$ is regular if and only if $T_{OP}((X, \leq_{opp}))$ is regular.
- 3. $I_{OP}((X, \leq)) = I_{OP}((X, \leq_{opp}))$ and $I_{OP}((X, \leq))$ is regular if and only if $I_{OP}((X, \leq_{opp}))$ is regular.
- 4. $U_{OP}((X, \leq)) = U_{OP}((X, \leq_{Opp}))$ and $U_{OP}((X, \leq))$ is regular if and only if $U_{OP}((X, \leq_{Opp}))$ is regular.
- 5. $V_{OP}((X, \leq)) = V_{OP}((X, \leq_{opp}))$ and $V_{OP}((X, \leq))$ is regular if and only if $V_{OP}((X, \leq_{opp}))$ is regular.
- 6. $W_{OP}((X, \leq)) = W_{OP}((X, \leq_{opp}))$ and $W_{OP}((X, \leq))$ is regular if and only if $W_{OP}((X, \leq_{opp}))$ is regular.

For any set A, let |A| denote the cardinality of A.