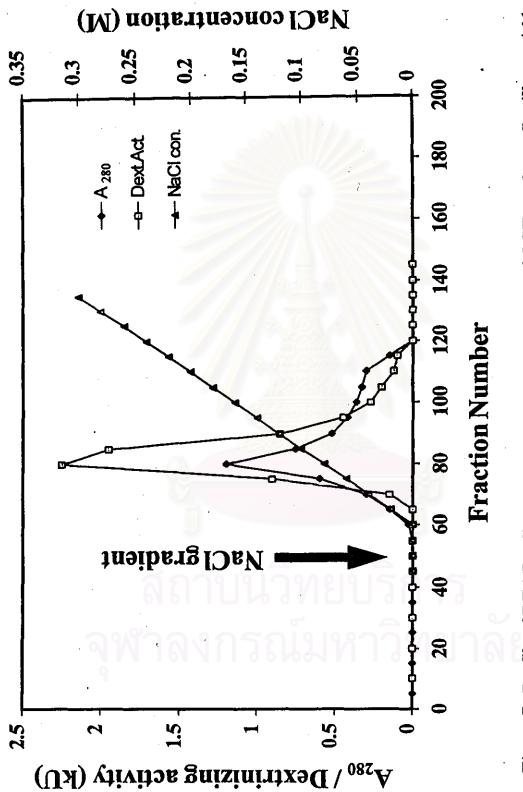
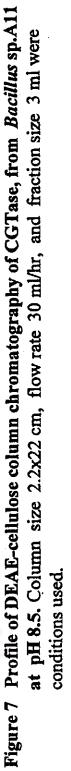
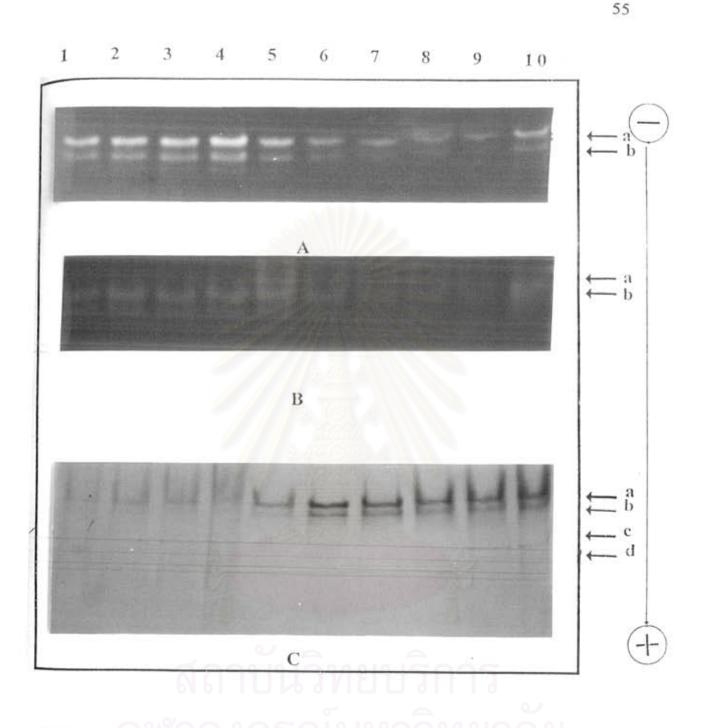
CHAPTER III


RESULTS


Purification of CGTase


Crude CGTase was purified by three major consecutive steps, namely, corn starch adsorption, precipitation at 40-80% ammonium sulfate saturation, and DEAE-cellulose column chromatography. The first two steps repeat those reported by Rojtinnakorn (1994) and the results obtained were similar. DEAE-cellulose column chromatography was modified by narrow down the range of NaCl gradient used. Rojtinnakorn (1994) used 0-1 M NaCl (200+200 ml), a rather steep gradient of NaCl as eluant for CGTase. In this work, 0-0.3 M NaCl (200+200 ml) was used.

The column profile (Figure 7) shows only one single protein peak, eluted between fraction 60 to 120 which coincided with dextrinizing activity peak. The highest dextrinizing activity was obtained at the same position as the protein peak which was eluted at the salt concentration of approximately 0.1 M NaCl. The fractions were pooled as separate pools, as followed: fraction number 60-67, 69.71, 73-75, 76-79, 80, 82-84, 86-92, 93-98, 99-104, and 105-120, which were named pool E1-E10, respectively.

Pool E1-E10 were analyzed by non-denaturing PAGE. When stained with protein staining (Figure 8C), E1-E4 showed 3-4 faint protein bands. E5-E8 showed 2 bands (band a, b)with the faster being less in intensity

Figure 8 Non-denaturing PAGE. of fractions obtained from DEAE-

cellulose column chromatography

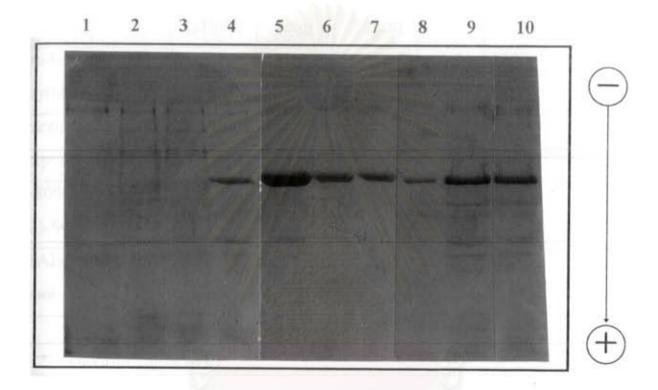
Lane 1 to 10 were pools E1 to E10, respectively.

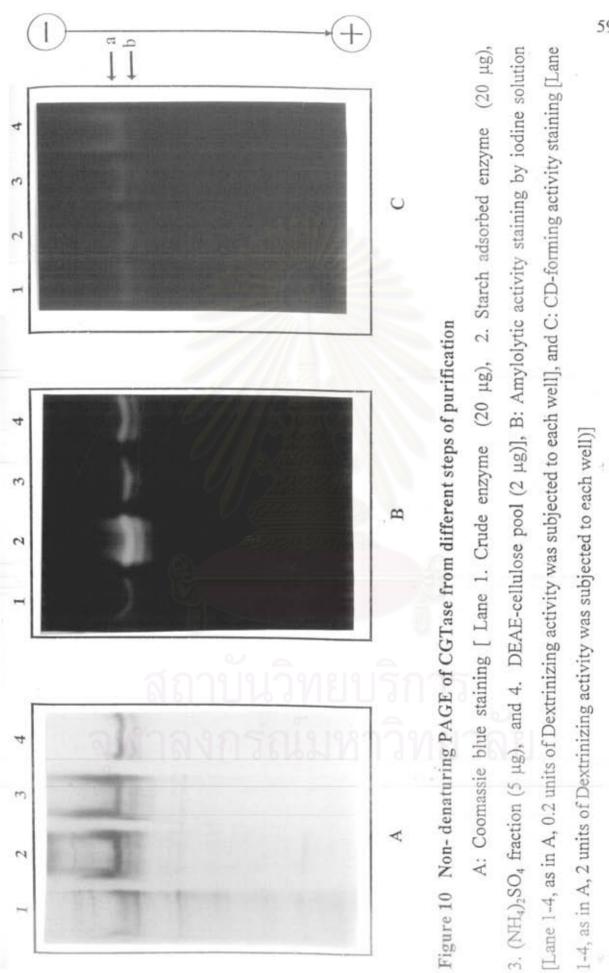
- A. Amylolytic activity staining by iodine solution
- (0.2 units of Dextrinizing activity was subjected to each well)
- B. CD-forming activity staining
- (2.0 units of Dextrinizing activity was subjected to each well)
- C. Coomassie blue protein staining
 - (2 µg protein was subjected to each well)

whereas pool E9-E10 showed 3-4 protein bands (band a, b, c, d). Activity stain (both amylolytic and CD-forming) of all pools in Figure 8A and 8B showed two major bands (a and b) of different intensity corresponded to bands from protein staining. SDS-PAGE of pool E5-E7 showed one major protein band while pool E4, E8-E10 showed other faint bands beside the same major band. E1-E3 had several faint bands with no major band observed (Figure 9). Pool E5-E7 were then pooled and called DEAEcellulose enzyme.

The recovery and yield of CGTase obtained at each purification step expressed in terms of dextrinizing activity are shown in Table 11. Specific activity of dextrinization was increased through each step. These corresponded to CD-product which was determined by CD-TCE dilution limit value. After the final step of the purification, yield of 30% was obtained with 44.8 fold of purity.

Purification of CGTase was demonstrated by non-denaturing and SDS-polyacrylamide gel electrophoresis. In the normal PAGE (Figure 10A), although the protein bands were faintly detected in the crude enzyme of *Bacillus* sp. A11, the subsequent purification up to DEAE-cellulose chromatography efficiently separated the CGTase candidates and concentrated for the final purification. The DEAE-cellulose could further separate proteins band a and b from the others. These two bands clearly exhibited the amylolytic activity when stained with iodine solution as shown in Figure 10B. When the similar gel was stained for CD products (Figure 10C), CD were detected at the positions of proteins band a and b in each step of purification.



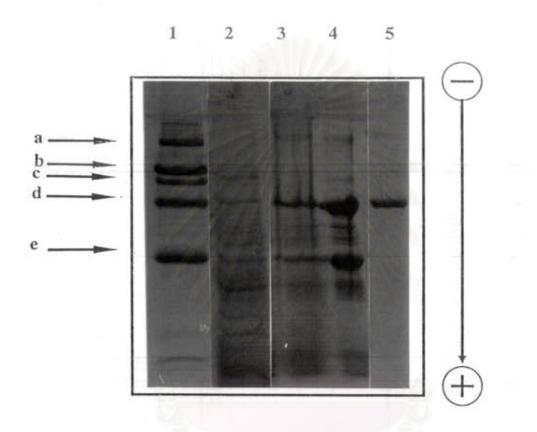

Figure 9SDS-PAGE of fractions obtained from DEAE-cellulose column
chromatography (2.0 μg protein was subjected to each well,
Lane 1 to 10 were pools E1 to E10, respectively.) Protein staining
was performed using coomassie blue.

Step	Volume (ml)	Total activity [*] (x10 ³ U)	Total protein (mg)	Specific activity (U/mg)	Purity (fold)	Yield (%)	Activity (CD-TCE) (2 ⁿ)
Crude enzyme	5,000	200	1,790	111.7	1.0	100	2 ⁶
Starch adsorption	1,000	190	410	463.4	4.1	95	2 ⁹
40-80% (NH4)2SO4	80	80	50	1,600.0	14.3	40	2 ¹³
DEAE- pool	36	60	12	5,000.0	44.8	30	2 ¹⁴

Table 11 Purification table of CGTase from Bacillus sp. A11

Note * = Dextrinizing activity

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย


In the SDS-PAGE (Figure 11), only one intense band was observed in the DEAE-cellulose pool. This protein, assumingly CGTase, was further estimated for its molecular weight. Figure 12 shows the R_f values of standard proteins calculated from distance measured in the SDS-PAGE plotted against the log molecular weight values. The molecular weight of CGTase was estimated to be approximately 72,000 daltons.

Amino acid composition of CGTase

The DEAE-cellulose enzyme was hydrolyzed with either 6M HCl or 4M methanesulfonic acid (for tryptophan detection) at 110 ^oC for 22 hours. For analysis of cysteine and methionine, the enzyme was hydrolyzed with performic acid for 30 minutes before the addition of 6M HCl. Chromatograms of various amino acid standards and enzyme sample were shown in Figure 13 and 14. The amino acid composition of the purified enzyme of *Bacillus* sp. Al1 obtained from DEAE-cellulose column chromatography was presented in Table 12. The result shows that CGTase was rich in Asx, Gly, Ala, Glx, and Thr while contained few amounts of Met, Cys, and Trp, respectively.

N-terminal amino acid sequence of CGTase

200 pmol of the purified enzyme was separated by SDS-PAGE. The gel was removed from the electrophoresis cell and soaked in electroblotting buffer for 5 minutes. The electroblotting was performed with the same buffer under a constant voltage current of 50 volts at room

Figure 11 SDS-PAGE of CGTase from different steps of purification

- Lane 1. Protein molecular weight markers (a: myosin (200 kD),
 - b: β-galactosidase (116.25 kD), c: phosphorylase (97.1 kD)
 - d: BSA (66.2 kD), and e: ovalbumin (45 kD)
 - 2. Crude enzyme (20 μg)
 - 3. Starch adsorbed enzyme (20 µg)
 - 4. $(NH_4)_2SO_4$ fraction (5 µg)
 - 5. DEAE-cellulose pool (2 µg)

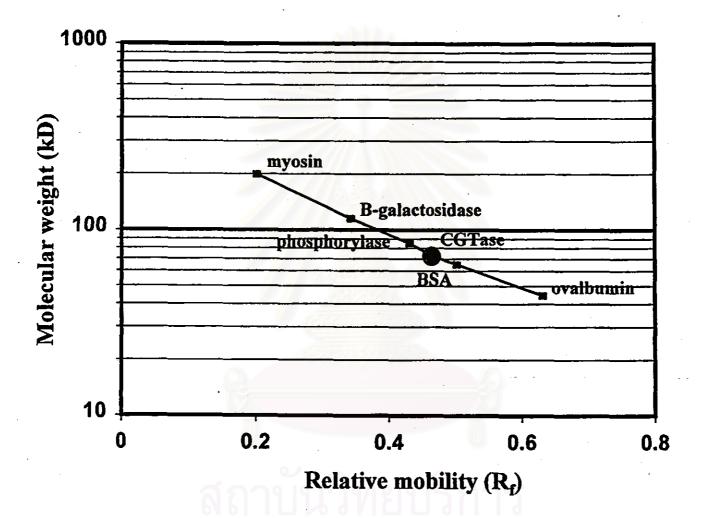


Figure 12 Standard curve of molecular weight and relative mobility from SDS- PAGE technique

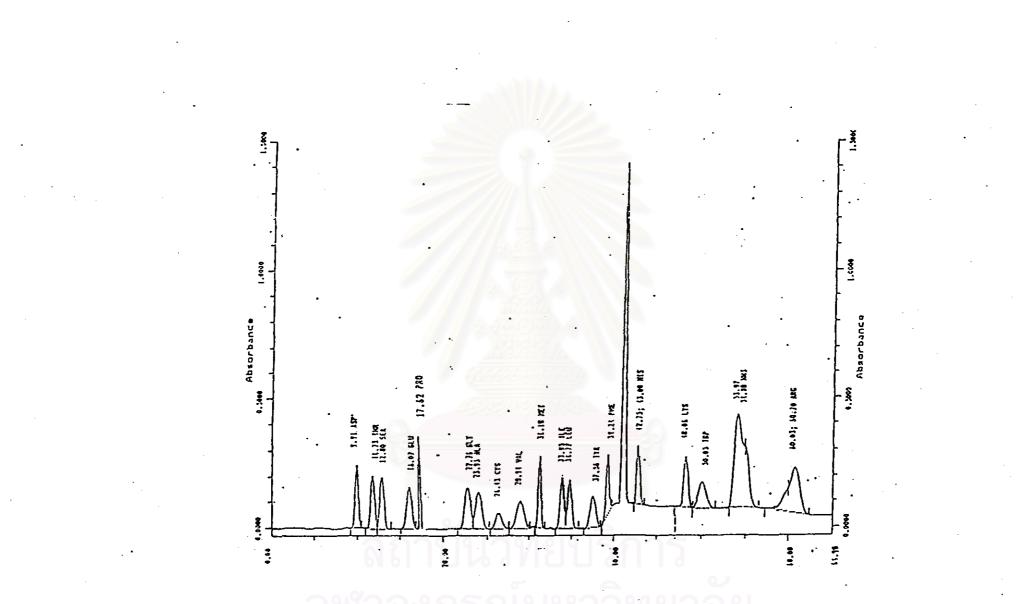


Figure 13 Chromatogram of various amino acid standards from Amino acid analyzer

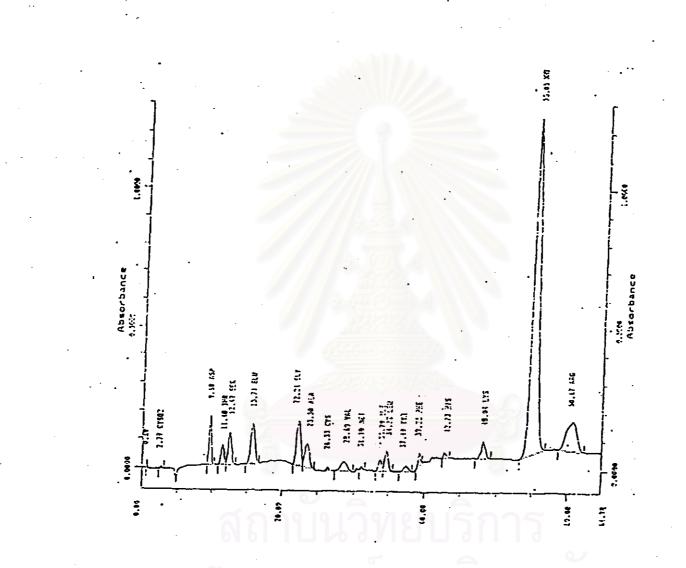


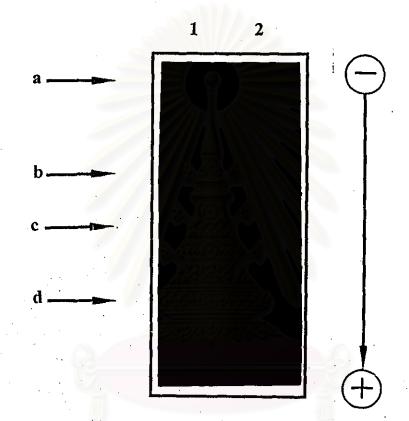
Figure 14 Chromatograms of amino acid composition of CGTase from Amino acid Analyzer

Amino acidAsxGlxSerGlyHisThrArgAlaProTyrValMet	Content (mol %)				
Asx	15.42				
Gix	8.63				
Ser	6.25 .				
Gly	12.35				
His	3.17				
Thr	8.31				
Arg	2.82				
Ala	10.24				
Рто	6.46				
Tyr	1.55				
Val	6.95				
Met	0.44				
Cys	0.29				
Ile	4.28				
Leu	5.54				
Phe	3.56				
Trp	0.16				
Lys	3.56				
Total	100				

Table 12 Amino acid composition of CGTase from Bacillus sp. A11

Note Asx = aspartic acid + asparagine

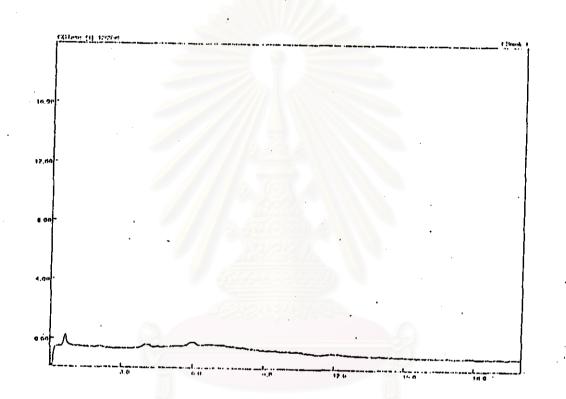
Glx = glutamic acid + glutamine

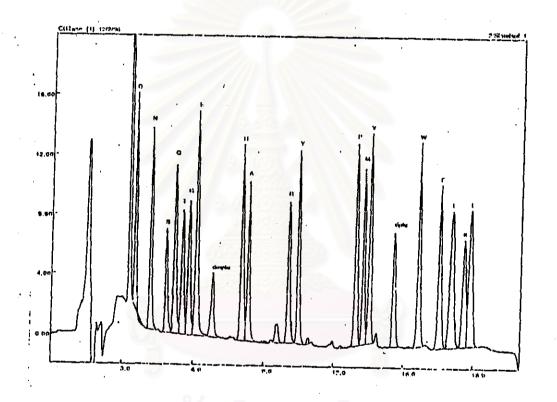

temperature for 30 minutes. After electroblotting, the protein bands in the PVDF membrane was briefly stained by Coomassie blue and destaining with 50% methanol until protein bands appeared (Figure 15). The band of CGTase was excised and subjected for sequencing.

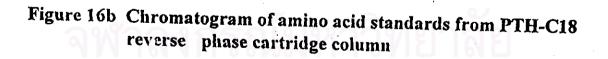
The sequencing procedure for determination of the amino acid residues was as mentioned in Methods section 2.12.3. The twenty cycles were analyzed on an Applied Biosystem PTH-C18 reversed phase cartridge column. Twenty amino acids, aspartic acid (D), asparagine (N), serine (S), glutamine (Q), threonine (T), glycine (G), glutamic acid (E), histidine (H), alanine (A), arginine (R), tyrosine (Y), proline (P), methionine (M), valine (V), tryptophan (W), phenylalanine (F), isoleusine (I), lysine (K), leusine (L), and cysteine (Cys) were used as sequence standards and dmptu (N,N-dimethyl-N'-phenylthiourea) and dptu (diphenylthiourea) peaks were used as reference peaks. The profiles of sequence standards and profiles of amino acid sequence of CGTase were shown in Figure 16 a-l.

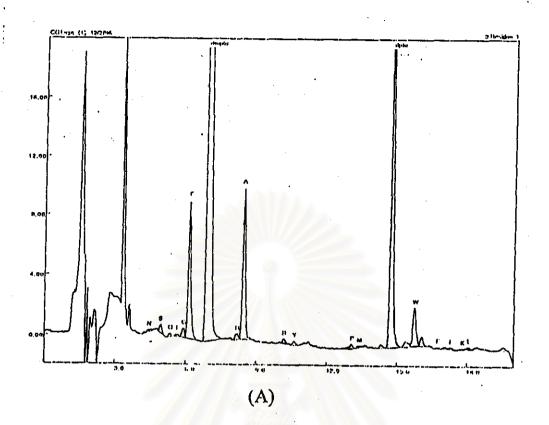
The N-terminal amino acid sequence of the purified CGTase was determined by automated Edman degradation up to 20 residue to be A P D T S N Y N K Q N F R T D V I Y Q I.

Oligonucleotide design and synthesis


20 residues of N-terminal amino acid sequence of CGTase from *Bacillus* sp. A 11 was compared with N-terminal amino acid sequence of CGTase from other microorganisms, as shown in Figure 17 and 18. Homologies of 80% amino acid identity was demonstrated. The C-terminal


Figure 15 Analysis of CGTase from *Bacillus sp.* A11 after electroblotted onto PVDF membrane


Lane 1: Standard protein markers; a: Myosin (200 kD), b: BSA (66.2 kD), c: Ovalbumin (45 kD), and d: Bovine carbonic anhydrase (29 kD).


Lane 2: Purified CGTase

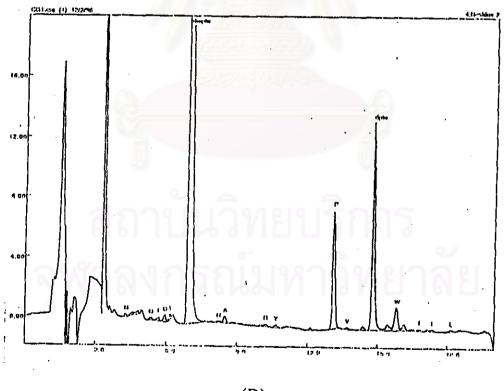
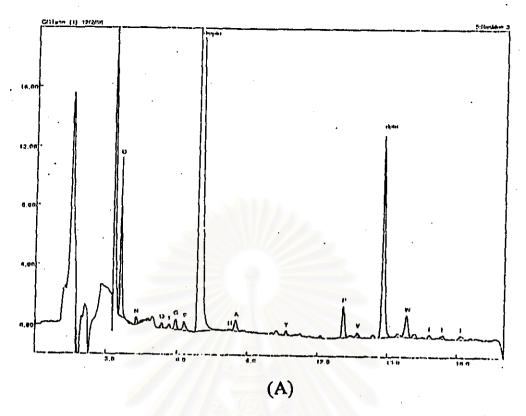


Figure 16a Chromatogram of blank condition obtained from PTH-C18 reverse phase cartridge column



(B)

Figure 16c Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 1 (B) Cycle 2

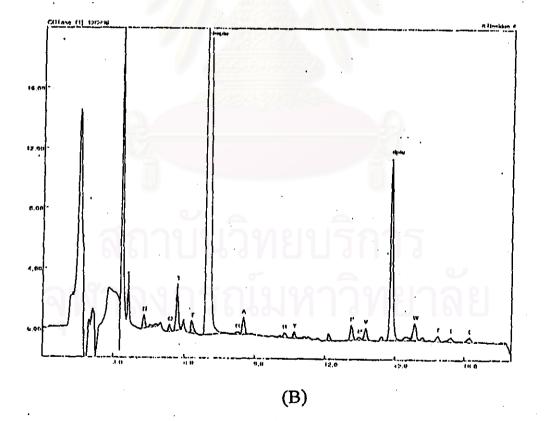
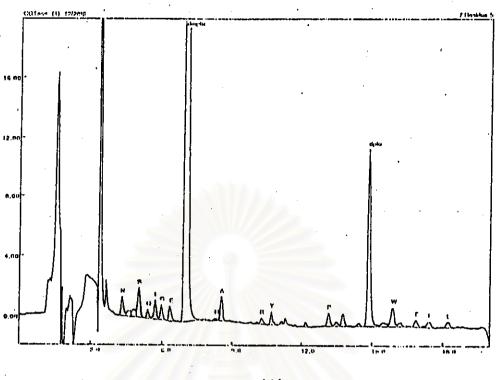



Figure 16d Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 3 (B) Cycle 4

••

(A)

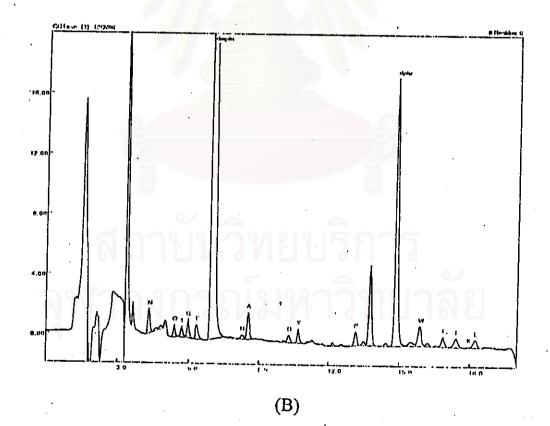


Figure 16e Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 5 (B) Cycle 6

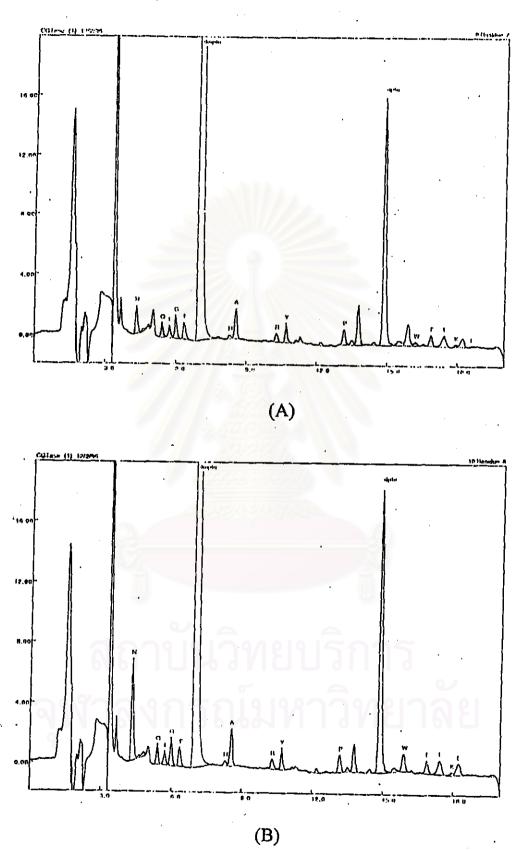
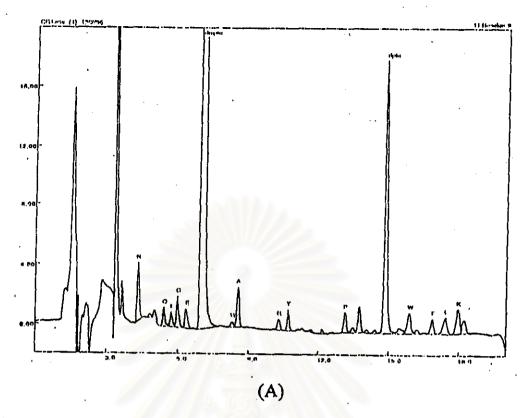



Figure 16f Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 7 (B) Cycle 8

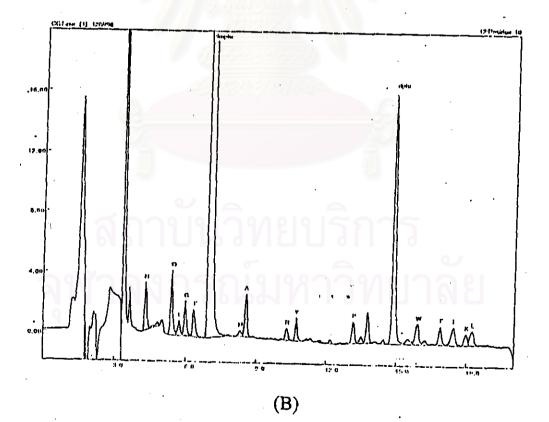


Figure 16g Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 9 (B) Cycle 10

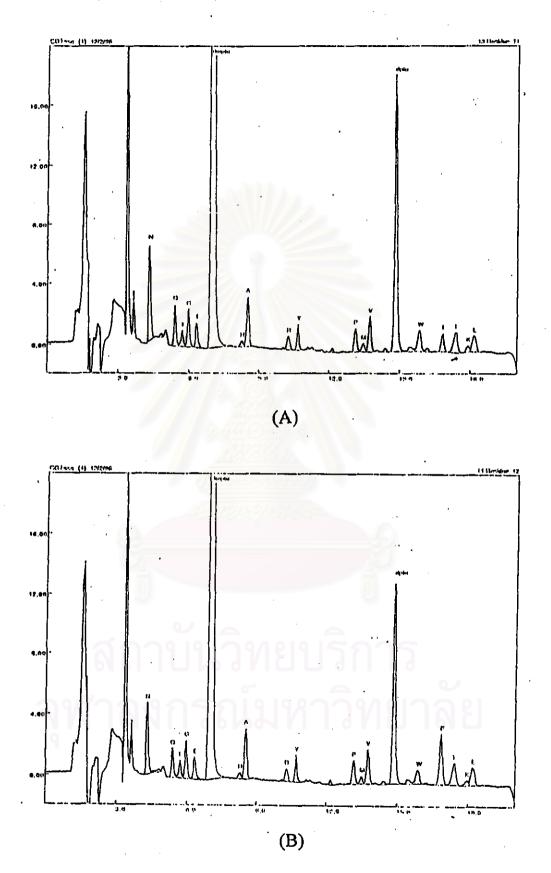


Figure 16h Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 11 (B) Cycle 12

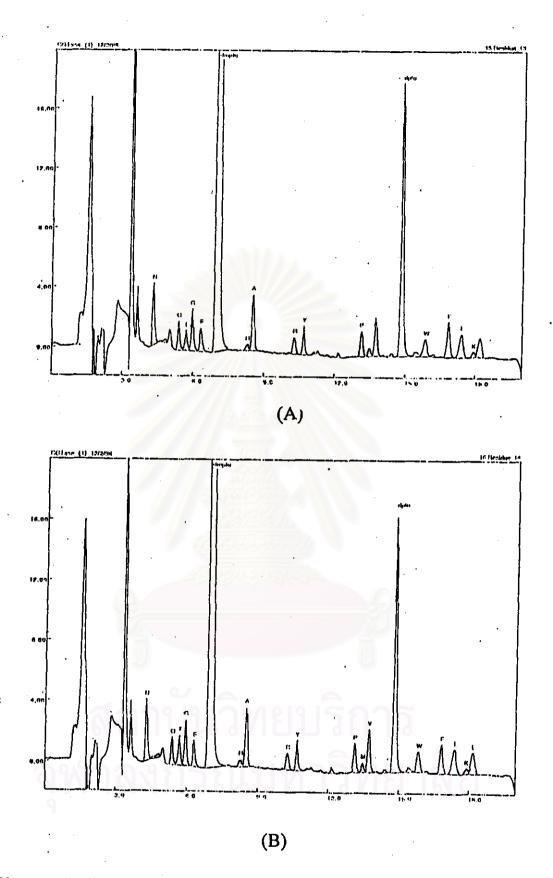


Figure 16i Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 13 (B) Cycle 14

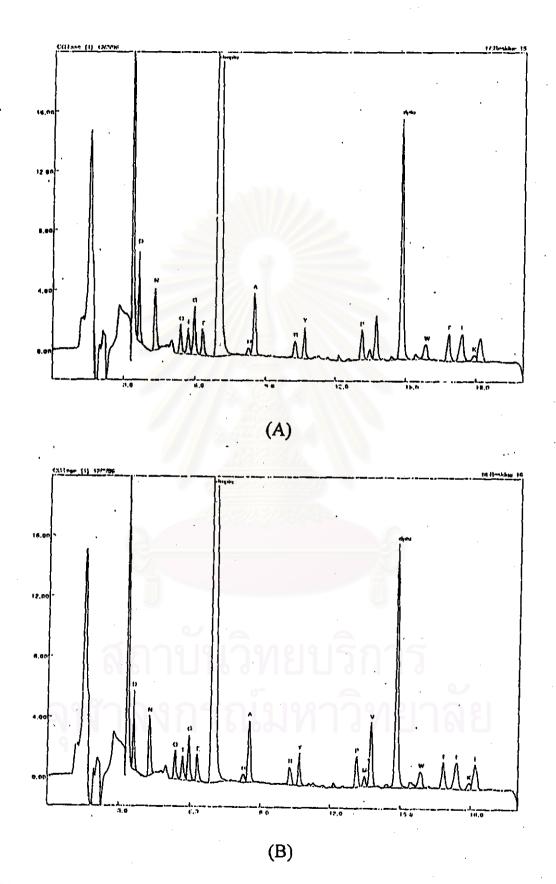


Figure 16J Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 15 (B) Cycle 16

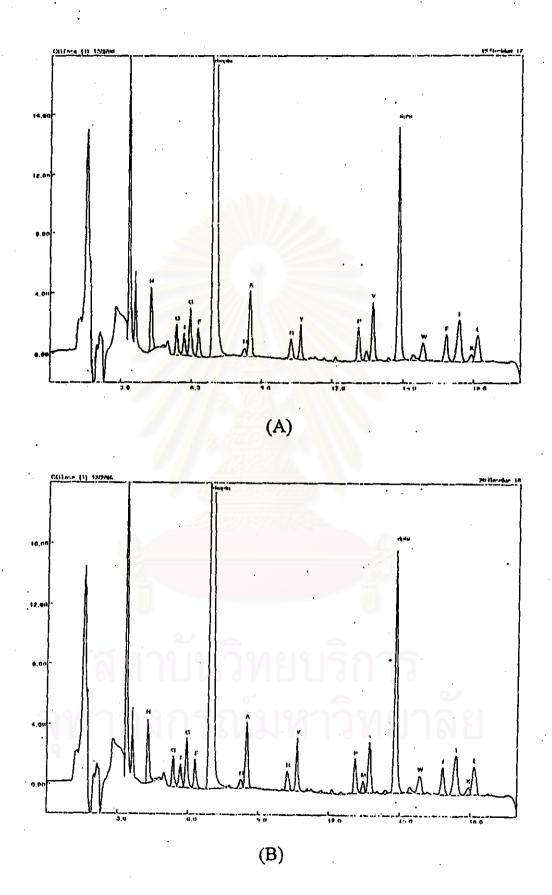
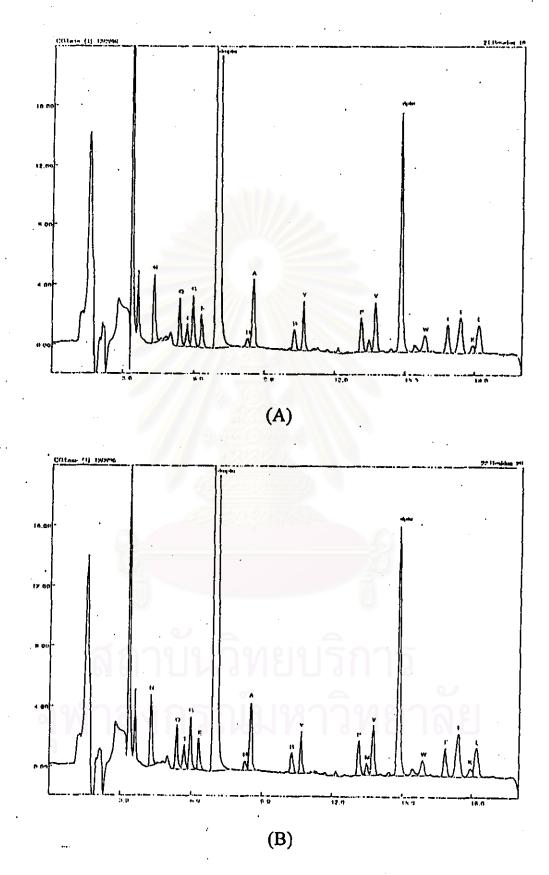
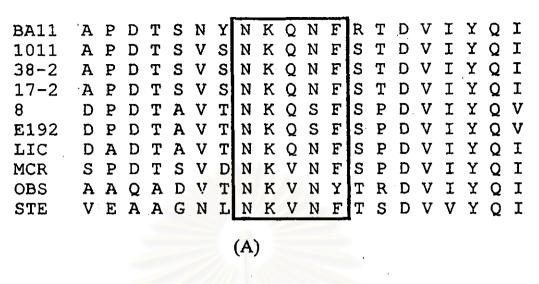


Figure 16k Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 17 (B) Cycle 18




Figure 161 Chromatogram of N-terminal amino acid of purified CGTase from PTH-C18 reverse phase cartridge column (A) Cycle 19 (B) Cycle 20

BA11	APOTSNY NKONFRTDVIYO I	
1011	APDTSVS NKONFSPDVIYO IFTDRFSDGNPANNPTGAAFDGSCTNLRLYCGGDWQGIINKINDGY	
	APDTSVS NKQNFSPDVIYQ IFTDRFSDGNPANNPTGAAFDGSCTNLRLYCGGDWQGIINKINDGY	
17-2	APDTSVS NKQNFSPDVIYQ IFTDRFSDGNPANNPTGAAFDGSCTNLRLYCGGDWQGIINKINDGY	
		'
8	DPDTAVT NKQSFSPDVIYQ VFTDRFLDGNPSNNPTGAAYDATCSNLRLYCGGDWQGIINKINDNY	
E192	DPDTAVT NKQSFSPDVIYQ VFTDRFLDGNPSNNPTGAAYDATCSNLRLYCGGDWQGIINKINDNY	
LIC .	DADTAVT NKQNFSPDVIYQ IFTDRFLDGNPSNNPTGAAYDATCSNLRLYCGGDWQGIINKINDNY	
MCR	SPDTSVD NKQNFSPDVIYQ IVTDRFADGDRTNNPAGDAFSGDRSNLKLYFGGDWQGIIDKINDGY	
OBS	AAQADVT NKVNYTRDVIYQ IVTDRFSDGDPSNNPTGAIYSQDCSDLHKYCGGDWQGIIDKINDGY	
STE	VEAAGNL NKVNFTSDVVYQ IVVDRFVDGNTSNNPSGALFSSGCTNLRKYCGGDWQGIINKINDGY	
1011	LTG MGITAIWISQPVENIYSVINY-SG VNNTAYHGYWARDFKKTNPAYGTMQDFKNLIDTAHAHN	
38-2	DIS NGITAIWISCPURIISVINI-SG VNNIAIRGIWARDFRRINFAIGIMODERNLIDIAHAHN	
	LTG MGITAIWISQPVENIYSVINY-SG VHNTAYHGYWARDFKKTNPAYGTMQDFKNLIDTAHAHN	
17-2	LTG MGITAIWISQPVENIYSIINY-SG VNNTAYHGYWARDFKKTNPAYGTIADFQNLIAAAHAKN	
8	FSD LGITAIWISQPVENIFATINY-SG VTNTAYHGYWARDFKKTNPYFGTMADFQNLITTAHAKG	
E192	FSD LGITAIWISQPVENIFATINY-SG VTNTAYHGYWARDFKKTNPYFGTMADFQNLITTAHAKG	
LIC	FSD LGITAIWISQPVENIFATINY-GG VINTAYHGYWARDFKKTNPYFGTMADFQNLISTAHAKG	
MCR	LTG MGITAIWISQPVENITSVIKY-SG VNNTAYHGYWARDFKKTNDAFGDFADFQNLIDTAHAHN	
OBS	LTG LGITAIWISQPVENVVALHPSG YTSYHGYWARDYKRTNPFYGDFSDFDRLMDTAHSNG	
STE	Dig DetrawisgrvEnvvALAFSG IISIAGIWARDIKRINPFIGDFSDFDRLMDTAHSNG	
SIL	LTG MGVTAIWISQPVENVFSVMNDASG SASYHGYWARDFKKPNDFFGTLSDFQRLVDAAHAKG	
1011	IKVIIDFAPNHTSPASSDDPSFAENGRLYDNGNLLGGYTNDTQN LFHHYGGTDFSTIENGIY	
38-2	IKVIIDFAPNHTSPASSDDPSFAENGRLYDNGNLLGGYTNDTQN LFHHYGGTDFSTIENGIY	
17-2	IKVIIDFAPNHTSPASSDQPSFAENGRLYDNGTLLGGYTNDTQN LFHHNGGTDFSTTENGIY	
8	IKIVIDFAPNHTSPAMETDTSFAENGRLYDNGTLVGGYTNDTNG LFHHNGGSDFSSLENGIY	
E192		
LIC		
MCR	IKIVIDFAPNHTSPAMETDTSFAENGKLYDNGNLVGGYTNDTNG LFHHNGGSDFSSLENGIY	
	IKVVIDFAPNHTSPADRDNPGFAENGGMYDNGSLLGAYSNDTAG LFHHNGGTDFSTIEDGIY	
OBS	IKVIMDFTPNHSSPALETDPSYAENGAVYNDGVLIGNYSNDP-NN LFHHNGGTDFSSYEDSIY	
STE	IKVIIDFAPNHTSPASETNPSYMENGRLYDNGTLLGGYTNDANM- YFHHNGGTTFSSLEDGIY	
1011	KNLYDLADLNHNNSSVDVYLKDAIKMWL DLGVDGIRVDAVKHMPFGWQKSFMATINNY KPVF	
38-2	KNLYDLADLNHNNSSVDVYLKDAIKMWL DLGVDGIRVDAVKHMPFGWQKSFMATINNY KPVF	
17-2	KNLYDLADLNHNNSTVDVYLKDAIKMWL DLGVDGIRMDAVKHMPFGWQKSFMAAVNNY KPVF	
8	KNLYDLADFNHNNATIDKYFKDAIKLWL DMGVDGIRVDAVKHMPIGWQKSFMAAVNNY KPVF	
E192		
	KNLYDLADFNHNNATIDKYFKDAIKLWL DMGVDGIRVDAVKHIALGWQKSWMSSIYVH KPVF	
LIC	KNLYDLADLNHNNSTIDQYFKDAIKLWL DMGVDGIRVDAVKHMPLGWQKSWMSSIYAH KPVF	
MCR	KNLYDLADINHNNNAMDAYFKSAIDLWL GMGVDGIRFDAVKHMPFGWOKSFVSSIYGGDHPVF	
OBS	RNLYDLADYDLNNTVMTQYLKESIKLWL DKGIDGIRVDAVKHMSEGWQTSLMSDIYAH EPVF	
STE	RNLFDLADLNHQNPVIDRYLKDAVKMWI DMGIDGIRMDAVKHMPFGWQKSLMDEIDNY RPVF	
	ELECTRONIC DISTORTANCE DISTORTANCE IGNORSEMDET DNI REVE	
1011	TFGEWFLGVNE ISPEYHQFANESGMSLLDFRFAQKARQVFRDNTDNMYGLKAMLEGSE VDYAQ	
38-2	NEGEWEI GUNE ISTERVISENDESGNSDESERTAGAAR WIRDNI DNMIGLAAMLEGSE VDYAQ	
17-2	NFGEWFLGVNE ISPEYHQFANESGMSLLDFPFAQKARQVFRDNTDNMYGLKAMLEGSE VDYAQ	
	TFGEWFLGVNE VSPENHQFANESGMSLLDFRFAQKVRQVFRDNTDNMYGLKAMLEGSA ADYAQ	
8	TFGEWFLGSAA SDADNTDFANKSGMSLLDFRFNSAVRNVFRDNTSNMYALDSMINSTA TDYNO	
E192	TIGEWILGSAA SDADNTDFANKSGMSLLDFRFNSAVRNVFRDNTSNMYALDSMINSTA TOVNO	
LIC	TFGEWFLGSAA SDADNTEFANESGMSLLDFRFNSAVRÚVFRDNTSNMYALDSMITGTA ADYNO	
MCR	TFGEWYLGADQ TDGDNIKFANESGMNLLDFEYAQEVREVFRDKTETMKDLYEVLASTE SQYDY	
OBS	TEGEWELGSGE VDPONUHEANESCHOLDER SOUTHEANE VRAATE SQIDY.	
STE	TEGEWELGSGE VDPQNHHFANESGMSLLDFQFGQTIRDVLMDGSSNWYDFNEMIASTE EDYED	
OIL	TFGEWFLSENE VDANNHYFANESGMSLLDFRFGQKLRQVLRNNSDNWYGFNQMIQDTA SAYDE	
1011	VN DOUWET DNUDNED BUILDUNGD DUNG VOD DUNG VOD DUNG	
	VNDQVTFIDNHDMERFHTSNGDRRKLEQALAFTLTSRGVPAIYYGSEQYMSGGNDPDNRARLP SFST	
38-2	VNDUVIIIDNHDMERTHTSNGDRRKLEOALAFTLTSRGVPATYYGSFOYMSCCMDPDNRABID CDCm	
17-2	VNDQVIIIIUNHUMERIHASNANRRKLEOALAFTLTSRGVPAIYYGTEOYMSGGTDPDMPAPID CDCC	
8	VNDQVTFIDNHDMDRFKTSAVNNRKLEQALAFTLTSRGVPAIYYGTEQYLTGNGDPDNRAKMP SFSK	•
E192	VNDQVTFIDNHDMDRFKTSAVNNRKLEQALAFTLTSRGVPAIYYGTEQYLTGNGDPDNRAKMP SFSK	
LIC	VNDOVTET DNHDMDPFKTSDUNNBER FOR FOR THE TOTOLOGICAL TIGTEQUE TGNGDPDNRAKMP SFSK	
MCR	VNDQVTFIDNHDMDRFKTSAVNNRKLEQALAFTLTSRGVPAIYYGTEQYLRGNGDPDNRAKMP SFSK	
OBS	INNMVTFIDNHDMSRFSVGSSSTRATEQALAFTLTSRGVPAIYYGTEQYMTGDGDPNNRAMMT SFNT	
	VNDQVIIIDNHDMDRIMIDGGDNRHTDIALAFTLTSRGVPTIYYGTEOYLTGGNDPENPKPMG DEDP	
STE	VNDQVTFIDNHDMDRFMIDGGDPRKVDMALAVLLTSRGVPNIYYGTEQYMTGNGDPNNRKMMS SFNK	

:

1011 38-2 17-2 8 E192 LIC MCR OBS STE	TTTAYQVIQKLAPLRKSNPAIAYGSTHERWINNDVIIYERKFGNNVAVVAINRNTMNT PASITGLV TTTAYQVIQKLAPLRKSNPAIAYGSTQERWINNDVIIYERKFGNNVAVVAINRN MNT PASITGLV STTAYQVIQKLAPLRKCNPAIAYGSTQERWINNDVLIYERKFGSNVAVVAVNRNL NA PASISGLV STTAFNVISKLAPLRKSNPAIAYGSTQQRWINNDVYVYERKFGKSVAVVAVNRNL ST SASITGLS STTAFNVISKLAPLRKSNPAIAYGSTQQRWINNDVYVYERKFGKSVAVVAVNRNL ST PANITGLS TTTAFNVISKLAPLRKSNPAIAYGSTQQRWINNDVYIYERKFGKSVAVVAVNRNL ST PANITGLS TTTAFNVISKLAPLRKSNPAIAYGSTQQRWINNDVYIYERKFGKSVAVVAVNRNL ST PANITGLS TTTAFNVISKLAPLRKSNPAIAYGSTQQRWINNDVYIYERKFGSSAALVAINRN SSA AYPISGLL TTNSYQIISTLASLRQNNPALGYGNTSERWINSDVYIYERSFGDSVVLTAVN SGDT SYTINNLN NTRAYQVIQKLSSLRRNNPALAYGDTEQRWINGDVYVYERQFGKDVVLVAVNR SSSS NYSITGLF
1011	TSLRRASYNDVLGGILNGN LTVGAGGAASNFTLAPGGTAVWQYTTDATTPIIG NVGPMMAKPGVT
38-2	TSLPQGSYNDVLGGILNGNTLTVGAGGAASNFTLAPGGTAVWQYTTDATAPING NVGPMMAKAGVT
17-2	TSLPQGSYNDVLGGLLNGNTLSVGAGGAASNFTLAAGGTAVWQYTTAATATPTIG HVGPMMAKPGVT
8	TSLPTGSYNDVLGGVLNGNNIT STNGSINNFTLAAGATAVWQYTTAETTPTIG HVGPVMGKPGNV
E192	TSLPTGSYNDVLGGVLNGNNIT SSNGSVNSFTLAAGATAVWQYTAAETTPTIG HVGPVMGKPGNV
LIC	TSLPTGNYNDVLGGVLNGNNIT STNGNVSSFTLAAGATAVWQYTTSETTPTIG HVGPVMGKPGNV
MCR	SSLPAGTYSDVLNGLNGNSITVGSGGAVTNFTLAAGGTAVWQYTAPETSPAIG NVGPTMGQPGNV
OBS	TSLPQGQYTDELQQLLDGNEITVNSNGAVDSFQLSANGVSVWQITEEHASPLIG HVGPVMGKHGNT
STE	TALPAGTYTDQLGGLLDGNTIQVGSNGSVNAFDLGPGEVGVWAYSATESTPIIG HVGPMMGQVGHQ
1011 38-2 17-2 8 E192 LIC MCR OBS STE	ITIDGRGFGSGKGTVYFGTTAVTGADIVAWEDTQIQVKIPAVPGGIYDI ITIDGRASG RQGTVYFGTTAVTGADIVAWEDTQIQVKILRVPGGIYDI ITIDGRASG RQGTVYFGTTAVTGADIVAWEDTQIQVKILRVPGGIYDI VTIDGRGFGSSKGTVYFGTTAVTGADITSWEDTQIKVKIPAVAGGNYNI VTIDGRGFGSTKGTVYFGTTAVTGAAITSWEDTQIKVTIPSVAAGNYAV VTIDGRGFGSTKGTVYFGTTAVTGAAITSWEDTQIKVTIPSVAAGNYAV VTISGRGFGSTKGTVYFGTTAVTGAAITSWEDTQIKVTIPAVAAGNYAV VTIDGRGFGGTAGTVYFGTTAVTGAAITSWEDTQIKVTIPAVAAGNYAV VTITGGRGFGSTKGTVYFGTTAVTGAAITSWEDTQIKVTIPAVAAGNYAV VTIDGRGFGGTAGTVYFGTTAVTGSGIVSWEDTQIKAVIPKVAAGKTGV VTITGEGFGDNEGSVLFDSDFSDVJ.SWSDTKIEVSVPDVTAGHYDI VTIDGEGFGTNTGTVKFGTTAANVVSWSNNQIVVAVPNVSPGKYNI TVQSSSGQTSAAYDNFEV
1011	LTGDQV TVRFVINNATTALGQNVFLTGNVSELGNWDP-NNAIG PMYNQVV
38-2	LTGDQV TVRFVINNATTALGQNVFLTGNVSELGNWDP-NNAIG PMYNQVV
17-2	LTGDQV SVRFVVNNATTALGQNVYLTGSVSELGNWDPA-KAIG PMYNQVV
8	LTGDQV TVRFVVNNASTTLGQNLYLTGNVAELGNW-STG-STAIG PAFNQVI
E192	LTGDQV TVRFVINNASTTLGQNIYLTGNVAELGNW-STG-STAIG PAFNQVI
LIC	LTGDQV TVRFVINNASTTLGQNIYLTGNVAELGNW-STG-TTAIG PAFNQVI
MCR	LTGDQV TVRFVINNASTTLGQNIYLTGNVAELGNW-STG-TTAIG PAFNQVI
OBS	LTGDQV SIRFAVNNATTSLGTNLYMVGNVNELGNWDPD QAIG PMFNQVM
STE	LTNDQV SVRFVVNNATTNLGQNIYIVGNVYELGNWDTSKAIG PMFNQVV
1011	YQ YPTWYYDVSVPAGQTI EFKFLKKQGS-TVTWEGGANRTFTTPTSG TATVNVNWQP
38-2	YQ YPTWYYDVSVPAGQTI EFKFLKKQGS-TVTWEGGANRTFTTPTSG TATVNVNWQP
17-2	YQ YPNWYYDVSVPAGKTI EFKFLKKQGS-TVTWEGGSNHTFTAPSSG TATINVNWQP
8	HQ YPTWYYDVSVPAGKQL EFKFLKKNGS-TITWEGGSNHTFTTPASG TATVNVTWQ
E192	HQ YPTWYYDVSVPAGKQL EFKFLKKNGS-TITWEGGSNHKFTTPASG TATVNVTWQ
LIC	HT YPTWYYDVSVPAGKQL EFKFLKKNGS-TITWEGGSNHKFTTPASG TATVNVTWQ
MCR	A- YPSWYYDVSVPAGKL DFKFFKKNGA-TITWEGGSNHTFTTPTRG VGTVTVDWQN
OBS	YQ YPT'YY'DISVPAENL EFKFIKKDSSGNVVWESGNNHTYTTPATG TDTVLVDWQ
STE	YS YPTWYIDVSVPEGKTI EFKFIKKDSQGNVTWESGSNHVYTTPTNT TGKIIVDWQN

Figure 17 Comparison of 20 residues of N-terminal amino acid sequence of CGTase from *Bacillus* sp.A11 with whole amino acid of CGTases from other bacterial strains (BA11, B.sp. A11; 1011, B.sp. No.1011; 17-2, B.sp. No.17-2; 8, B. circulans No. 8; E192, B. circulans E192; LIC, B. licheniformis; MCR, B. macerans; OBS, B.ohbensis; STE, stearothermophilus). Homologous sequences, used to design the synthetic oligonucleotides, were surrounded by rectangles.

				_	_		-	
TA	С	AAC	AA (G/T)	CAG	AAT	TTC	С	G(C/T)
TA	С	AAC	AA (G/T)	CAG	AAT	TTC	С	GC
TA	С	AAC	AA (G/T)	CAG	AAT	TTC	С	GC
TA	С	AAC	AA(G/T)	CAG	AAT	TTC	С	GC
AC.	С	AAC	AAA	CAG	AGC	TTC	A	GT
AC	С	AAC	AAA	CAG	AGC	TTC	A	GT
AC	С	AAC	AAA	CAG	AAT	TTC	A	GC
GA	С	AAC	AAG	GTC	AGT	TTC	A	GT
AC	С	AAC	AAG	GTC	AAT	TAC	A	CC
TT	С	AAC	AAG	GTC	AGT	TTC	` A	GT
		and the second second		-			_	2

(B)

PNB = C AAC AAG CA(G/C) AAT TTC C

(C)

Figure 18 N-terminal amino acid sequences of CG1 ases (A) from BA11 (B.sp.A11), 1011 (Bacillus sp. No.1011), 38-2 (B.sp. No.38-2), 17-2 (B. sp. No.17-2), 8 (B. circulans No.8), E192 (B. circulans No.E192), LIC (B. licheniformis), MCR (B. macerans), OBS (B.ohbensis), and STE (B. stearothermophilus), (B) decoded to nucleotide sequences and (C) to PNB (synthetic oligonucleotide).

;

P Α G T Ι V S V Q W Ŷ Y D 1011 Y Ρ Т Т I S V P Α G 0 v 38 - 2Y Ρ Т W Y Υ D Α G K. Т Ι 17 - 2Y Ρ N Y D V S V Ρ W Υ Α G Κ L Ρ T Y Y D V S ٠V P Q 8 Y W T KE Α G \mathbf{L} Y Ρ Y S V P E192 W Y D V G K Y Ρ Т Y S V P Α Q \mathbf{L} LIC W Y D v S Α GT K Ρ S V P \mathbf{L} Y Y D MCR Ŵ Y V Т S Α ΕE N OBS Ρ Y Y D I V Ρ \mathbf{L} Y W Ε GK Т Ι Ι V S STE ΥP \mathbf{T} W Y D V Ρ

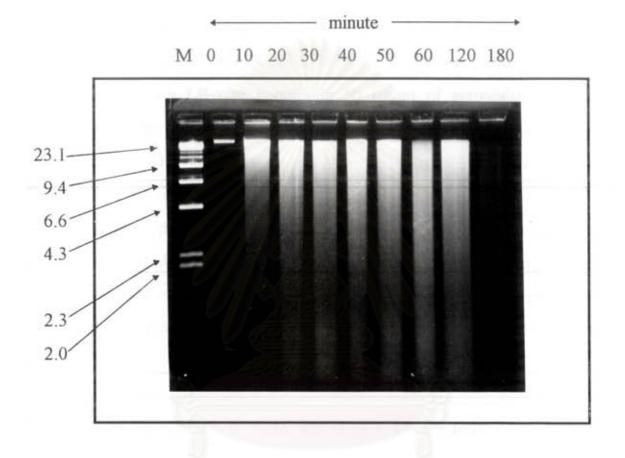
(A)

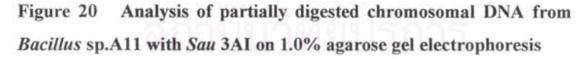
							_				
ΤG	G	TAT	TAT	GAT	GTC	AGC	G	TT	CCG	GCA	GGC
TG	G	TAT	TAT	GAT	GTC	AGC	G	TT	CCG	GCA	GGC
ΤG	G	TAT	TAT	GAT	GTC	AGC	G	TT	CCG	GCA	GGC
TG	G	TAC	TAT	GAT	GTC	AGC	G	TA	CCG	GCA	GGC
·ΤG	G	TAC	TAT	GAT	GTC	AGC	G	TA	CCG	GCA	GGC
TG	G	TAC	TAT	GAT	GTC	AGC	G	TA	CCG	GCA	GGC
ΤG	G	TAT	TAT	GAT	GTC	AGC	G	TG	CCG	GCG	GGG
ΤG	G	TAC	TAT	GAT	ATA	AGC	G	TT	CCT	GCC	GAG
TG	G	TAC	GTC	GAT	GTC	AGC	G	TA	CCG	GAG	GGC
					_						

(B)

PCC = G TA(T/C) TAT GAT GTC AGC G

(C)


Figure 19 C-terminal amino acid sequences of CGTases (A) from 1011 (Bacillus sp. No.1011), 38-2 (B.sp. No.38-2), 17-2 (B. sp. No.17-2), 8 (B. circulans No.8), E192 (B. circulans No.E192), LIC (B. licheniformis), MCR (B. macerans), OBS (B.ohbensis), and STE (B. stearothermophilus). (B) Nucleotide sequences of CGTases from above strains were compared, and (C) the sequence for synthetic oligonucleotide (PCC) was designed. amino acid sequence of CGTase from published reports were also compared as shown in Figure 17 and 19. The 16 residues C-terminal amino acid sequence with homologies of 60% amino acid identity was also chosen to be analyzed further. Then two oliginucleotides were designed by decoding the N- and C- terminal amino acid sequence to nucleotide sequences. The designed oligonucleotides from N- and C-terminal amino acid sequence were, respectively, called PNB and PCC. The sequences were


PNB; 5'-CAACAAGCA(G/C)AATTTCC-3' and PCC; 5'-GTA(C/T)TATGATGTCAGCG-3'

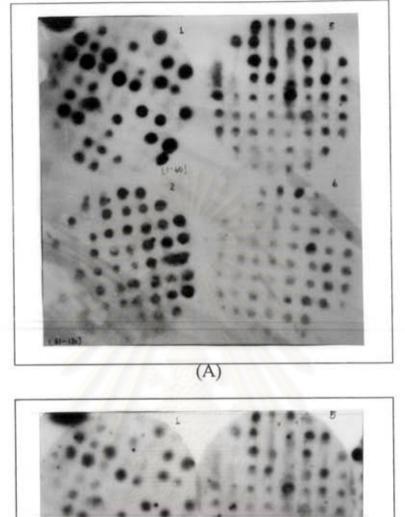
The oligonucleotides were synthesized by Bio-synthesis, U.S.A.

DNA extraction and preparation of Bacillus sp. A11 for cloning

DNA was extracted from *Bacillus* sp.A11 using extraction procedure modified from Rodiquez and Tsin, 1983. The extracted DNA was shown to be high molecular weight band of greater than 23.1 kb when analyzed with agarose gel electrophoresis as shown in Figure 20. The A_{260}/A_{280} ratio was higher than 1.8 indicating high purity of DNA. The extracted DNA was partially digested with 10 units of *Sau*3AI and incubated at 37 °C for 10, 20, 30, 40, 50, 60, 120, and 180 minutes, respectively. Smear bands between 2-6 kb at 60 minute digestion were chosen and eluted from agarose gel by electroelution. The yield of recovered DNA was estimated to be 100 ng/µl, and the DNA was used for DNA library construction.

M: Standard DNA marker (λ /*Hin*dIII)

Chromosonal DNA was partially digested with Sau3AI for 0, 10, 20, 30, 40, 50, 60, 120, and 180 minutes, respectively.


Library construction and screening

Genomic DNA fragments of 2-6 kb were ligated with BamHldigested and phosphatased pUC18 DNA vector. 5 μ l of ligation mixture was transformed into *E. coli* DH5 α cells by CaCl₂ method. Transformants were selected with LB-agar containing 50 μ g/ml of ampicillin. Partial genomic libraries of *Bacillus* sp.A11 of about 1,114 transformant clones were obtained. They were lifted onto nylon membrane and screened for CGTase gene by colony hybridization with [γ -³²P] end labeled oliogonucleotide probes. After intensive screening, a total of about 360 clones were tested positive with both PNB and PCC probes. Examples of colony hybridization were shown in Figure 21 and 22. Individual positive clones which gave strong hybridization signal were picked up to test for CGTase activity.

Screening of transformants containing the CGTase activity

Amylolytic activity

Transformants with strong hybridization signal were plated onto LBstarch agar, containing 50 µg/ml of ampicillin, and grown at 37° C for 60 hours. Iodine solution was added to the plate. Colonies with amylolytic activity would show surrounding clear zone. 20 colonies had clear zone. An example was shown in Figure 23. *E. coli* DH5 α harboring pUC18 had no amylolytic activity.

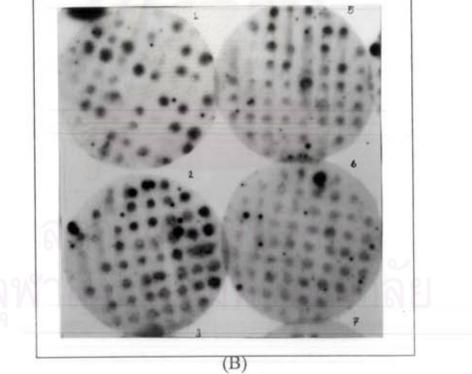


Figure 21 Examples of colonies with strong hybridization signal from colony hybridization screening with the ³²P labeled PNB oligonucleotide probes after washing at (A) room temperature and (B) 40^oC

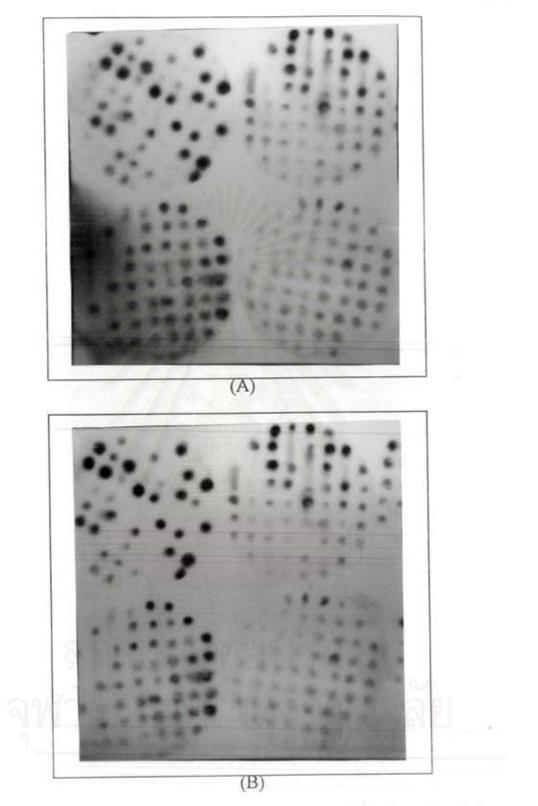


Figure 22 Examples of colonies with strong hybridization signal from colony hybridization screening with the ³²P labeled PCC oligonucleotide probes after washing at (A) room temperature and (B) 40⁰C

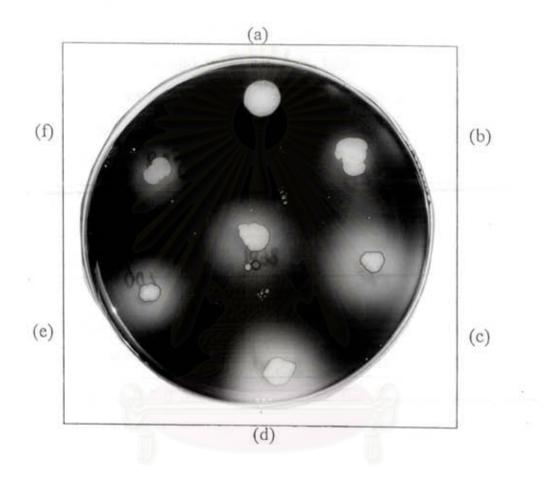


Figure 23 Example of transformants having amylolytic activity on LB-starch agar plate, pH 7.4, compared with DH5 α containing pUC18 (a) DH5 α containing pUC18, (b) 247, (c) 276, (d) 619, (e) 885, (f) 909, and middle well 1098

Dextrinizing activity assay

The selected transformants with amylolytic activity were then tested by dextrinizing activity assay. Cells were incubated in LB-starch medium at 37° C for 72 hours and centrifuged at 3000xg for 10 minutes. The supernatants were tested for dextrinizing activity. The results were shown in Table 13. 5 colonies (transformant numbers 14, 247, 276, 885, and 909) showed high dextrinizing activity but lower than that of *Bacillus* sp. A11 while *E. coli* DH5 α containing pUC18 had no dextrinizing activity.

Phenol red inclusion complex test (PICT)

The transformants with high amylolytic and dextrinizing activities were tested with PICT which detected the production of CD from starch by the transformants, and it was more specific for CGTase. Cells were incubated in PM medium, pH 7.4, containing ampicillin, and incubated at $37 \, {}^{0}$ C. The same 5 colonies as in dextrinizing activity assay could change color of PM medium. When compared to *Bacillus* sp. A11 which changed the color of PM medium from red to yellowish-orange, transformants 909 and 885 showed more orange color than 14, 247, and 276. This result demonstrated that each transformants had CGTase activity but less than *Bacillus* sp. A11. *E. coli*DH5 α with or without pUC18 were used as control, and no color change from the original red were detected (Figure24).

Cell	Dextrinizing activity (U/ml)		
Bacillus sp.A11	45.00		
DH5a	0.00		
DH5α containing pUC18	0.00		
13	0.05		
14	3.17		
15	0.03		
22	0.37		
247	1.93		
276	1.48		
279	0.56		
282	0.41		
376	0.88		
495	0.75		
529	0.11		
561	0.72		
619	0.00		
648	0.29		
729	··· 0.47		
735	0.09		
804	0.54		
885	2.14		
909	11.02		
1098	0.48		

 Table 13 Dextrinizing activity of wild type and transformants

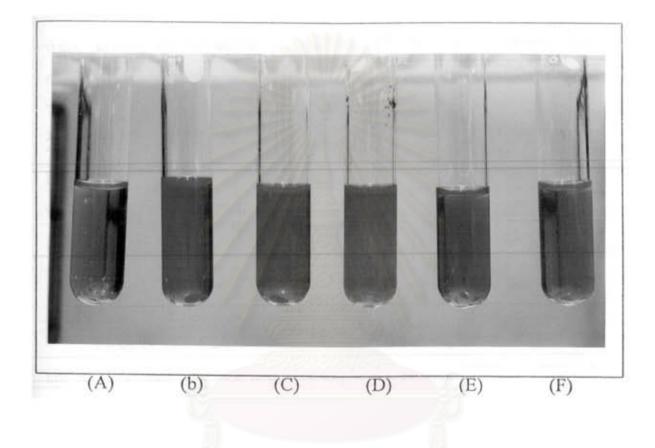


Figure 24 Detection of CGTase activity by PICT. Cells or transformants were incubated in PM medium at 37 °C for 72 hours.
(A) Bacillus sp. A11, (B) DH5α, (C) DH5α containing pUC18, (D) transformant number 247, (E) 885, and (F)909.

CD-TCE assay

Five positive clones from the above assays were tesed for CD-TCE assay. The method precipitated CD products from CGTase action. Cells were grown in LB-starch medium at 37° C for 72 hours. After centrifugation at 3000xg for 10 minutes, supernatant were tested by CD-TCE assay. The result in Table 14 shows that transformants 909, 885, 14, 247, and 276 had the activity, expressed as 2^{4} , 2^{1} , 2^{1} , 2^{0} , and 2^{0} dilution limit as compared to 2^{6} of *Bacillus* sp. A11. The host *E. coli*DH5 α with or without pUC18 did not give CD precipitation.

Detection of CGTase activity in recombinant colonies

Since *E. coli* transformants had CGTase activity lower than *Bacillus* sp. A11, it was assumed that they might not secrete CGTase efficiently. To test this hypothesis, 909 cells were grown in LB-starch medium at 37^{0} C for 72 hours. After centrifugation at 3000xg for 10 minutes, supernatant liquid S1 (extracellular enzyme) was collected. Cell pellet was incubated with 10 ml of lysozyme solution (25 mM Tris-HCl, pH8.0, 10 mM EDTA, and 2 mg/ml lyzozyme) at 0 °C for 2-3 hours. Supernatant liquid S2 (periplasmic space enzyme) was removed by centrifugation at 3,000xg for 10 minutes. The resuspended cells pellet (1 ml) was called S3. S1, S2, and S3 were tested for dextrinizing activity and the results were shown in Table 15. Table 15 shows that for *Bacillus* sp. A11, all CGTase activity was found to be extracellular. For transformant 909, 87.5% of activity was

Cell	CD-TCE (2 ⁿ)				
Bacillus sp.A11	26				
DH5α DH5α containing pUC18 14 247 276	none				
	none 2 ¹ 2 ⁰ 2 ⁰				
			885	21	
			909	24	

Table 14 CD-TCE assay of wild type and transformant cells

ุสถาบันวิทยบริการ เพาลงกรณ์มหาวิทยาลัย

Cell	Total Dextrinizing activity (U)			Total
	extracellular (100ml) (S1)	periplasmic (10 ml) (S2)	cell pellet (1 ml) (S3)	activity (U)
Bacillus sp.A11	4500	0	0	4500
	(100%)	(0%)	(0%)	(100%)
DH5a	0 (0%)	0 (0%)	0 (0%)	0 (0%)
DH5a containing	0	0	0	0
pUC18	(0%)	(0%)	(0%)	(0%)
909	1102	141.5	16.20	1259.7
	(87.5%)	(11.2%)	(1.3%)	(100%)

Table 15 Dextrinizing activity in various locations of cells

สถาบันวิทยบริการ เหาลงกรณ์มหาวิทยาลัย extracellular, while 11.2% was found in periplasmic space and 1.3% inside the cell. No activity was found in the *E. coli* with or without pUC18.

Analysis of CD by HPLC

The CD extracted from the reactions of CGTase enzyme from transformant 909 and Bacillus sp.A11 were analyzed by HPLC. The retention times of CD-products were compared to those of standard CDs. The retention times of standard α -, β -, γ -CD were 5.0, 5.97, and 7.2 minutes, respectively (Figure 25a). Those of oligosaccharides (G1-G7) were 2.88, 3.28, 3.88, 4.69, 5.68, 6.81, and 8.64 minutes, respectively (Figure 25b). The CD samples from Bacillus sp.A11, either with or without TCE extraction showed one major peak with retention time corresponded to that of standard β -CD (Figure 25c and d). CD obtained from transformant 909 with TCE extraction showed one major peak with a retention time identical to β -CD which was comfirmed by adding α -CD and β -CD as the internal standards (Figure 25e and Figure 26a). Figure 26b, the chromatogram of the reaction product from transformant 909 without TCE extraction, showed an overlap peak with retention time 5.08, 6.25, and 7.25 minutes, respectively. The retention time of the first and second peak matched those of α -and β -CD but third peak might be γ -CD or maltohexaose (G6) because standard y-CD or G6 showed the same retention time value (Figure 26c, d, and e). The mixture of standard of α -, β -, γ -CD, and G6 were analyzed by HPLC, only three peaks were found (Figure 26f). This result showed that γ -CD and G6 could not be separated by this condition.

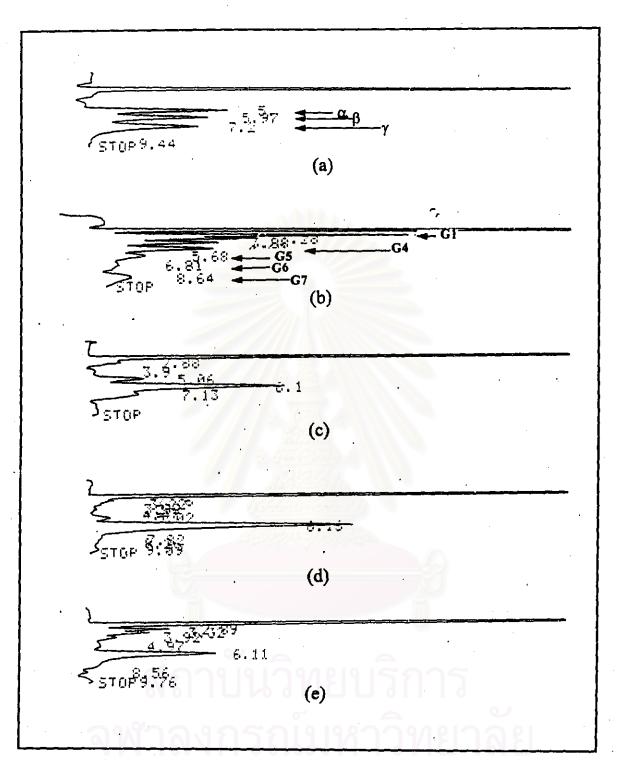


Figure 25 HPLC chromatograms of (a) Standard α -, β -, and γ -CD, (b) standard sugars (G1-G7), (c) reaction product formed from crude enzyme of *B*.sp. A11 without TCE extraction., (d) as in (c) with TCE extraction, (e) CD extracted from reaction of crude enzyme from transformant 909 with TCE. Supelco-NH₂ column was used. Acetonitrile: water (75:25) (v/v) was used as eluent at 2 ml/min flow rate.

97

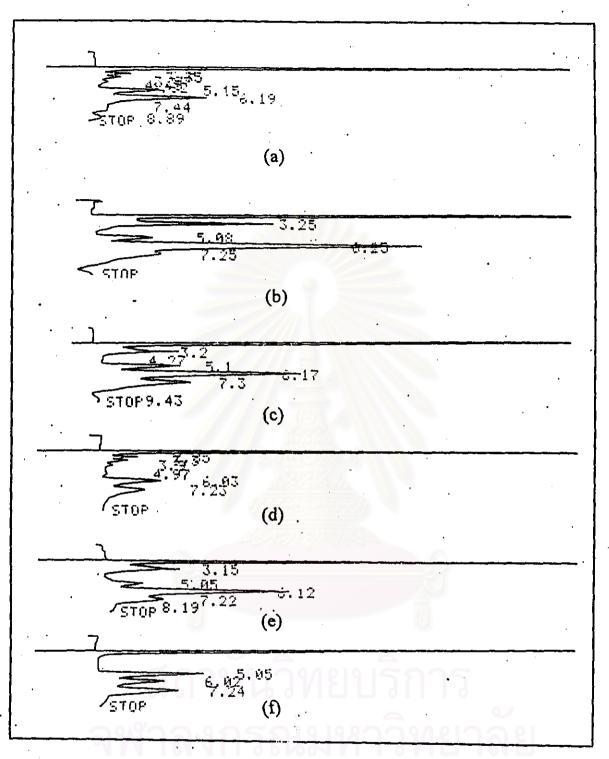
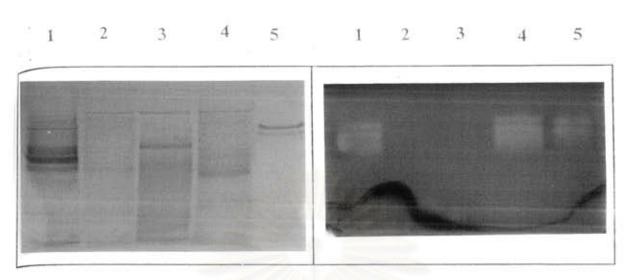


Figure 26 HPLC chromatograms of (a) reaction product formed from crude enzyme of transformant 909 with TCE extraction plus standard α -, β -, and γ -CD, (b) reaction product formed from crude enzyme of transformant 909 without TCE extraction., (c) as in (b) plus standard α -, β -, and γ -CD, (d) as in (b) plus standard γ -CD, (e) as in (b) plus standard G6 and β -CD, (f) standard α -, β -, and γ -CD plus G6. Supelco-NH₂ column was used. Acetonitrile: water (75:25) (v/v) was used as eluent at 2 ml/min flow rate.

: **98**

4


Analysis of CGTase enzyme from transformant 909 by native-PAGE and SDS-PAGE

DH5 α contained pUC 18 and transformant 909 were cultivated in LB-starch containing ampicillin whereas *E. coli* DH5 α and *Bacillus* sp. A11 were cultivated in LB-starch medium by incubating at 37° C for 72 hours. After centrifugation at 3000xg for 10 minutes, supernatant liquids were analyzed by non-denaturing-PAGE and SDS-PAGE, and compared with purified CGTase, as shown in Figure 27.

Protein staining was performed in Figure 27A. Each sample showed different protein patterns. The protein pattern of crude enzyme from transformant 909 may or may not correspond with crude from *Bacillus* sp. A11 and purified enzyme. Activity staining (amylolytic activity) showed that crude enzyme from *Bacillus* sp. A11 and transformant 909 exhibited bands in which one band was corresponded with purified CGTase (Figure 27B). SDS-PAGE showed an intense protein band in crude enzyme from transformant 909 which corresponded to CGTase from *Bacillus* sp. A11 and purified enzyme (Figure 27C). DH5 α with or without pUC 18 could not produce this protein.

จฬาลงกรณ่มหาวิทยาลย

99

(C)

Figure 27 PAGE of crude and purified CGTase from *Bacillus* sp.A11, crude enzyme from transformant (909), and crude extracts of DH5α and DH5α containing pUC18

 (A) Coomasie blue protein staining [Lane 1: Bacillus sp.A11 (20μg), 2: DH5α(20μg), 3: DH5α containing pUC18(20μg), 4: transformant (909) (20μg), and 5: purified CGTase (2 μg)]

(B) Amylolytic activity staining by iodine solution. Lane 1-5, as in (A) (0.2 units of dextrinizing activity was loaded to each well)

(C) SDS-PAGE. Lane 1-5, as in (A)