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APPENDIX A -

CHAIN COPOLYMERIZATION

Chain copolymerization, the mixture of two monomers is able to produce the
polymeric products with two different structures in the polymer chain. As shown in
eq. 1, copolymer molecule contains both monomers. The chain polymerization
process is termed as a copolymerization in which the product is a copolymer, The
random copolymer of different monomer can be carried out with mixtures of two or
more monomer. The two monomers incorporated into the copolymer can be

determined by the relative concentrations and reactivities [37].
M+ M; — M1M2M2M|M2M2M2M1M|M2M2M1M|M2M1M|M1M| (1)

A-1. Type of copolymers

A statistical copolymer has a distribution of the two monomer units along the
copolymer chain which follows the statistical law. Where the two monomer units
distributed randomly follow zero-order Markov process are referred as random

copolymer. There are three types of particular copolymer structures as follows other

than the random copolymer (1).

a. MleMleMleMleMleMle altemating
b. M|M1M|M2M2M2M|M1M1M2M2Mz block
C. M1M1M;M1M|M1M1M|M1M1M1M1 graﬁ
M;
M;
M;
M,
M,
M;
M;



97

A-2. Copolymer composition

A-2 a. Copolymerization equation

The different type of monomers has specific tendencies to
copolymerization. The composition of copolymer is usually different from that of
comonomers in feed, as referred to the first-order Markov or terminal model of -
copolymerization. In case of two monomers M; and M, without any specificity in type
of initiation, the copolymerization of two monomers lead to two types of propagating
species; one with M;* at the propagating end and the other with Mz*. The radical will
be represented as M* and My*. It is assumed that the reactivity of the propagating
species is only depending on the monomer unit at the end of the chain. The four

propagation reactions are as follows.

M, *+M, —1—>M, *

(2
M, *+M, =M, * 3)
M, *+M, —2i—M, * ()
M, *+M, —55M, * (5)

Where k| is the rate constant for a propagating chain ending in M, adding
monomer M, and so on,

Monomer M, disappears by Eq. 2 and 4 and monomer M, disappears by Eq. 3
and 5. The rate of disappearance of radical species or the rate of entry of monomers to

the copolymers are given by

-d

LD g, 0,400, )+ M, )M, ©
-d _

242] = klz[Ml*][Mz]+kzz[Mz*][Mz] )
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Equation 6 divided by 7 yields the copolymeér composition as the ratio of rate

in which two monomers enter the copolymer

d[M, - kM, *)IM, ]+ &, M,*)IM,]
dM,] K, [M 1M, 1+ k5, [M;*](M, ]

(®)

The reactive species of M* and M,* were assumed to be in a steady siate

conceniration, Then, the rate of reaction expressed in Eq.3 and 4 are equal,
kM, *1IM, ] =k, [M, *][M, ] ' %)
Equation 9 rearranged and combined with Eq.' 8 yields to

kKo M, M, ]2 +k;[M,*1M, ]
dM,] k,[M, ]

= , (10)
dM,]  kp[M,*)M, ]+, M, *]IM,]

Let us define,

rl=-k'—l and r,!=-]-cﬂ (1)
12 k2l

-Using the parameter in Eq. 11, the Eq. 10 can be rearranged to,
diM,] _ M, ] [M,]1+[M,]) (12)
dM,] [M,J([(M,]+~[M,])

Equation 12 is the copolymerization composition equation. Where aM,] is

2
the molar ratio of two monomer units incorporated in copolymer at any instant. The
parameter r; and r; represent the monomer reactivity ratios as function of rate

constants in adding other monomer.
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The instantaneous copolymer composition equation can be expressed in terms

of mole fraction as,

M,]

=l-f = —_— 13
A=t=s M, ]+[M,] 9
F =1-F, = diM, ] (14)

diM;]+4d[M. ]

Where f, and f, are the mole fraction of monomers M; and M; in unreacted

monomers and F; and F are the mole fraction of monomers in the copolymer.

Eq.13 combined with Eq. 14 together with Eq. 12 yields

- rlflz'*'j;fz (15)
LA 20ty

A-2 b. Copolymerization equation: statistical derivation

By ignoring the steady-state assumption, the determination of number-average

sequence lengths will be considered.
n, and n, are the average number of monomer | and 2 in a sequence,

respectively. Each other is uninterupted by the other one.
The conditional ‘probability pyi of forming a MiM; dyad in the copolymer

chain is given by a ratio between the rate for M;* add M, and the total rate, that is

RII

= — 16
Pu R, +R, (16)
Substitute R;; and R; into eq. 16, then,
r r[M
p“ ! — I[ . l] (17)

TR+ (MVIM,D AIM,+[M,]
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Similarly, for pi2, pa1, and py; for forming the dyads MiM,, MaM; and MoM,

respectively, are given,

= Rl? — [MZ]
Po Ry Re  MLTMG] 4o
Ry DMy
P R Ry | M1+ 1)
—n_3 . STIME (20)

"Ry +R, nM]+M]

The each summation of probabilities for addition to M;* and My* are

equal to 1
Pyt Py =1 (21-1)
Py +Pn =1 (21-2)

Then, the number-average sequence length #, of monomer M; is

X=d0

o= Y XN )= (N +2,); +3Q ), M ), + e (22)

x=1

Where  (&,),is the mole fraction of a sequence of My units of length x which
have value of overall size from 1 to infinity. (¥,). can be obtained from the

consideration of forming such sequence as given by

), = (p“)(r-l)pn (23)
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In forming sequence such as M{M;M; can be calculated from the probability

of M; adding M; multiplied by the probability p1 for a third addition of M multiplied
by the probability of p1, of addition of M3 or PP

m = pu(+2p, +3p," +4p) +.....) . (24)

For p11<1, which holds in any copolymerization, the expansion series in Eq.
24 is 1/(1-p11)* and Eq. 24 becomes,

= M, ]+M
nl = plz - =__1_=rl[ 1] [ 2] (25)
I=-py) Pn M,] . :

Similarly, Z can be obtained,

4 M,]+M

n, = P _= l =rz[ ]+ (M,] (26)

L (=py) Py M, ]

The ratio of two number-average sequence lengths yields,

2:1_._. d[MI] 2 [MIKrI [MI]+[M2D (27)

H, - d[M2] 2 [Mz HM‘I ]"'rz[MzB
Equation 27 describes the first-order Markov model of copolymerization

A-2 c. Variation of copolymer composition with conversion

From the copolymerization equation as shown in Eq. 1 to 15, the
copolymerization assumed as instantaneous copolymer composition which may be
assumed as that of the copolymer formed at low degrees of conversion. In a particular
case, the composition of comonomer stays unchanged from the initial feed. Such
copolymerization are termed azeotropic copolymerization. This condition can be
obtained by substituting a[M, Vd[M,] = [M,][Mz] to Eq. 12 or 27, is
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M,] _(-1) (28)
M,] (n-1)
- f . (1-r)
or Fi=f -—-——(Z_rl ) 29

At this particular composition no composition drift occurs and theoretically
very homogeneous copolymer is produced until the end of polymerization. All
copolymerizations except azeotropic copolymerization, the comonomer composition
and copolymer compositions are different, The differential, a drift of comonomer
composition occurs on the less reactive monomer as a degree of conversion increases.

" In order to determine the copolymer composition as a function of conversién
is developed by Skeist. By considering a system initially containing a total of M
moles of two monomers and in which the copolymer formed is richer in monomer M;
than in the comonomer; Fi>f;. Where dM moles of monomer have been
copolymerized, the polymer will contain F;dM moles of monomer 1 and the
unreacted monomer will ‘-contain (M-aM)(f1-df)) moles of monomer 1, The moles of
M, copolymerized equal the difference in the moles of M, in the comonomer before

and after the reaction. By using a material balance, then

Mf1-(M-aM)(fi-df) = FidM (30

Eq. 30 can be rearranged and converted to the integral form (term dfidM is
neglected)

=ln—= (31)
u, M Mo i i = A)

‘I‘dM M _ %

Where My and (i) are the initial value of M and £ in the feed.
Referred to eq. 15, the calculation of ) as a function of f; for a given set of 7,
and r; values can be carried out, These can be employed as (Fi-f}) to allow the

numerical integration of eq. 31 between (f;)o and f). The variation in the comonomer
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and copolymer composition with the degree of conversion (defined as 1-M/Mj) can be

obtained.

Integration of Eq. 1 yields,

M _ [ AT ﬁrﬂx—JT
: Mo 1 l:(fl)o] [(fz)o:‘ fl_‘8 : (32)

The equation represents the relationship of degree of conversion with the

comonomer composition. The zero subscripts indicates initial quantities and symbol

a, B, v, and 3 are given,

rz- m\
Sy ey 9
y= (l_rlr'z) 5= (l-rz)
(A~-n)i-nr) @2-n-n)

Eq. 32 has been used to correlate the drift in comonomer and copolymer

composition with conversion for a number of different copolymerizations.

A-3. Microstructure of copolymer

The microstructure of a copolymer is defined by the distribution of the various

lengths of the M; and M, sequence, or eise the sequence-length distribution. The

probabilities (N, ),and (¥, ), of forming My and M, sequences of length x are given

by

({Yl)x = (pu)(x—l)pu (23)

VD), = () Py (34)



104

Eq. 23 and 34 are used to calculate the mole fraction of different lengths of M,
and M, sequences. The analysis of copolymer microstructure can be done form

interpreting a NMR spectrum,

A-4, Multicomponent copolymerization

The simultaneous polymerization of three monomers or to produce terpolymer

was represented in nine propagation reactions,

Reaction Rate
M, *+M, — M, * Riy = kM *1[Mi]
M, *+M, > M, * Riz = kip[M1*][M.]
M, *+M, - M, * Rz = kis[My*][Ms]
M, *+M, - M, * Rar = ki [M2*][M]
M, *+M, > M, * Raz = ka[Mr*][M:] (35)
M, *+M, > M, * Raz = kas[M2*][Ms]
M, *+M, = M, * Ray = ky[M3*][M]
M, *+M, - M, * Rz = kan[Ma*1[Ma]
M, *+M,; = M, * Ry3 = kas[M3*][M;]

And six sets of the reactivity ratio of monomers can be written,

bl
o

33

33 (3 6)

==l o e S o P . o =
he = s = ) Fyy = R
2 3

y Py =

o=
=

31

Using the steady-state or statistical approach, the rates of disappearance of the

three monomers are given by,

_dM|]
dt

=R, + R, +R, (37-a)
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dM,] _ : .
- dt = R:z +R22 +R:2 (37 b)
_dM '
[dt ] =R, +Ry; +R, (37-c)

By steady- state assumptions for the concentrations of M;*, Mz* and Mz*

radicals the following relationships are given,

Ria+ Ria =Ry + Ry | (38-a)
Ryt + Rays = Ria + Raz (38-b)
R31 + Ryz=Ris+ Ry © (38-¢)

Eq. 37 combined with Eq. 38 and the use of the appropriate rate expressions

from Eq. 36 for each R term yields the terpolymer composition

dIM,]: d[M,]:d[M, ] =
[Ml]{[M‘J+tM21+[M,1}{M]+(M ] M, 1}

Fyla  Talsy fylyn n, N3

:[Mz]{[MI] +[M”+[M’]H[le M.T, [Mz.]} (39)

Nof Tl Tl 2n Iy

:[MJ]{[MIJ+[M21+[M31}{[M oM M, 1}

hshy Tpha Ry Fy Iy

If the following simplified relationships hold, Eq. 39 may be simplified as

follows.
Ru = Rzl (40-8)
Ryz=Ryn (40-b)

R31 =Ry (40-¢)
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Combination of Eq. 40 and 39 yields the terpolymer composition as

d[M;]:d[le:d[M3]=[Ml]{[M1]+—~[M—’]-+M-’—]}

12 hs

™M {[M v, 021 ]} @

2i r23

e 00,881,

31 2
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APPENDIX B

GLASS TRANSITION TEMPERATURE OF RANDOM COPOLYMERS
The glass transition temperature of random copolymer varies corresponding to

those of corresponding homopolymers. To predict the Tg of random copolymer,

enerally used is Fox’s equation as given,
g y

LN (42)
Tg, Tg Tz,
The copolymer’s Tg is correlated with the Tg of homopolymer.
In this equation, Tg is expressed as a function of dyad distribution which are
closely related to the flexibility of chain, Johnson’s equation takes the sequence length

distribution in consideration.

1 _ W, py + sz‘_’g_,_ Wb (43)
Tglz Tg] 7‘8’2 Tg12

where W and W, are the weight fractions of monomer 1 and 2, and 7g, and

Tg» are the glass transition temperatures of homopolymer
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NUCLEAR MAGNETIC RESONANCE SPECTRA
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Figure C-1 '"H NMR spectrum of poly(styrene-co-MMA-co-n-BMA) weight% ratio

of St/MMA/n-BMA in the feed: a) 50:40:10, b) 50:35:15
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C) H_MMR FOR RUN HO. 1403
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Figure C-1 (continued) 'H NMR spectrum of poly(styrene-co-MMA-co-n-BMA)
weight% ratio of SttMMA/n-BMA in the feed: c) 50:30:20, d) 50:20:30



110

e) 1H NMR FOR RUN NO. 1405
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Figure C-1 (continued) 'H NMR spectrum of poly(styrene-co-MMA-co-n-BMA)
weight% ratio of St/MMA/n-BMA in the feed: €) 50:10:40
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Figure C-2 '"H NMR spectrum of poly(styrene-co-MMA-co-2-EHMA) weight% ratio
of St/MMA/2-EHMA in the feed: a) 50:40:10, b) 50:35:15
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Figure C-2 (continued) 'H NMR spectrum of poly(styrene-co-MMA-co-2-EHMA)
weight% ratio of SYMMA/2-EHMA in the feed: ¢) 50:30:20, d) 50:20:30
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e) 1H MR _FOR RUN NO. 1605
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Figure C-2 (continued) 'H NMR spectrum of poly(styrene-co-MMA-co-2-EHMA)
weight% ratio of SYMMA/2-EHMA in the feed: e) 50:10:40
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APPENDIX D

DIFFERENCIAL SCANNING CALORIMETER
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Figure D-2 DSC curves of non-crosslinked poly(styrene-co-MMA-co-n-BMA) weight fractions of SYMMA/n-BMA in the feed: a)

50:40:10
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Figure D-3 DSC curves of non-crosslinked poly(styrene-co-MMA-co-2-EHMA) weight fractions of SYMMA/2-EHMA in the feed: a)
50:40:10 (Run 1602), b) 50:30:20 (Run 1603), ) 50:20:30 (Run 1604), and d) 50:10:40 (Run 1605), respectively.
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Figure D-4 DSC curves of crosslinked poly(styrene-co-MMA-co-n-BMA) weight fraction of S/MMA/n-BMA in the feed a) 50:40:10
(Run 1407), b) 50:30:20 (Run 1408), ¢) 50:20:30 (Run 1409), and d) 50:10:40 (Run 1410), respectively.
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Figure D-5 DSC curves of crosslinked poly(styrene-co-MMA-co-2-EHMA) weight fraction of SMMA/2-EHMA in the feed: a)
50:40:10 (Run 1607), b) 50:30:20 (Run 1608), c) 50:20:30 (Run 1609), and d) 50:10:40 (Run 1610), respectively
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FOURIER-TRANSFORM INFRARED SPECTRA
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Figure E-1 FT-IR spectrum of poly(styrene-co-MMA) weight% ratio of St/MMA in
the feed 50:50 with various additives: a) Hexadecane, b) 1-Hexadecanol
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Figure E-1 (continued) FT-IR spectrum of poly(styrene-co-MMA) weight ratio of
St/MMA in the feed 50:50 with various additives: ¢) Methyl paimitate, d) Bees wax
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