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- Appendix A

Neural Network Toolbox

MATLAB abbreviated from MATrix LABoratory is a techrical computing
environment for high-performance numeric computation and visualization. MATLAB
integrates numerical analysis, matrix computation, signal processing, and graphics in
an easy-to-use environment where problems and solutions are expressed just as they

are written mathematically - without traditional program meaning.

. MATLAB 's funtionality and versatility with the addition of optional
application-specific toolboxes can be extended. Toolboxes are comprised of suites of
MATLAB functions (M-files) written by world-class authorities on each of the
i-espectivc topics. These toolboxes cover a variety of disciplines as illustrated by the

following list

- Matlab Toolbox

- Control System Toolbox

- Signal Processing Toolbox

= System Identification Toolbox
- Optimization Toolbox

- Neural Network Toolbox

- Fuzzy Logic Toolbox

- Model Predictive Control.
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A.1 Neural NetWork Toolbox

In Neural Network Toolbox, it provides many useful toolbox functions supporting
programmers to do their programs easier. Four main toolbox functions used for neural
network programming are as follow |

- Network creation functions
- Weight/bias initialization functions
- Training functions

- Performance functions

LY

A.2 Training Functions

-Gradient descent and gradient descent with momentum are backpropagation training

algoﬁthm. However, these two methods are often too slow for practical problems.
Consequently, high performance algorithms that can converge from ten to one
hundred times faster than those two algorithms.

These faster algorithms fall into two main categorics. The first category uses
heuristic techniques, which were developed from an analysis of the performance of
the standard steepest descent algorithm. One heuristic modification is the momentum
technique. The others, which are more heuristic technique, are variable learning rate

backpropagation, TRAINGDA, and resilient backpropagation, TRAINRP.

The second category of fast algorithms uses standard numerical optimization
techniques. Three types of numerical optimization techniques for neural network’
training: conjugate pgradient (TRAINCGF, TRAINCGP, TRAINCGB,
TRAINSCG), quasi-Newton (TRAINBFG, TRAINOSS), and Levenberge-
Marquardt (TRAINLM) are provided.
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A.2.1 Gradient Descent Learning Rule
1) Variable Learning Rate (TRAINGDA, TRAINGDX)

With standard steepest descent, the learning rate is held constant throughout-
training. The performance of the algorithm is very sensitive to the proper setting of
the leamning rate. If the learning rate is set too high, the algorithm may oscillate and
become unstable. If the leaming rate is too small, the algonthm will take too long to
converge. It is not practical to determine the optimal setting for the learning rate
before training, and, in fact, the opt;mal learning rate change dunng the training
process, as the algorithm moves across the perforgaance surface.

The performance of the steepest descent algorithm can be improved if we
ﬁllow the learning rate to change during the training process. An adaptive learning
will attempt to keep the learning step size as large as possible while keeping learning
stable. The learning rate is made responsive to the complexity of the local error

surface.

2) Resilient Backpropagation (TRAINRP)

~ Multilayer networks typically use sigmoid transfer functions in the hidden
layers. These functions are often called squashing functions, since they compress an
infinite input range into a finite output range, Sigioid functions are characterized by
the fact that their slope must approach zero as the inputs get large. This causes a
problem when using steepést descent to train a multilayer network with sigmoid
functions, since the gradient can have a very small magnitude, and therefore cause
small changes in the weights and biases, even though the weights and biases are far

from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to
eliminate these harmful effects of the magnitudes of the partial derivatives. Only the’

sign of the derivative is used to determine the direction of the weight update; the
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magnitude of the derivative has no effect on the weight update. The size of the weight
change is determined by a separate update value,

Rprop is generally much faster than the standard steepest descent algorithm. It
also has the nice property that it requires only a modest increase in memory
requirements. We do need to store the update values for each weight and bias, which

is equivalent to storage of the gradient,

A.2.2 Conjugate Gradient Algorithms o

The basic backpropagation algorithm adjusts the weights in the steepest descent
direction (negative of the gradient). This is the direction in which the performance
function is decreasing most rapidly. It tums out that, although the function decrcascé
most rapidly along the negative of the gradient, this does not necessarily produce the
fastest convergence. In the conjugate gradient algorithms a search is performed along
the conjugate directions, which produces generally faster convergence than steepest
descent directions. In this section, four different variations of conjugate gradient

algorithm are presented.

1) Fletcher-Reeves Update (TRAINCGF)

All of the conjugate gradient algorithms start out by searching in the steepest descent
direction (negative of the gradient) on the first iteration.

Po =8¢

A line search is then performed to determine the optimal distance along the current

search direction:

Xpy =X + O P,
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Then the next search direction is determined so that it is conjugate to various search
directions. The general procedure for determining the new search direction s to

combine the new steepest descent direction with the previous search directions

Py ==&t Bl

The various versions of conjugate gradient are distinguished by the researcher in-
which the constant g, is computed. For the Fletcher-Reeves update procedure is

. . /_...
&: 8
B = =

g I—lg k-1

This is the ratio of the norm squai‘ed of the current gradient to the mean squared of the
previous gradient.

+ 2) Polak-Ribiére Update (TRAINCGP)

Another version of the conjugate gradient aigorithm was proposed by Polak
and Ribire. As with the Fletcher-Reeves algorithm, the search direction at each
iteration is determined by

Pi ==&+ BiPiay

For the Polak-Ribiére Update, the constant 5, is computed by

<4818
ﬂk ™ LA
18-

This is the inner product of the previcus change in the gradient with the current
gradient divided by the norm squared of the previous gradient. The TRAINCGP
routine has performance similar to TRAINCGF. It is difficult to predict which
_algorithm will perform best on a given problem. The storage requirements for Polak-

Ribiére (four vectors) are slightly larger than for Fletcher-Reeves (three vectors).
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3)  Powell-Beale Restarts (TRAINCGB)

For all conjugate gradient algorithms, the search direction will be periodically
reset to the negative of the gradient. Thc standard reset point occurs when the number
of iterations is equal to the number of network parameters (weights and biases), but
there are other reset methods, which can improve the efficiency of training. One of
such reset methods was proposed by Powell, based on an earlier version proposed by
Beale. For this technique we will restart if there is very little orthogonality left
between the current gradient and the previous gradient. This /i,s, tested with the

following inequality:

Ig k184 l 2 0-2“31: “2

If this condition is satisfied, the search direction is reset to the negative of the
gradient. The TRAINCGB routine has performance, which is somewhat better than
TRAINCGP for some problems, although performance on any given problem is
difficult to predict. The storage requirements for the Powell-Beale algorithm (six
vectors) are slightly larger than for Polak-Ribiére (four vectors).

4) Scaled Conjugate Gradient (TRAINSCG)

Each of the conjugate gradient aigorithms, which we have discussed so far,
requires a line search at each iteration. This line search 1s computationally expensive,
since it requires that the network response to all training inputs be computed several
times for each search. The scaled conjugate gradient algorithm (SCG) was designed to
avoid the time consuming line search. This algorithm is too complex to explain in a
few lines, but the basic idea is to combine the model-trust region approach, which is
used in the Levenberge-Marquardt algorithm describe later, with the conjugate
gradient approa,ch; The TRAINSCG routine may require more iteration to converge
than the other conjugate gradient algorithms, but the number of computations in each

iteration is significantly reduced because no line search is performed. The storage
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requirements for the scaled conjugate gradient algorithm are about the same as those

of Fletcher-Reeves.
A.2.3 Quasi-Newton Algorithms
1)  BFGS Algorithm (TRAINBFG)

Newton's method is an alternative to the conjugate gradient methods for fast
optimization. The basic step of Newton's method is

LITRPY
Xpa =% — A 8s

where A, is the Hessian matrix (second derivatives) bf the performance index at the
current values of the weights and biases. Newton's method often converges faster than
conjugate gradient methods. Unfortunately, it is complex and expensive to compute
the Hessian matrix for feedforward neural networks. There is a class of algorithms’
that are based on Newton's method but which do not require calculation of second
derivatives. These are called quasi-Newton (or secant) methods. They update an
approximate Hessian matrix at each iteration of the algorithm. The update is
computed as a function of the gradient. The algorithm has been implemented in the
TRAINBFG routine.

2) One Step Secant Algorithm (TRAINOSS)

Since the BFGS algorithm requires more storage and computation in each
iteration than the conjugate ~gradient algorithms, there is need for a secant
approximation with smaller storage and computation requirements. The one step
secant (OSS) method is an attempt to bridge the gap between the conjugate gradient
algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store
the complete Hessian matrix; it assumes that at each iteration the previous Hessian
was the identity matrix. This has the additional advantage that the new search

- direction can be calculated without computing a matrix inverse,
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A24 Levenberge-Marquardt (TRAINLM)

Like the quasi-Newton methods, the Levenberge-Marquardt algorithm was
designed to appi'oach second order training speed without having to compute the
Hessian matrix. When the performance function has the form of a sum of squares (as
is typical in training feedforward networks), then the Hessian matrix can be

approximated as
H=J"J
and the gradient can be computed as
| g=J"e

where J is the Jacobian matrix, which contain first derivatives of the network errors
with respect to the weights and biases, and e is a vector of network errors, The
Jacobian matrix can be computed through a standard bachpropagation technique that

is much less complex than computing the Hessian matrix.

The Levenberge-Marquardt algorithm uses this approximation to the Hessian
matrix in the following Newton like update:

xp <%, =TT+ [ I e

When the scalar g is zero, this is just Newton's method, using the
approximate Hessian matrix. When u is large, this becomes gradient descent with a
small step size. Newton 's method is faster and more accurate near an efror minimum,
so the aim is to shift towards Newton 's method as quickly as possible. Thus, u is
decreased after each successful step (reduction in performance function) and is
increased only when a tentative step would increase the performance function. In this
way, the performance function will always be reduced at each iteration of the

algorithm,
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A.3 Speed and Memory Comparison of Training Functions

It is very difficult to know which training algorithm will be the fastest for a given
problem. It will depend on many factors, including the complexity of the problem, the
number of data points in the training set, the number of weights and biases in the
network, and the error goal. In general, on networks which conta.iﬁ up to a few
hundred weights the Levenberge-Marquardt algorithm will have the fastest
convergence. This advantage is especially noticeable if very accurate training is
required. The qﬁasi-Newton methods are often the next fastest algogithms on networks

of moderate size. The BEGS algorithm does require storage of the approximate .
Hessian matrix, but 1s generally faster than the conjugate gradient algorithms. Of the
conjugate gradxent algonthms the Powell-Beale procedure requires the most storage,
but usually has the fastest convergence. Rprop and the sca.led conjugate gradient
algorithm do not require a line search and have small storage requirements. They are
reasonably fast, and are very useful for large problems. The variable learning rate
algorithm is usually much slower than the other method, and has about the same

storage requirements as Rprop, but it can still be useful for some problems.

For most situations, Levenberge-Marquardt algorithm is recommended to try
first. If this algorithm requires too much memory, then try the BFGS algorithm, or
one of the conjugate gradient methods. The Rprop algorithm is also very fast, and has

relatively small memory requirements.

The followmg table gives some example convergence times for the vanous.
algorithms on one particular regression problem. In this problem a network with one
-input node, ten hidden nodes, and one output node was trained on a data set with 41
input/output pairs until a mean square error performance of 0.01 was obtained.
Twenty different test runs were made for each training algorithm on a Macintosh
Powerbook 1400 to obtain the average numbers shown in the table. These numbers
- should be used with caution, since the performance shown here may not be typical for

these algorithms on other type of problems. (You may notice that there is not a clear
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relationship between the number of floating point operations and the time required to
reach convergence. This is because some of the algorithmé can take advantage of .
efficient: built-in MATLAB functions. This is especially true for the Levenberge-
Marquardt algorithm.)

For most ~situations, Levenbcrgé—Ma.tquardt algorithm is recommended to try
first. If this algorithm requires too much memory, then try the BFGS algorithm
TRAINBFG, or one of the conjugate gradient methods. The Rprop algorithm
TRAINRP is also very fast, and has relatively small memory tequif/emcnts.

Table A.1: Speed and memory comparison of training functions

" Function Technique Time Epochs Mflops
Traingdx Variable Learning Rate 57.71 980 - 2.50
Trainrp Rprop 12.95 185 0.56
Trainscg Scaled Conj. Grad. 16.06 106 0.70
Traincgf  Fletcher-Powell CG 16,40 81 0.99
Traincgp Polak-Ribiére CG 19.16 89 0.75
Traincgb Powell-Beale CG 15.03 74 0.59
Trainoss ~  One-Step-Secant 18.46 101 0.75
Trainbfg BFGS quasi-Newton 1086 - 44 1.02

Trainlm Levenberge-Marquardt 1.87 6 0.46




Appendix B
Backpropagation Algorithm

B.1 Conclusion of the Backpropagation Algorithm

o Weight Initialization
Set all weights and node thresholds to small random numbers. Note that

the node threshold is the negative of the weight from the bias unit (whose

activation level is fixed at 1).

‘¢ Calculation of activation function
1. The activation level of an input unit is determined by the instance
presented to the network.

2. The activation level O,of a hidden and output unit is determined by
0,= FEw,0, +9f)
where W, is the weight from an input O, 6,is the node threshold, and
F is the sigmoid function:

1

F(a) - 1+e™*

s Weight Training
1. Start at the output units and work backward to the hidden layers |
recursively. Adjust weights by

W}:(t +l) = W}i(t)'*' AW,
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where Wﬁ(t) is the weight from unit i to unit j at time ¢ (or fthe
iteration) and AW ,is the weight -adjustment.

2. The weight change is computed by
AW, =né,0,

where 7 is a trial-independent leamning rate (0<7<1, e.g., 0.3)and 4,
is the error gradient at unit ;. Convergence is sometimes faster by

adding 2 momentum term: _
-
Wﬂ(‘ +1)= Wﬁ(‘)"‘ 76,0, + a[%i(‘)“ Wy (- 1)]

where O<a<1.
3. The error gradient is given by:
- For the output units:
9, = OJ(]'_OJXTJ ‘01)
where T, is the desired (target) output activation and O; is the

actual output activation at output unit ;.

- For the hidden unit

where &, is the error gradient at unit k¥ to which a connection

points from hidden unit .
4. Repeat iterations until convergence in terms of the selected error
criterion. An iteration includes presenting an instance, calculating

activations, and modifying weights.

The name "backpropagation” comes from the fact that the error
(gradient) of hidden units are derived from propagating backward the errors
associated with output units since the target values for the hidden units are not
given. In the backpropagation network, the activation function chosen is the

sigmoid function, which compresses the output value into the range between 0
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and 1. The sigmoid function is advantageous in that it can accommodate large
signals without saturation while allows the passing of small signals without
excessive attenuation. Also, it is a smooth function so that gradients can be

calculated, which are required for a gradient descent search.

B.2 Example of Calculation

To solve the exclusive-or problem, we build a backpropagation network as shown in

Figure B.1. The network will be trained on the following instances:

Initial weights
are attached.

bias unit

Figure B.1: A backprpagation network for leaming the exclusive-or function.
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Inputs Output
(1,1) 0
(1,0) 1
(0,1} 1
0,0 0

The weights are initialized randomly as follows:
W13 = 0.02, Wl4 = 0.03, le F3 "0-02, W23 =< 0.01,
W,, = 0.02, W, =-0.01, W, = -0.01

Calculation of Activation: Consider a training instance with the input vector = (1,1)

and the desired output vector = (0).

0,=0,=1

0, =1/fi+e tero2e1] = 0,505

0, = 1/fi+ g o3ssrboarsban-ios) - 508
Weight Training: Assume that the leaming rate 7 =0.3.

8 = 0.508(1=0.508)(0 - 0.508) = ~0.127

AW, = 0.3x(=0.127)x1=-0.038

5, = 0.505(1 — 0.505)(=0.127 x ~0.02) = 0.0006

The rest of the weight adjustments are omitted. Note that the threshold (which is the

negative of the weight from the bias unit) is adjusted likewise. It takes many iterations
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like this before the leamning (training) process stops. The following set of the final
weight gives the mean squared error of less that 0.01; AW, = 0.3x 0.0006x1 = 0.002

W.u = 4-98, W]4 = 4.98, le = '1 1.30, Wn = 5.62,
W,, = 5.62, W,,=-2.16, W;, =-8.83

Backpropagation has been applied to classification tasks, speech synthesis
from text (c.g., NETtalk), adaptive robotic control, sconjing of bank loan applications,

system modeling, data compressioh, and many others.



Appendix C

Signa'lh Processing and Data Filtering

In process control, the noise associated with analog signals can arise from a number
of sources: the measurement device, electrical equipment, or mcfprbccss itself. The
effects of electrically generated noise can be minimized by following established
procedures concerning shielding of cables, grounding, etc. Process included noise can
arise from variation due to mixing, turbulence, and non-uniform multiphase flows..

The effects of both process noises can be reduced by signal conditioning or filtering.

C.1 Analog Filters

Analog filters have been used for many years to smooth noisy experimental data. For
example, an exponential filter can be used to damp out high-frequency fluctuations
due to electrical noise; hence it is called a low-pass filter. Its operation can be
described by a first-order transfer function or equivalently a first-order differential

equation.
r,,dyd—f‘)+ y(t) = x(t) (C.1)

where x is the measured value (the filter input), y is the filtered value (the filter.

output), and 7, is the time constant of the filter. Note that the filter has a steady-state

gain of one. The exponential filter is also called and RC filter since it can be

constructed from a simpie RC electrical circuit.

The filter time constant, 7, should be much smaller than the dominant time

constant of the process 7, to avoid introducing a significant dynamic lag in the
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feedback control loop. For example, choosing 7, < 0.17,,, satisfies this requirement.

On the other hand, if the noise amplitude is high, then a larger value of 7, may be
required to smooth the noisy measurements. The frequency range of the noise is
another important consideration. Suppose that the lowest noise frequency expected is

denoted by @, . Then 7, should be selected so that @, < @y where @, =1/7..

C.2 Digital Filters

In this section several popular digital filters are considered. Théy are exponential
filter, double exponential filter, moving average filter, and noise-spike filter. The

description and the expression of each filter are provided respectively as follows.

c2.1 Exponential Filter

First a digital version of the éxponcntial filter is considered. The samples of the

measured variable will be denoted as x,_,, .... and the corresponding filtered values.

will be denoted as y,_,,¥,.... where n refers to the current sampling instant. The

derivative in Equation (C.1) at time step n can be approximated by the backward

difference:

g_.}_’Eyn_yn—l (C2)

T

dt A

Substituting in Equation (C.1) and replacing y(f) by y, end x(¢) by x,_ yields

yn - yn'—l
Tp ==t by, =X C.3
F At Yn n ( )
Rearranging gives
At Al
Yo =

= X, + - 4
T+ A rF+Aty ! (€4

Define
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“= rpljlt-rl (€3)
where 0 <@ <1. Then “
1—a=1_rplzllt+1=r::zlt (€6)
so that
y, = o, + (-, ()

Equation (C.7) indicates that the filtered measurement is a weighted sum of
the current measurement x, and the filtered value at the previous sampling instant
¥,,- This operation is also called single exponential smoothing. Limiting cases for a

are
a =1: No filtering (the filter output is the raw measurement Xx, ).
a = 0: The measurement is ignored.

In the above limits, note that 7, = A¢(1—-a)/a by solving Equation (C.5);

hence @ = 1 corresponds to a filter time constant of zero (no filtering).

Alternative expression for a in Equation (C.7) can be derived if the forward

difference or other integration schemes for dy/dt are utilized.

C.2.2 Double Exponential Filter

Another popular digital filter is the double exponential or second-order filter, which
offers some advantages for eliminating high frequency noise. The second-order filter
is equivalent to two first-order filters in series where the second filter treats the output
signal from the exponential filter in Equation (C.7). The second filter can be

expressed as
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yn = ?yn +(1"7)5’-.-1 (C.S)

50 = s £ 7= + LV ©9)
Wrilting the filter equation in Equation (C.8) for the previous sampling instant gives

oot = Wea H =722 | - (C.10)
Solve for y,_,:

Z l—y _
yu-—l i ynl-l __r—J:yn—l (Cll)

)’
Y
Substituting Equation (C.11) in to Equation (C.9) and rearranging gives the following.

expression for the double exponential filter:
3, =y, + @y ~a, ~(-a)i-rF..  (€12)
A common simplification is to select y =&, yielding

;u = azxn +2(1_a);l—1 _(]_....a)zj;'_z (C'13)

The ‘advantagc of thé double exponential filter over the exponential filter of
Equation (C.7) is that it provides better filtering of high frequency noise, especially if
y =a. A disadvantage of the double exponential filter is that it is more complicated
than the exponential filter. Consequently, the single exponential filter has been more

widely used in process control applications.

C.2.3 Moving Average Filter

A third type of digital filter is the moving-average filter, which averages a specified
number of past data points, by giving equal weight to each data point. The moving-
average filter is usually less effective than the exponential filter, which gives ‘more

weight to the most recent data.
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The moving-average filter can be expressed as

Ya ™ '1— ixi (C.14)

where J is the number of past data points that are being averaged. Equation (C.14)

implies that the previous filtered value, y,_,, can be expressed as

1 n—1
Yo =—= 2% . (C.15)

i=n=~J

-

Subtracting Equation (C.15) from Equation (C.14) gives the recursive form of the

moving-average filter:

1
yn = yn-—l +‘_I-(xn —xu—l) (C16)

The exponential and moving-average filters are examples of low-pass filters,

which are used to smooth noisy data by eliminating high-frequency noise.

C.2.4 Noise-Spike Filter

If 2 noisy measurement changes suddenly by 2 large amount and then returns to the
original value (or close to'it) at the next sampling instant, a noise spike is said to
occur. In general, noise spikes can be caused by spurious electrical signals in the
environment of the sensor. If noise spikes are not removed by filtering before the
noisy measurement is sent to the controller, the controller will cause large, sudden

changes in the manipulated variable.

Noise-spike filters (or rate of change filters) are used to limit how much the
filtered output is permitted to change from one sampling instant to the next. If Ax

denotes the maximum allowable change, the noise-spike filter can be written as
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xl l.f ‘xu -yn-l S Ax
VYo =3 Ver~4x if Yo —X%> A (C.17)
Youtdx if y, —x< -4

If a large change in the measurement occurs, the filter replaces the
measurement by the previous filter output plus (or minus) the maximum allowable

change. This filter can also be used to detect instrument line, or an ADC "glitch."

Qther type of more sophisticated digital filters are available but have not been
commonly used in process control applications. These include high-pass filters and

band-pass filters.



Appendix D

Tuning of Generic Model Controller

Lee and Sullivan (1988) outline a system for tuning GMC controllers based on
choosing a target profile of the controlled variable, x’ (¢). This profile is characterized
by two values, & and 7. Lee and Sullivan present a figure as shown in Figure D.1-
that outlines the relative control performances of different combinations of £ and 7.
Having chosen the values of £ and r, the value of the two tuning constants, X, and

K, , are obtained using the following relationships:

k-%
T

1
Ky=—
2 1'2

In tuning the GMC controller, because overshoot was undesirable, £ was set
to 10.0. The value of r was obtained by examining the tuning charts given by Lee and
Sullivan and recognizing that, with ' &=10.0, the controlied variable should cross the

set point at‘approximately 0257,
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x/x*

t}r

Figure D.1: Generalized GMC profile specificati
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