Chapter 7

Neural Network Model and Controller in
Nonlinear Internal Model Control -

o

This chapter presents the capabilities of neural network to learn the forward and
invetse model of the simulated continuous stirred tank reactor in order to represent
plant model and controller, respectively. Then both models are implemented in the
Nonlinear Internal Model Control (NIMC) configuration. The control performance of
the NIMC is tested and compared with that of the GMC.

7.1 Nonlinear Internal Model Control

In this work, nonlinear neural networks replace both the internal model and the
controller in the Internal Model Control (IMC) structure. The internal model is
replaced by a neural network model of the forward process dynamics (referred to here
a neural network forward model), which uses to predict the output of the process
given past values of control actions and the process output predictions. The controller
is replaced by a neural network model of the inverse of the process dynamics (referred
to here as the neural network inverse model), which is trained to computed the
manipulated variable action given the past and current errors and the past control
actions. Since the process model and the model inverse are répresented with two
different neural networks trained independently, the product of the steady state gains
of the process mode! and the model in{/erse may not be unity, therefore it may cause

steady state offset in a controlled variable.
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In this work the NIMC is utilized to control the reactor temperature of the
Continuous Stirred Tank Reactor (CSTR) by manipulating the coolant feed
temperature. The control performance of the NIMC is tested in the same fashion as
those used to test the control performance of the GMC. Simulated data of the CSTR
are employed to identify the neural network forward and inverse model of the system.

7.2 Neural Network Forward Modeling

Mathematical models of the continuous stirred tank reactor presepted in the previous
chapter are employed to generate the data for training, cross validation and testing the-
neural network forward model. These data are also utilized to train, cross validate, and
test the neural network inverse model, which will be proposed in the next section. The
multilayer feedforward network representing the forward model of the CSTR is
composed of five input nodes, seven hidden nodes and one output node.

The forward model expressed as the function of current and two past values of
the coolant feed temperature and two past value of the reactor temperature are as

follows:
Te+)=f (T(t), T(t —1);Tc,...(t), T (1 - D, Tq(t —2)) (7.1)

The neural network structure representing the forward model of the CSTR and
the modeling results are shown in Figure 7.1-7.4.
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Figure 7.1: Neural network architecture representing the forward model of the CSTR.
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Figure 7.3: Neural network forward modeling of CSTR: Cross validation result.
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Figure 7.4: Neural network forward modeling of CSTR: Testing result.

73 Neural Network Inverse Modeling

'fhe multitayer feedforward network representing the inverse model of the CSTR is
composed of five input nodes, six hidden nodes and one output node. The inverse
model expressed as the function of current and past values of inputs and output are as

follows:
Ty @)= T+ 0,76, 1@ =15 T, 0 -1, T, (-2)  (7.2)

Note that a future value of the output (I'(t +1) ) is required in equation (7.2). During
training, this value is available from the plant input-output data, but when the

controller is implemented in a closed loop, it is not available. Thus, a predicted value

T(t+1) must be used instead. Under the assumption that the feedback controller is

the exact inverse of the neural network forward model, the IMC error, e(r), may be

used in place of T(¢+1) . Thus,
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0 =1{e0,70.1¢- DT -1.T(~2)) (1.3)

where e(t) = T* (1) - (T(¢) —7(t)). The control performance of the nonlinear internal
model control is tested in the same cases as those employed to test the GMC. The
neural network structure representing the inverse model of the CSTR and its modeling
results are demonstrated in Figure 7.5-7.8. After the forward and the inverse model
are obtained, they are implemented in NIMC configuration as demonstrated in Figure
7.9. However small offsets exist in some case studies because of the existence of the
model errors and the lack of the exact inverse model then PI coptroller is added to

such configuration in order to remove the offsets as shown in Figure 7.10.

> bias

Figure 7.5: Neural network architecture representing the inverse modei of the CSTR.
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Figure 7.7: Neural network inverse modeling of CSTR: Cross validation result.
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Table 7.1: Comparison of
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the GMC-NN, the NIMC-PI, and the PI control

performance
IAR
Robustness Tests Performance Tests
GMC-NN | NIMC-PI PI
Nominal condition .
]_. no changc in pm'ametcrs 10% 1}’ 1.3165 5.0519 4.1567
2. no changc in pamctcrs 10%C,{f 0.6342 1.7366 25866
Plant-model mismatches -
3. 20%ko 10% T; 1.5472 5.9969 4.1379
4, 20%ko 10% Cyr 0.7442 2.2985 2.5255
5. -50%hA 10% I 2.4230 6.2272 4,6818
6. -50%hA | 10% Cyr 1.4328 2.2968 3.1155
7. 10%Hr 10% Iy 3.4525 11.3668 6.8469
‘8. 10%(-4H) 10% Cyr 1.4743 5.9255 6.2419
Nominal condition
Plant-model mismatches
10. 20%ko \ change 7% to 450K | 7.1266 1.3149 1.3656°
11. —50%hA change 7% to 450K | 6.1852 1.3854 2.1550
12. 10%(-AH) change 7% to 450K | 6.2646 1.0764 | 2.8675
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Figure 7.14: Disturbance rejection and robustness tests with NIMC. Response to
10% load disturbance in the unmeasured feed concentration and

20% model error in the pre-exponential constant
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Figure 7.16: Disturbance rejection and robustness tests with NIMC. Response to

10% load disturbance in the unmeasured feed concentration and

-50% model error in the heat transfer coefficient
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Figure 7.17: Disturbance rejection and robustness tests with NIMC.,
Response to 10% load disturbance in the measured feed temperature and

10% model error in the heat of reaction
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Figure 7.18: Disturbance rejection and robustness tests with NIMC,
Response to 10% load disturbance in the unmeasured feed concentration and

10% model error in the heat of reaction
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Figure 7.21: Set point tracking and robustness tests with NIMC
Response to set point change from 440.2 K to 450 K and

-50% model error in the heat transfer coefficient
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Response to set point change from 440.2 K to 450 K and

10% model error in the heat of reaction
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Figure 7.23: Control performance of the GMC-NN, NIMC (with PI), and PI control

Response to 10% load disturbance in the measured feed temperature

Controlled variable (upper) and manipulated variable (lower)
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7.4 Results and Discussions

In this chapter the NIMC configuration is utilized to control the reactor temperature
(T) by manipulating the coolant feed temperature (Iy). Performance tests and

robustness tests are carried out in order to investigate the control performances of the
control system. The performance tests are classified into disturbance fejection and set
point tracking. For the study on the disturbance rejection, it is composed of 10%
change of the feed temperature (7, ) and 10% change of the feed concentration (Cy)

from the nominal value. For the study on set point tracking, the dé;ired set point is
shifted from its nominal value (440.2 K) to 450 K. The robustness tests are divided
into the presence of the plant-model mismatches of the process parameters: 20%
change of the Arrhenius pre-exponential constant (k,), -50% change of the heat
transfer coefficient (h4), and 10% change of the heat of reaction (- AH ). (Note that
every change occurs at t=2 min.) All changes studied in this chapter are explored in
the directions that cause to the increase of the reactor temperature from its desired set

point.

The neural network structure representing the forward model of the CSTR isl
depicted in Figure 7.1. Figure 7.2 to Figure 7.4 illustrate the simulation results
obtained from neural network forward modeling of CSTR for training, cross
validation and testing data set. They indicate that the selected neural network can
learn the forward dynamics of the system successfully. In the aspect of inverse
modeling, the selected neural network, representing the inverse model of the CSTR is
shown in Figure 7.5 can also learn the inverse dynamics of the system as

demonstrated in Figure 7.6 to Figure 7.8.

Firstly, the control system is tested with 10% change of the feed temperature
in the nominal condition, it can be seen in Figure 7.11 that the reactor temperature is
increased from the desired set point (440.2 K) to 459 K within 1 minute after the
system is disturbed. As the result, the NIMC generates the controlled signal, the
coolant feed temperature, below its nominal value (from 350 K to 319 K) in order to

bring the reactor temperature to its desired set point again. Due to the decrease of the
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coolant feed temperature, the reactor temperature is dropped and maintained at 442.5
K after t=9 min. That means the controller generates 2,3 K offsets above the desired
set point.

Secondly, 10% change of the feed concentration in the nominal condition is
fhe other test employed to evaluate the control performance. It can be seen that the
reactor temperature is enhanced to 452 K and then decreased with some oscillation,
due to the decrease of the coolant feed temperature (from 350 K to 334 K). After that
it is kept constant at 441 K after t=11 min whereas small offset (0.8 K) control

performance exists as illustrated in Figure 7.12. d

Thirdly, the system is disturbed with 10% change of the feed temperature in
the presence of the plant-model mismatch of the Arrhenius pre-exponential constant.
The result obtained is dcplictcd in Figure 7.13. The reactor temperature response is
similar to that obtained in case of the change in feed temperature in nominal condition
(Figure 7.11) but with larger overshoot. That is the reactor temperature is raised to
459.5 K. Then it is dropped and maintained constant at 442.5 K because of the
decrease in the coolant feed temperature from 350 K to 317 K. Equal offset

performance compared to that of the first case is obtained

Next, the control system is tested with the change in the feed concentration in
the presence of the plant-model mismatch as well as that of the previous case. It can
be seen that the reactor temperature is enlarged from 440.2 K to 452 K. After that it is
decreased and kept constant at 441.5 K. While the coolant feed temperature is
changed from 350 K to 332 K. Small offset (1.3 K) performance is obtained as shown
in Figure 7.14.

In the presence of plant-model mismatch of the heat transfer coefficient, the
control system is tested in the same manner as that of the Arrhenius pre-exponential
constant. Figure 7.15 demonstrates the response of the reactor temperature and the
coolant feed temperature due to the feed temperature disturbance while Figure 7.16
iltustrates the results caused from the change in the feed concentration. In Figure 7.15,

the reactor temperature is increased from 440.2 K to 461 K. Because of the decrease
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in the coolant feed temperature (from 350 K to 315 K), the reactor temperature is’
lowered to 442.5 K. Finally, offset performance with 2.3 degree above the desired set
point is obtained. In Figure 7.16, the reactor temperature is raised from 440.2 K to
453.5 K and it is then decreased, by the change of the coolant feed temperature from
350 K to 330.2 K, and kept constant at 441.5 K. As the result, 1.3 degree offset

performance is noticed.

Same performance tests are still conducted to the control system in the
presence of the plant-model mismatch in the heat of reaction. Figure 7.17 and Figure
7.18 demonstrates the control performance of the NIMC when thc/system is disturbed
with the change in the feed temperature and the feed concentration, respectively. In
Figure 7.17, it can be seen that the reactor temperature is enhanced to 468.5 K. It is
then reduced to 443.5 K, in spite of the change in the coolant feed temperature from
350 K to 302 K. That means offset performance with 3.3 K above its desired set point
is generated. In Figure 7.18, the reactor temperature is raised to 462 K and then
reduced to 442.5 K despite the change in the coolant feed temperature from 350 K to
315.5 K. In addition, 2.3 K offset performance is produced.

Next, the control system is tested with set point tracking. In nominal
condition, the reactor is gradually increased to the new desired set point with small
overshoot. Then it is reduced and maintained constant, nearly the new desired set

point with minimal offset as depicted in Figure 7.19.

When the set point tracking is performed in the presence of plant-model
mismatch of the Arrhenius pre-exponential constant, minimal offset performance
below the new desired set point can be seen in Figure 7.20. While the coolant feed
temperature is decreased to 362 K. On the other hand, offset-free performance is
obtained as illustrated in Figure 7.21 for the presence of plant-model mismatch of the.
heat transfer coefficient. In this case, the coolant feed temperature is changed from
350K to 360.1 K. However 1 K offset performance is obtained in case of the presence

of plant-model mismatch in the heat of reaction as shown in Figure 7.22.
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In summary, minimal offset or offset-free performances are obtained from the
set point tracking test in either nominal condition or plant-model mismatches.
Nevertheless, some offsets still exist. in the control performance when the system is .
tested with disturbance rejection, These may cause from the existence of model errors
and the lack of the exact inverse model. Consequently, the PI controller is placed in
series after the NN controlier in order to remove those offsets. As the result, offsct-'
free performances are obtained in every case study. The results are then compared to
those of the GMC-NN and PI controllers. The Integral Absolute Error (IAE) is used
as a performance index to indicate the quantitative efficiency of cach control system

as given in Table 7.1.

With disturbance tests in nominal case and in the presence of plant-model
mismatch, the order of the control performance arranged from the best to the worst
control performance is that of the GMC-NN, the NIMC-PI, and the PI controller.
Overshoot performances without oscillation are obtained from the GMC-NN and the
NIMC-PI control whereas large overshoot performance with oscillation is produced in
the PI control. In comparison to the disturbances caused from the change in the feed
temperature and the feed concentration, each control system give higher overshoot
against the disturbance of the feed temperature. Figure 7.23 to Figure 7.24-
demonstrate the control performance of the each control system with the disturbance
rejection tests due to the change in the feed temperature and the feed concentration in
nominal condition, respectively. Furthermore the control performances of each
control system, when the system is tested with disturbance rejection in the presence of
the plant-model mis_match in the Arrhenius pre-exponential constant, the heat transfer
coefficient, and the heat of reaction, are illustrated in Figure 7.25 to Figure 7.27,

respectively.

For set point tracking test, in nominal condition the GMC-NN and the PI
control produce comparable overshoot but the PI control can lead the system to its
desired set point faster than the GMC-NN. However, the NIMC-PI control can control
the reactor temperature at new set point faster than the GMC-NN but slower than the

PI control. The results obtained are shown in Figure 7.28.
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For set point tracking test in the presence of plant-model mismatch in the
Arrhenius pre-exponential constant as depicted in Figure 7.28, it can be seen that the
PI control generates lower overshoot compared to that of the GMC-NN. While the
NIMC-PI give the same control performance as that in the nominal condition but with

some small oscillation.

Next, the system is tested with set point tracking in the presence of plant-
model mismatch in the heat transfer coefficient, the PI control produce higher
overshoot compared to that of the GMC-NN. While the NIMC-PI control can control
the reactor temperature at new set point without overshoot as iflustrated in Figure
7.29,

Finally, with set point tracking test in the presence of plant-model mismatch in
the heat of reaction, the PI control produces large overshoot while the GMC-NN and
the NIMC give some overshoot before they lead the reactor tcinperature to new set
point as shown in Figure 7.29.

For the quantitative control performance of ‘three control systems: GMC-NN,
NIMC-PI, and PI controls are also constdered in term of the IAE., The GMC-NN
control gives the best control performance followed by the NIMC-PI and the PI
controls in case of disturbance rejection tests in nominal condition and in the presence
of plant-model mismatch. In addition, the NIMC-PI is superior to the PI control when
the system is disturbed with unmeasured concentration in both nominal condition and
the presence of plant-model mismatches. However with set point tracking test in
nominal condition and in the presence of the plant-model mismatches, the NIMC-PII

control gives the best control performance among those control systems.
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