Chapter 6

Neural Networks as a Function Approximator

in Generic Model Control

In this chapter the multilayer feedforward network is used as a function approximator in
Generic Model Control (GMC). The objective is to control the temperature of the
simulated Continuous Stirred Tank Reactor (CSTR) by manipulating the coolant feed
tempcrature. The use of neural network technique and the GMC is a hybrid method
proposed to improve the control performance of GMC.

6.1 Introduction

Generic Model Control (GMC), one of advanced control concepts, is a model-based
control strategy which is not only a simple method but also easy to implement in control
system. It can directly use nonlinear models of @ process to determine a control action.
Thus the nonlinear models do not need to be linearized. This control strategy has been
studied by Lee and Sullivan (1988), Kittisupakom ‘and Kershenbaum (1994),
Kershenbaum and Kittisupakorn (1994).

Reactor temperature control is very important as it affects the product quality and
process operation. In this work, Generic Model Control (GMC) is utilised to controlr the
reactor temperature of the continuous stirred tank reactor (CSTR) by manipulatiﬁg
coolant temperature, In the aspect of robustness, whether the GMC can handle a system

in the presence of plant-model mismatch or not still depends on case by case. Hence
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neural networks which have excelient nonlinear representational capabilities are
employed with the GMC, as a hybrid method, to improve the control performance of the
GMC either when some state variables cannot be measured online or when plant/model
mismatch exists. The objective of this work is to investigate the GMC performance for
the temperature control of the CSTR ina nominal case as well as in the prcsenoe of plant-

model mismatches.

6.2 Generic Model Control Formulation s

Generic Model Control (GMC) is a model-based control strategy which uses
linear/nonlinear models of a system to compute a control action. A desired response can
be obtained via two tuning parameters. Since the GMC can directly use nonlinear models
of a process to determine a control action, the nonlinear models do not need to be

linearized. Its application is however limited to systems which are linear in control.

The GMC controller design is based on the following model
& fndu)+ getm ©.1)

y=h(x) | (6.2)
where f, g, and h are nonlinear functions, x is the state of the system, y is the output, d is
the disturbance, and u is the manipulated variable. The derivative of y is assumed to be

given by a PI model as

%yt- =Kl (}'Jp _y)+K2 j(ysp _y}it (6'3)

The K and K, pa.ré.meters can be varied to change the controller ’s response. The
method used to tune the parameter was presented by Lee and Sullivan (1988) (see
Appendix D). Eq. (6.3) forces y toward its set point, ys,, with zero offset. If Eq. (6.2) is
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differentiated and together with Eq. (6.3) is substituted into Eq. (6.1), the following

control law results

[Kn (e —2)+ K, I()"P - yht- %f(x’d’t)].

=" =
(-d—l g(x’ t))

Although the GMC has many advantages as described above, it still requires

(6.9)

reasonable process models and parameters and measurement of ontrolled variables.
Neural network (NN) is a powerful tool that can lean highly nonlinear models and
therefore it is proposed to improve the GMC performance under the limitation above.
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Figure 6.1: A schematic of continuous stirred tank reactor.

6.3 Continuous Stirred Tank Reactor

A schematic of the CSTR system is shown in Figure 6.1. A single irreversible,
exothermic reaction A—B is assumed to occur in the reactor. The process model consists

of two nonlinear ordinary differential equations (Henson and Seborg, 1990),
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where C, is the effluent concentration of component A, T is the reattor temperature, q is

the feed flow rate and g. is the coolant flow rate. The other model parameters are defined
in the Nomenclature and the nominal operating is given in Table 6.1. For these
conditions, there are three (two stable and one unstable) steady states. The operating
point in Table 6.1 corresponds to the lower stable steady state. The objective is to control

T by manipulating T;;. Open-loop responses for +/- 15% step changes in Ter are shown in
Figure 6.2. It can be seen that for these step changes, the CSTR exhibits nonlinear

dynamic behavior.

Table 6.1: Nominal operating condition of the continuous stirred tank reactor

g =1001 min™
C, =lmol I
T, =350K
T, =350K
V=100 1
hA = 7 x10° cal min"'K!
k, =7.2x10"min"

E/R=995x10°K
—AH =2x%10° cal mol™
P, pc =1000g I
C,,.C

¢ =1cal g'K!
qc =103.41 1 min’
T =4402K

C,=8.36x10"mol I'!
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Figure 6.2: Open-loop response of CSTR for +/-15% change of coolant temperature.

Reactor temperature (upper) and Effluent concentration of reactant A (lower)
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Figure 6.3;: GMC configuration with an estimator.

For the CSTR studied, the following f; g, and / functions can be defined from the system
model, Eq. (6.6)

f(x’d’t)=iq/_(rf -T)+ ("'AH)kaCA exp(— E J

- RT
_ 6.7
£.Cpq. hA (67)
—Zerrte ) —exp| - T
pC,V q.0.C
£.Cpd. hA -
g(x,f)=—"—"E-"11-exp| - 6.8
pC ¥ [ p( qcpcc,cﬂ ©9

h(x)=T (6.9)
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Figuré 6.4; The network implementation in GMC configuration.

As can be seen from Eq. (6.7), f depends on both the effluent concentration of the
reactant (C,) and the reactor temperature (7) but only the reactor temperature is available
online. Consequently, one method utilized to solve this problem is the estimation of
unmeasured concentration from measured temperature using mass balance equation.
Figure 6.3 shows the schematic of the GMC control with an estimator simulated from the
mass balance equation. The other method is that neural network was utilized to predict
the current value of f given the coola.ni and the reactor temperature. Because the CSTR is
a single-input sihglc output (SISO) system and the neural network model is trained
offline, Levenberg-Marquardt algorithm being the fast training method is utifized. The
sum-squared error is the criterion used to select the suitable neural network model for
function approximation. The selecied neural network structure consists of three input
nodes (one current vatue of the coolént temperature and two past values of the reactor
temperature), seven hidden nodes and one output node. The implementation of the neural
network approximator in the GMC configuration. is illustrated in Figure 6.4 and the

neural network structure representing the function approximation is depicted in Figure
6.5.
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Table 6.2: Performance and robustness tests on the GMC with mass balance estimator
(GMC) and the GMC with neural network approximator (GMC-NN)

Performance Tests Robustness Tests
1. Disturbance Rejection 1.Nominal Condition
1.1 10% I 2.Plant-model mismatches
1.2 10% Cyr 2.1 20% &,
2. Set point Tracking 22-50% k4
Tp: 4402 K — 450K 2.3 10% (-4H)
Total 3x4=12 case studies

S

V‘t ‘l; v,
0‘0,':‘:.)7
K

Figure 6.5: Neural network structure representing function approximator.



Table 6.3: Comparison of the GMC and the GMC-NN control performance

IAE
Robustness Tests Performance Tests
’ GMC GMC-NN
Nomipal condition
i. no change in parameters | 10% 7 0.0114 1.3165
2. no change in parameters | 10%C,s 18.3347 0.6342
Plant- ismatches g
3. 20%ko 10% I, 30.9862 1.5472
4, 20%ko 10% Cyr 21.1781 0.7442
5. =50%hA 10% I 14.9082 2.4230
6. -50%hA 10% Cyr 33,2395 1.4328
7. 10%(-4H) 10% Iy 18.3345 3.4525
8. 10%(-AH) 110% Cys 38.4990 1.4743
Nominal condition
9. no change in parameters | change 7% to 450K 7.2814 7.1156
Plant-model mismatches |
10. 20%ko change 7% to 450K 34.1699 7.1266
11, —50%hd change T to 450K 18.9601 6.1852
12. 10%(-4H) change T7 to 450K 22.1832 6.2646

Note: Integral absolute error,
IAE = ||e|dt

where e=T* -T
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Figure 6.6: Disturbance rejection test with GMC and GMC-NN.
Response to 10% load disturbance in the measured feed temperature
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Figure 6.7: Disturbance rejection test with GMC and GMC-NN.

Response to 10% load disturbance in the unmeasured feed concentration
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(a) Controlled variable: reactor temperature
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Figure 6.8: Disturbance rejection and robustness tests with GMC and GMC-NN.
Response to 10% load disturbance in the measured feed temperature and

20% model error in the pre-exponential constant
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Figure 6.9: Disturbance rejection and robustness tests with GMC and GMC-NN.
Response to 10% load disturbance in the unmeasured feed concentration and

20% model error in the pre-exponential constant
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Figure 6.10: Disturbance rejection and robustness tests with GMC and GMC-NN.

Response to 10% load disturbance in the measured feed temperature and

-50% model error in the heat transfer coefficient
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{a) Controlled variable: reactor temperature
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Figure 6.11: Disturbance rejection and robustness tests with GMC and GMC-NN.
Response to 10% load disturbance in the unmeasured feed concentration and

-50% model error in the heat transfer coefficient
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Figure 6.12: Disturbance rejection and robustness tests with GMC and GMC-NN.

Response to 10% load disturbance in the measured feed temperature and

10% model error in the heat of reaction
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Figure 6.13: Disturbance rejection and robustness tests with GMC and GMC-NN.
Response to 10% load disturbance in the unmeasured feed concentration and

10% mode! error in the heat of reaction
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Figure 6.14: Set point tracking test with GMC and GMC-NN.

Set pint change from 440.2 K to 450 K
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Figure 6.16: Set point tracking and robustness tests with GMC and GMC-NN,
Response to set point changes from 440.2 K to 450 K and

—50% model error in heat transfer coefficient
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Figure 6.17: Set point tracking performance test with GMC and GMC-NN.

Response to set point change from 440.2 K to 450 K and

10% mode! error in heat of reaction
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6.4 Results and Discussions

The control performance of the GMC with neural network approximator (GMC-NN) for
reactor temperature control is compared with that of GMC with a state estimator derived
from the mass balance. Both control performances are evaluated with disturbance
rejection and set point tracking in nominal condition; parameters are not changed and in
the presence of plant-model mismatches as given in Table 6.2. All changes of the
disturbances, set point, and parameters studied in this work result in the increase of the
reactor temperature. Consequently, the coolant feed temperature hes to be reduced so that
the reactor temperature can be brought back its desired set point.

The disturbance rejection tests consist of 10% change of feed temperature and
10% change of feed concenn'étion from their nominal values. With 10% change of feed
temperature in nominal condition, it was found that the GMC with the state estimator can
lead to very good control performance, that is, the system is controlled closely to its set
point while small overshoot happens in GMC-NN configuration as depicted in Figure 6.6.
This may be caused from the reason that the feed temperature is available online and no
plant/model mismatch exists, therefore the state estimator produces the correct value of
concentration. As the results, the GMC with the state estimator gives a better contrél
performance than GMC-NN. Moreover, neural network approximator is a black-box
model generating the function f based on the coolant and the reactor temperature. Thus,
some model errors are included in the function approximation. However, the GMC-NN
control configuration is able to control the reactor temperature closely to its set point
when the system is disturbed with 10% change of feed concentration but some overshoots

occur in GMC with state estimator as shown in Figure 6.7.

In the presence of plant-model mismatches, the GMC-NN can control the reactor
temperature at its set point with smaller overshoot compared with the GMC with the state

estimator as shown in Figure 6.8 to Figure 6.13.
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In case of the plant/model mismatch in the Arrhenius pre-exponential constant,
the GMC-NN can control the reactor temperature at its set point with smaller overshoot
than in the result obtained from the GMC with the state estimator as illustrated in Figure
6.8 and Figure 6.9. Additionally, both control configurations give larger overshoots when
the system is disturbed by the change in feed temperature than when disturbed by the
change in the feed concentration. This can be implied that the disturbance of the feed
temperature affects the system more than that of the feed concentration when the plant-
model mismatch in the Arrhenius pre-exponential constant happens. ’

In case of the plant/model mismatch in the heat transfer coefficient, the change in
the feed temperature has less effect to the system than in the feed concentration as
demonstrated in Figure 6.10 and Figure 6.11. '

In case of the 'plant/model mismatch in the heat of reaction, the change in the feed
temperature also affects the system less than that in the feed concentration as
demonstrated in Figure 6.12 and Figure 6.13.

For the tests with set point tracking, the results obtained from both control
configuration in nominal case are equivalent as depicted in Figure 6.14. Nevertheless,
large overshoots still exist in plant/model mismatch condition as shown in Figure 6.15,
Figure 6.16, and Figure 6.17. 1t can be concluded that the use of neural networks with the
GMC as the hybrid method is able to improve the control performance of the GMC as

well.

Conclusively, the GMC-NN configuration can reject either measured disturbances
or unmeasured disturbances, which affect the increase of the reactor temperature in both
nominal condition and plant—mddel mismatch condition. However, the GMC with state
estimator indicates better control performance than the GMC-NN when the system is
disturbed with measured disturbance in nominal condition. In case of the set point
tracking test, the control performances of both control configurations are equivalent when

the system is tested in nominal condition. With the set point tracking test in plant/model
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mismatch condition, the GMC-NN can lead the reactor temperature back to its set point
with smaller overshoot than that of GMC with state estimator.
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