Chapter 5

Neural Network Modeliilg of an Acetylene
Hydrogenation System

In this chapter, the front-end acetylene hydrogenation system is utiliged to demonstrate
the capabilities of the multilayer feedforward networks to model the complex nonlinear
system, Section 5.1 briefs about the acetylene and its effects in ethylene manufacturing.
Section 5.2 discusses about the ethylene manufacturing licensed of Stone and Webster.
Section 5.3 explains the acetylene hydrogenation system categorized into front-end and
tailed type. A review of research works stodied on such system is provided in section 5.4.
The applications of the networks to model the front-end type system are illustrated in

section 5.5 and the results and discussions are given in the last section.

5.1 Introduction

Acetylene is a minor product produced from thermal cracking of paraffinic feedstocks. It
is an undesirable impurity in polymer-grade ethylene. By the nature of its volatility
relative to ecthylene, the acetylene stays close to the cthylene-ethane fraction of the
cracked gas throughout the fractionation section of an ethylene plant. It is a harmful
contaminant in polymer-grade ethylene. Nevertheless, acetylene must be removed prior to
the final fractionation of the ethylene from the ethane in order to produce polymer-grade
ethylene. The specification of acetylene in ethylene product is now commonly set at 1

ppmv or less.
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5.2 Ethylene Manufacturing

To produce polymer-grade ethylene and propylene by themmally cracking paraffinic
feedstocks (ethane through hydrocracked residue). Two main process technologies (Stone
and Webster Engineering Corp.) are used:

1. USC (uitra selective cracking) — Pyrolysis and quench systems
2. ARS (advanced recovery system) — Cold fractionation.

Designs have been incorporated to meet environmental restrictions.

L
Process Description: Feeds are sent to USC cracking furnaces (1). Contaminant removal

may be installed upstrcam. Cracking heat may be supplied by gas turbine exhaust,
Pyrolysis occurs under the temperature-time control specific to the feedstock and product
requirements. Rapid quenching preserves high-olefin yield and generates high-pressure
waste heat steam. Lower temperature waste heat is recovered in the downstream quench
oil and quench water towers (2)'. Pyrolysis fuel oil and gasoline distillate are fractionated.
Cracked gas (C4 and lighter) is then compressed (3), scrubbed with caustic to remove acid
gases and dried prior to fractionation.

ARS minimizes refrigeration energy by using the techniques of dephlegmator gas
chilling (exclusive arrangement with Air Products) and distributed distillation. C; and
lighter component as well as C4 and heavier components are separated in the low fouling-
front-end dual pressure depropanizer (4). Overhead vapor is hydrogenated to remove
acetylene (5) and is routed to the ARS (6), where two C; streams of varying composition /
are produced. Hydrogen and methane are separated overhead.

The heavier C; stream is decthanized (7) and C; overhead passes to the ethylene-
cthane fractionator (9). Polymer-grade ethylene product is sent overhead from the

cthylene-ethane fractionator.

Cs are combined and hydrogenated to remove methyl acetylene and propadiene
(10). Polymer or chemical-grade propylene is then produced overhead from the C;

superfractionator (11).
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C,4 and heavier coproducts are further separated in a sequence of distillation steps.
Ethane and propane are typically recycle cracked. Refrigeration is supplied by cascade

ethylene/propylene systems.
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Figure 5.1: Ethylene plant diagram with front-end acetylene hydrogenation system.

Specific advantages of ARS technology are: 1. Reduced chilling train refrigeration
load in the dephlegmator, 2. Simultaneous chilling/prefractionation in the dephlegmator,
3. Reduced methane content in feed to demethanizer, 4. Decthanizer bypassing, 5. Dual
feed ethylene fractionator (lower reflux ratio) and 6. resulting refrigeration demand

reduction (approx. 75%).
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Economics: Ethylenc yiclds rahge from 57% (cthane, high conversion) to 28% (heavy
hydrogenated gas oils). Corresponding specific energy consumption range from 3,000
kcal/kg to 6,000 kcal/kg

5.3 Types of Acetylene Hydrogenation Systems

Acetylene hydrogenation systems are usually located at two different places in the
purification section of the ethylene plant (Lam and Lloyd, 1972; Derrien, 1986).

According to its location, the acetylene hydrogenation syste:P/ can be classified
into two schemes. One is a front-end design, the other is a tail-end design as described in

the following subsection.

Steam Heater
O -
From C/ Gy K .
Separation Feed/Effluent
Exchanger _®

Tail Lead
Bed —@ Bed
O+

Aftercooler

Intercooler

Figure 5.2: Front-end acetylene hydrogenation system layout.
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5.3.1 Front-end Type

The acetylene hydrogenation system is located prior to the cold train of the ethylene plant
(see Figure 5.1). In other words, it is located after the cracking section, following a
caustic scrubbing treatment to eliminate carbon dioxide (CO2). This means that only the
inlet temperatures are available as control variables as the cracked gas already contains
significant quantities of hydrogen. This option, known as front-end hydrogenation, is the
subject of the present work. The industrial sequence under study consists of a heater
followed by three fixed-bed adiabatic reactors with interstage cooling. In this unit, the
hydrogenation of acetylene is performed directly in the raw cracked-g/as mixture, which
contains a high H;/C;H; ratio (= 100/1). Several acetylenic, olefin and diolefinic by-
products are also presented, together with the carbon monoxide (CO) produced in the
inverse water-gas shift reaction occurring in the cracking fumaces. The CO is reported to
be the main inhibitor of the side C;H; hydrogenation. In practice, these units present
important control problems, which frequently lead to undesirable ternperaxuré runaways
and the subsequent plant shut-down. Figure 5.2 depicts the layout of the front-end
acetylene hydrogenation system.

The kinetic reactions occurring in the front-end reactor can be summarized as:

(1) The desired reactions are:

C.H; + Ha — CaH,4

(Acetylene) (Hydrogen) (Ethylene)
CH=CCH,4 + H; —e CH,=CHCH,
(Methyl acetylene) (Hydrogen) (Propylene)
CH;=C=CH: + H; . CH,=CHCH,
(Propadiene) (Hydrogen) (Propylene)

CH;=CHCH=CH, + H; — CH,=CHCH,CH;

(Butadiene) (Hydrogen) (Butene)



(2) The undesired reactions are:
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CoHy + H: C:Hq
(Ethylene) (Hydrogen) (Ethane)
CH,=CHCH,; + H; CsHs
(Propylene) (Hydrogen) (Propanc)
5.3.2 Tail-end Type
e

The acetylene hydrogenation system is located after the cold-train (sce Figure 5.3) where
hydrogen is removed from the cracked gas. That is the system hydrogenates the ethylene-
rich stream arising from the top of the de-cthanizer column. Hydrogen must be injected
into the feed to the converters and the hydrogen concentration is available as a control
variable, in addition to the inlet temperatures to the reactor beds. Figure 5.4 shows the
layout of the tail-end acetylene hydrogenation system.

The kinetic reactions occurring in the tail-end reactors can be summarized as:

(1) The desired reaction is:
C:H, + H C:Hy
(Acetylene) (Hydrogen) (Ethylene)
(2) The side reactions are;
C.H, + H; C2He¢
(Ethylene) (Hydrogen) (Ethane)
2C,H» + 2H, CqHsg
(Acetylene) (Hydrogen) (Butylene)
nC>;H, + (V/ Z)DH:, ' (CzHg,)ﬂ
(Acetylene) (Hydrogen) (Green oil)
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Figure 5.3: Ethylene plant diagram with tail-end acetylene hydrogenation system.
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Figure 5.4: Tail-end acetylene hydrogenation system layout.

5.4 Literature Review on Acetylene Hydrogenation Systems

According to the review of research works concerning on the acetylene hydrogenation
system, most of the literatures are documented about the studies on the tail-end type. The
study on the sensitivity of the reactor operating conditions has been revealed and an
optimization based on a reactor model to minimize the ethylene loss while maintaining
the outlet acetylene specification has been performed (Huang, 1979). The conjugate

gradient methods was used to perform the minimization and arrive at the set of optimal
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operating parameters. In addition a general methodology on establishing advanced control
schemes of the acetylene hydrogenation reactors has been published (Nisi, 1985). It has
presented issues on the online modeling, control and optimization of reactors in an
ethylene plant. Nevertheless, the control policy adopted in such research is based upon a
static representation of the acctylene hydrogenation system and does not examine the
effects over time of the manipulated variables on the deactivation and thus the catalyst-
regencration requirements of the hydrogenation process. Therefore, an opamal and a sub-
optimal operational policy which minimize the ethylene loss overtime have been
formulated and the solution techniques have been presented (Brown, 1991).

However, there are few studies investigating the ﬁ'ont-cﬁa type. Dynamic
simulations of a frontal industrial acetylene converter and its closed-loop performance
~ under three different control strategies have been shown (Schbib et al., 1994). The studies
carried out on a mathematical model derived from fundamental equations and checked
against industrial data. Moreover, there is other work (Weiss, 1996) studied on the
modeling and control of an acetylene converter. It demonstrated that a non-linear
dynamic model of process can assist in the development of linear models suitable for
controller design. It was also shown that for an industrial acetylene converter, a model

‘based controller should be considered for the control of the reactor outlet temperature.

54 Neural Network Modeling of an Acetylene Hydrogenation
System

This research studies on the use of multilayer feedforward network to model the front-end

acetylene hydrogenation system, thus only the front-end type is concentrated in this

section. In order to provide a clearer of the reactor operation, the process description is

described. In addition, the plant data used in the research are also provided.

5.5.1 Process Description

Figure 5.5 shows a schematic of the front-end acetylene hydrogenation system used in

this research. For producing 385,000 MTA of ethylene, three operating reactors and one.
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spare are to be uﬁﬁied. The process sequence consists of three fixed-bed adiabatic

reactors with interstage cooling.

The normal acetylene content in the converter feed is 0.3 to 0.5 mol% and the
ethylene product acetylene speciﬁcation is 1 ppmv. The feed to the converter (few Cs, C;
and lighter, and CO) comes from the mercury and arsine removal unit which is located
after the caustic scrubbing. Mercury and arsine must be removed from the cracked gas
because they are poisoned to the palladium catalyst used for selective acetylene
hydrogenation. Depending on the catalyst activity, the clean cracked gas flows through or
bypasses the reactor feed heater before entering the first reactor. Heat of reaction from
acetylene hydrogenation reactors is removed by cooling water in thé C; hydrogenation'
intercoolers. The effluent from the third reactor is cooled in the reactor aftercooler.

5.5.2 Plant Data Used

This research is received the cooperation from the Thai Olefin Plant located at Map Ta
Phut industrial estate, Rayong province, hence its plant data are used in the research
work.

The input-output data of the acetylene hydrogenation system consisting of three
catalytic beds in real ethylene plant are collected. The input data of the first bed are
composed of cracked gas compositions such as: that of acetylene (C;H,), ethylene (C:Ha),
ethane (C;Hs) and carbon monoxide together with the feed flow rate (Fi) and inlet
temperature (T;,). The output data of the first bed consist of the composition of the.
acetylene (C,H,), that of the ethylene (C;H,), that of the ethane (C;Hs) and the outlet
temperature. For the input-output data of the second and the third bed, they are the same
as those of the first bed output data except that the inlet temperature of the second and the
third bed are used instead of the outlet temperature from the first and the second bed,
respectively, However, the collected data need to be filtered before they are utilized for

neural network modeling. More details about the filters are given in Appendix C.
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Figure 5.5: Acetylene hydrogenation system.

5.5.3 Neural Network Modeling

In this work the multilayer feedforward networks with one hidden layer are utilized to
model the behaviors of the front-end acetylene hydrogenation system. Due to the system
consisting of three beds in series, the neural network modeling technique is applied to
model the behavior of each bed. Error backpropagation algorithm is used to train the
networks. The input-output daily data in amount of 317 data points were used for neural
network training and cross validation. That is 290 data points were used for training and
the remains were employed for cross validation. The training iteration was set to 1000.

Note that one iteration involves application of all the 290 patterns in the training set.

The input vector used for neural network modeling of each bed is composed of the
current and one past value of each input and one past value of each output. Each neural
network model obtained is applied to predict four outputs. The numbers of hidden nodes
in the selected neural network model of the first, the second, and the third bed is 11, 7,
and 13. The neural network structure for forward modeling of the first bed is shown in
Figure 5.6. The prediction results of the trained network in training and testing data sets
are demonstrated in Figure 5.7 and Figure 5.8. For those of the second and the third bed
modeling, they are illustrated in Figure 5.9 to Figure 5.11 and Figure 5.12 to Figure 5.14,

respectively.



83

Csz.h (t) .
C’& ] (t) . ‘l"f
CaHan(t) .
COu (t) )\
@
Fa(t)
. S CiHy, o (1)
Tu(® ‘ X . -
R
CyHy i (t-1) . ;-f\ Cotle mu (t)
=0
N
CiHom (t-1) KX
44
. Y
C'le.h (“1) . 2‘:;1 CiHa o (1}
Coh (t") .
Fua (t-1) . . 52 Tow (1}
Ta (t-1) . Gl
CaHy, ou (1-1) /
®
CaHa e (1) y '
®
CaHg, o (t-1) .
Ton (t'l) .
l lF
biag

Figure 5.6: Neural network architecture representing forward model: First bed.
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Figure 5.7: Neural network modeling of the first bed: Training results.
Targets (solid line) and NN predicted outputs (dashed line)
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Figure 5.8: Neural network modeling of the first bed: Testing results.
Targets (solid line) and NN predicted outputs (dashed line)

85



86

CHa (1)

C:Hew ()

CHeu (B

T (1)

CaHa,ou (9

CaHa, i (t-1)

CiHeau (1)
CyHem(t-1)

CiHem (t.-l) CaHy, ot}

'i'h 1)

Tou (1}

CaHz mit-1)
CaHa,on (t-1)

C2H4.n- (t'l)

Tow (-1}

Figure 5.9: Neural network representing forward model: Second bed.
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Figure 5.10: Neural network modeling of the second bed: Training results.
Targets (solid Jine) and NN predicted outputs (dashed line)
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Figure 5.11: Neural network modeling of the second bed: Testing results.

Targets (solid line) and NN predicted outputs (dashed line)
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Figure 5.12: Neural network representing forward model: Third bed.
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Figure 5.13: Neural network modeling of the third bed: Training results.
Targets (solid line) and NN predicted outputs (dashed line)
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Figure 5.14: Neural network modeling of the third bed: Testing results.

Targets (solid line) and NN predicted outputs (dashed line)
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5.5.4 Results and Discussions

According to the first bed modeling, it was found that the prediction of four outputs:
the composition of acetylene, the composition of ethylene, the composition of ethane
and outlet temperature in the training (Figure 5.7) is quite good especially for the
prediction of the last one. However, some errors exist at the initial point of the

prediction due to the lack of the past values of input and output data as shown in
Figure 5.8.

For the results obtained from the second bed (Figure 5.1046 f‘igure 5.11) and
the last bed modeling (Figure 5.13 to Figure 5.14), they seem similar to those of the
first one. In addition to the third one, the prediction of the acetylene composition,”
which is a constant, is really workable in both training and cross validation. This is
probably caused from the neural networks, which are able to leam linear to highly
nonlinear relationship. Furthermore, the prediction results of the outlet temperature of
the every bed are very good compared to those of the other outputs. It may be because
the measurement of the temperature is so accurate that neural networks can learn the
correct relationship between the inputs and the outlet temperature. And the reason
why the prediction of ;hc composition of the three outputs does not occur precisely is
that the analysis by the gas chromatography may have produced some errors due to

fhc small amount of each component, which is hard to be analyzed accurately.

So it can be inferred that the neural networks are able to model the complex
system with multiple inputs and multiple outputs. Nevertheless, the data used to train
the networks should be composed of sufficient information of system behavior and be
filtered before employing them for neural network modeling as described in Chapter

4, The average absolute relative errors of each model obtained are given in the table.

Average Absolute Relative Errors (%)

Model
C1H1 C:H4 c2H6 Tout
First bed 6 4 8
Second bed 7 3 4
- Third bed 1
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