Chapter 4

System Identification with Neural Networks

The use of multilayer feedforward networks for the purpose of system identification is
discussed. The identification consisting of forward modeling, which the forward
model of the system is identified and inverse modeling, which the inverse model of
the system is identified is provided in section 4.2 and the identification steps are

described in the last section.

4.1 Introduction

In sampled-data control systems, a multivariable process can be generally represented
by,

Y, = (¥, YtV 1 K X X e X)) (4.1)

where Y; and X; represent tﬁe vectors of outputs and inputs, the subscript k refers to
the sampling instant, and f represents the functional relation between the inputs and
outputs. In classical identification studies, a form of the function S representing the
input-output behavior has to be specified and the parameters in that form have to be
determined. Usué.lly, several assumptions are made about the process, such as
linearity, time-invariance, etc., and a separate noise model is often included to
represent the unmodeled dynamics. But many important industrial chemical processes‘
are nonlinear in nature and it is often not possible to specify the exact functional

relationship between the inputs and the outputs.

Neural networks have been found to be extremely useful in this context. They

do not require that a function be specified explicitly. Only the topology or the

59

structure of the network needs to be specified. The specification includes the number
of neurons in the input layer, hidden layer, and the output layer.

4.2 Identification

The input and output of a time-invariant, causal discrete-time dynaihical plant are.
u(-)and y (-) respectively, where u(") is a uniformly bounded function of time. The

plant is assumed to be stable with a known parameterization but with unknown values
of the parameters. The objective is to construct a suitable identification model (Figure

4.1) which when subjected to the same input u as the plant, produces an output y*
which approximates y* in a certain sense. The model will be used in the form of a
neural network.

4.2.1 Forward Modeling

The procedure of training a neural network to represent the forward dynamics (i.c.
obtain outputs given the inputs) of a system is referred to as forward modeling.

A fow approaches can be utilized to model the forward dynamics using neurall
networks. These include using global recurrent networks or by introducing dynamic
behavior into the neurons (local recurrent networks) (Su and McAvoy, 1992). But the
most popular and straight forward approach is to augment the network inputs with
corresponding discrete past input and past output data signals from the model or

system being identified as seen in Figure 4.2.

The neural network model is placed in parallel with system and the etror
between the system and the network outputs (the prediction error) as the neural
network training signal. A muitilayer feedforward network is used in order to apply a
backpropagation training algorithm.

Assume that the plant is governed by the following nonlinear discrete time

difference equation:

60

Y (¢ + D) =F[p’ @ ¥y (¢ —n+ Dju(d), o u(t-m+1)] (4.2)

Thus, the plant output y”at time ¢+ 1depends on the past n output values and on the
past m values of the input . What is concentrated here is only on the dynamical part
of the plant response; the model does not explicitly represent plant disturbances (for a
method of including the disturbance see, e.g., Chen et al. (1990)). Spetial cases of the
model (Eq. 4.2) have been considered by Narcndra and Parthasarathy (1990).

40
> Plant
u(f) - e
—
+
> Idmtiﬁ:alxion
el S40)

Figure 4.1: Identification.

An obvious approach for system modeling is to choose the input-output structure of
the neural network to be the same as that of the system. Denoting the output of the

network by y~ then it is obtained that
y @+ D) =Eyr),y (¢ =n 4 Dsu@) e u(e - m+1)] - (4.3)

In the above, the mapping F () represents the nonlinear input-output map of the

network which approximates the plant mapping F(). Note that the input to the
network includes the past values of the plant output but not the past values of the
network output (the network has no feedback). The learmning statistical
backpropagation algorithm is used to find the optimal values of the network weights.
The structure of the model Eq. (4.3) is called series-parallel. The resulting

61

identification structure is illustrated in Figure 4.2. Note that Z™indicates a delay of-

one time unit.

u(®) Yo
—p Plant
* et
(1)
z! _.....’.
pr Neural S+ .
' . Network
%

z-l
——

Figure 4.2: Series-parallel identification structure.

If it is assumed that after a suitable training period the network gives a good
representation of the plant (i.e. y™ = y”), then for subsequent post-training purposes
the network output itself and its delayed values can be fed back and used as part of the
network input. In this way the network can be used independently of the plant. Such a
network is described as |

62

y e+l = ﬁ'Lv"' @)y Y (€ = n+ Dsu(t),..., u(t —m+ 1)] (4.4)

This structure may also be used from beginning that is during the whole process of
learning. The structure of Eq. 4.4 is called parallel. Figure 4.3 depicts the parallel
identification structure. It may be preferred when dealing with noisy systems since it
avoids the problem of bias caused by noise on the plant output. On the other hand the’
series-parallel scheme (see Figure 4.2) is supported by stability results. Moreover, the
parallel model requires a dynamical backpropagation training algorithm.

u(t) Yo
: Plant
+
e(t) _
+] >
z Neural y+l)

Network)

4

Figure 4.3: Parallel identification structure.

4.2.2 Inverse Modeling

The inverse model of dynémical system yields input for given output. The models

play a crucial role in a range of control structures. However, obtaining inverse models

63

raises several important issues. Conceptually the simplest approach is direct inverse
modeling as shown in Figure 4.4. Here, a synthetic training signal (the plant input) is
introduced to the system. The plant output is then used as input to the network. The
network output is compared with the training signal (the system input) and this error
is used to train the network. This structure will clearly force the network to represent

the inverse of the plant. However, there are some drawbacks:

o the learning procedure is not "goal directed"; the training signal must be
chosen to sample over a wide range of system inputs, and the actual
operational inputs may be hard to define a prior. The actual goal in the
control context is fo make the system ouiput behave in a desired way, and
thus the training signal in direct inverse modeling does not correspond to
the explicit goal; '

e if the nonlinear system is not one-to-one, then an incorrect inverse can be

produced.

The first point is strongly related with the general concept of persistent excitation.

u

Yot Neural/ # | i y*
— 1 —»() Plant
+ L

Leaming »
algorithm

Figure 4.4 Direct inverse modeling.

64

A second approach to inverse modeling which aims to overcome these.
problems is known as specialized inverse learning (Psaltis, Sideris and Yamamura,
1988). The specialized inverse learning structure is shown in Figure 4.5. In this
approach the network inverse model precedeé the system and receives as input a
training signal which spans the desired operational output space of the controlled
system (i.e. it corresponds to the system reference signal). This learning structure also
contains a train forward model of the system (e.g. a network trained as described in
the section 4.2) placed in parallel with the plant. The error signal for the training
algorithm in this case is the difference between the training signal and the system
output (it may also be the difference between the training sign:il and the forward
model output if the system is noisy). It can be shown that using the plant output an
exact inverse even when the forward model is not exact can be produced; this is not
the case when the forward model output is used. The error may then be propagated
back through the forward model and the inverse model; only the inverse network.
model weights are adjusted during this procedure. Thus, the procedure is effective at
learning and identifies mapping across the inverse model and the forward model; the
inverse model is learned as a side effect. In comparison with direct inverse modeling,

the specialized inverse learning approach possesses the following features:

¢ The procedure is goal directed since it is based on the error between
desired system outputs and actual outputs. In other word, the system
receives inputs during training which correspond to the actual operational

inputs it will subsequently receive.

o In case in which the system forward mapping is not one-to-one a particular
inverse (pseudo-inverse) will be found. The problem of bias can also be
handled.

65

, N
Ve Neural u y*
 ——T1—P| Network P Plant - -
ntroller
. Neural }'F
Leaming
e e o
o

+

Figure 4.5: Specialized inverse modeling.

Next, the input-output structure of network modeling the system inverse is
considered. From Eq. 4.2 the inverse F* leading to the generation of wu(¢) would
require knowledge of the future value y*(t+1). To overcome this problem we

replace this future value with the value y* (¢ +) which is assumed to be available at

time ¢. This seems to be a reasonable assumption since y’ (¢ +1) is typically related

to the reference signal which is normally known one step ahead. Thus, the nonlinear

input-output mapping relation of the network modeling the plant inverse is
w(®) =F' (¥ () y =0+ 1) 2 (¢4 15 u(t — 1), u(t — m+ 1)) (4.5)

that is the inverse model network receives as inputs the current and past system
outputs, the training (reference) signal, and the past values of the system outputs.
Where it is desirable to train the inverse without the plant the values of y"in the

above relation are simply replaced by the forward model outputs y".

66

4.3 System Identification Steps

As in the other conventional techniques, various steps and criteria for choosing the
most appropriate neural network model for any given set of input and output data has
to be followed. These steps play a major role in obtaining the best possible model for
any particular application. These basic steps and criteria, which applies for both
forward and inverse modeling approaches, are as follows:

4.3.1 Model Structure and Size L

No standard method has been known to determine the structure and the number of
nodes of a network required for any particular application. Although there are some
guidelines and heuristics suggested in the literature the actual choice still rernains on a
case-to-case basis. In this work the feedforward fully connected structure with one
hidden layer, in all cases they are adequate was utilized. The normal procedure for
selecting the hidden nodes is to fix an initial size and then check if this model satisfies
the error requirement when the identification process is stopped. If not, the size is
revised and the whole procedure repeated until it satisfies the tolerance for the
prediction error. Although the choice of the number of hidden nodes here is done by
trial-and-error, normally within a few trials it becomes quite casy to constrain it in an
optimum range (within some upper and lower limit) required for achieving acceptable
training, The choice is also made keeping in view of one of the objective of this work
which is to select parsimonious models i.e. models which contain the smallest number .
of free parameters such as the connection weights, required to represent the time

system adequately.

4.3.2 Data Set

Data set collection either from available model simulation or actual on-line data is a
fundamental step in all identification procedure. In utilizing neural networks, the data
set is normally split into various sets. One is the initial training set, which is the data

used to train the network weights and normally span the operating region of the

67

model. Next is the cross validation data set, which is used to assess the generalization
capability of the network. This set is normally of similar quality to the training data
set. Training can also be switched between these two sets from time to time to
improve on its identification process. Finally a testing data set is needed, which is
new, unseen data set which is used for final validation of the trained neural network.

4.3.3 Input Excitation

Secondly to obtain an adeqﬁate model, it is important to train the /1{1,etwork with input
signals which are representative of the types of signals anticipated during normal
dperaﬁon. Furthermore for nonlinear identification, the input excitation signal is not
only required to be of a particular frequency but also to be appropriate magnitude so
that the nonlineér nature of the system can be observed. Some researches have found
that the random step input sequence is more suitable than the Pseudo-Random-
Binary-Sequence (PRBS) imput signal for identification of nonlinear systems, in
particular for neural net modeling (Scott and Ray, 1993). This is mainly due to the
fact that the PRBS applies only two input amplitudes to the system and usually is not
cnough to cover the range of important input magnitudes. It has been suggested that
the input be a pseudo-random signal with random amplitudes, whose range covers the
important values of the input signals. In this study large and small step range with
random amplitude signals are used for the training and cross validation, respectively.
A ramp-input signal is used for testing since it is entirely of different characteristics

from these signals.

4.3.4 Input and Output Data

The choice of input data fed into the network is an important consideration in the
utilization of neural networks for any particular application. For steady state
application, the choice of inputs to the network basically depends on the relevant
variables likely to have an effect on the predicted output variable. For modeling the
dynamic behavior of a system, it would not only depend on these relevant variables

but also the time history of these variables as well as the time history of the output

68

variables. In this work we choose the inputs based on the relevant input and siatc
w./ariables as well as their time history which might have an effect on the output. The
knowledge of the system such as the model order is use as the initial guide to decide
on the time history. Furthermore all variables are measured in different units having
different magnitudes and normally variables having 2 larger magnitude are given
unequal importance due to the nature of the weight update or optimiz;tion procedure,
Hence these variables are scaled between some upper and lower bound to give
appropriate weighting to all the variables. The outputs are anyway bounded due to the
nature of the activation functions utilized. -

Id

4.3.5 Weight Initialization

It is well known that initial weight specification has a pronounced effect on the speed
and quality of neural network training. It is best to initialize the weights with small,
randoim numbers e.g. in the range ~0.5 to 0.5 (Bhat and McAvoy, 1990) 5o that each
connection responds slightly differently during training and has the effect of breaking
the symmetry and promotes faster convergence to the global minimum. In the
identification step followed in this work, if the final prediction does not satisfy the
error tolerance during training, other than reconfiguring the network, the weights are
aiso re-initialized and the identification process repeated. This has been found to
improve the performance of the neural network training.

4.3.6 Training Methodology

Training is a procedure to determine the optimal values of the connection weights and
bias weights. It begins by ‘initially assigning arbitrary small random values (both
positive and negative) to the weights. Training proceeds iteratively until a satisfactory
modcl. is obtained. In each iteration, called an epoch, the actual outputs corresponding
to all the sets of inputs in the training set are predicted, and the weights are adjusted in
the direction in which the output prediction error decreases. For training to be
complete many iterations are necessary. The weights are incrementally adjusted for

every pattern in every iteration and they gradually converge on the optimal values. If

69

n, is the total number of data patterns in the X, Y data set, where X is the matrix of
inputs and Y is the matrix of targets, then one iteration corresponds to feeding all the
n, patterns once. Actual outputs are not available for the hidden units. Therefore, to
adjust the hidden layer weights, error from the output layer is propagated back to the
hidden layer, and their weights adjusted to decrease the prediction error.

Different network architectures require different training algorithms and
training times can be significantly reduced by the use of suitable algorithms. However
backpropagation with its variants remain the mainstay of performing neural network
(multilayer feedforward) leaming. Hence training or optimization of the weights to
achieve the required prediction, is performed in this work by the backpropagation
technique with a momentum term. Although there are many other variants of this
method to improve the speed of training, this approach is deemed sufficient’ to
produce the required results and accuracy for our application in this work.

4.3.7 Model Validation

Overlearning, which occurs‘whcn the model starts to learn the presented pattem in a
pointwise fashion instead of learning the functionality, is a potenti:ﬂ problem that can
casily occur in process identification, During overleamning the performance of the
network training continues to improve on the learning data set but starts to degrade on
the testing set i.¢. poor generalization capability at this instance. It can however be

dealt with by proper training and validation.

Most of the quantitative validation tests available are based on correlation
approaches, for linear systems, intended to check whether the residuals are correlated
to the input signal or among themselves (autocorrelated), Other information criteria
methods such as Akaike Information Criteria, Final Prediction Error and Bayesian
Information Criteria etc., (Ljung, 1987; Cherkassky, Gehring, and Mulier, 1995)
attempt to measure how well a model fits the data set provided as well as penalizing
compiex models by accounting for the number of parameters in the model. However

the model can also be validated, as in mainly done in this study, by predicting the

70

output in data sets not used in the identification procedure and the quality of the fit
can be observed in terms of its sum-squared error. '

The major steps required to be followed in performing neural network based
" systems identification are outlined in the chart of Figure 4.6. The use of the multilayer
feedforward networks for system identification, function approximation, and
advanced control is dcmonstrated in the Chapter 5, 6 and 7, respectively.

Data gnth"e]nng for training

and validating with
suitable excitation signal
Choice c} suitable
neural network
configuration Note:
(Assume input/outpu
configuration
alrea:(lﬁr_ inalized at
Scaling of input/ 19 stage)
output data
Choice of suitable
nul;lflll network
co on
. Reconfigure network
structure i.e
layers and nodes
Weight initialization \
reinitialize
N weights
Train the neural network
with appropriate routin
until SSE error achieve
reasonable value
Validate training with No %
test and final | . Hag
validation data weights been
re-initialize?

Yes
¥

- Neural network model
finalized

Figure 4.6: Basic steps - Neural network system identification.

	Chapter IV System Identification with Neural Networks
	4.1 Introduction
	4.2 Identification
	4.3 System Identification Steps

