Chapter 3

Neural Network Fundamentals

This chapter provides fundamental principles of neural networks, The emphasis is on-
multilayer feedforward networks, Neural network fundamentals explained consists of
four sections. Section 3.1 briefs the origin and development of neural networks. Types
of neural networks classified by their structures and their leaming paradigms are
described in section 3.2, Multilayer feedforward network architecture and functions of
a neuron are given in section 3.3 and backpropagation algorithm is provided in the
final section.

3.1 Origin and Development of Neural Networks

Artificial neural networks are mathematical structures having the ability to learn from
examples presented. Neural networks acquired their name from their similarity to the
highly connecied structure of thc human nervous system. The neural network
paradigm emerged from attempts to simulate and understand the working of the.
human brain. The human brain is composed of networks of neurons, There are about
10" neurons in the brain and each neurons is randomly connected to approximately
10* other neurons. Today 's neural network models are only simplified structures and

in no way similar to the complexities of the human brain.

The early developments in the ficld of neural networks occurred in the 1940s.
McCulloch and Pitts (1943) proposed the model of a simple neuron, which seemed
appropriate for modeling symbolic logic, perceptron, and behavior. The McCulloch-

Pitts neuron is a simple unit having a linear activation function with a threshold value

to produce an output. Later in the sixties, Rosenblatt (1959) proposed the perceptron’
and demonstrated that perceptrons can generalize and learn. The perceptrons consisted
of neuron-like processing units with linear thresholds, and were arranged in layers
similar to biological systems. They used the Hebbian learning rule for training. This
rule reinforces active connections only - weights are increased when:;he outputs are
active and decreased when the outputs are inactive. Later the Adaline, or ADAptive
Linear NEuron, was invented by Widrow and Hoff. This is not a network but a single
neuron, Adaline used a different learning method called the delta rule. The Adaline 's
method of leaming is supervised learning, in which the neuron xias given a target
value. Adaline uses this target value to calculate the prediction error and moves the
weight values in the direction of the negative gradient of the error. Still the Adaline is
a linear neuron (having a linear transfer function) and is limited to leaming linear
separable classes. Minsky and Papert (1969) studied these perceptrons in detail and
concluded that perceptrons are incapable of solving even simple problems such as the
XOR problem, which is linearly inseparable. This dampened the neural network

research for some years.

Interests in connectionist systems resurged with the discovery of the
*backpropagation method" of training multilayer neural networks. The basic neuron
model was changed by including a nonlinear activation function instead of the simple
thresholding function and i‘.he neurons were arranged in many layers. Multilayer
perceptrons with their nonlinear ‘activation functions were capable of solving
nonlinear problems that were previously impossible to solve using simple perceptrons.
The training method, backpropagation, was developed independently by a number of
researchers (Werbos, 1974; Rumelhart, Hinton, and William, 1986b, etc). The Parallel
Distributed Processing resecarch group published their research work results about
neural networks (for example, see Rumelhart, Hinton, and William, 1986a), which
made the interests in neural network research became active again. Backpropagation
is based on the generalization of the delta rule used in Adaline. Since a number of

variants of backpropagation, and other improved algorithms have been reported for |

45

the efficient training of multilayer neural networks. One such method is based on the
conjugate gradient algorithm (Leonard and Kramer, 1990).

According to the review of the neural network applications in this decade,
multilayer feedforward networks have been popularly applied to most researches as
presented in Chapter 2. However researchers have attempted to develop new types of |
neural networks as well as the optimization techniques for training the networks to
improve the efficiency of the neural network applications. Although many types of
neural networks and their training algorithms have been impro\gd' and developed,
they are based on the basis as described the next section.

3.2 Types of Neural Networks

Neural networks generally consist of a number of interconnected processing elements
or neurons. How the inter-neuron connections are arranged and the nature of the
connections determines the structure of a network.. How the strengths of the
connections are adjusted or trained to achieve a desired overall behavior of the
network is governed by its learning algorithms.

The structure of interconnection and the leamning algorithms employed by any
neural network are generally lumped together as the paradigm (the model or pattern)
of the network. The selected structures and the learning algorithms are related and are
chosen by the theoretician or experimenter to implement a particular paradigm.

3.2.1 Structural Categorization

In terms of their structures, neural networks can be divided into two types:
feedforward networks and feedback networks.

46

1) Feedforward Networks

In a feedforward network, the neurons are generally grouped into layers.
Signals flow from the input layer through to the output layer via unidirectional
gonnections, the neurons being connected from one layer to the next, but not within
the same layer. Examples of feedforward networks include the multilayer perceptron
(MLP) or multilayer feedforward network (Rumelhart and McClelland, 1986), the
Learning Vector Quantization (LVQ) (Kohonen, 1989) and the Group Method of Data
Handling (GMDH) network (Hecht-Nielsen, 1990). Feedforward networks can most
naturally perform static mapping between an input space and an output space: the
output at a given instant is a function only of the input at that instant.

2) Feedback Networks

. In a feedback network or a recurrent network, the outputs of some neurons are
fed back to the same neurons or to neurons in preceding layers. Thus, signals can flow
in both forward and backwafd directions. Examples of recurrent networks include the
Hopfield network (Hopfield, 1982), the Elman network (Elman, 1990) and the Jordan
network (Jordan, 1986). Recurrent networks have a dynaniic memory: their outputs at

a given instant reflect the current input as well as previous inputs and outputs.

3.2.2 Learning Algorithm Categorization

Neural networks are trained rather than programmed. "Training" or "Learning" means
modifying the values of the weights in the interconnections to achieve some target
criteria for the output layer of nodes. Information is stored and distributed throughout

the network via the interconnection weights.

Many learning rules have been developed, but there is a common feature in
those learning rules. Therefore, the learning methods can be grouped into two types:

supervised and unsupervised leaming algorithm.

47

1) Supervised Learning

A supervised leaming algorithm adjusts the strengths or weights of the inter-
neuron connections according to the difference between the desired and actual
network outputs corresponding to a given input. Thus, supervised learning requires a
"teacher" or "supervisor" to provide desired or target output signals. Examples of
supervised leamning algorithms include the delta rule (Widrow and Hoff, 1960), the
generalized delta rule or. backpropagation algorithm (Rumelhart and McClelland,
1986) and the LVQ algorithm (Kohonen, 1989). Reinforcement ’l/e_arning, a special
case of supervised leaming, is also included in this type of learning. Instead of giving
the correct output to the network, the network is only told whether the produced
output is good or bad (cormrect or incorrect). Thus, the feedback output is only
qualitative. An example of a reinforcement lcarrﬁng is the genetic algorithm (GA)
(Holland, 1975; Goldberg, 1989). '

2) Unsupervised Learning

Unsupervised learning algorithms do not require the desired outputs to be
known. Therefore, the only available information is in the correlation among the input
data. The network develops its own classification by extracting the correlation of the
input data, and produces an output corresponding to the input category much like
Cluster Analysis except that metric relationships can be maintained. During training,
6nly input patterns are presented to the neural network, which automatically adapts
the weights of its connection to cluster the input patterns into groups with similar
features. Examples of unsupervised leaming algorithm include the Kohonen
(Kohonen, 1989) and Carpenter Grossberg Adaptive Resonance Theory (ART)
(Ca:pentér and Grossberg, 1988) competitive learning algorithms. '

Multitayer feed forward networks with one hidden layer can approximate any
nonlinear function (Homik, Stinchcombe, and White, 1989). Consequently, they are
used in this work while the error backpropagation is utilized to train the neural

networks.

48

3.3 Multilayer Feedforward Networks

The feedforward networks, in which the signals flow only from input to output. The
mapping relationship between input and output vectors may be static, where cach
application of a given input vector always produces the same output vector, or it may .
be a dynamic, where the output produced depends upon previous, as well as current,

inputs and/or outputs. Since feedforward networks have no memory, they are only
capable of implementing static mappings. Addmg feedback allows the network to
produce dynamic mappings. Feedforward network architecture and’ functions of a

neuron are described respectively as follows.

3.3.1 Feedforward Network Architecture

_ A general structure of a feedforward neural network is shown in Figure 3.1

Processing units, or neurons are arranged in layer. The network consists of three
layers: the input, the hidden, and the output layer, respectively. The neurons in the
input layer take in the independent variables and the neurons in the output layer
compute the dependent variables. Every neuron is connected to every other neuron in’
the subsequent layer. The hidden layer neurons are "hidden" from the outside world-
they are connected with the input layer on one side and with the output layer on the
other. In addition to these, there are bias neurons with a constant input of unity that
connect to neurons in the hidden and output layers, as shown by the square boxes in

Figure 3.1.

Fach connection is associated with a parameter called "the connection weight".
The weights represent the strength of the connections and can have either negative or
hositive values. The exact value of these weights are determined as a result of the
learning procedure. If there are n;, na, and #, neurons in the input , hidden, and output

layers respectively, then the total number of parameters in a neural network model,

including the bias weights are (nw),

49

n =nn,+n +nn +n, (3.1)

In the normal operation the network gets a set of independent variables in the
input layer. The values are fed forward through the hidden layer to the output layer.
The neurons in the output layer predict the values of the dependent .variables. The

computations involved in the neurons are described in the following section.

Figure 3.1: General structure of feedforward network with one hidden layer.

Wiy represents the vector of weights between input and hidden layers; Wy o
represents the vector of weights between hidden and output layers; I, H, and O

represent the input vector, hidden layer output vector, and output layer output vector

respectively.

50

3.3.2 Functions of a Neuron

Neurons are processing elements (PEs) and all the computations of the network are
done in these units as illustrated in Figure 3.2. The neurons in the input layer are not
associated with anj computations. They just act as distribution nodes and receive the
values of the independent variables to pass it on to the hidden layer. =~

The hidden and output layer neurons can have different activation functions.
However it is convenient and moét common to have the same function in all the
neurons in the hidden and output layers. Each neuron receives ’i;put from all the
neurons in the previous layer. Considering a single neuron in the hidden or output
layer, the calculations involved in that particular neuron may be represented as
follows: I, , I,..., I, are the inputs to the neuron from the previous layer, and w, , w,

, ... Wp , are their respective weights, and b is the bias neuron weight, define § as,

CS=3wl +bZ (2)

FL|
If a sigmoid neuron transfer function (see Figure 3.3) is used, then,

i
O—O’(S)ﬁm (3.3)

or, if a hyperbolic tangent function is used, then,
0 = o(S) = tanh(S) (3.49)

where S is the weighted sum of the inputs, O is the output from the neuron, and Z is
the constant input to the bias neuron. The value of Z is usuaily fixed at unity., Other
nonlinear functions can also be used as the activations, as long as they are
differentiable and bounded.

The inputs to each neuron can be thought of as lying in a hyperspace of n
dimensions. The neuron draws a hyperplane in that hyperspace. If the neuron

produces binary outputs, the two outputs (say 0 and 1) lie on either side of the

51

hyperplane. The actual weights determine where exactly this hyperplane is located in
the hyperspace of inputs. When sigmoid functions are used, the neurons produce
intermediate values between 0 and 1 and not just the binary outputs. If the bias
weight is not present, then it is equivalent to constraining the hyperplane to pass
through the origin of the hyperspace. Also, all the neurons in the same layer share the |
same input space. Without the presence of bias weights, the hyperplanes formed by all
these neurons are constrained to pass through the same origin. The presence of bias

values offers a threshold for the neurons, and provides the freedom of hyperplanes

moving away from the origin. -
Siguals Jfrom
ot_uside or the transformed signal is
Jrom other sent to outside or other

PEs PE.

Transfer
function

i.e. sigmoid ﬁmctio}

Figure 3.2: Functions of a neuron.

The outputs of the neurons in the hidden layer form the inputs to the neurons
in the output layer. The outputs of the output layer neurons are the dependent
variables that are predicted by the neural network. One hidden layer is sufficient to
approximate any nonlinear continuous function. For most problems, presently there
are no theoretical guidelines to choose the number of neurons in the hidden layer.

Determination of the number of hidden layer neurons is a very important issue. Few

52

guidelines exist for certain types of problems (Zurada, 1992, p. 216), however in
general it is a trial and error procedure. '

1

0.6

0.8

0.7

0oL

0.5L

04

Neuron output

03}

0.2t

0.1

.4 B 2 40 {2 § 4 %
Sum of nouron inputs

Figure 3.3: Sigmoid function.

34 | Backpropagation Algorithm

Backpropagation (Rumelhart, Hinton, and William, 1986b) is a gradient descent
leamning rule, also called the generalized delta rule. In this method, the network
predicted output is compared with the actual output (target), and the weights are
changed in the negative direction of error to minimize the prediction error. This type
of learning is known as "supervised leamning". The following description of the
training algorithm is summarized from various sources. (See for example, Beale and
Jackson 1990; Rumelhart, Hinton, and William, 1986a; and Rumelhart, Hinton, and
William, 1986b).

The error function to be minimized is defined as proportional to the square of
the difference between the actual and desired output, for all the data patterns to be

learned. Let E, be the prediction error for pattern p. Then,

53

.
E, = EZ(‘"f ~0,) 3.5)
/

where £, and o, refer to the target (desired) value and the network predicted value of
the output, respectively, for pattern p and output j. The overall error is then given by

E=)E, (3.6)

The delta rule implements a gradient descent rule in which the welghts are changed in

proportion to the negative gradient of the error. o
JE,
Awya — awg (3.7)

where w), is the weight from node i to node j and A, wj is the change in w;, due to

prediction error in pattetn p.

The computations in unit j for a pattern p can be represented by,
S, =2 w0, (3.8)
i

o, =S, (8y) (3.9

where o, is the output of the neuron for pattem p. The error gradient with respect to

the weights can then be determined as follows: Using the chain rule, we can write

JE, _JE, 35, 610
ow, ~ a5, oW, '

The second term of Eq. (3.10) can be obtained from Eq. (3.8)

oS, W

T =2

u 5“’9‘

54

=0, , (3.11)
Defining
IE, S 3.12
“asﬁ = Yp y (.)
Eq. (3.10) can be written as,
% s - (3.13)
—awy = NOP‘ Va .

The weight change is proportional to the error gradient with respect to the weights.
Therefore from Eq. (3.7) and (3.13),

A,w, =15,0, (3.14)

The velues of &, need to be determined for each neuron j. Then, the weights of the

network can be updated such that the prediction error decreases. Using the chain rule
on Eq. (3.12),

SE OE. do
5 =t — L2 (3.15)
W="3S, o, ds,

From Eq. (3.5) and (3.9), Eq. (3.15) can be written as,
8, ==ty ~0,)/1(Sy) (3.16)
For sigmoid functions as in Eq. (3.3), f;(S,,) can easily be obtained to be

fJ.(SPJ) =0n,-(1—0’1) (3-17)

The first derivative can easily be catculated for sigmoid function from the output

values only as given above.

55

Eq. (3.16) is useful for calculating & ’s for the neurons in the output layer.
However, this equation cannot be used for the hidden layer neurons, because the
"target value" similar to ¢, is not available to define the error for the hidden layer

w

neurons. Therefore, when j refers to a hidden layer neuron, the term 9k, can be
: [)

obtained as follows: by using the chain rule again,

JE, JE, S,
é’opj ' 8, do,

=-Z‘jaﬂw,, | (3.18)
where k is the output layer. Therefore, & for a hidden layer ncuron is given by,
8, =3 5uwef)(Sy) (3.19)

The weight update rule is given by Eq. (3.14) and the §,, is given by Eq. (3.16) for
neuron in the output layer; and by Eq. (3.19) for neurons in the hidden layer. The
values of f ;I(Spj) for sigmoid functions, required in these equations ((3.16) and
(3.19)) can easily be obtained only from the outputs-as in Eq. (3.17). Note that the &,
values of the hidden layer neurons are dependent on all of the J,, values (k= 1, 2,...)

of the output layer neurons. Therefore, the & values of the output neurons are
calculated first and then "propagated back" to the hidden layer, giving the name

"backpropagation" to this generalized delta rule.

Implementing the error backpropagation rule as described is very simple. But
this method converge slowly to the optimal values. The training algorithm can be

significantly improved by using an acceleration method called "momentum

56

algorithm™ which is a conventional optimization tool. A description of the algorithm
can be found in Rumelhart, Hinton, and William (1986b). In this algorithm, an
additional term is added to the weight update rule which gives "a momentum" to the
change in weights towards the optimum. The modified training rule with the addition
of a momentum term is given by,

A, w, (1) = 76, (1)0,(t) +ahw, (¢ - 1) (3.20)

where ¢ refers to an epoch, or an iteration, incremented by 1 for each sweep through
the whole set of input-output values. The term o is the momentu':;; parameter which
can take a value between 0 and 1, determining the relative contribution of the earlier
gradients to the current weight change. This procedure produces a large change in the
weights if the changes are currently large, and will decrease as the changes become,
less. Therefore the training speed increases, and the network is less likely to get stuck
in local optima early on, since the momentum term will push the network out of local
optima following the overall general trend in v}cight movement. Figure 3.4 shows the
forward flow of the data to the feedforward network and backward flow of the error in
such network trained with error backpropagation algorithm, '

Conclusion of the backpropagation algorithm and an example demonstrating

how to apply such algorithm to solve a problem are provided in Appendix B.

57

Inputs
Input
layer .
N
Hidden
layer
P .
outa)
layer
Output
Desired fromNN /
output]
— A
Learning
rule
Is error <
threshold
ar
End of Number of
simulation cycles > limit?

Figure 3.4: Forward flow of information or data (arrows) and backward flow of error

(dashed lines) in a back propagation type of neural network

	Chapter III Neural Network Fundamentals
	3.1 Origin and Development of Neural Networks
	3.2 Types of Neural Networks
	3.3 Multilayer Feedforward Networks
	3.4 Backpropagation Algorithm

