Chapter 2

Literature Review

In this chapter a review of the applications of neural networks in chéri;ical engineering
especially in process control is provided, Their applications varied in a wide range:
from their use in advanced process controls, such as predictive control, inverse-
model-based control, and adeptive control. Neural networks are also utilized in other
applications: on_h'ne estimation, pattem recognition, data rectification, gross error
detection, etc. Some papers (Thibault and Grandjean, 1991; Willis et al, 1991; Willis
et al, 1992, and Hussain, 1999) reviewing the use of neural networks in control
applications, and some books (Miller, Sutton, and Werbos, 1990; Bulsari, 1995)

describing the use of neural networks in control of various processes, are available.

This chapter is divided into four sections: types of artificial neural networks,
chemical process modeling and identification with neural networks, neural networks
in advanced control, and other applications of neural networks in chemical

engineering as follows.

2.1 Types of Artificial Neural Networks

The number of different types of artificial neural network architectures and node
processing functions that are available in the literature is large (Morris, Montague, and
Willis, 1994). The selection of the neural network depends on the purpose of their
applications. However those that are cbmmonly_found in engineering applications are
the multilayer feedforward networks, recurrent networks and radial basis function

networks. The multilayer feedforward network with one hidden layer structure is



depicted in Figure 2.1. The description of multilayer feedforward networks will be
given in detail in the next chapter.

Figure 2.1: Multilayer feedforward network architecture with one hidden layer.

The architecture of recurrent networks as shown in Figure 2.2 is quite similar
to that of the multilayer feedforward networks except that there are also feedback and
lateral connections between the nodes in the same as well as in the different layers.
Networks that have feedback only from the output layer are calied external recurrent
networks, while those that have feedback to and/or from the hidden layer are called

_intemnal recurrent networks (Su and McAvoy, 1992).

The radial basis function networks are also similar to the multilayer
feedforward networks with some exceptions. One is that the activation function is in
terms of some radial basis function such as the Gaussian or spline function (Brown
and Harris, 1994). Secondly, there is no nonlinear activation function at the output.
layer (i.e. linear output) and hence the weights between the hidden and output layer
can be determined by linear regression techniques (Chen and Billings , 1992). Radial

basis function network structure is illustrated in Figure 2.3,
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Nevertheless the multilayer feedforward network with sigmoid or hyperbolic
tangent activation function is by far the most widely applied. It is also global in
representation and normally requires smaller number of hidden nodes as compared to
the radial basis function networks (Boslovic and Narendra, 1995; Bdward and Goh,
1995). The multilayer feedforward network with sigmoid or hypq:bolic tangent
activation function is also computationally less intensive (during tra.mmg) compared’
to the recurrent-type networks. A number of ncural network leaming su-ategiw have
been developed elsewhere (Rumelhart and McClelland, 1986; Lippmann, 1987).
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Figure 2.2: Recurrent neural network architecture.
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Figure 2.3; Radial basis function network architecture. _

2.2 . Chemical Process Modeling and Identification with
Neural Networks

Many systems of interest in chemical engineering are highly nonlinear. The often-
complicated dynamic behavior of such system can be successfully analyzed,
characterized and predicted using neural networks to construct black-box models
(empirical models) and gray-box models (semi-empirical models). These models can
be used for the control and/or optimization of the processes. In this section the use of

neural networks for the purpose of modeling and identification is proposed.

2.2.1 Black-box Modeling Approach

Neural networks as black-box modeling tools have already been used for many
applications in industry, business, and science (Widrow et al., 1994). The ability of '
neural networks to approximate any continuous function to any desired of accuracy
(Cybenko, 1989) has been the basis for many applications. Nonetheless, only their

applications in chemical engineering are headings prcscnted. Multilayer feedforward
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networks, recurrent neural networks, and radial basis function networks are mostly
utilized in chemical engineering especially for the purpose of system modeling and/or
identification. According to the review on neural network application in chanicall
process modeling, either simulated data or real plant data are used to identify the

process models.
Multilaver Feedforward Networks (MEENs)

Many researches employed this network topology as a black-box modeling tool to
model many systems either simulation or online. In accordance w‘ith the simulation
applications, the MFFNs were utilized to model many processes: continuous stirred
tank reactors, pH neutralization processes, biochemical processes, distillation,
catalytic process, desalination, vapor composition and some linear/nonlinear systems.
The abbreviations used in this chapter is given in Table 2.1 and the neural network
~ applications to simulated and real processes are summarized in Table 2.2 and Table

2.3, respectively.

An application to steady state reactor modeling was given by Bhat and
McAvoy (1989, 1990), in which an isothermal CSTR reactor is considered and a
MFFN was trained to optimize the reactor yield. Bhat and McAvoy (1989, 1990) and
Saint-Donat, Bhat, and McAvoy (1991) used a MFFN for the dynamic modeling of 2
simulated nonlinear pH system. Narendra and ?arthasarathy (1990) introduced the
models that MEFN and recurrent neural network (RNN) were interconnected in novel
configuration for both identification and control. It was found that the neural networks
could be used effectively for the identification and control of nonlinear dynamical
systems. Nahas, Henson, and Seborg (1992) utilized the three-layer feedforward
networks trained with a conjugated gradient algorithm to model the continuous stirred
tank reactor (CSTR) and the pH noutralization process and implement them in the
nonlinear internal model control (NIMC). Nikravesh, Farell, and Standford (1996)
adopted the MFFN in conjunction with recursive least squares to identify the mode} of
a nonisothermal CSTR with time varying parameters. They found that their technique

could be used effectively for model identification of nonlinear time variant processes.
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Ungar, Powell, and Kamens (1990) modeled a bioreactor with two controlled
vanablcs and one manipulated variable using MFFN. Kurtanjek (1994) studied the
use of MFFN to model the baker 's yeast production. Ribiera-Polak with Powell
modification algorithm was adopted to train the network. This study found that the
network was effective tool for modeling of complex system such as biological
orocesses. Piron, Latrille, and René (1997) applied the MFEN in black-box modeling
and gray-box (semi-physical or hybrid) modeling to the study of the crossflow
microfiltration proccss which was performed on suspensions of baker s yeast. It was
found that the hybrid approach appeared to be more accurate and’was a means for
complementing the description of a physical model. They also concluded that further
applications (especially controls), however, remain restricted by the assumption made
to establish this model. Classical networks ("black-box" approach) certainly do not
have this limitation for process understanding. Emmanouilides and Petrou (1997) used
the MFEN to identify and control an anacrobic digester process. Adaptive online
training with random scarch'optimization techniques, random search and chemotaxis,
as well as backpropagation algorithm were applied to improve the modeling and
control performance. From the results, the random search techniques converged much

faster than the backpropagation algorithm.

Lambert and Hecht-Nielson (1991) compared MFFN and fully recurrent
networks for the prediction of the molar fraction in the bottom stream of a binary
distillation. MacMurray and Himmelblau (1995) examined a number of different
types of artificial néu;al networks, including MFFN, externally recurrent network
(ERN), internally recurrent (Elman) network (IRN), diagonally recurrent network
(DRN), and combinations c¢f ERN and IRN, to model the packed distillation column.
They found that externally recurrent network (ERN) had the best performance in
predicting the process output many time step ahead in the future, furthermore, the
network model was as good or better than a simplified first principles model when

used for model predictive control.
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Chitra (1992) described an application of MFFN for developing chemical
kinetics of a catalytic process. The neural network model was better in several
temperature and catalytic loading regions, compared to a statistical power-law model
and quadratic model.

Ramasamy and Deshpande (1995) investigated the application of MFFN in
process identification as demonstrated a simulated multistage desalination process.
They stated that feedforward network offer a great potential for applications in

process identification and advanced control. P
~

Fakhr-Eddine et al (1996) utilized an alternative approach to Low Pressure
Chemical Vapor Decomposition (LPCVD) modeling. That is the reactor was broken-
up into a number of basic elements in which a8 MFFN was elaborated to represent. The
network, trained with quasi-Newton leamning algorithm, was used to compute on-line
the film thickness on each wafer in order to develop a controller of LPCVD reactors
then good model was obtained. Nevertheless, they concluded that the computation
rapidity of the neural network model which enables its use in control aim as on-line

sensors of film thickness are not available.

Lou and Perez (1996) used the backpropagation algorithm in conjunction with
Kalman filtering in order to establish a new self-learning technique of MFFN. They
found that this new technique was faster and more stable than the classical
backpropagation algorithm for training MFFN. Moreover, it was less sensitive to the

initial weights and to the leaming parameters.

Some researches were also utilized the MFFN to model real proccsses.‘
Pollard et al. (1992) demonstrated that MFFN models could be built for real industrial
processes. They conducted experiments on a distillation column unit with one input
(column reflux flow rate) and one output (tray temperature) and obtained a neural
network dynamic model. They also demonstrated the utility of cross validation.
Baratti, Vacca, and Servido (1995) utilized the MFFN to model the two actual

distillation columns: the butane splitter tower and the gasoline stabilizer and then
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implemented them for monitoring and control applications. They found that neural
network model with proper implementation techniques can significantly improve

column operation.

Blum et al. (1992) and Blum (1992) used a MFFN to model a multiple-input
multiple-output (MIMO) reactor in the Tennessee Eastman plant (Downs and Vogel,
1993).

Ramasamy and Deshpande (1995) investigated the application of MFFN in
process identification as demonstrated an industrial multivariable pfélc,ess. They stated
that MFFNs offer a great potential for applications in process identification and
advanced control.

ent 5

Regarding the research works that are surveyed, there are few papers applied recurrent
neural netwotk for modeling. One employed the network to model the neutralization
in continuous stirred tank reactor, the other investigated its use in linear and nonlincar

systems.

You and Nikolaou (1993) utilized the recurrent neural network (RNN) to
model both static and dynamic relationship of a pH CSTR and a biochemical batch
reactor. They found that the modeling capabilitics of RNN were comparable to those
of the MFFN, but the training of RNN took longer time. Pham and Liu (1993)
investigated the use of thc' basic Elman-type recurrent network and the modified
Elman network, in which self-connections are made to the context units for the
identification of a variety of linear aid nonlinear systems. It was found that the latter
networks were more versatile than the basic Elman nets in being able to model the

dynamic behavior of high order linear and nonlinear systems.

Radial Basis Fupction Networks (RBFNs)

Chen and Billings (1992) and several others have also studied neural networks for

system identification, obtaining Nonlinear Auto-Regressive Moving Average with
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eXogenous inputs (NARMAX) type models. Pottmann and Seborg (1997) showed
how RBFN could be used to predict pH in a CSTR.

2.2.2 Gray-box Modeling Approach

Despite the use of the neural networks as the black-box modeling tools, there have
been recent attempts to apply the neural networks in gray-box type modeling. In this
approach, the neural networks are used to estimate the parameters and unmeasured
states of the first principle model therefore sometimes the models gbtained are called
hybrid models. Multilayer feedforward network and radial basis function network
were utilized in these researches. The summary of the neural network application to
chemical processes with gray-box approach is provided in Table 2.4.

Multilayer Feedforward Networks (MEFNs)

Psichogios and Ungar (1992) developed a hybrid model for a fedbatch bioreactor. The
hybrid model combined a partial first principles model, which incorporated the
available prior knowledge about the process being model, with a neural network
which served as an estimator of unmeasured process parameters that are difficult to
model from first principles. The training method for the neural network was the error
backpropagation algorithm. They found that the hybrid model had better properties.
than standard black:box neural network model in that it is able to interpolate and
extrapolate much more accurately, Furthermore, it was easier to analyze and interpret

and required significantly fewer ti'aining examples.

In addition to the simulation applications, MFFNs were also applied to
identify real processes. Henricus et al. (1996) utilized serial gray-box modeling for
dynamic modeling of real-time pressure vessel. Noniterative training algorithm, which
is very fast, was used for training the neural networks. In this strategy, a neural
network was used to model the inaccurately known term of a macroscopic balance,

and the identification data covered only the input-output space of the inaccurately
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known term. They stated that the serial gray-box configuration resulted in accurate
models with known extrapolation properties with a limited experimental effort.

Sabharwal, Bhat, and Wada (1997) used the approach that integrated a neural
network and dynamic simulation modeling to achieve quality control and increase
throughput. It was developed for the no. 2 XY splitter of the xylene distillation unit as
part of a new advanced quality control (AQC) project in the Japan Energy Corp.
Mizushima Qil Refinery. :

i is Function orks § -

Semi-parametric approaches combining radial basis function network (RBFN),
serving as an estimator of unmeasured process parameters, with prior models either in.
series or parallel have been studied by Thompson and Kramer (1994). The RBFN
welghts were estimated using nonlinear programming methods. The inclusion of the
prior knowledgc was investigated as a means of improving the neural network
predictions when they were trained in sparse and noisy process data. The approach
was applied in predicting cell biomass and secondary metabolite in a fed-batch
penicillin fermentation. They showed that the prior knowledge enhanced the

generalization capabilities of a neural model.



Table 2.1: Description of abbreviations

Abbreviations Description
Neural network type
DRN Diagonally Recurrent Network
ERN External Recurrent Network
IRN Internal Recurrent Netwgrk
MFFN Multilayer FeedForward Network
RBFN Radial Basis Function Network
RNN Recurrent Neural Network
Activation/ Transfer Functi
Ellp ' Ellipse
Lin . Linear
RBF Radial Basis Function
Sig Sigmoid Function
' Tanh Hyperbolic Tengent Funcion
em/Objective
Bio Bioprocess/ Bioreactor
CSTR' Continuous Stirred Tank Reactor
Dis Distillation
Neut Neutralizing/ Neutralizer
Comp Composition -
Conc Concentration
MW Molecular Weight
Poly Polymerization
Press Pressure
Prod Product
Temp Temperature
Thick Thickness
Control technique
DMC Dynamic Matrix Control
.GMC Generic Model Control
IMC Internal Model Control
MPC Model Predictive Control
PI Proportional Integral
PID Proportional integral Derivative
Robugtness
Dist Disturbance Rejection
Set pt Set point Tracking

18
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Table 2.2: Neural network appli_cations in simulated process modeling with black-box

approach
NN type Training algorithm System ‘References
MFFN/Sig backpropagation CSTR Bhat and McAvoy, 1989; 1990
MFFN/Sig backpropagation pH system Bhat and McAvoy, 1989, 1990;
Saint-Donat et al., 1991
MFFN/RNN backpropagation nonlincar system Narendra and Parthasarathy, 1950
MFFN backpropagation Bioreactor Ungar et al., 1990
MFFN/RNN backpropegation binary distillation Lambert and Hecht-Nielson, 1991 .
MFFN/Sig conjugate gradient CSTR/pH system  Nahas, Henson, an’g Seborg, 1992
MFFN backpropagation catalytic process Chitra, 1992
MFFN/Tanh recursive least square ~ CSTR Nikravesh, Farell, Standford, 1996
MFFN Ribiera-Polak with yeast production Kurtanjek, 1994
Powell modification
MFFN/ERN/ backpropagation packed dis. column ~ MacMurray and Hirmelblau, 1995
DRN/ERN+IRN
MFFN/Sig backpropagation desalination Ramasamy and Deshpande, 1995
MFFN/Sig quasi-Newton LPCVD Fakhr-Eddine et al., 1996
MFFN/Tanh backpropagation with  nonlinear system Lou and Perez, 1996
katman filtering
MFFN/Sig quasi-Newton cross flow Piron, Latrille, and René, 1997
microfiltration
MFFN random search opt anacrobic digestion ~ Emmanouilides and Petrou, 1997
tech,
random search,

chemotaxis, and
backpropagation
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Table 2.3: Neural network applications in real process modeling with black-box

approach
NN type Tralning algorithm  System References
MFFN/Sig backpropagation distillation Pollard et al., 1992
MFFN backpropagation MIMO reactor Blum et al., 1992; Blum, 1992
RBFN backpropagation pH system Chen end Billings, 1992
RBFN backpropagation pH system Pottmann and Seborg, 1992
RNN/Sig back propagation pH system and Bio. You and Nikolaou, 1993
through time
| RNN/Lin, Sig, Tanh  backpropagation linear/ nonlinear system  Pham and l.‘./iu,'l 993
MFFN/Sig backpropagation multivariable process Ramasamy and Deshpande, 1995
MFFN beckpropagation splitter tower and Baratti, Vacca, and Servido, 1995

gasoline stabilizer

Table 2.4: Neural network applications in chemical modeling with gray-box approach

NN type Tralning algorithm ~ System References

MFFN backpropagation fedbatch bioreactor Psichogios and Ungar, 1992

RBFN backpropagation fedbateh penicillin Thompson and Kramer, 1994
fermentation

MFFN/Tanh noniterative training_pressure vesset Henricus et al., 1996

MEFFN backpropagation splitter of xylene Sabharwal, Bhat, and Wada, 1997

distillation

2.3 Neural Network Applications in Control Systems

The majority of the neural networks utilized in these applications are multilayer

feedforward networks, recurrent networks, and radial basis function networks. There

is no clear advantage of one network over the other as well as of one activation-

function over the other. This will very much be dependent on the user and their

application and has to be looked on a case-to-case basis. Some comparisons between

the different types of networks can be found in the research works of Karim and

Rivera (1992) and Su and McAvoy (1992). While the comparisons between the

conventional sigmoid and the radial basis function activation functions can be found
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in the research works of Weigand, Rumelhart, and Huberman (1990); Chen et al.
(1990); and Edward and Goh (1995).

The applications utilizing these neural-network-based strategics are wide
ranging but involve typical chemical process systems ranging from the linear to the
highly nonlinear systems. The detailed description and characteristics of these
processes can be found in standard textbooks (Douglas, 1972; Luyben, 1973; Perry,
1974; Stephanopoulos, 1984; and Seborg, Edgar, and Mellichamp, 1989). However,
the most common systems used are the distillation columns and ,ﬂjg-reactor systems
(continuous stirred tank reactors, bioreactors and the neutralizing reactors). These are
multivariable, nonlinear systems, which are highly suitable for testing such control
algorithms in chemical process systems, Neural networks are often used in many
control configurations. However, those control systems can be grouped into three
control techniques. That is model predictive control, inverse-model-based control, and
adaptive control. The methodology to implement these control techniques, how neural
networks are embloyed in the control configurations, and the neural network
applications in those control configurations are proposed, respectively.
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Figure 2.4: Neural networks in general model predictive control strategy.
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2.3.1 Model Predictive Control Techniques

The most commonly found control technique, which uses neural network model is the

predictive control technique. It is defined as a control scheme in which the controller
determines a manipulated variable profile that optimize some open-loop performance

objective on a time interval, from the current time up to a prediction horizon.

Nonlinear model prediction control refers to the general case in which the model,

performance objective and constraints are nonlinear functions of the system variables.

In this case, neural networks are used as conventional identified mo/deis to replace the’
normal first-principle-models in the optimization formulation. The increasing

popularity of the neural network-based-predictive technique is due to the attraction of
using neural network models instead of other forms of model to effectively represent

the complex nonlinear systems within the predictive methodology (Morris, Montague,

| and Wlllls, 1994). Some of the advantages of using neural networks in optimal control

stratcglcs over other conventional and linearly parameterized models are also given in

the paper of Edward and Goh (1995).

Most of epplications under the predictive control scheme utilize the multilayer
feedforward neural network type while few utilize the recurrent type. These
applications, with their objectives, systems and types of networks are summarized in
Table 2.5 and Table 2.6. The major applications are described in further details later,
beginning from the multilayer type.

ulti W etworks

In one of the earliest reported simulation work, Psichogios and Ungar (1991) utilized
a neural network model of a continuous stirred-tank reactor (CSTR) to control the
product composition in the conventional model predictive scheme where they found
that steady state offsets were obtained during set point tracking. However, they made
correctlons to the output, accounting for modeling error and unmeasured disturbances
entermg the process, and obtained offset-free tracking in this case. Willis, Montague,

and Morris (1992) also estimated the plant-model mismatch at each sampling instant
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gnd-utilized it to correct the predictions from the model in their model predictive'
control schemes. He implemented the control action using the receding horizon
method, then implemented the scheme for the control of concentration in CSTR.
Offset-free set point tracking results were obtained.

Two studies utilizing neural networks in the dynamic matrix control (DMC)
algorithm have also been reported. Hemandez and Arkun (1990) applied neural
networks to estimate the disturbance due to the presence of nonlinearities. This was
' then added to the linear model in the DMC formulation with onli}':_c, learning of the
neural network models. This algorithm was applied for control of concentration in a
CSTR system (with multiple steady states) for set-point tracking and disturbance-
rejection case studies. They achieved better results in both cases as compared with the
conventional linear DMC method. In the work of Lee and Park (1992) the neural
network was taught to learn about the relationship between the disturbance pattern and
the desired control actions by minimizing the controller output due to unmodeled
effects. In this case the neural network basically acts as a feedforward controller to
cater for unknown disturbances in the system. This scheme was then applied to
control the compositions in the multiple reaction CSTR system under disturbances
and plant-model mismatches. They found that the neural scheme performs better than

the conventional feedforward DMC controller.

_ Hunt and Sbarbaro (1992) also estimated the plant-model mismatch at each
sampling instant and utilized it to comrect the predictions from the model in their
model predictive control schemes. They implemented the control action using the
receding horizon method then implemented it for the control of pH in a neutralizing
reactor. Offset-free set point tracking results were obtained. Emmanouilides and
Petrou (1997) utilized neural networks in a model predictive scheme to control the‘
substrate concentration and pH of a complex nonlinear anaerobic digestion system. In
his implementation, the neural network models were adapted online. The simulation
results showed that the control strategy gave desired set point tracking and regulation

even under process input variations and process parameter changes.
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Tumner, Montague, and Morris (1995) also cstimated the plant-model
mismatch at each sampling instant and utilized it to correct the predictions from the
model in their model predictive control schemes. He implemented the control action
using the receding horizon method then implemented it for the control of
concentration in a distillation column, Offset-free set point tracking results were:
obtained. Leo and Park (1992) applied neural network in DMC configuration, The
neural network was taught to leam about the relationship between the disturbance
pattern and the desired control actions by minimizing the controller output due to
unmodeled effects. In this case the neural network basically acts-as a feedforward
controller to cater for unknown disturbances in the system. This scheme was then
applied to control the product compositions in a distillation column under
disturbances and plant-model mismatches. They found that the neural scheme
performs better than the conventional feedforward DMC controller. Gokhale,
Horuwitz, and Riggs (1995) used a steady-state multilayer neural network model to
replace the tray-to-tray model used in a predictive model based controller to control
the product compositions in a propylene-propanc splitter. They found that the neural-
network scheme, with online filtering, performed slightly is better than the nonlinear
model-based compositions (with sluggish response for the bottom composition). |

For the applications to real processes, VanCan et al. (1995) utilized a neural
network by numerically inverting the forward model and implementing it as a
predictive controller. This was implemented on a laboratory pressure vessel to control
the pressure by manipulating the inlet air flowrate. Experiments were done for set-
point tracking and comparisons were made with the Pl and linear model-based
controllers. They found that the response of the neural network based controller was

faster than the conventional approaches especially at larger set point changes.

Evans et al. (1993) developed a neural-network model of a laboratory process
i.e. two non-interacting tanks in series, and incorporated it in a predictive control
strategy, where the network was used to predict future process outputs up to a set

horizon. Experiments for set point tracking of the level in the second tank were
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performed in this study. Their comparisons with the conventional PID controller show
better performance, in terms of sluggishness and control movements,

Sheppard, Grant, and Ward (1992) applied neural networks for the control of
temperature in a 175 kW experimental furnace system. In this case the neural network
model was incorporated into an explicit generalized predictive control scheme. They
performed set point tracking of the temperature and the results obtained showed poor
tracking at the start of the experiment but excellent tracking towards the end, even

with the small possible amount of the data gathered. P
s

Wormsley and Henry (1994) used neural-network models within a model
| predictive control scheme to control the distillate temperature in a laboratory-scale
distillation apparatus separating methanol and water. An exhaustive search method
was used for optimization and they obtained good set point and disturbance-rejection
results in their study.

Doherty, Williams, and Gomm (1995) used an RBF-based neural network to
model an online pH process and used it within a model predictive control scheme to
control the pH of the outlet stream. They used a transport lag volume array method to
compensate for the dead time in the tubular reactor. They employed their scheme
successfully to regulate the pH under various disturbances and used the filter to
improve robustness to noise effecis. Draeger, Engell, and Ranke (1995) utilized 2
neural-network-based model predictive control scheme to control pH in a laboratory-.
scale neutralization reactor. They used the neural network as the nonlinear prediction
model in an extended DMC algorithm to control the pH value. The training data set
for the neural network was obtained from online measurements of the inputs and
outputs of the plant operating under a PI controller. The results obtained for set-point
tracking and disturbance rejection cases showed better results than with the

conventional PI controller.

Tsen et al. (1996) used a hybrid neural-network that integrates experimental

information and knowledge from a mathematical model for control of quality in an
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experimental batch polymerization reactor. The hybrid model is utilized for
identifying the unknown and unmeasured disturbances in the initial charge of the
batch reaction, which is formulated in a model predictive control strategy. The
strategy was applied on a real experimental system to achieve the destred product

conversion in the least possible time.

Recurrent Neural Networks (RINNs)

The use of recurrent neural networks in these model predictive schemes was reported
in two cases. MacMurray and Himmeblau (1995) used an external recusrent neural
network to predict and control the product compositions in a packed distillation
column within the model predictive control strategy. This was done for set point
tracking and disturbance rejection studies. They obtained the same results as those
obtained using first principle model, but with less computation time when using the
neural network model. Tan and VanCauwenberghe (1996) compared three different
optimizing methods for the design of an external recurrent neural network predictive
controller based on Smith-type prediction. They used this technique successfully to
compensate for large time delays in the control of an anaerobic digester process under

set point tracking.

Only recently a nonlinear predictive control technique employing neural
networks have been implerﬂented, through software called Process Perfector, in an
industrial polypropylene plant. The model predictive control techniques utilize a
neural network steady state model and a dynamic.process model with the dynamic
optimization program to perform the  control calculations. The objective of the
installation was to control the melt flow rate in the polypropylene polymerization
reactor. The manage to get good set point tracking resuits much better than the

traditional linear model predictive method (Keeler et al., 1997).

Some researches also utilized the recurrent neural networks in the control
systems of real processes. Temeng, Schnelle, and McAvoy (1995) used a recurrent

network to model an industrial multi-pass packed bed reactor which is then used in
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conjunction with an optimizer to build a nonlinear model predictive controllers. The
controller was then used to regulate the temperature within the reactor under
disturbance rejection cases. The closed loop results they obtained indicate that the
neural network-based controller could achieve tighter control than is possible with
" decentralized single loop controllers.

Table 2.5: Neural network applications in predictive control techniques - simulation

implementation
NN Type System Objective Robustness  References .~
MFFN/Sig CSTR Prod. conc.  Dist, Peichogios and Ungar, 1991
MFFN/Sig CSTR Prod.conc.  Set pt/Dist. Hemandez and Arkun, 1990
MFFN/RBF Neut.  pH Set pt. Hunt and Sbarbaro, 1992
MFFN/Sig Dis. Column Prod. conc. Set pt./Dist. Willis, Montague, and Morris, 1592
MFFN/Sig Dis. Column Prod. conc.  Dist. Gokhale, Horuwitz, and Riggs, 1995
" MFFN/Tanh Dis. Colurmn Prod. conc.  Setpt/Dist.  Lee and Park, 1992
MFFN/filter Dis. Column Press. Set pt. Turner, Montague, and Morris, 1995
MFFN Digester Conc/pH  Setpt/Dist.  Emmanouilides and Petrou, 1997
RNN Packed Colurmn  Prod. comp.  Set pt./Dist. MacMurray and Himmelblau, 1995
RNN Digester Conc. Set pt. Tan and VanCauwenberghe, 1596

Table 2.6: Neural network applications in predictive control techniques - online

implementation
NN Type System Ob]ective Robustness Reference
MFFN/Tanh Pressure vessel Press. Set pt. ' VanCan et al., 1995
MFFN/Sig Tank-in series Level Set pt. Evans et al., 1995
MFFN Furnace . Temp. Set pt. Sheppard, Grant, and Ward, 1992
MFFN/Sig Dis. Column Dist. Temp.  Set pt./Dist. Wormsey and Henrry, 1594
» MFFN/RBF Neut. Reactor pH Dist. Doherty, Williams, and Gomm, 1995
MFFN/Sig Neut. Reactor pH Set pt./Dist. Draeger, Engell, and Ranke, 1995
MFFN Poly. Reactor Prod. Opt. time Tsen et al., 1996
Quality
RNN/Sig Packed bed Temp. Dist. Temeng, Schnelle, and McAvoy,

reactor 1995
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Figure 2.5: Neural networks in intemal-model-control strategy.

2.3.2 Inverse-Model-Based Techniques

Two approaches utilizing neural networks in the inverse-model-based strategy are the
direct inverse control and the internal-model control (IMC) techniques. In the direct
inverse control technique, the inverse model acts as the controller in cascade with the
system under control, without any feedback. In this case the neural network, acting as
the controller, has to learn to supply as its output the appropriate control parameters
for the desired targets at its input. In this control scheme the desired set point acts as
the desired output which is fed to the network together with the past plant inputs and
outputs to predict the desired current plant input (Pao, Phillips, and Sobajic, 1992). A

much more robust and stable strategy is that of the nonlinear internal model control
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technique, which is basically an extension of the linear IMC method (Economou,
Morari, and Palsson, 1986) (see Figure 2.5). -

The IMC approach is similar to the direct inverse approach above except for
two additions. First is the addition of the forward model placed in parallel with the
plant, to cater for plant or model mismatches and second is that the cri'orlbetween the
plant output and the neural net forward model is subtracted from the set point before
being fed into the inverse model. The other data fed to the inverse model is similar to
the direct method. A filter can be introduced prior to the controller /1}1 this approach to
incorporate robustness in the feedback system, especially where it is difficult to get

exact inverse models.

All applications under this category except for two cases reponéd utilizing
multilayer feedforward neural networks in model-based control methods can be seen
in Table 2.7 and Table 2.8. They are described in further details later, beginning first-
with those utilizing the multilayer networks.

tila eedforw rks s

Multilayer feedforward nctworks are widely adopted into many systems, for instance,

continuous stirred tank reactor, neutralization, and distillation as provided below,

One of the earliest reported work in process systems was done by Psichogios
and Ungar (1991), who utilized an internal model control (IMC) approach to control
product concentration in a nonisothermal CSTR with first order irreversible reactions
by manipulating the inlet feed temperature. Their control strategy was concerned with
disturbance rejection where the disturbance was the change in feed concentration. The
inverse-model-based controller was obtained by inverting the neural network model,
describing the process dynamics, using Newton 's method numerically. However, they
obtained unstable results when the inverse neural network models were directly
utilized as the controller in the IMC configuration, Nahas, Henson, and Seborg (1992)
also utilized the IMC apprbach to contro! the effluent concentration in a CSTR, with
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first order irreversible exothermic reactions. The inverse model was obtained by
humerica.lly solving for the control action, from the formulation of the network
forward model. Filtering action and time delay compensation, in the form of a Smith
predictor, were also used and offset-free results wete obtained in both the set point
tracking and disturbance rejection cases. They also implemented the same strategy in
controlling the base flow rate. Offset-free results were also achieved here for set point
and disturbance rejection cases. Dayal, Taylor, and MacGregor (1994) also
implemented the IMC approach for the control of a jacketed CSTR, with first order
irreversible reactions, to keep the reactor conversion at its desired settmg A feedback
as well as reference model filter was used in this case. In their study they compared
the usage of a numertcally inverted neural network inverse-model controller for set
point tracking as well as disturbance rejection studies. They found that the directly
trained neural-network inverse-model as the controller case gave better results overall
(except for a slightly bigger oscillation at the step changes) than the numerically
inverted inverse-model method, with yet less computational time. They also
incorporated a feedforward-feedback strategy to improve on the disturbance-rejection
results. However, for the non-monotonic case (i.e. process has well-defined maximum
conversion and the steady state gain changes sign) the directly trained neural network.
inverse-model gave unstable results, which they accounted to the presence of input
multiplicity in the reactor behavior. Piovoso et al. (1992) utilized neural networks in
the GMC and IMC strategies, respectively, to control tﬂe reactor temperature in a
first-order, non-adiabatic CSTR system. In the GMC approach, they used a neural
network to approximate the functional form of the nonlinear function describing the
energy balance, which is required in the controller formulation. In the IMC strategy,
they hoilever utilized a PI controller (tuned on a neural network forward model) to
estimate the needed control input to produce the required output. They performed set
ﬁoint tracking studies, for the ideal case and with model mismatch, and found that the
neural-network-based methods gave comparable results to the pure GMC and global
linearizing feedback techniques. Lightbody and Irwin (1995) developed a novel

nonlinear modet control strategy which utilized the nonlinear neural network model of
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the plant to act as a medium for the estimation of the parameters of the linear discrete-
time model (assumed for the plant). This linear model is then utilized in conjunction
with Kalman 's method to design the inverse controller, wherein the parameters of this
controller are adapted at each sample instant. They used this approach for set point
tracking of concentration in a CSTR system, which outperformed the conventional
PID control system. Shah and Mecki (1995) used a neural network in parailel with a
proportional controller to control temperature in the CSTR. The neural network they
used consists of Gaussian activation function and is trained to learn the inverse
dynamics of the CSTR with and without parameter variations. Their’ simulation results
for pseudo-step changes indicate that the neural network can be applied online, even-

with parameter variation.

Sbarbaro, Neumerkel, and Hunt (1993) utilized the neural network inverse
models, acting as a controller, in different ways to control the strip thickness in a steel
mlliné process, under normal process disturbances, They utilized the inverse model in
series with a PI controller, in paraliel with an integrator (I) and in the IMC
configuration, mpectiﬁely.-Comparisons were also made with the PI and Model
Predictive techniques. They found that the inverse model in parallel with the
integrator gave the best results but with the IMC and MPC techniques it gave equally
good control. In another work with Hunt and Sbarbaro (1992), they utilized multilayer
neural networks with radial basis function, in the TMC strategy to perform set point
tracking of the pH in a neutralizing reactor. They found in this case that the control
system provided very close tracking performance with considerable improvement

over a linear controller type.

Ramchandran and Rhinehart (1995) used a neural-network inverse model to
estimate the reflux and the holdup rate, which was then incorporated in the Generic
Model Control (GMC) strategy to control the top and bottom composition in a
~ distillation column. The GMC technique basicaily involves incorporating the
nonlinear process model directly in the formulation of the control algorithm (Lee and

Sullivan, 1988). This was done for set point tracking and disturbance-rejection cases
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Dutta and Rhinehart (1995) used neural-networks to model the steady state
inverse of a laboratory-based electrically heated feed preheater system. This was
cascaded with a GMC controller in a reference system synthesis approach and used to
control the feed temperature of the system. They found that the set point tracking
results using this approach were better than the conventional PI and the model-based
IMC and MPC approaches. '

Hussain, Kershenbaum, and Allwright (1995) utilized a neural-network-based
IMC strategy for controlling the temperature of a partially simuléw/q reactor in a pilot
plant. They implemented the strategy for set point tracking, disturbance rejection and
regulation under plaut-model mismatches. The results obtained were found to be
comparable with the comr‘entional cascade method with, however, less fluctuations in
the control action demanded. "

Table.2.7: Neural network applications in inverse-model-based control techniques -

simulation implementation

NN Type System Objective Robustness  References
MFFN/Sig CSTR Prod. Comp.  Dist, .Psichogios and Ungar, 1991
MFFN/Sig CSTR Prod. Comp. Setpt/Dist.  Dayal, Taylor, and MacGregor, 1994
MFFN/Sig CSTR Temp. Set pt. - Piovosa et al., 1992
MFFNAanh  CSTR Prod. Comp. Setpt/Dist  Nahas, Henson, and Seborg, 1992
MFFN/tanh CSTR Conc. Set pt. Lightbody and Irwin, 1995
MFFNIR.BF CSTR Temp. Set pt. Shah and Meckl, 1995
MFFN/tanh Neut. Prod. Comp. Setpt/Dist.  Nahas, Henson, and Scborg, 1992
MFFN/RBF .  Neut. pH Set pt. Hunt and Sbarbare, 1992
MFFN/Ellp.  Bioreactor Conc. Setpt./Dist. Aoyama, Doyle, and Venkatasubramanian,
1996

MFFN/Sig Dis. Column  Prod. Comp. Setpt/Dist.  Ramchandran, and Rhinehart, 1995
MFFN/tanh  Dis. Column  Prod. Comp.  Setpt. Basualdo and Ceccatto, 1995

-RNN CSTR Temp. Set pt/Dist.  Sbarbaro, Neumerkel, and Hunt, 1993
RNN CSTR Conc./Temp. Setpt. Nikolaou and Hanagandi, 1993;

Scott and Ray, 1993
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Table 2.8: Neural network applications in inverse-model-based control techniques -

online implementation

NN Type Systemn Ob]ective Robustmess  Refercnces
MFFN/RBF  Neut pH Dist. Seborg, 1994
MFFN/Sig ~ Waterbath  Temp. Setpt/Dist.  Khalid and Omatu, 1992
'MFFPN/Sig ~ Semi-batch  Temp. Set pt. Dirion ct al., 1995
reactor
MFFNAanh  Heater Temp. Set pt Duita and Rhinchart, 1995
MFFN/sig partially Temp. Setpt/Dist.  Hussain, Kershenbaum, and Allwright, 1995 -
simulated o
reactor '
Recurrent Neural Networks (RNNs)

Nikolaou and Hanagandi (1993) used a recurrent neural network within a state
féedbéck linearizing control strategy to control the temperature of a non-isothermal
CSTR system. In this case the recurrent neural network acts as the open-loop observer
supplying the network states to the linearizing control formulation. An external linear
controller was also applied to the system and the whole strategy, implemented for set-
point tracking and disturbance-rejection studies, showed better performance than the
linear, optimally tuned controller. Scott and Ray (1993) developed recurrent neural
networks (which also have direct connections from inputs to outputs) where the
topology and initial weights of the network were determined from an approximate
linearized model of the system. These networks were then consequently prune to
remove the weights with negligible values and these networks were then applied in
various model-based control methods such as the direct control and IMC methods.
These methods were applied to the task of controlling both the concentration and
temperature of a non-isothermal CSTR under set-point regulation, plant-model
mismatches and disturbance-rejection studies. They showed that these neural
networks based controllers performed much better than the linear methods in

controlling the process over a wide range of conditions.
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2.3.3 Adaptive Control Techniques

As with other techniques, neural networks can also be adopted into the conventional
adaptive control structures in the control of nonlinear dynamic systems. These
adaptive methods are normally categorized into two approaches i.e. direct and indirect
adaptive schemes. In the direct adaptive control scheme as shown in Figure 2.6, there
is no explicit attempt to determine the model of the system; instead the controller
parameters are directly adjusted on-line tlo achieve the necessary tracking and stability
of the closed loop system. In this scheme involving neural networks, the weights of
the neural network, acting as the controller, are adjusted on-line to control the plant by
minimizing some cost function involving the plant output and desired response. A
possible adjustment algorithm for the weights of the neural controller can be based on
gradient descent such as in the backpropagation technique, which provides the
necessary gradient of the cost function with respect to the network parameters

(Lightbody et al,, 1992). In fact this approach is closely similar to the direct inverse-

ol o m am M = 4
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model control method with the main difference being that the controller is adjusted

on-line using a model reference signal in this approach.
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Figure 2.7: Indirect adaptive controi.

In the indirect adaptive control scheme as illustrated in Figure 2.7, a neural
network is used to identify an unknown/part functiori of a nonlinear plant online. The
objective of the control strategy in this case is to make the plant output follow the
reference output. The control action can be then computed from the knowledge of the
required output and that of the nonlinear plant, made up of the known function of the .
model and the neural network model emulating the unknown part/function of this
plant. Control action is normally initiated once the plant is identified to the desired
level of accuracy so that the output of the plant follows the output of the stable
reference model. In this way, both identification and control are performed
simultaneously with the time interval for updating the identification and control

chosen carefully to achieve stable results. Details of this scheme can be found in-
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seminal paper of Narendra and Parthasarathy (1990). Sanner and Slotine (1992) have
also proposed improvement to this basic approach by adding a sliding control term to

the neurocontroller, to increase the region of operation.

Most of the applications in this category utilized the multilayer feedforward
neural networks are summarized in Table 2.9 and Table 2.10. They are described in
further details later.

Ydstie (1990) utilized neural networks in direct adaptive and indirect adaptive control.
type techniques for a CSTR with second order reactions occurring between sodium
thiosulphate and hydrogen peroxide. Their control objective | was achieved
successfully in making the temperature follow a predetermined reference by
controlling the reactant flow rate. In the direct adaptive method, the control action was
solved by numerical techniques at each step and implemented as a one-step-ahead
predictive method. The network was trained by what they called as the "error-
broadcast" algorithm. Lightbody and Irwin (1995) used a neural network in parallel
with a fixed gain linear controller in a direct model-reference adaptive control
configuration to control the product composition in a CSTR system, Another neural
network in paralle] to the nionlinear system is used to generate the plant jacobians for
updating the neural network controller online. They showed that this method provided
greatly improved performances over the conventional PI controller under linear model-

reference output tracking.

Boslovic and Narendra (1995) applied both the conventional multilayer neural
networks and radial basis function networks in an adaptive control scheme, which
updates the unknown parameters online, for production of baker's yeast in a fed-batch
fermentation process. They considered the set point regulation of the system under no-
noise and Guassian noise cases. They found that the conventional multilayer network
gave superior performance over the RBF and other nonlinear techniques such as the -

nonlinear adaptive and inverse dynamics controller. Chovan, Catfolis, and Meert
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(1996) used neural networks in a clustered scheme (combination of clusters of neural
network controllers and models) within the indirect adaptive control method. They
adopted real-time leamning with the controller trained by backpropagating the error
through the network model. They performed set point tracking for the control of cell

mass yield in a bioreactor system with successful results.

Loh, Looi, and Fong (1995) used neural networks in conjunction with a PID in
a model reference adaptive strategy to control a process pH. In this case the network
consists of a cascade of tv)o single hidden layer nets: the first being a recurrent
network to reflect the dynamic nature of the neutralizing reactor ang the second net is
a static one to reflect the static nature of the titration characteristic. Their results
indicated good set point tracking performance even under external load disturbances.

Yang and Linkens (1994) developed an adaptive online neural network-based
controller where the neural network controller is adapted online by error signals from
the neural network model emulating the plant. The neural network is used to control a
bioreactor with time-varying characteristics and nonlinearity, They obtained good
results for set point tracking, disturbance rejecﬁon and regulation under noisy signals

but with extensive computational time.

Watanabe (1994) also utilized an adaptive control scheme where the neural
network inverse models acting as the controllers were update on-line in the special
inverse and error feedback learning method respectively. These methods were applied
éuccessfully in a multiple-input multiple-output (MIMO) continuous polymerization
reactor to control the number average molecular weight of the polymer product and

the temperature in the reactor under set-point tracking conditions.

Chovan, Catfolis, and Meert (1996) used neural networks in a clustered.
scheme (combination of clusters of neural network controllers and models) within the
indirect adaptive control method. They adopted real-time learning with the controller
trained by backpropagating the error through the network model. They performed set

point tracking for the control of level in the tank with successful results.
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Table 2.9: Neural network applications in adaptive control tccliniques - simulation

implementation
NN Type System Objective Robustness References
MFFN/Bypass CSTR Temp. Set pt. Ydstie, 1990
MFFN/Tanh CSTR Prod. conc. Setpt. Lightbedy and Irwin, 1995
MFFN Neut, pH Dist. Loh, Looi, and F(.:mg. 1995
MFFN Bioresctor Cell mass yield Set pt. Chovan, Catfolis, and Meert, 1996
MFFN Bioreactor Cell conc. Set pt. Yang and Linkens, 1994
MFFN Fermentation  conc. Set pt. Boslovic and Mnarendra, 995
MFFN Poly. Reactor MW Prod./ Temp.  Setpt. Watanabe, 19694
MFFN Tank Set pt. Chovan, Catfolis, and Meert, 1996

Level.

Table 2.10: Neural network applications in adaptive

control techniques - online

implementation
NN Type System Objective Robustness  References
' MFFN/Sig bench-scale  Temp. Set pt. Khalid, Omatu, and Yusuf, 1993
furnace
MFPN/RBF  Ovensystem  Temp. Setpt. Dubois, Nicolas, and Billat, 1994
MFFN/Tanh Process Flow Set pt/Dist.  Noricga and Wang, 1995
control unit
RNN Fermentation pH Dist. Syu and Chang, 1997

For online applications of multilayer feedforward networks, Khalid, Omatu,

and Yusuf (1993) used an adaptive neural network controller, where the weights were

adapted on-line, to control the temperature within a multiple-input multiple-output
(MIMO) bench-scale furnace. The weights were adapted online by backpropagating

the error through a forward neural network acting as the emulator. Studies for set

point tracking, disturbance rejection and the effects of parameter changes were also

done in this case. In both applications they obtained better results than those obtained

using the conventional PI controller.

Dubois, Nicolas, and Billat (1994) used an adaptive IMC control strategy,

where the model was updated online, to control the temperature in an oven system.
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However, they could not get an accurate inverse model from training it with the plant
data and resorted to training the mverse model using the data from the neural network
model instead, An RBF-based neural network model was used in this scheme to
control the oven to follow various desired temperature trajectories satisfactorily.

Noriega and Wang (1995) used a direct adaptive neural network to control the
flow rate of a bench-scale flow-process control unit. The control signals in this
experiment were generated directly by the well-cstablished gradient descent rule. The
system was tested for set point changes with fixed and changing/nehwork learning

rates and for disturbance-rejection cases with successful results. -

Recurrent Neural Networks (RNNs)

Recently, Syu and Chang (1997) utilized a recurrent backpropagation neural network
for online adaptive control of a penicillin acylase fermentation process. In enhancing
the effective online leaming of the network, moving data scheme was supplied to train
the network. The pH of the system was well controlled in their experiments with

maximum optical density achieved under different types of disturbances.

2.3.4 Neural Network Applications in Other Control Techniques

In addition to three control techniques presented above, there are few online
applications implemented neural networks in other control configurations. Multilayer,
feedforward networks were proposed in their works. Langonet (1993) utilized neural
networks to copy the dynamic behavior of conventional controllers, tuned for different
operating conditions (corresponding to different valve openings), for the control of the
level in a tank by manipulating the output flow. The neural network was able to
control the system satisfactorily when switching from one operating condition to

another without any need for retuning.

Baratti, Vacca, and Servido (1995) used neural networks to estimate the

distillate and bottoms composition of a gasoline stabilizer tower in a refinery plant.
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This was utilized for inferential control of the isopentane composition in the column,
in conjunction with a PI control system. They found that this method outperformed
the normal way of using the temperature for inferential control of the system.

2.4 Other Applications of Neural Networks in Chemical

Engineering

Besides the applications in process modeling and control, Neural networks have also
been used for other purposes. For examples, they were employed to predict the PID
' tuning parameters for the auto-tuning of PID controllers (Morris, Montague, and
Willis, 1994). Furthermore, they were also incorporated with other types of
techniques, such as the cerebellar model articulation controller (CMAC), the B-splines
network (Brown and Harris, 1994) and fuzzy systems (Linkens and Nie, 1994).

Inferential estimation is another area where neural networks have proved
extremely useful. Measurements from established instruments can be used as
secondary variables for estimation of “"primary" quality variables. Linear adaptive
estimators have been traditionally used to provide fast inferences of variables that are
available only less frequently. The use of neural networks might provide improved
estimation performances for nonlinear systems. Willis et al. (1991) used neural
networks to provide biomass estimation in continuous mycelial fermentation broths.
Willis, Montague, and Mottis (1992) also obtained biomass estimates from available
on-line measurements in a penicillin productibn process. Baratti, Vacca, and Servido
(1995) demonstrated the feasibility of including a neural network model with in a
dynamic state variable estimator to construct "software sensois" for two industrial
distillation columns that is a butane splitter tower and a gasoline stabilizer. The
nsoftware sensors” are capable of reconstructing the full state of the process from.

incomplete online measurements.

Other applications of neural networks in chemical engineering are summarized
in Table 2.11.
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Table 2.11: Neural networks in other applications of chemical engineering

Applications References

Sensor data enalysis Piovoso and Owens, 1991

Fault detection and diagnosis Venkatasubramanien, 1991; Sorsa et al., 1991; Witoon Suewatanakul,
1993, Fan, Nikolaou, and White, 1993; and Vora, Tambe, and Kulkani,
1997 )

Sensor failure detection Naidu et al., 1990

Data rectification and gross error
detection
Optimization

Karjars, Himmelblau, and Mikkulsinen, 1992; Karjala and Himelblau,
1994; and Karjala and Himelbleo, 1996

Narendra nd Perthasarathy, 1991; Chen and Weigand, 1994; Krothapally
and Palanki, 1997
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