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CHAPTER I 

 

INTRODUCTION 

 
1.1 Introduction 

 

There are different classes of synthetic and modified natural polymers 

exhibiting antibacterial activity �1�.  Biocidal polymers have been divided into five 

classes such as quaternary ammonium polymers, phosphonium polymers, halogenated 

poly(styrene-divinylbezene)sulfonamides, and N-halamine polymers �2�. These 

polymers have numerous potential applications in water treatments, health care and 

hygienic applications such as coatings, textiles, disinfections of air and gas, and 

preservatives. 

 

The quaternary nitrogen functionality is an essential component in many 

biologically active compounds and plays an impotant role in living processes. Long 

chain quaternary ammonium compounds exert antibacterial activity against both 

Gram-positive and Gram-negative bacteria, as well as against some pathogenic species 

of fungi and protozoa �2�. However, these quaternary ammonium compounds, in 

general, have toxic effects toward mammalian cells �3�. In humans and animals they 

are considered too toxic for systemic applications, but acceptable for topical 

applications. Quaternary ammonium polymers are generally more active than their 

corresponding monomers, particularly against Gram-positive bacteria �2�.  

Antimicrobial activity increases as the content of the quaternary ammonium moiety 

increases, providing that the proper hydrophilic/lipophilic balance (HLB) is 

maintained �3�. Polymeric quaternary ammonium materials (poly quats) having a 

higher molecular weight and multiple quaternary nitrogens exhibit increased activity 

as the charge density increases the attraction to the negatively charged cell membrane. 

Furthermore, the polyquats tend to be less toxic than their monomeric counterparts. In 

the present, a number of polyquats having been developed that can be incorporated 

into cellulose and other materials which should provide significant advances in the 

biomedical field. 

 

 



 

  

Therefore, investigation of the potential antibacterial activity of quaternary 

ammonium polysaccharides is warranted. Chitosan is a polysaccharide obtained by 

deacetylating chitin, the major constituent of the exoskeleton of crustaceans �4�. 

Chitosan is a biodegradable, non-toxic, biocompatible and renewable polymer, and as 

a result there has been much interest invested in past few decades in the 

macromolecule and its derivatives, aimed at exploring new applications. Interestingly, 

some antibacterial and antifungal activities have been described with chitosan and 

modified chitosans �5�. Moreover, chitosan has several advantages over other types of 

disinfectants because it possesses a higher antibacterial activity, a broader spectrum of 

activity, a higher killing rate, and a lower toxicity toward mammalian cells �5,6�. 

Although the exact mechanism of antibacterial of chitosan is still debated, disruption 

of the cell membrane appears to be the most viable candidate. Interaction between 

positively charged chitosan molecules and negatively charged bacterial cell 

membranes leads to the leakage of proteinaceous and other intracellular constituents 

�7-11�.  

  

However, chitosan showed its biological activity only in acetic medium 

because of its poor solubility in water �6�. Many attempts have thus been made in the 

synthesis of chitosan derivatives to overcome the solubility problem �12,13�. To 

increase the solubility in water, the quaternary ammonium moiety in chitosan is 

required �14,15�. In addition, a permanent positive charges may provide an impetus for 

antibacterial activity. Because of the amphiphilic nature of the bacterial cell wall, an 

increase in interaction between the bacterial cell wall and the chitosan derivative could 

be favored when the macromolecule itself contained hydrophobic residues. As a result, 

chitosan derivatives containing quaternary ammonium functionality in addition to 

different hydrophobic substituents were synthesized using different levels of reagents 

and their antibacterial activity was consequently assessed. A systematic study, 

exploring the effects of different substituents with varying degrees of hydrophobicity, 

structural rigidity of the macromolecule and its molecular weight on the antibacterial 

activity was investigated. 

 

 

 

 



 

  

1.2 Objective  

 

The aim of this study was to synthesize and characterize N-benzyl chitosans 

and N-benzyl chitosans containing quaternary ammonium functionality and to assess 

their antibacterial activities. 

 

1.3 Scope of research 

 

1) To synthesize and characterize N-alkyl and N-benzyl chitosans prepared by reacting   

chitosan with corresponding aldehydes in acidic condition.  

2) To synthesize and characterize N-alkyl and N-benzyl chitosans containing 

quaternary ammonium functionality prepared by reacting N-alkyl and N-benzyl 

chitosans$ with either iodomethane or 3-chloro-2-hydroxypropyl 

trimethylammonium chloride (Quat-188). 

3) To assess the antibacterial activity of these quaternized chitosans against two 

bacteria; Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus 

(Gram-positive bacteria). 

4)  To study the degradation of chitosan under the synthesis conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

CHAPTER II 

 

THEORETICAL AND LETERATURE REVIEWS 
 

2.1 Bacteria  

 

 2.1.1 Morphology and ultrastructure 

 

 The size, shape and arrangement of bacteria and other microbes is the result of 

their genes and is defining characteristic called morphology. Bacteria come in a 

bewildering and exciting variety of size and shapes. The most common bacterial 

shapes are rods (bacill) and spheres (cocci). Whin each of these groups is hundreds of 

unique variations. Rods may be long, short, thick, or thin and have rounded or pointed 

ends, thicker at one end than the other, etc. Cocci may be large, small, or oval shaped 

to various degrees. Spiral shaped bacteria may be fat, thin, loose spirals or very tight 

spirals �16�. 

  

 2.1.2 Gram staining 

 

 Bacteria can be classified to two major groups, Gram-positive and Gram-

negative, based on the Gram staining reaction shown in Figure 2.1. Differences in cell 

wall structure and composition account for the differential Gram reaction.   

 

 

Figure 2.1: Determination of type of bacteria based on Gram staining reaction �16�   

 

  

 

 

 

 

 



 

  

 2.1.3 Cell walls of bacteria 

  

 The fundamental differences in ultrastructure of the cell wall are responsible 

for the reaction (+ or -) of bacteria towards the Gram stain. In both types of cells, the 

cytoplasmic membrane is surrounded and supported by a cell wall, which provides 

strength, rigidity and shape. The cross sections of these structures are shown in Figure 

2.2. 
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Figure 2.2: The cross sections of Gram-positive and Gram-negative bacteria cell walls 

�16�  

 

 In this study, Gram-positive (i.e., Staphylococcus aureus) and Gram-negative 

(i.e., Escherichia coli) were used. Gram-positive bacteria tend to have a loose cell 

wall, while Gram-negative bacteria have an outer membrane structure in the cell wall 

forming an additional barrier for foreign molecules as shown in Figure 2.3. 
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Figure 2.3: Cell wall structures of Gram-positive (i.e., Staphylococcus aureus) and 

Gram-negative (i.e., Escherichia coli) �17�  

 

 



 

  

2.1.3.1 Gram-positive bacteria 

  

The wall, which lines outside the cytoplasmic membrane, is usually between 

15 and 50 nm thick. The major part of the Gram-positive wall is a large polymer 

comprising two covalently linked components. One of these components, forming at 

least 50% of the wall mass, is peptidoglycan. Its cross-linked structure provides a 

tough, fibrous fabric giving strengh and shape to the cell and enabling it to withstand a 

high internal osmotic pressure. Attached to the peptidoglycan is an acidic polymer, 

such as teichoic acid, lipo teichoic acid and teichuronic acid, which differs from 

species to species. The acidic character of the polymer attached to the peptidoglycan 

ensures that the cell surface is strongly polar and carries a negative charge. This may 

influence the passage of ions, particularly magnesium ion and possible ionized drugs, 

into the cell. Other components are protein often present to the extent of 5-10%, and 

protein of Staphylococcus aureus is apparently linked covalently to peptidoglycan 

�18�. The structure of cell wall Gram-positive bacteria is shown in Figure 2.4. 
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Figure 2.4: The arrangement of the cell envelope of Gram-positive bacteria �19�   

 

 

 

 

 

 



 

  

2.1.3.2 Gram-negative bacteria 

  

The Gram-negative wall is far more complex. Wide-ranging studies of its 

structure have been concentrated on Escherichia coli in particular. The diagram in 

Figure 2.5 
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Figure 2.5: The arrangement of the cell envelope of Gram-negative bacteria �19�   

 

illustrates the general arrangement of the components of the Gram-negative cell 

envelope, which includes the cytoplasmic membrane as well as the cell wall. When 

cells of Escherichia coli are fixed, stained with suitable metal salts, sectioned and 

examined by electron microscopy, the cytoplasmic membrane is readily identified by 

its ‘sandwich’ appearance of two electron-dense layers separated by a lighter space. 

The electron-dense layer, about 2 nm thick, immediately outside the periplasm 

represents the peptidoglycan component of the wall. It is much thinner than in Gram-

positive bacteria and may constitute only 5 to 10% of the wall mass �18�. 

  

The outer regions of the Gram-negative cell wall have been the most difficult 

to characterize. The various components together form a structure 6-10 nm thick, 

called the outer membrane. Like the cytoplasmic membrane it is basically a lipid 

bilayer (giving rise to the two outer most electrom-dense bands), hydrophobic in the 

interior with hydrophilic groups at the outer surfaces. It also has protein components 



 

  

which penetrate the layer partly or completely and form the membrane. Despite these 

broad structural similarities, the outer membrane differs widely in composition and 

function from the cytoplasmic membrane. Its main constituents are 

lipopolysaccharide, phospholipids, fatty acids and proteins. The phospholipids, mainly 

phosphatidylethanolamine and phosphatidylglycerol, resemble those in the cytoplsmic 

membrane. The structure of the lipopolysacharide is complex and varies considerably 

from one bacterial strain to another. The molecule has three parts. The core is built 

from 3-deoxy-D-manno-octulosonic acid (KDO), hexoses, heptoses, ethanolamine and 

phosphoric acid as structural components. The three KDO residues contribute a 

structural unit which strongly binds the divalent ions of magnesium and calcium, an 

important feature stabilizing the membrane. Removal of these ions by chelting agents 

leads to release of some of the lipopolysaccharide into the medium; at the same time 

the membrane becomes permeable to compounds that would otherwise be excluded. 

The core polysaccharide is linked to the antigenic side chain, a polysaccharide which 

can vary greatly from one strain to another even with in the same bacterial species. 

Usually it comprises about 30 sugar units, although these can vary both in number and 

in structure. It forms the outer most layer of the cell and is the main source of its 

antigenic characteristics. At the opposite end, the core of the lipopolysaccharide is 

attached to a moiety known as lipid A which can be hydrolysed to glucosamine, long-

chain fatty acids, phosphate and ethanolamine. The fatty acid chains of lipid A, along 

with those of the phospholipids, align themselves to form the hydrophobic interior of 

the membrane. The out membrane is therefore asymmetric, with lipopolysaccharide 

exclusively on the outer surface and phospholipid mainly on the inner surface �18�. 

 

2.2 Chitin and chitosan 

 

 Chitin, one of the most abundant natural polysaccharides and generally found 

in the composition of crustacean shells, insects, molluscan organs, and fungi, consists 

of �-(1�4)-2-acetamido-2-deoxy-D-glucopyranose (GlcNAc) as a repeating unit �4�. 

Deacetylation of chitin yields chitosan, which is actually a copolymer of GlcNAc and 

�-(1�4)-2-amino-2-deoxy-D-glucopyranose (GlcN) with GlcN content greater than 

50% �4�. The chemical structures of chitin and chitosan were shown in Figure 2.6. 
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Figure 2.6: Chemical structures of chitin and chitosan 

 

Chitosan is a polysaccharide obtained from chitin by alkaline hydrolysis; the 

process essentially hydrolyzes N-acetyl groups at random within the polymer 

backbone (Scheme 2.1). However, most commercially available samples of chitosan 

are not 100% deacetylated and thus the polysaccharide is often represented by the 

degree of deacetylation (DDA) in addition to the molecular weight. 
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Scheme 2.1: Preparation of chitosan from chitin 

 

Chitin and chitosan have gained increasing attention due to their properties as 

non-toxic, biocompatible and biodegradable polymers. Chitosan is insoluble in water 

and almost all organic solvents, but it is soluble in dilute organic acid solutions such as 

acetic, formic, succinic, and lactic acids at pH below 6.5.  The synthetic modification 

of chitosan is a widely studied area �12,20�. Such modifications have resulted into 

several derivatives of chitosan with distinct properties and applications �21-23�. The 

presence of multiple nucleophilic groups within the chitosan backbone requires 

following suitable synthetic protocol in order to obtain the desired selectively. The 

synthetic trasformation steps performed are often relatively simple, exploiting the 



 

  

differences in the nucleophilicities of primary amino group (at C-2) versus the two 

hydroxy groups (at C-3 and C-6) position. However, the extent of N-substitution (ES) 

varies greatly upon the reaction condition. 

 

2.3 Mode of action of chitosan 

 

 Native chitosan exhibits much more pronounced activity compared to chitin 

�24�.  This is due to the greater availability of primary amino groups in chitosan. 

Under mildly acidic conditions (pH<6.5), the primary amino groups of chitosan 

acquire a positive charge, which is usually associated with the demonstrated activity. 

The exact mechanism of the antimicrobial action of chitin, chitosan, and their 

derivatives is still debated, disruption of the cell membrane appears to be the most 

viable candidate. Interaction between positively charged chitosan molecules and 

negatively charged microbial cell membranes leads to the leakage of proteinaceous 

and other intracellular constituents �7-11�. Chitosan acts mainly on the outer surface 

polycationic chitosan probably due to the negatively charged bacterial surface to cause 

agglutination, while at higher concentrations, the larger number of positive charges 

may have imparted a net positive charge to the bacterial sufaces to keep them in 

suspension �25�. 

 

 Quaternary ammonium polymers have previously been considered 

bacteriostatic, not bactericidal, because they require long contact times to kill 

microorganisms, and generally they do not have a broad spectrum activity. Some of 

these polymers have been reported to have antimicrobial activity �26�. The 

antimicrobial action is belived to occur when the compounds permeated the lipid cell 

membrane and caused death through the loss of essential cell materials. In addition, 

these derivatives of chitosan are generally more active against Gram-positive bacteria 

than their corresponding monomers particularly. This effect is believed to be due to 

adsorption of the polymers onto the bacterial cell surface and membrane with 

subsequent disruption of membrane integrity. Antimicrobial activity generally 

increases as the content of the quaternary ammonium moiety increases. It was 

unexpectedly discovered that HPTChC and related chitosan derivatives exhibit 

antimicrobial activity at concentrations as low as 10-20 �g/mL �26�. The other is one 

order of magnitude lower than the concentration at which any previous chitosan 



 

  

derivative has been reported to exhibit antimicrobial activity. These chitosan 

derivatives may be included in formulations, where it is desirable to minimize 

bacterial attack �27�. 

  

The antibacterial activities of quaternary ammonium chitosan salts were 

evaluated against S.aureus and E. coli, Gram-positive and Gram-negative beacteria, 

respectively. It was found that the antibacterial activity increased with increasing chian 

length of the alkyl substituent, and this was attributed to the contribution of the 

increased hydrophobic properties of the derivatives �28�. These results clearly 

demonstated that hydrophobicity and cationic charge of the introducted substituent 

strongly affected the antibacterial activity of quaternary ammonium chitosan 

derivatives. Furthermore, the antibacterial activities of quaternary ammonium chitosan 

salts in acetic medium was stronger than that in water �29�. Their antibacterial activity 

increased as the concentration of acetic acid was increased. 

 

 2.4 Antibacterial property of chitosan and its derivatives 

 

Chitoan and several of its derivatives showed good to excellent antimicrobial 

(antibacterial and antifungal) properties �5,7,26,28,30�. However, the antimicrobial 

action is influenced by intrinsic factors such as the type of chitosan, the degree of 

chitosan polymerization, the host, the natural nutrient constituency, the chemical or 

nutrient composition of the substrates, and the eviromental conditions such as 

substrate water activity or moisture �5�.   Although both native chitosan and its 

derivatives are effective as antimicrobial agents, there is a clear difference between 

them. Chitosan has been shown to be fungicidal against several fungi (Table 2.1) 

�5,31�.   

 

 

 

 

 

 

 

 



 

  

Table 2.1: MIC of native chitosan against fungi 

Fungi MIC
�
(�g/mL) 

Botrytis cinerea 10 

Fusarium oxysporum 100 

Drechstera sorokiana 10 

Micronectriella nivalis 10 

Piricularia oryzae 5000 

Rhizoctonia solani 1000 

Trichophyton equinum 2500 

 

�
MIC is minimum growth inhibitory concentration. 

 

The antibacterial action is usually rapid and eliminates bacteria as quickly as 

within few hours. Furthermore, chitosan has several advantages over other types of 

disinfectants because it possesses a higher antibacterial activity, a broader spectrum of 

activity, a higher killing rate, and a lower toxicity toward mammalian cells �6�. 

Chitosan has been studied in terms of bacteriostatic/bactericidal activity to control 

growth of algae and inhibit viral multiplication �32,33�. Moreover, chitosan inhibits 

the growth of a wide variety of bacteria (Table 2.2) �5,31�. The antibacterial activity is 

wide spectrum and includes bacteria of both cell wall types (Gram-positive and Gram-

negative bacteria). It is important to note that the monomer of chitosan, 2-amino-2-

deoxy-D-glucopyranose as its hydrochloride salt, does not exhibit any antibacterial 

activity against several bacteria, including Escherichia coli and Staphylococcus aureus 

�34�.   

 

 

 

 

 

 

 

 

 

 



 

  

Table 2.2: MIC of native chitosan against bacteria 

Bacteria MIC
�
(�g/mL) 

Agrobacterium tumefaciens 100 

Bacillus cereus 1000 

Corinebacterium michiganence 10 

Erwinia sp. 500 

Erwinia carotovora subsp. 200 

Escherichia coli 20? 

Klebsiella pneumoniae 700 

Micrococcus luteus 20? 

Pseudomonas fluorescens 500 

Staphylococcus aureus 20? 

Xanthomonas campestris 500 

 

�
MIC is minimum growth inhibitory concentration. 

? is the MIC values reported for Escherichia coli and Staphylococcus aureus are questionable. 

It is important to note that these data were obtained at pH 4.5 whereas the data reported in this 

work was measured at pH 7.0. At the higher pH’s, chitosan is insoluble. However, MIC of 

chitosan are reported in the range 1024-2048 �g/mL by Holappa et al. at the neutral pH �35�. 

  

2.5 N-Alkylation and N-benzylation of chitosan  

 

N-Alkylation of chitosan is selectively carried out by using a halogen 

displacement reaction or by using a reductive amination. The direct N-alkylation of 

chitosan was carried out by the reaction between the 2-amino group of GlcN of 

chitosan with alkyl halide under heterogeneous condition in the presence of a strong 

base (Scheme 2.2). Furthermore, this method were involved the vigorous reaction 

condition such as high 

temperature and high concentration of sodium hydroxide as base which resulted in 

lower degree of substitution and much more degradation of molecular weight in 

polymer backbone �36�. 
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Scheme 2.2: Synthetic pathway of N-alkyl chitosan with alkyl halides 

 

The another selective N-alkylation and N-benzylation were performed via 

Schiff bases formed by the reaction between the 2-amino group of GlcN of chitosan 

with aldehydes or ketones under homogeneous acidic conditions (Scheme 2.3), then 

followed by reduction of the Schiff base intermediates with sodium borohydride or 

sodium cyanoborohydride and hence provided for higher ES when desired �37-39�. 
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Scheme 2.3: Synthetic pathway of N-alkyl or N-benzyl chitosan with aldehydes or  

 ketones 

 

  N-Alkyl chitosan, one of the most important hydrophobic derivatives of 

chitosan, has been reported by several research groups �37-41�. Much less attention 

has been paid on the synthesis of N-benzyl chitosans. The reductive benzylation of 

chitosan with salicylaldehyde has been reported along with its application in metal 

chelation �42,43�. In 1997, Crini et al. synthesized N-benzyl sulfonated derivatives of 

chitosan and reported their one-dimensional and two-dimensional NMR spectra �40�. 



 

  

In 1999, Sashiwa and Shigemasa prepared a series of N-benzyl chitosan derivatives, 

but they only reported their water solubility �44�.  

 

  Recently, the N-alkylated and N-benzylated chitosans were prompted by 

Stevens et al. who synthesized the series of 24 N-alkyl and N-benzyl chitosans with 

different ES and reported their insecticidal and fungidal activities as shown in Figure 

2.4. They found that the insecticidal and fungidal activities of all chitosan derivatives 

were higher than that of chitosan at the same concentration. Moreover, the functional 

groups on the benzene ring affected the insecticidal and fungidal activities. �45,46�. 
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Scheme 2.4: Synthetic pathway of N-alkyl and N-benzyl chitosan with an aldehydes 

 

  However, the impact of the molar aldehyde:GlcN ratio and the effect of 

substituents on aromatic aldehydes have not been reported. In this study, a series of 

aromatic aldehydes bearing electron donating and electron withdrawing groups were 

studied. The influence of the aromatic substituents on the ES is also discussed. Two 

heterocyclic derivatives, N-(4-pyridylmethyl) and N-(2-thiophenylmethyl)chitosan are 

included in the discussion. 

 

 

 

 

 



 

  

2.6 Quaternization of chitosan using iodomethane as quaternizing agent 

 

 In 1985, the former approach was earlier used by Muzzarelli et al. to prepare 

N,N,N-trimethylammonium chitosan iodide (TMChI) by reacting N,N-dimethylated 

chitosan, which was previously prepared by treating chitosan DDA 60% with 

formaldehyde followed by reduction with sodium borohydride, with iodomethane in 

acetonitrile at 35�C for 30 hours. The product was extracted with diethyl ether in a 

soxhlet apparatus. The high degree of quaternization (DQCh) 60% was obtained, but it 

was not soluble in water �47�. 

 

In 1986, Domard et al.$prepared$N,N,N-trimethylammonium chitosan chloride 

(TMChC) by reacting$ chitosan, which was suspended  in N-methyl-2-pyrrolidone 

(NMP), with iodomethane in the presence of sodium hydroxide and sodium iodide at 

36�C for 3 hours (Scheme 2.5).  After repeated methylation with iodomethane, DQCh 

was 64%.  
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Scheme 2.5: Quaternization of chitosan using iodomethane as quaternizing agent 

 

Moreover, DQCh greater than 25% these$polymers are soluble in water �14�. In 1987, 

the same research group characterized chemical structure and determined various 

DQCh of TMChC by using 
1
H and 

13
C-NMR spectroscopic techniques. Moreover, 

methylation of hydroxy groups of chitosan is demonstrated �48�. 

  

 In 1994, Dung et al. prepared$TMChC by single treatment with iodomethane. 

The procedure was similar to the method used by Domard et al., but they increased 

sodium hydroxide concentration from 1.4M to 15% (w/v) at 60�C and varied reaction 



 

  

times from 30-180 minutes. They found that high DQCh 53% was obtained without any 

detectable O-methylation �49�. 

 

 In 1998, Sieval et al. applied the method that proposed by Dung et al. but their 

results showed there had been a misinterpretation concerning the 
1
H-NMR spectrum 

of TMChC, particularly with respect to the chemical shifts attributed to the protons of 

N,N-dimethylated and N,N,N-trimethylated chitosan. Therefore, they proposed new 

assignments for the above mentioned signals and hence showed that the execution of 

this single treatment with iodomethane produced a poorly water soluble chitosan 

derivative with only DQCh 10-15%. Furthermore, they concluded that these derivative 

was mainly a N,N-dimethylated chitosan. They also concluded that it was necessary to 

carry out repeated methylation that DQCh close to 60% which was completely water 

soluble. The repeated methylation by subsequent addition steps resulted in still higher 

DQCh>85%, but it produced a poorly water soluble due to much more O-methylation 

�50�.  

 

In 2001, Hamman and Kotze studied effects of type of base, number of 

methylation on DQCh and molecular weight of TMChC. 
1
H-MNR spectra of TMChCs 

indicated a major increase in the DQCh 21%-59% with an increase in the number of 

methylation when 15% (w/v) sodium hydroxide was used as the base at 60�C for 45, 

15 and 30 minutes, (single, double and triple treatment with iodomethane) 

respectively. Intrinsic viscosity values exhibited that dimethyl amino pyridine, used as 

base, did not cause polymer degradation compared to sodium hydroxide, but the DQCh 

stayed low 7.3%–9.6% even when the number of methylation was increased. A 

combination of the two bases did not reduce polymer degradation, while the DQCh was 

limited to relatively low values DQCh 12.5%–34.4% �51�.  

 

In 2003, Elisabete et al. studied the effect of quaternization conditions of 

chitosan, particularly sodium hydroxide concentration that was added to the medium at 

room temperature. The average DQCh was obtained in the ranged 10.5%-44.8%, and 

the chemoselectivity of N-methylation of chitosan was affected by adding excesses of 

sodium hydroxide and iodomethane. Therefore, O-methylation was favored when the 

larger excess of these reagents used �52�.  



 

  

In 2004, Polnok et al. investigated the effects of the quaternization of chitosan 

process and types of base. The high DQCh with low O-methylation was prepared by 

employing single treatment with iodomethane, single treatment with iodomethane and 

one subsequent addition, double treatment with iodomethane, double treatment with 

iodomethane and one subsequent addition steps and controlled alkaline environment of 

the mixture reaction. However, high DQCh>75% requried many reaction steps as 

resulted high O-methylation which would decrease the aqueous solubility of the 

polymer �53�.  

 

2.7 Quaternization of N-alkyl or N-benzyl chitosans using iodomethane as 

quaternizing agent 

 

 In 1997, Kim et al. prepared quaternized N-alkyl chitosans containing alkyl 

substituents of different chain lengths. They reacted chitosan with formaldehyde, 

butylraldehyde, n-octylaldehyde and n-dodecylaldehyde and treated the resulting 

Schiff bases$with sodium borohydride. The corresponding quaternary ammonium salt 

of chitosan was prepared by reacting the N-alkyl chitosans with iodomethane in the 

presence of sodium hydroxide as base (Scheme 2.6). The antibacterial activity in 

acidic condition of the quaternized chitosan was higher against Staphylococcus aureus 

than that of chitosan, and it increased with increasing chain length of the alkyl 

substituent �28�.  

 

 

 

 



 

  

O
O

NH2

HO

OH

Chitosan

aq.AcOH, RT

O
O

N
HO

OH

N-Alkyl chitosan

R = Methyl, n-Butyl, n-Octyl

       n-Dodecyl groups

R H

O

R

O
O

HN
HO

OH

Schiff base
R

NaBH4

CH3I, NaI

aq.NaOH, NMP

O
O

N
HO

OH

H3C CH3

I

Quaternized N-alkyl chitosan iodide

R

 

 

Scheme 2.6: Quaternization of N-alkyl chitosans using iodomethane as quaternizing 

agent 

 

 In 2001, Jia et al. reacted chitosan samples of various molecular weights with 

propylaldehyde and furfuraldehyde. The resulting Schiff bases$ were treated with 

sodium borohydride. Quaternized chitosans were obtained by reaction of N-alkyl 

chitosans with iodomethane. The yields, DQCh and water solubility of quaternized 

chitosans  were influenced by the molecular weight of the starting chitosan samples. 

Antibacterial activities of quaternized chitosan against Escherchia coli is related to its 

molecular weight and in acetic acid medium is stronger than that in water �29�. 

 

 In 2005, Avadi et al. prepared N,N,N-diethylmethyl chitosan chloride 

(DEMChC) based on a modified two-step process. N-alkyl chitosan has been firstly 

prepared by introducing a methyl group from formaldehyde into chitosan via Schiff 

base, followed by reducing with sodium borohydride. Finally, N-methyl chitosan 

reacted with iodoethane to produce DEMChC. The antibacterial activites of chitosan 

and DEMChC against Escherchia coli were evaluated by determination of minimum 

inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). They 

found that antibacterial activites in acetic acid medium of DEMChC was higher than 

that of chitosan �54�. 

 

 



 

  

In the literature reviews, it can be concluded that the factors that affected DQCh 

were DDA, type of bases, concentration of base, time, type of quaternizing agent 

(iodometane or glycidyl trimethylammonium chloride), volume of quaternizing agent, 

temperature, and the number of methylation �5�. However, higher DQCh required more 

than single treatment with iodomethane. It was noted that the repeated methylation 

would increase not only DQCh but also O-methylation. Furthermore, high O-

methylation from repeated methylation affected the physical properties of quaternized 

chitosan, lower solubility in water and easier degradation, as well as lower yield �50�.  

 

2.8 Quaternization of chitosan using quaternary ammonium epoxide as 

quaternizing    

       agent 

 

 The another alternative for introduction a quaternary ammonium group into 

chitosan backbone has been reported. Glycidyl trimethylammonium chloride 

(GTMAC) was selected as quaternizing agent because it has a quaternary ammonium 

group itself. When a primary amino group at C-2 of chitosan reacted with GTMAC, 

the chain of quaternary ammonium group obtained was longer than that of TMChC. 

  

 In 1990, Lang et al. synthesized N-(2-hydroxy)propyl-3-trimethylammonium 

chitosan chloride (HPTChC) by reacting chitosan with GTMAC, but they did not 

characterize the resulting derivatives �41�. In 1991, Loubaki et al. synthesized and 

characterized GTMAC-modified chitosan (Scheme 2.7). The structure of HPTChC 

was confirmed using elemental analysis, IR, and NMR spectroscopies. The complete 

DQCh of primary amino groups in chitosan was obtained at a 6:1 ratio (molar ratio of 

GTMAC:GlcN) in water at 60�C for 15 hours. All results were consistent with N-

monoalkylation, and a six-fold excess of GTMAC gave rise to almost complete 

quaternization �15�.  
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Scheme 2.7: Quaternization of chitosan using glycidyl trimethylammonium chloride 

as quaternizing agent 

 

 In 1998, Daly et al. have developed a method for synthesis of HPTChC. 

Chitosan was quaternized using commercially available Quat-188 salt, 3-chloro-2-

hydroxypropyl trimethylammonium chloride, (Scheme 2.8) and called these product as 

chitosan Quat-188. Chitosan Quat-188 exhibited the antimicrobial activity at 

concentrations as low as 10-20 �g/mL. Furthermore, these compounds may be used as 

preservatives in cosmetic formulation and as antimicrobial pharmaceutical agents 

�26,56�. 
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Scheme 2.8: Quaternization of chitosan using 3-chloro-2-   

hydroxypropyltrimethylammonium chloride as quaternizing 

agent 

  

 In 1999, Nam et al.
 
synthesized HPTChC used as antibacterial agent in fibers 

by blending with polyacrylonitrile (PAN). The complete DQCh of primary amino 

groups in chitosan was obtained at a 4:1 ratio (molar ratio of GTMAC:GlcN) in water 

and Zn(BF4)2 used as a catalyst at 100�C for 20 hours. The only 0.5% of 



 

  

HPTChC/PAN blend fibers exhibited nearly 100% reduction of Staphylococcus 

aureus bacteria �57�. 

 

 In 2000, Seong et al. synthesized N-(2-hydroxy)propyl-3-trimethylammonium 

chito-oligosaccharide chloride (HPTChOSC) as antibacterial agent for cellulosic 

fibers. The complete DQCh 102% of primary amino groups in chito-oligosaccharide 

(ChOS) was obtained at a 4:1 (molar ratio of GTMAC:GlcN) in acetic acid at 80�C for 

18 hours. MIC values of HPTChOSC and ChOS were 50 and 400 �g/mL against 

Staphylococcus aureus, respectively. A cotton fabric treated with 0.2% HPTChOSC 

and 1.8% ChOS exhibited 100% reduction of bacteria. For durability of laundering, 

0.3% HPTChOSC showed 100% bacterial reduction while 2.4% ChOS showed 96% 

bacterial reduction after the 50
th

 wash cycle �58�. 

 

 In 2003, Kim et al. used a similar procedure of Seong et al.
 
for synthesis of 

HPTChC as antibacterial agent for cotton fabrics, but different reaction conditions. In 

this case, it was performed in water at 70�C for 24 hours. HPTChC had a lower MIC 

values against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae 

compared to chitosan. The bacterial reduction values of the fabrics treated with 8% 

butanetetracarboxylic acid and 0.1% HPTChC were greater than 90% even after 20 

laundering cycles �59�. 

  

 In 2003, Kim et al. used a similar procedure of Ho Kim et al. for synthesis 

HPTChOSC. They found that HPTChOSC exhibited the growth inhibition of above 

80% against Streptococcus mutans after 5 hours which was higher than that of ChOS 

�60�.  

  

 In 2004, Lim et al. synthesized HPTChC. The complete DQCh of primary 

amino groups in chitosan was obtained at a 3:1 (molar ratio of GTMAC:GlcN) in 

water at 85�C, and GTMAC was added in three portions (7.1 mL each) at 2 hour 

interval for 10 hours. This derivative was further modified by introducing functional 

(acrylamidomethyl) groups into primary amino groups of chitosan. The fiber-reactive 

chitosan derivative, O-acrylamidomethyl-HPTChC, showed complete bacterial 

reduction within 20 minitues at the concentration of 10 �g/mL, contacted with 

Staphylococcus aureus and Escherichia coli �61�. 



 

  

 In 2004, Li et al. synthesized HPTChC for potential retention-aids in alkaline 

papermaking. The complete DQCh of primary amino groups in chitosan was obtained 

at a 6:1 (molar ratio of GTMAC:GlcN) in aqueous sodium hydroxide (pH 9) at 75�C 

for 8 hours. In this study, the GTMAC was synthesized from trimethylamine and 

concentrated hydrochloric acid at 4�C and followed by adding epoxy chloropropane at 

31�C in a basic condition as shown in Scheme 2.9. It was found that HPTChC was 

almost completely adsorbed onto the surfaces of calcium carbonate particles at the 

experiment dosage level, and the calcium carbonate flocculation induced by the 

adsorption of HPTChC was dominated by a charge patch mechanism �62�. 
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Scheme 2.9: Synthetic pathway of glycidyltrimethylammonium chloride 

 

 In 2004, Thatte synthesized derivatives of chitosan consisting of a variety of 

hydrophobic as well as strongly and weakly acidic organic group. Three synthetic 

approaches, Bosch reduction, lactone addition and anhydride addition, were studied as 

means of preparing hydrophobic derivatives. Then Quat-188 was used as a 

quaternizing agent. Antibacterial studies of these materials were carried out on 

Escherichia coli and Staphylococcus aureus by MIC method in order to explore the 

impact of the substituents on their biological activity. He found that incorporation of 

aromatic sulfonates as sodium salt (strongly acidic) proved detrimental to the 

antibacterial activity. This effect was not observed in the presence of weakly acidic 

groups in the polymer. The presence of hydrophobic groups lowered the MIC values 

�63�.   

 

 

 

 

 

 

 



 

  

 In this study, chitosan and its derivatives were quaternized by two different 

methods. The first method was using iodomethane as the quaternizing agent. Single 

treatment with iodomethane of chitosan and chitosans bearing N-methylbenzyl, N,N-

dimethylaminobenzyl and N-pyridylmethyl substituents were subjected. N-methylation 

and O-methylation and the influence of sodium hydroxide concentration during 

methylation on N-(4-N,N-dimethylaminobenzyl)chitosans and N-(4-

pyridylmethyl)chitosan were determined. N-(4-N,N-dimethylaminobenzyl)chitosans 

was particularly selected as a model for chemoselective methylation. Therefore, N-(4-

N,N-dimethylaminobenzyl)chitosans with different ES were synthesized and then 

methylated. The second method involved the reaction of chitosan and its derivatives 

with quaternary ammonium epoxide, generated from 3-chloro-2-hydroxypropyl 

trimethylammonium chloride (Quat-188) as the quaternizing agent. According to the 

reviews mentioned earlier, the Quat-188 was more selective in quaternizing at primary 

amino group than hydroxy group of chitosan. The resulting products tended to be more 

soluble in water than the ones from methylation method. Antibacterial activity of all 

quaternized chitosan derivatives were evaluated against Escherichia coli (Ggam-

negative) and Staphylococcus aureus (Gram-positive) bacteria by MIC method. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

CHAPTER III 

 

EXPERIMENTAL SECTION 

 
3.1 General materials and instruments 

 

3.1.1 Materials  

 

Chitosan with molecular weight 227 kDa was purchased from Seafresh 

Chitosan�(lab) Co., Ltd in Thailand. Its DDA�was determined to be 94% by 
1
H-NMR 

spectroscopic method. A cellulose membrane�dialysis tubing (Aldrich) with molecular 

weight cut off 12,000-14,000 g/mol was used. Sodium cyanoborohydride�(Aldrich), all 

aldehydes, i.e., n-octyl aldehyde, 4-carboxybenzaldehyde�(Aldrich), benzaldehyde and 

4-N,N-dimethylaminobenzaldehyde (Merck), 4-methylbenzaldehyde, 4-

hydroxybenzaldehyde, 4-fluorobenzaldehyde, 4-trifluoromethylbenzaldehyde and 4-

nitrobenzaldehyde�(Fluka), 4-pyridinecarboxaldehyde and 2-thiophenecarboxaldehyde 

(Acros) were used. Sodium iodide  (Merck), iodomethane (Riedal-deHaen), 1-methyl-

2-pyrrolidone, NMP (Fluka), silver nitrate and potassium chromate (Lancaster), 

nutrient broth (Becton, Dickinson company), potassium phosphate mono and disasic 

(Merck) were also used. A 65% solution of 3-chloro-2-hydroxypropyl 

trimethylammonium chloride (Quat-188) was obtained from the Dow Chemical 

Company. Other organic solvents were distilled before use. 

 

3.1.2 Instruments 

 

IR spectra were recorded on a Nicolet Impact 410 Fourier Transform Infrared 

(FT-IR)� spectrometer, and all samples were prepared as potassium bromide pellets. 

The 
1
H-NMR and 

13
C-NMR spectra were measured on a Mercury Varian 400 MHz 

and Bruker DPX 250 MHz spectrometers, respectively. Differential scanning 

calorimetry (DSC) 2920 and thermal gravimetric analysis (TGA) 2950 were 

performed using TA Instruments Inc. Prior to thermal analysis, reabsorption of water 

was measured by storing the samples in a desiccator at 100% humidity. All samples 

were prepared by heating at 150�C overnight and then kept in the desiccator for one 

month. For DSC, the samples were placed into aluminum pans and sealed. An empty 

pan was used as reference, the sample was heated from 30-300�C at a heating rate of 

5�C/min. TGA samples were placed into an open aluminum cup and heated from 30-



 

  

600�C at a heating rate of 5�C/min both in the nitrogen and in the air. The molecular 

weight of chitosan and its derivatives were determined by a gel permeation 

chromatography/light-scattering (GPC/LS) system consisting of a Agilent 1100 Series 

generic pump and injector, three Viscotek Columns (ViscoGEL Poly-CAT
TM

) at 20�C, 

a Wyatt Optilab rEX refractive index detector, and a Wyatt Dawn Heleos light-

scattering detector.  The mobile phase used was 5% acetic acid (pH 4) at a flow rate of 

1 mL/min.  The chromatograms were collected by Astra V software and analyzed with 

the Astra 5.3.1.5 program.  

 

PART A: SYNTHESIS OF N-SUBSTITUTED CHITOSAN DERIVATIVES 

 

3.2 Synthesis of N-n-octyl chitosan 

  

Chitosan�(1.00 g, 6.11 meq/GlcN)�was dissolved in 0.2M acetic acid (pH 4, 70 

mL). The solution was diluted with ethanol (70 mL), and then n-octyl aldehyde (0.5 

meq./GlcN)� was added to the solution. The reaction mixture was stirred at room 

temperature for 1 hour. At this point the pH of the solution was adjusted to 5 by 

adding 1M NaOH. Then, NaCNBH3� (1.54 g, 24.46 meq/GlcN)� was added to the 

resulting solution. The solution was allowed to stir at room temperature for 24 hours, 

followed by adjusting the pH to 7 with 15% (w/v) NaOH. At higher mole equivalent 

of aldehyde was used, the solid will be appeared that it was continuously extracted 

(Soxhlet) with ethanol:ether�(1:1 v/v)�for 2 days and washed with ethanol several times 

followed by acetone wash prior to drying at room temperature under nitrogen. On the 

other hand, at lower mole equivalent of aldehyde was used, the samples was aqueous 

solution that it was dialyzed in distilled water for 4 days and then freeze-dried (0.93 g, 

87.0%, ES 10.3%). The synthetic pathway of N-n-octyl chitosan is shown in Scheme 

3.1. FT-IR (KBr): 	 3430 (O-H and N-H stretching of alcohol and amine), 2979 (C-H 

stretching�of CH2 of alkane),�1155�(C-O-C asymmetric stretching�of GlcN),�1081 and 

1033 (C-O stretching of�GlcN) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��3.20-3.92 (m; 7H 

NHCH2, H3, H4, H5, H6 and H6
), 3.05�(br. s; 2H H2, H2
), 1.91 (s; 3H NHCOCH3), 

1.56-1.16 (m; 14H�(CH2)7), 0.75 (s; 3H CH3) ppm. 

 



 

  

O
O

NH2

HO

OH

0.94

O
O

HN
HO

OH

O

CH3

0.06
Chitosan

O
O

N
HO

OH

x

O
O

HN
HO

OH

O

CH3

0.06

+

O
O

NH2

HO

OH

0.94-x

O
O

HN
HO

OH

x

O
O

HN
HO

OH

O

CH3

0.06

O
O

NH2

HO

OH

0.94-x

Schiff base

H

O

n-Octyl aldehyde

H3O+
-H2O

N-n-Octyl chitosan

1. pH=5

2. NaCNBH3

 

 

Scheme 3.1: Synthetic pathway of N-n-octyl chitosan 

 

3.2 Synthesis of N-benzyl chitosans 

  

By using the same procedure as described for the synthesis of N-n-octyl 

chitosan, aromatic aldehydes and heterocyclic aromatic aldehydes (0.05-3 meq/GlcN) 

were used instead of n-octyl aldehyde. In case of 4-nitrobenzaldehyde, the solution 

was diluted with N,N-dimethylformamide (DMF) instead of ethanol (0.82-1.15 g). The 

synthetic pathway of N-benzyl chitosans were shown in Scheme 3.2. 
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Scheme 3.2: Synthetic pathway of N-benzyl chitosans 

 

N-Benzyl chitosan (BzCh).  FT-IR (KBr): 	 3430 (O-H and N-H stretching of alcohol 

and amine), 1514, 1452 (C=C stretching of aromatic), 1155� (C-O-C asymmetric 

stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), 752, and 704 (C-H bending 

out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.28 (s; 5H Ph),�4.62-

3.48 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 2.93�(br. s; 2H H2 and H2
), 1.89 

(s; 3H NHCOCH3) ppm. 
13

C-NMR (D2O/CF3COOD): ��131.33-130.06�(C-Ph), 97.74 

(C1), 77.28 9(C40), 75.05 (C5), 69.92 (C3), 61.13 (C6), 52.89 (C2), 51.26 (NHCH2) 

ppm. 

 

 



 

  

N-(4-Methylbenzyl)chitosan (Me-BzCh). FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1514, 1452, (C=C stretching of aromatic), 1155,�(C-

O-C asymmetric stretching�of GlcN), 1081 1033 (C-O stretching of�GlcN), and 807 

(C-H bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.18 (s; 

4H Ph),�4.48-3.51 (br. m; 7H NHCH2, H3, H4, H5 H6 and H6
), 2.97�(br. s; 2H H2 and 

H2
), 2.21 (s; 3H CH3 Ph), 1.91 (s; 3H NHCOCH3) ppm.
13

C-NMR (D2O/CF3COOD): 

� 145.03, 140.20, 130.56, 119.03 (C-Ph), 97.96 (C1), 76.64 (C4), 75.06 (C5), 70.50 

(C3), 60.19(C2), 56.15(C6), 50.53 (NHCH2), 35.54 (CH3 Ph) ppm. 

 

N-(4-Hydroxybenzyl)chitosan (OH-BzCh).  FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1514, 1452 (C=C stretching of aromatic), 1155�(C-O-

C asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 829 (C-H 

bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.24-6.78 (dd; 

4H Ph),�4.34-3.42 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 2.96�(br. s; 2H H2 

and H2
), 1.93 (s; 3H NHCOCH3) ppm.
  

 

N-(2-Methoxybenzyl)chitosan (2OMe-BzCh). FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1494 (C=C stretching of aromatic), 1155� (C-O-C 

asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 759 (C-H 

bending out of plane of aromatic)  cm
-1

.
 
 
1
H-NMR (D2O/CF3COOD): ��7.03-7.00 (m; 

4H Ph),�4.48-3.75 (br. m; 10H NHCH2, H3, H4, H5, H6 and H6
, and OCH3), 2.97�(br. 

s; 2H H2 and H2
), 1.91 (s; 3H NHCOCH3)�ppm� 

 

N-(4-Methoxybenzyl)chitosan (4OMe-BzCh). 
1
H-NMR (D2O/CF3COOD): ��7.31-6.91 

(m; 4H Ph),�4.48-3.75 (br. m; 10H NHCH2, H3, H4, H5, H6 and H6
, and OCH3), 2.97�

(br. s; 2H H2 and H2
), 1.91 (s; 3H NHCOCH3)�ppm. 

 

N-(3,4-Dimethoxybenzyl)chitosan (34OMe-BzCh). FT-IR (KBr): 	 3430 (O-H and N-

H stretching of alcohol and amine), 1553, 1515 (C=C stretching of aromatic), 1155 (C-

O-C asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), 836, and 

804 (C-H bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.01 

(s; 3H Ph),�4.48-3.78 (br. m; 13H NHCH2, H3, H4, H5, H6 and H6
, and (OCH3)2), 

3.08�(br. s; 2H H2 and H2
), 1.98 (s; 3H NHCOCH3) ppm. 



 

  

N-(4-N,N-Dimethylaminobenzyl)chitosan (N(CH3)2-BzCh). FT-IR (KBr): 	 3430 (O-

H and N-H stretching of alcohol and amine), 1602, 1526 (C=C stretching of aromatic), 

1155� (C-O-C asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), 

and 811 (C-H bending out of plane of aromatic) cm
-1

.
 1

H-NMR (D2O/CF3COOD): ��

7.52 (s; 4H Ph),�4.93 (s; 1H H1), 4.42-3.53 (br. m; 7H NHCH2, H3, H4, H5, H6 and 

H6
), 3.12 (s; 6H N(CH3)2 Ph�), 2.97�(br. s; 2H H2 and H2
), 1.91 (s; 3H NHCOCH3) 

ppm.  

 

N-(4-Fluorobenzyl)chitosan (F-BzCh). FT-IR (KBr): 	 3430 (O-H and N-H stretching 

of alcohol and amine), 1514 (C=C stretching of aromatic), 1155� (C-O-C asymmetric 

stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 829 (C-H bending out 

of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.32-7.05 (dd; 4H Ph),�4.48-

3.51 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 2.97�(br. s; 2H H2 and H2
), 1.91 

(s; 3H NHCOCH3) ppm� 

 

N-(3-Bromobenzyl)chitosan (3Br-BzCh). FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1470 (C=C stretching of aromatic), 1155� (C-O-C 

asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), 836, and 782 

(C-H bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.53-7.29 

(m; 4H Ph),�4.43-3.49 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 3.10�(br. s; 2H 

H2 and H2
), 1.93 (s; 3H NHCOCH3) ppm. 

 

N-(4-Bromobenzyl)chitosan (4Br-BzCh). FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1478 (C=C stretching of aromatic), 1155� (C-O-C 

asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 801 (C-H 

bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.53-7.25 (dd; 

4H Ph),�4.48-3.58 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 3.03�(br. s; 2H H2 

and H2
), 1.93 (s; 3H NHCOCH3) ppm. 

 

N-(4-Chlorobenzyl)chitosan (Cl-BzCh).  FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1470 (C=C stretching of aromatic), 1155� (C-O-C 

asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 834 (C-H 

bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.36-7.30 (dd; 



 

  

4H Ph),�4.43-3.58 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 3.03�(br. s; 2H H2 

and H2
), 1.91 (s; 3H NHCOCH3) ppm� 

 

N-(4-Trifluoromethylbenzyl)chitosan (CF3-BzCh). FT-IR (KBr): 	 3430 (O-H and N-

H stretching of alcohol and amine), 1514 (C=C stretching of aromatic), 1155�(C-O-C 

asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 836 (C-H 

bending out of plane of aromatic) cm
-1

.
 1

H-NMR (D2O/CF3COOD): ��7.72-7.54 (dd; 

4H Ph),�4.43-3.55 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 2.98�(br. s; 2H H2 

and H2
), 1.91 (s; 3H NHCOCH3) ppm� 

 

N-(4-Nitrobenzyl)chitosan (NO2-BzCh).  FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1602, 1519 (C=C stretching of aromatic), 1155�(C-O-

C asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 850 (C-H 

bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��8.14-7.57 (dd; 

4H Ph), 4.42-3.53 (br. m; 7H NHCH2, H3, H4, H5 H6, and H6
), 2.99 (br. s; 2H H2 

and H2
), 1.91 (s; 3H NHCOCH3) ppm. 
13

C-NMR (D2O/CF3COOD): � 148.26, 

140.90, 130.99, 124.56 (C-Ph), 97.99 (C1), 76.66 (C4), 75.06 (C5), 70.50 (C3), 

60.21(C6), 56.15(C2), 50.53 (NHCH2) ppm. 

 

N-(4-Carboxybenzyl)chitosan (COOH-BzCh).  FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1714 (C=O stretching of carboxylic acid), 1556, 

1462 (C=C stretching of aromatic), 1155 (C-O-C asymmetric stretching� of GlcN),�

1081, 1033 (C-O stretching of�GlcN), and 818 (C-H bending out of plane of aromatic) 

cm
-1

. 
1
H-NMR (D2O/CF3COOD): �� 7.83-7.40 (dd; 4H Ph),� 4.48-3.58 (br. m; 7H 

NHCH2, H3, H4, H5, H6 and H6
), 3.02� (br. s; 2H H2 and H2
), 1.96 (s; 3H 

NHCOCH3) ppm.
  

 

N-(4-Pyridylmethyl)chitosan (PyMeCh). FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1605, 1470 (C=C stretching of aromatic), 1155 (C-

O-C asymmetric stretching�of GlcN),�1081, 1033 (C-O stretching of�GlcN), and 818 

(C-H bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��8.58-7.96 

(dd; 4H Ph),�6.1�(s; 1H CH=NH)��3.51-4.48 (br. m; 7H NHCH2, H3, H4, H5, H6 and 

H6
), 2.97�(br. s; 2H H2 and H2
), 1.91 (s; 3H NHCOCH3) ppm� 



 

  

N-(2-Thiophenylmethyl)chitosan (2ThMeCh). FT-IR (KBr): 	 3430 (O-H and N-H 

stretching of alcohol and amine), 1453 (C=C stretching of aromatic), 1155 (C-O-C 

asymmetric stretching�of GlcN),�1081, 1033 (C-O stretching of�GlcN), and 834 (C-H 

bending out of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.22-6.95 (m; 

3H Ph),�3.51-4.48 (br. m; 7H NHCH2, H3, H4, H5, H6 and H6
), 2.97�(br. s; 2H H2 

and H2
), 1.91 (s; 3H NHCOCH3) ppm� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

PART B: QUATERNIZATION OF CHITOSAN AND N-SUBSITUTED  

      CHITOSANS 

 

3.3 Quaternization of chitosan and N-substituted chitosans using iodomethane

  

3.3.1 Regenerated chitosan and N-substituted chitosans 

 

Chitosan and N-substituted chitosans (0.50 g) were regenerated by dissolving 

in 1�%��w/v� aqueous acetic acid (100 mL). This solution was stirred for one hour and 

was dropped slowly into 2%��w/v� aqueous sodium bicarbonate, �H2O:MeOH; 40:60 

v/v�, (100 mL). Methanol was added to help precipitate the chitosan out of the 

solution. The pH of the solution was adjusted to 9 by the addition 15%��w/v� aqueous 

sodium hydroxide �62�. The regenerated chitosan and N-substituted chitosans were 

then recovered by filtration and kept while still moist before the next synthesis step. 

 

3.3.2 Isolation and purification 

 

After quaternization, quaternized chitosan and its derivatives were precipitated 

in acetone (300 mL). The precipitate was dissolved in 15% (w/v) aqueous sodium 

chloride solution in order to replace the iodide ion by chloride ion. The suspension 

was dialyzed with deionized water for 3 days to remove inorganic materials. The 

dialysied solution was then concentrated under vacuum on a rotary evaporator. 

Product precipitated from the concentrated solution was added into acetone (100 mL). 

The solid thus obtained was then collected and dried overnight at room temperature 

under a stream of nitrogen. 

 

3.3.3 N,N,N-Trimethylammonium chitosan chloride  

 

Regenerated chitosan (about 0.50 g) while still moist was dispersed in N-

methyl-2-pyrrolidone �NMP� (25 mL)�at room temperature for 12 hours. Then sodium 

iodide (1.5 g, 0.01 mol) and 15% (w/v) aqueous sodium hydroxide (3.0 mL) were 

added and stirred at 50�C for 15 minutes. Subsequently, iodomethane (1 mL, 0.016 

mol) was added every four hour and stirred at 50�C for 12 hours. The reaction mixture 

appeared yellow and clear �49-52�. The isolation and purification of product was 



 

  

performed as described above 3.3.2 (0.41 g, 82%, DQCh 31%). The synthetic pathway 

of N,N,N-trimethylammonium chitosan chloride (TMChC) is shown in Scheme 3.3.  

TMChC,
 
FT-IR��KBr�: 	 3444 (O-H and N-H stretching of  
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Scheme 3.3: Synthetic pathway of N,N,N-trimethylammonium chitosan chloride 

 

of alcohol and amine), 1475��C-H symmetric bending�of �CH3�3N
+
R�, 1107, 1071, and 

1057 (C-O stretching of�GlcN) cm
-1

. 
1
H-NMR �D2O�: ��5.42 �br. s; 1H�H1, H1
�, 4.40-

3.01 �br. m; 23H -NH-CH2-, H2, H3, H4, H5, H6 and H6
,  s; OCH3, br. s; N
+
(CH3)3�, 

2.71 �br. m; 6H�N(CH3)2�, 2.31 �s;�3H�NHCH3�, 1.97 �s; 3H NHCOCH3� ppm. 
13

C-

NMR �D2O�: � 96.55 �C1�, 77.62� �C4�, 74.74� �C5�, 68.85 �C5�, 60.0-55.5 �C2 and 

C6)�, 54.43 �N
+
(CH3)3�, 42.71 �N(CH3)2� ppm. 

 

 

 

 

 

 



 

  

3.3.4 High degree of quaternization of N,N,N-trimethylammonium    

         chitosan   chloride� 

 

N,N,N-trimethylammonium chitosan chloride� (about 0.50 g) was dispersed in 

NMP (25 mL)�at room temperature for 12 hours. Then sodium iodide (1.5 g, 0.01mol) 

and 15% (w/v) aqueous sodium hydroxide (3.0 mL) were added and stirred at 50�C for 

15 minutes. Subsequently, iodomethane (1 mL, 0.016 mol) was added every four 

hours and stirred at 50�C for 12 hours. An additional iodomethane (1 mL, 0.016 mol) 

and small amount of sodium hydroxide pellet were added and the stirring was 

continued for 4 hour �49-52�. The isolation and purification of product was performed 

as described above 3.3.2 (0.14 g, 28%, DQCh 89%). HDQ-TMChC,
 
FT-IR� �KBr�: 	 

3438 (O-H and N-H stretching of alcohol and amine), 1475��C-H symmetric bending�

of �CH3�3N
+
R�, 1107, 1071, and 1057 (C-O stretching of�GlcN) cm

-1
. 

1
H-NMR �D2O�: 

���5.59 �br. s; 2H�H1, H1
�, 4.64-3.13 �br. m; 23H -NH-CH2-, H2, H3, H4, H5, H6 and 

H6
, s; OCH3, br. s; N
+
(CH3)3�, 2.71 �br. m; 6H�N(CH3)2�, 2.31 �s;�3H�NHCH3�, 1.97 

�s; 3H NHCOCH3� ppm. 

 

3.3.5 Quaternized N-�4-methylbenzyl�chitosan,  quaternized N-�4-N,N-

dimethylaminobenzyl�chitosan and quaternized N-(4-

pyridylmethyl) chitosan 

 

Each of regenerated N-�4-methylbenzyl�chitosan, N-�4-N,N-

dimethylaminobenzyl� chitosan and N-(4-pyridylmethyl)chitosan (about 0.50 g) while 

still moist was dispersed in NMP� (25 mL)� at room temperature for 12 hours. Then 

sodium iodide (1.5 g, 0.01 mol) and 5% or 15% (w/v) aqueous sodium hydroxide (3.0 

mL) were added and stirred at 50�C for 15 minutes. Subsequently, iodomethane (1 

mL, 0.016 mol) was added every four hours and stirred at 50�C for 12 hours. The 

reaction mixture appeared yellow and clear �40-52�. The isolation and purification of 

product was performed as described above 3.3.2 (0.34-0.43 g). 

 

 

 



 

  

Quaternized N-�4-methylbenzyl�chitosan (QMe-BzCh). 
1
H-NMR �D2O�: ��

7.36 �br. s; 4H Ph�,�5.40, 4.96  �s; 2H H1, H1
�, 4.42-3.13 �br. m; 23H -NH-CH2-, H2, 

H3, H4, H5, H6 and H6
, s; OCH3, br. s; N
+
(CH3)3�, 2.71 �br. m; 6H�N(CH3)2�, 2.31 �s;�

3H�CH3�Ph�, 1.97 �s; 3H NHCOCH3� ppm.  

 

Quaternized N-�4-N,N-dimethylaminobenzyl�chitosan (QN(CH3)2-BzCh). FT-

IR (KBr): 	 3430 (O-H and N-H stretching of alcohol and amine), 1559 (C=C 

stretching of aromatic), 1475� �C-H symmetric bending�of �CH3�3N
+
R�, 1155� (C-O-C 

asymmetric stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 811 (C-H 

bending out of plane of aromatic) cm
-1

. 
1
H-NMR �D2O�: �� 7.75-7.50 �dd; 4H Ph�,�

5.40, 4.96  �s; 2H H1, H1
�, 4.42-3.13 �br. m; 32H -NH-CH2-, H2, H3, H4, H5, H6 

and H6
, br. s; N
+
(CH3)3 Ph,  s; OCH3, br. s; N

+
(CH3)3�, 2.71 �br. m; 6H�N(CH3)2�, 

2.31 �s;� 3H� NHCH3�, 1.97 �s; 3H NHCOCH3� ppm. 
13

C-NMR �D2O�: � 145.52, 

141.53, 130.98, 119.56 �C-Ph�, 96.55 �C1�, 77.13-58.67 (C2, C3, C4, C5, and C6), 

56.98 �N
+
(CH3)3 Ph�, 53.88 �N

+
(CH3)3�, 41.77 �N(CH3)2�, 36.30 �NCH3� ppm. 

 

Quaternized N-(4-pyridylmethyl)chitosan (QPyMeCh). FT-IR (KBr): 	 3453 

(O-H and N-H stretching of alcohol and amine), 1475� �C-H symmetric bending� of 

�CH3�3N
+
R�, 1155� (C-O-C asymmetric stretching� of GlcN), 1081, 1033 (C-O 

stretching of�GlcN) cm
-1

. 
1
H-NMR �D2O�: ��8.60-7.95 �dd; 4H Ph�,�5.36, 4.96 �s; 2H 

H1, H1
�, 4.42-3.15 �br. m; 35H -NH-CH2-, H2, H3, H4, H5, H6 and H6
, s; OCH3,  s; 

N
+
CH3 Py, s; N

+
(CH3)3�, 2.83 �s; 6H�N(CH3)2�, 2.37 �s;� 3H�NHCH3�, 1.98 �s; 3H 

NHCOCH3� ppm. 
13

C-NMR �D2O�: � 174.99, 160.69, 144.82, 127.45 �C-Ph�, 96.55 

�C1�, 78.8-60.9 (C2, C3, C4, C5, and C6), 68.31 �N
+
CH3 Py�, 54.43 �N

+
(CH3)3�, 42.71 

�N(CH3)2� ppm. 

 

 

 

 

 



 

  

3.4 Quaternization of N-substituted chitosans using 3-chloro-2-hydroxypropyl 

trimethylammonium chloride  

 

3.4.1 Chitosan Quat-188 

 

A 65% (w/w) solution of 3-chloro-2-hydroxypropyl trimethylammonium 

chloride (Quat-188) (20 mL) was added to the reaction flask, and the pH of the 

solution was raised to 8 by using 15% (w/v) sodium hydroxide. Then iodide (0.25 g) 

was added along with regenerated chitosan (about 0.50 g) while still moist. Upon 

stirring, the solution went from light tan-brown to yellow. The solution was stirred at 

room for 48 hours, and then water (50 mL) was added and temperature raised to 50�C 

for stirring another 24 hours. The solution was dialyzed with deionized water for 24 

hours, and the deionized water was replaced very 8 hours �62�. The isolation and 

purification of product was performed as described above 3.3.2 (0.51 g, 57.9%, DQCh 

91.2%).  The synthetic pathway of chitosan Quat-188 is shown in Scheme 3.4. FT-IR 

�KBr�: 	 3430 �O-H and N-H stretching�, 1644 and 1369 �C=O and C-O stretching�of 

amide�,� 1594� �N-H� deformation of amino�,� 1480 cm
-1 
�C-H symmetric bending� of 

�CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 cm

-1 
�C-O 

stretching of GlcN� cm
-1

. 
1
H-NMR �D2O�: ��4.43-3.30 (m; 15H H3, H4, H5, H6 and 

H6
, s; 1H CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 

2.68 (br. s; 2H CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 
13

C-NMR �D2O�: � 102.15 

(C1), 77.80 (C4), 74.74 (C5), 72.88 (C3), 68.96 (CH2N
+
(CH3)3, c), 65.07, 64.57 

(CHOH, b), 63.80, 62.34 (C2), 60.25 (C6), 54.06 (N
+
(CH3)3, d), 51.66 (CH2NH, a) 

ppm. 

 



 

  

O
O

NH2

HO

OH

0.94

O
O

HN
HO

OH

O

CH3

0.06

N

OH CH3

CH3

CH3Cl

aq. NaOH
N

CH3

CH3

CH3

O

I2

Regenerated chitosan

O
O

HN
HO

OH

0.94

O
O

HN
HO

OH

O

CH3

0.06

Chitosan Quat-188N

HO

H3C CH3

CH3

a

b
c

d

Cl

Cl

Cl

 

Scheme 3.4: Synthetic pathway of chitosan Quat-188 

 

3.4.2 N-substituted chitosans Quat-188 

 

By using the same procedure as described for the synthesis of chitosan Quat-

188, N- substituted chitosans were used instead of chitosan (0.5-0.8 g) �62�.  

 

N-n-Octyl chitosan Quat-188 (OctChQ). FT-IR �KBr�: 	 3430 �O-H and N-H 

stretching�,  2979 �C-H stretching�of CH2 of alkane�,�1480 �C-H symmetric bending�of 

�CH3�3N
+
R�, 1155� �C-O-C asymmetric stretching� of GlcN�,� 1081 and 1033 �C-O 

stretching of GlcN� cm
-1

. 
1
H-NMR (D2O): ��4.43-3.30 (m; 15H H3, H4, H5, H6 and 

H6
, s; 1H CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 

2.68 (br. s; 2H CH2NH, a),�1.94 (s; 3H NHCOCH3), 1.56-1.16 (m; 14H�(CH2)7), 0.75 

(s; 3H CH3) ppm. 

 

N-Benzyl chitosan Quat-188 (BzChQ). FT-IR �KBr�: 	 3430 �O-H and N-H 

stretching�, 1514 �C=C stretching�of aromatic ring�, 1480 �C-H symmetric bending�of 

�CH3�3N
+
R�, 1155� �C-O-C asymmetric stretching� of GlcN�, 1081 and 1033 �C-O 

stretching of GlcN�, 752, 704 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.34 �s; 5H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H CHOH b, 



 

  

s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H CH2NH, 

a),� 1.94 (s; 3H NHCOCH3) ppm. 
13

C-NMR �D2O�: � 129.4- 128.7 (C-Ph), 102.12, 

100.00 (C1), 77.78 (C4), 74.74 (C5), 72.91 (C3), 68.60 (CH2N
+
(CH3)3, c), 65.03, 

64.56 (CHOH, b), 63.79, 62.65 (C2), 60.33 (C6), 54.07 (N
+
(CH3)3, d), 51.65 (CH2NH, 

a) ppm. 

 

N-�4-Methylbenzyl�chitosan Quat-188 (Me-BzChQ). FT-IR �KBr�: 	 3430 �O-H and 

N-H stretching�, 1514 �C=C stretching� of aromatic ring�, 1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 

�C-O stretching of GlcN�, 807 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.20-7.17 �m; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�2.21 (s; 3H CH3-Ph), 1.94 (s; 3H NHCOCH3) ppm. 

 

N-�4-Hydroxybenzyl�chitosan Quat-188 (OH-BzChQ). FT-IR �KBr�: 	 3430 �O-H and 

N-H stretching�, 1514, 1452 �C=C stretching�of aromatic ring�, 1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 

�C-O stretching of GlcN�, 804 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.20-7.17 (dd; 4H Ph), 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-�2-Methoxybenzyl�chitosan Quat-188 (2OMe-BzChQ). FT-IR �KBr�: 	 3430 �O-H 

and N-H stretching�, 1514 �C=C stretching�of aromatic ring�, �1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 

�C-O stretching of GlcN�, 759 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.28-6.93 (m; 4H Ph), 4.43-3.30 (m; 18H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, �br, s; 3H OCH3, s; 2H CH2N
+
(CH3)3 c s; 9H N

+
(CH3)3 d), 2.89 (br, s; 1H 

H2), 2.68 (br. s; 2H CH2NH, a),�1.96 (s; 3H NHCOCH3) ppm. 

 

 

 

 



 

  

N-(4-Methoxybenzyl) chitosan Quat-188 (4OMe-BzChQ). 
1
H-NMR 

(D2O/CF3COOD): ��7.31-6.91 (dd; 4H Ph),�4.43-3.30 (m; 18H H3, H4, H5, H6 and 

H6
, s; 1H CHOH b, �br, s; 3H OCH3, s; 2H CH2N
+
(CH3)3 c s; 9H N

+
(CH3)3 d), 2.89 

(br, s; 1H H2), 2.68 (br. s; 2H CH2NH, a),�1.96 (s; 3H NHCOCH3) ppm. 

 

N-�3,4-Methoxybenzyl�chitosan Quat-188 (34OMe-BzChQ). FT-IR �KBr�: 	 3430 �O-

H and N-H stretching�, 1553, 1515 �C=C stretching� of aromatic ring�, 1480 �C-H 

symmetric bending� of �CH3�3N
+
R�, 1155� �C-O-C asymmetric stretching� of GlcN�,�

1081 and 1033 �C-O stretching of GlcN�, 804 �C-H defomation�of the aromatic ring� 

cm
-1

. 
1
H-NMR �D2O�: ��7.06-6.92 (br. m; 3H Ph), 4.43-3.30 (m; 21H H3, H4, H5, H6 

and H6
, s; 1H CHOH b, �br, s; 6H OCH3, s; 2H CH2N
+
(CH3)3 c s; 9H N

+
(CH3)3 d), 

2.89 (br, s; 1H H2), 2.68 (br. s; 2H CH2NH, a),�1.96 (s; 3H NHCOCH3) ppm. 

 

N-(4-N,N-Dimethylaminobenzyl)chitosan Quat-188 (N(CH3)2-BzChQ). FT-IR (KBr): 

	 3430 (O-H and N-H stretching of alcohol and amine), 1602, 1526 (C=C stretching of 

aromatic), 1480 �C-H symmetric bending� of �CH3�3N
+
R�, 1155� (C-O-C asymmetric 

stretching�of GlcN), 1081, 1033 (C-O stretching of�GlcN), and 811 (C-H bending out 

of plane of aromatic) cm
-1

. 
1
H-NMR (D2O/CF3COOD): ��7.52 (s; 4H Ph),�4.93 (s; 1H 

H1), 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H CHOH b, s; 2H CH2N
+
(CH3)3 

c, s; 9H N
+
(CH3)3 d), 3.12 (br. s; 6H N(CH3)2Ph), 2.87 (s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.93 (s; 3H NHCOCH3) ppm. 

 

N-�4-Fluorobenzyl�chitosan Quat-188 (F-BzChQ). FT-IR �KBr�: 	 3430 �O-H and N-

H stretching�, 1514 �C=C stretching�of aromatic ring�, 1480 �C-H symmetric bending�

of �CH3�3N
+
R�, 1155� �C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 �C-O 

stretching of GlcN�, 829 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR �D2O�: 

��7.33-7.05 �dd; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H CHOH b, 

s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H CH2NH, 

a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-�3-Bromobenzyl�chitosan Quat-188 (3Br-BzChQ). FT-IR �KBr�: 	 3430 �O-H and 

N-H stretching�, 1470 �C=C stretching� of aromatic ring�, 1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 



 

  

�C-O stretching of GlcN�, 836, and 782 �C-H defomation�of the aromatic ring� cm
-1

. 

1
H-NMR �D2O�: ��7.56-7.34 �m; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, 

s; 1H CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. 

s; 2H CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-�4-Bromobenzyl�chitosan Quat-188 (4Br-BzChQ). FT-IR �KBr�: 	 3430 �O-H and 

N-H stretching�, 1478 �C=C stretching� of aromatic ring�, � 1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 

�C-O stretching of GlcN�, 801 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.75-7.52 �dd; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-�4-Chlorobenzyl�chitosan Quat-188 (Cl-BzChQ). FT-IR �KBr�: 	 3430 �O-H and N-

H stretching�, 1478 �C=C stretching�of aromatic ring�, �1480 �C-H symmetric bending�

of �CH3�3N
+
R�, 1155� �C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 �C-O 

stretching of GlcN�, 834 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR �D2O�: 

��7.30 �br, s; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H CHOH b, s; 

2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H CH2NH, a),�

1.94 (s; 3H NHCOCH3) ppm. 

 

N-�4-Trifluorobenzyl�chitosan Quat-188 (CF3-BzChQ). FT-IR �KBr�: 	 3430 �O-H 

and N-H stretching�, 1514 �C=C stretching�of aromatic ring�, �1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 

�C-O stretching of GlcN�, 836 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.62-7.44 �dd; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-�4-Nitrobenzyl�chitosan Quat-188 (NO2-BzChQ). FT-IR �KBr�: 	 3430 �O-H and 

N-H stretching�, 1602, 1519��C=C stretching�of aromatic ring�, �1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 



 

  

�C-O stretching of GlcN�, 850��C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��8.15-7.57 �dd; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-(4-Carboxybenzyl)chitosan Quat-188 (COOH-BzChQ).  FT-IR �KBr�: 	 3430 �O-H 

and N-H stretching�, 1714 (C=O stretching of carboxylic acid), 1556, 1462 �C=C 

stretching�of aromatic ring�, �1480 �C-H symmetric bending�of �CH3�3N
+
R�, 1155��C-

O-C asymmetric stretching�of GlcN�,�1081 and 1033 �C-O stretching of GlcN�, 818 

�C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR �D2O�: ��7.75-7.39 �dd; 4H Ph�, 

4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 

9H N
+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H CH2NH, a),� 1.94 (s; 3H 

NHCOCH3) ppm. 

 

N-(4-Pyridylmethyl)chitosan Quat-188 (PyMeChQ).  FT-IR �KBr�: 	 3430 �O-H and 

N-H stretching�, 1605, 1470 �C=C stretching�of aromatic ring�, 1480��C-H symmetric 

bending�of �CH3�3N
+
R�, 1155��C-O-C asymmetric stretching�of GlcN�,�1081 and 1033 

�C-O stretching of GlcN�, 818 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: ��7.75-7.39 �dd; 4H Ph�, 4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 

 

N-(2-Thiophenylmethyl)chitosan Quat-188 (2ThMeChQ). FT-IR��KBr�: 	 3430, �O-H 

and N-H stretching�, 1453, �C=C stretching�of aromatic ring�, 1480 �C-H symmetric 

bending�of �CH3�3N
+
R�, 1155,� �C-O-C asymmetric stretching�of GlcN�,�1081, 1033,�

�C-O stretching of GlcN�, 834 �C-H defomation�of the aromatic ring� cm
-1

. 
1
H-NMR 

�D2O�: � 7.35-6.95 (m; 3H Ph),�4.43-3.30 (m; 15H H3, H4, H5, H6 and H6
, s; 1H 

CHOH b, s; 2H CH2N
+
(CH3)3 c, s; 9H N

+
(CH3)3 d), 2.87 �br. s; 1H H2), 2.68 (br. s; 2H 

CH2NH, a),�1.94 (s; 3H NHCOCH3) ppm. 
13

C-NMR �D2O�: � 127.1- 126.4 (C-Ph), 

102.12 (C1), 77.78 (C4), 74.74 (C5), 73.07 (C3), 68.95 (CH2N
+
(CH3)3, c), 66.22, 

64.76 (CHOH, b), 63.45, 62.39 (C2), 60.30 (C6), 54.06 (N
+
(CH3)3, d), 51.73 (CH2NH, 

a) ppm. 



 

  

3.4.3 Characterization of chitosan and its derivatives 

 

3.4.3.1 FT-IR spectroscopy 

 

IR spectra of chitosan and its derivatives were recorded on a Nicolet Impact 

410 Fourier Transform Infrared (FT-IR)�spectrometer, and all samples were prepared 

as potassium bromide pellets. 

 

3.4.3.2 
1
H-NMR spectroscopy 

 

Each of Chitosan and its derivatives (10 mg) was dissolved in 1% (v/v) 

D2O/CF3COOD or D2O and spectra were recorded at 300 �K, using pulse 

accumulating of 64 scans and the LB parameter of 0.30 Hz. 

 

3.4.3.3 Determination of molecular weight  

 

The molecular weight of chitosan and its derivatives were determined by a gel 

permeation chromatography (GPC). Chitosan and its derivatives were dissolved in 5% 

(w/v) acetic acid and they were injected in GPC column, three Viscotek Columns 

(ViscoGEL Poly-CAT
TM

), at a flow rate of 1 mL/min 20�C.  The GPC chromatograms 

were collected by Astra V software and analyzed with the Astra 5.3.1.5 program. The 

weight-average molecular weight (Mw) and the number-average molecular weight (Mn) 

were determined by comparing the signals from the refractive index detector to that of 

the light-scattering detector 90� signal time. The increment of refractive index (dn/dc) 

was determined using a concentration 5 and 25 mg/mL for chitosan, N-benzyl 

chitosans and quaternized chitosans, respectively. 

 

3.4.3.4 Determination of degree of quaternization 

 

The degree of quaternization of chitosan derivatives Quat-188 was determined 

by titrating with silver nitrate. Silver nitrate (0.722 g, 4.250 mmol) was dissolved in 

deionized water (250 mL) to make a 0.017M solution.  The indicator solution was 

made by dissolving potassium chromate (0.250 g, 1.287 mmol) in deionized water (20 

mL).  Chitosan derivatives Quat-188 (0.035 g) was dissolved in deionized water (25 



 

  

mL) and then 0.064mM potassium chromate was added (0.5 mL).  After stirring for 1 

mintue, the solution was titrated with 0.017M silver nitrate, until the end-point of the 

reaction was reached, as evidence by the formation of the red-brown precipitate silver 

chromate. The same procedure was used to determine the degree of quaternization of 

N-substituted chitosans �48�.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

PART C: ANTIBACTERIAL ACTIVITY OF QUATERNIZED CHITOSAN 

AND N-SUBSTITUTED CHITOSANS 

 

3.5 Antibacterial assessment 

 

3.5.1 Phosphate buffer saline 

 

Solution A: 0.1M aqueous solution of potassium phosphate monobasic 

(KH2PO4) was prepared in deionized (DI) water (10.88 g/800 mL). 

 

Solution B: 0.1M aqueous solution of potassium phosphate dibasic, anhydrous 

(K2HPO4) was prepared in deionized (DI) water (13.92 g/800 mL). 

 

A 50mM phosphate buffer saline (PBS) of pH 7 was prepared and used 

currently assessments by mixing together solution A (78 mL), solution B (122 mL) 

and deionized (DI) water (400 mL). 

 

3.5.2 Cell solution preparation  

 

These assessments were carried out in 50mM phosphate buffer saline solution 

at pH 7. Selected bacteria were incubated at 37°C in a culture tube containing sterile 

nutrient broth, NB, (5 mL) for 12 hours. A portion of the resulting culture (1 mL) was 

transferred into a culture flask containing  sterile nutrient broth (25 mL) and incubated 

on a shaker at 37°C for 3.5 hours. A part of the resulting bacterial culture (2 mL) was 

diluted with sterile nutrient broth such that the optical density (absorbance) of the 

resulting dilute solution was either 0.200 (for E. coli) or 0.400 (for S. aureus) when 

compared to sterile nutrient broth as the blank. Finally, this solution (0.8 mL) was 

further diluted to a volume four times that of the original using sterile nutrient broth. 

The resulting bacterial solutions appeared clear to the eye and was immediately stored 

at 0°C prior to used for anti-bacterial assessment against each bacterium. The bacterial 

cell density in this solution was predetermined to be 4×10
7
cells/mL. This solution was 

further diluted to 2×10
6 
cells/mL in the individual wells during assessments �27,62�.   

 

 



 

  

3.5.3 96-well plate preparation 

 

 A schematic of the well plate is given in Figure 3.1. The plate was divided in 

three distinct categories of columns as shown, with each category containing solution 

as indicated below. A combination of muti-channel (8) pipettor and sterile throughs 

was used, when appropriate to facilitate the plate preparation. One 96-well plate was 

used to test 5 different agents at one time. The solution once introduced into the wells 

appeared clear without the presence of any turbidity. The cell count in each of the cell 

control and test well was calculated to be 2×10
6 
cells/well. 

 

 

 

Figure 3.1: Schematic of a 96-well plate used in antibacterial assessment 

 

Cell Control: PBS (50 �L) + Cell bacterial solution (50 �L) + DI water (100 �L) 

Agent Control: PBS (50 �L) + NB (50 �L) + Antibacterial agent (100 �L) 

Test Well: PBS (50 �L) + Cell bacterial solution (50 �L) + Antibacterial agent (100 

�L) 

 

 

 

 

 



 

  

To test the antibacterial activity of the chitosan derived agents, the diluted 

bacterial culture was incubated at 37°C for 14 hours in a 96-well plate in the presence 

of each agent with final concentrations ranging from 2 �g/mL to 256 �g/mL in 

multiples of 2 pieces of the agent in separate wells. After this period, individual results 

were visually assessed; the wells where bacterial growth occurred turned visibly 

turbid, indicating no activity against the microorganism growth. MIC values were 

assigned as the lowest possible concentration of the agent that inhibited growth 

(indentified as the first clear well of the lowest agent concentration along the length of 

each column). Control tests were simultaneously run to ensure proper bacterial growth 

within the diluted bacterial culture in absence of any agent  (cell control) and 

indication of no growth in solutions of the agent in absence of any bacterial culture 

(agent control). Each assessment was performed at least two times to ensure 

reproducibility of results �27,62�.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

CHAPTER IV 

 

RESULTS AND DISCUSSION 

 
PART A: SYNTHESIS OF N-SUBSTITUTED CHITOSAN DERIVATIVES 

 

 The N-substituted derivatives of chitosan can be synthesized by reductive 

amination �64�. It is a versatile and specific method for creating a covalent bond 

between an aldehyde and an amine function at C-2 position of chitosan. There are two 

distinct steps involved in this process; the formation of Schiff base and then the 

reduction to amine. In this study, three types of aldehydes were used, an aliphatic 

aldehyde, aromatic aldehydes, and heterocyclic aromatic aldehydes.  

 

4.1 Synthesis of N-n-octyl chitosan  

  

 The selected aliphatic aldehyde used in derivatizing chitosan was n-octyl 

aldehyde. The formation of N-n-octyl chitosan (OctCh) occurred via the corresponding 

Schiff base intermediate as shown in Scheme 4.1. The reduction of the corresponding 

Schiff base was performed by using NaCNBH3 which was more reactive and selective 

than usual reducing agents, such as NaBH4 and PhSeH. The advantage of this reducing 
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Scheme 4.1: Synthetic pathway of N-n-octyl chitosan 

 

agent is its stability in acetic acid medium. Moreover, BH3CN
�
 rapidly reacts with the 

Schiff base at pH values of 6-7, and thus the reduction of aldehydes or ketones is 

negligible in this pH range �36�. The FT-IR spectrum of OctCh (Figure 4.1) was 



 

  

similar to that of chitosan except for the increasing intensity of the absorption band at 

wavenumber 2975 cm
-1

 due to C-H stretching of the pendant methylene groups �28�. 

The 
1
H-NMR spectrum of OctCh was similar to the one of chitosan except the 

additional signals of the n-octyl group which appeared as the multiplet and singlet at � 

1.6-1.2 and 0.7 ppm due to methylene and methyl protons, respectively �37�. 

Accordingly, the final product was confirmed to be N-n-octyl chitosan. The extent of 

N-substitution (ES) of OctCh was found to be 10.2%, which was determined by 
1
H-

NMR as throughly discussed in section 4.4. 

 

4.2 Synthesis of N-benzyl chitosans 

   

  The series of 17 N-benzyl chitosans with either electron donating or electron 

withdrawing substituents were obtained by the same synthetic pathway as described 

for OctCh which was shown in Scheme 4.2. Moreover, aromatic aldehydes at different 
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Scheme 4.2: Synthetic pathway of N-benzyl chitosans  

 

mole ratios with respect to GlcN of chitosan were used in order to investigate the ES 

in these reactions (Table 4.1). All these N-benzyl chitosans were identified by FT-IR, 

1
H-NMR and 

13
C-NMR spectroscopy which was throughly discussed in next section. 

By varying the substituents on the aromatic aldehydes, the impact of the electronic 

factors on ES could be ascertained.  

 

 



 

  

4.3 Interpretation of N-benzyl chitosans spectra  

 

The FT-IR spectra of chitosan and selected N-benzyl chitosans with various 

ES’s are shown in Figure 4.1. All spectra had the characteristic FT-IR pattern of 

chitosan, i.e., the absorption bands at wavenumber 3430 cm
-1

 due to OH and NH2 

groups, 1648 and 1377 cm
-1

 corresponding to the C=O and C-O stretching of amide 

groups, 1594 cm
-1

 due to N-H deformation of amino groups, 1155, 1081 and 1033 cm
-

1 
corresponding to the symmetric stretching of the C-O-C and involved skeletal 

vibration of the C-O stretching �65�. The additional absorption bands at 1602, 1514 

and 1470 and 704-836 cm
-1

 were assigned to C=C stretching and C-H bending out of 

plane of the aromatic group, respectively, which were actually absent in the FT-IR 

spectra of chitosan and OctCh. These absorption bands appeared more intense for 

those N-benzyl chitosans with higher ES’s.  
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Ch, Chitosan; OctCh, N-n-Octyl chitosan; BzCh,  N-Benzyl chitosan; Me-BzCh,  N-(4-

Methylbenzyl)chitosan; OH-BzCh, N-(4-Hydroxybenzyl)chitosan; N(CH3)2-BzCh,  N-(4-N,N-

Dimethylaminobenzyl)chitosan; F-BzCh, N-(4-Fluorobenzyl)chitosan;  NO2-BzCh, N-(4-

Nitrobenzyl)chitosan. 

 

Figure 4.1: FT-IR (KBr) spectra of chitosan and selected chitosan derivatives with 

various ES’s 



 

  

The 
1
H-NMR spectra of chitosan and selected N-benzyl chitosans with various 

ES’s are shown in Figure 4.2.  All spectra exhibited the characteristic 
1
H-NMR pattern 

of chitosan, i.e., the multiplet at � 4.4-3.3 ppm from H3, H4, H5, H6 and H6

 protons 

and two singlets at � 3.0 and 1.9 ppm due to the H2 proton of GlcN and N-acetyl 

protons of GlcNAc, respectively �66,67�.  
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Ch, Chitosan; OctCh, N-n-Octyl chitosan; BzCh,  N-Benzyl chitosan; Me-BzCh,  N-(4-

Methylbenzyl)chitosan; OH-BzCh, N-(4-Hydroxybenzyl)chitosan; F-BzCh, N-(4-

Fluorobenzyl)chitosan;  CF3-BzCh, N-(4-Trifluorobenzyl)chitosan. 

 

Figure 4.2: 
1
H-NMR spectra of chitosan and selected chitosan derivatives with 

various ES’s in D2O/CF3COOD 



 

  

For all N-benzyl chitosans, their 
1
H-NMR spectra exhibited typical signals in 

the aromatic region, � 7-8 ppm, and a broad singlet signal at � 4.3 ppm due to the 

benzylic protons of N-benzyl groups. In case of BzCh and Me-BzCh, one broad singlet 

at � 7.3 ppm, due to aromatic protons which were in approximately the same chemical 

environment, were observed. The additional singlet at � 2.2 ppm was assigned to the 

methyl protons at para-position of the aromatic ring of Me-BzCh. In the presence of 

either strong electron donating or electron withdrawing groups on the benzene ring, 

the aromatic protons clearly appeared as a doublet of doublets as the result of the 

magnetic anisotropic effect of the substitutent at para-position. However, the 
1
H-NMR 

spectrum of N(CH3)2-BzCh showed the broad singlet, at � 7.5 ppm, in the aromatic 

region and another singlet at � 3.1 ppm assigned to N,N-dimethyl protons as shown in 

Figure 4.3. This indicated that the N,N-dimethylamino substitutent is not protonated 

under this condition. 

Aromatic protons

HOD

N(CH3)2 Ph

H2+H2'

NHAc

H3-H6, H6''

2345678910 1

Chemical shift (ppm)  

 

Figure 4.3: 
1
H-NMR spectrum of N-(4-N,N-dimethylaminobenzyl)chitosan with ES 

17.5% in D2O/CF3COOD 

 

The 
1
H-NMR spectrum of N-(4-pyridylmethyl)chitosan (PyMeCh) (Figure 

4.4), showed a doublet of doublet signals at � 8.6-8.0 ppm due to the protons of the 

pyridine ring. It should be noted that at molar ratios of 4-pyridinecarboxaldehyde to 

GlcN greater than 0.1 which afforded ES 5.2%, a signal near � 6.0 ppm attributed to 

the proton of imine was clearly observed.
 
 Particularly, it appeared more intense when 

the ES was higher as 30.4%. Rodrigues et al. had also reported the detection of such a 
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signal and concluded that more reducing agent was required to assure complete 

reduction of the imine intermediate �68�.  
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Figure 4.4: 
1
H-NMR spectra of N-(4-pyridylmethyl)chitosan with different ES’s in 

D2O/CF3COOD 

 

The 
1
H-NMR spectrum of N-(4-thiophenylmethyl)chitosan (2ThMeCh) was 

similar to that of PyMeCh. The doublet and multiplet at � 7.3 and 7.1 ppm shown in 

Figure 4.5 were due to the protons of thiophene ring.  
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Figure 4.5: 
1
H-NMR spectrum of N-(4-thiophenylmethyl)chitosan with ES 13.3% in 

D2O/CF3COOD 

 

This observation confirms the synthetic pathway of N-benzyl chitosans as 

shown in Scheme 4.2. 

 

In addition, the 
13

C-NMR spectra of chitosan and the selected N-benzyl 

chitosans were�recorded.�Chitosan exhibited signals at ��  98.3, 76.6, 75.3, 70.5, 60.3, 

and 56.0 ppm which were assigned to C1, C4, C5, C3 C6, and C2 carbons of GlcN, 

respectively.
 
This was consistent with that reported by Ramos et al �69�. BzCh 

exhibited a new signal at � 51.0 ppm belonging to CH2NH appearing in the aliphatic 

region (Figure 4.6). The presence of the aromatic carbons is evidenced by the signals 

at � 130-131 ppm.   
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Figure 4.6: 
13

C-NMR spectrum of N-benzyl chitosan with ES 18.5% in  

D2O/CF3COOD  

In the spectrum of NO2-BzCh (Figure 4.7), the aromatic signals are clearly 

resolved which appeared as four peaks at � 148.3, 140.9, 130.9, and 124.5 ppm 

indicating the existence of the para-substituted benzene ring. 
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Figure 4.7: 
13

C-NMR spectrum of N-(4-nitrobenzyl)chitosan with ES 24.7% in 

D2O/CF3COOD 
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4.4 Impact of N-benzyl substituents on the extent of chitosan substitution 

 

In order to establish ES and hence calculate the yield of the polymer, it was 

necessary to determine the DDA of the chitosan sample which was performed by 

using 
1
H-NMR spectroscopy and Equation 4.1 �66,67�.   

 

1(NAc)

3

1(H2 to H6)
6

x 1001- (4.1)DDA (mol%) =

�������� 

Where DDA �mol%� is degree of deacetylation, NAc is integral area of N-acetyl 

glucopyranose of chitosan (GlcNAc) protons, H2 to H6 are the integral area of the protons of 

glucopyranose of chitosan (GlcN). 

 

In this study, DDA was determined from the relative integral area of N-acetyl 

protons of GlcNAc at �1.9 ppm and the combined integral areas of the H2 to H6 of 

GlcN protons at � 4.4-3.0 ppm. It was found that DDA of parent chitosan was 94%. In 

other words, is chitosan comprised GlcN 94% and GlcNAc 6%. 

 

Because the aromatic proton region did not overlap with the proton resonances 

of GlcN, the aromatic proton signal in 
1
H-NMR spectrum of each N-benzyl chitosan 

was used to determine ES. Since the aromatic proton signal appears in the downfield 

region compared to GlcN protons, it can be integrated with minimal interference 

leading to greater accuracy.  Comparison of the integral area of the H2+H2
+1/3 NAc 

signals with those of the aromatic protons� allows the ES of benzyl group to be 

calculated by using Equation 4.2 �44�. Using the above approach (Equation 4.2), the 

ES of each chitosan derivative was thus calculated and recorded as listed in Table 4.1.,  

 

Ar

 n

H2+H2'+1(NAc)

               3

x 100 (4.2)ES (mol%) =

 

where ES (mol%) is the extent of N-substitution of N-benzyl group, Ar is the integral 

area of aromatic protons, n is number of aromatic hydrogen atoms per substituent, H2 

and H2
 are integral areas of the protons at C-2 carbon of GlcN both with and without 

substitution, and NAc is integral area of GlcNAc protons.  



 

  

Figure 4.8 exhibits the 
1
H-NMR spectra of Me-BzCh with various ES’s in 

D2O/CF3COOD. It showed that the reasonable correlation of ES and the molar ratio of 

aldehyde to GlcN. When the mole equivalent amount of an aldehyde was increased, 

the ES was also increased as revealed by the relative increase of the aromatic proton 

signals. Most of these N-benzyl chitosans were obtained with high yield over 80%. 
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Figure 4.8: 
1
H-NMR spectra of N-(4-methylbenzyl)chitosans with various ES’s in 

D2O/CF3COOD 

 

In addition, Thatte reported that changing the solvent composition from only 

diluted acetic acid solution to 60%DMF in dilute acetic acid solution produced a more 

homogeneous reaction medium which enhanced the ES �63�.  In this study, NO2-BzCh 

had a high ES when the reaction was carried out in 50%DMF in diluted acetic acid 

solution. However, the complete removal of DMF from the reaction mixture was 

unsuccessful, although soxhlet extraction or dialysis were lasted for as long as 5 days. 

Ethanol (EtOH) was then used instead of DMF. 50%EtOH in diluted acetic acid 
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solution was finally used as the reaction medium for synthesis of all N-benzyl 

chitosans except for NO2-BzCh, because it  dissolves in EtOH. 

 

Table 4.1 summarizes the results of chitosan modification with various 

aromatic aldehydes. N-benzylation of chitosan by benzaldehyde afforded higher ES’s 

than N-alkylation by n-octyl aldehyde at every molar ratio of aldehyde to GlcN.   

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

Table 4.1: N-Alkylation and N-benzylation of chitosan  

Samples Molar ratio 

(aldehyde:GlcN) 

Targeted 

ES (%) 

Obtained 

ES (%)
 

FW
 

Yield (%)
 

 

 

OctCh 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

100 

50 

30 

10 

5 

>10.3 

10.3 

4.7 

1.8 

1.3 

ND 

175.1 

168.8 

165.5 

165.0 

ND 

87 

86 

91 

88 

 

 

BzCh 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

100 

50 

30 

10 

5 

>18.5 

18.5 

11.4 

3.6 

2.3 

ND 

180.2 

173.8 

166.8 

165.6 

ND 

94 

92 

84 

85 

 

 

Me-BzCh 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

100 

50 

30 

10 

5 

>15.6 

15.6 

11.0 

3.4 

1.7 

ND 

178.3 

175.0 

167.1 

165.3 

ND 

82 

85 

83 

87 

 

 

OH-BzCh 

 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

0.05:1 

100 

50 

30 

10 

5
 

5
� 

>12.1 

12.1 

6.4 

3.1 

NR
 

trace 

ND 

176.4 

170.2 

165.0 

NR 

ND 

ND 

90 

86 

90 

NR 

ND 

2OMe-BzCh 0.3:1 30 6.0 170.7 91 

4OMe-BzCh 0.3:1 30 8.0 173.1 86 

34OMe-BzCh 0.3:1 30 7.8 175.2 88 

 

 

N(CH3)2-BzCh 

3:1 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

300 

100 

50 

30 

10 

5 

42.2 

17.5 

10.0 

5.9 

2.7 

NR 

219.6 

186.8 

176.8 

171.4 

167.1 

NR 

74 

75 

80 

79 

80 

NR 

 

 

 



 

  

Table 4.1: N-Alkylation and N-benzylation of chitosan (cont.) 

Samples Molar ratio 

(aldehyde:GlcN) 

Targeted 

ES (%) 

Obtained 

ES (%)
 

FW
 

Yield (%)
 

 

 

F-BzCh 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

100 

50 

30 

10 

5 

>25.7 

25.7 

17.5 

5.5 

2.5 

ND 

191.3 

182.4 

169.5 

166.2 

ND 

93 

92 

88 

91 

4Br-BzCh 0.3:1 30 11.2 182.4 85 

3Br-BzCh 0.3:1 30 12.5 184.6 81 

Cl-BzCh 0.3:1 30 10.0 176.0 77 

 

CF3-BzCh 

1:1 

0.5:1 

0.1:1 

0.05:1 

100 

50 

10 

5 

>35.8 

35.8 

6.7 

4.6 

ND 

220.1 

174.1 

170.8 

ND 

82 

90 

86 

 

 

NO2-BzCh 

1:1 

0.5:1 

0.3:1 

0.1:1 

0.05:1 

100 

50 

30 

10 

5 

>35.1 

35.1 

24.7 

8.3 

3.3 

ND 

220.0 

203.3 

176.9 

168.8 

ND 

86 

87 

88 

88 

COOH-BzCh 0.2:1 

0.1:1 

20 

10 

12.5 

6.8 

180.3 

172.6 

86 

84 

 

PyMeCh 

0.5:1 

0.3:1 

0.2:1 

0.1:1 

0.05:1 

50 

30 

20 

10 

5 

30.4 

20.3 

12.5 

5.2 

3.0 

191.2 

182.0 

174.9 

168.2 

166.2 

86 

83 

89 

88 

86 

 

2ThMeCh 

0.5:1 

0.3:1 

0.1:1 

50 

30 

10 

13.3 

9.6 

3.2 

176.3 

172.7 

166.6 

81 

80 

86 

*
24hrs; NR is no reaction as revaled by 

1
H-NMR; ND is non detectable; > is expected to be 

higher ES but could not be determined by 
1
H-NMR  due to its insolubility in D2O/CF3COOD; 

FW is a formula weight�of the repeating unit = 12.2 + (FW of N-benzyl GlcN � ES) + �163.5 � 

(0.94-ES)�;  
ES is the extent of N-substitution determined by�

1
H-NMR; Yield (%)� �(weight 

of N-benzyl chitosan derivatives (g) � 163.5� / �weight of chitosan (g) � calculated FW of N-

benzyl GlcN)� �100. 



 

  

According to Table 4.1, at the highest molar ratio of aldehyde to GlcN, 0.5:1, 

n-octyl aldehyde gave ES 10% while benzaldehyde afforded ES 18%. This indicated 

that n-octyl aldehyde was less reactive than benzaldehyde in this reaction. Another 

reason can be attributed to the relative stability of the Schiff base intermediate. In the 

case of benzaldehyde, the Schiff base is stabilized by the resonance with the aromatic 

ring. Similar observations had been reported by Desbrieres et al. �37�.  

   

  The polarity of the aldehydic carbonyl group must play the important role in 

the formation of Schiff base intermediate. Under the reaction conditions employed, 

aldehydes with electron donating substituents were less active than the aldehydes with 

the electron withdrawing substituents. Strong electron donating substituents such as 

para-hydroxy and 4-N,N-dimethylaminobenzaldehyde failed to react at low molar 

ratios, i.e., 0.05. The N,N-dimethylamino group is not protonated in the mild acid 

medium, so it is a powerful electron donor. The extent of electron donation of para-

hydroxybenzaldehyde could be moderated by esterifying the hydroxyl group, but the 

para-acetoxy derivative still exhibited low reactivity �63�. The carbonyl carbon of the 

aromatic aldehyde containing an electron donating group is less electrophilic as a 

result of the mesomeric effect of the electron rich hetero atom at the para-position. 

This polarization impacts negatively the intermediate Schiff base equilibrium leading 

to lower substitution levels.  

 

  In contrast, the extent of reaction of aldehydes with electron withdrawing 

substituents was closely correlated with the initial aldehyde to GlcN ratios.  4-Nitro, 4-

carboxy, 4-trifluoromethyl and 4-fluorobenzaldehyde exhibited a linear relationship 

between the targeted ES and obtained ES as shown in Figure 4.9.  
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OctCh, N-n-Octyl chitosan (����); BzCh, N-Benzyl chitosan (����); Me-BzCh, N-(4-Methylbenzyl) 

chitosan (����);  OH-BzCh, N-(4-Hydroxybenzyl)chitosan (����);  F-BzCh, N-(4-Fluorobenzyl) 

chitosan (����); NO2-BzCh, N-(4-Nitrobenzyl)chitosan (����). 

 

Figure 4.9: Substitution control in the synthesis of selected chitosan derivatives 

bearing either an electron donating or electron withdrawing substituents 

 

The reaction is driven by the quantitative formation of the Schiff base intermediate. In 

fact, this interaction which has recently been reported by Fan et al. was a method for 

analyzing amino substituents on polymeric substrates �70�. They also imparted that 

derivatives with trifluoromethyl aldehydes formed Schiff bases spontaneously, and the 

resulting imines could be quantified by integration of its unique 
19

F resonance.  

 

A study of the halogenated derivatives indicated relative insensitivity of the 

reaction sequence to subtle electronic effects.  The relative influence of the electronic 

effects could be evaluated by comparing the meta- versus para-bromo derivatives 

(Table 4.1).  In a series of para-halogenated derivatives, the ES sequence is as follows, 

F > Cl  Br due to the inductive effect. The ES of meta-bromo derivative was only 

slightly greater than that of para-bromo derivative due to the resonance effect at para-

position which made carbonyl carbon less electrophilic. 

   



 

  

  Chitosan with heterocyclic substituents exhibited different activies. 4-

Pyridinecarboxaldehyde behaved as a more electrophilic aldehyde than benzaldehyde, 

so the higher ES was easily achieved as shown in Table 4.1. In contrast, 2-

thiophenecarboxaldehyde exhibited slightly less reactive than benzaldehyde, and the 

lower ES was obtained.  

 

4.5 Thermal properties of N-benzyl chitosans 

 

  Native chitosan exhibited an endothermic peak at 88.6�C and an exothermic 

peak at 301.1�C due to the loss of water and decomposition of the chitosan backbone, 

respectively �71,72�. When chitosan was dried at 150�C, the endothermic peak at 

88.6�C disappeared.  This observation as well as its TGA thermogram confirmed that 

the initial transition could be atttributed to water evaporation. Figure 4.10 exhibits the 
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Ch, Chitosan; BzCh, N-Benzyl chitosan; OH-BzCh, N-(4-Hydroxybenzyl)chitosan; NO2-

BzCh, N-(4-Nitrobenzyl)chitosan. 

 

Figure 4.10: DSC thermograms of chitosan and selected N-benzyl chitosans 

 



 

  

DSC thermograms of chitosan and selected N-benzyl chitosans, which were firstly 

dried at 150�C then allowed to reequilibrate with water by storing them in 100% 

humidity for one month before recording.    

 

The endothermic peak of selected N-benzyl chitosans shifted to a lower 

temperature than that of chitosan (Table 4.2). This could be attributed to the weaker 

interactions between water and the N-benzyl groups in chitosan side chain. The 

exothermic peaks associated with chitosan decomposition were slightly lower than that 

of chitosan (301.1�C) with little dependence on the type of substituents on aromatic 

ring.  It was also found that chitosans with strong electron$donating groups exhibited 

the exothermic peaks at higher temperatures than chitosans with strong electron 

withdrawing groups.  



 

  

Table 4.2:  DSC and TGA datas of chitosan and selected chitosan derivatives 

Samples ES (%) DSC TGA 

Degradationmax Thermal degradation in N2 Oxidative degradation in Air 

Endo peak Exo peak 150oC (150-400�C) (150-400�C) (350-600�C) 

  

Temp 

(oC) 

�H(J/g) Temp  

(oC) 

wt loss 

(%) 

Onset    DTGmax    wt loss (%) Onset   DTGmax    wt loss (%) Onset    DTGmax   wt loss (%) 

Ch 

BzCh 

OH-BzCh 

N(CH3)2-BzCh 

- 

18.5 

12.1 

42.5 

87 

78 

70 

77 

216.1 

246.3 

200.2 

191.0 

301 

289 

   263, 299 

294 

4.3 

7.1 

7.0 

3.4 

 250         280           49.8 

 253         274           48.5 

 240         273           45.7 

 271         298           43.0 

  247         284          55.5 

  257         287          41.9 

  243         285          49.1 

  257         287          39.2 

 434         490           44.3 

 471         523           54.1 

 455         510           49.5 

 496         535           58.3 

 

NO2-BzCh 

 

8.3 

24.7 

35.1 

74 

89 

80 

205.4 

113.1 

178.2 

288 

275 

276 

9.2 

3.3 

4.6 

 230         266           41.0 

 229         263           41.8 

 233         265            39.5 

  244         282          41.9 

  240         277          41.8 

  244         280          39.9 

 484         526           53.2 

 497         536           59.4 

 488         530           58.0 

 

Ch, Chitosan; BzCh,  N-Benzyl chitosan; OH-BzCh, N-(4-Hydroxybenzyl)chitosan;  N(CH3)2-BzCh, N-(4-N,N-dimethylaminobenzyl)chitosan;  NO2-BzCh, 

N-(4-Nitrobenzyl)chitosan.



 

                                                                                                                                     

 

Figure 4.11 exhibits the TGA thermograms of chitosan and selected N-benzyl 

chitosans after drying and reequilibration in 100% humidity. 
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BzCh, N-(4-Nitrobenzyl)chitosan. 

 

Figure 4.11: TGA thermograms of chitosan and selected chitosan derivatives 

 

            The TGA’s were performed in either nitrogen or air atmosphere. The 

decomposition temperatures along with the corresponding weight losses (%) are 

compiled in Table 4.2.  The weight loss at temperature up to 150�C in the nitrogen 

corresponded to water desorption from polymer backbone �73�. It was found that the 

water weight loss of the selected N-benzyl chitosans was higher than that observed for 

chitosan. Apparently, the selected N-benzyl chitosans with ES’s less than 18.5% can 

absorb more water than chitosan due to the decreased chitosan crystallinity created by 

N-benzylation leading to hydrophobic side chains. At concentration higher than 

18.5%, the hydrophobicity of the derivatives reduces the water reabsorption. The 

TGA’s of the selected N-benzyl chitosans showed that these derivatives exhibited 

lower thermal stability than chitosan, i.e. see DTGmax�data (Table 4.2).  



 

                                                                                                                                     

 

Moreover, the ES of selected N-benzyl chitosans did not affect the weight loss 

(%) in the temperature range of 150-600�C in either nitrogen or air.  In fact, under 

nitrogen, derivatives with a higher extent of substitution actually appeared more stable 

than the parent chitosan.  In air atmosphere, the weight loss (%) between 350-600�C 

was consistently 54.4�5% regardless of the extent and nature of the substituents. The 

oxidative degradation occurring above 400�C consumed the remained sample. 

 

4.6 Solubility of N-benzyl chitosans 

 

The solubility of the selected N-benzyl chitosans with various ES’s was 

determined in several solvents as shown in Table 4.3. The solubility of N-benzyl 

chitosans depended on ES and functional group on the aromatic aldehydes as shown in 

Table 4.3. In case of OctCh, BzCh, and Me-BzCh with high ES’s (ES>10.3%, 18.5%, 

and 15.6%, respectively), the derivatives would dissolve in DMSO and swell in 

pyridine and NMP �39�. The enhanced solubility of these samples is due to the 

increase in hydrophobicity of the substituted chitosan side chain leading to a 

corresponding decrease in crystallinity. These high ES derivatives no longer dissolved 

in dilute acetic acid solvent. Introduction of functional groups such as hydroxyl, 

fluoro, nitro or trifluoromethyl on the benzyl ring did not enhance the solubility of the 

derivatives in organic solvents. Derivatives with amino substituents, such as N,N-

dimethylamino and pyridylmethyl, remained soluble in dilute acetic acid throughout 

the substitution range explored. Introducing of the thiophenyl substituent produced a 

derivative soluble in DMSO and dilute acetic acid solvent.   

 



  

 

Table 4.3:�Solubility of������	
��
���selected chitosan derivatives in various solvents 

Solubility (10 mg/mL) Samples 

 

ES 

(%) 

 
1% (v/v) 

AcOH 

CHCl3 

 

Pyridine 

 

DMF 

 

DMSO 

 

NMP 

 

Ch - + - - - - - 

OctCh >10.3 

 

�10.3 

- 

 

+ 

- 

 

- 

+/- 

 

- 

+/- 

 

- 

+ 

 

- 

+/- 

 

- 

BzCh >18.5 

 

�18.5 

- 

 

+ 

- 

 

- 

+/- 

 

- 

+/- 

 

- 

+ 

 

- 

+/- 

 

- 

Me-BzCh >15.6 

 

�15.6 

- 

 

+ 

- 

 

- 

+/- 

 

- 

+/- 

 

- 

+ 

 

- 

+/- 

 

- 

OH-BzCh >12.1 

 

�12.1 

- 

 

+ 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

N(CH3)2-BzCh 

 

42.2 

 

17.5 

+ 

 

+ 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

F-BzCh >25.7 

 

�25.7 

- 

 

+ 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

CF3-BzCh >35.8 

 

�35.8 

- 

 

+ 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

NO2-BzCh >35.1 

 

�35.1 

- 

 

+ 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

PyMeCh 30.4 + - - - - - 

2ThMeCh 13.3 + - - - + - 

 

+ Soluble within one hour; +/- Swelling; - Insoluble; > higher than; � equal to or less than. 

 

Ch, Chitosan; OctCh, N-n-Octyl chitosan; BzCh,  N-Benzyl chitosan; Me-BzCh,  N-(4-

Methylbenzyl)chitosan; OH-BzCh,  N-(4-Hydroxybenzyl)chitosan; N(CH3)2-BzCh,  N-(4-N,N-

Dimethylaminobenzyl)chitosan; F-BzCh, N-(4-Fluorobenzyl)chitosan; NO2-BzCh, N-(4-

Nitrobenzyl)chitosan, PyMeCh; N-(4-Pyridylmethyl)chitosan, 2ThMeCh; N-(2-

Thiophenylmethyl)chitosan. 

 

 

 

 

 



  

 

PART B: QUATERNIZATION OF CHITOSAN AND N-SUBSITUTED  

      CHITOSAN DERIVATIVES 

 

The introduction of permanent positive charges into the chitosan chains can be 

accomplished in the form of quaternary ammonium salts. The first alternative for 

preparation of quaternary ammonium salt of chitosan is the common method using 

iodomethane as the quaternizing agent. The second one involves the reaction of 

chitosan with a quaternary ammonium epoxide, generated from 3-chloro-2-

hydroxypropyl trimethylammonium chloride (Quat-188). In this study, quaternary 

ammonium salts of chitosan and N-substituted chitosans were synthesized using both 

methods.  

�

4.7 Quaternization of chitosan and N-substituted chitosans using iodomethane 

  

4.7.1 N,N,N-trimethylammonium chitosan chloride and its high degree of  

quaternization  

   

The methylation was based on a nucleophilic substitution of the primary amino 

group on the C-2 position of chitosan with iodomethane in the presence of sodium 

hydroxide and sodium iodide in N-methyl-2-pyrrolidone (NMP) at 50
�
C. It was 

reported that chloride counter-ion would enhance storage the stability of the 

quaternary ammonium salts of chitosan more than the iodide one �14�. In this work, 

the iodide counter-ion was thus exchanged with the chloride counter-ion by dissolving 

N,N,N-trimethylammonium chitosan iodide (TMChI) in an aqueous solution of 15% 

(w/v) sodium chloride and then dialysing with deionized water. Furthermore, the 

N,N,N-trimethylammonium chitosan chloride (TMChC) from the first methylation was 

subjected to methylation for two more times in order to increase the degree of 

quaternization. This latter product was called N,N,N-trimethylammonium chitosan 

chloride (TMChC) with a high degree of quaternization (HDQ-TMChC). 

 

 

 

 



  

 

Figure 4.12 exhibit the FT-IR spectra of TMChC and HDQ-TMChC. Both of 

them were similar to that of chitosan except the absorption band at wavenumber 1475 

cm
-1

 which was due to C-H symmetric bending of methyl substitutent of the 

quaternary ammonium groups �28�. 
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TMChC, N,N,N-Trimethylammonium chitosan chloride; HDQ-TMChC, High degree of 

quaternization of TMChC. 

 

Figure 4.12: FT-IR (KBr) spectra of N,N,N-trimethylammonium chitosan chloride and  

 its analog having high degree of quaternization 

 

The 
1
H-NMR spectra of TMChC and HDQ-TMChC are shown in Figure 4.13. 

Both spectra had all the signals belonging to chitosan and the additional signals due to 

methylation. There were two types of methylation, N-methylation and O-methylation 

of the GlcN of chitosan which could be differentiated by 
1
H-NMR spectroscopy. For 

N-methylation, H1 proton of the GlcN of chitosan is normally deshielded and is 

assigned as H1
 in this work. The chemical shift of H1
 depends on DQCh. The higher 

DQCh, the lower downfield chemical shift of H1
. 
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Ch, Chitosan; TMChC, N,N,N-Trimethylammonium chitosan chloride; HDQ-TMChC, High 

degree of quaternization of TMChC. 

 

Figure 4.13:
 1
H-NMR spectra of chitosan (D2O/CF3COOD) and quaternized chitosan 

          (D2O) respectively, using iodomethane as quaternizing agent  

 

The signals at  � 5.59 and 5.42 ppm belonged to H1
 protons of the GlcN of 

HDQ-TMChC and TMChC, respectively. The other signals appeared at � 3.2, 2.7 and 

2.3 ppm were due to N,N,N-trimethyl protons, N,N-dimethyl protons, and N-methyl 

protons of the different GlcN’s of chitosan, respectively. For O-methylation, the 

signals appeared at � 3.4 and 3.3 ppm due to methoxy protons at 3- and 6-hydroxy 

groups of the GlcN of chitosan. The similar observation of N-methylation and O-

methylation of chitosan with iodomethane was also reported by Sieval et al. �50�. 

 

 



  

 

The degree of quaternization was generally determined by using Equation 4.3  

 

x 100 (4.3)DQ (mol%) =

N+(CH3)3

9

H1
 

In the experimental results, DQ at the primary amino group of chitosan is denoted as DQCh. 

N
+
(CH3)3 is the integral area of the N,N,N-trimethyl protons at � 3.2 ppm, and H1 is the 

integral area of both H1
 and H1 protons in the range of � 5.6-4.9 ppm.  

 

�50�. When chitosan was quaternized with iodomethane by single treatment, TMChC 

was obtained with N,N,N-trimethylation or DQCh 31%, N,N-dimethylation 23% and a 

trace of N-methylation. However, higher DQCh 89% was yielded and only traces of 

N,N-dimethylation and N-methylation were obtained after repeated treatments with 

iodomethane for two times. It clearly demonstrated that DQCh of chitosan significantly 

increased with the number of methylation treatments. The same observations had been 

reported by Sieval et al. and Hamman and Kotze �50,51�.   

 

The degrees of 3-O- and 6-O-methylation were each determined by using 

Equation 4.4 �53�. Besides methylation at the primary amino group on the C-2 position  

 

x 100 (4.4)DOM (mol%) =

OCH3

3

H1
 

Where DOM (mol%) is the degree of O-methylation, OCH3 is the integral area of methoxy 

protons of either 3- or 6-hydroxy groups at � 3.4 ppm or 3.3 ppm,  respectively, and H1 is the 

combined integral area of the H1
 and H1 protons in the range of � 5.6-4.9 ppm.  

 

of chitosan, O-methylation of hydroxy groups at C-3 and C-6 positions was also 

detected as revealed by its 
1
H-NMR spectrum (Figure 4.13). When chitosan was single 

treated with iodomethane, the degree of O-methylation (DOM) was 33%. The higher 

DOM 177% was obtained, after repeated methylation with iodomethane for two times. 

In addition, Sieval et al. and Polnok et al. found that the high DOM from repeated 

methylation affected the physical properties of quaternized chitosan, i.e., lower 



  

 

solubility in water and easier degradation, as well as lower yield �50,53�. The similar 

behaviors of the quaternized chitosans in this work were also observed. 

 

4.7.2 Quaternized N-(4-methylbenzyl)chitosan  

 

N-(4-Methylbenzyl)chitosan (Me-BzCh) with ES 11.0% was quaternized with 

iodomethane by single treatment with iodomethane under the same condition as 

TMChC. The 
1
H-NMR spectrum of quaternized N-(4-methylbenzyl)chitosan (QMe-

BzCh2) is shown in Figure 4.14. This spectrum is similar to that of Me-BzCh with  
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Figure 4.14:
 1

H-NMR spectrum of quaternized N-(4-methylbenzyl)chitosan with             

ES 11.0% in CF3COOD/D2O using 15% (w/v) NaOH  

 

some additional  signals. The signal at  � 5.59 ppm belonged to H1
 proton of the GlcN 

of QMe-BzCh. The other signals at � 3.2, 2.7 and 2.3 ppm were due to N,N,N-

trimethyl protons, N,N-dimethyl protons, and N-methyl protons of the GlcN of 

chitosan, respectively. In this case, O-methylation was also observed at the GlcN of 
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chitosan. The 6-hydroxy group is exposed to methylation more easily than the 3-

hydroxy group.  

 

Furthermore, it was found that the quaternized product could not dissolve in 

water. This was likely that the DQCh 11% achieved was too low due to the bulkiness of 

N-methylbenzyl substitutent. It is plausible that the 4-methylbenzyl substituent at any 

GlcN can cause steric hindrance to the methylation at a nearby GlcN unit. In 

comparison to TMChC, although lower DOM of QMe-BzCh was resulted, the lower 

DQCh obtained which made it insoluble in water.  

 

4.7.3 Quaternized N-(4-N,N-dimethylaminobenzyl)chitosan and 

quaternized N-(4-pyridylmethyl)chitosan 

 

To enhance the water solubility, the N-(4-N,N-dimethylaminobenzyl)chitosan 

(N(CH3)2-BzCh) and N-(4-pyridylmethyl)chitosan (PyMeCh) were quaternized by 

single treatment with iodomethane. The formation of the quaternary ammonium salt; 

N,N-dimethylaminobenzyl and N-pyridylmethyl substituents, favored dissolution of 

the chitosan substrate and led to more homogeouses N-benzylation which led to 

increased DQCh and decreased DOM. The methylation of N(CH3)2-BzCh and PyMeCh 

by single treatment with iodomethane was conducted under the same conditions as 

TMChC. In this work, two sodium hydroxide concentrations, 5% (w/v) and 15% 

(w/v), were used.  

 

Figure 4.15 exhibits the FT-IR spectra of quaternized N(CH3)2-BzCh (Q 

N(CH3)2-BzCh) and quaternized PyMeCh (QPyMeCh). Each of them had similar 

spectrum to the corresponding N(CH3)2-BzCh and PyMeCh except for the absorption 

band at wavenumber 1475 cm
-1

 due to C-H symmetric bending of the methyl 

substitutent of quaternary ammonium groups �28�.   
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QN(CH3)2-BzCh, Quaternized N-(4-N,N-Dimethylaminobenzyl)chitosan; QPyMeCh, 

Quaternized N-(4-Pyridylmethyl)chitosan. 

 

Figure 4.15: FT-IR (KBr) spectra of quaternized N-(4-N,N-dimethylaminobenzyl) 

chitosan and quaternized N-(4-pyridylmethyl)chitosan 

 

The 
1
H-NMR spectra of QN(CH3)2-BzCh1 and QPyMeCh2 are shown in 

Figures 4.16 and 4.17, respectively. Both spectra are similar to that of the 

corresponding N(CH3)2-BzCh1 and PyMeCh2 except the additional signals of 

H1
proton. The signal at � 5.40 ppm was belong to H1
 proton of the GlcN of 

quaternized chitosan. The other signals at � 3.5, 3.2, 2.7 and 2.3 ppm were due to the 

methyl protons at the aromatic substituent, and N,N,N-trimethyl protons, N,N-dimethyl 

protons, and N-methyl protons of the GlcN of chitosan, respectively. For O-

methylation, the signals appeared at � 3.4 and 3.3 ppm due to methoxy protons at 3- 

and 6-hydroxy groups of the GlcN of chitosan.    
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Figure 4.16:
 1

H-NMR spectrum of quaternized N-(4-N,N-dimethylaminobenzyl)    

chitosan with ES 2.7% in D2O using 15% (w/v) NaOH 
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Figure 4.17:
 1

H-NMR spectrum of quaternized N-(4-pyridylmethyl)chitosan with ES 

12.5% in D2O using 15% (w/v) NaOH 
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The 
13

C-NMR spectrum of QN(CH3)2-BzCh3 is shown in Figure 4.18. The 

aromatic carbon signals exhibited at � 145, 141, 131, and 119 ppm. The other carbon 

signals were at � 96.3-58.7, 57.0, 53.8, 41.8, and 36.3  ppm due to C1-C6, N,N,N-

trimethyl carbons of the aromatic substituent, N,N,N-trimethyl carbons, N,N-dimethyl 

carbons, and N-methyl carbons of the GlcN of chitosan, respectively. 
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Figure 4.18:
 13

C-NMR spectrum of quaternized N-(4-N,N-dimethylaminobenzyl) 

chitosan with ES 17.5% in D2O using 5% (w/v) NaOH 
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4.7.4 Chemoselective methylation of N-(4-N,N-dimethylaminobenzyl) 

chitosan and N-(4-pyridylmethyl)chitosan  

 

Single treatment methylation with iodomethane of N(CH3)2-BzCh and 

PyMeCh with various ES’s was studied. The results of chemoselective methylation of 

both chitosan derivatives are shown in Table 4.4. N-methylation leading to  

 

Table 4.4: Quaternization of chitosan and N-benzyl chitosans using iodomethane 

Samples ES 

(%) 

NaOH 

(w/v) 

(%) 

DQT(%) 

DQAr       DQCh 

(%)          (%) 

N(CH3)2 

(%) 

NHCH3 

(%) 

3-O 

(%) 

6-O 

(%) 

Recovery 

(%) 

TMChC - 15 - 31 23 Trace 10 23 82 

HDQ-TMChC - 15 - 89 Trace Trace 80 97 28 

QMe-BzCh1 11.0 5 - ND 32 10 ND ND 80 

QMe-BzCh2 11.0 15 - 11 61 ND ND Trace 76 

QN(CH3)2-BzCh1 2.7 15 2.7 27 48 Trace Trace 7 86 

QN(CH3)2-BzCh2 10.0 5 10.0 12 65 Trace ND 7 74 

QN(CH3)2-BzCh3 17.5 5 17.5 16 28 13 ND 7 80 

QN(CH3)2-BzCh4 17.5 15 17.5 30 20 17 Trace 15 68 

QN(CH3)2-BzCh5 42.5 5 42.5 5 Trace 7 ND Trace 78 

QN(CH3)2-BzCh6 42.5 15 42.5 14 Trace 12 Trace 17 84 

QPyMeCh1 12.5 5 12.5 18 45 Trace ND Trace 86 

QPyMeCh2 12.5 15 12.5 36 22 7 3.3 7 76 

 

ES is the extent of N-substitution; DQAr is degree of quaternization at aromatic substituents; 

DQCh is degree of quaternization; N(CH3)2 is N,N-dimethylation; NHCH3 is N-methylation; 

Total DOM is total degree of O-methylation at 3-hydroxy and 6-hydroxy positions of GlcN of 

chitosan, respectively; Recovery (%) is weight of product (g) / weight of starting reactant 

(g)�100; ND is non detectable. 

 

quaternization of N(CH3)2-BzCh and PyMeCh can occur at both the aromatic 

substituent and primary amino group of GlcN of chitosan. The results clearly exhibited 

that the total degree of quaternization (DQT), DQT = DQAr + DQCh, increased with 

increasing ES of chitosan derivatives. It also indicated that N,N-dimethylamino group 

on the aromatic substituent is more reactive than the primary amino group of chitosan. 

In other words, all N,N-dimethylamino groups was completely quaternized giving 



  

 

DQAr values equal to the corresponding ES’s (Table 4.4). This was confirmed by 
1
H-

NMR spectra shown in Figure 4.19. The signal at � 3.1 ppm of N,N-dimethyl protons  

 

 

 

 

HOD

NHAc

Aromatic protons

H1'

12345678

Chemical shift (ppm)

N(CH3)2 Ph

H2

N(CH3)2

NHCH3

N+(CH3)3

N+(CH3)3 Ph

H3-H6, H6'

 

 

Figure 4.19:
 1

H-NMR spectra of N-(4-N,N-dimethylaminobenzyl)chitosan 

(D2O/CF3COOD) and quaternized N-(4-N,N-dimethylaminobenzyl) 

chitosan (D2O ) with ES 17.5% using 15% (w/v) NaOH 

 

was changed to N,N,N-trimethyl protons at � 3.5 ppm on aromatic substituent �74�.  

However, increasing ES did not enhance DQCh (Table 4.4). This could be attributed to 

the steric effect of the aromatic substituent as well as the lower numbers of the 

available primary amino groups of GlcN of chitosan reacting with iodomethane. 

Increasing the sodium hydroxide concentration from 5 to 15 % (w/v) led to the 

increase of DQT (Table 4.4 and Figure 4.20). It can be explained that sodium 

hydroxide is a role to prevent the protonaton of unreacted primary amino group from 

hydroiodic acid (HI) which was by product as the methylation process by forming 

sodium salt. Besides quaternization, N,N- dimethylation and N-methylation at the 
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primary amino group of GlcN of chitosan were also observed. The N,N-dimethylation 

decreased when higher ES was introduced into the chitosan side chain. In addition, the 

higher sodium hydroxide concentration was used, the lower N,N-dimethylation were 

also resulted. 
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Figure 4.20:
 1

H-NMR spectra of quaternized N-(4-N,N-dimethylaminobenzyl)     

chitosan (D2O) with ES 17.5% using 5% and 15% (w/v) NaOH  

 

 The results also revealed that 6-O-methylation could occur more readily than 

3-O-methylation (Table 4.4). This could be explained that 6-hydroxy groups could be 

more structurally exposed to methylation than 3-hydroxy groups due to effect of 

intramolecular hydrogen bonding of 3-hydroxy position. The ES insignificantly  

influenced the O-methylation while the higher concentration of sodium hydroxide 

could favor 6-O-methylation. 
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The presence of the aromatic substituents bearing N-atom on chitosan 

backbone could increase the total degree of quaternization of chitosan by single 

treatment with iodomethane. The concentration of sodium hydroxide obviously 

affected the DQT, DQCh and DOM; higher N-methylation and O-methylation of 

chitosan were observed when higher concentration of sodium hydroxide was used. 

Iodomethane reacted with either 4-N,N-dimethylaminobenzyl or 4-N-pyridylmethyl 

substituents more readily than the primary amino and hydroxyl groups of GlcN of 

chitosan. The DQT is the sum of substitution on the aromatic substituents bearing N-

atom and the substitution of the primary amino of chitosan. In couclusion, the 

chemoselective methylation depended on ES and the concentration of sodium 

hydroxide used in the reaction.  

 

4.8 Quaternization of chitosan and N-substituted chitosans using 3-chloro-2-       

hydroxypropyl trimethylammonium chloride 

 

The biocidal activity of chitosan can be increased by at least an order of 

magnitude by treatment with N-3-chloro-2-hydroxylpropyl trimethylammonium 

chloride (Quat-188) �26,56�. The treatment inserts a quaternary ammonium function 

which is effective in solubilizing derivatives with hydrophobic substituents in water at 

all pH ranges. Quaternization is performed using commercially available Quat-188 in 

a heterogeneous process under alkaline conditions. Under this condition, Quat-188 

readily generates the corresponding epoxide, which reacts with the primary amino 

groups of chitosan in a nucleophilic substitution pathway (Scheme 4.3) to introduce 

the quaternary ammonium substituent.   

O
O

NH2

HO

OH

Cl N
O CH3

CH3
CH3

Cl

OH O
N

CH3

CH3
CH3

Cl

Quat-188
Glycidyl trimethylammonium 

chloride(GTMAC)

O
O

NH
HO

OH

N
OH

CH3

CH3

CH3
Cl

Chitosan Quat-188

H

 
 

Scheme 4.3: Synthetic pathway of chitosan Quat-188 

 

 



  

 

  The quaternization process imparts water solubility to the N-benzyl chitosans 

over a wide pH range. A similar quaternization of chitosan using glycidyl trimethyl 

ammonium chloride (GTMAC) has been reported �57-62�. However, in this study,  

commercially available Quat-188 was selected. In this study, the degree of 

quaternization (DQCh) of chitosan Quat-188 (ChQ) was determined by titration with 

aqueous silver nitrate and applying  Equation 4.3 �62,75�. 

 

x 100 (4.3)DQCh (mol%) =

VC

1000

VC

1000
+

Mw1

+
Mw2

(W1DDA-W2)W1(DA)

 

Where V and C are the volume and concentration of silver nitrate solution, respectively, DA, 

and DDA are the degree of acetylation and deacetylation of chitosan, Mw1 and Mw2 are the 

molecular weight of GlcNAc and GlcN units, respectively, W1 is the weight of the test sample 

and W2 is calculated by the following Equation 4.4. 

 

(4.4)
 VC Mw3

1000
W2 =

 

Where Mw3 is the molecular weight of the repeating unit of chitosan Quat-188.  For DQCh of 

N-benzyl chitosan derivatives Quat-188 was calculated by modifng Equation 4.3.  

 

The FT-IR spectrum of the ChQ (Figure 4.21) showed the presence of an 

absorption band at 1480 cm
-1

 due to C-H symmetric bending of the methyl groups on 

the quaternary ammonium substituents �15�. The 
1
H-NMR spectrum of ChQ (Figure 

4.22) exhibited characteristic resonances at  � 4.20, 3.3, 3.2, and 2.9 ppm which are 

attributed to methine protons (b), methylene protons (c), N,N,N-trimethyl protons (d), 

and methylene protons (a), respectively.   
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Figure 4.21: FT-IR (KBr) spectrum of chitosan Quat-188 
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Figure 4.22:
 1
H-NMR spectrum of chitosan Quat-188 in D2O 
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The 
13

C-NMR spectrum of ChQ (Figure 4.23) contained the  signals at � 68.9, 

65.0, 64.5, 54.0, and 51.6 ppm due to methylene carbons (c), methine carbons (b), 

N,N,N-trimethyl carbons (d), and methylene carbons (a), respectively.  This was 

consistent with the spectra  reported by Loubaki et al. �15�.   
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Figure 4.23:
 13

C-NMR spectrum of chitosan Quat-188 in D2O 

 

In this work, the DQCh of ChQ can be calculated as well from the 
1
H-NMR 

spectrum using the ratio of the integral area of methine protons (b) at � 4.2 ppm 

relative to the integral area of 1/3N-acetyl proton of GlcNAc � 1.9 ppm as shown in 

Equation 4.5 

 

 

Integral ares (b)

1(NAc)
3

x 100 (4.5)DQCh (mol%) =

+Integral ares (b)

 

Where NAc is integral area of GlcNAc protons.  

 

 

 

O
O

NH
HO

OH

N
OH

CH3

CH3

CH3
Cl

O
O

HN
HO

OH

CH3

O

1

2 c3

4

5

6 6'

a b

d



  

 

The FT-IR spectra of OctCh and all N-benzyl chitosan derivatives Quat-188 

were similar to those of OctCh and all N-benzyl chitosan derivatives except the 

absorption band at wavenumber 1480 cm
-1

 due to C-H symmetric bending of the 

quaternary ammonium groups. 

 

Figure 4.24 and Figure 4.25 exhibit the 
1
H-NMR spectrum of OctCh Quat-188 

and 
1
H-NMR spectra of selected N-benzyl chitosan Quat-188, respectively. They were 

similar to those of the OctCh and selected N-benzyl chitosan except the additional  

signals at  � 4.20, 3.3, 3.3, and 2.9 ppm which belonged to methine protons (b), 

methylene protons (c), N,N,N-trimethyl protons, and methylene protons (a), 

respectively.  
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Figure 4.24:
 1
H-NMR spectrum of N-n-octyl chitosan Quat-188 with ES 4.7% in D2O 
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BzChQ, N-Benzyl chitosan Quat-188; Me-BzChQ, N-(4-Methylbenzyl)chitosan Quat-

188; F-BzChQ, N-(4-Fluorobenzyl)chitosan Quat-188; COOH-BzChQ, N-(4-

Carboxybenzyl) chitosan Quat-188; 2OMe-BzChQ, N-(2-Methoxybenzyl)chitosan 

Quat-188. 

 

Figure 4.25: 
1
H-NMR spectra of selected N-benzyl chitosans Quat-188 in D2O 

 

Figure 4.26 and Figure 4.27 exhibit the 
13

C-NMR spectra of BzChQ and 

2ThMeChQ, resspectively. It was similar to that of ChQ except the signals at  � 130 

ppm which belonged to aromatic carbons. 
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Figure 4.26: 
13

C-NMR spectrum of N-benzyl chitosan Quat-188 with ES 11.4% in  

D2O 

 

406080100120140

Chemical shift (ppm)

C-Ph

C1

C4

C5

C3

c

b

aC6
C2

N+(CH3)3 d

 

 

Figure 4.27: 
13

C-NMR spectrum of N-(2-thiophenylmethyl)chitosan Quat-188 with 

ES 9.6% in D2O 
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In Table 4.5, when ES decreased, DQCh increased obviously due to more free 

amino groups of GlcN of chitosan reacting with Quat-188. The water solubility of 

quaternized chitosan using Quat-188 was better than that of quaternized chitosan using 

iodomethane. The DQCh more than 58.4% were readily water soluble.  

 

Table 4.5: Quaternization of chitosan and N-benzyl chitosans using Quat-188 

DQCh (%)  Samples ES(%) 

 1
H-NMR Titration  

Solubility in 

water 

(10 mg/mL) 

Yield (%) 

 

ChQ - 

- 

93.0 

83.0 

91.2 

78.6 

++ 

++ 

57.9 

63.8 

OctChQ 10.3 

4.7 

1.8 

78.4 

83.3 

93.0 

66.5 

75.1 

82.3 

+ 

++ 

++ 

74.5 

66.7 

58.9 

BzChQ 18.5 

11.4 

3.6 

2.3 

68.2 

79.7 

89.5 

92.8 

60.0 

75.1 

86.4 

86.7 

++ 

++ 

++ 

++ 

54.7 

74.9 

67.8. 

81.4 

 

Me-BzChQ 

15.6 

11.0 

3.4 

1.7 

73.0 

86.9 

91.2 

92.8 

68.5 

79.5 

86.7 

88.4 

++ 

++ 

++ 

++ 

81.4 

60.3 

74.7 

65.3 

OH-BzChQ 6.4 

3.1 

86.4 

90.4 

84.2 

86.7 

+ 

++ 

75.9 

78.7 

2OMe-BzChQ 6.0 71.6 67.7 ++ 86.7 

4OMe-BzChQ 8.0 60.3 68.4 ++ 83.3 

34OMe-BzChQ 7.8 69.8 65.4 ++ 78.9 

N(CH3)2-BzChQ 5.9 

2.7 

57.6 

92.8 

58.4 

84.4 

+ 

++ 

76.3 

80.6 

 

F-BzChQ 

25.7 

17.5 

5.5 

2.5 

57.6 

66.4 

84.5 

92.8 

69.3 

60.2 

84.9 

86.7 

++ 

++ 

++ 

++ 

90.2 

87.7 

84.4 

70.4 



  

 

Table 4.5: Quaternization of chitosan and N-benzyl chitosans using Quat-188 (cont.) 

DQCh (%) Samples ES(%) 

 1
H-NMR Titration 

Water 

solubility 

(10 mg/mL) 

Yield (%) 

 

Cl-BzChQ 10.0 86.4 78.3 ++ 85.4 

3Br-BzChQ 12.5 78.4 60.0 ++ 79.6 

4Br-BzChQ 11.2 77.3 64.2 ++ 82.8 

CF3-BzChQ 35.8 

6.7 

4.6 

57.6 

89.4 

90.4 

54.7 

75.6 

82.3 

+ 

++ 

++ 

75.4 

85.3 

64.5 

NO2-BzChQ 35.1 

24.7 

8.3 

3.3 

57.6 

67.8 

86.2 

90.4 

51.4 

60.6 

78.3 

84.2 

+ 

++ 

++ 

++ 

60.7 

59.4 

83.4 

64.5 

COOH-BzChQ 12.5 

6.8 

78.9 

84.5 

79.8 

82.3 

++ 

++ 

82.2 

76.9 

PyMeChQ 30.4 

20.3 

5.2 

3.0 

60.2 

73.0 

87.6 

91.2 

54.2 

64.5 

80.5 

86.4 

++ 

++ 

++ 

++ 

78.4 

58.6 

67.5 

73.8 

2ThMeChQ 13.3 

9.6 

3.2 

- 

72.4 

84.9 

- 

70.8 

74.0 

- 

++ 

++ 

- 

73.6 

68.4 

 

++ readily soluble; + totally soluble in one minute; - non insoluble 

Yield (%) = (�weight of N-benzyl chitosan derivatives Quat-188 (g) � FW of N-benzyl 

chitosan derivatives� / �0.5 (g) � calculated FW of N-benzyl chitosan derivatives Quat-188�) 

�100. 

 

 

 

 

 

 



  

 

4.9 Reduction in molecular weight of chitosan during derivatization 

 

The molecular weight of chitosan is one of the important factors affecting the 

antibacterial activity. Chitosan is more effective in inhibiting growth of bacteria than 

chitosan oligomers �76�, and the molecular weight of chitooligosaccharides is critical 

for microorganism inhibition; it should be higher than 10,000 �77�.
 
The antibacterial 

activity against E.coli of quaternized chitosan with molecular weight 214,000, 

molecular weight of starting chitosan, was higher than that of the  chitosan reported by 

Jia et al. �29�.
 
The molecular weight of chitosan before and after derivatization had 

been studied for antibacterial activity �34,78�.
 
No other literature references report the 

effect of chemical modification  on the molecular weight of the corresponding 

derivatives.  

 

Recently, a new type of gel permeation chromatography (GPC) column, 

ViscoGEL Poly-CAT
TM

, that can be used under dilute acidic condition was developed 

�79�.
 
Using these  columns with multiple detections, i.e., differential reflective index, 

multi-angles light- scattering and viscometry, enabled us to ascertain the change in 

molecular weight resulting for each step of the benzylation process. Different samples 

were passed through the equipment to get the molar mass distribution (Figure 4.28) 

from which the function radius of gyration (Rg) is obtained directly (Figure 4.29). 

First, the increment of refractive index (dn/dc) was determined. The dn/dc was later 

used to calculate the exact value of molecular weight by GPC coupled with a multi-

angles laser light-scattering detector shown in Table 4.6. Light-scattering was also 

used to measure the weight-average molecular weight (Mw) (Table 4.6) of chitosan and 

its derivatives samples. Every sample measurement was repeated three times. 
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Figure 4.28: Examples of differential distribution of molar mass obtained by GPC on 

   a quaternized N-(4-N,N-dimethylaminobenzyl)chitosan with ES 17.5% 

using iodomethane when 5% (w/v) NaOH was used 
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Figure 4.29: Radius of gyration (RMS) expressed in nm plotted as a function of the 

molar mass (g/mol) on a quaternized N-(4-N,N-dimethylaminobenzyl) 

chitosan with ES 17.5% using iodomethane when 5% (w/v) NaOH was 

used 



  

 

Table 4.6: Determination of the increment of refractive index, the molecular weight 

                  and the radius of gyration from chitosan and its derivatives  

Chitosan 

derivatives 

ES 

(%) 

DQCh 

(%)
�
 

dn/dc 

 

Mn 

kDa
 

Mw 

kDa
 

Mw/Mn Rg � 

(mL/g) 

Ch - - 0.165 87 276 3.2 56.4 434.5 

BzCh 3.6 - 0.149 65 144 2.2 60.0 167.7 

2OMe-BzCh 6.0 - 0.149 81 130 1.7 20.5- 146.5 

NO2-BzCh 8.3 - 0.149 42 124 2.9 28.8 173.9 

TMChC - 31.1
 

0.128 71 162 2.3 28.4 121.7 

QN(CH3)2-BzCh 17.5 18.9
1 

0.151 35 62 1.8 27.9 90.1 

ChQ - 91.2 0.134 44 70 1.6 10.9 41.9 

BzChQ 3.6 87.5 0.150 17 26 1.5 24.3 26.7 

Me-BzChQ 15.6 76.6 0.165 11 29 2.6 5.1 39.6 

NO2-BzChQ 3.3 87.5 0.140 20 65 3.2 5.7 28.7 

NO2-BzChQ 8.3 83.9 0.146 17 26 1.5 6.7 23.3 

PyMeChQ 5.2 87.5 0.149 24 46 1.9 16.7 32.6 

2ThMeChQ 3.2 85.7 0.155 16 34 2.1 24.5 20.0 

 

�
DQCh was determined by titrating with silver nitrate 

 

From Table 4.6, it was found that treatment with benzaldehyde and Borch 

reduction caused the molecular weight to decrease as observed from Ch and BzCh. 

The reduction in molecular weight and narrowing of the Mw/Mn were consistent with a 

random cleavage with backbone under these reaction conditions. The indicated 

molecular weight of chitosan in N-benzylation step was slightly decreased. In contrast, 

the quaternization of the BzCh with Quat-188 was accompanied by numerous 

backbone cleavages and a concomitant reduction in the molecular weight of the 

quaternized product. The molecular weight of BzChQ with an ES 3.6% was decreased 

compared to that of Ch �80�. 

 

 

 

 



  

 

Surprisingly, these reactions which were conducted under basic conditions led 

to substantial degradation of the chitosan backbone. No effort was made to exclude 

oxygen from these reactions, so an oxidative degradation process was proposed. These 

results demonstrated that estimating molecular weights of chitosan products based 

upon the initial molecular weight of the starting chitosan can be misleading. The low 

value of the Rg indicated that the quaternized derivatives might be able to diffuse 

through bacterial cell walls, and thus they were more effective biocides.  
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PART C: ANTIBACTERIAL ACTIVITY OF QUATERNIZED CHITOSAN AND N-

SUBSTITUTED CHITOSANS 

 

The antimicrobial activity of chitosan has been observed against a wide variety 

of microorganisms, including fungi, algae, and bacteria. However, the antimicrobial 

action is greatly influenced by many factors, such as the source of chitosan, 

concentration, DDA, molecular weight, type of microorganism, pH of growth medium 

and enviromental conditions. MIC of chitosan for Gram-positive and Gram-negative 

bacteria vary widely from 10-1000 �g/mL depending on the factors above �5�. 

Generally, Gram-positive cell walls are much thicker and far less structured than 

Gram-negative ones. However, the outer membrane of Gram-negative bacteria has 

lipopolysaccaride (LPS) that contains endotoxin as a toxic substant. Quaternary 

ammonium derivatives of chitosan show enhanced antibacterial activity compared to 

the native chitosan. Quaternization also generates a permanent positive charge on the 

polymer backbone which renders water solubility to such derivatives under neutral pH 

conditions. 

 

Antibacterial activities of quaternized chitosans and its derivatives were 

evaluated using MIC values against S.aureus (Gram-positive) and E.coli (Gram-

negative) bacteria at pH 7.0. Higher MIC values indicated lower antibacterial activities 

(Tables 4.7 and 4.8). The MIC data show that the ES had a considerable influence on 

the antibacterial activity against the bacterium. When ES increased, antibacterial 

activity decreased. This was because of the decreasing number of available free 

amines for quaternization, meaning less cationic charge density placed on the chitosan 

backbone.  All quaternized chitosan derivatives in this study showed very low MIC 

values which were in the range of 8-64 �g/mL against both bacteria, compared to 

other quaternized chitosans which had much higher MIC values ranged from 500-2048 

�g/mL in the same neutral medium �34,78�.
 
The MIC results of water soluble 

quaternized chitosan derivatives obtained by using iodomethane and Quat-188 were 

also compared.  

$
 

 



  

 

4.10 Antibacterial activity of quaternized chitosan and N-substituted chitosans   

using iodomethane 

 

 The antibacterial activity of quaternized chitosan derivatives compared to that 

of quaternized chitosan is shown in Table 4.7.  

 

Table 4.7: Antibacterial activity of quaternized of chitosan and N-benzyl chitosans  

                  using iodomethane 

DQT (%) MIC (�g/mL) Samples ES 

(%) 

Water  

solubility  DQAr          DQCh 
S.aureus       E.coli 

TMChC - ++ - 31 32 128 

HDQ-TMChC - + - 88 64 128 

QN(CH3)2-BzCh1 2.7 ++ 3 27 32 128 

QN(CH3)2-BzCh2 10.0 ++ 10 12 64 128 

QN(CH3)2-BzCh3 17.5 ++ 17 16 32 64 

QN(CH3)2-BzCh4 17.5 ++ 17 30 32 64 

QN(CH3)2-BzCh5 42.5 + 42 5 64 128 

QN(CH3)2-BzCh6 42.5 + 42 14 32 128 

QPyMeCh1 12.5 ++ 12 18 128 128 

QPyMeCh2 12.5 ++ 12 36 64 128 

 

++ clearly solution 

+ slighly turbidity 

�
DQCh (%) was determined by 

1
H-NMR. 

 

The higher degree of quaternization (DQCh) exhibited enhanced antibacterial 

activity due to electrostartic interactions between the positively charged of quaternary 

ammonium group of chitosan macromolecule and negatively charged bacterial cell 

wall which is accordingly disrupted and disintegrated  �31�. HDQ-TMChC, however,  

has higher QDCh than TMChC but its antibacterial activity against S.aureus was lower. 

It was probably due to its low solubility in water �50�.  

 

 



  

 

Introduction of the N,N-dimethylaminobenzyl and N-pyridylmethyl 

substituents into chitosan backbone did not contribute the antibacterial activity. 

Although total degrees of quaternization (DQT) were rather higher, the antibacterial 

activity did not dramatically increased. It was noted that the antibacterial activity of 

quaternized chitosan and its derivatives were more active against S.aureus (Gram-

positive) than E.coli (Gram-negative) bacteria due to the different component of 

becterial cell wall. 

 

4.11 Antibacterial activity of quaternized chitosan and N-substituted chitosans  

        using Quat-188 

 

 Antibacterial activity of quaternized chitosans and its derivatives were 

evaluated using minimum inhibitory concentration (MIC) procedure against S.aureus 

(Gram-positive) and E.coli (Gram-negative) bacteria at pH 7.0, where a higher MIC 

value indicates lower antibacterial activity. As shown in Table 4.8, the MIC data show 

that the ES has a considerable influence on the antibacterial activity against the 

bacterium.  When ES increases, antibacterial activity decreases. This is attributed to 

the decreasing number of available amines for quaternization, which means less 

cationic charge density can be placed on the chitosan backbone. All quaternized 

chitosan derivatives in this study showed very low MIC values, which was in the 

range of 8-64 �g/mL against both bacteria, compared to other quaternized chitosans, 

which had much higher MIC values ranging from 500-2048 �g/mL against S.aureus 

and E. coli bacteria in the same neutral medium �35,78�. However, the MIC value is 

influenced by intrinsic factors and the eviromental conditions �5�. In comparison to N-

n-octyl chitosan at the same degree of quaternization, the presence of benzyl 

substituents in chitosan obviously enhanced antibacterial activity against S.aureus 

bacteria. At the same level of quaternization, all quaternized N-benzyl chitosan 

derivatives exhibited better antibacterial activity than quaternized chitosan, although 

few of them might be evaluated to have at least comparable antibacterial activity to 

quaternized chitosan. On the other hand, either electron donating or electron 

withdrawing substituents decreased the antibacterial activity against S.aureus bacteria 

relative to a corresponding content of  benzyl substituents in chitosan. However, their 

antibacterial activity is better than quaternized chitosan at the proximate level of 



  

 

degree of quaternization. Surprisingly, N-(2-Thiophenylmethyl) chitosan Quat-188 

with ES 3.2% exhibited higher antibacterial activity than quaternized chitosan against 

both S.aureus and  E. coli bacteria. 

 

The mechanism of antibacterial activity of chitosan and their derivatives is still 

not resolved. However, it is proposed that the positive charge density of quaternized 

chitosan absorbed onto the negatively charged cell surface of bacteria leads to the 

leakage of proteinaceous and other intracellular constituents �5-11�. An additional 

effect deriving from the hydrophobic-hydrophobic interactions between the benzyl 

substituent and the hydrophobic interior of the bacterial cell wall is proposed from our 

results.  The similar result was reported by Kim and co-workers, who reported that 

alkyl substituent with  increased chain length on the quaternary ammonium chitosan 

salt displayed higher antibacterial activity as well �28�. These results clearly 

demonstrated that hydrophobicity and cationic charge of the introduced substituent 

strongly affect the antibacterial activity of quaternized chitosan derivatives. On the 

other hand, if ES higher than 30%, a reduction of the antibacterial activity resulted.  

The quaternized N-benzyl chitosan derivatives were not as effective against E.coli 

bacteria as against S.aureus bacteria. The antibacterial activity of chitosan towards 

Gram-negative bacteria should be considered in terms of its chemical and structural 

properties �81�. These chitosan derivatives may not be able to penetrate the outer 

membrane (OM) of Gram-negative bacteria, since this membrane functions as an 

efficient outer permeability barrier against macromolecules. Furthermore, neither 

electron donating nor electron withdrawing groups on quaternized N-benzyl 

substituents nor their positions on the benzene ring significantly affects the antibcterial 

activity againist either bacteria.  

 

 

 

 

 

 

 

 



  

 

Table 4.8: Antibacterial activity of quaternized of chitosan and N-benzyl chitosans  

                  using Quat-188 

Samples ES (%) 

 

DQ (%)
a 

DQ (%)
b 

MIC (MICDQ)
c
, �g/mL  

  S.aureus           E. coli  

ChQ 

 

- 

- 

93.0 

83.0 

91.2 

78.6 

64 (57) 

16 (16) 

64 (57) 

32 (31) 

OctChQ 

 

10.3 

4.7 

1.8 

78.4 

83.3 

93.0 

66.5 

75.1 

82.3 

32 (23) 

16 (13) 

16 (14) 

32 (23) 

32 (26) 

32 (27) 

BzChQ 18.5 

11.4 

3.6 

2.3 

68.2 

79.7 

89.5 

92.8 

60.0 

75.1 

86.4 

86.7 

32 (22) 

8 (7) 

8 (8) 

8 (8) 

32 (22) 

32 (26) 

32 (29) 

32 (29) 

CH3-BzChQ 15.6 

11.0 

3.4 

1.7 

73.0 

86.9 

91.2 

92.8 

68.5 

79.5 

86.7 

88.4 

16 (13) 

16 (15) 

16 (15) 

16 (16) 

32 (26) 

32 (28) 

32 (30) 

32 (31) 

HO-BzChQ 6.4 

3.1 

86.4 

90.4 

84.2 

86.7 

64 (56) 

16 (15) 

32 (29) 

32 (29) 

2CH3O-BzChQ 6.0 71.6 67.7 32 (23) 32 (23) 

4CH3O-BzChQ 8.0 60.3 68.4 32 (23) 32 (23) 

3,4CH3O-BzChQ 7.8 69.8 65.4 32 (22) 32 (22) 

N(CH3)2-BzCh 5.9 

2.7 

57.6 

92.8 

58.4 

84.4 

64(40) 

16(15) 

64(40) 

32(29) 

F-BzChQ 

 

25.7 

17.5 

5.5 

2.5 

57.6 

66.4 

84.5 

92.8 

69.3 

60.2 

84.9 

86.7 

32 (24) 

16 (11) 

16 (15) 

16 (16) 

32 (24) 

32 (21) 

32 (29) 

32 (29) 

 

 

 

 

 



  

 

Table 4.8: Antibacterial activity of quaternized of chitosan and N-benzyl chitosans  

                  using Quat-188 (cont.) 

Samples ES (%) 

 

DQ (%)
a 

 

DQ (%)
b 

 

MIC (MICDQ)
c
, �g/mL 

S.aureus 
         

 E. coli  

Cl-BzChQ 10.0 86.4 78.3 16 (14) 32 (27) 

3Br-BzChQ 12.5 78.4 60.0 32 (21) 32 (21) 

4Br-BzChQ 11.2 77.3 64.2 32 (22) 32 (22) 

F3C-BzChQ 

 

35.5 

6.7 

4.6 

57.6 

89.4 

90.4 

54.7 

75.6 

82.3 

32 (18) 

16 (13) 

16 (14) 

32 (18) 

32 (26) 

32 (27) 

O2N-BzChQ 

  

35.1 

24.7 

8.3 

3.3 

57.6 

67.8 

86.2 

90.4 

51.4 

60.6 

78.3 

84.2 

64 (35) 

32 (21) 

16 (14) 

16 (15) 

64 (35) 

64 (41) 

32 (27) 

32 (29) 

COOH-BzChQ 

 

12.5 

6.8 

78.9 

84.5 

79.8 

82.3 

16 (14) 

16 (15) 

32 (27) 

32 (28) 

PyMeChQ 

 

30.4 

20.3 

5.2 

3.0 

60.2 

73.0 

87.6 

91.2 

54.2 

64.5 

80.5 

86.4 

64 (37) 

32 (22) 

16 (14) 

8 (8) 

64 (37) 

32 (22) 

32 (27) 

32 (29) 

2ThMeChQ 

 

9.6 

3.2 

72.4 

84.9 

70.8 

74.0 

16 (12) 

8 (7) 

32 (24) 

16 (13) 

 

a
DQ was determined by 

1
H-NMR

 

b
DQ was determined by titrating with silver nitrate 

c
MICDQ corrected for the actual concentration of quaternary ammonium groups 

 

 

 

 

 

 

 



  

 

CHAPTER V 

 

CONCLUSION 

 

N-substituted chitosans were successfully synthesized by the reductive 

alkylation of chitosan with various aromatic aldehydes that contained either electron 

donating or electron withdrawing groups under mild acidic conditions.  The chemical 

structure and physical properties of N-benzyl chitosans were characterized by FTIR, 

1
H-,

13
C-NMR, TGA and DSC. The ES can be determined by 

1
H-NMR spectroscopy. 

The ES’s of N-benzyl chitosans controlled by the electrophilicity of the carbonyl 

group. The electron withdrawing substituents on the benzene ring facilitated the 

intermediate Schiff base formation and ultimately high ES was achieved. The 

solubility of N-benzyl chitosans depended on ES and functional group on the aromatic 

aldehyde. N-Octyl, N-benzyl and N-methylbenzyl substituents with higher ES than 

18.5% would dissolve in DMSO and swelled in pyridine and NMP. Introduction of 

functional groups such as hydroxyl, fluoro, nitro or trifluoromethyl on the benzene 

ring did not enhance the solubility of the derivatives in organic solvents. Introduction 

of the aromatic substituents is an effective method for altering the hydrophobic 

character of chitosan.   

 

Quaternary ammonium salts of chitosan and N-substituted chitosans were 

synthesized using two methods. One was the common method using iodomethane, and 

the other was by introducing the inherent quaternary ammonium salt using 3-chloro-2-

hydroxypropyltrimethylammonium chloride (Quat-188) as the quaternizing agent.  

 

The higher degree of quaternization (DQCh) was resulted, particularly after 

sequential treatments with iodomethane as well as an increase in the O-methylation. 

The presence of the aromatic substituents bearing N-atom could increase the total 

degree of quaternization (DQT) of chitosan. The concentration of sodium hydroxide 

controlled the chemoselectivity of the methylation. 4-N,N-dimethylaminobenzyl and 

N-methylpyridyl substituents reacted with iodomethane by single treatment more 

readily than the primary amino and hydroxyl groups of GlcN of chitosan. 



  

 

 O-alkylation was not observed for quaternization of chitosan using Quat-188. 

Moreover, the DQCh using Quat-188 was always higher than using iodomethane as 

quaternizing agent at the same level of ES. 

 

The molecular weight of chitosan after derivatization was determined by gel 

permeation chromatography coupled with multiple detections, i.e., differential 

reflective index, multi-angles light-scattering and viscosmeter detectors. The 

molecular weight of chitosan was much more decreased in the quaternization step than 

the N-benzylation step. The extent of degradation depended on the reaction conditions 

and the number of reaction step. 

 

Antibacterial activity of quaternized chitosan and its derivatives were 

evaluated using minimum inhibitory concentration (MIC) value against S.aureus 

(Gram-positive) and E.coli (Gram-negative) bacteria at pH 7.0. The ES had a 

considerable influence on the antibacterial activity against the bacteria. When ES 

increased, the antibacterial activity decreased. The quaternization of N(CH3)2-BzCh 

and PyMeCh with iodomethane by single treatment, introducing of the N,N-

dimethylaminobenzyl and N-pyridylmethyl substituents into chitosan backbone, did 

not alter the antibacterial activity. Although they possessed higher total degrees of 

quaternization (DQT), the antibacterial activity did not dramatically increased. In 

contrast, chitosan and its derivatives Quat-188 exhibited very high antibacterial 

activity against S.aureus and E. coli bacteria. All quaternized derivatives of chitosan 

showed high antibacterial activity, but derivatives with ES’s higher than 20% 

exhibited low antibacterial activity due to the paucity of residual amines available for 

quaternization. However, hydrophobic-hydrophobic interactions between the benzyl 

and thiophenylmethyl substituents with the hydrophobic interior of the bacterial cell 

wall appeared to enhance the biocidal activity, especially against S. aureus bacteria. 

The results imply that N-benzyl chitosans Quat-188 derivatives will be useful as a 

potential new antibacterial agents. 

 

 

 

 

 



  

 

FURTHRE DIRECTION 
 

In this work, the molecular weight of chitosan was the one of the factor that 

affected the antibacterial activity. However, the molecular weight of chitosan reduced 

after derivatization. Therefore, the effect of molecular weight of chitosan derivatives 

on the antibacterial activity shall be studied by varing the molecular weight of the 

staring chitosan. The mechanism of degradation of chitosan backbone during 

quaternization will be studied. Moreover, water soluble chitosan containing 

fluorescent substituents will be synthesized for detection of a cell in order to follow 

the machanism by reacting chitosan with Quat-188 to improve its solubility in water 

and then reacting the chitosan Quat-188 with aromatic aldehydes that contains 

fluorescent substituents. 
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FT-IR SPECTRA 
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Figure A1: FT-IR spectra of N-(4-carboxybenzyl)chitosan with ES 12.5% 
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Figure A2: FT-IR spectra of N-(2-methoxybenzyl)chitosan with ES 6.0% 
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Figure A3: FT-IR spectra of N-(4-bromobenzyl)chitosan with ES 11.2% 
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Figure A4: FT-IR spectra of N-(2-thiophenylbenzyl)chitosan with ES 13.3% 
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Figure A5: FT-IR spectra of N-(4-chlorobenzyl)chitosan with ES 10.0% 
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Figure A6: FT-IR spectra of N-(3-bromobenzyl)chitosan with ES 12.5% 
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Figure A7: FT-IR spectra of N-(4-pyridylmethyl)chitosan with ES 5.2% 
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Figure A8: FT-IR spectra of N-benzyl chitosan Quat-188 with ES 3.6% 
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Figure A9: FT-IR spectra of N-(4-methylbenzyl)chitosan Quat-188 with ES 3.4% 
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Figure A10: FT-IR spectra of N-(4-fluorolbenzyl)chitosan Quat-188 with ES 5.5% 
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Figure A11: FT-IR spectra of N-(4-N,N-dimethylaminobenzyl)chitosan Quat-188 with        

                     ES 17.5% 
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1
H-NMR SPECTRA 
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Figure B1:
 1

H-NMR spectrum of N-(3-bromobenzyl)chitosan Quat-188 with ES 

12.5% in D2O/CF3COOD 
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Figure B2:
 1

H-NMR spectrum of quaternized N-(4-methylbenzyl)chitosan with 

ES11.0% in CF3COOD/D2O when 5% (w/v) NaOH was used 
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Figure B3:
 1

H-NMR spectrum of N-(34-dimethoxybenzyl)chitosan Quat-188 with ES 

7.8.0% in D2O  
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Figure B4:
 1

H-NMR spectrum of N-(4-dimethoxybenzyl)chitosan Quat-188 with ES 

8.0% in D2O  
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Figure B5:
 1

H-NMR spectrum of N-(4-dimethoxybenzyl)chitosan Quat-188 with ES 

5.2% in D2O 
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Figure B6:
 1

H-NMR spectrum of N-(4-N,N-dimethylaminobenzyl)chitosan Quat-188 

with 

                   ES 5.9% in D2O  
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Figure B7:
 1

H-NMR spectrum of N-(4-nitrobenzyl)chitosan Quat-188 with ES 3.3% 

in D2O  
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Figure B8:
 1

H-NMR spectrum of N-(3-bromobenzyl)chitosan Quat-188 with ES 

12.5% in D2O  
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GPC CHROMATOGRAMS 
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Figure C1: Molar mass distribution of chitosan  
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Figure C2: Molar mass distribution of N-benzyl chitosan with ES 3.6% 
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Figure C3: Molar mass distribution of N-(4-nitrobenzyl)chitosan with ES 8.3% 
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Figure C4: Molar mass distribution of chitosan Quat-188 
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Figure C5: Molar mass distribution of N-benzyl chitosan Quat-188 with ES 3.6% 
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Figure C6: Molar mass distribution of N-(4-thiophenylmethyl)chitosan Quat-188 with 

                    ES 3.2% 
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Figure C7: Molar mass distribution of N-(4-nitrobenzyl)chitosan Quat-188 with ES 

8.3% 
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Figure C8: Molar mass distribution of N,N,N-trimethylammonium chitosan chloride 

with DQCh 31.1% 
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