N1985 9N I AU LA A RIANNNA BN TITIA N TS

UNeiNgang wiang

?mmﬁwuﬁﬁﬂumwﬁwmmiﬁm:mmwﬁﬂzﬂmﬂ?iytyﬁmmiummmumﬂmeﬁm
ANUNTNNAINITNABNNILADT NIAITNIAINTINAANNALFDST
AMYAAINITNANART AWAINIINUINENAY
tnnsAinen 2545
ISBN 974-17-2370-9

&

AUANDVDIWIAIN TN AINENAE

CONCEPTUALIZATION OF ASPECT-ORIENTED REQUIREMENTS MODEL

Mr. Chanwit Kaewkasi

A Thesis Submitted.in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2002
ISBN 974-17-2370-9

Thesis Title Conceptualization of Aspect-Oriented Requirements Model

By Mr. Chanwit Kaewkasi
Field of Study Computer Engineering'
Thesis Advisor Associate Professor Wanchai Rivepiboan, Ph.D.

Accepted by the Facuilty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master 's Degree

Dean of Faculty of Engineering

(Professor Somsak Panyakeow, D.Eng.)
THESIS COMMITTEE

i '
....... /7 @i LS oY ... Chairperson

(Assistant Professor Korbkul Tejavanija)

(Assistant Professor St Satayaprakorb)

Teyaned uiang : NM7a5 19N U ALTLLLANA89A N AN TTNAN LY
(CONCEPTUALIZATION OF ASPECT-ORIENTED REQUIREMENTS MODEL)

a.713NH : 989ANER91ANTE 9. Sude Tolwyasd, 78 uih. ISBN 974-17-2370-9.

andaiaadeiuuanadsdnenicarunoudilyuifaaiunidneane lun1swmungans

s aeldannsouflataeldunonadeing it finunasliihuumadednene andiuldiu

1
o

dannspndeenismenind duiludedn A0y TUNTIZLAUNINNINEBNUNTA NGNS ARNFIANNNg
GﬁﬂWﬁmﬁqmqiﬁ%%’ﬁ*ﬂﬂﬁifén“mmﬁmﬂsﬁl,l,uuﬁmmL%qﬁﬂwmuﬁ@ﬁ%mﬂumugﬂLL‘1_|‘1_|L%qa”ﬂ‘mu:
fluszrzdn 1 lassmeimun
Aneniinutiliauenuuinasaanafeanns e BT Ter U T LA R oY

ARBIEIALAS LLUU%W@@Q?Zmﬁumumzmumiﬁmmsﬁﬂwr;TLLQa?LmuqﬁWwﬁ WAELANTZLAUNNT T 1
ArUlUALNIZUIUNIIANINABNNNITBINIZLIUNA T HNN A Anendiwusihinaue sz
pudeansuuLlvi 7i3endiutudiaenesteureanisiannns Ineldsungueesdonsaliiield
f«?mmLl:uuﬁﬂﬂmz‘ﬁ'aﬁm@@ﬂmmﬂmzmumiﬂ’m‘hszqmLﬂmmzmmﬁmﬁﬂwmz AR T
wiinsilede enqidu LﬁﬂmﬁumumiﬁwmﬁuLLmuﬁaﬁTﬂﬂ@'m NN IR AR w

o ©

fedmiunisesung Fendunuidmiudng/nissinaonvaana Teasauendoynsaline gl

NIzUIUNIINITeBLNEgARALAZANHzIAzNITLIaNN s N e aneuziTluase lddneiu fadels

u

¥ %

o A A A pr - ° & d 3 4 a2 P
WENUIATENNDTR BRARAN LIARTY LW@@HU@Huﬂ’]?W'}QquﬂULLNMN\?H 1ALILATAINANIADIUNIFI1SH

AruantAwsaasH i ullsunsy wiuuua Toa

NIANTA... AAINIIHPDNNILART AVIHDTATRB. ..o,
AN, AFNITHADNNILPAT . AT ARNANTENUTNEN . oo

|
el 6

Unnsfnmn ...2545. ... ANEINATARNANTIENUTNENTVH . oo

4470696821 : MAJOR COMPUTER ENGINEERING

KEY WORD: REQUIREMENTS ENGINEERING / ASPECT-ORIENTED / UML
CHANWIT KAEWKASI : CONCEPTUALIZATION OF ASPECT-ORIENTED
REQUIREMENTS MODEL. THESIS ADVISOR : ASSOC. PROF. WANCHAI RIVEPIBOON,
Ph.D., 78 pp. ISBN 974-17-2370-9.

Due to the fact that aspect-oriented (AO) paradigm can solve the problem of
crosscutting concerns in software development. And this kind of software cannot be solved
properly by the object-oriented approach. Software requirements, which are the important
artifacts in the development process, should be managed using a model for AO to fully support

this paradigm at the later development stages.

This thesis proposes a requirements model that extends the use-case driven approach.
This model supports the unified process. It introduces a new parallel process to the
requirements workflow of the unified process. This thesis presents a new requirements-level
diagram called the Crosscutting Stack Model, including a set of notations for modeling the
aspects that are extracted by the use-case purification and aspect extraction process. This
thesis also presents a scenario descriptive diagram called the Object/Crosscutting/Use Case
Maps, including a set of notations for use-case and aspect explanation in the aspects
realization process. The modeling tool, named ASREM, is developed to support the CMS
diagram. The modeling tool, named OCUM Vectra,is developed to support the OCUM

diagram. Both modeling tools are developed as Rational Rose add-in.

Department.....Gomputer Engineering Student’s signature........ccooooiiiii e
Field of study...Computer Engingering...... . Advisor's signature.............cocccoveveveeeeeeeeenenenn

Academic year .2002....... C0-advisor's SigNature..........ccocveeveeeeeeeeeeneenn,

Vi

ACKNOWLEDGEMENTS

This thesis could not be complete without help and support from others. | would
like to thank my thesis advisor, Associate Professor Dr. Wanchai Rivepiboon, for his
supports, comments, suggestions and reviews since | started to do this thesis until it is
completed. | would like to thank Assistant Professor Korbkul Tejavanija for her reviews,
and useful comments. | also thank Assistant Professor Wiwat Vatanawood, Dr. Arthit
Tongtak, and Lecturer Chate Patanothai. | am thankful for the great support from the
School of Computer Engineering, Suranaree University of Technology, and Assistant

Professor Suyut Satayaprakorb.

Finally, | would like to thank all persons that | cannot mention here, and |
dedicate this thesis to my parents for their best support while | am working on this

research.

TABLE OF CONTENTS

Page

ABSTRACT IN THAI <ottt ettt ettt iV
ABSTRACT IN ENGLISH ..ottt Vv
ACKNOWLEDGEMENTS ...ttt Vi
TABLE OF CONTENTS ..ottt ekttt vii
TABLE OF TABLES o gl o e iX
TABLE OF FIGURES ... ot ——") & e e X
1. INTRODUCTION .. il B i I, it 1
1.1 Problem Statements and Motivation.............oi i 1

1.2 ObjecChilfe... M. £ FF. % AN W 4

1.3 Scopes Of the RESEarCh . ..ociitiuuiiiie e 4

1.4 StePS Of RESEAICH... ..o e e 4

1.5 Contributiopl. . 8 e L A e 4

2. LITERATURE REVIEWS oottt ettt 6
2.1 Related WOrks ... S ... e 6

2.2 Related ThEOIY ... e 14

3. CONCEPTUALIZATION ettt et e bttt 24
3.1 Aspect-Oriented Requirements Model...........cccueiiiiiiiiiii e, 24

3.2 Crosscutting Stack MOAElcooiiiiiiiie e 34

3.3 Object/Crosscutting/Use Case MapsS. . v crrseirmminneeeeeeeaeaniiiieeeeeeaanees 40

3.4 Mathematical Perspective...... e 46

4. IMPRENVEMAATION 0.3 € e 13- Q- 10 0 AAQ RO 1 AN D Feeoveeeneee 50
4.1 OVEBIVIBW .. et 50

4.2 MOAEING STEPS .oevviiiiieiiieee e 51

4.3. SUMIMIAIY Lttt st a e e e e e e e e e e eeeeeeeeeeeeeees 57

5. CONCLUSIONS AND DISCUSSIONS ...ttt 60

REFERENGCGES ...t 63

viii

TABLE OF CONTENTS (CONTINUED)

Page
APPENDICIES ..ottt 65
l. SOFTWARE TOOLS oottt ettt e e e et a e e e e e e e 66
Il. RATIONAL ROSE ADD-IN IMPLEMENTATION ..ottt 71
1. PROBLEM DOMAIN FOR CASE STUDY i 75

BIOGRAPHY ..o e . o e e 78

TABLE OF TABLES

Page
Table 2.1 A template for specifying quality attributes...........cocooiiii s 9
Table 2.2 Specification of Crosscutling CONCEMS ... 12
Table 2.3 Crosscutting template specification for toll gate response time 13
Table 2.4 Description of UCM CONCEPLS....uuiiiiiiiiiiiie e 20
Table 3.1 The summarized artifacts and roles for this approach............cccccoiiiiiii, 25
Table 3.2 The template for use-case driven aSPeCtS........cccvvvviiieeiiiiiiiiiiieee e 27
Table 3.3 The mapping guideline for the aspect realization process.............cccccceeee. 30
Table 3.4 The simple aspect template for specifying analysis aspects.............cccvvvvee... 31
Table 3.5 A set of pre-defined pointCut assSoCIiatioNS..........cccooiiiiiiiiiiiiieeceee e 37
Table 3.6 Summarized enhancement of OCUM mMOdelcoovviiiiiiiiiiiiiiiiieee 42
Table 4.7 The specified template for LOGINoovvviiiiiiiiii 53
Table 4.8 The specified template for the View Attached Notes advice case.................. 54
Table 4.9. The analysis-level aspect LOgIN ... 57
Table 4.10 Nonfunctional Crosscutting EXample...........ccccccvvviiiiiiiii 58

Table 4.11 Complexity comparison of the preliminary and the purified model............... 58

TABLE OF FIGURES

Page
Figure 1.1 Relationship between Aspectd and Java Code.........ccccvumiiiiiiiiiiiiiiiiiiiiiiiieeeeee, 1
Figure 1.2 Crosscutting behavior of an aspect across two USE CaSeSuvvvvvvvvvvrvennne. 3
Figure 2.1 Rashid et al's Aspect-oriented requirements MOdel.............evvveviiiiiiiiiiiiieenneen. 7
Figure 2.2 A requirements model for quality attribute.............vvvvviiiiiiiiiiiiiiiiiiiiiiiiiieeeee, 8
Figure 2.3 A model for composing aspect-oriented requirements with UML 10
Figure 2.4 The use-case diagram of the toll gate collecting system..........cccccevviiienne 12
Figure 2.5 The use cases composed with the aspect ... 13
Figure 2.6 Six join points are defined here, with three sample pointcuts........................ 15
Figure 2.7 A basic code listing of the figure-painting program written in AspectJ 16
Figure 2.8 An example of the use-case diagramcccceeiiiiiiiiiieee e 18
Figure 2.9 Class diagram describing the core concept of UCMcvvvvviiviiiiiiiiinnnn.. 20
Figure 2.10 Development iterations defined in RUP ... 21
Figure 2.11 The RUP requirements WOrkKflOWScuveiiiiiiiiiiiiici e 22
Figure 3.1 Overview workflow of the Model ... 24
Figure 3.2 Use-case purification and aspect extraction activitiescccccceeeiiiiinnnn. 26
Figure 3.3 Summarized activities for extracting aSpects ... civvvvvvvviiiiiiiiiiiiiiiieeeeeeee 27
Figure 3.4 Use-case purification @ClVItIESoiiiiiiiiiiiiie e 28
Figure 3.5 Aspect realization and use-case explanation activitieScccccccvvvvvvvernnnnn... 29
Figure 3.6 Activities for realizing @SPECTS «. i iui o husrrrterri s vt e e e e eiieneeaaeeaeeeneneeeeeas 31
Figure 3.7 The activities foridentify an analysis aspect...........cccccvveeeiiiiiiiiicc e 32
Figure 3.8 The-activities for-describing use cases,and capturing-classes 33
Figure 3.9 Crosscutting StaCck Diagramicee oot 34
Figure 3.10 Graphical representations of an adviCe Casecccccvvvviviiiiiiiiiiiiiiiiiiiee. 35
Figure 3.11 The use-case selector, and its iconic representationcccccccveeerennnn.. 36

Figure 3.12 An aspect — the combination of a use-case selector, a pointcut association,
ANA AN AAVICE CASE .uuiieiiiiieee ettt et e e e e e e e e 37
Figure 3.13 Modeling CSM notations in the use-case diagram of Rational Rose............ 39

Figure 3.14 The OCUM COre CONCEPL....ciiiiiiiiiiiiiiiii e, 41

Xi

TABLE OF FIGURES (CONTINUED)

Page
Figure 3.15 The stub stack NOtatioN..........cvvvviiiiiiii 41
Figure 3.16 The graphical notation of the dynamic start-pointcccoooiiiiiiiiiiinnn. 43
Figure 3.17 The start-point provider with the dynamic start point...........ccccccccvviennnnnn. 44
Figure 3.18 An OCUM diagram of the Login adviCe Caseccuuuveeeeeiiiiiiiiiieeee e 45
Figure 4.1 The use case diagram of the actor FiXercccccoviiiiiiiiiiiii e 50
Figure 4.2 The Login and the View Attached Notes advice Casesccccevvvvveeeenn... 52
Figure 4.3 The use-case selector selecting all services of Fixerc.ccccooeiiiiiiiinnnn. 52
Figure 4.4 The use-case selector selecting tWO USE CASEScvvvvvvvvviiiieiiiiiiiiieeeeeeeenn 52
Figure 4.5 The CSM model for Login, and View Attached Notes aspects...................... 53
Figure 4.6 The purified use-case model for the case study...........ccccccevvvveiiiiiii. 55
Figure 4.7 The start-point provider for Login @SPectcooiiuiiiiiiieiiiiieee e 55
Figure 4.8 The scenario of Login adViCe CaSE ... uuuuiiiiiiiiiiiiiiiiiiiiiii e 56
Figure .1 Customizing the new notations in Rational Rosecccccoiiiiiiiiinn. 66
Figure 1.2 The example of aspects modeled iN ROSEcccvviiiiiiiiiiii 67
Figure 1.3 The specification dialog for the Login adviCe Caseccccccvvvviiiiiiiinnnnnn... 67
Figure |.4 The tagged values for specifying additional details to the advice case 68
Figure 1.5 The specification dialog for a use-case selectorccccoviiiiiiiiiiiieeinnn. 69
Figure 1.6 The OCUM VECHra WINAOWuviiiiiaiiiiiiiii e it 70
Figure 1.7 The XML output from OCUM VECIraciiivvieeeeiiiiiiiiicce s 70
Figure 1.1 Stereotype definitions.in “defaultstereotypes.ini” fileccccccvvvvviiiiiiinnnnn. 71
Figure 1.2 Stereotype specification detailsccciiiiue e 72
Figure 1.3 Tagged values definitions for the advice case stereotype ..cc.ivovvvvvvvevennnn... 72
Figure 1.4 Code of classes exporting in OCUM VeCtra ... 73

Figure 11.1 Preliminary use-case diagram for the maintenance management system ... 75
Figure I11.2 Purified use-case diagram with CSM notationscccccveeiviiiieiniineennnnn, 76

Figure 11.3 Supplementary class diagram for the maintenance management system... 77

CHAPTER 1
INTRODUCTION

1.1 Problem Statements and Motivation

Researches that are related to requirements engineering (RE) have been
increasingly studied. It has long been known that RE is an important role in the software
development process. Efficiency use of RE can reduce overall cost for the later stages
of the development [1, 2, 3]. Recently, aspect-oriented software development (AOSD)
[4] has influenced the current software development processes. AOSD proposes the
other concern of the software development that can be used with the object-oriented

(O0) approach to lead the software process into the new era.

AOSD proposes crosscutting concerns for extracting tangled things among
software artifacts into @ new modular unit called aspect. The intension of AOSD is to
increase more modularization to the software. AOSD covers several phases of the
development. Firstly, it has been introduced as the aspect-oriented programming (AOP)
[5] in the implementation phase. After that AOSD has played a role in the design phase.
Several more recent works introduced an aspect into the design diagram, such as in the
Unified Modeling Language (UML) [6]. In those recent works the authors proposed a
new kind of the UML classifier to represent the concept of an aspect for using in the
class diagram. AOSD is not intended to replace the OO software development. It is to
support the OO approach. For example, the AOP language Aspectd [7], which is an
AOP implementation for Java, knows-the traditional-Java-code, while that Java code
does not know any existence of its AO code as illustrated in Figure 1.1. This is one of
advantages of the-AOP that it-can-be used: to support-the traditional.code without any

modification of the old software.

Aspect] Crosscuts Jawa

1 0..*

Figure 1.1 Relationship between AspectJ and Java code

The influence of AO popularity affects the RE as well. Recent works proposed a
number of approaches that applied the AO paradigm to the requirements phase. There
are several models such as the early aspects model proposed by Rashid and et al [8].
Their approach is based on the viewpoint-oriented requirements engineering [2]. The
authors proposed a model to identify candidate aspects. Six activities stated in that
work includes specifying of aspect dimension that associates candidate aspects with
software artifacts that they influence, and will be mapped to. The work proposed only
the model and did not clearly specify how to map their candidate artifacts to the late
stage of the software development. In more recent work, the authors [9, 10] extended
their previous work with composing aspects, which are nonfunctional properties, to the

UML use-case model. Additional stereotypes were introduced in that work.

The use-case driven [1, 3] is a software development approach that supports
the use of the UML [6] and the object-oriented technology. It does not support the
modeling of other kinds of concern except services of the system. In fact, there are
several kinds of concern that can be found from stakeholders’ requirements. And those
concerns are finally mapped to parts of the software system and usually implemented
using some kinds of object-oriented technology including OOP. AOP has matured to be
recognized as a programming technique that can increase maintainability and
adaptability of the software system. To utilize the use of AOP, the early identification of a
software artifact that will be represented as an aspect using the AO paradigm should be
considered. The identification ~should be processed in the early step of the
development, the requirements phase. This motivates us to propose this work for
extracting those artifacts out of the-use-case model to support AOSD and make it

possible to use with the use-case driven approach.

Our approach alternatively presents aspect-oriented techniques that are
designed for the requirements phase of the software development. The work will
propose an aspect-oriented requirements model that covers both functional and
nonfunctional requirements for the use-case driven approach. Generally, nonfunctional

requirements (NFR) usually are quality attributes of the system [2]. There is currently no

any set of notations that represents NFR in the UML use-case model [6]. The unified

process [1, 3] suggests keeping NFR as supplementary documents.

From the studies, it has been found that not only NFRs crosscut the use case of
the system, but also some kinds of functional requirements. This idea was also stated in
[8] that aspects can also be functional concerns. Functional requirements usually are
considered services of the system. Functional requirements can be classified into, at
least, three classes. They are primary, secondary, and optional services. Our approach
assumes that primary services of the system cannot crosscut other services. There are
several functional requirements that cut across the primary services of the system as

illustrated in Figure 1.2, and our approach is to model them.

an aspect crosscuts 2 use cases.

- D0
—C D-C e

Figure 1.2 Crosscutting behavior of an aspect across two use cases

Additionally, this approach is also intended to model some kinds of NFR. This
work will provides several contributions as follows. First, this work proposed processes
that make the preliminary use cases, captured from a software requirement
specification, to be more purified. Our approach‘is intended to extract aspects from
those use cases and model them into a diagram called crosscutting stack model (CSM).
Second, this work proposes a set of graphical languages that extend a notation of the
UML to use with our purification and extraction processes. The new UML extension will
be used in the CSM. Third, this work additionally proposes a process to realize model
elements in CSM for using in the next phases of the software development process.
This is to create an aspect-oriented design model for further supporting the code

mapping to aspect-oriented programming language.

1.2 Objective
To design, and develop a new requirements model that supports AOSD to help

requirements engineers capturing requirements in the aspect-oriented paradigm.

1.3 Scopes of the Research

The scopes of the research are as follows.

1.3.1 The research covers only functional and nonfunctional crosscutting
artifacts. Pseudo requirements are not considered in this work.

1.3.2 A complexity index will be used to compare a traditional use-case model
with our approach.

1.3.3 A case study is in the Web application problem domain.

1.3.4 The research will not explicitly concern about the impact of requirements
changes.

1.3.5 The concerned software development process in this research is the
Unified Process that employs the use-case driven approach.

1.3.6 Resulting software tools will be implemented as add-in applications of

the Rational Rose.

1.4 Steps of Research
This research follows the steps as follows.
1.4.1 Study related works.
1.4.2 Design a new technique and a set of notations, and a software tool.
1.4.3 Apply the approach to a case study.
1.4.4 ~Compare our technigues to the traditional approach.

1.4.5 Conclusions.

1.5 Contribution
This research has contributions as follows.
1.5.1 A technique for purifying and extracting aspects from the use-case
model.
1.5.2 A set of aspect-oriented notations that extend the use-case package of
the UML with a software tool.

1.5.3 A complexity index for measurement of a use-case model.

1.5.4 A technique to realize an aspect-oriented use-case model to other

phases of the software development with a software tool.

The next chapter will discusses the related works, especially several

requirements models proposed for the AO paradigm, and the related theories.

AONUUINYUINNS)
RN ITNINENAY

CHAPTER 2
LITERATURE REVIEWS

2.1 Related Works
This section discusses several previous works in aspect-oriented requirements

engineering that directly relate to the work proposed in this thesis.

2.1.1 Early Aspects: An Aspect-Oriented Requirements Model
Early aspects model, proposed by Rashid et al [8], suggested that it is
necessary to include aspects as the primitive modeling at the requirements-level of the
software process. The important objectives of that work are:

- To support separation of crosscutting concerns those are functional and
nonfunctional properties of the system, identify, and manage conflictions of these
tangled representations.

- To present mapping and influence properties of those requirements-level

aspects for the later stages of the development.

Their approach introduced a model that employs viewpoint-oriented
requirements engineering [2] as an underlying methodology. The model consists of six
activities described in Figure 2.1. The process of the model starts by identifying
concerns and discovering requirements. Both activities can be repeated before
stepping to the next activity. The works in those activities are recommended by the
authors that requirements engineers and stakeholders-should-perform them. Relating
the concerns to the requirements is useful as the concerns may constraint the
requirements. The: next step is to specify. concerns for providing more details. If a
concern crosscut several requirements, it is considered a candidate aspect. Specifying
the detail of candidate aspects in the next activity is to refine, make them more concrete,
and identify interactions and conflictions among them. To resolve the conflictions,
prioritizing those aspects should be done. |dentifying mapping and influence dimension

of the aspects is the last activity of the model.

Aspects in the early stage can have an impact to the system that can be
identified as two dimensions, mapping and influence.

- Mapping: requirements-level aspects can be mapped to other artifacts of
the system. Aspects may be mapped to, for example, functional, simple methods,
decision of architecture choice, design or implementation details, or other system
properties. Because of this mapping principle, aspects at the requirements-level are
called candidate aspects.

- Influence: aspects may influence to several points, and phases in the
development cycle. For example, availability aspect of the system influences the
system architecture while response-time aspect influences both the system architecture

and the detailed design of the system.

Identify viewpoints,
discover requirements
and relate to concerns

Identify concerns

Specify concerns

Identify candidate — Specify and prioritize [—— Specify aspect
aspects — aspects — dimensions

Figure 2.1 Rashid et al's Aspect-oriented requirements-model [8]

Their approach just offered a model and guideline. This approach
describes aspects in the form of a problem frame, and a plain text. It is quite difficult to
manage those aspects, especially in complex systems, because there is no notation or

modeling tool to support this approach.

2.1.2 A Model for Early Quality Attributes with UML

The recent work proposed by Moreira et al [10] presented an approach to
include quality attributes to the use case model. This model is to identify and specify
quality attributes that crosscut the requirements. It includes the systematic processes
to integrate those quality attributes into the functional requirements captured as use
cases at the early stages of the development process. The model is a UML compliant
process and is composed of three main activities: identification, specification, and

integration of requirements. The process overview is illustrated in Figure 2.2.

Identify
Identify actors and Identify quality
use cases attributes
Specify
\ Y
Build a use case Specify quality
diagram attributes using
templates
A +
Specify use cases Identify
crosscutting
quality attributes
Integrate
J A Y
Integrate crosscutting quality
attributes with functional
requirements

Figure 2.2 A requirements model for quality attribute [10]

The first activity is to identify all quality attributes (relevant to the application
domain. from all requirements. The second activity can be divided into two main parts:
1) specifying use cases, and specifying quality attributes using the special templates; 2)
identifying crosscutting quality attributes from the attributes in the templates. The third
activity is to integrate crosscutting quality attributes with functional requirements

capturing as use cases.

The authors stated that the special template for specifying crosscutting quality

attributes was inspired from Chung et al [11] and Malan and Bredmeyer [12]. The

template is in Table 2.1.

Table 2.1 A template for specifying quality attributes [10]

Name The name of the quality attribute

Description Executive description

Focus A quality attribute can affect the system (i.e. the end product) or the
development process

Source Source of information (i.e. stakeholders or documents)

Decomposition | Quality attributes can be decomposed into simpler ones. When all (sub)
quality attributes are needed to achieve the quality attribute, we have an
AND relationship. If not all the sub quality attributes are necessary to
achieve the quality attribute, we have an OR relationship

Priority Expresses the importance of the quality attribute for the stakeholders. A
priority can be MAX, HIGH, LOW, and MIN

Obligation Can be optional or mandatory

Influence Activities of the software process affected by the quality attribute

Where List of the actors influenced by the quality attribute and also a list of

models (e.g. use cases and sequence diagram) requiring the quality

attribute

Requirements

Requirements describing the quality attribute

Contribution

Represents how the quality attribute affects other quality attributes. This

contribution can be positive (+) or negative (-)

The properties to help identifying what quality attribute is crosscutting are at the

rows Where, and Requirements from template.

If those properties indicate that the

quality attribute traverses several models and requirements, then it is crosscutting.

10

2.1.3 Aspect-oriented requirements with UML

The work by Aradjo et al [9] presented an approach to manage crosscutting
concerns at the requirements stage using the UML [6]. The authors reported that their
approach could be a mechanism to help requirements engineers managing and
understanding the whole system requirements. According to [8], the crosscutting
concerns can also be functional and nonfunctional. But the work reviewed here
proposed only techniques for composing nonfunctional aspect to the use-case model.
The aspect-oriented requirements engineering model from [8] was used with slightly
modification to make the model possible to use with the UML. Figure 2.3 shows the

requirements model.

Requirements

Identify & describe Specify
non-functional functional
concerns requirements

v

Identify & specify <4
crosscutting
concerns >

Compose
crosscutting
concerns into
the UML models

Y

Identify and
resolve conflicts

Crosscutting Composed Functional
Concerns Requirements Concerns

Figure 2.3 A model for composing aspect-oriented requirements with UML [9]

1"

2.1.3.1 Model Partition
The process is partitioned in three main parts, crosscutting concerns,
functional concerns, and composed requirements.

- Crosscutting concerns: this part handles identifying and
describing of non-functional concerns, and then identifies which of those are
crosscutting. If a non-functional concern crosscut several requirements, then it is a
candidate aspect.

- Functional concerns: this part contains an activity for identifying
and specifying functional requirements.

- Composed requirements: this part takes functional requirements
and crosscutting concerns as its input. Composing crosscutting concerns to the UML
models that are functional requirements are performed in the first activity of this part.
The final activity in this part is the process of identifying and resolving conflictions that
may be raised by composing those crosscutting concerns to the functional

requirements.

2.1.3.2 Composing Parts

That work proposed modeling composed requirements in the use-case
model. Composed requirements are functional requirements that are composed with
candidate aspects. Functional requirements as use cases in the use-case model are
associated with aspects. The association is attached with information that provides a
composition semantic as its-stereotype. The authors:suggested three composition parts
as follows.

- Overlapping: the requirements of aspect modify the functional
requirements that they crosscut.. The behavior of aspect partially. substitutes at the
beginning and the end of the basic requirements.

- Overriding: the requirements of aspect superpose the functional
requirements that they crosscut. The behavior of aspect fully substitutes the basic

requirements.

12

- Wrapping: the requirements of aspect encapsulate the functional
requirements that they crosscut. The behavior of aspect wraps, before and after, the

basic requirements.

That work also proposed a specification frame for describing crosscutting

concerns. The specification table is illustrated in Table 2.2.

Table 2.2 Specification of crosscutting concerns [9]

Crosscutting concern <Name>

Description <Executive description>

Priority <Max, Med, Min>

List of requirements <Requirements that describe the concern>
List of UML <UML models influenced by the concern>

In that paper, the authors pointed that composing aspects with use cases may
raise conflictions among those aspects. Thus, the further consideration is a process of

resolving those conflictions.

The case study illustrated in the work reviewed here are the simplified version of
the Portugese motorways network [13]. Figure 2.4 shows the use-case model of that
system. Figure 2.5 shows the composed UML model with the “Toll gate response time”
aspect. Composing the aspect was done by associating the aspect notation (the use

case with <<TollGateResponseTime>> stereotype) with three basic use cases.

=

/PassSingIeTolI

EnterMotorWay

ExitMotorwWay

VehicleDriver

Figure 2.4 The use-case diagram of the toll gate collecting system [13]

13

Table 2.3 from [9] shows an instance of template specification of the composed
requirement modeled as in figure 2.5. There are four requirements relating to the “Toll
gate response time” concern. Those requirements was described in [9] and not showed
in this review. It is clearly observed that there are three use cases in the composed

model. Those use cases are also illustrated in the template.

O <<wrappedBy>>

/PassSingIeToIl
% j <<wrappedBy>> i :

VehicleDriver\ EnterMotorWay <<TollGateResponseTime>>
<‘ <<wrappedBy>>
ExitMotorWay

Figure 2.5 The use cases composed with the aspect [9]

Table 2.3 Crosscutting template specification for toll gate response time [9]

Crosscutting concern Toll gate response time

Description Tollgates should react before the driver leaves

the toll gate area

Priority Max
List of requirements R1, R2, R3, R4
List of models Usecases:

1. PassSingleToll,
2. EnterMotorway,

3. ExitMotorway

Although, the model introduced by [8] has suggested that functional
requirements may crosscut the basic services of the system, but the work reviewed here
did not cover that kind of aspect. Besides, they introduced composing technique to use

UML as base notations for describing aspects in the use-case model, but it is clearly

14

observed that the approach increases complexity to the use-case model when modeling

several aspects.

2.2 Related Theory
This section discusses background knowledge that will be referred by the further

sections.

2.2.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) [5] has been recognized by the software
development communities to be one of important technologies. It is expected by the
community that AOP will mature enough to change the programming style in the near
future. Many communities reported that AOP could solve some kind of programming
problems properly than OOP [4, 7]. AOP reduces like of codes significantly comparing
to OOP for the same task. It additionally provides more maintainability and adaptability
to the software system. Programming with AOP is a process that separates tangled
codes out of the software. Those tangled codes may spread across classes, and other
points of the source program. In[4, 5, 7] the authors reported that it is necessary to
manage the tangled codes because it affects the maintainability of the system. Besides,
it caused some hidden bugs that are difficult to find without the use of AOP. AOP groups
those kinds of code into-a new modular unit called an aspect. This makes the source
program cleaner and easier to maintain, and evolve when the requirements are
changed. Aspects can be compiled back to be the software using an aspect compiler
called a weaver. ~This process .is. called. a weaving-process. The weaver weaves
aspects source with the traditional source code.” The resulting source code called the
woven-. source- can now-be-compiled ;with .the ~traditional .compiler to produces

executable program.

There are a number of compilers that support AOP. Many of them can be found
on then AOSD communities [4], but one of the most famous aspect compilers is AspectJ
[7], which is aspect weaver for Java [14] programming language. It is acceptable to

use language features of Aspectd as AOP semantic references because the maker of it

15

and the authors of AOP paper came from the same organization. AspectJ has
introduced a number of language features to support AOP semantics as follows.

2.2.1.1 Join point abstraction: the abstraction concept of join points
has been introduced in the AOP. Join points are well-defined points in the execution
flow of the program.

2.2.1.2 Pointcut designators: pointcut designators, or pointcuts for
short, are selected join points. Those joint points are grouped and may be describe
using regular language.

2.2.1.3 Advice codes: they are code fragment that will be performed
by their associated pointcuts.

2.2.1.4 Introductions: extra data or method members can be late
introduced to the classes using the concept of introduction. After weaving an aspect to
the old code, introducing data or method members will be automatically added to the

woven class.

ﬁ
: """—"_"""""";:”l
method apaint | e

=

example pointcuts method c.paint
Y
<<before>> *paint
<<after>> *.paint
<<around>> *.paint é\
J

method b.paint

Figure 2.6 Six join'paints are defined here, with three sample pointcuts

Figure 2.6 shows a concept of join points and their possible pointcuts. Each
rectangle block represents a method. Circle shapes placed before and after those
blocks indicate possible join points in the system. Figure 2.7 shows a code fragment

written in Aspectd. In Figure 2.7, there is the aspect canvasUpdating that contains a

16

pointcut designator afterPainting. This pointcut cuts across three classes, the figure, the
figureA, and the figureB. This makes after calling of the paint methods of those three

classes; their associating canvases will be also called the update method.

aspect canvasUpdating {
pointcut afterPainting(figure f):
target (f) && call(public void *.paint());
after: afterPainting(figure f) {
f.getCanvas.update () ;

}

class figure {
public Canvas getCanvas () ;
public void paint() {

}
}

class figureA extends figure{
public void paint () {

}
}

class figureB extends figure({
public void paint () ({

}
}

Figure 2.7 A basic code listing of the figure-painting program written in AspectJ

2.2.2 UML Use-Case Package

The Unified Modeling Language (UML) [6] is a set of notations for designing
software system using the object-oriented approach. UMLis the industrial standard and
managed by the Object Management Group (OMG - see http://www.omg.org). UML
consists ‘of several groups of notations that could be used for describing software
artifacts throughout the development cycle. Its metamodel separates UML itself into
many packages depending on their different tasks. For the requirements phase, UML
has the use-case package that contains a number of notations for using in the diagram
called the use-case diagram. Use-case diagrams show the relationships of actors and
use cases. This package helps capturing functional requirements of the system as use

cases. The notations are as follows.

17

2.2.21 Use Case

A use case is a kind of classifier representing a functionality provided by
the system. A use case usually captures a functional requirement. It is shown as an
ellipse attaching with the name of the use case. An optional stereotype can be placed
over the name. Behavioral semantics of a use case can be described in different ways.

But it is normally in plain text format.

2.2.2.2 Actor

An actor defines a set of roles representing users of the system. It can
interact with the system entities that usually are use cases. The default iconic
representation of an actor is a “stick man” figure. Its name can be attached below the
figure. An actor may also be displayed as a class notation with the stereotype keyword

<<actor>> above its name.

2.2.2.3 Relationships
There are several standard relationships among use cases, and actors.
This section discusses three kinds of relationship.
2.2.2.3.1 Association
An association indicates the participation of an actor in a use
case. ltis only relationship between actors and use cases.
2.2.2.3.2 Extend
An ‘extend relationship from-the use case U1 to the use case U2
indicates that the behavior of the use case U2 may be extendible by the behavior
specified in the use case U1.
2.2.2.3.3 Include
An include relationship from the use case U1 to the use case U2
indicates that the behavior of the use case U1 will also contain the behavior specified in

the use case U2.

18

The example of a use-case diagram is illustrated in Figure 2.8. There

are five use cases, one actor. The relationships include, and extend are displayed as

dashed lines.
O | an include relationship |
~—_ <<include>>
. —
Change Fixing Status —
[anassociation |7 (from Fixing Process) 13 —~ &
\ <<include>> 7©
g
an actor \/ — Vi

> _

Login
%Q/ \ / (from Security)
\ /

N | an extend relationship
View Fixing Request NN \

<<extend>>
(from Fixing Process) \/ \
.

<<inc|ude>>/ ~

/ <<extend>>\\<>
O View Attached Notes
(from Special)

Recording Fixing Details

(from Logical View)

(from Fixing Process)

Figure 2.8 An example of the use-case diagram

2.2.3 UML Profile

There are several problem domains that are not directly supported by the
original UML. Some special notations, keyword, or attributes may be needed to identify
modeling artifacts-in. such.domains.. Fortunately, UML has-its .own standard mechanism
called the UML profile [6] to extend its functionalities. Utilizing techniques offered by
UML profile make several useful extensions of UML such as UML-RT, UML profile for
CORBA [15], and WAE [16]. UML-RT is a profile for modeling real-time intensive
applications. The profile introduces several the notations such as capsules, ports,
connectors, protocols, and protocol role to UML. It is based on the modeling technique
from [17]. UML profile for CORBA [15] provides a standard means for modeling CORBA
IDL using UML notations. Conallen’s WAE [16] for Web application modeling is another

UML profile to model Web pages and HTML elements using UML artifacts.

19

UML profile standard offers three techniques to extend functionalities of UML as

follows.

2.2.3.1 Stereotypes

Stereotypes are classification of an existing UML element. A stereotype
keyword is usually labeled to the notation in <<keyword>> form.

2.2.3.2 Constraints

Constraints are restriction placed for controlling their associated
stereotype.

2.2.3.3 Tagged values

Tagged values are the stereotype propertied. They contain additional

information for the stereotype.

2.2.4 Use Case Maps

Use Case Maps (UCM) [18, 19] visually represent scenarios combined with
structures. UCM illustrates use cases in a map-like diagram. Its notation is based on
several concepts. A UCM diagram describes causal relationships between
responsibilities that are bound to underlying structures of components. A causal path
refers the execution path of the use case described using UCM. The paths are said to
be causal because it involve ordering of activities that cause to effects. Responsibilities
are generic actions, tasks to perform. Components represent generic software entities.
Figure 2.9 describes the structural-concept of UCM. The details of their elements are

described in Table 2.4.

The UCM shares several common characteristics with the activity diagram of the
UML [20], but UCMs have many features over the activity graph. UCMs combine
structural view of the system with its behavioral activities. This feature advantages for
describing architectural view of the system, while the UML activity diagrams emphasize
on message sending between objects. This makes UCMs fit the need for modeling

scenarios of use cases.

20

PathElement
=/ Map ~J
EndPoint
Component
Continuation
|
Element -
StartPoint
Z%
Stub J - Action
Or And WaitingPlace Element
StaticStub | | DynamicStub Seletlion Tﬁr
atiestu D— Policy ime Responsibility

Figure 2.9 Class diagram describing the core concept of UCM

Table 2.4 Description of UCM concepts

Class Name

Description

Map

Composition of path elements and components

Path Element

Abstract class for an element over a causal path

Start Point

Beginning point of a scenario (possibly with preconditions)

End Point

End point of a scenario (possibly with postconditions)

Action Element

A path element on a causal path

Responsibility

An element to perform an action

Continuation Element

A super classrepresenting alocation where multiple path elements

can connect together in a non-sequential way

OR Composition of path as alternatives

AND Composition of path as concurrent

Stub A super class that represents a container of sub maps
Static Stub A stub with a single sub maps with its relationship

21

2.2.5 Rational Unified Process

The Rational Unified Process (RUP) [3], and the unified process [1] are software
engineering processes that employ the use-case driven approach and uses the UML as
its modeling notation. The RUP is the enhanced and commercialized version of the
unified process. Figure 2.10 shows the development lifecycle of the RUP, including its

disciplines.

Disciplines || inception|| Elaboration || Construction || Transition

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management H :
Environment | P — . — |

Initial || Efab #1 | | Bab #2|[Const |c:n#n;5 Const |[Tran |[Tran
F -

Iterations

Figure 2.10 Development iterations defined in RUP [3]

Software development life cycle of RUP is the iterative controlled model [3].
Vertical dimension of the RUP _process indicates the development disciplines while the
horizontal dimension ‘shows ‘the development phases. " This ' section reviews the
requirements disciplines of RUP mainly located at the inception phase, and can be also
found at the beginning of the elaboration phase. Figure 2.11 shows the overview of

requirements discipline of RUP.

22

[New input]

Manage Changing
Ane:éy;z;qhse Understand < Requirements
: P K stakeholders needs)\
[Incorrect problem]

[Addressing c¢orrect problem] [Cannot do all works |
Define the Manage scope
system _ of the system

Refine the system
definition

Figure 2.11 The RUP requirements workflows [3]

The requirements discipline contains six workflows. The summarized activities in

each workflow are as follows.

2.2.5.1 Analyze the problems: the actors and preliminary use cases
are identified in this workflow.

2.2:5.2 - Understand stakeholders’ needs: the actors.and use cases are
refined.

2.2.5.3 Define the system: the actors and use cases are refined.

2.2.5.4 Manage scope of the system: use cases are prioritized and
organized their dependency.

2.2.5.5 Refine the system definition: this step is to specify the use

cases details.

23

2.2.5.6 Manage changing requirements: the use-case model is

restructured and managed their dependency.

The important artifacts using in this discipline are the software requirements
specification (SRS) documents, the use-case model, the vision document, and etc. RUP
also provides complete document templates for specifying the system details that are
gathered from the stakeholders. There are two versions of the SRS document, the

traditional, and the SRS for use-case driven approach.

The next chapter will describe our approach. It includes the new requirements

model, the notations. Their mathematical perspective will also be presented.

24

CHAPTER 3
CONCEPTUALIZATION

3.1 Aspect-Oriented Requirements Model

The requirements model proposed in this thesis consists of a group of software
processes that are designed to support the AO paradigm. These processes cover the
early stages and the beginning of the analysis phase of the software development. To
support the AOSD, this model has to be accomplished due to the reasons as follows.

- Itis necessary to manage crosscutting concerns at the requirements level of the
process.

- It is necessary to identify crosscutting concerns as aspects during the process
of use cases capturing.

- It is necessary to realize aspects with scenario descriptive model during the
process of use case realization to help capturing aspects as analysis and

design artifacts.

Software Requirements Specification
(Functional and Nonfunctional)

v

Preliminary Use-Case Models
with supplementary documents

Aspect Extraction
& Use-Case Purification

Untangled Use-Case Crosscutting Stack

Models Models
Realization
\ '

Untangled Aspect-oriented

Structured Models Structured Models

(i.e. Class Diagrams) (i.e. Aspect Diagrams)
Aspect-Oriented
Untangled Code Code

e’

Software

Figure 3.1 Overview workflow of the model

25

Figure 3.1 shows the overview of the model. Those processes are intended to
support the unified process [1, 3]. This makes the unified process possible to use with
AO paradigm. Table 3.1 shows the summary of input, and output artifacts, including

roles that are related to this requirements model.

Table 3.1 The summarized artifacts and roles for this approach

Process Input Output Role
Use-case 1. Preliminary use- 1. Purified use-case | Aspect specifier
purification and case model with models
aspect extraction supplementary 2. CSM diagrams

documents
Aspect realization 1. CSM diagrams 1. OCUM diagrams Aspect engineer
(parallel with use- 2. Purified use-case (with Use-case
case explanation models engineer)
process)

3.1.1 Use-case purification and aspect extraction

This process gets the preliminary use-case model, and the supplementary
documents as its input. It is to identify and specify crosscutting concerns and capture
them as aspects. Extracted aspects will be put into the model called the crosscutting
stack model (CSM). After capturing aspects, use cases that are identified to be a part
of those aspects will be remaved out of the use-case model.~This activity is called the
use-case purification. The purified use-case model should contain only the core

services of the system.. The overview of these processes is in Figure 3.2.

There are two sub processes as stated in Figure 3.2, the aspect extraction, and
the use-case purification process. The main role involving with these processes is the
aspect specifier. An aspect specifier is responsible to identify, specify crosscutting

requirements as aspects.

26

)

aspect
specifier crosscutting stack
model

use-case
purification

187 \
supplementary. use-case model use-ggggergodel
documents

extraction

o [

Figure 3.2 Use-case purification and aspect extraction activities

3.1.1.1 Aspect Extraction

This section describes activities, which are responsibilities of the aspect
specifier, for identifying, specifying, and finally extracting the aspect from the use-case
model supporting with the supplementary documents. A candidate aspect consists of,
at least, a use-case selector, a pointcut association, and an advice case. The process
starts firstly with identification of advice cases from the use-case models.

Preliminary Identification guidelines for aspects are as follows:

- Consider all use cases that do not associated with actors as an

advice case.

- Consider the secondary requirements as an advice case.

Then, specify the details for the candidate crosscutting artifacts using
the template. Inspired by the works [9, 10, 8], the template for specifying aspects in the

use-case driven approach is shown in Table 3.2.

Figure 3.3 shows the activities for extracting aspects from the preliminary
use cases. Several notations, advice cases, use-case selectors, and pointcut
associations, from the crosscutting stack model are introduced here. The details of

those notations will be discussed later in the next chapter.

27

Table 3.2 The template for use-case driven aspects

Name <The name of the candidate advice case>

Concern <Kind of concern (i.e. security, distributed, etc.)>

Description <Executive description>

Source <Source of information (i.e.use cases, stakeholders, documents)>

Crosscutting Type

<Functional or Nonfunctional>

Priority <MAX, MED, MIN>

Precedence <Precedence value for resolving conflictions (0...1500)>
Obligation <Optional or Mandatory>

Influence <Activities of software process affected by the aspect>
Models <Related models (use-case models, scenario models)>

Requirements

<Related requirements>

Points

<Location in the scenario this aspect should be found>

(

from use cases

Identify advice cases >

v

(

Specify an advice case
details using the template

Mark the advice case

[not crosscut | f .
K as a basic use case

[-crosscut]

(

Create use-case selectors from "Models" and
"Requirements" properties of template

Create pointcut associations from
"Points" property of template

Figure 3.3 Summarized activities for extracting aspects

28

In [9, 8], the authors suggested that considering candidate aspects
using template can be done by looking at the models, and requirements path of the
template. If they traverse several models or requirements, then they are candidate

aspects.

3.1.1.2 Use-case purification

After identifying, specifying, and extracting aspects, the process to be
done is the use-case purification. This process re-arranges the use-cases and removes
all notations indicated as aspects out of the use-case model. Those aspects will be
moved to the CSM diagram. Figure 3.4 shows the activities for the process of purifying

use cases.

Move aspects from
use-case model to CSM

Remove use-case
associations

Remodel all remaining
use cases

Revert noncrosscut advice cases
to basic use cases

Figure 3.4 Use-case purification activities

3.1.2 Realization

There are four sub processes in the aspect realization process. This includes
use-case explanation process because this approach employs the OCUM model for
describing the scenario of use cases. The details of notations used in the OCUM model

will be discussed in the later section.

29

O

[> . X
|
aspect aspect -— -
engineer realization aspect
. ocum model
O analysis aspect
identification
D ~ O
/
use-case O\ / O
explanation O/
use-case analysis class
engineer / \ identification analysis
/ \ b 4 \ aspects

/
Ca—) X % o _O
crosscutting stack d ‘x} O\O/ /O

model purified
use-case model analysis
use-case classes

ocum model

Figure 3.5 Aspect realization and use-case explanation activities

Figure 3.5 shows the overview of the activities for realizing aspects describing
use cases. There are two roles involving this process. The aspect engineer is
responsible for realizing aspects by describing them into scenario models. Then
aspects for the analysis phase, called analysis aspects, should be captured from the
scenario models. In the parallel activities, use cases are described and then used as
input artifacts for capturing analysis classes from their scenarios. These parts are
identical to the activities in the Unified Process [1, 3], but this approach employs OCUM,
which is derived from the -UCM {18, 19], as scenario diagrams. The use of OCUM
provides several advantages beyond the scenario diagram of UML because an OCUM
diagram models structural and behavioral artifacts-in the same diagram. Moreover,
OCUM is intended to support AO scenario description. The four sub processes are

discusses in details here.

3.1.2.1 Aspect Realization
The aspect realization process is to describe an aspect from the CSM
form into the OCUM scenario. This process provides mapping guideline to convert use-

case selectors from CSM to the start-point providers with the dynamic start-points.

30

These notation specifications are described in details in the later chapters. The

mapping guidelines are summarized in Table 3.3.

The advice cases will be described into the sequence of responsibilities
attaching with Object Constraint Language (OCL) [6] expressions for specifying their
behavior. These responsibilities are linked together with the causal path beginning with
the start point. Stub stacks may be put along the causal path of other use cases, which
will invoke the advice cases, depending on the information from the pointcut

associations.

Table 3.3 The mapping guideline for the aspect realization process

Mapping From / To
Description
CSM notations OCUM notations
Use-case selectors Start-point providers The start-point providers and the
and dynamic start- dynamic start-points might be think of
points that they are specified version of the
use-case selectors
Pointcut associations Stub stacks Placing the stub stacks along the path
of other use cases is depended on
the information “where” from the
pointcut associations
Advice cases Components, the Advice cases usually are explained as
causal path, scenarios. Their behaviors are
responsibilities, OCL described by OCL expressions, and
expression components.

3.1.2.2 Analysis Aspect Identification

This process identifies an aspect from the OCUM scenario model to the
aspect notation for the analysis phase. During progression of this work, there is current
no the standard notation for describing aspects in the analysis, and design phase.

Recent work [21] proposed the design notation, called aspect, for the aspect-oriented

31

design model (AODM). But it is only for AspectJ [7] language mapping, not generalized
[21]. This process covers only the guideline for mapping the scenario artifacts found in
OCUM to the general analysis aspect template. It does not follow the semantic of the
AODM. However, mapping again from the template to the AODM artifact is not difficult
to be done. Table 3.4 shows the template for specifying the analysis template captured
from the scenario. The template consists of three rows as follows; the name of analysis

aspect, list of pointcuts, and the advice code.

Map Use-case Selector to
Start-point Provider

[for aspects] [for use cases |

Specify items in the
start-point provider

(Link the start-point provider to the

Put stub stacks along the causal
path of the related use cases

dynamic start-point

Create scenario for
the advice case

Figure 3.6 Activities for realizing aspects

Table 3.4 The simple aspect template for specifying analysis aspects

Name <Name of the analysis aspect>

Pointcuts declaration <List of pointcuts in regular language>

Advice code <Pseudo code of the advice code>

32

Define aspect
name

Specify pointcuts declaration
using regular language

Specify advice code
using pseudo language

.

Figure 3.7 The activities for identify an analysis aspect

Figure 3.7 shows the activities to map the aspect from OCUM model to
the template. Firstly, the name of the aspect is defined. It is usually from the name of
the advice case. The second activity is to declare the pointcuts using regular language.
The information for declaring pointcuts should be gained from the location of stub stacks
from the scenario of the use cases that are related to the advice case, and the
information from the start-point providers of the advice case. Finally, the scenario of the

advice case is specified in pseudo, or formal language for describing as advice code.

3.1.2.3 Use-case Explanation

This process ‘describes use cases from the use-case model into the
OCUM: scenario model. The use-case scenario can be specified as a sequence of
responsibilities along the causal path of the OCUM model. Stub stacks may be placed
on several points of the path to indicate that these points are crosscut, and it will invoke

the relating advice cases.

33

In the UML, this kind of scenario can be described with the activity
graph. But the OCUM model advantages over the activity diagram. The features
derived from the UCM make the scenario, described using OCUM notations, modeling
both structural artifacts and behavioral activities in the single view. This makes the
OCUM model better describing the early architecture of the system than the activity

graph [20].

Specify
responsibilties

< Specify an OCL expression for

each responsibility

Link all respon5|b|I|t|es with
the causal path
Put the stub stack along the causal path
using the information of pointcuts

<Bound respon5|b|ht|es with

their components

Capture the components as
analysis classes

Figure 3.8 The activities for describing use cases, and capturing classes

3.1.2.4 = Analysis Class Identification

This process is to capture the analysis UML classes from the OCUM
components in use-case scenarios. The activity is simple because the OCUM defines
the concept of its components corresponding to the class concept of the UML. Figure
3.8 shows the activities of both the use-case explanation, and the analysis class

identification in the same workflow.

34

3.2 Crosscutting Stack Model

This section describes the crosscutting stack model (CSM), and its notations.
This model is a combination of the AO paradigm with the use-case model. The CSM is

extended from the preliminary work proposed in [22].

Several defining extensions are based on the use-case package of the
metamodel of the UML [6]. The use-case package is a sub package of the behavioral
package of the metamodel. The key elements of use-case model are use cases and
actors. To extend its functionality for capturing crosscutting requirements with the
concept of aspect-oriented, a crosscutting stack model, an advice case, a use-case

selector, and a pointcut association, are introduced here.

3.2.1 A Diagram of CSM

3.2.1.1 Semantics

The diagram of the CSM shows use-case selectors and advice cases
together with their relationships. The advice cases represent system functionality or
properties that cut across other functionalities, which are use cases, of the system.

3.2.1.2 Notations

A diagram of the CSM is a graph of use-case selectors and a set of
advice cases, and the relationships between these elements. The relationships are
special kind of associations called the pointcut associations. The example of the CSM

diagram is illustrated in Figure 3.9.

@ <<entering>> Q

UseCase.allSenices Login

<<wrappedby>> .

Session expiredin
15 min.

Figure 3.9 The Example of Crosscutting Stack Model

35

3.2.2 Advice Case

3.2.2.1 Semantics

An advice case is defined as a specialization of the classifier from the
UML metaclass. It represents a functionality or property of the system that cut across
other use cases in the use-case model. It also defines a sequence of actions, but
cannot be performed directly by the actor. Triggering from an instance of use-case
selector will perform an advice case. A concept of an advice case follows the concept
of the advice in the AOP [5].

3.2.2.2 Notations

An advice case is shown in the crosscutting stack diagram using a
notation of use case with attaching stereotype keyword <<advice case>>. It can also
be modeled using a vertical-half-ellipse, the A-like shape. It contains the name of
advice case below the icon. Graphical representations of an advice case are displayed
in Figure 3.10.

3.2.2.3 Presentation Options

The name of the advice case may be placed below its icon. The name of
an abstract advice case may be shown in italics.

3.2.2.4 Style Guidelines

Advice case names should follow style guidelines stated in the UML

TE I

<<advice case>> Login
Login

specification [6].

Figure 3.10 Graphical representations of an advice case

3.2.3. Use-case Selector
3.2.3.1 Semantics

A use-case selector is a kind of classifier representing a group of

functionality, or use cases of the system. Use-case selectors follow the concept of

pointcut designators in AOP [5]. According to AOP, a pointcut is a set of selected join

36

points of the system [5]. A pointcut defines what will be crosscut, and when. This
similar semantic is defined using a use-case selector incorporating with a pointcut
association. This approach uses a use-case selector to define what the advice case
crosscuts.

3.2.3.2 Notations

A use-case selector is displayed as a use-case notation attaching with
<<use-cases selector>> stereotype in the CSM. It is also represented as a use-case
with a little vertical-half-ellipse attaching at the right corner of it. Figure 3.11 shows both
stereotype style, and iconic representations of a use-cases selector.

A use-case selector contains an OCL expression below its icon. A use-
case selector uses the expression to find a group of use cases. This notation is to
represent what to be crosscut, not where. In this model, the AOP pointcut concept is
separated into a use-case selector, and a pointcut association. A pointcut association
defines when to cut across. Separating a use-case selector from a pointcut association
enables reusing the same selector with many pointcut associations.

3.2.3.3 Presentation Options

The name of the use-case selector may be placed below the icon
instead of the OCL expression for describing the group of use cases that will be

selected using the natural language.

S—1

<<use-case selector>>
UseCase->allSenvices

UseCase->allSenices

Figure 3.11 The use-case selector,/and its iconic representation

3.2.4 Pointcut Association
3.2.4.1 Semantics
A pointcut is a kind of association that links between use-case selectors
and advice cases in the CSM diagram. A pointcut association must be labeled with a
stereotype to indicate where the use cases grouped by the use-case selector should
perform the appropriating advice case. Combining pointcut associations with use-case

selectors provides the AO concept of pointcut designator in the CSM diagram.

37

3.2.4.2 Notations

A pointcut association is a relationship attaching with stereotype
keyword. Figure 3.12 shows the use of the enfering pointcut association incorporating
with the use-case selector and the advice case Login. This is a complete aspect
notation for using in the CSM. The pointcut association labeled with <<entering>>

forces the system to perform the advice case “Login” before performance of all use

@ <<entering>> Q

UseCase.allServices Login

cases in the current model.

Figure 3.12 An aspect — the combination of a use-case selector, a pointcut

association, and an advice case

Predefined set of stereotypes that can be attached to a pointcut
association is in Table 3.5. The set of stereotypes defined in [9, 10] are revised and

extended here. They are also listed in Table 3.5.

Table 3.5 A set of pre-defined pointcut associations

Pointcut Association Description
Stereotype
A pointcut before actor performing the use case
Entering
(overlapping activities at the beginning of the use case).
A pointcut after actor performing the use case
Leaving

(overlapping activities at the end of the use case).

A pointcut when actor performing the use case with error
Exception Raising

handling.
Wrapped By Entering + Leaving.
Overlapping Partially replacing activities of the use case.

Overriding Replacing all activities of the use case.

38

3.2.5 Additional OCL Properties

In order to make a use-case selector having semantics in itself, we define
additional OCL [6] properties to use with the use-case selector. Two additional
properties are defined as the following: UseCase.allServices is the OCL property for
UseCase type returns its result as a set of all use cases that are performed by every
actor, and UseCase.servicesOfActor is the OCL property that returns its result as a set

of use cases specified by Actor. The implementation of both properties are as follows.

UseCase.servicesOfActor (a: Actor): Set (UseCase)

Context
UseCase: :servicesOfActor (A: Actor) : Set (UseCase)
pre:
true
post:
result = a.allConnections->select(r |r.type.OclIsKindOf (UseCase))

UseCase.allServices () : Set (UseCase)

Context
UseCase::allServices () : Set (UseCase)
pre:
true
post:
Actor.allInstances->forAll (a |
result.union (UseCase.servicesOfActor(a)))

3.2.6 Use Case to Advice Case Converting Rules
Rules defined here are to convert use cases from the traditional use-case model
to advice cases in CSM. Mathematical analysis of these rules will be further discussed
later in this chapter. A number of definitions will also be introduced to support the
following rules. Two rules are described as follows:
3.2.6.1 Every tangled use case (discarded use case) that is removed
out of the use-case diagram must be replaced by an effective advice case instead in the
CSM diagram.
3.2.6.2 All tangled associations linked with the discarded use case
must be removed out of the use-case diagram, and the effective advice case must have

one equivalence pointcut association to those association in the CSM diagram.

39

3.2.7 Tool support
The described notations above are all supported by the ASREM add-in. ASREM is an

add-in of Rational Rose, the UML modeling tool.

Figure 3.13 shows ASREM in action. The technical details of the implementation
of ASREM, including its user’s guideline are discussed later in the appendices. ASREM
consists of two parts as follows:

3.2.7.1 Notations and Association

ASREM offers a set of notations supporting the CSM diagram in Rational
Rose. The notations include the use-case selector, the advice case. Their base
notation is the use case attaching with their stereotypes. ASREM offers modeling of the
pointcut association based on the association relationship of Rational Rose.

3.2.7.2 Stereotypes and Tagged Values

All pre-defined pointcut associations that can be found in Table 3.5 are
implemented as a set of association stereotypes in ASREM. The properties of the
template of the use-case driven aspect that are stated in Table 3.2 is also implemented

as tagged values for the advice case.

¥
=
|»

; i AL
Course Catalog = %ﬂ@ Q

£ Professor wiew Report Card
\ elect Courses to Teach
=) Student

: £ Reugister for Courses Course Catalog %

<2 Maintain Professar Infoima r
+]-<2> Maintain Student Informati 5 Submit Grades
<2 Register for Courges ﬂ

<23 Select Courses to Teach \

ar

Professaor

£ Session expired in 15 min Registr haintain Professor Information

<23 Subrit Grades

_f
&

"Q UseCase.semrvicesOfctor] g ==entering=»
<2 View Report Card ~

RS LY
i - ‘:z,_f\is?’mjl.lﬂns -| Maintain Student Information UsaCage.sericesOractoriFixer) Login
4 »

- Ot e,

Close Registration

Billing Syst
fling System Session expired in

15 min.

Figure 3.13 Modeling CSM notations in the use-case diagram of Rational Rose

40

3.3 Object/Crosscutting/Use Case Maps

The UCM [18, 19] is a semi-formal, and map-like diagram for describing use-
case scenarios. A UCM diagram features an architectural explanation of the system. It
visually integrates structural components and scenarios of use cases in single view [20].
This is very useful for modeling the interactive, such as applications in Web-based

domain [23], systems.

UCM basic notations consist of the following elements: a component, a causal
path, a stub, and a responsibility [18, 19]. Several UCM notations are improved to
support semantics of aspect-oriented, and also more object-oriented here. Moreover,
the integration of OCL [6], a formal language proposed as a part of the UML, with the
UCM is also suggested. The detail of the improvements, which are implemented in The

Object/Crosscutting/Use Case Maps (OCUM), is described.

The enhancements of OCUM beyond the UCM are divided into two groups for
supporting both AO and OO paradigm. The enhancements to support AO are stub
stacks, start-point providers, and dynamic start-points. The enhancements to better
support OO concept are embedded OCL expressions, object context abstraction,
parameter symbols, object constructors, destructors, and type information. Table 3.6
summarizes these improvements. Figure 3.14 shows the core structure of the OCUM.
The core structure is illustrated as a UML class diagram. Shaded elements are the

enhanced notations.

3.3.1 .~ Stub Stack
3.3.1.1 =~ Semantics
In UCMs, the stubs can be replaced by sub-maps. This concept is
considered partial supporting AQ’s joint points. Unfortunately, one stub can be replaces
by one plug-in at a time, although the stub is the dynamic kind. But in AO, a joint point
links many advice codes depending on its pointcuts designator. When the join point is
reached, all advice codes are performed. Both traditional stubs concept, which are

static and dynamic, are not adequate to support the kind of AO semantic. To describe

41

the scenario that supports such semantic, the stub stack is introduced here. A stub

stack is to support AO concept in OCUM diagrams. It contains several static stubs that

link to their sub maps.

PathElement

—= Map <
EndPoint
Component
Continuation
I —
Element StartPoint L= |
% Action
Stub = Element
Or And WaitingPlace
DynamicStart
‘ ‘ Point
StaticStub DynamicStub Segcly Timer ibili
Y| Policy Responsibility
‘ StartPointltem StartP_omt
StubStack Provider

Figure 3.14. The OCUM core concept

3.3.1.2 Notations

A stub stack is illustrated by stacking diamonds. The name is optionally

attached below the icon.

Figure 3.15 shows the graphical representation of a stub

stack. This notation is designed as the stacking diamonds because a single diamond

represents a stub.in. UCM, and this notation:is to represent all-possible ways to invoke

their related advice cases, thus it is designed to be a stack of UCM stubs. A stub in

UCM can be thought of that itis‘an advice case in"/AO concept: This notation represents

that this point will invoke multiple advice cases at a time.

Figure 3.15 The stub stack notation

42

Table 3.6 Summarized enhancement of OCUM model

Paradigm Feature Name Type Description
Support
Stub stacks Notation To support the join point
semantic on the causal path
Start-point providers | Notation To support the mapping of use-
case selector form CSM model
Aspect-
Dynamic start-point | Notation To enhance the concept of static
oriented
start point. This makes this
dynamic start-point possible to
get information from the start-
point provider
Embedded OCL Text This enables responsibilities
expression contain an action semantic
Object context Abstraction | This concept helps make the
abstraction OCL expression contains the
meaning relating to the
component.
Parameter symbols | Text This is to support the argument
concept and the dataflow
Object- analysis concept though the
oriented causal path.
Object constructor, | Text This is to_support
destructor constructor/destructor concept
for optionally indicating the
object state.
Type information Text This adds stereotype concept of

UML to the component block. It
makes possible to provide more

information of the component.

43

3.3.2 Dynamic Start-point
3.3.2.1 Semantics
A dynamic start-point retrieves information from the start-point provider to
start the scenario. A dynamic start-point is a derivative of a start point. This new notation
is to support the AO paradigm.
3.3.2.2 Notations
Dynamic start-points are indicated by dashed circle attaching its name
below the icon. Figure 3.16 shows the dynamic start-point with the name ‘login’.
=

/
NN

login

Figure 3.16 The graphical notation of the dynamic start-point

3.3.3 Start-point provider

3.3.3.1 Semantics

A start-point provider contains a number of points indicating where its
associated start point can be used. The concept of the start-point provider is designed
to support AO scenario description. In AO, the advice code can be performed at
several join points depending on its pointcut designators [5]. This means the advice
code may has more than one start point. The traditional UCM notation did not explicitly
support this concept [20,18, 19].-.To realize this.concept in the OCUM scenario, the
start-point provider is introduced to serve the startinginformation to it start point. The
start-point provider contains a number-of start-pointitems. Each item is labeled with the
name of use case that the scenario will start from. In fact, the start-point provider is the
specified version of the use-case selector from CSM.

3.3.3.2 Notation

The graphical representation of the start-point provider is a stack of
rectangles. Each rectangle is a start-point item. Figure 3.17 shows connecting a start-
point provider to a login dynamic start-point. The start-point provider contains three

start-point items. This enables substitution of those start-point items to the dynamic

44

start-point depending on its selection policy. Each item may contain an expression for
indicating where the start-point relates. The related stub stack name is expressed after
the @ sign. The start-point item “Change Fixing Status@cfs01” means it is a start-point
invoking from the stub stack named cfs07.

3.3.3.3 Guideline

The start-point provider must link to the dynamic start-point. Each item in
the start-point provider contains its related use-case name. The use case name
optionally follows by the @ sign and the stub stack’s name to express its location on the

scenario path.

Change Fixing Status@cfs01

4
/4

View Fixing Request@vfrol H‘]
N ’

login

Record Fixing Details@rfd01

Figure 3.17 The start-point provider with the dynamic start point

3.3.4 Embedded OCL Expression

Embedding OCL expression to a responsibility enables formal specification to
the scenario of the use case. This provides additional using of parameter symbols to
help better understanding of the dataflow through out the causal path. An OCL can be
expressed by specifying it below the responsibility, instead of its name. The object
context of the expression is provided by the components bounding the responsibility.
This object context abstraction is a useful enhancement of the OCUM that helps
embedding OCL expression (possible: ~For example, the object self specifying in the

OCL expression refers to an instance of the component.

3.3.5 Parameter symbol

An operational parameter symbol is a dollar sign with a positive integer i.e. $1,
$2, $3. A symbol that holds a result from the last action is indicated by a dollar sign with
an underscore ($_), called the result-buffering symbol (RBS). This symbol advantages
the dataflow analysis possibilities through the scenario. Both kinds of symbol are

proposed to use within an embedded OCL expression.

45

3.3.6 Object constructor and destructor

To offer the more object-oriented semantics to the diagram, optional object
constructor and destructor are proposed as keywords new and destroy respectively.
They can be placed in front of an object context in a component block. The keyword
new is indicated that the object will be created, and then it performs OCL expressions.
The keyword destroy is indicated that the object perform their OCL expressions, and

then it will be destroyed.

3.3.7 Type information
Meta type or other information can be attached to the component block, as a
stereotype, above the component name. This concept is as same as the stereotype

concept of the UML.

To show the capability that able to support the AO paradigm of the OCUM

model, the scenario explanation of the advice case is illustrated in Figure 3.18.

Change Fixing <<ObjectList>>
Status@cfs01 System Users

View Fixing N %
Request@vfr01 Nt

Record Fixing login self->select(uid=$1 and pwd=$2)
Details@rfd01

<<Object>>
new Session

end point I X

self.person=$ _

Figure 3.18 An OCUM diagram of the Login advice case

From Figure 3.18, the Login advice case is described as an OCUM diagram. It
contains a dynamic start-point named /ogin. This start point is linked from the start-point
providers, which contains a number of start points indicating that the /ogin start point will
be invoked from them. The component block System Users is attached with the

stereotype <<ObjectList>>. This makes one can think of that the component should be

46

a list of objects. This information is configurable, and depends on the problem domain.
The causal path of the diagram runs through two responsibilities embedding their OCL
expressions. The responsibility in the first block contains two parameter symbols. This
means that the use case may be implemented as a kind of function in the later phase,

and should have two inputs.

The second component contains the responsibility appearing the RBS in its
expression. The RBS symbol holds the result from the first OCL expression. Its value
will be assigned to the person attribute of the object in this component. The concept of
including RBS in the diagram makes the dataflow analysis, and consistency checking
possible. Type checking can be applied to the diagram to ensure that type of the
person attribute of the Session class conforms to the data retrieved from the first action,
which returns System User type. This implies some relationships between the Person

class, and the System User class, for example.

3.3.8 Tool support
The concept of OCUM is implemented in the modeling tool called OCUM Vectra.
OCUM Vectra includes all above notations for modeling an OCUM scenario. Its
summarized features are as follows.
3.3.8.1 It supports OCUM diagram, including OO and AO scenario
modeling.
3.3.8.2 Itiis'designed as an add-in of Rational Rose. It can export
OCUM components to UML class diagram in Rational Rose.
3.3.8.3 It saves its output as an XML format. This ‘enables other tools

to read and process an OCUM diagram.

3.4 Mathematical Perspective

This section discusses the requirements model from the mathematical
perspective. A number of definitions of basic elements are introduced. The complexity

index is defined. This section ends with a mathematically proof that the crosscutting

47

stack model's complexities are always lesser or equal than the complexities of the

preliminary use-case model.

3.4.1 Basic Definitions
Definition 1:
A software system is a tuple of finite services, and finite join points.
Example1:
We define the software system Z =(S,J),
where S is a finite set of system services, and J is a finite set of join
points.
Definition 2:
Services of the system are either a set of use cases union with a set of
advice cases.
Definition 3:
User cases of the system are a finite set of use cases. It is a subset of
the services of the system.
Definition 4:
Advice cases of the system are a finite set of advice cases. Itis a subset
of the services of the system.
Example 2:

Given the system Z =(S,J),

S=UUA,

U ={u1,U2,u3},

A={a,a}
Definition 5:

A use case of the system is a sequence of activities that are executed
through some join points.

Given the system Z = (S, J),

S=UUA

I={p Joreer Jo}

Ause case U =(Z,U,j,Q) is a use case of the system Z,

48

where
Z =(8S,J) is the software system,
Q is a set of executable path of U over J, and QcJxJ,
j is a set of single start-point of U , and jc J,|j| =1

Definition 6:

An advice case of the system is a sequence of activities. The advice

case has one or more start points.
Given the system Z =(S,J),
S=UUA
I={0 Joreen ok
An advice case A= (Z,A,0,Q) is an advice case of the system Z,
where
Z = (8S,J) is the software system,
Q is a set of executing path of A over J,and Qc JxJ,

0 is a set of start points of A, and @ c J

3.4.2 Complexity Index

This section illustrates a proof to show that it always reduces the complexity of

the use-case model when applying the technique to the use-case model.

Definition 7:
The complexity.index (Cl) over a use-case modelis as follows:
U L t
YL DLOY|
PALEDILEDIE

u
where a is an association in the use-case diagram,

)

a iS a pointcut association in the use-case diagram,
a is a association considered to be tangled,

U isausecase,

A® s an effective advice case,

v’ is a discarded use case.

49

In the traditional use-case diagram, no tangled association in the diagram is

considered to exist, thus

2.a"-2.8=0 @

Now substitute (2) into (1). Thus, we have

%3 3)

We call Cl, the traditional complexity index of the use-case diagram. Recall

(1), we rearrange the equation (1) as follows:

_2a a2 aRuU-QA-DUNE @
U U (A -2 UY Y,

Then, we substitute (3) into (4)

ol - (Za AN u - A-DUN a -
QU+ A -2 UH> U,

In this thesis, we consider ZAIe=ZUid, by our rule no. 1. Substitution

e d_ ..
ZAI —ZUi =0 into (5), we have

Py g
cl :cm% (6)

We now simply proof that for all use-case diagram applied our rules into it, we

a"-) a
will always have ZZ—Z <0. Thus, we have Zal‘ > Zaf’ to satisfy our second rule.
U

The next chapter will illustrate a case study to show how the model is applied to

the real problem domain.

50

CHAPTER 4
IMPLEMENTATION

4.1 Overview

In this chapter, the case study is illustrated to present how the aspect-oriented
requirements model can be applied to the real problem. The case study is the
maintenance management system for the factory. The complete use-case model of the
system and its class diagram are described in the appendix Ill. In the complete
diagram of the system, there are twenty use cases, three actors. Seven associations
links between those actors to seven use cases. The thirteen remaining use cases are
linked with <<include>>, and <<extend>> relationships to those seven use cases.

Case study illustrated here is a part of the system.

: ~__ <<include>>

Change Fixing Status 5 3
(from Fixing Process) N N
=
I
V- -)\ / Login

%%// \ / (from Security)

View Fixing Request >~ /
(from Fixing Process) o \<\<8Xtend>>

\
<<inc|ude>>/ ~4{

/ <<exte nd>>\\

O View Attached Notes
(from Special)

Recording Fixing Details

-
—
\ <<include>>
-

(from Logical View)

(from Fixing Process)

Figure 4.1 The use case diagram of the actor Fixer

There are three services served by the maintenance system for the Fixer: the
service for changing fixing status of the machine, the service for viewing the fixing
request from other employees, and the service for recording the fixing details to the

maintenance database. All fixing staffs that are granted to use this system have their

51

own user name and password for logging into the system before performing their tasks.
If the logged user does not perform any task for 15 minutes, the user session will be
expired. This makes the user to re-login. One can leave notes for any documents
displaying in the screen to other users. Figure 4.1 shows use cases diagram for the

actor Fixer.

The diagram contains three use cases that are associated with the Fixer. The
remaining use cases, Login, and View Attached Notes, are linked with those use cases
via <<include>>, and <<extend>> relationships respectively. The Login use cases are
included in all three services while the View Attached Notes use case extends two

services.

4.2 Modeling Steps

The use case diagram in Figure 4.1 is assumed to be the preliminary use cases
diagram. It will be taken as input of the process described in chapter 3. The activities

of the process are applied to the case study as follows.

4.2.1 Aspect extraction

4.2.1.1 |dentify advice cases

Two advice cases are identified from the use-case model: the Login, and
the View Attached Notes use cases. They are identified as advice cases because they
links to other use cases via an <<include>>, and an <<extend>> relationships. The
Login use case links with three use cases via <<include>>,and the View Attached
Notes-use case links with two.use cases via <<extend>>.

4.2.1.2 = Specify advice cases in the template

In this step, the advice cases details are described using the template
from Table 3.2. This results the templates shown in Table 4.7 and Table 4.8. Table 4.7
is the template for Login advice case, and Table 4.8 is the template for the View
Attached Notes advice case. Figure 4.2 shows the notations of both captured advice

cases.

52

(A ()

Login View Attached Notes

Figure 4.2 The Login and the View Attached Notes advice cases

4.2.1.3 Consider the advice cases are whether crosscut or not

The template properties Models, and Requirements are used for
considering the advice case is crosscutting or not. In this case study, the Login, and
the View Attached Notes advice cases are both considered crosscutting.

4.2.1.4 Construct a use-case selector from the template information

Use-case selectors can be created from the information of Models, and
Requirements properties of the templates. For the Login advice case, the use-case
selector will select all three services, Change Fixing Status, View Fixing Request, and

Record Fixing Details. The use-case selector for this advice case could be specified as

Ty

UseCase.servicesOfActor(Fixer)

follows.

Figure 4.3 The use-case selector selecting all services of Fixer

The advice case View Attached Notes extends two services, Change

Fixing Status, and View Fixing Request use cases. Thus, its use-case selector could be

A

Change Fixing Status &&
View Fixing Request

specified as follows.

Figure 4.4 The use-case selector selecting two use cases

53

4.2.1.5 Linking with pointcut association

Referring to the templates of both Login, and View Attached Notes

advice cases, pointcut associations <<entering>> could be used to link between these

advice cases and their use-case selectors.

===

UseCase.servicesOfActor(Fixer) Login

i g <<entering>> Q

Change Fixing Status && View Attached Notes
View Fixing Request

Figure 4.5 The CSM model for Login, and View Attached Notes aspects

Table 4.7 The specified template for Login

Name Login

Concern Security

Description Restricts the access to the important services of the system
Source Use cases

Crosscutting Type Functional

Priority MAX

Precedence Value 750

Obligation Mandatory

Influence Architectural, Design, Implementation

Models Use cases:

1. Change Fixing Status
2. View Fixing Request
3. Recording Fixing Details

Requirements

Requirements:
1. The user should be logged in before using every service of the

system

Points

Before every services

Table 4.8 The specified template for the View Attached Notes advice case

54

Name View Attached Notes

Concern Communication

Description Enable user to see attached notes if exists
Source Use cases

Crosscutting Type Functional

Priority MED

Precedence Value 750

Obligation Mandatory.

Influence Implementation

Models Use cases:

1. Change Fixing Status

2. View Fixing Request

Requirements

Requirements:

1. The user should be able to read the attachment of fixing requests

Points

Before

4.2.2 Use-case purification process

This process is to purify the preliminary use-case model by removing the use

cases that are identified as advice cases out of the model.

The advice cases are now

modeled in the CSM diagram, as in Figure 4.5, instead of the use case diagram. Figure

4.6 shows the diagram after purifying the use-case model.

After purification, there are only three use cases that are the main services of the

system, in the use-case model. ‘This provides several advantages for further analysis.

The purification reduces the overall complexity of the use-case model.

The complexity analysis from the mathematical perspective has been discussed

in the previous chapter. The comparison of the complexity of the preliminary model with

the purified model will be discussed later in this chapter.

55

4.2.3. Aspect Realization
4.2.3.1 Map use-case selectors to start-point providers
This process is to describe the scenario of the advice cases. The results
of this process are a set of OCUM diagrams. This process maps the use-case selectors
of the aspects to the start-point providers. Figure 4.7 shows the start-point provider

linking with the dynamic start-point “login.”

Change Fixing Status

(from Fixing Process)

N

Eigar View Fixing Request

) ! (from Fixing Process)
(from Logical View)

D

Recording Fixing Details

(from Fixing Process)

Figure 4.6. The purified use-case model for the case study

Change Fixing
Status@cfs01

View Fixing ; %
Request@vfrol R
Record Fixing
Details@rfd01

Figure 4.7 The start-point provider for Login aspect

4.2.3.2 Create scenario for the advice case
The advice case Login is described in OCUM scenario. It contains two

responsibilities for retrieving System User object, and assigning it to the person attribute

56

of the new login session. Stub stacks will be placed on the paths of the services that will
be modeled in the use-case explanation process. Figure 4.8 illustrates the scenario of

the Login advice case.

<<ObjectList>>
System Users

\
(‘ x
\ J

login self->select(uid=$1 and pwd=$2)

<<Object>>
new Session

end point I X

self.person=$_

Figure 4.8 The scenario of Login advice case

4.2.4 Use-case explanation
Use-cases of the system that has been purified will be specified into the OCUM
scenario in this step. The stub stacks will also be placed according to the description of

related start-point providers, and the information from the advice case templates.

4.2.5 Analysis Aspect Identification
This step is to identify analysis aspects from the scenarios. The analysis aspect
template is used for specifying details of analysis aspect..~From the OCUM diagram in

Figure 4.8, the aspect Login is described as follows.

4.2.5.1 Analysis Class Identification

Analysis classes usually are identified from the component blocks
appearing in the scenario. According to the unified process [3], classes can be
classified into three categories for the further detail design. Three categories are entity,
control, and boundary. From the Login scenario, a number of classes can be captured

as follows.

57

1. Class SystemUser: this class represents a user of the system. The
class should be an entity class.

2. Class SystemUsers: this class represents a list of SystemUser. This
class should be an entity class.

3. Class Session: this class is for maintain the login session of the user.
This class should be a control class.

4. Class Person: this class is a specialization of the SystemUser. This

class should be an entity class.

Table 4.9. The analysis-level aspect Login

Name Login
Pointcuts declaration before public void *.Perform()
Advice code try {

su ;= SystemUsers->select(uid=%$1 and pwd=$2);
session := new Session();
Session.person := su;

} catch (EUserNotFound e);

The steps of applying the requirements model to the case study have been
illustrated. It can be clearly observed that crosscutting artifacts can be extracted from
the main services of the system, and are modeled separately. This makes the analysis
of the main ‘services simpler. “The above steps show how to handle functional
crosscutting artifacts. Not only functional, but the nonfunctional artifacts, such as some
kinds_of 'system properties or quality attributes, are also modeled using this approach.
Table 4.10 shows an example of specified nonfunctional crosscutting captured by the

same activities.

4.3. Summary
From the case study, two use cases are identified as crosscutting artifacts. Thus,

they are converted to be advice cases. The Numbers of tangled associations are

58

reduced significantly. The complete purified use-case model of the system is also

illustrated in the appendix Ill. Table 4.11 shows the comparison of purified use-case

model with the preliminary use-case model using the complexity index.

Table 4.10 Nonfunctional Crosscutting Example

Name Automatic Session Expire

Concern Security

Description Prevents other users using the logging session
Source Supplementary documents

Crosscutting Type Nonfunctional

Priority MIN

Precedence Value 1000

Obligation Optional

Influence Design, Implementation

Models Use cases:

1. Change Fixing Status

2. View Fixing Request

3. Recording Fixing Details
Advice cases:

1. Login

Requirements

Requirements:

1. The 'user session should be-expired in 2 minutes

Points Befare every services
Table 4.11 Complexity comparison of the preliminary and the purified model
Number of Number of Number of
Complexity Index
Use Cases Advice Cases Associations
Preliminary
20 0 27 1.35
Model
Purified
18 2 20 1.00
Model

59

From Table 4.11, it is clearly observed that the purifed model that are applied
our approach has the smaller complexity value that the preliminary model. Comparing
the complete system to the case study, Table 4.11 shows that our approach works

better when using it in the more complex use-case model.

The next chapter will give conclusion, and finally end with the discussion in

several open questions.

60

CHAPTER 5
CONCLUSIONS AND DISCUSSIONS

This thesis has presented the model of aspect-oriented requirements that
support the unified software development process [1, 3]. This works applies the
concept of the AOP, including join points abstraction, pointcut designators, and advice
codes. The model proposed a number of activities to helps requirements engineers
capture crosscutting concern during the early software development phase. These
activities are the aspect extraction process, the use-case purification process, and the
aspect realization process. These processes are designed to be parallel processes of

the unified process.

The aspect extraction process is to extract crosscutting requirements, both
functional and nonfunctional, out of the preliminary use-case model. A set of notations is
introduced to help capturing these crosscutting artifacts. The notations are the use-
case selector, the advice case, and the pointcut association. These notations are used

to represent aspects in the CSM diagram.

The use-case purification process is to separate the use cases that are identified
as advice cases out of the use-case model. This process is intended to simplify the
use-case model. The purified use cases could be modeled using the traditional process

of the unified process.

The aspect realization is the process for specifying the details of the advice
cases, including its scenario, -start points. This process describes aspects with the
OCUM diagram. An OCUM diagram combines view of structural and behavioral into the
single map. It is based on the Use Case Maps. OCUM has been enhanced to support
AO paradigm, and better support OO paradigm. It introduced several concepts, such
as the start-point provider, the dynamic start-point, the stub stack, the parameter
symbols, and etc. The use of OCUM makes possible to model both AO, and OO

scenario in the same diagram.

61

The use-case explanation process described in this thesis also employs OCUM
for describing the scenario of use cases. Although, the scenario of use cases can be
modeled using the UML notation, such as the activity graph, but the UML itself does not
support the AO concept. With OCUM, describing use cases that are related to the AO
paradigm is much better. The processes for capturing analysis artifacts from the OCUM
are also proposed. These result the more complete software development process for
AO paradigm. The case study is illustrated to show that this AO model can be solved
the crosscutting modeling found in the real problem domain. It is clearly observed that
the purified use-case model is easier to understand and analyzed that the preliminary
model. This makes further analysis of the main services of the system much more

simpler.

Moreover, two software tools are built to support the CSM, and OCUM model.
Both software packages are created to be the Rational Rose add-ins. This makes better

integrating the AO approach to the unified process.

There are some limitations in this approach. Although, the software tools can
better support the change of requirements, the analysis of the impact of requirements
changes is not covered here. This model is intended to support only the unified
process. The generalized model of the early aspects management should further be
proposed. The software tools support only Rational.Rose. This may extend to support
more modeling tools. = The XMI specification proposed by OMG [24] could be
considered for using as the file format. This makes possible for other tools to process

the output of the software tools in this thesis.

Several open questions are induced by this work. Formalism of the CSM
notations could be further invented. Improvement, and refinement of the OCUM model
could be done in many ways. Consistency checking between two kinds of model, the
CSM and its equivalent scenario, the OCUM model, should be considered. Identifying

and specifying the crosscutting requirements using the natural language processing are

62

possible, since the number of templates have been defined. Conflictions resolving
among the aspects should be considered. There are some works in progression [9, 8]
that investigate this approach. However, an automatic process is still needed. The

standard crosscutting notations should be proposed to be part of the UML.

REFERENCES

1. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development

Process. The Addison-Wesley Object Technology Series. 1999: Addison-Wesley.

2. Kotonya, G. and |. Sommerville, Requirements Engineering: Processes and

Techniques. 1997, Chicester: John Wiley & Sons Ltd. 282.

3. Rational, The Rational Unified Process. 2002, Rational Software.

4. AOSD.NET, AOSD.NET Homepage. http://www.aosd.net, AOSD.NET.

5. Kiczales, G., et al. Aspect-Oriented Programming. Proceedings European Conference

on Object-Oriented Programming. 1997: Springer-Verlag.

6. OMG, The Unified Modeling Language Specification version 1.5. 2003, Object

Management Group. http://www.omg.org/uml.

7. Xerox, Aspectd Homepage. http://www.aspectj.org/, Xerox Parc.

8. Rashid, A., et al. Early Aspects: A Model for Aspect-Oriented Requirements

Engineering. IEEE Joint Conference on Requirements Engineering. 2002. Essen,

Germany: IEEE Computer Society Press.
9. Araujo, J., et al. Aspect-Oriented Requirements with UML. UML 2002. 2002.
10. Moreira, A., J. Araujo, and |. Brito. Crosscutting Quality Attributes for Requirements

Engineering. 14th International Conference on Software Engineering and

Knowledge Engineering (SEKE 2002). 2002. Italy: ACM Press.

11. Chung, L., et al., Non-Functional Requirements in Software Engineering. 2000:

Kluwer Academic Publishers.

12. Malan, R. and D. Bredemeyer, Defining Non-Functional Requirements,

http://www.bredmeyer.com/papers.htm.
13. Clark, R. and A. Moreira. Constructing Formal Specifications from. Informal

Requirements. Software Technology and Engineering Practice. 1997: IEEE

Computer Society Press.

14. JavaSoft, Java 2 Platform, Enterprise Edition http://www.javasoft.com/j2ee, Sun

Microsystems.

15. OMG, The UML Profile for CORBA, v 1.0. 2001, Object Management Group.

http://www.omg.org/technology/documents/formal/profile_corba.htm.

16.

17.

18.

19.

20.

21.

22.

23.

24.

64

Conallen, J., Building Web Applications with UML. The Addison-Wesley Object

Technology Series. 1999: Addison Wesley.
Slic, B., G. Gullekson, and P. War, Real-Time OO Modeling. 1995: John Wiley &

sSons.

Buhr, R.J.A., Use Case Maps as Architectural Entities for Complex Systems. |[EEE

Transactions on Software Engineering, 1998. 24(12): p. 1131-1155.

Buhr, R.J.A. and R.S. Casselman, Use Case Maps for Object-oriented Systems.

1995: Prentice Hall.
Amyot, D. and G. Mussbacher. On the Extension of UML with Use Case Maps

Comcepts. <<UML>> 2000, 3rd International Conference on the Unified

Modeling Language. 2000. York, UK.

Stein, D., S. Hanenberg, and R. Unland. A UML-based Aspect-Oriented Design

Notation for AspectJ. Conference of Aspect-Oriented Software Development.

2002. Easchede, The Netherlands: ACM.
Kaewkasi, C. and W. Rivepiboon. Aspect-Oriented Extension for Capturing

Requirements in Use-Case Model. The International Conference CAISE'03

Forum. 2003. Austria: CAISE'03.
Kaewkasi, C. and W. Rivepiboon. WWM: A Practical Methodology for Web

Application Modeling. The 26th Annual International Computer Software and

Applications Conference. 2002. Oxford: IEEE Computer Society.

OMG, XML Metadata Interchange (XMI) Specification, version 1.2. 2002, Object

Management Group. http://www.omg.org/technology/documents/formal/xmi.htm.

AONUUINYUINT)
ANRIN TN INENAY

APPENDIX |
SOFTWARE TCOLS

Software tools

This appendix introduces software tools for using the aspect-oriented
reguirements model with the UML modeling tool, Rational Rose. There are two software
packages. The first one is for modeling crosscutting requirements by employing the
concept of CSM model.” The second tool is for describing scenarios following the

concept of OCUM model.

1. ASREM Add-in for Rational Rose

After installation of the ASREM add-in into Rational Rose, the new notations wili
appear in the Available toolbar buttons listbox, Two new buttons are the button tabeled
Create a use-case selector, and Create an advice case. Adding these buttons to the
current toolbar by clicking on the “Add ->" button. Figure 1 shows the dialog for

customizing the toolbar.

Ayailable toolbar buttans: Current toolbar buttons:]
Separator o " Creates a dependency or a in:} T
E Creates a class _4 Creates a generalization =

B4 Creates a parameterized class Add > 1 _% Creates a realize relationship
- —{ Separatar

B Creates a class utility

B4 Creates a parameterized class <-Bemove i
[Creates an association relatiol - .
L Creates an aggiegation

I? Creates an uridirectional aagr B

-_ e

q |] 4 |

4 Extends ause case

I Ps kil

Figure 1.1 Customizing the new notations in Rational Rose

The icons of the use-case selector, and the advice case now appear in the
toolbar. The requirement engineers can use these icons to create an aspect by clicking
on the use-case selector icon, then clicking on the diagram. Clicking the button of then

" advice case, then clicking on the diagram will create an advice case. The aspect can

be completely defined by linking the association from the use-case selector to the

67

advice case. Figure 2 shows the buttons and the example of the aspect creating with

them.

—
R
_BBC
= @ <<entering>> Q
. ") ;
| B UseCase.senicesOfactor(Fixer) : Login
<
X <<wrappedby>>
i gl
_‘ Session expired in
—z 15 min.
je=
O

Figure 1.2 The example of aspects modeied in Rose

2%
General E Diagrams | Relations | Files | ADRM |
Name: %Login Package: Use Case View
Sterectype:
Rank: i&i‘é‘v:lm'c o I Abstract

Dgcumentatid busiriess use case

busiress use-case realization - -
use-case realization -]]

use-case selector

hd
i OK g Cancel Apply Browse :'; Help i

Figure 1.3 The specification dialog for the Login advice case

68

Double clicking an advice case in the diagram will show the specification dialog.
Figure 3 shows the specification dialog for the Login advice case. Changing its

stereotype is possible by selecting another from the stereotype dropdown.

Additional property page AORM is for specifying the template details for the
advice case. These tagged values are Concemn, Source, CrosscuttingKind, Obligation,
Priority, Precedence, Models, Requirements, and Points. They are identical to the

template properties from Table 3.2.

General | Diagrams | Relations | Fles ~ AORM ;

= Setb]advic.ecase / ‘ :j ‘Edit Set... f

* fodel | [defaul

spmson R TR b Tl - -
* 1 Halluse-case selector Source |
Concem Qverride
o De

* Priority b A Override
Frecedenis 1000 Llelai

* Models Change Fixing Status! Qveride
1 * Reguiremenis A1 Override
1% Paints Befare Override

Dverride l Diefault a Hewert ﬁ

I QoK : % : Cancel 3 _gppﬁl i Erowse‘t!. ﬂelp. l

Figure .4 The tagged values for specifying additicnal details to the advice case

Double clicking on the use-case selector will dispfay the specification dialog for
it. There is only one tagged value property for the use-case selector. This tagged value
is for specify the OCL expression. By default, the OCL expression is the same value to
the use-case selector's name. Figure 5 shows the specification dialog for the use-case

selector.

69

2
General | Diagrams | Relations | Fles = AORM] : '
Set: 1use~case selector :J Edit Set... !
‘Madel Propetties .
1 i Mame {Value i Source l
OCL expression <MNamey Overnide
Qwentds ; Defaul i Reyert j
| 0K i Cancel. 1 Appl f Browse v] Help i

Figure 1.5 The specification dialcg for a use-case selector

2. OCUM Vectra

OCUM Vectra is a modeling tocl for OCUM models. It supports all OCUM
notations described in chapter 3. It is designed to be able to exchange the model with
Rational Rose. The structurat part of OCUM model‘can be exported to the class

diagram in Rational Rose and vise versa.

Figure 6 shows a window of the OCUM Vectra. OCUM Vectra workspace
consists of the toclbar, the object tree view, the notation bar, the object documentation
box, and the drawing area. The Toolbar contains a number of buttons for common tasks
such as loading a diagram, saving a diagram, exporting a diagram to a Rose model,
and etc. OCUM Vectra saves the scenario in an XML format. This makes other tools

possible to process an OCUM model. Figure 7 shows the diagram in an XML output.

70

N Fiving Requests Fising Beguesl {

17 Use Ceses *
= OCUM Elemenls Q .
Fixing Bequests <<Objectiist>» .
new Session % System Users Drawing area
System Users T [Change Fring Stalus@cis0] ..
Fixing Request B [View Fiing Request@vfl1 L ¥
I self> selectuid=47 an | [Record Fiiing Detail@id0t login self-> selecfuid{$T and pwd=$2)
@ change fiing status € [Before) Provide:
- sl O
3 et eehperson=9_
L S Notation Bar <>
3 self> changeStalus(s: rt ! new Jession
[Betore) Provider - | ’ :
3¢ setsali=$_ : B :
& logn : i selselperson=§_
g Object Tree View i ;
<<ObjectLish > <<Object>> ‘ :

B :
L1 I B 1 S cherge EIRIEEES °";’-\‘\‘,_fo’~ se:selr\s‘\n pﬂ__..l-—-" |

Memol self> sslect(sl id=$1) seif-> changeS tatus$2) |
A .
| | IS
| Scenaiio |
w 1.0.0.10
Cocumentation
Figure 1.6 The OCUM Vectra window

< Ixrnil v 1.0 encoding="t12-520" 7>
- <diagram:
+ 2object id="id11" 1vpe="comp” caption="Firing Request’ i=ft="6810" 12p="4770° stersotype="0bject’ width="2460" height="1560 "=
<naotes />
- <contain:

wresp id="kd12° -
<resp id="id13" />
</eontain=
</ohject>
‘object id="Id2" Ty ‘System Users" (2ft="4650" top="630" sterentype="0bjectlist" wicths
hject id="id5" tvpe ew Session” [&ft="5055" top="2715" sterentype="Object” widtti="1985" height=*1500":
- <object id="Id9* tvpe="cemp” caption="Firing Requests’ [eft="4110" top-"4785" sterectype~‘Objectlist’ width-"1995"
height="1500' .

‘camp” caph

- «object id= ="pravider' caption="(Before) Provider" [e7t="450' 100-"1245"
=notes /i
<association to="id1" />
- <itemss

<spitem narne="Change Fixing Status" location="cfs01" />
<spitem name= View Fixing Request’ locetion="vir01"
term name="Recard Fn-nng Detail® location="rfd01" <

cobject id="id4" type="resp” caption="set seif person = §_" left="5885" ia1="3570"
<notes /=
<ascooiation to="id&" ;-
</objsct>
<object id="id1* type="start’ caption="login” left="3555" top="1425" dynamic=
<notes ;=
<association to="1d3"
</ /object>
«object id
- zobject id=
<notes /=
<asgociation to="id4" /»
</ohject>
«object id="id8" type="start" caption="change fixing status’ 1aft="1440" op="5265" dyrnamic="0">
- <object id=*id14' tvpe="stub" caption="cfsO1" [2ft="2955" top="5235" stack="-1">
<abject id="1d10' type="resp" caption="seif->select{st_ld=$1)" Ieft: op="5730":

v

d6* type="end" caption="" [eft="3735" top="3570">
id3" type="resp’ caption="seff->sefect{uid=$1 and pwd=%$2)" laft="5910" top="1425">

- «object 12* type=‘resp’ caption="set self = §_" 1aft="7185" top
<chject id="id13" type="resp’ caption="seif->changeStatus{$2)’ lef=" 8145" top="5620">
< cbject id="td15' type="end" caption="" {=ft="10110" top="5550">
<notes /=
</chiectx>
<Adiagramz

"2835" height='1545 -

Figure 1.7 The XML output from OCUM Vectra

71

APPENDIX Il
ADD-IN IMPLEMENTATION FOR RATIONAL ROSE

Cverview

| This_. app_endix. discusses the technigues used for implementing the software
tools ASREM, and OCUM Vectra. ASREM is implemented as Rational Rose add-in
notations, while OCUM Vectra is implemented as a Rational Rose tool. ASREM provides
new stereotypes, and tagged values using Rose stereotype, and tagged values
definition. OCUM Vectra provides exporting its objects to Rose through Rose document

object modei using Rose COM object. All techniques are discussed below.

Stereotype Definition

The way to create user-defined notations in Rose can be dene by defining new
- stereotype in the INI file named defaultstereotypes.ini. This file locates in installation
path of Rose. In the section [Stereotype lfems] in that file, our new stereotypes are

defined. Figure Il.1 shows their definition.

[Stereotyped Items]

sm====== EARLY ASPECT =======
;={c) 2002 Chanwit Kaewkasi =

Use Case:use-case selector
Use Case:advice case
Association:entering
Association:leaving
Association:exception

Figure ll.1_Stereotype definitions in “defaultstereotypes.ini” file

From Figure .1, the use-case selector, and the advice case stereotype are
available on the notation of the Use Case. The entering, leaving, and exception

stereotype are available on the notation of the Association.

Icons of these stereotypes are also defined in this INI file. Each stereotype has
its own section to define its icons. The icon of the sterectype that will appear on the

drawing canvas of Rose must be in an EMF, or a WMF file format. Both file formats,

72

which are forma!!.y known as Meta file format, store picture in a vector form. The
stereotype’s palette icons consist of three bitmaps with - different kind for the medium
scale, small scale, and list type. Each bitmap icon must be in a BMP format.: Different
‘bitmaps are used in different places in Rose, such as in the object tree view, or the
toolbar. A toaol tip label of each stereotype can also bé specified in each sterectype
secfion.. Figure 1.2 shows an example of stereotype specification detail of pointcut

association Entering, and the use-case selector.

[Association:entering]
Item=Association
Stereotype=entering

[Use Case:use-cage selector]

Item=Use Case

Stereotype=use-case selector
Metafile=&\stereotypes\normal\usecase_ selector.emf
SmallPaletteImages=&\stereotypes\small\usecase selector s.bmp
SmallPaletteIndex=1
MediumPaletteImages=&\stereotypes\medium\usecase_selector m.bmp
MediumPaletteIndex=1

ListImages=&\stereotypes\list\usecase_ selector_l.bmp
ListIndex=1

ToolTip=Creates a use-case selector [(pointcut)\nAspectOriented use-case selector

Figure [1.2 Stereotype specification details

Tagged Value Definition

Rose supports tagged values definition in its own format catled property file with
PTY extension. Tagged values are specially defined for a stereotype. New tagged
values will appear in new tab inthe specification dialog. Figure 1.3 shows tagged value

definition of the advice case.

(object Petal version 42)
{list Attxribute_Set

(ocbject Attribute tool "AORM" name "propertyId" wvalue "9317696821")

(ocbject Attribute tool "AORM' name "advice case UseCase" value

{list Attribute Set

{object Attribute tool "AQRM" name "Concern" wvalue "<Not Specifiedx")
{object Attribute tool "AORM" name "Source” value "Use Cases')
(object Attribute tool "ACORM" name "CrosscuttingKind" wvalue "Functional"}
(object Attribute tool "AORM" name "Obligation” walue "Mandatory™)
(object Attribute tool "AORM" name "Priority" value ")
{object Attribute tool "AORM" name "Precedence" wvalue 1000}
{object Attribute tocl "AORM" name "Models" value "")
(cbject Attribute tool "AORM" name "Requirements" wvalue *")
(cbject Attribute tool "AORM" name "Points" value "")

Figure 1.3 Tagged values definitions for the advice case stereotype

73

Rose Document Object Model

Add-in program can access Rose document object model (DOM) via Rose COM
object. Rose COM object provides rich interfaces to control its element. Its root
interface is IRoseApplication. To get access to Rose application, the add-in tool must
create a Rose application object, then access to the Rose application via
IRoseApplication interface. Figure {l.4 shows code snippet for exporting OCUM

components to a class diagram in Rose.

var
i: integer;
RoseClass: IRcseClass;
Comp: TCCUMComp;
RoseCat: IRoseCategory;
RoseClassDiagram: IRoseClassDiagram;

begin
.1f Rosel2pp = nil then begin
RoseApp := CoRoseldpplication.Create;
RoseApp.Visible := true;
end;

if OpenDizlog2.Execute then begin
ModelFilename := OpenDialogZ.FileName;
end;

if RoseModel = nil then begin
RoselApp.OpenModel (ModelFilename) ;
RoseModel := RoseApp.CurrentModel;
end;

RoseCat := RoseModel.GetAllCategories.GetFirst ('Logical View');
RoseClassDiagram := RoseCat.ClassDiagrams.GetFixrst ('Main');

for i := 1 to AddFlowl.Nodes. Count do begin
if AddFlowl.Nodes.Item({i).Tag = 'comp' then begin
Comp := TShapeFactory.getNodeAsComp (AddFlowl .Nodeg,Item{i)) ;
RoseClass := RoseCat.AddClass (Comp.Caption);
if RogeClass = nil then begin =
RoseClass := RoseCat.GetAllClasses.GetFirst (Comp.Caption);
end;
Comp .Uid := RoseClass.GetUniguelD;
RoseClass.Dogumentation := Comp.Notes;
RoseClass.Stereotype := Comp.StereoType;
RoseClassDiagram.AddClass({RoseClass);
end;
end;
end;

Figure 11.4 Code of classes exporting.in OCCUM Vectra

IRcseApplication has IRoseModel interface memper. [RoseModel is responsib.le
to manipulate the UML model in Rose. The model contains object categories that
normally are for use-case diagrams, class diagrams, and deployment diagrams. The
category containing class diagrams- are called ‘Lcgical View'. Code in Figure 1.4
retrieves the Main class diagram from the Logical View category, and then traverses all

.OCUM diagram to add OCUM components to the Logical View category via the

74

AddClass method of IRoseCategory interface. After adding classes to the Logical View

category, all classes are displayed in the Main class diagram using the AddClass. |

method of {RoseClassDiagram interface.

75

APPENDIX 1li
PROBLEM DOMAIN FOR CASE STUDY

Preliminary Use-Case Model

X

- - Fixing Request

' RRecard Fixing Details
\ﬁ<include>> N\

/m
N

Breakdawn Data

(from Data)

-

Preventive Data

(fror Data) {from Data)

(from Logical View)

Employee -
(from Logical View) - < {irom FixingRequest) -
~ e ,/
- <<gxtend>=>)
P <<include>> &<— 7 BM Fixing Request /__\
. — (From Fixing) :
L I
< View Fixing Request S~ _/
< <cincludes> l —— \ifexte@» __~Preventive Daily Check
. ‘S‘\“\ -~ =<include (trom Fixing) — L e (rom Fring)
Login ‘\\\ “ — — = el
N \\ N \O <<extend>>
\ A \\\ ~ PM Fixing Request
\ N\ N\ #BhangeFifing Statis 9 meanest
i from Fixi \

\, <¥(n\clude\> - (from Fixing) \ AN {from Fixing} N

4 ~ a4

'f<ext9d'<> b P ‘E‘& ™~ .

| esinauiens NPT e N <contond=>
- - \\ — >(>*/ Fixer :
__\<sextend>> /

N

fron\Fixing) — i
_/ \ (o 4 _‘\ Daily Check
\View Attached Notes L AN “ L\ L (o Foing)
<<include>‘=“ \\ /—\é 3 Summarize Part Usage
\——/<\ ~. =<exiend>> {from Report)
Monthly Repert Makiing .
N TR
g ; (from Report) . B
4 \\ 2<pxtend>> N
N \ . N N
Boss \ . Sumarize Monthiy Breakdown
from Logical Vi y O ™ Issues
Kfrom Logical View) \ <<gxtend>> N ~ {from Report)
\ Data Maintain and Modification .
y tro R = ™
/4\ (trom Data) = TN
v \ p— N~
N <<extand>> aintain Machine Details
Fixing Palterns and Maintenance \ O
Dala ’ <<gxiend>> (from Data}
-4 (from Data} N Personnel Details
<<extend>> \ \ . (from Data)
/ <<extend>> Q
l Mzintain Machine History

Figure HI.1

Preliminary use-case diagram for the maintenance management system

76

Purified Use-C_ase Model

Employee : : Fixing Requesl
{ftom FixingRequest) ./_ _\
-:<exten’di>/ /\“_/ /-—
2

s
BM Fixing Request

(from Logical View)
. e
Q (from Fixing)
_ Preventive Daily Check
~
{fram Fixing}

View Fixing Request ™ ~_ __jondss

{fram Fixing) %
~ e £
T <<gxtend>>
{

<<entering>>
C_ ===
} L }
— . N~
Login
PM Fixing Request
™

UseCases->aliServices

<<gntering>> - »
T -~ Change Fixing Stafus (e Fixing} N
——/ | i \ O ~

: <<extend>= \/_ﬁ\

N Y .
Change Fixing Status _ View Attached / /\\ (\')
&& Record Fixing Details Notes =)
O R Daily Check
[from Logical View) o Fixing)
_—

Recaord Fixing Details
—

(from Fixing)
| &
T Sumnarize Part Usage

2

/‘*\ A -

U‘ e {from Repaort)

Mortthly Report Makiing <= L\ e C
i <gextend>>

Sumarize Monthly Breakdown

/‘\ {from Report)
B
i3
/‘) \\ Issues
from Report
Y - -~ {from Report)
T

Boss
from Logical View)
Data Maintain and Modification .
RN {from Data) &> g~ / ™
\ G S~
= e — Mainiain Machine Detzils
<<@xlend>
Fixing Patterns and Maintenance O {lrom Dala)
Data <<exiend>> °
//] {from Daia) & = Personnel Details
<<extend>> / N\ : A\ (Iram Data)
/ <<extend»> \\ Q
/*\ Maintain Machine History
4 _/A {from Data)
Breakdown Data Preventive Dala
{from Data) (frem Data)

Figure 1.2 Purified use-case diagram with CSM notations

78
BICGRAPHY
Mr. Chanwit Kaewkasi was born on July 29, 1978 at SL'lrattha'ni.' énd-got_a Ll

Bachelor Degree in Computer Engineering (First Class Hon.) at Suranaree University of

Technelogy, Nakorn Ratchasima, in 2000.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Problem Statements and Motivation
	Objective
	Scopes of the Research
	Steps of Research
	Contribution

	Chapter 2 Literature Reviews
	Related Works
	Related Theory

	Chapter 3 Conceptualization
	Aspects-Oriented Requirements Model
	Crosscutting Stack Model
	Object/Crosscutting/Use Case Maps
	Mathematical Perspective

	Chapter 4 Implementation
	Overview
	Modelling Steps
	Summary

	Chapter 5 Conclusions and Discussuions
	References
	Appendices
	Appendix I Software Tools
	Appendix II Rational Rose Add-in Implementation
	Appendix III Problem Domain For Case Study

	Biography

