
 ii

การสรางมโนทัศนแบบจําลองความตองการเชิงลักษณะ

นายชาญวิทย แกวกสิ

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2545

ISBN 974-17-2370-9
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

 iii

CONCEPTUALIZATION OF ASPECT-ORIENTED REQUIREMENTS MODEL

Mr. Chanwit Kaewkasi

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2002
ISBN 974-17-2370-9

 iv

ชาญวิทย แกวกสิ : การสรางมโนทัศนแบบจําลองความตองการเชิงลักษณะ
(CONCEPTUALIZATION OF ASPECT-ORIENTED REQUIREMENTS MODEL)
 อ.ที่ปรึกษา : รองศาสตราจารย ดร. วันชัย ร้ิวไพบูลย, 78 หนา. ISBN 974-17-2370-9.

จากขอเท็จจริงที่แนวทางเชิงลักษณะสามารถแกปญหาเกี่ยวกับการตัดขวาง ในการพัฒนาซอฟต

แวร ซึ่งไมสามารถแกไดโดยใชแนวทางเชิงวัตถุไดนั้น ผูพัฒนาจึงไดนําแนวทางเชิงลักษณะ มาปรับใชกับ
จัดการความตองการซอฟตแวร ซึ่งเปนสิ่งสําคัญในกระบวนการการพัฒนาซอฟตแวร ความตองการ
ซอฟตแวรจึงควรที่จะไดรับการจัดการโดยใชแบบจําลองเชิงลักษณะเพื่อที่จะสนับสนุนรูปแบบเชิงลักษณะ
นี้ในระยะถัด ๆ ไปของการพัฒนา

วิทยานิพนธนี้เสนอแบบจําลองความตองการที่ขยายแนวทางการพัฒนาซอฟตแวรที่ขับเคลื่อน

ดวยยูสเคส แบบจําลองนี้สนับสนุนกระบวนการพัฒนาซอฟตแวรแบบยูนิฟายด และเสนอกระบวนการที่ใช
คูขนานไปกับกระบวนการความตองการของกระบวนการยูนิฟายด วิทยานิพนธนี้นําเสนอแผนผังระดับ
ความตองการแบบใหม ที่เรียกวาแบบจําลองกองซอนของการตัดขวาง โดยไดรวมกลุมของสัญกรณเพื่อใช
จําลองแบบลักษณะที่สกัดออกมาจากกระบวนการการชําระยูสเคสและการสกัดลกัษณะ ผูวิจัยไดพัฒนา
เครื่องมือช่ือ อาสเร็ม เพื่อสนับสนุนการทํางานกับแผนผังดังกลาว นอกจากนี้วิทยานิพนธนี้ไดนําเสนอแผน
ผังสําหรับการอธิบาย เรียกวาแผนที่สําหรับวัตถุ/การตัดขวาง/ยูสเคส โดยรวมเอาสัญกรณเพื่อใชใน
กระบวนการการอธิบายยูสเคสและลักษณะและกระบวนการการทําใหลักษณะเปนจริงไวดวยกัน ผูวิจัยได
พัฒนาเครื่องมือช่ือ ออคคุม เวคตรา เพื่อสนับสนุนการทํางานกับแผนผังนี้ โดยเครื่องมือทั้งสองขางตนมี
คุณสมบัติเปนตัวเสริมใหกับโปรแกรม เรชันแนล โรส

ภาควิชา..................................... ลายมือช่ือนิสิต..........................……...............……………...
สาขาวิชา.................................... ลายมือช่ืออาจารยที่ปรึกษา..…...
ปการศึกษา ……….... ลายมือช่ืออาจารยที่ปรึกษารวม.…................................……..

วิศวกรรมคอมพิวเตอร
วิศวกรรมคอมพิวเตอร

2545

 v

4470696821 : MAJOR COMPUTER ENGINEERING
KEY WORD: REQUIREMENTS ENGINEERING / ASPECT-ORIENTED / UML

 CHANWIT KAEWKASI : CONCEPTUALIZATION OF ASPECT-ORIENTED
REQUIREMENTS MODEL. THESIS ADVISOR : ASSOC. PROF. WANCHAI RIVEPIBOON,
Ph.D., 78 pp. ISBN 974-17-2370-9.

Due to the fact that aspect-oriented (AO) paradigm can solve the problem of
crosscutting concerns in software development. And this kind of software cannot be solved
properly by the object-oriented approach. Software requirements, which are the important
artifacts in the development process, should be managed using a model for AO to fully support
this paradigm at the later development stages.

 This thesis proposes a requirements model that extends the use-case driven approach.
This model supports the unified process. It introduces a new parallel process to the
requirements workflow of the unified process. This thesis presents a new requirements-level
diagram called the Crosscutting Stack Model, including a set of notations for modeling the
aspects that are extracted by the use-case purification and aspect extraction process. This
thesis also presents a scenario descriptive diagram called the Object/Crosscutting/Use Case
Maps, including a set of notations for use-case and aspect explanation in the aspects
realization process. The modeling tool, named ASREM, is developed to support the CMS
diagram. The modeling tool, named OCUM Vectra, is developed to support the OCUM
diagram. Both modeling tools are developed as Rational Rose add-in.

Department...Student’s signature..
Field of study..Advisor’s signature..
Academic year Co-advisor’s signature...

Computer Engineering
Computer Engineering

2002

 vi

ACKNOWLEDGEMENTS

This thesis could not be complete without help and support from others. I would
like to thank my thesis advisor, Associate Professor Dr. Wanchai Rivepiboon, for his
supports, comments, suggestions and reviews since I started to do this thesis until it is
completed. I would like to thank Assistant Professor Korbkul Tejavanija for her reviews,
and useful comments. I also thank Assistant Professor Wiwat Vatanawood, Dr. Arthit
Tongtak, and Lecturer Chate Patanothai. I am thankful for the great support from the
School of Computer Engineering, Suranaree University of Technology, and Assistant
Professor Suyut Satayaprakorb.

Finally, I would like to thank all persons that I cannot mention here, and I

dedicate this thesis to my parents for their best support while I am working on this
research.

vii

TABLE OF CONTENTS

 Page
ABSTRACT IN THAI ... iv
ABSTRACT IN ENGLISH ...v
ACKNOWLEDGEMENTS ..vi
TABLE OF CONTENTS .. vii
TABLE OF TABLES ... ix

TABLE OF FIGURES ..x

1. INTRODUCTION ... 1

1.1 Problem Statements and Motivation.. 1

1.2 Objective... 4

1.3 Scopes of the Research.. 4

1.4 Steps of Research... 4

1.5 Contribution... 4

2. LITERATURE REVIEWS... 6

2.1 Related Works... 6

2.2 Related Theory.. 14

3. CONCEPTUALIZATION .. 24

3.1 Aspect-Oriented Requirements Model.. 24

3.2 Crosscutting Stack Model ... 34

3.3 Object/Crosscutting/Use Case Maps.. 40

3.4 Mathematical Perspective... 46

4. IMPLEMENTATION ... 50

4.1 Overview ... 50

4.2 Modeling Steps ... 51

4.3. Summary ... 57

5. CONCLUSIONS AND DISCUSSIONS... 60

REFERENCES ... 63

viii

TABLE OF CONTENTS (CONTINUED)

Page

APPENDICIES .. 65
I. SOFTWARE TOOLS .. 66
II. RATIONAL ROSE ADD-IN IMPLEMENTATION ... 71
III. PROBLEM DOMAIN FOR CASE STUDY ... 75
BIOGRAPHY .. 78

ix

TABLE OF TABLES

Page

Table 2.1 A template for specifying quality attributes... 9

Table 2.2 Specification of crosscutting concerns... 12

Table 2.3 Crosscutting template specification for toll gate response time 13

Table 2.4 Description of UCM concepts... 20

Table 3.1 The summarized artifacts and roles for this approach.................................... 25

Table 3.2 The template for use-case driven aspects... 27

Table 3.3 The mapping guideline for the aspect realization process............................. 30

Table 3.4 The simple aspect template for specifying analysis aspects.......................... 31

Table 3.5 A set of pre-defined pointcut associations.. 37

Table 3.6 Summarized enhancement of OCUM model .. 42

Table 4.7 The specified template for Login .. 53

Table 4.8 The specified template for the View Attached Notes advice case.................. 54

Table 4.9. The analysis-level aspect Login.. 57

Table 4.10 Nonfunctional Crosscutting Example.. 58

Table 4.11 Complexity comparison of the preliminary and the purified model............... 58

x

TABLE OF FIGURES

Page

Figure 1.1 Relationship between AspectJ and Java code.. 1
Figure 1.2 Crosscutting behavior of an aspect across two use cases 3
Figure 2.1 Rashid et al’s Aspect-oriented requirements model.. 7
Figure 2.2 A requirements model for quality attribute... 8
Figure 2.3 A model for composing aspect-oriented requirements with UML 10
Figure 2.4 The use-case diagram of the toll gate collecting system............................... 12
Figure 2.5 The use cases composed with the aspect .. 13
Figure 2.6 Six join points are defined here, with three sample pointcuts........................ 15
Figure 2.7 A basic code listing of the figure-painting program written in AspectJ 16
Figure 2.8 An example of the use-case diagram... 18
Figure 2.9 Class diagram describing the core concept of UCM 20
Figure 2.10 Development iterations defined in RUP .. 21
Figure 2.11 The RUP requirements workflows .. 22
Figure 3.1 Overview workflow of the model .. 24
Figure 3.2 Use-case purification and aspect extraction activities 26
Figure 3.3 Summarized activities for extracting aspects .. 27
Figure 3.4 Use-case purification activities .. 28
Figure 3.5 Aspect realization and use-case explanation activities 29
Figure 3.6 Activities for realizing aspects ... 31
Figure 3.7 The activities for identify an analysis aspect.. 32
Figure 3.8 The activities for describing use cases, and capturing classes 33
Figure 3.9 Crosscutting Stack Diagram... 34
Figure 3.10 Graphical representations of an advice case ... 35
Figure 3.11 The use-case selector, and its iconic representation 36
Figure 3.12 An aspect – the combination of a use-case selector, a pointcut association,

and an advice case ... 37
Figure 3.13 Modeling CSM notations in the use-case diagram of Rational Rose 39
Figure 3.14 The OCUM core concept... 41

xi

TABLE OF FIGURES (CONTINUED)

Page
Figure 3.15 The stub stack notation.. 41
Figure 3.16 The graphical notation of the dynamic start-point 43
Figure 3.17 The start-point provider with the dynamic start point.................................. 44
Figure 3.18 An OCUM diagram of the Login advice case .. 45
Figure 4.1 The use case diagram of the actor Fixer .. 50
Figure 4.2 The Login and the View Attached Notes advice cases 52
Figure 4.3 The use-case selector selecting all services of Fixer 52
Figure 4.4 The use-case selector selecting two use cases ... 52
Figure 4.5 The CSM model for Login, and View Attached Notes aspects 53
Figure 4.6 The purified use-case model for the case study.. 55
Figure 4.7 The start-point provider for Login aspect .. 55
Figure 4.8 The scenario of Login advice case... 56
Figure I.1 Customizing the new notations in Rational Rose .. 66
Figure I.2 The example of aspects modeled in Rose ... 67
Figure I.3 The specification dialog for the Login advice case 67
Figure I.4 The tagged values for specifying additional details to the advice case 68
Figure I.5 The specification dialog for a use-case selector ... 69
Figure I.6 The OCUM Vectra window ... 70
Figure I.7 The XML output from OCUM Vectra .. 70
Figure II.1 Stereotype definitions in “defaultstereotypes.ini” file 71
Figure II.2 Stereotype specification details .. 72
Figure II.3 Tagged values definitions for the advice case stereotype 72
Figure II.4 Code of classes exporting in OCUM Vectra .. 73
Figure III.1 Preliminary use-case diagram for the maintenance management system ... 75
Figure III.2 Purified use-case diagram with CSM notations ... 76
Figure III.3 Supplementary class diagram for the maintenance management system... 77

1

CHAPTER 1
INTRODUCTION

1.1 Problem Statements and Motivation
Researches that are related to requirements engineering (RE) have been

increasingly studied. It has long been known that RE is an important role in the software
development process. Efficiency use of RE can reduce overall cost for the later stages
of the development [1, 2, 3]. Recently, aspect-oriented software development (AOSD)
[4] has influenced the current software development processes. AOSD proposes the
other concern of the software development that can be used with the object-oriented
(OO) approach to lead the software process into the new era.

AOSD proposes crosscutting concerns for extracting tangled things among

software artifacts into a new modular unit called aspect. The intension of AOSD is to
increase more modularization to the software. AOSD covers several phases of the
development. Firstly, it has been introduced as the aspect-oriented programming (AOP)
[5] in the implementation phase. After that AOSD has played a role in the design phase.
Several more recent works introduced an aspect into the design diagram, such as in the
Unified Modeling Language (UML) [6]. In those recent works the authors proposed a
new kind of the UML classifier to represent the concept of an aspect for using in the
class diagram. AOSD is not intended to replace the OO software development. It is to
support the OO approach. For example, the AOP language AspectJ [7], which is an
AOP implementation for Java, knows the traditional Java code, while that Java code
does not know any existence of its AO code as illustrated in Figure 1.1. This is one of
advantages of the AOP that it can be used to support the traditional code without any
modification of the old software.

AspectJ Java

0..*11 0..*

Crosscuts

Figure 1.1 Relationship between AspectJ and Java code

2

The influence of AO popularity affects the RE as well. Recent works proposed a
number of approaches that applied the AO paradigm to the requirements phase. There
are several models such as the early aspects model proposed by Rashid and et al [8].
Their approach is based on the viewpoint-oriented requirements engineering [2]. The
authors proposed a model to identify candidate aspects. Six activities stated in that
work includes specifying of aspect dimension that associates candidate aspects with
software artifacts that they influence, and will be mapped to. The work proposed only
the model and did not clearly specify how to map their candidate artifacts to the late
stage of the software development. In more recent work, the authors [9, 10] extended
their previous work with composing aspects, which are nonfunctional properties, to the
UML use-case model. Additional stereotypes were introduced in that work.

The use-case driven [1, 3] is a software development approach that supports

the use of the UML [6] and the object-oriented technology. It does not support the
modeling of other kinds of concern except services of the system. In fact, there are
several kinds of concern that can be found from stakeholders’ requirements. And those
concerns are finally mapped to parts of the software system and usually implemented
using some kinds of object-oriented technology including OOP. AOP has matured to be
recognized as a programming technique that can increase maintainability and
adaptability of the software system. To utilize the use of AOP, the early identification of a
software artifact that will be represented as an aspect using the AO paradigm should be
considered. The identification should be processed in the early step of the
development, the requirements phase. This motivates us to propose this work for
extracting those artifacts out of the use-case model to support AOSD and make it
possible to use with the use-case driven approach.

Our approach alternatively presents aspect-oriented techniques that are

designed for the requirements phase of the software development. The work will
propose an aspect-oriented requirements model that covers both functional and
nonfunctional requirements for the use-case driven approach. Generally, nonfunctional
requirements (NFR) usually are quality attributes of the system [2]. There is currently no

3

any set of notations that represents NFR in the UML use-case model [6]. The unified
process [1, 3] suggests keeping NFR as supplementary documents.

From the studies, it has been found that not only NFRs crosscut the use case of

the system, but also some kinds of functional requirements. This idea was also stated in
[8] that aspects can also be functional concerns. Functional requirements usually are
considered services of the system. Functional requirements can be classified into, at
least, three classes. They are primary, secondary, and optional services. Our approach
assumes that primary services of the system cannot crosscut other services. There are
several functional requirements that cut across the primary services of the system as
illustrated in Figure 1.2, and our approach is to model them.

an aspect crosscuts 2 use cases.

use case #1

use case #2

Figure 1.2 Crosscutting behavior of an aspect across two use cases

Additionally, this approach is also intended to model some kinds of NFR. This

work will provides several contributions as follows. First, this work proposed processes
that make the preliminary use cases, captured from a software requirement
specification, to be more purified. Our approach is intended to extract aspects from
those use cases and model them into a diagram called crosscutting stack model (CSM).
Second, this work proposes a set of graphical languages that extend a notation of the
UML to use with our purification and extraction processes. The new UML extension will
be used in the CSM. Third, this work additionally proposes a process to realize model
elements in CSM for using in the next phases of the software development process.
This is to create an aspect-oriented design model for further supporting the code
mapping to aspect-oriented programming language.

4

1.2 Objective
To design, and develop a new requirements model that supports AOSD to help

requirements engineers capturing requirements in the aspect-oriented paradigm.

1.3 Scopes of the Research
The scopes of the research are as follows.
1.3.1 The research covers only functional and nonfunctional crosscutting

artifacts. Pseudo requirements are not considered in this work.
1.3.2 A complexity index will be used to compare a traditional use-case model

with our approach.
1.3.3 A case study is in the Web application problem domain.
1.3.4 The research will not explicitly concern about the impact of requirements

changes.
1.3.5 The concerned software development process in this research is the

Unified Process that employs the use-case driven approach.
1.3.6 Resulting software tools will be implemented as add-in applications of

the Rational Rose.

1.4 Steps of Research
This research follows the steps as follows.
1.4.1 Study related works.
1.4.2 Design a new technique and a set of notations, and a software tool.
1.4.3 Apply the approach to a case study.
1.4.4 Compare our techniques to the traditional approach.
1.4.5 Conclusions.

1.5 Contribution
This research has contributions as follows.

1.5.1 A technique for purifying and extracting aspects from the use-case
model.

1.5.2 A set of aspect-oriented notations that extend the use-case package of
the UML with a software tool.

1.5.3 A complexity index for measurement of a use-case model.

5

1.5.4 A technique to realize an aspect-oriented use-case model to other
phases of the software development with a software tool.

The next chapter will discusses the related works, especially several
requirements models proposed for the AO paradigm, and the related theories.

6

CHAPTER 2
LITERATURE REVIEWS

2.1 Related Works
This section discusses several previous works in aspect-oriented requirements

engineering that directly relate to the work proposed in this thesis.

2.1.1 Early Aspects: An Aspect-Oriented Requirements Model

Early aspects model, proposed by Rashid et al [8], suggested that it is
necessary to include aspects as the primitive modeling at the requirements-level of the
software process. The important objectives of that work are:

- To support separation of crosscutting concerns those are functional and
nonfunctional properties of the system, identify, and manage conflictions of these
tangled representations.

- To present mapping and influence properties of those requirements-level
aspects for the later stages of the development.

Their approach introduced a model that employs viewpoint-oriented

requirements engineering [2] as an underlying methodology. The model consists of six
activities described in Figure 2.1. The process of the model starts by identifying
concerns and discovering requirements. Both activities can be repeated before
stepping to the next activity. The works in those activities are recommended by the
authors that requirements engineers and stakeholders should perform them. Relating
the concerns to the requirements is useful as the concerns may constraint the
requirements. The next step is to specify concerns for providing more details. If a
concern crosscut several requirements, it is considered a candidate aspect. Specifying
the detail of candidate aspects in the next activity is to refine, make them more concrete,
and identify interactions and conflictions among them. To resolve the conflictions,
prioritizing those aspects should be done. Identifying mapping and influence dimension
of the aspects is the last activity of the model.

7

Aspects in the early stage can have an impact to the system that can be
identified as two dimensions, mapping and influence.

- Mapping: requirements-level aspects can be mapped to other artifacts of
the system. Aspects may be mapped to, for example, functional, simple methods,
decision of architecture choice, design or implementation details, or other system
properties. Because of this mapping principle, aspects at the requirements-level are
called candidate aspects.

- Influence: aspects may influence to several points, and phases in the
development cycle. For example, availability aspect of the system influences the
system architecture while response-time aspect influences both the system architecture
and the detailed design of the system.

Identify concerns

Specify concerns

Identify candidate
aspects

Specify and prioritize
aspects

Specify aspect
dimensions

Identify viewpoints,
discover requirements
and relate to concerns

Figure 2.1 Rashid et al’s Aspect-oriented requirements model [8]

Their approach just offered a model and guideline. This approach

describes aspects in the form of a problem frame, and a plain text. It is quite difficult to
manage those aspects, especially in complex systems, because there is no notation or
modeling tool to support this approach.

8

2.1.2 A Model for Early Quality Attributes with UML
The recent work proposed by Moreira et al [10] presented an approach to

include quality attributes to the use case model. This model is to identify and specify
quality attributes that crosscut the requirements. It includes the systematic processes
to integrate those quality attributes into the functional requirements captured as use
cases at the early stages of the development process. The model is a UML compliant
process and is composed of three main activities: identification, specification, and
integration of requirements. The process overview is illustrated in Figure 2.2.

Identify

Specify

Integrate

Identify actors and
use cases

Identify quality
attributes

Build a use case
diagram

Specify quality
attributes using

templates

Specify use cases Identify
crosscutting

quality attributes

Integrate crosscutting quality
attributes with functional

requirements

Figure 2.2 A requirements model for quality attribute [10]

The first activity is to identify all quality attributes relevant to the application

domain from all requirements. The second activity can be divided into two main parts:
1) specifying use cases, and specifying quality attributes using the special templates; 2)
identifying crosscutting quality attributes from the attributes in the templates. The third
activity is to integrate crosscutting quality attributes with functional requirements
capturing as use cases.

9

The authors stated that the special template for specifying crosscutting quality
attributes was inspired from Chung et al [11] and Malan and Bredmeyer [12]. The
template is in Table 2.1.

Table 2.1 A template for specifying quality attributes [10]
Name The name of the quality attribute
Description Executive description
Focus A quality attribute can affect the system (i.e. the end product) or the

development process
Source Source of information (i.e. stakeholders or documents)
Decomposition Quality attributes can be decomposed into simpler ones. When all (sub)

quality attributes are needed to achieve the quality attribute, we have an
AND relationship. If not all the sub quality attributes are necessary to
achieve the quality attribute, we have an OR relationship

Priority Expresses the importance of the quality attribute for the stakeholders. A
priority can be MAX, HIGH, LOW, and MIN

Obligation Can be optional or mandatory
Influence Activities of the software process affected by the quality attribute
Where List of the actors influenced by the quality attribute and also a list of

models (e.g. use cases and sequence diagram) requiring the quality
attribute

Requirements Requirements describing the quality attribute
Contribution Represents how the quality attribute affects other quality attributes. This

contribution can be positive (+) or negative (-)

The properties to help identifying what quality attribute is crosscutting are at the

rows Where, and Requirements from template. If those properties indicate that the
quality attribute traverses several models and requirements, then it is crosscutting.

10

2.1.3 Aspect-oriented requirements with UML
The work by Araújo et al [9] presented an approach to manage crosscutting

concerns at the requirements stage using the UML [6]. The authors reported that their
approach could be a mechanism to help requirements engineers managing and
understanding the whole system requirements. According to [8], the crosscutting
concerns can also be functional and nonfunctional. But the work reviewed here
proposed only techniques for composing nonfunctional aspect to the use-case model.
The aspect-oriented requirements engineering model from [8] was used with slightly
modification to make the model possible to use with the UML. Figure 2.3 shows the
requirements model.

Requirements

Identify & describe
non-functional

concerns

Crosscutting
Concerns

Composed
Requirements

Functional
Concerns

Specify
functional

requirements

Identify & specify
crosscutting

concerns
Compose

crosscutting
concerns into

the UML models

Identify and
resolve conflicts

Figure 2.3 A model for composing aspect-oriented requirements with UML [9]

11

2.1.3.1 Model Partition
The process is partitioned in three main parts, crosscutting concerns,

functional concerns, and composed requirements.
- Crosscutting concerns: this part handles identifying and

describing of non-functional concerns, and then identifies which of those are
crosscutting. If a non-functional concern crosscut several requirements, then it is a
candidate aspect.

- Functional concerns: this part contains an activity for identifying
and specifying functional requirements.

- Composed requirements: this part takes functional requirements
and crosscutting concerns as its input. Composing crosscutting concerns to the UML
models that are functional requirements are performed in the first activity of this part.
The final activity in this part is the process of identifying and resolving conflictions that
may be raised by composing those crosscutting concerns to the functional
requirements.

2.1.3.2 Composing Parts
That work proposed modeling composed requirements in the use-case

model. Composed requirements are functional requirements that are composed with
candidate aspects. Functional requirements as use cases in the use-case model are
associated with aspects. The association is attached with information that provides a
composition semantic as its stereotype. The authors suggested three composition parts
as follows.

- Overlapping: the requirements of aspect modify the functional
requirements that they crosscut. The behavior of aspect partially substitutes at the
beginning and the end of the basic requirements.

- Overriding: the requirements of aspect superpose the functional
requirements that they crosscut. The behavior of aspect fully substitutes the basic
requirements.

12

- Wrapping: the requirements of aspect encapsulate the functional
requirements that they crosscut. The behavior of aspect wraps, before and after, the
basic requirements.

That work also proposed a specification frame for describing crosscutting

concerns. The specification table is illustrated in Table 2.2.

Table 2.2 Specification of crosscutting concerns [9]
Crosscutting concern <Name>
Description <Executive description>
Priority <Max, Med, Min>
List of requirements <Requirements that describe the concern>
List of UML <UML models influenced by the concern>

In that paper, the authors pointed that composing aspects with use cases may

raise conflictions among those aspects. Thus, the further consideration is a process of
resolving those conflictions.

The case study illustrated in the work reviewed here are the simplified version of

the Portugese motorways network [13]. Figure 2.4 shows the use-case model of that
system. Figure 2.5 shows the composed UML model with the “Toll gate response time”
aspect. Composing the aspect was done by associating the aspect notation (the use
case with <<TollGateResponseTime>> stereotype) with three basic use cases.

PassSingleToll

EnterMotorWayVehicleDriver

ExitMotorWay

Figure 2.4 The use-case diagram of the toll gate collecting system [13]

13

Table 2.3 from [9] shows an instance of template specification of the composed
requirement modeled as in figure 2.5. There are four requirements relating to the “Toll
gate response time” concern. Those requirements was described in [9] and not showed
in this review. It is clearly observed that there are three use cases in the composed
model. Those use cases are also illustrated in the template.

VehicleDriver

PassSingleToll

EnterMotorWay

ExitMotorWay

<<TollGateResponseTime>>

<<wrappedBy>>

<<wrappedBy>>

<<wrappedBy>>

Figure 2.5 The use cases composed with the aspect [9]

Table 2.3 Crosscutting template specification for toll gate response time [9]
Crosscutting concern Toll gate response time
Description Tollgates should react before the driver leaves

the toll gate area
Priority Max
List of requirements R1, R2, R3, R4
List of models Usecases:

1. PassSingleToll,
2. EnterMotorway,
3. ExitMotorway

Although, the model introduced by [8] has suggested that functional

requirements may crosscut the basic services of the system, but the work reviewed here
did not cover that kind of aspect. Besides, they introduced composing technique to use
UML as base notations for describing aspects in the use-case model, but it is clearly

14

observed that the approach increases complexity to the use-case model when modeling
several aspects.

2.2 Related Theory
This section discusses background knowledge that will be referred by the further

sections.

2.2.1 Aspect-Oriented Programming
Aspect-oriented programming (AOP) [5] has been recognized by the software

development communities to be one of important technologies. It is expected by the
community that AOP will mature enough to change the programming style in the near
future. Many communities reported that AOP could solve some kind of programming
problems properly than OOP [4, 7]. AOP reduces like of codes significantly comparing
to OOP for the same task. It additionally provides more maintainability and adaptability
to the software system. Programming with AOP is a process that separates tangled
codes out of the software. Those tangled codes may spread across classes, and other
points of the source program. In [4, 5, 7] the authors reported that it is necessary to
manage the tangled codes because it affects the maintainability of the system. Besides,
it caused some hidden bugs that are difficult to find without the use of AOP. AOP groups
those kinds of code into a new modular unit called an aspect. This makes the source
program cleaner and easier to maintain, and evolve when the requirements are
changed. Aspects can be compiled back to be the software using an aspect compiler
called a weaver. This process is called a weaving process. The weaver weaves
aspects source with the traditional source code. The resulting source code called the
woven source can now be compiled with the traditional compiler to produces
executable program.

There are a number of compilers that support AOP. Many of them can be found

on then AOSD communities [4], but one of the most famous aspect compilers is AspectJ
[7], which is aspect weaver for Java [14] programming language. It is acceptable to
use language features of AspectJ as AOP semantic references because the maker of it

15

and the authors of AOP paper came from the same organization. AspectJ has
introduced a number of language features to support AOP semantics as follows.

2.2.1.1 Join point abstraction: the abstraction concept of join points
has been introduced in the AOP. Join points are well-defined points in the execution
flow of the program.

2.2.1.2 Pointcut designators: pointcut designators, or pointcuts for
short, are selected join points. Those joint points are grouped and may be describe
using regular language.

2.2.1.3 Advice codes: they are code fragment that will be performed
by their associated pointcuts.

2.2.1.4 Introductions: extra data or method members can be late
introduced to the classes using the concept of introduction. After weaving an aspect to
the old code, introducing data or method members will be automatically added to the
woven class.

method a.paint

method b.paint

method c.paint

Join points

<<before>> *.paint
<<after>> *.paint
<<around>> *.paint

example pointcuts

Figure 2.6 Six join points are defined here, with three sample pointcuts

Figure 2.6 shows a concept of join points and their possible pointcuts. Each

rectangle block represents a method. Circle shapes placed before and after those
blocks indicate possible join points in the system. Figure 2.7 shows a code fragment
written in AspectJ. In Figure 2.7, there is the aspect canvasUpdating that contains a

16

pointcut designator afterPainting. This pointcut cuts across three classes, the figure, the
figureA, and the figureB. This makes after calling of the paint methods of those three
classes; their associating canvases will be also called the update method.

aspect canvasUpdating {
 pointcut afterPainting(figure f):
 target(f) && call(public void *.paint());
 after: afterPainting(figure f) {
 f.getCanvas.update();
 }
}

class figure {
 public Canvas getCanvas();
 public void paint() {
 . . .
 }
}

class figureA extends figure{
 public void paint() {
 . . .
 }
}

class figureB extends figure{
 public void paint() {
 . . .
 }
}

Figure 2.7 A basic code listing of the figure-painting program written in AspectJ

2.2.2 UML Use-Case Package
The Unified Modeling Language (UML) [6] is a set of notations for designing

software system using the object-oriented approach. UML is the industrial standard and
managed by the Object Management Group (OMG – see http://www.omg.org). UML
consists of several groups of notations that could be used for describing software
artifacts throughout the development cycle. Its metamodel separates UML itself into
many packages depending on their different tasks. For the requirements phase, UML
has the use-case package that contains a number of notations for using in the diagram
called the use-case diagram. Use-case diagrams show the relationships of actors and
use cases. This package helps capturing functional requirements of the system as use
cases. The notations are as follows.

17

2.2.2.1 Use Case
A use case is a kind of classifier representing a functionality provided by

the system. A use case usually captures a functional requirement. It is shown as an
ellipse attaching with the name of the use case. An optional stereotype can be placed
over the name. Behavioral semantics of a use case can be described in different ways.
But it is normally in plain text format.

2.2.2.2 Actor
An actor defines a set of roles representing users of the system. It can

interact with the system entities that usually are use cases. The default iconic
representation of an actor is a “stick man” figure. Its name can be attached below the
figure. An actor may also be displayed as a class notation with the stereotype keyword
<<actor>> above its name.

2.2.2.3 Relationships
There are several standard relationships among use cases, and actors.

This section discusses three kinds of relationship.
2.2.2.3.1 Association
An association indicates the participation of an actor in a use

case. It is only relationship between actors and use cases.
2.2.2.3.2 Extend
An extend relationship from the use case U1 to the use case U2

indicates that the behavior of the use case U2 may be extendible by the behavior
specified in the use case U1.

2.2.2.3.3 Include
An include relationship from the use case U1 to the use case U2

indicates that the behavior of the use case U1 will also contain the behavior specified in
the use case U2.

18

The example of a use-case diagram is illustrated in Figure 2.8. There
are five use cases, one actor. The relationships include, and extend are displayed as
dashed lines.

an actor

Recording Fixing Details

(from Fixing Process)

View Fixing Request

(from Fixing Process)
Fixer

(from Logical View)

View At tached Notes

(from Special)

Change Fixing Status

(from Fixing Process)

Login

(from Securi ty)

<<include>>

<<include>>

<<include>>

<<extend>>

<<extend>>

a use case

an include relationship

an extend relationship

an association

Figure 2.8 An example of the use-case diagram

2.2.3 UML Profile
There are several problem domains that are not directly supported by the

original UML. Some special notations, keyword, or attributes may be needed to identify
modeling artifacts in such domains. Fortunately, UML has its own standard mechanism
called the UML profile [6] to extend its functionalities. Utilizing techniques offered by
UML profile make several useful extensions of UML such as UML-RT, UML profile for
CORBA [15], and WAE [16]. UML-RT is a profile for modeling real-time intensive
applications. The profile introduces several the notations such as capsules, ports,
connectors, protocols, and protocol role to UML. It is based on the modeling technique
from [17]. UML profile for CORBA [15] provides a standard means for modeling CORBA
IDL using UML notations. Conallen’s WAE [16] for Web application modeling is another
UML profile to model Web pages and HTML elements using UML artifacts.

19

UML profile standard offers three techniques to extend functionalities of UML as

follows.
2.2.3.1 Stereotypes
Stereotypes are classification of an existing UML element. A stereotype

keyword is usually labeled to the notation in <<keyword>> form.
2.2.3.2 Constraints
Constraints are restriction placed for controlling their associated

stereotype.
2.2.3.3 Tagged values
Tagged values are the stereotype propertied. They contain additional

information for the stereotype.

2.2.4 Use Case Maps
Use Case Maps (UCM) [18, 19] visually represent scenarios combined with

structures. UCM illustrates use cases in a map-like diagram. Its notation is based on
several concepts. A UCM diagram describes causal relationships between
responsibilities that are bound to underlying structures of components. A causal path
refers the execution path of the use case described using UCM. The paths are said to
be causal because it involve ordering of activities that cause to effects. Responsibilities
are generic actions, tasks to perform. Components represent generic software entities.
Figure 2.9 describes the structural concept of UCM. The details of their elements are
described in Table 2.4.

The UCM shares several common characteristics with the activity diagram of the

UML [20], but UCMs have many features over the activity graph. UCMs combine
structural view of the system with its behavioral activities. This feature advantages for
describing architectural view of the system, while the UML activity diagrams emphasize
on message sending between objects. This makes UCMs fit the need for modeling
scenarios of use cases.

20

Stub

Continuation
Element

AndOr WaitingPlace

TimerStaticStub Selection
PolicyDynamicStub Responsibility

Action
Element

EndPoint

Map

StartPoint

PathElement

Component

Figure 2.9 Class diagram describing the core concept of UCM

Table 2.4 Description of UCM concepts
Class Name Description
Map Composition of path elements and components
Path Element Abstract class for an element over a causal path
Start Point Beginning point of a scenario (possibly with preconditions)
End Point End point of a scenario (possibly with postconditions)
Action Element A path element on a causal path
Responsibility An element to perform an action
Continuation Element A super class representing a location where multiple path elements

can connect together in a non-sequential way
OR Composition of path as alternatives
AND Composition of path as concurrent
Stub A super class that represents a container of sub maps
Static Stub A stub with a single sub maps with its relationship

21

2.2.5 Rational Unified Process
The Rational Unified Process (RUP) [3], and the unified process [1] are software

engineering processes that employ the use-case driven approach and uses the UML as
its modeling notation. The RUP is the enhanced and commercialized version of the
unified process. Figure 2.10 shows the development lifecycle of the RUP, including its
disciplines.

Figure 2.10 Development iterations defined in RUP [3]

Software development life cycle of RUP is the iterative controlled model [3].

Vertical dimension of the RUP process indicates the development disciplines while the
horizontal dimension shows the development phases. This section reviews the
requirements disciplines of RUP mainly located at the inception phase, and can be also
found at the beginning of the elaboration phase. Figure 2.11 shows the overview of
requirements discipline of RUP.

22

Analyze the
problems

Understand
stakeholders needs

[Incorrect problem]

Define the
system

[Addressing correct problem]

Manage scope
of the system

[Cannot do all works]

Refine the system
definition

Manage Changing
Requirements

[New input]

Figure 2.11 The RUP requirements workflows [3]

The requirements discipline contains six workflows. The summarized activities in

each workflow are as follows.
2.2.5.1 Analyze the problems: the actors and preliminary use cases

are identified in this workflow.
2.2.5.2 Understand stakeholders’ needs: the actors and use cases are

refined.
2.2.5.3 Define the system: the actors and use cases are refined.
2.2.5.4 Manage scope of the system: use cases are prioritized and

organized their dependency.
2.2.5.5 Refine the system definition: this step is to specify the use

cases details.

23

2.2.5.6 Manage changing requirements: the use-case model is
restructured and managed their dependency.

The important artifacts using in this discipline are the software requirements

specification (SRS) documents, the use-case model, the vision document, and etc. RUP
also provides complete document templates for specifying the system details that are
gathered from the stakeholders. There are two versions of the SRS document, the
traditional, and the SRS for use-case driven approach.

The next chapter will describe our approach. It includes the new requirements

model, the notations. Their mathematical perspective will also be presented.

24

CHAPTER 3
CONCEPTUALIZATION

3.1 Aspect-Oriented Requirements Model
The requirements model proposed in this thesis consists of a group of software

processes that are designed to support the AO paradigm. These processes cover the
early stages and the beginning of the analysis phase of the software development. To
support the AOSD, this model has to be accomplished due to the reasons as follows.

- It is necessary to manage crosscutting concerns at the requirements level of the
process.

- It is necessary to identify crosscutting concerns as aspects during the process
of use cases capturing.

- It is necessary to realize aspects with scenario descriptive model during the
process of use case realization to help capturing aspects as analysis and
design artifacts.

Preliminary Use-Case Models
with supplementary documents

Untangled Use-Case
Models

Crosscutting Stack
Models

Software Requirements Specification
(Functional and Nonfunctional)

Untangled
Structured Models

(i.e. Class Diagrams)

Aspect-oriented
Structured Models

(i.e. Aspect Diagrams)

Realization

Aspect Extraction
& Use-Case Purification

Software

Aspect-Oriented
CodeUntangled Code

Figure 3.1 Overview workflow of the model

25

Figure 3.1 shows the overview of the model. Those processes are intended to
support the unified process [1, 3]. This makes the unified process possible to use with
AO paradigm. Table 3.1 shows the summary of input, and output artifacts, including
roles that are related to this requirements model.

Table 3.1 The summarized artifacts and roles for this approach
Process Input Output Role
Use-case
purification and
aspect extraction

1. Preliminary use-
case model with
supplementary
documents

1. Purified use-case
models
2. CSM diagrams

Aspect specifier

Aspect realization
(parallel with use-
case explanation
process)

1. CSM diagrams
2. Purified use-case
models

1. OCUM diagrams Aspect engineer
(with Use-case
engineer)

3.1.1 Use-case purification and aspect extraction
This process gets the preliminary use-case model, and the supplementary

documents as its input. It is to identify and specify crosscutting concerns and capture
them as aspects. Extracted aspects will be put into the model called the crosscutting
stack model (CSM). After capturing aspects, use cases that are identified to be a part
of those aspects will be removed out of the use-case model. This activity is called the
use-case purification. The purified use-case model should contain only the core
services of the system. The overview of these processes is in Figure 3.2.

There are two sub processes as stated in Figure 3.2, the aspect extraction, and

the use-case purification process. The main role involving with these processes is the
aspect specifier. An aspect specifier is responsible to identify, specify crosscutting
requirements as aspects.

26

aspect
extraction

aspect
specifier

use-case model

crosscutting stack
model

supplementary
documents

use-case
purification

purified
use-case model

Figure 3.2 Use-case purification and aspect extraction activities

3.1.1.1 Aspect Extraction
This section describes activities, which are responsibilities of the aspect

specifier, for identifying, specifying, and finally extracting the aspect from the use-case
model supporting with the supplementary documents. A candidate aspect consists of,
at least, a use-case selector, a pointcut association, and an advice case. The process
starts firstly with identification of advice cases from the use-case models.

Preliminary Identification guidelines for aspects are as follows:
- Consider all use cases that do not associated with actors as an

advice case.
- Consider the secondary requirements as an advice case.
Then, specify the details for the candidate crosscutting artifacts using

the template. Inspired by the works [9, 10, 8], the template for specifying aspects in the
use-case driven approach is shown in Table 3.2.

Figure 3.3 shows the activities for extracting aspects from the preliminary

use cases. Several notations, advice cases, use-case selectors, and pointcut
associations, from the crosscutting stack model are introduced here. The details of
those notations will be discussed later in the next chapter.

27

Table 3.2 The template for use-case driven aspects
Name <The name of the candidate advice case>
Concern <Kind of concern (i.e. security, distributed, etc.)>
Description <Executive description>
Source <Source of information (i.e.use cases, stakeholders, documents)>
Crosscutting Type <Functional or Nonfunctional>
Priority <MAX, MED, MIN>
Precedence <Precedence value for resolving conflictions (0…1500)>
Obligation <Optional or Mandatory>
Influence <Activities of software process affected by the aspect>
Models <Related models (use-case models, scenario models)>
Requirements <Related requirements>
Points <Location in the scenario this aspect should be found>

Identify advice cases
from use cases

Specify an advice case
details using the template

Create use-case selectors from "Models" and
"Requirements" properties of template

Create pointcut associations from
"Points" property of template

Mark the advice case
as a basic use case[not crosscut]

[crosscut]

Figure 3.3 Summarized activities for extracting aspects

28

In [9, 8], the authors suggested that considering candidate aspects
using template can be done by looking at the models, and requirements path of the
template. If they traverse several models or requirements, then they are candidate
aspects.

3.1.1.2 Use-case purification
After identifying, specifying, and extracting aspects, the process to be

done is the use-case purification. This process re-arranges the use-cases and removes
all notations indicated as aspects out of the use-case model. Those aspects will be
moved to the CSM diagram. Figure 3.4 shows the activities for the process of purifying
use cases.

Move aspects from
use-case model to CSM

Remove use-case
associations

Remodel all remaining
use cases

Revert noncrosscut advice cases
to basic use cases

Figure 3.4 Use-case purification activities

3.1.2 Realization
There are four sub processes in the aspect realization process. This includes

use-case explanation process because this approach employs the OCUM model for
describing the scenario of use cases. The details of notations used in the OCUM model
will be discussed in the later section.

29

aspect
realization

use-case
engineer

crosscutting stack
model

use-case
explanation

purified
use-case model

analysis class
identification

analysis aspect
identification

aspect
engineer

use-case
ocum model

aspect
ocum model

analysis
classes

analysis
aspects

Figure 3.5 Aspect realization and use-case explanation activities

Figure 3.5 shows the overview of the activities for realizing aspects describing

use cases. There are two roles involving this process. The aspect engineer is
responsible for realizing aspects by describing them into scenario models. Then
aspects for the analysis phase, called analysis aspects, should be captured from the
scenario models. In the parallel activities, use cases are described and then used as
input artifacts for capturing analysis classes from their scenarios. These parts are
identical to the activities in the Unified Process [1, 3], but this approach employs OCUM,
which is derived from the UCM [18, 19], as scenario diagrams. The use of OCUM
provides several advantages beyond the scenario diagram of UML because an OCUM
diagram models structural and behavioral artifacts in the same diagram. Moreover,
OCUM is intended to support AO scenario description. The four sub processes are
discusses in details here.

3.1.2.1 Aspect Realization
The aspect realization process is to describe an aspect from the CSM

form into the OCUM scenario. This process provides mapping guideline to convert use-
case selectors from CSM to the start-point providers with the dynamic start-points.

30

These notation specifications are described in details in the later chapters. The
mapping guidelines are summarized in Table 3.3.

The advice cases will be described into the sequence of responsibilities

attaching with Object Constraint Language (OCL) [6] expressions for specifying their
behavior. These responsibilities are linked together with the causal path beginning with
the start point. Stub stacks may be put along the causal path of other use cases, which
will invoke the advice cases, depending on the information from the pointcut
associations.

Table 3.3 The mapping guideline for the aspect realization process
Mapping From / To

CSM notations OCUM notations
Description

Use-case selectors Start-point providers
and dynamic start-
points

The start-point providers and the
dynamic start-points might be think of
that they are specified version of the
use-case selectors

Pointcut associations Stub stacks Placing the stub stacks along the path
of other use cases is depended on
the information “where” from the
pointcut associations

Advice cases Components, the
causal path,
responsibilities, OCL
expression

Advice cases usually are explained as
scenarios. Their behaviors are
described by OCL expressions, and
components.

3.1.2.2 Analysis Aspect Identification
This process identifies an aspect from the OCUM scenario model to the

aspect notation for the analysis phase. During progression of this work, there is current
no the standard notation for describing aspects in the analysis, and design phase.
Recent work [21] proposed the design notation, called aspect, for the aspect-oriented

31

design model (AODM). But it is only for AspectJ [7] language mapping, not generalized
[21]. This process covers only the guideline for mapping the scenario artifacts found in
OCUM to the general analysis aspect template. It does not follow the semantic of the
AODM. However, mapping again from the template to the AODM artifact is not difficult
to be done. Table 3.4 shows the template for specifying the analysis template captured
from the scenario. The template consists of three rows as follows; the name of analysis
aspect, list of pointcuts, and the advice code.

Map Use-c ase Selector to
Start-point Provider

Link the start-point provider to the
dynamic start -point

Specify items in the
start-point provider

Create scenario for
the advice case

Put stub stacks along the causal
path of the related us e cas es

[for aspects] [for use cases]

Figure 3.6 Activities for realizing aspects

Table 3.4 The simple aspect template for specifying analysis aspects
Name <Name of the analysis aspect>
Pointcuts declaration <List of pointcuts in regular language>
Advice code <Pseudo code of the advice code>

32

Specify pointcuts declaration
using regular language

Define aspect
name

Specify advice code
using pseudo language

Figure 3.7 The activities for identify an analysis aspect

Figure 3.7 shows the activities to map the aspect from OCUM model to

the template. Firstly, the name of the aspect is defined. It is usually from the name of
the advice case. The second activity is to declare the pointcuts using regular language.
The information for declaring pointcuts should be gained from the location of stub stacks
from the scenario of the use cases that are related to the advice case, and the
information from the start-point providers of the advice case. Finally, the scenario of the
advice case is specified in pseudo, or formal language for describing as advice code.

3.1.2.3 Use-case Explanation
This process describes use cases from the use-case model into the

OCUM scenario model. The use-case scenario can be specified as a sequence of
responsibilities along the causal path of the OCUM model. Stub stacks may be placed
on several points of the path to indicate that these points are crosscut, and it will invoke
the relating advice cases.

33

In the UML, this kind of scenario can be described with the activity
graph. But the OCUM model advantages over the activity diagram. The features
derived from the UCM make the scenario, described using OCUM notations, modeling
both structural artifacts and behavioral activities in the single view. This makes the
OCUM model better describing the early architecture of the system than the activity
graph [20].

Specify
responsibilties

Link all responsibilities with
the causal path

Put the stub stack along the causal path
using the informat ion of pointcuts

Bound responsibilities with
their components

Specify an OCL expression for
each responsibility

Capture the components as
analysis classes

Figure 3.8 The activities for describing use cases, and capturing classes

3.1.2.4 Analysis Class Identification
This process is to capture the analysis UML classes from the OCUM

components in use-case scenarios. The activity is simple because the OCUM defines
the concept of its components corresponding to the class concept of the UML. Figure
3.8 shows the activities of both the use-case explanation, and the analysis class
identification in the same workflow.

34

3.2 Crosscutting Stack Model
This section describes the crosscutting stack model (CSM), and its notations.

This model is a combination of the AO paradigm with the use-case model. The CSM is
extended from the preliminary work proposed in [22].

Several defining extensions are based on the use-case package of the

metamodel of the UML [6]. The use-case package is a sub package of the behavioral
package of the metamodel. The key elements of use-case model are use cases and
actors. To extend its functionality for capturing crosscutting requirements with the
concept of aspect-oriented, a crosscutting stack model, an advice case, a use-case
selector, and a pointcut association, are introduced here.

3.2.1 A Diagram of CSM

3.2.1.1 Semantics
The diagram of the CSM shows use-case selectors and advice cases

together with their relationships. The advice cases represent system functionality or
properties that cut across other functionalities, which are use cases, of the system.

3.2.1.2 Notations
A diagram of the CSM is a graph of use-case selectors and a set of

advice cases, and the relationships between these elements. The relationships are
special kind of associations called the pointcut associations. The example of the CSM
diagram is illustrated in Figure 3.9.

Login

Session expired in
15 min.

UseCase.allServices

<<entering>>

<<wrappedby>>

Figure 3.9 The Example of Crosscutting Stack Model

35

3.2.2 Advice Case

3.2.2.1 Semantics
An advice case is defined as a specialization of the classifier from the

UML metaclass. It represents a functionality or property of the system that cut across
other use cases in the use-case model. It also defines a sequence of actions, but
cannot be performed directly by the actor. Triggering from an instance of use-case
selector will perform an advice case. A concept of an advice case follows the concept
of the advice in the AOP [5].

3.2.2.2 Notations
An advice case is shown in the crosscutting stack diagram using a

notation of use case with attaching stereotype keyword <<advice case>>. It can also
be modeled using a vertical-half-ellipse, the A-like shape. It contains the name of
advice case below the icon. Graphical representations of an advice case are displayed
in Figure 3.10.

3.2.2.3 Presentation Options
The name of the advice case may be placed below its icon. The name of

an abstract advice case may be shown in italics.
3.2.2.4 Style Guidelines
Advice case names should follow style guidelines stated in the UML

specification [6].

Login
<<advice case>> Login

Figure 3.10 Graphical representations of an advice case

3.2.3. Use-case Selector
3.2.3.1 Semantics
A use-case selector is a kind of classifier representing a group of

functionality, or use cases of the system. Use-case selectors follow the concept of
pointcut designators in AOP [5]. According to AOP, a pointcut is a set of selected join

36

points of the system [5]. A pointcut defines what will be crosscut, and when. This
similar semantic is defined using a use-case selector incorporating with a pointcut
association. This approach uses a use-case selector to define what the advice case
crosscuts.

3.2.3.2 Notations
A use-case selector is displayed as a use-case notation attaching with

<<use-cases selector>> stereotype in the CSM. It is also represented as a use-case
with a little vertical-half-ellipse attaching at the right corner of it. Figure 3.11 shows both
stereotype style, and iconic representations of a use-cases selector.

A use-case selector contains an OCL expression below its icon. A use-
case selector uses the expression to find a group of use cases. This notation is to
represent what to be crosscut, not where. In this model, the AOP pointcut concept is
separated into a use-case selector, and a pointcut association. A pointcut association
defines when to cut across. Separating a use-case selector from a pointcut association
enables reusing the same selector with many pointcut associations.

3.2.3.3 Presentation Options
The name of the use-case selector may be placed below the icon

instead of the OCL expression for describing the group of use cases that will be
selected using the natural language.

UseCase->allServices
<<use-case selector>> UseCase->allServices

Figure 3.11 The use-case selector, and its iconic representation

3.2.4 Pointcut Association
3.2.4.1 Semantics
A pointcut is a kind of association that links between use-case selectors

and advice cases in the CSM diagram. A pointcut association must be labeled with a
stereotype to indicate where the use cases grouped by the use-case selector should
perform the appropriating advice case. Combining pointcut associations with use-case
selectors provides the AO concept of pointcut designator in the CSM diagram.

37

3.2.4.2 Notations
A pointcut association is a relationship attaching with stereotype

keyword. Figure 3.12 shows the use of the entering pointcut association incorporating
with the use-case selector and the advice case Login. This is a complete aspect
notation for using in the CSM. The pointcut association labeled with <<entering>>
forces the system to perform the advice case “Login” before performance of all use
cases in the current model.

LoginUseCase.allServices

<<entering>>

Figure 3.12 An aspect – the combination of a use-case selector, a pointcut

association, and an advice case

Predefined set of stereotypes that can be attached to a pointcut
association is in Table 3.5. The set of stereotypes defined in [9, 10] are revised and
extended here. They are also listed in Table 3.5.

Table 3.5 A set of pre-defined pointcut associations
Pointcut Association

Stereotype
Description

Entering A pointcut before actor performing the use case
(overlapping activities at the beginning of the use case).

Leaving A pointcut after actor performing the use case
(overlapping activities at the end of the use case).

Exception Raising A pointcut when actor performing the use case with error
handling.

Wrapped By Entering + Leaving.
Overlapping Partially replacing activities of the use case.
Overriding Replacing all activities of the use case.

38

3.2.5 Additional OCL Properties
In order to make a use-case selector having semantics in itself, we define

additional OCL [6] properties to use with the use-case selector. Two additional
properties are defined as the following: UseCase.allServices is the OCL property for
UseCase type returns its result as a set of all use cases that are performed by every
actor, and UseCase.servicesOfActor is the OCL property that returns its result as a set
of use cases specified by Actor. The implementation of both properties are as follows.

UseCase.servicesOfActor(a: Actor): Set(UseCase)

Context
 UseCase::servicesOfActor(A: Actor): Set(UseCase)
pre:
 true
post:
 result = a.allConnections->select(r |r.type.OclIsKindOf(UseCase))

UseCase.allServices(): Set(UseCase)

Context
 UseCase::allServices(): Set(UseCase)
pre:
 true
post:
 Actor.allInstances->forAll(a |
 result.union(UseCase.servicesOfActor(a)))

3.2.6 Use Case to Advice Case Converting Rules
Rules defined here are to convert use cases from the traditional use-case model

to advice cases in CSM. Mathematical analysis of these rules will be further discussed
later in this chapter. A number of definitions will also be introduced to support the
following rules. Two rules are described as follows.

3.2.6.1 Every tangled use case (discarded use case) that is removed
out of the use-case diagram must be replaced by an effective advice case instead in the
CSM diagram.

3.2.6.2 All tangled associations linked with the discarded use case
must be removed out of the use-case diagram, and the effective advice case must have
one equivalence pointcut association to those association in the CSM diagram.

39

3.2.7 Tool support
The described notations above are all supported by the ASREM add-in. ASREM is an

add-in of Rational Rose, the UML modeling tool.

Figure 3.13 shows ASREM in action. The technical details of the implementation
of ASREM, including its user’s guideline are discussed later in the appendices. ASREM
consists of two parts as follows:

3.2.7.1 Notations and Association
ASREM offers a set of notations supporting the CSM diagram in Rational

Rose. The notations include the use-case selector, the advice case. Their base
notation is the use case attaching with their stereotypes. ASREM offers modeling of the
pointcut association based on the association relationship of Rational Rose.

3.2.7.2 Stereotypes and Tagged Values
All pre-defined pointcut associations that can be found in Table 3.5 are

implemented as a set of association stereotypes in ASREM. The properties of the
template of the use-case driven aspect that are stated in Table 3.2 is also implemented
as tagged values for the advice case.

Figure 3.13 Modeling CSM notations in the use-case diagram of Rational Rose

40

3.3 Object/Crosscutting/Use Case Maps
The UCM [18, 19] is a semi-formal, and map-like diagram for describing use-

case scenarios. A UCM diagram features an architectural explanation of the system. It
visually integrates structural components and scenarios of use cases in single view [20].
This is very useful for modeling the interactive, such as applications in Web-based
domain [23], systems.

UCM basic notations consist of the following elements: a component, a causal

path, a stub, and a responsibility [18, 19]. Several UCM notations are improved to
support semantics of aspect-oriented, and also more object-oriented here. Moreover,
the integration of OCL [6], a formal language proposed as a part of the UML, with the
UCM is also suggested. The detail of the improvements, which are implemented in The
Object/Crosscutting/Use Case Maps (OCUM), is described.

The enhancements of OCUM beyond the UCM are divided into two groups for
supporting both AO and OO paradigm. The enhancements to support AO are stub
stacks, start-point providers, and dynamic start-points. The enhancements to better
support OO concept are embedded OCL expressions, object context abstraction,
parameter symbols, object constructors, destructors, and type information. Table 3.6
summarizes these improvements. Figure 3.14 shows the core structure of the OCUM.
The core structure is illustrated as a UML class diagram. Shaded elements are the
enhanced notations.

3.3.1 Stub Stack

3.3.1.1 Semantics
In UCMs, the stubs can be replaced by sub-maps. This concept is

considered partial supporting AO’s joint points. Unfortunately, one stub can be replaces
by one plug-in at a time, although the stub is the dynamic kind. But in AO, a joint point
links many advice codes depending on its pointcuts designator. When the join point is
reached, all advice codes are performed. Both traditional stubs concept, which are
static and dynamic, are not adequate to support the kind of AO semantic. To describe

41

the scenario that supports such semantic, the stub stack is introduced here. A stub
stack is to support AO concept in OCUM diagrams. It contains several static stubs that
link to their sub maps.

Stub

Continuation
Element

AndOr WaitingPlace

TimerSelection
Policy

Action
Element

ResponsibilityDynamicStub

EndPoint

Map

Component

PathElement

StartPoint

StaticStub

StartPointItem StartPoint
ProviderStubStack

DynamicStart
Point

Figure 3.14. The OCUM core concept

3.3.1.2 Notations
A stub stack is illustrated by stacking diamonds. The name is optionally

attached below the icon. Figure 3.15 shows the graphical representation of a stub
stack. This notation is designed as the stacking diamonds because a single diamond
represents a stub in UCM, and this notation is to represent all possible ways to invoke
their related advice cases, thus it is designed to be a stack of UCM stubs. A stub in
UCM can be thought of that it is an advice case in AO concept. This notation represents
that this point will invoke multiple advice cases at a time.

Figure 3.15 The stub stack notation

42

Table 3.6 Summarized enhancement of OCUM model
Paradigm
Support

Feature Name Type Description

Stub stacks Notation To support the join point
semantic on the causal path

Start-point providers Notation To support the mapping of use-
case selector form CSM model Aspect-

oriented Dynamic start-point Notation To enhance the concept of static
start point. This makes this
dynamic start-point possible to
get information from the start-
point provider

Embedded OCL
expression

Text This enables responsibilities
contain an action semantic

Object context
abstraction

Abstraction This concept helps make the
OCL expression contains the
meaning relating to the
component.

Parameter symbols Text This is to support the argument
concept and the dataflow
analysis concept though the
causal path.

Object constructor,
destructor

Text This is to support
constructor/destructor concept
for optionally indicating the
object state.

Object-
oriented

Type information Text This adds stereotype concept of
UML to the component block. It
makes possible to provide more
information of the component.

43

3.3.2 Dynamic Start-point
3.3.2.1 Semantics
A dynamic start-point retrieves information from the start-point provider to

start the scenario. A dynamic start-point is a derivative of a start point. This new notation
is to support the AO paradigm.

3.3.2.2 Notations
Dynamic start-points are indicated by dashed circle attaching its name

below the icon. Figure 3.16 shows the dynamic start-point with the name ‘login’.

login
Figure 3.16 The graphical notation of the dynamic start-point

3.3.3 Start-point provider

3.3.3.1 Semantics
A start-point provider contains a number of points indicating where its

associated start point can be used. The concept of the start-point provider is designed
to support AO scenario description. In AO, the advice code can be performed at
several join points depending on its pointcut designators [5]. This means the advice
code may has more than one start point. The traditional UCM notation did not explicitly
support this concept [20, 18, 19]. To realize this concept in the OCUM scenario, the
start-point provider is introduced to serve the starting information to it start point. The
start-point provider contains a number of start-point items. Each item is labeled with the
name of use case that the scenario will start from. In fact, the start-point provider is the
specified version of the use-case selector from CSM.

3.3.3.2 Notation
The graphical representation of the start-point provider is a stack of

rectangles. Each rectangle is a start-point item. Figure 3.17 shows connecting a start-
point provider to a login dynamic start-point. The start-point provider contains three
start-point items. This enables substitution of those start-point items to the dynamic

44

start-point depending on its selection policy. Each item may contain an expression for
indicating where the start-point relates. The related stub stack name is expressed after
the @ sign. The start-point item “Change Fixing Status@cfs01” means it is a start-point
invoking from the stub stack named cfs01.

3.3.3.3 Guideline
The start-point provider must link to the dynamic start-point. Each item in

the start-point provider contains its related use-case name. The use case name
optionally follows by the @ sign and the stub stack’s name to express its location on the
scenario path.

login

Change Fixing Status@cfs01

View Fixing Request@vfr01

Record Fixing Details@rfd01

Figure 3.17 The start-point provider with the dynamic start point

3.3.4 Embedded OCL Expression
Embedding OCL expression to a responsibility enables formal specification to

the scenario of the use case. This provides additional using of parameter symbols to
help better understanding of the dataflow through out the causal path. An OCL can be
expressed by specifying it below the responsibility, instead of its name. The object
context of the expression is provided by the components bounding the responsibility.
This object context abstraction is a useful enhancement of the OCUM that helps
embedding OCL expression possible. For example, the object self specifying in the
OCL expression refers to an instance of the component.

3.3.5 Parameter symbol
An operational parameter symbol is a dollar sign with a positive integer i.e. $1,

$2, $3. A symbol that holds a result from the last action is indicated by a dollar sign with
an underscore ($_), called the result-buffering symbol (RBS). This symbol advantages
the dataflow analysis possibilities through the scenario. Both kinds of symbol are
proposed to use within an embedded OCL expression.

45

3.3.6 Object constructor and destructor
To offer the more object-oriented semantics to the diagram, optional object

constructor and destructor are proposed as keywords new and destroy respectively.
They can be placed in front of an object context in a component block. The keyword
new is indicated that the object will be created, and then it performs OCL expressions.
The keyword destroy is indicated that the object perform their OCL expressions, and
then it will be destroyed.

3.3.7 Type information
Meta type or other information can be attached to the component block, as a

stereotype, above the component name. This concept is as same as the stereotype
concept of the UML.

To show the capability that able to support the AO paradigm of the OCUM

model, the scenario explanation of the advice case is illustrated in Figure 3.18.

<<Object>>
new Session

<<ObjectList>>
System Users

self->select(uid=$1 and pwd=$2)

self.person=$_

end point

login

Change Fixing
Status@cfs01
View Fixing
Request@vfr01
Record Fixing
Details@rfd01

Figure 3.18 An OCUM diagram of the Login advice case

From Figure 3.18, the Login advice case is described as an OCUM diagram. It
contains a dynamic start-point named login. This start point is linked from the start-point
providers, which contains a number of start points indicating that the login start point will
be invoked from them. The component block System Users is attached with the
stereotype <<ObjectList>>. This makes one can think of that the component should be

46

a list of objects. This information is configurable, and depends on the problem domain.
The causal path of the diagram runs through two responsibilities embedding their OCL
expressions. The responsibility in the first block contains two parameter symbols. This
means that the use case may be implemented as a kind of function in the later phase,
and should have two inputs.

The second component contains the responsibility appearing the RBS in its

expression. The RBS symbol holds the result from the first OCL expression. Its value
will be assigned to the person attribute of the object in this component. The concept of
including RBS in the diagram makes the dataflow analysis, and consistency checking
possible. Type checking can be applied to the diagram to ensure that type of the
person attribute of the Session class conforms to the data retrieved from the first action,
which returns System User type. This implies some relationships between the Person
class, and the System User class, for example.

3.3.8 Tool support
The concept of OCUM is implemented in the modeling tool called OCUM Vectra.

OCUM Vectra includes all above notations for modeling an OCUM scenario. Its
summarized features are as follows.

3.3.8.1 It supports OCUM diagram, including OO and AO scenario
modeling.

3.3.8.2 It is designed as an add-in of Rational Rose. It can export
OCUM components to UML class diagram in Rational Rose.

3.3.8.3 It saves its output as an XML format. This enables other tools
to read and process an OCUM diagram.

3.4 Mathematical Perspective
This section discusses the requirements model from the mathematical

perspective. A number of definitions of basic elements are introduced. The complexity
index is defined. This section ends with a mathematically proof that the crosscutting

47

stack model’s complexities are always lesser or equal than the complexities of the
preliminary use-case model.

3.4.1 Basic Definitions
Definition 1:

A software system is a tuple of finite services, and finite join points.
Example1:

We define the software system (,)Z = S J ,
where S is a finite set of system services, and J is a finite set of join

points.
Definition 2:

Services of the system are either a set of use cases union with a set of
advice cases.

Definition 3:
User cases of the system are a finite set of use cases. It is a subset of

the services of the system.
Definition 4:

Advice cases of the system are a finite set of advice cases. It is a subset
of the services of the system.

Example 2:
Given the system (,)Z = S J ,

1 2 3

1 2

,
{ , , },
{ , }
u u u
a a

= ∪
=
=

S U A
U
A

Definition 5:
 A use case of the system is a sequence of activities that are executed

through some join points.
Given the system (,)Z = S J ,

1 2{ , , , }nj j j
= ∪
=

S U A
J K
A use case (, , ,)U Z= U j Ω is a use case of the system Z ,

48

where
(,)Z = S J is the software system,

Ω is a set of executable path of U over J , and ⊆ ×Ω J J ,
 j is a set of single start-point of U , and , 1⊆ =j J j .

Definition 6:

An advice case of the system is a sequence of activities. The advice
case has one or more start points.

Given the system (,)Z = S J ,

1 2{ , , , }nj j j
= ∪
=

S U A
J K

An advice case (, , ,)A Z= A Θ Ω is an advice case of the system Z ,
where

(,)Z = S J is the software system,
Ω is a set of executing path of A over J , and ⊆ ×Ω J J ,
Θ is a set of start points of A , and ⊆Θ J

3.4.2 Complexity Index
This section illustrates a proof to show that it always reduces the complexity of

the use-case model when applying the technique to the use-case model.

Definition 7:
The complexity index (CI) over a use-case model is as follows:

u p t
i i i

e d
i i i

a a a
CI

U A U
+ −

=
+ −

∑ ∑ ∑
∑ ∑ ∑

 (1)

where au is an association in the use-case diagram,
 ap

at

U
Ae

Ud

is a pointcut association in the use-case diagram,
is a association considered to be tangled,
is a use case,
is an effective advice case,
is a discarded use case.

49

In the traditional use-case diagram, no tangled association in the diagram is
considered to exist, thus

0p t
i ia a− =∑ ∑ (2)

Now substitute (2) into (1). Thus, we have

0

u
i

i

a
CI

U
= ∑
∑

 (3)

We call 0CI the traditional complexity index of the use-case diagram. Recall
(1), we rearrange the equation (1) as follows:

2

() ()
() ()

u p t e d u
i i i i i i i

e d
i i i i i

a a a U A U a
CI

U U A U U
− − −

= +
+ −

∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑

 (4)

Then, we substitute (3) into (4)

0 2

() ()
() ()

p t e d u
i i i i i i

e d
i i i i

a a U A U a
CI CI

U A U U
− − −

= +
+ −

∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

 (5)

In this thesis, we consider e dA U
i i
=∑ ∑ , by our rule no. 1. Substitution

0e dA U
i i
− =∑ ∑ into (5), we have

0

p t
i i

i

a a
CI CI

U
−

= + ∑ ∑
∑

 (6)

We now simply proof that for all use-case diagram applied our rules into it, we

will always have 0
p t

i i

i

a a

U

−
≤∑ ∑

∑
. Thus, we have t p

i ia a≥∑ ∑ to satisfy our second rule.

The next chapter will illustrate a case study to show how the model is applied to

the real problem domain.

50

CHAPTER 4
IMPLEMENTATION

4.1 Overview
In this chapter, the case study is illustrated to present how the aspect-oriented

requirements model can be applied to the real problem. The case study is the
maintenance management system for the factory. The complete use-case model of the
system and its class diagram are described in the appendix III. In the complete
diagram of the system, there are twenty use cases, three actors. Seven associations
links between those actors to seven use cases. The thirteen remaining use cases are
linked with <<include>>, and <<extend>> relationships to those seven use cases.
Case study illustrated here is a part of the system.

Recording Fixing Details

(from Fixing Process)

View Fixing Request

(from Fixing Process)
Fixer

(from Logical View)

View At tached Notes

(from Special)

Change Fixing Status

(from Fixing Process)

Login

(from Security)

<<include>>

<<include>>

<<include>>

<<extend>>

<<extend>>

Figure 4.1 The use case diagram of the actor Fixer

There are three services served by the maintenance system for the Fixer: the

service for changing fixing status of the machine, the service for viewing the fixing
request from other employees, and the service for recording the fixing details to the
maintenance database. All fixing staffs that are granted to use this system have their

51

own user name and password for logging into the system before performing their tasks.
If the logged user does not perform any task for 15 minutes, the user session will be
expired. This makes the user to re-login. One can leave notes for any documents
displaying in the screen to other users. Figure 4.1 shows use cases diagram for the
actor Fixer.

The diagram contains three use cases that are associated with the Fixer. The

remaining use cases, Login, and View Attached Notes, are linked with those use cases
via <<include>>, and <<extend>> relationships respectively. The Login use cases are
included in all three services while the View Attached Notes use case extends two
services.

4.2 Modeling Steps
The use case diagram in Figure 4.1 is assumed to be the preliminary use cases

diagram. It will be taken as input of the process described in chapter 3. The activities
of the process are applied to the case study as follows.

4.2.1 Aspect extraction

4.2.1.1 Identify advice cases
Two advice cases are identified from the use-case model: the Login, and

the View Attached Notes use cases. They are identified as advice cases because they
links to other use cases via an <<include>>, and an <<extend>> relationships. The
Login use case links with three use cases via <<include>>, and the View Attached
Notes use case links with two use cases via <<extend>>.

4.2.1.2 Specify advice cases in the template
In this step, the advice cases details are described using the template

from Table 3.2. This results the templates shown in Table 4.7 and Table 4.8. Table 4.7
is the template for Login advice case, and Table 4.8 is the template for the View
Attached Notes advice case. Figure 4.2 shows the notations of both captured advice
cases.

52

View Attached NotesLogin

Figure 4.2 The Login and the View Attached Notes advice cases

4.2.1.3 Consider the advice cases are whether crosscut or not
The template properties Models, and Requirements are used for

considering the advice case is crosscutting or not. In this case study, the Login, and
the View Attached Notes advice cases are both considered crosscutting.

4.2.1.4 Construct a use-case selector from the template information
Use-case selectors can be created from the information of Models, and

Requirements properties of the templates. For the Login advice case, the use-case
selector will select all three services, Change Fixing Status, View Fixing Request, and
Record Fixing Details. The use-case selector for this advice case could be specified as
follows.

UseCase.servicesOfActor(Fixer)
Figure 4.3 The use-case selector selecting all services of Fixer

The advice case View Attached Notes extends two services, Change

Fixing Status, and View Fixing Request use cases. Thus, its use-case selector could be
specified as follows.

Change Fixing Status &&
View Fixing Request

Figure 4.4 The use-case selector selecting two use cases

53

 4.2.1.5 Linking with pointcut association
Referring to the templates of both Login, and View Attached Notes

advice cases, pointcut associations <<entering>> could be used to link between these
advice cases and their use-case selectors.

View Attached NotesChange Fixing Status &&
View Fixing Request

<<entering>>

LoginUseCase.servicesOfActor(Fixer)

<<entering>>

Figure 4.5 The CSM model for Login, and View Attached Notes aspects

Table 4.7 The specified template for Login
Name Login
Concern Security
Description Restricts the access to the important services of the system
Source Use cases
Crosscutting Type Functional
Priority MAX
Precedence Value 750
Obligation Mandatory
Influence Architectural, Design, Implementation
Models Use cases:

1. Change Fixing Status
2. View Fixing Request
3. Recording Fixing Details

Requirements Requirements:
1. The user should be logged in before using every service of the
system

Points Before every services

54

Table 4.8 The specified template for the View Attached Notes advice case
Name View Attached Notes
Concern Communication
Description Enable user to see attached notes if exists
Source Use cases
Crosscutting Type Functional
Priority MED
Precedence Value 750
Obligation Mandatory
Influence Implementation
Models Use cases:

1. Change Fixing Status
2. View Fixing Request

Requirements Requirements:
1. The user should be able to read the attachment of fixing requests

Points Before

4.2.2 Use-case purification process
This process is to purify the preliminary use-case model by removing the use

cases that are identified as advice cases out of the model. The advice cases are now
modeled in the CSM diagram, as in Figure 4.5, instead of the use case diagram. Figure
4.6 shows the diagram after purifying the use-case model.

After purification, there are only three use cases that are the main services of the

system, in the use-case model. This provides several advantages for further analysis.
The purification reduces the overall complexity of the use-case model.

The complexity analysis from the mathematical perspective has been discussed

in the previous chapter. The comparison of the complexity of the preliminary model with
the purified model will be discussed later in this chapter.

55

4.2.3. Aspect Realization
4.2.3.1 Map use-case selectors to start-point providers
This process is to describe the scenario of the advice cases. The results

of this process are a set of OCUM diagrams. This process maps the use-case selectors
of the aspects to the start-point providers. Figure 4.7 shows the start-point provider
linking with the dynamic start-point “login.”

Recording Fixing Details

(from Fixing Process)

View Fixing Request

(from Fixing Process)
Fixer

(from Logical View)

Change Fixing Status

(from Fixing Process)

Figure 4.6. The purified use-case model for the case study

login

Change Fixing
Status@cfs01
View Fixing
Request@vfr01
Record Fixing
Details@rfd01

Figure 4.7 The start-point provider for Login aspect

4.2.3.2 Create scenario for the advice case
The advice case Login is described in OCUM scenario. It contains two

responsibilities for retrieving System User object, and assigning it to the person attribute

56

of the new login session. Stub stacks will be placed on the paths of the services that will
be modeled in the use-case explanation process. Figure 4.8 illustrates the scenario of
the Login advice case.

<<Object>>
new Session

<<ObjectList>>
System Users

self->select(uid=$1 and pwd=$2)

self.person=$_

end point

login

Figure 4.8 The scenario of Login advice case

4.2.4 Use-case explanation
Use-cases of the system that has been purified will be specified into the OCUM

scenario in this step. The stub stacks will also be placed according to the description of
related start-point providers, and the information from the advice case templates.

4.2.5 Analysis Aspect Identification
This step is to identify analysis aspects from the scenarios. The analysis aspect

template is used for specifying details of analysis aspect. From the OCUM diagram in
Figure 4.8, the aspect Login is described as follows.

4.2.5.1 Analysis Class Identification
Analysis classes usually are identified from the component blocks

appearing in the scenario. According to the unified process [3], classes can be
classified into three categories for the further detail design. Three categories are entity,
control, and boundary. From the Login scenario, a number of classes can be captured
as follows.

57

1. Class SystemUser: this class represents a user of the system. The
class should be an entity class.

2. Class SystemUsers: this class represents a list of SystemUser. This
class should be an entity class.

3. Class Session: this class is for maintain the login session of the user.
This class should be a control class.

4. Class Person: this class is a specialization of the SystemUser. This
class should be an entity class.

Table 4.9. The analysis-level aspect Login
Name Login
Pointcuts declaration before public void *.Perform()
Advice code try {

 su := SystemUsers->select(uid=$1 and pwd=$2);
 session := new Session();
 session.person := su;
} catch (EUserNotFound e);

The steps of applying the requirements model to the case study have been

illustrated. It can be clearly observed that crosscutting artifacts can be extracted from
the main services of the system, and are modeled separately. This makes the analysis
of the main services simpler. The above steps show how to handle functional
crosscutting artifacts. Not only functional, but the nonfunctional artifacts, such as some
kinds of system properties or quality attributes, are also modeled using this approach.
Table 4.10 shows an example of specified nonfunctional crosscutting captured by the
same activities.

4.3. Summary
From the case study, two use cases are identified as crosscutting artifacts. Thus,

they are converted to be advice cases. The Numbers of tangled associations are

58

reduced significantly. The complete purified use-case model of the system is also
illustrated in the appendix III. Table 4.11 shows the comparison of purified use-case
model with the preliminary use-case model using the complexity index.

Table 4.10 Nonfunctional Crosscutting Example
Name Automatic Session Expire
Concern Security
Description Prevents other users using the logging session
Source Supplementary documents
Crosscutting Type Nonfunctional
Priority MIN
Precedence Value 1000
Obligation Optional
Influence Design, Implementation
Models Use cases:

1. Change Fixing Status
2. View Fixing Request
3. Recording Fixing Details
Advice cases:
1. Login

Requirements Requirements:
1. The user session should be expired in 2 minutes

Points Before every services

Table 4.11 Complexity comparison of the preliminary and the purified model

 Number of
Use Cases

Number of
Advice Cases

Number of
Associations Complexity Index

Preliminary
Model

20 0 27 1.35

Purified
Model 18 2 20 1.00

59

 From Table 4.11, it is clearly observed that the purifed model that are applied
our approach has the smaller complexity value that the preliminary model. Comparing
the complete system to the case study, Table 4.11 shows that our approach works
better when using it in the more complex use-case model.

The next chapter will give conclusion, and finally end with the discussion in
several open questions.

60

CHAPTER 5
CONCLUSIONS AND DISCUSSIONS

This thesis has presented the model of aspect-oriented requirements that

support the unified software development process [1, 3]. This works applies the
concept of the AOP, including join points abstraction, pointcut designators, and advice
codes. The model proposed a number of activities to helps requirements engineers
capture crosscutting concern during the early software development phase. These
activities are the aspect extraction process, the use-case purification process, and the
aspect realization process. These processes are designed to be parallel processes of
the unified process.

The aspect extraction process is to extract crosscutting requirements, both

functional and nonfunctional, out of the preliminary use-case model. A set of notations is
introduced to help capturing these crosscutting artifacts. The notations are the use-
case selector, the advice case, and the pointcut association. These notations are used
to represent aspects in the CSM diagram.

The use-case purification process is to separate the use cases that are identified

as advice cases out of the use-case model. This process is intended to simplify the
use-case model. The purified use cases could be modeled using the traditional process
of the unified process.

The aspect realization is the process for specifying the details of the advice

cases, including its scenario, start points. This process describes aspects with the
OCUM diagram. An OCUM diagram combines view of structural and behavioral into the
single map. It is based on the Use Case Maps. OCUM has been enhanced to support
AO paradigm, and better support OO paradigm. It introduced several concepts, such
as the start-point provider, the dynamic start-point, the stub stack, the parameter
symbols, and etc. The use of OCUM makes possible to model both AO, and OO
scenario in the same diagram.

61

The use-case explanation process described in this thesis also employs OCUM

for describing the scenario of use cases. Although, the scenario of use cases can be
modeled using the UML notation, such as the activity graph, but the UML itself does not
support the AO concept. With OCUM, describing use cases that are related to the AO
paradigm is much better. The processes for capturing analysis artifacts from the OCUM
are also proposed. These result the more complete software development process for
AO paradigm. The case study is illustrated to show that this AO model can be solved
the crosscutting modeling found in the real problem domain. It is clearly observed that
the purified use-case model is easier to understand and analyzed that the preliminary
model. This makes further analysis of the main services of the system much more
simpler.

Moreover, two software tools are built to support the CSM, and OCUM model.

Both software packages are created to be the Rational Rose add-ins. This makes better
integrating the AO approach to the unified process.

There are some limitations in this approach. Although, the software tools can

better support the change of requirements, the analysis of the impact of requirements
changes is not covered here. This model is intended to support only the unified
process. The generalized model of the early aspects management should further be
proposed. The software tools support only Rational Rose. This may extend to support
more modeling tools. The XMI specification proposed by OMG [24] could be
considered for using as the file format. This makes possible for other tools to process
the output of the software tools in this thesis.

Several open questions are induced by this work. Formalism of the CSM

notations could be further invented. Improvement, and refinement of the OCUM model
could be done in many ways. Consistency checking between two kinds of model, the
CSM and its equivalent scenario, the OCUM model, should be considered. Identifying
and specifying the crosscutting requirements using the natural language processing are

62

possible, since the number of templates have been defined. Conflictions resolving
among the aspects should be considered. There are some works in progression [9, 8]
that investigate this approach. However, an automatic process is still needed. The
standard crosscutting notations should be proposed to be part of the UML.

63

REFERENCES

1. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development
Process. The Addison-Wesley Object Technology Series. 1999: Addison-Wesley.

2. Kotonya, G. and I. Sommerville, Requirements Engineering: Processes and
Techniques. 1997, Chicester: John Wiley & Sons Ltd. 282.

3. Rational, The Rational Unified Process. 2002, Rational Software.
4. AOSD.NET, AOSD.NET Homepage. http://www.aosd.net, AOSD.NET.
5. Kiczales, G., et al. Aspect-Oriented Programming. Proceedings European Conference

on Object-Oriented Programming. 1997: Springer-Verlag.
6. OMG, The Unified Modeling Language Specification version 1.5. 2003, Object

Management Group. http://www.omg.org/uml.
7. Xerox, AspectJ Homepage. http://www.aspectj.org/, Xerox Parc.
8. Rashid, A., et al. Early Aspects: A Model for Aspect-Oriented Requirements

Engineering. IEEE Joint Conference on Requirements Engineering. 2002. Essen,
Germany: IEEE Computer Society Press.

9. Araujo, J., et al. Aspect-Oriented Requirements with UML. UML 2002. 2002.
10. Moreira, A., J. Araujo, and I. Brito. Crosscutting Quality Attributes for Requirements

Engineering. 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2002). 2002. Italy: ACM Press.

11. Chung, L., et al., Non-Functional Requirements in Software Engineering. 2000:
Kluwer Academic Publishers.

12. Malan, R. and D. Bredemeyer, Defining Non-Functional Requirements,
http://www.bredmeyer.com/papers.htm.

13. Clark, R. and A. Moreira. Constructing Formal Specifications from Informal
Requirements. Software Technology and Engineering Practice. 1997: IEEE
Computer Society Press.

14. JavaSoft, Java 2 Platform, Enterprise Edition http://www.javasoft.com/j2ee, Sun
Microsystems.

15. OMG, The UML Profile for CORBA, v 1.0. 2001, Object Management Group.
http://www.omg.org/technology/documents/formal/profile_corba.htm.

64

16. Conallen, J., Building Web Applications with UML. The Addison-Wesley Object
Technology Series. 1999: Addison Wesley.

17. Slic, B., G. Gullekson, and P. War, Real-Time OO Modeling. 1995: John Wiley &
sons.

18. Buhr, R.J.A., Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering, 1998. 24(12): p. 1131-1155.

19. Buhr, R.J.A. and R.S. Casselman, Use Case Maps for Object-oriented Systems.
1995: Prentice Hall.

20. Amyot, D. and G. Mussbacher. On the Extension of UML with Use Case Maps
Comcepts. <<UML>> 2000, 3rd International Conference on the Unified
Modeling Language. 2000. York, UK.

21. Stein, D., S. Hanenberg, and R. Unland. A UML-based Aspect-Oriented Design
Notation for AspectJ. Conference of Aspect-Oriented Software Development.
2002. Easchede, The Netherlands: ACM.

22. Kaewkasi, C. and W. Rivepiboon. Aspect-Oriented Extension for Capturing
Requirements in Use-Case Model. The International Conference CAiSE'03
Forum. 2003. Austria: CAiSE'03.

23. Kaewkasi, C. and W. Rivepiboon. WWM: A Practical Methodology for Web
Application Modeling. The 26th Annual International Computer Software and
Applications Conference. 2002. Oxford: IEEE Computer Society.

24. OMG, XML Metadata Interchange (XMI) Specification, version 1.2. 2002, Object
Management Group. http://www.omg.org/technology/documents/formal/xmi.htm.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Problem Statements and Motivation
	Objective
	Scopes of the Research
	Steps of Research
	Contribution

	Chapter 2 Literature Reviews
	Related Works
	Related Theory

	Chapter 3 Conceptualization
	Aspects-Oriented Requirements Model
	Crosscutting Stack Model
	Object/Crosscutting/Use Case Maps
	Mathematical Perspective

	Chapter 4 Implementation
	Overview
	Modelling Steps
	Summary

	Chapter 5 Conclusions and Discussuions
	References
	Appendices
	Appendix I Software Tools
	Appendix II Rational Rose Add-in Implementation
	Appendix III Problem Domain For Case Study

	Biography

