

����ก�����	
��
��ก��	�����
������ก�����
���������������������	��������

��� ���

���� !"#���

��
����#����$%	!&�
�����'(�)��ก���'ก*����� �ก
+��!��,,�����ก�����
�������-.��

�)���/�ก�����ก��
������ก��� �+��������0+��0��
������ก�������ก��1 ��

�-�����ก�����
��� �23� �ก�-������
�� ��
!4ก���'ก*� 2550

 �)
�
��5)���23� �ก�-������
�� ��

VEHICLE ROUTING SYSTEM FOR DAILY MEAL DELIVERY WITH

MOTORCYCLES

Mr. Thanat Suensilpong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Engineering Management

Regional Centre for Manufacturing Systems Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2007

Copyright of Chulalongkorn University

 vi

ACKNOWLEDGEMENTS

Firstly, the author wishes to thank Assistant Professor Manop Reodecha,

thesis advisor, for his invaluable advice with warm encouragement. The author is also

grateful to the members of thesis committees, Professor Sirichan Thongprasert and

Assistant Professor Paveena Chaovalitwongse for their kind and helpful comments.

Furthermore, the author would like to thank Mr. Viroj Putvithee, members

of Water Pacific Part., Ltd. and National Electronics and Computer Technology Center

for supporting the vehicle routing software used in this thesis.

Finally, the author would like to thank to his families, friends, and

teachers for their supports, understanding and encouragement throughout the study

course.

CONTENTS

 Page

THAI ABSTRACT �����������������������������.. iv

ENGLISH ABSTRACT ���������������������������.. v

ACKNOWLEDGEMENT��������������������������� vi

CONTENTS �������������������������������� vii

LIST OF TABLES������������������������������ x

LIST OF FIGURES�����������������������������. xi

CHAPTER I INTRODUCTION ������������������������. 1

1.1 Background ��������������������������....... 1

1.2 Thesis Objectives �������������������������.. 2

1.3 Scope of the Research and Assumptions���������������. 2

1.4 Methodology���������������������������� 4

1.5 Expected Benefit�������������������������� 4

CHAPTER II LITERATURE REVIEW���������������������� 5

2.1 Shortest Path Problem �����������������������.. 5

2.1.1 Solutions Techniques��������������������� 6

2.1.1.1 Single-source Algorithms�����������������.. 6

• Dijkstra8s Algorithm �������������������� 6

• Bellman-Ford Algorithm������������������. 7

• A* search Algorithm �������������������.. 7

2.1.1.2 All-pairs Algorithms �������������������� 9

• Floyd-Warshall Algorithm������������������ 9

• Johnson's Algorithm�������������������� 13

2.2 Vehicle Routing Problem����������������������� 13

2.2.1 Solution Techniques���������������������.. 15

2.2.1.1 Exact Approaches��������������������.. 15

• Linear Programming �������������������.. 15

 Page

viii

• Dynamic Programming������������������.. 16

• Branch and Bound ��������������������. 16

2.2.1.2 Heuristic Approaches ������������������� 16

2.2.1.2.1 Constructive Methods���������������.. 16

• Nearest Neighbor Algorithm��������������.. 16

• Nearest Insertion Algorithm��������������� 17

• Savings Algorithm������������������� 17

2.2.1.2.2 Multi-route Improvement Heuristics ���������.. 19

• Thompson and Psaraftis ���������������� 19

• Van Breedam��������������������� 19

• Kinderwater and Savelsbergh �������������.. 19

2.2.1.2.3 2-Phase Algorithms ����������������.. 20

• Cluster-First, Route-Second ��������������.. 20

• Route-First, Cluster-Second ��������������.. 20

2.2.1.3 Metaheuristic Approaches����������������� 20

• Ant Colony Optimization (ACO)��������������� 20

• Genetic Algorithms��������������������. 20

• Simulated Annealing�������������������.. 21

• Tabu Search ����������������������� 22

2.3 Applications of Theories����������������������� 23

2.4 Conclusion����������������������������.. 25

CHAPTER III PROBLEM FORMULATION AND MODELLING, AND SOFTWARE

DEVELOPMENT ������������������������ 26

3.1 Problem Description ������������������������. 26

3.2 Problem Modelling Concept���������������������. 27

3.3 Model������������������������������� 30

3.3.1 Inputs ���������������������������.. 30

 Page

ix

• Customers8 locations���������������������. 30

• Customers8 demands��������������������� 30

3.3.2 Computation ������������������������.. 30

3.3.3 Outputs��������������������������� 32

3.4 Software Development �����������������������. 32

3.5 System Validation �������������������������.. 38

3.6 Procedure of Operating the Vehicle Routing System ����������. 43

3.7 Conclusion����������������������������.. 48

CHAPTER IV SYSTEM EVALUATION ��������������������� 49

4.1 Evaluation Procedure������������������������ 49

4.2 Test Input Data ��������������������������.. 50

4.3 Results and Discussion ����������������������� 53

4.3.1 Results���������������������������. 53

4.3.2 Discussion �������������������������. 55

4.4 Conclusion����������������������������.. 59

CHAPTER V CONCLUSION AND RECOMMENDATIONS������������. 61

5.1 Conclusion����������������������������.. 61

5.2 Recommendations ������������������������� 64

REFERENCES ������������������������������.. 66

APPENDIX Route Details from Routing Program ���������������� 70

BIOGRAPHY �������������������������������.. 86

LIST OF TABLES

 Page

x

Table 3.1: Results from running the developed system with A set of the instances

with comparison . 40

Table 3.2: Results from running the developed system with B set of the instances

with comparison . 41

Table 3.3: Results from running the developed system with P set of the instances

with comparison . 42

Table 4.1: Customer&s data used for testing 50

Table 4.2: Routes summary of result from the test . 53

Table 4.3: Routes summary of result from the time frame adjustment 56

Table 4.4: Routes summary of result from the first drop-off time adjustment . 58

Table 4.5: Routes summary of result from the second drop-off time adjustment . 59

Table 4.6: Traveling time to last customer, re-calculated from the test with drop-off

time of 1 minute 45 seconds 59

Table A.1: Route details from a run of the routing program with initial conditions ... 71

Table A.2: Route details from a run of the routing program with relaxation of time

frame or drop-off time of 1:30 minute 76

Table A.3: Route details from a run of the routing program with drop-off time of 1:45

minute .. 81

LIST OF FIGURES

 Page

xi

Figure 1.1: Depot�s location ������������������������� 1

Figure 2.1: A weighted network with negative arc ���������������. 5

Figure 2.2: Dijkstra�s algorithm …………………………………………………………. 7

Figure 2.3: A* search algorithm �����������������������. 7

Figure 2.4: An example of shortest path problem ���������������.. 8

Figure 2.5: Concept of Floyd-Warshall algorithm���������������� 9

Figure 2.6: An example of shortest path problem ���������������.. 11

Figure 2.7: RCM procedure ������������������������� 11

Figure 2.8: RCM procedure (cont.)���������������������� 12

Figure 2.9: An example of VRP �����������������������.. 14

Figure 2.10: An example of VRP solution �������������������. 14

Figure 2.11: Merging routes of Savings algorithm ���������������. 18

Figure 2.12: Problematic case for Savings algorithm��������������. 18

Figure 2.13: Example of 3-cyclic, 2-transfer ������������������ 19

Figure 2.14: Pseudo code of tabu search ������������������� 22

Figure 3.1: Flow chart of finding solution for the vehicle routing system ������ 29

Figure 3.2: Initial route for each customer������������������� 31

Figure 3.3: Calculate saving value of the existing software �����������.. 33

Figure 3.4: Calculate saving value of the existing software for route with 2

customers ���������������������������. 34

Figure 3.5: Case of having several customers in same edge ����������.. 35

Figure 3.6: Problem of selecting start node and target node from direct distance �.. 36

Figure 3.7: Problem of ignoring distance from road intersection to customers���. 36

Figure 3.8: Consideration of alternative node of edge and distance between road

intersection and delivery customer for shortest path finding������ 37

Figure 3.9: Calculating distance between customers in same edge �������.. 38

Figure 3.10: Example of input file of problem instances������������� 39

Figure 3.11: Road map and delivery point editor dialog������������� 44

Figure 3.12: Customer information dialog for adding customer ���������.. 45

LIST OF FIGURES

 Page

xii

Figure 3.13: Added customer icon ���������������������� 45

Figure 3.14: Delete Customer dialog ��������������������� 46

Figure 3.15: Vehicle routing dialog���������������������� 46

Figure 3.16: Dialog for assigning parameters �����������������. 47

Figure 3.17: Order information page���������������������. 47

Figure 4.1: Distribution of Demand���������������������� 49

Figure 4.2: Location of potential customers used for testing ����������� 52

Figure 4.3: Example of entering customer order ���������������� 54

Figure 4.4: Running the system after entering the orders ������������. 54

Figure 4.5: Result of the software ����������������������.. 55

Figure 4.6: Displayed the result in the Bangkok road map������������ 55

Figure 4.7: Arrival time for each customer, generated by the program ������. 57

CHAPTER I

INTRODUCTION

Vehicle Routing Problem (VRP) is an important problem in operation

management which has been studied both in theory and practice. Vehicle routing for

delivering daily meal is a sub-classified problem which involves applying vehicle routing

theories to the food delivery business.

1.1 Background

A company plans to start a breakfast delivery business in Bangkok. A

critical success factor of the business besides the quality of the food is its delivery

performance which must be punctual and efficient. It is necessary to have an effective

vehicle routing system. Although vehicle can be routed by hand, the result sometimes is

not good enough compared with the one from computerized system.

The company has set up a plan of using motorcycles for the delivery

operation. The purpose of applying the motorcycles is that it is flexible and suitable to

the congested condition of the traffic in Bangkok city. The company is able to hire any

number of motorcycles with weekly agreements that include weekly fixed charge for the

agreed working time and additional charge that is based on the distance of delivery

route. Each morning, the hired motorcycles will come to the company(s depot to fix

containers of boxed meals on them for delivery on the route prescribed by the company.

Figure 1.1: Depot(s location

2

The company(s depot is located in the area near Rama IX Road and

Srinakarintra Road as shown in Figure 1.1. The delivery covers an area of approximately

5 kilometre radius around the depot. The routing distance can be calculated from the

map image of Google Map®. The time frame of the delivery operation is from 5:00 am to

6:30 am by which the last customer must receive his meal box. Therefore, motorcycles

must reach to the depot within 4:45 am in order to fix the containers on the motorcycles.

Each container can be loaded up to 40 meal boxes. The agreed payment includes

weekly fixed charge of Baht 1,750 and Baht 1.10 per kilometre for the additional charge.

The factors that affect effectiveness of the vehicle routing system

include: the appropriate size of the vehicle fleet, and the total travelling distance of all

deliveries. The system also requires accurate data and procedure, with proper tools, to

determine effective routing.

1.2 Thesis Objectives

The purpose of the thesis is to develop a vehicle routing system for the

case company to minimize the fleet size and the total travel distance for the vehicles in

order to deliver daily meals to all customers within the defined time frame. The delivery

has to be done under the conditions that each vehicle must not deliver more than a

specified number of points and must not take longer travelling time than the specified

time frame.

1.3 Scope of the Research and Assumptions

The scope of this thesis includes:

1. Finding a method for problem solving.

2. Modelling the problem.

3. Implementation of the model and the solution in

computerized simulation program.

3

4. Data preparation for the system.

5. Formulating the procedure for the company to operate the

program.

6. Testing validity of the model and the solution with publicized

benchmark.

The thesis has the following assumptions:

1. Delivery points may be changed weekly but not during the

week.

2. Motorcycles are hired for one trip per day.

3. Every motorcycle has the maximum capacity of 40 orders.

4. The company is able to find the motorcycles with no

limitation.

5. Expenditures for motorcycles include Baht 1,750 for weekly

fixed charge and Baht 1.10 per kilometre for delivery charge

related to the transportation distance which is calculated from

the map image of Google Map®.

6. Irregularities, such as accidents and closing routes, are

neglected from the computational model.

7. The routes exclude the expressway and the motorway due to

traffic regulations.

8. Small roads have two-way traffic.

9. Main streets have dividing islands with one-way traffic for

either side.

4

10. Since deliveries use motorcycles and delivery time is in the

morning (5 am ; 6.30 am), the conditions of traffic may be

neglected from calculating travelling time. The average

velocities of motorcycles are 25 kilometre per hour along

small roads and 45 kilometre per hour along main streets.

11. Time spent with each customer is 2 minutes.

1.4 Methodology

Methodology for the thesis is described as following:

1. Study related materials regarding the vehicle routing

problem, methods for solving the problem and select a

method (CHAPTER II)

2. Define computational model for the shortest path algorithm

and the selected method (CHAPTER III)

3. Design and implement simulation program and test validity

(CHAPTER III)

4. Develop the program and procedures for the company

(CHAPTER III)

5. Evaluate the program for validity of solutions (CHAPTER IV)

1.5 Expected Benefit

It is expected that the system will help the company to operate its

business with low cost. Furthermore, it is hoped that the system will be beneficial to

other businesses that have similar delivery/collection problems

CHAPTER II

LITERATURE REVIEW

This chapter describes theory related to the problem are being studied.

It also describes some recent applications of the theories.

Vehicle routing system in this thesis is implemented with real road

network. The problem consists of two important computational problems which are the

shortest path problem and vehicle routing problem.

2.1 Shortest Path Problem

Shortest Path Problem, as described by Paul A. Jensen [8], Jesper

Larsen and Jens Clausen [9], is a problem associated with network consisted of nodes

and arcs. As shown in Figure 2.1, nodes, called as vertices in [9], in the network are

connected by arcs, or edges [9]. The arcs are weighted and can be both directed and

undirected. The weight of each arc can be either positive number or negative number.

However, because roads have only positive length, networks which are used for

transportation problems include only nonnegative arcs. The objective of the problem is

to find the shortest path from a source node to a destination node.

 Figure 2.1: A weighted network with negative arc [10]

6

There are many researches that describe techniques of finding a solution

for the problem. According to the reviewed literature, solution techniques for this

problem are described in the following section.

2.1.1 Solution Techniques

There are many techniques used to find a solution for the shortest path

problem. The techniques [11] are classified by type output into single-source algorithms

and all-pairs algorithms.

2.1.1.1 Single-source algorithms

Single-source algorithms are used to find a solution from a source node

to all other node the network [11]. The well-known algorithms for this category are as

follows [11]:

• Dijkstra's Algorithm

The algorithm is named after its discoverer, Edsger Dijkstra [13].

It is a greedy algorithm which solves the single-source shortest path problem for a

directed graph with non negative edge weights.

As described in [13], the algorithm works by keeping the cost

d[v] of each node v. These costs represent the shortest path between source node s

and v. Procedures of the algorithm are described as following:

1. Set the cost for source node s to 0 and infinity for all other

nodes.

2. Select a node which has lowest cost from the nodes that

has not been scanned.

3. For each neighbor v of u, check to see whether the cost

for node v, which includes node u in the path, is better

than the current value. If this new path is better, update

the cost with the new lower value.

According to [13] and [14], the original Dijkstra(s algorithm uses

an ordinary linked list or array to store un-scanned nodes and linear search with running

time of O(n
2
), where n is the number of nodes, is required to find the lowest cost. For

7

more efficient implementation of the algorithm, different data structures are used such

as binary heap, pairing heap, or Fibonacci heap. In addition, Dial (1969), cited in [14]

and [15], is the first one who implement the Dijkstra(s algorithm using the bucket data

structure. As a result of his method, Dijkstra(s algorithm is one of the fastest algorithms

which solve the shortest path problem, as described in [15] and [16].

• Bellman-Ford Algorithm

The algorithm has an advantage over Dijkstra(s algorithm that it

can solve the problem with negative edge weights, according to [17]. It is described

that the algorithm should be used only the problems which have negative edge weights

because running time of this algorithm is higher than one of the Dijkstra(s algorithm

when solve the same problem. However, Bellman-Ford algorithm cannot solve the

problems which contain a cycle of total negative weight.

Principle of Bellman-Ford algorithm is similar to Dijkstra(s

algorithm, but it simply scans all edges for n-1 times, where n is the number of nodes,

instead of choosing the node with minimum cost to process. Therefore, the algorithm

runs in O(nxm), where n and m are the number of nodes and edges respectively.

• A* search Algorithm

A* search algorithm uses the greedy concept which is similar to

the one used by Dijkstra(s algorithm. However, according to [18] and [19], instead of

using only the cost from source node

to node v, it also uses estimation of

cost from the node v to the

Figure 2.2: Dijkstra’s algorithm [19]

Figure 2.3: A* search algorithm [19]

8

destination node in the node selection. As described in [19], this algorithm can often do

better than Dijkstra(s Algorithm because Dijkstra does not take the destination location

into account like A* search, as shown in Figure 2.2 and Figure 2.3.

The most important part of A* algorithm is estimating the cost to

the destination. Heuristic function is commonly used for calculation of the value.

Calculating the value depends on type of problem. Particularly, for the shortest path

problem on road network, similar to the problem shown in Figure 2.4, the straight-line

distance to the goal is used as the heuristic value, as described in [19] and [20].

Furthermore, it is described in [18] and [19] as follow:

• A heuristic function is admissible if it never overestimates the distance to the

goal vertex. For example, when the heuristic function is applied to the goal vertex

itself, it must return zero. Admissibility ensures that when the goal vertex is first

reached by the search, the path used is an optimum path. In the MapQuest

example, Euclidean distance (distance as the crow flies) between the given vertex

and the goal is admissible.

• A heuristic function is monotonic if the combined distance+heuristic from the

initial vertex never decreases along any path. This is actually a stronger property

than admissibility: if a function is monotonic, it must also be admissible.

The time complexity of the algorithm depends on the calculation

of heuristic [18] which can range from polynomial to exponential of the length of the

solution. It is polynomial when the heuristic function h meets the

condition,
() () ()()* *logh x h x O h x− ≤

 where h * is the optimal heuristic, i.e. the exact

Figure 2.4: An example of shortest path problem [20]

9

cost to get from x to the goal. It is reinforced by Russell and Norvig(s statement (2003),

cited in [18], that the error of the heuristic function should not grow faster than the

logarithm of the Gperfect heuristicH that returns the true distance from a node to the

destination.

In addition, its consumption of memory is enormous [18] which

can be an exponential number of nodes. Therefore, there are many variants developed

to cope with this problem such as iterative deepening A* (IDA), memory-bound A* (MA),

and etc.

2.1.1.2 All-pairs Algorithms

Shortest path between every pair of nodes in the network is the output

from all-pairs algorithms. Beside running single-source algorithm several times, the well-

known algorithms for this category are as follow:

• Floyd-Warshall Algorithm

Floyd;Warshall algorithm is an example of dynamic programming

[21]. The idea is that the shortest path between node i and node j has to pass

intermediate nodes including nodes 1 to k, [10] and [21]. We have to consider whether

to choose the node k in the path by comparing the distance between node i and node j,

which intermediate nodes include nodes 1 to k-1, with the distance from node i to node

k and distance from node k to node j which includes nodes 1 to k-1 in the intermediate

nodes. Figure 2.5 illustrate the concept of Floyd-Warshall.

Figure 2.5: Concept of Floyd-Warshall algorithm [10]

10

Consider a function shortestPath(i,j,k) as the shortest possible path from i to j using only

vertices 1 through k as intermediate points along the way. The concept of Floyd-

Warshall can be shown in following formula [21]:

() () () ()()
() ()

, , min , , 1 , , , 1 , , 1 ;

, ,0 , ;

shortestPath i j k shortestPath i j k shortestPath i k k shortestPath k j k

shortestPath i j edgeCost i j

= − − + −

=

For the time complexity, this algorithm can solve the problem

within O(n
3
) which is consider as a good algorithm for all-pairs shortest path problem

[21].

In addition, the algorithm is called GRevised Cascade Method

(RCM)H in [3] and [6]. The authors also describe how to find all the shortest paths by

hands as following:

1. Assign numbers to each node from 1 to n

2. Let D
0
 represent the metric of cost from node i to node j

(dij) where dii= 0 and dij= ∞ if there is no edge from node

i to node j. Let R
0
 the metric of next node in shortest path

and j is initially assigned for each value of rij
0
. The k value

initially equals to 1.

3. In D
k-1

, draw 2 lines vertically cross the column k and

horizontally cross the row k. If there is a dik which equals

to infinity in the vertical line, draw a horizon line cross the

row i. Similarly, if there is an infinity in the horizontal line, a

vertical line has to be drawn cross that infinity. For the rest

of dij
k-1

, the value of dij
k
 can be calculated by comparison

between dij
k-1

 and dik
k-1

+ dkj
k-1

. Therefore, value of dij
k
 can

be divided in 2 cases as following:

• If dik
k-1

+ dkj
k-1

 is lower than dij
k-1

, let dij
k
= dik

k-1
+

dkj
k-1

 and rij
k
= k.

• If dij
k-1

 is lower than dik
k-1

+ dkj
k-1

, let dij
k
= dij

k-1

and rij
k
= rij

k-1
.

11

4. Increase the value of k by 1. If k < n, go back to step 3

until k = n.

D
n
 and R

n
 are the solution resulted from the method. Furthermore,

example of shortest path problem is shown as below.

It can be transformed into metrics as following.

2 4

1

5

3 3

12
1 1

1 4

Figure 2.6: An example of shortest path problem (adapted from [3])

Figure 2.7: RCM procedure [3]

12

Figure 2.8: RCM procedure (cont.) [3]

13

As shown in Figure 2.8, D
5
 and R

5
 are the result from the method.

D
5
 tells the minimum cost between node i and node j, while R

5
 tells nodes in that shortest

path.

For example, shortest path from 3 to 2 costs 7. The path starts

from r32 = 5, r52 = 4, r42 = 2. It is therefore 3, 5, 4, 2. Additionally, cost of path from 2 to 5

is 3. The path start from r25 = 3, r35 = 5, so it is 2, 3, 5.

• Johnson's Algorithm

Johnson(s algorithm is an all-pairs shortest path algorithm. The

algorithm is suitable for a sparse graph with some negative edge weights [22] because

Bellman-Ford algorithm is a part of the algorithm. Its time complexity is

()2 logO V V VE+ , where V and E is the number nodes and edges respectively. The

procedures of its implementation [21] are as follows:

2.2 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) [2] is a problem of determining a set

of routes for a fleet of vehicle based at one of several depots for a number

geographically dispersed cities or customers. The objective of the VRP is to deliver

goods to a set of customers with minimum cost which depend on vehicle routes

originating and terminating at a depot. An example of VRP problem and one of its

possible outputs are shown in the figures below.

First, it adds a new node with zero weight edge from it to all other nodes, and runs

the Bellman-Ford algorithm to check for negative weight cycles and find h(v), the

least weight of a path from the new node to node v. Next it reweights the edges

using the nodes' h(v) values. Finally for each node, it runs Dijkstra's algorithm and

stores the computed least weight to other nodes, reweighted using the nodes' h(v)

values, as the final weight.

14

According to [2], the VRP is a well known NP Hard integer programming

problem which means that the computational time required for solving the problem

increases exponentially with the problem size. In order to save computational time and

get sufficient accuracy, approximate solutions are usually obtained.

VRPs in the real world have many side constraints such as capacity,

delivery time, demands. These constraints derive VRP into many variants. Some of the

most important restrictions [2] are:

Customers

Figure 2.9: An example of VRP, adapted from [2]

+

+

Depot

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+
+

Customers

Vehicle route

Figure 2.10: An example of VRP solution, adapted from [2]

Depot

+

+

+ +

+

+

+

+

+

+
+

+

+

+
+

+ +

15

• Every vehicle has a limited capacity (Capacitated VRP ; CVRP)

• Every customer has to be supplied within a certain time window

(VRP with time window ; VRPTW)

• The vendor uses many depots to supply the customers (Multiple

Depot VRP ; MDVRP)

• Customers may return some goods to the depot (VRP with Pick-

Up and Delivering ; VRPPD)

• The customers may be served by different vehicles (Split Delivery

VRP ; SDVRP)

• Some value (like number of customers, their demands, serve time

or travel time) are random (Stochastic VRP ; SVRP)

• The deliveries may be done in some days (Periodic VRP ; PVRP)

2.2.1 Solution Techniques

VRP is a computational problem which has been studied for over 40

years. Because the minimum solution cannot be guaranteed to be found within

reasonable computing time [2], there is no further study on exact algorithms. Therefore,

the techniques used to find a solution for VRP mostly are heuristics and metaheuristics

[2]. The solution techniques can be classified as following:

2.2.1.1 Exact Approaches

The best solution is given by these approaches. However, the

techniques consume too much time, so they can be used for VRP with certain number of

customers. This depends on technique used to find the solution as following:

• Linear Programming

This technique has been used to solve many problems including

VRP. As described in [1, 3, 4], the approach solves only small-sized VRP which can be

16

formulated into linear equation. The maximum problem size which can be solved by this

approach is 42 cities. The technique which can solve the problem with size of 42 cities

was proposed by Dantzig, Fulkerson and Johnson (1954, cited in [1]). However, this

method can be used with only symmetric problems.

• Dynamic Programming

This technique was developed by Bellman Gonzales Zubieta

(1962, cited in [1, 3]). As described by Pongpaut Totrakool [4], this technique finds a

best solution by determining a solution for each node added to the routes. On the other

hand, Held and Krap (1962, cited in [1, 3]) mentioned that this method is effective but it

cannot solve the problem with size more than 13 customers due to limitation of computer

memory and computation time.

• Branch and Bound

As described in Wikipedia [5], this method was first proposed by

A. H. Land and A. G. Doig in 1960. According to Bernabé Dorronsoro Diaz [2] and

Wikipedia [5], the concept of this technique is to divide a problem into subproblems and

then optimizes each subproblem individually. Krisakrai Manimmanakorn [6] described

that this approach is suitable for problem with up to 25 cities. However, Fisher (1994,

cited in [2]) proposed a K-tree method which succeeds in solving a problem with 71

cities.

2.2.1.2 Heuristic Approaches

The approaches were developed from the idea of saving computational

time which is much lower than the exact approaches. Heuristic approaches are

classified in 2 categories as follows:

2.2.1.2.1 Constructive Methods

Constructive methods [2] build a feasible solution gradually with

computation of solution cost. However, the methods do not include the improvement

phase. Algorithms in this category are described as following:

• Nearest Neighbor Algorithm

As described by Sean L. Forman [7] and Orawan

Tunsitijareankun [1], this method is a greedy algorithm. It begins at the depot and then

17

selects the closet node to visit. It then travel from the last visited node to the closet node

from the remaining unvisited node and repeat the procedure until the tour is completed.

Effectiveness of this algorithm can be shown as following:

[]2

Length of nearest neighbor tour 1 1
log

Length of optimal tour 2 2
n≤ +

• Nearest Insertion Algorithm

The method was first introduced by Rosenkrantz, Stearns

and Lewis (1974), cited in [1] and [24]. The algorithm chooses a node closest to any

node in the sub-tour to insert in the tour. Procedures of the method [1] [24] can be

described as following:

1. Start a sub-graph with one node

2. Find node j with minimum cost from i to j and form sub-

tour, i-j-i.

3. Choose node k which is closest to any node j in the

sub-tour.

4. Find an edge (i,j) which minimizes dik+dkj-dij and insert

k between i and j.

5. Repeat step 3 and 4 until all nodes are included in the

tour.

The ratio of solution from this method to the optimal

solution is as follow.

Length of nearest insertion tour
2

Length of optimal tour
≤

• Savings Algorithm

This method was introduced by Clarke and Wright (1964),

as described in [1] [2] [3] [4] [6]. As described in [3] and [6], it is a simple algorithm

which is easy to understand. Due to its character, it is one of the most known heuristic

for VRP [2]. The idea of this method is merging two routes (0,Q,i,0) and (0,j,Q,0) into a

single route (0,Q,i,j,Q,0) with distance saving sij= ci0+c0j-cij. Figure 2.11 shows the idea

18

of the method. According to the literature review, procedures of the method can be

summarized as following:

1. Calculate sij= ci0+c0j-cij for i j = 1,Q,n , i ≠ j and 0 refer

to depot

2. Create n vehicle routes (0,i,0) for i=1,Q,n

3. Sort sij in descending order

4. Create sub-tour using point i and j with highest sij

5. Repeat step 4 until finish the tour

In addition, there are some further developments of

Savings algorithm which solve problems found in the traditional algorithm. For example,

Matching Based Savings Algorithm, which was introduced by M. Desrochers and T. W.

Verhoog, cited in [2] and [25], is designed according to the idea that the traditional one

just combine two routes from point i to point j rather than rearrange the whole set in

order to optimize overall cost. The case which has the problem is shown in Figure 2.12.

Figure 2.12: Problematic case for Savings algorithm [25]

i i

j j

Figure 2.11: Merging routes of Savings algorithm

ci0
c0j

cij

19

Another variant, which was introduced by K. Altinkemer, and B.Gavish (1991), cited in

[2] and [25], was developed from the problem of un-merged routes of the savings

algorithm.

2.2.1.2.2 Multi-route Improvement Heuristics

As described in [2], algorithms in this category improve a

feasible solution by exchanging edges or node within or between vehicle routes. The

algorithms are described in three researches as follows.

• Thompson and Psaraftis

The authors described the concept of Gb-cyclic, k-transferH [2]. The concept is that b

routes are selected and k customers from each selected route are shifted to the next

route of the cyclic permutation. The 3-cyclic 2-transfer operator is shown in the Figure

2.13.

• Van Breedam

Van Breedam classifies the improvement operations as

"string cross", "string exchange", "string relocation", and "string mix", which can all be

viewed as special cases of 2-cyclic exchanges, as described in [2].

• Kinderwater and Savelsbergh

The authors also described methods of improvement

using exchanging nodes. Three main operations are customer relocation, crossover,

and customer exchange [2]. Tours are not considered in isolation. Therefore, both

edges and nodes are exchanged between different tours.

Figure 2.13: Example of 3-cyclic, 2-transfer [2]

20

2.2.1.2.3 2-Phase Algorithms

2-Phase Algorithm is divided into 2 types as following:

• Cluster-First, Route-Second

These algorithms divide delivery points into groups then

find a solution for each group. As described in [2], the methods include Fisher and

Jaikumar(s method, Sweep algorithm, Petal algorithm and Taillard(s algorithm.

• Route-First, Cluster-Second

As described in [2], these methods construct a giant tour

of TSP then divide it into vehicle routes in the second phase. Orawan Tunsitijareankun

[1] describes the School Bus Routing Approach which is one of the Route-First, Cluster-

Second methods.

2.2.1.3 Metaheuristic Approaches

Metaheuristic approaches, as described in [2], emphasizes on

performing a deep exploration of the most promising regions of the solution space. It is

also stated in [2] that quality of the solutions resulted from metaheuristics is much better

than that obtained from classical heuristics. Commonly used metaheuristics for vehicle

routing problem are described as following:

• Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO), according to Marco Dorigo [26],

is a class of optimization algorithms inspired from the behavior of real ant colonies. The

first algorithm in this class was introduced by Marco Dorigo in 1992, and was called GAnt

SystemH (AS). The algorithm was initially applied to the travelling salesman problem, and

to the quadratic assignment problem. As described in [2], the algorithm has two phases:

construction of vehicle routes and trail update. Additionally, more algorithms in ant

colony optimization were developed [26] such as Ant Colony System (ACS), MAX-MIN

Ant System (MMAS), and particularly hybrids version of ant colony optimization with

local search.

• Genetic Algorithms

Genetic algorithm (GA) is one of well-known metaheuristic

approaches. Particularly, as described in [2], it is likely to be the most widely known

21

type of the category. According to Bräysy (2001) [12], its basic concept are developed

by Holland (1975) and practical application was demonstrated by De Jong (1975) and

Goldberg (1989), as described in [2] and [12]. The core idea of the algorithm is about

Gsurvival of the fittestH which includes mechanics of natural selection and natural

genetics used to evolve solutions to problems. In order to use the genetic algorithm,

solution must be formed in string similar to chromosome. For example, a solution for

vehicle routing problem can be as G7 → 8 → 9 → 11 → 12 → 2 → 3 → 1 → 4

→ 5 → 6 → 10H where numbers represent delivery point.

According to the literature, [2], [12], [29] and [30], the operation

of genetic algorithm is consisted of three operators: selection, reproduction and

mutation. Firstly, individuals within a population are selected based on their fitness to

reproduce new offspring for the new population which combines characteristics of their

parents. According to Bräysy [12], combining characteristics potentially create a child

with better fitness which ensures the survival of their descendants. In addition, mutation

is performed with low probability [12]. With mutation, chromosomes are manipulate

randomly. K.C. Tan et al. [30] stated that the main objective of mutation is to avoid

becoming homogeneous of the population which leads to local optimum. Randomness

of mutation process increases the variance of the population.

There are many researches in genetic algorithm due to the

problem of time consumption the method, resulting in the creation of many variants of

the method. The researches, described in [2], [29] and [30], focus on all aspects of the

algorithm including representation of solution, selection process, reproduction process

and mutation process.

• Simulated Annealing

As described in [2], Simulated Annealing (SA) is a stochastic

relaxation technique originated in statistical mechanics. It is based on characteristic of

annealing process of solids, where a solid is heated to a high temperature and gradually

cooled in order for it to crystallize in a low energy configuration. The method uses a

multi-routes improvement heuristics to find another solution. If the new solution is better

than the existing one, it will use it with no condition. On the other hand, if the new one is

22

worse, it depends on a value T which is described in [2] as the temperature of the

annealing. The probability of refusing the worse solution is /Tp e−∆= , where

() (')f x f x∆ = − .

• Tabu Search

Similar to Simulated Annealing, Tabu Search also uses the

improvement methods to find a solution, as described in [2], [27] and [28]. Hertz et al.

[27] states that It was first presented in its present form in 1986 by Glover. As described

in [2], [27] and [28], tabu search is one of well-known metaheuristics, and there are

many further researches and developments of the algorithm. The concept of tabu

search [28] is to help Local search, or neighborhood search, to escape from being

trapped in local optimum by allowing non-improving moves. It additionally prevents

cycling back to previously visited solution by using a list called Gtabu listH which records

the recent history of the search.

The tabu search algorithm associates with two terminologies:

search space and neighborhood structure [28]. Search space is the space of all

possible solutions. For the neighborhood structure, the neighborhood of current solution

Figure 2.14: Pseudo code of tabu search, from [28]

23

S is the set of solutions obtained by applying the local transformations to S. Denoted as

N(S), the neighborhood of S is a subset of the search space.

With basic concept of tabu search, pseudo code of the

algorithm, described in [28], is shown in Figure 2.14. The author supposes that the

problem is to minimize the function f(S) over some domain.

Additionally, Heuristic approaches seem to be more appropriate due to

low computational time with acceptable solution. Some results from the heuristic

approaches are not good enough to be used practically, such as results from Nearest

Neighbor Algorithm or Local Search (or Hill climbing) as described by Pongpaut

Totrakool [4]. However, the approaches can be used in combination with other heuristic.

For example, as cited in [12], Thangiah (1995) describes a method called GIDEON

which used genetic algorithm to partition the customers in sectors, then routes each

sector with the cheapest insertion method of Golden and Stewart (1985) and the routes

are improved using λ-exchanges introduced by Osman (1993). F Potvin and Bengio

(1996) use cheapest insertion heuristic of Solomon (1987) to create the initial population

for genetic algorithm. Furthermore, Berger et al. (1998) use heuristic approaches in

some parts of genetic algorithm, including generating the initial population and

crossover operator. The saving algorithm of Clarke and Wright (1964) is also used to

generate individuals of the initial population for genetic algorithm. In addition, Bräysy et

al. (2000) also use several local search and route construction heuristics, which are

inspired from the studies of Solomon (1987) and Taillard et al., with genetic algorithm to

solve the Vehicle Routing Problem with Time Windows (VRPTW).

2.3 Application of Theories

Beside theories of shortest path problem and vehicle routing problem,

there are researches focus on applying those theories with case studies in many

industries as follows.

Orawan Tunsitijareankun (1991) [1] used School Bus Routing Approach

to find a solution for trucks to collect solid waste in Bang Khen area. She used branch

and bound method to find a giant route in routing phase, then clustered it in to several

24

routes. She also used Dijikstra(s algorithm to find the shortest path between each pair of

collecting point. Additionally, operation procedures were proposed for the reasons of

size of vehicle, employees(safety, costs, and time. For example, in case of collecting

waste from one side of roads, route should be re-route in counter clockwise form for the

truck to turn only left and avoid right turn which wastes the time and may obstruct the

traffic.

Krisakrai Manimmanakorn (1995) [6] describes using Floyd-Warshall

algorithm and Savings Algorithm with a case study of gasoline delivery. Fleet in the case

study includes three types of vehicle. Constraint of the case study are prohibiting trucks

to enter some roads in Bangkok for specific period of time and company(s policy which

customers can order only full filled truck. Author gives the reason of using Saving

Algorithm that it is simple and uses less time than other methods while gives a solution

which is similar to ones from other methods.

Naruporn Kanchanarat (1999) [3] develop a vehicle routing system for

transporting furniture. The problem has three types of vehicle which are used to deliver

goods in different distances. The goods in this research are different from two

researches above due to variety of size and design. Furthermore, they are probably be

damaged if they are not properly arranged. The algorithm for vehicle routing problem in

this research is Savings algorithm with the reasons as same as stated by Krisakrai

Manimmanakorn (1995) [6]. Floyd-Warshall method was also used in this research to

find the shortest paths.

Pongpaut Totrakool (2004) [4] used Savings Algorithm, 2-OPT Algorithm

and Anti-Intersection Algorithm to find a solution for the problem of medical supplies

distribution system. Characteristics of the problem include uncertainty of demands, time

windows for delivery, uncertainty of density of routes for different period of time, stability

of operation system, and variety of products. The proposed approach was validated

with sets of test data, which are described in his report. The results are shown in

coordinated graphs.

25

Vipada Supavita and Duangpan Krichcharnchai (2006) [31] developed a

prototype of transportation management system for a frozen food manufacturer. The

vehicle routing is performed daily from late afternoon and it has to be finished within

9.00 am. Because the manual operations are not flexible enough for changes of orders,

Savings Algorithm is chosen for the system. Data of distance between delivery point in

the research is retrieved from digital map program and Mappoint Asia(s website.

Viroj Putvithee, et al [32] also developed a vehicle routing system using

Forward algorithm, a modification of A* search algorithm, to find the shortest path

between each pair of delivery points. Savings algorithm is used to find a solution with

farthest assigned customer and applying of saving value in the procedure.

2.4 Conclusion

Related theories and researches were described in this chapter. In next

chapter, the problem formulation and modelling, and software development are

described.

CHAPTER III

PROBLEM FORMULATION AND MODELLING, AND SOFTWARE

DEVELOPMENT

This thesis aims to study vehicle routing problem of daily meals delivery

by using motorcycles of the case company. Manually routing requires route familiarity

which is uncertain in each driver. It consequently affects on costs and delivery time.

Therefore, a mathematic modelling theory was applied in a vehicle routing software in

order to optimize costs of delivery, and satisfy the time and capacity constraints. In this

chapter, the concept of approaches which are used in the software and validation of the

system are described.

3.1 Problem Description

The problem involves a plan for breakfast delivery service business in

Bangkok. It hires a fleet of motorcycles to deliver meals to its customers from its depot

located near Rama IX Road and Srinakarintra Road. The company can find the

motorcycles with no limitation. The delivery area covers an area of approximately 5 km

radius around the depot. Locations of customers can be retrieved from the survey of

potential customers and are available on a map.

Expenditures for hiring each motorcycle include the weekly charge of

Baht 1,750 per week and transportation charge which is agreed to Baht 1.10 per

kilometre. Therefore, the company wishes to minimize its delivery cost by trying to use

the least number of motorcycles and the least total travel distance by the motorcycles.

Limitations of the problem are capacity of each motorcycle and time

which every vehicle has to reach its last customer. Each motorcycle will be attached

with a container loaded with meal boxes during the delivery. Due to limitations of size of

motorcycle and the container, each vehicle cannot be loaded more than 40 boxes.

Additionally, the delivery process has limited time because the customers have to have

their meals in the same specific time window. Therefore, time used to deliver all meal

boxes should not longer than 1 hour 30 minutes with the average velocities of 25 km per

27

hour along small road and 45 km per hour along main streets, and drop-off time of 2

minutes.

3.2 Problem Modelling Concept

The objective of this problem is to operate the food delivery service by

trying to find a routing which minimizes the number of vehicles employed for delivery

and the total distance used to deliver the products. Savings algorithm and Forward

algorithm, a modification of A* search algorithm, were chosen to find solutions for the

problem.

Savings algorithm was chosen for the routing process of the problem

because of its simplicity and widely usages, as described in Chapter 2. The procedure

of the algorithm is described as following:

1. Initially build a set of routes, of which number is equal to the

number of customers. Each route has only one customer.

2. Calculate Saving value (Sij) between customer i and customer j,

where 0 0ij i j ijS c c c= + − and i, j = 1,Q,n

3. Sort the saving value in descending order

4. Select the highest Sij which customer i and j are not in the same

route, and demand and travelling time of the merging of both

routes are still satisfy capacity and time constraint

5. Merge the both routes. The merging of two routes is shown in

Figure 2.11.

6. Repeat step 4 and 5 until every saving value is checked

Furthermore, Forward algorithm is used to find the shortest path between

each pair of delivery points because it takes shorter time and the road network has no

negative weighted edge, as mentioned before in Chapter 2, A* search algorithm.

28

Although all-pair shortest path algorithms are used in some researches as described by

Krisakrai Manimmanakorn [6] and Naruporn Kanchanarat [3], the all-pair algorithms

have too many unnecessary calculations compared to the Single-source algorithms,

especially with road network which has up to 1000 unused nodes. The procedure of the

algorithm implemented in the system can be described as following:

1. Add each edge, which is connected with the start node, in a path

and put it in a GPriority QueueH

2. Calculate estimated cost of each path in the GPriority QueueH and

sort all paths in ascending order. The estimated cost (C) of a

path can be calculated as equation:

D , (is a node in path)p itC d i p= + ∀∑

where

C = the cost of path p

Dp = Total distance of path p

dit = Linear distance from node i to target node

3. Remove the path, p, with lowest cost from the queue

4. If the last node of p is already visited, remove another path with

lowest cost from the queue and check again.

5. If the last node of p is not the target node, make new paths by

adding each edge, which is connected with the last node of p

except the one included in p, in the path p and put them in the

queue. Repeat the procedure from step 2 until the last node of p

is the target node.

29

Start

Find the shortest path and traveling time

between each pair of delivery points including

the depot and form them into 2 matrixes

Calculate the saving value for each pair

of customers

Generate the initial route

for each customer

Receive input from user

Select a pair of customers, i and j,

with the highest saving value

Are i and j in

the same route?

Is i the last customer

of its route?

Is j the last customer

of its route?

Select another pair of

customers with the next

highest saving value

Merge routes

Is there any saving

value left??

Display the

result

End

Figure 3.1: Flow chart of finding solution for the vehicle routing system

Inputs

Outputs

Computation

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Does time of the

merged route satisfy the

time constraint?

Does the total demand of

both routes exceed

vehicle capacity?

30

3.3 Model

Model of the vehicle routing system, of which flow chart is shown in

Figure 3.1, is classified into 3 parts: inputs, computation, and outputs.

3.3.1 Inputs

Input of the system is used in the computational part to find a set of

routes for the company to achieve the objectives. The input is consisted of:

• Customers(locations

Customers(locations are pointed in real road network. The company has to put

the location of each customer to the system.

• Customers(demands

Demand of each customer is an important input for computational part to find a

set of routes for motorcycles to deliver the boxes of meals. Although there are many

recipes of food for the meals, they are packed into standard boxes loaded into the

vehicles.

3.3.2 Computation

Computational part uses the input from the input part to find a solution of

vehicle routes for the company to achieve the objectives. The parameters of the problem

used in finding a solution for the company are vehicle capacity and time within which

each motorcycle must reach its last customer.

Procedure of the computational part can be described as following:

1. Find the shortest path and time of each pair of delivery points

including the depot and form them into 2 matrixes.

2. Calculate saving value of each pair of customers as shown in the

equation, 0 0ij i j ijS c c c= + − where

i and j = Customer number (1, 2, Q, n), i ≠ j

31

Sij = Saving value of (i, j)

ci0 = Distance from customer i to the depot

c0j = Distance from the depot to customer j

cij = Distance from customer i to customer j

3. Make the initial route (0, i, 0) for each customer as shown in

Figure 3.2

4. Select a pair of customers, i and j, which has the highest saving

value.

5. If i and j are in the same route, select another pair of customers

with the next highest saving value and check again

6. If i is not the last customer of its route or j is not the first customer

of its route, select another pair of customers with the next highest

saving value and go back to step 5

7. If total demand of both routes exceed the vehicle capacity, select

another pair of customers with the next highest saving value and

go back to step 5

8. Calculate time for the merging of both routes. The calculation can

be shown as 1 2 0m i j ijT T lt T t t= + + − + where

i

Depot

Figure 3.2: Initial route for each customer

32

Tm = Travelling time of merged route

T1 = Travelling time of route which passes customer i

T2 = Travelling time of route which passes customer j

lti = Drop-off time for customer i

t0j = Travelling time from the depot to customer j

tij = Travelling time from customer i to customer j

9. If time of the merged route exceed the time constraint, choose

another pair of customers with the next highest saving value and

go back to step 5

10. Merge both routes by adding path from customer i to customer j,

and deleting path from the depot to customer j and path from

customer i to the depot, as shown in Figure 2.11

11. If there is remain saving value, select another pair of customer

with the next highest saving value and repeat the procedure from

step 5 to step 11 until every pair of customers is chosen

After the procedure is processed, a solution which includes a set of

routes is ready to use. It will be sent to the next part, the output part.

3.3.3 Outputs

This part is responsible for displaying the result to user. The model finds

the real path of each route and display the solution on the real road network with a list of

customers in each route.

3.4 Software Development

Software for the vehicle routing system was developed by modifying a

vehicle routing software which is developed by Viroj Putvithee et al [32] with a copyright

of National Electronic and Computer Technology Center (NECTEC), member of National

33

Science and Technology Development Agency (NSTDA), and Water Pacific Part., Ltd.

The software was developed with Java programming language with an advantage that

each module of the software is separated in a file. It is used to find solutions for trucks

routing. The fleet of trucks is allowed to have different types of vehicles. Finding solution

procedure starts with using Savings algorithm to assign customers for each truck. The

trucks are allowed to operate several rounds in order to serve all customers. The

procedure of savings algorithm used in the program can be described as following:

1. Select the vehicle with highest capacity to form the first route

2. Select the customer which has longest direct distance from the

depot to be the first customer added to the route

3. Calculate added distance for each of remain customers whose

demands are able to be loaded in current truck. Added

distances are calculated from only direct distance in every path

of current route, as shown in Figure 3.3 and Figure 3.4.

Figure 3.3: Calculate saving value of the existing software

Added distance for customer 1 with path1 =

distance(D,1) + distance(1,E) ; distance(D,E)

Added distance for customer 1 with path2 =

distance(E,1) + distance(1,D) ; distance(E,D)

.

.

.

Added distance for customer 6 with path1 =

distance(D,6) + distance(6,E) ; distance(D,E)

Added distance for customer 6 with path2 =

distance(E,6) + distance(6,D) ; distance(E,D)

D

path2
path1

E

1

2

3

4

6

Depot

5

34

4. Add the customer with lowest added distance in the path which

leads to the lowest distance of the route.

5. If every customer is assigned to a route, stop the process.

6. If there is remain capacity of the truck, repeat the procedure from

step 3 until cannot fill any customer.

7. If there are trucks left, change to next highest capacity truck and

repeat the process from step 2.

8. If there are remain customers but no truck left, reset all trucks for

next round and repeat the process from step1.

Added distance for customer 1 with path1 =

distance(D,1) + distance(1,2) ; distance(D,2)

Added distance for customer 1 with path2 =

distance(2,1) + distance(1,E) ; distance(2,E)

Added distance for customer 1 with path3 =

distance(E,1) + distance(1,D) ; distance(E,D)

.

.

.

Added distance for customer 6 with path1 =

distance(D,6) + distance(6,2) ; distance(D,2)

Added distance for customer 6 with path2 =

distance(2,6) + distance(6,E) ; distance(2,E)

Added distance for customer 1 with path3 =

distance(E,6) + distance(6,D) ; distance(E,D)

D

Path3

path1

E

1

2

3

4

6

Depot

5

path2

Figure 3.4: Calculate saving value of the existing software for route with 2 customers

35

After the routes are assigned with customers, the software uses Forward

algorithm to find the shortest path between delivery points. The edges represent roads

and the nodes represent road intersections. Procedure of the algorithm is described in

3.2 Problem Modelling Concept.

The software has many disadvantages for the meal delivery business.

The software can solve the vehicle routing problem of trucks with capacity constraint,

but without time constraint. The procedure, which finds the routes before shortest path

calculation, is not practical for small scale problem like the delivery using motorcycles.

Furthermore, because it was developed based on big scale problem, the shortest path

was calculated without consideration of the case that there are several customers

located in the same edge as explained in Figure 3.5. Additionally, as shown in Figure

3.6, the calculation uses only node with shorter direct distance to the target customer as

the start node and node with shorter direct distance to the start customer as the end

node. Consequently, the calculation also ignores distance from road intersection to

delivery points. As a result, distances from the customers located in the same edge are

not different, as shown in Figure 3.7.

Figure 3.5: Case of having several customers in same edge

Dividing

island

Group of customers in same

edge

36

The modifications of the software were made in 2 parts: shortest path

finding control module and routing process. The shortest path finding was modified by

adding the calculation of customers located in same edge, consideration of alternative

Figure 3.7: Problem of ignoring distance from road intersection to customers

2

3

1

4 5

6

Distance from customer 1,

2, 3 to customer 4, 5

Distance from customer 4, 5 to

customer 1, 2, 3, which ignores

traffic direction

Distance between customer 1, 2, 3

and customer 6 equal to 0

Figure 3.6: Problem of selecting start node and target node from direct distance

Start customer

Start node

Result from existing

software

Actual path

Target node

Target customer

Shorter direct distance

37

nodes of the edges which the delivery points are located, consideration of distance from

road intersection in the shortest path finding control module, as explained in Figure 3.8

and Figure 3.9. The routing process was modified with a new developed module using

savings algorithm of which the procedure is described in 3.3.2. The solution procedure

was also modified as starting with shortest path finding between delivery points, and

following with the routing process. The shortest path computation module, user interface

and output display module of the software are not modified. The user interface uses Thai

language for practicality.

Figure 3.8: Consideration of alternative node of edge and distance between road

intersection and delivery customer for shortest path finding

Start customer

Start node2

Distance from Start node1

to Target node2

Target node1

Target customer

Start node1

Target node2

Distance between node or road

intersection and customer
Distance from Start node1

to Target node1

Distance from Start node2

to Target node1

Distance from Start node2

to Target node2

38

3.5 System Validation

Since the developed vehicle routing system has new software which

uses the added savings algorithm, it needs proving that it can effectively find a solution

for the problem. It was run with the instances of capacitated vehicle routing problem

authored by Augerat, et al, which can be acquired from [2]. The example of input file of

the instances is shown in Figure 3.10. The instances are divided into three sets: set A,

set B, and set P. The results from the new software were compared with the known best

results. The results and comparison of each set are shown on Table 3.1 to Table 3.3

respectively.

Figure 3.9: Calculating distance between customers in same edge

2

3

1

4 5 Path from 4 to 5

Path from 5 to 4

Path between 1 and 2

Path between 1 and 3

Path between 2 and 3

6

Path between 3 and 6

39

Although some results from the developed system are very different from

the known best results especially the results in P set, some results are better than the

best results. The overall average of differences of distance is 6.17% which indicates that

the performance of the developed system is close to the most known effective

approach. Furthermore, the number of routes which is mostly as same as the best result

shows the ability of the system to minimize the fleet size.

NAME : A-n32-k5

COMMENT : (Augerat et al, Min no of trucks: 5, Optimal value: 784)

TYPE : CVRP

DIMENSION : 32

EDGE_WEIGHT_TYPE : EUC_2D

CAPACITY : 100

NODE_COORD_SECTION

 1 82 76

 2 96 44

 3 50 5

 4 49 8

 5 13 7

 6 29 89

 7 58 30

 8 84 39

 9 14 24

 10 2 39

 11 3 82

 12 5 10

 13 98 52

 14 84 25

 15 61 59

 16 1 65

 17 88 51

 18 91 2

 19 19 32

 20 93 3

 21 50 93

 22 98 14

23 5 42

 24 42 9

 25 61 62

 26 9 97

 27 80 55

 28 57 69

 29 23 15

 30 20 70

 31 85 60

 32 98 5

DEMAND_SECTION

1 0

2 19

3 21

4 6

5 19

6 7

7 12

8 16

9 6

10 16

11 8

12 14

13 21

14 16

15 3

16 22

17 18

18 19

19 1

20 24

21 8

22 12

23 4

24 8

25 24

26 24

27 2

28 20

29 15

30 2

31 14

32 9

DEPOT_SECTION

 1

 -1

EOF

Figure 3.10: Example of input file of problem instances

40

distance No. of routes distance No. of routes

A-n32-k5 844 5 784 5 7.61%

A-n33-k5 694 5 661 5 4.95%

A-n33-k6 776 7 742 6 4.62%

A-n34-k5 807 5 778 5 3.77%

A-n36-k5 831 5 799 5 3.99%

A-n37-k5 705 5 669 5 5.41%

A-n37-k6 980 6 949 6 3.23%

A-n38-k5 795 6 730 5 8.86%

A-n39-k5 902 5 822 5 9.73%

A-n39-k6 883 6 831 6 6.21%

A-n44-k6 1021 6 937 6 8.95%

A-n45-k6 1013 7 944 6 7.30%

A-n45-k7 1200 7 1146 7 4.71%

A-n46-k7 940 7 914 7 2.82%

A-n48-k7 1115 7 1073 7 3.90%

A-n53-k7 1093 8 1010 7 8.21%

A-n54-k7 1202 7 1167 7 2.97%

A-n55-k9 1111 9 1073 9 3.50%

A-n60-k9 1377 9 1408 9 -2.18%

A-n61-k9 1103 10 1035 9 6.58%

A-n62-k8 1353 8 1290 8 4.87%

A-n63-k10 1359 10 1315 10 3.34%

A-n63-k9 1691 10 1634 9 3.48%

A-n64-k9 1482 9 1402 9 5.71%

A-n65-k9 1243 10 1177 9 5.64%

A-n69-k9 1209 9 1168 9 3.55%

A-n80-k10 1837 10 1764 10 4.13%

Average 5.03%

198 191
7 = 3.66%

27

7

Number of problems

Number of problems

with higher number

of routes

Total routes

Difference of routes

Table 3.1: Results from running the developed system with set A of the

instances with comparison

Results from the

developed system
The known best results Difference of

distance (%)

Problem

Name

41

distance No. of routes distance No. of routes

B-n31-k5 685 5 672 5 1.88%

B-n34-k5 809 5 788 5 2.63%

B-n35-k5 980 5 955 5 2.66%

B-n38-k6 834 6 805 6 3.57%

B-n39-k5 569 5 549 5 3.61%

B-n41-k6 900 7 829 6 8.55%

B-n43-k6 763 6 742 6 2.78%

B-n44-k7 938 7 909 7 3.24%

B-n45-k5 757 5 751 5 0.82%

B-n45-k6 733 7 678 6 8.18%

B-n50-k7 750 7 741 7 1.16%

B-n50-k8 1354 8 1313 8 3.12%

B-n51-k7 1127 8 1032 7 9.17%

B-n52-k7 766 7 747 7 2.60%

B-n56-k7 737 7 707 7 4.19%

B-n57-k7 1240 8 1153 7 7.53%

B-n57-k9 1656 9 1598 9 3.65%

B-n63-k10 1598 10 1537 10 3.98%

B-n64-k9 922 10 861 9 7.08%

B-n66-k9 1425 10 1374 9 3.72%

B-n67-k10 1105 11 1033 10 6.96%

B-n68-k9 1320 9 1304 9 1.22%

B-n78-k10 1274 10 1266 10 0.63%

Average 4.04%

172 165

7 = 4.24%

23

7

Table 3.2: Results from running the developed system with set B of the

instances with comparison

Results from the

developed system
The known best results Difference of

distance (%)

Problem

Name

Number of problems

Number of problems

with higher number

of routes

Total routes

Difference of routes

42

distance No. of routes distance No. of routes

P-n101-k4 772 4 681 4 13.36%

P-n16-k8 479 9 435 8 10.06%

P-n19-k2 238 2 212 2 12.21%

P-n20-k2 234 2 220 2 6.36%

P-n21-k2 236 2 211 2 11.94%

P-n22-k2 239 2 216 2 10.88%

P-n22-k8 591 9 603 8 -2.05%

P-n23-k8 539 9 554 8 -2.62%

P-n40-k5 518 5 458 5 13.18%

P-n45-k5 573 5 510 5 12.42%

P-n50-k10 734 11 696 10 5.51%

P-n50-k7 595 7 554 7 7.34%

P-n50-k8 667 7 649 8 2.75%

P-n51-k10 791 11 745 10 6.17%

P-n55-k10 732 10 669 10 9.45%

P-n55-k15 978 17 856 15 14.26%

P-n55-k7 617 7 524 7 17.79%

P-n55-k8 641 7 576 8 11.24%

P-n60-k10 789 10 706 10 11.72%

P-n60-k15 1024 16 905 15 13.15%

P-n65-k10 862 11 792 10 8.81%

P-n70-k10 896 11 834 10 7.45%

P-n76-k4 684 5 589 4 16.18%

P-n76-k5 698 5 631 5 10.54%

9.50%

184 175

9 = 5.14%

24

10

Number of

problems with

lower number of

routes

2

Table 3.3: Results from running the developed system with set P of the instances

with comparison

Results from the

developed system
The known best results Difference of

distance (%)

Problem

Name

Difference of routes

Total routes

Number of problems

with higher number of

routes

Number of problems

43

3.6 Procedure of Operating the Vehicle Routing System

After the vehicle routing system for the case company is developed and

tested, procedure for using the system is formulated. The procedure is divided into 2

parts: Adding/Deleting customers and Vehicle Routing which can be described as

following:

1. Adding/Deleting customers

1 At the main dialog of the system click at button

 to enter to the road map and

delivery point editor dialog and scroll to customer

location as shown in Figure 3.11

2 Click button at the tools bar to enter

adding/deleting customer mode

3 Left click at the road which the customer is located and

the system will ask the user to enter customer information

of which loading time and Zone are 0.0334 hour and G1H

respectively, as shown in Figure 3.12.

44

4 After finish enter the information, click button

 to save the information and

a customer icon will be added into road map, as shown in

Figure 3.13. If there is remain customer to add, repeat

step 3 and 4.

5 To delete a customer, right click at icon of customer

which user want to delete and confirm deleting by

clicking button at the GDelete CustomerH

dialog, as shown in Figure 3.14.

Figure 3.11: Road map and delivery point editor dialog

45

Figure 3.13: Added customer icon

Figure 3.12: Customer information dialog for adding customer

46

2. Vehicle Routing

1 At the main dialog, click button to enter to the

vehicle routing dialog which is shown in Figure 3.15

2 Choose menu Parameters->Assign Parameters to

assigning the parameters for vehicle routing.

3 After the dialog, as shown in Figure 3.16, appears, click a

radio button to choose a depot

Figure 3.14: Delete Customer dialog

Figure 3.15: Vehicle routing dialog

47

4 Click tab to enter

customers(order information page

5 In the order information page, which is shown in Figure

3.17, choose customer(s) in the box number 1 and click

button number 2 to add customer(s) to box number 3.

Figure 3.16: Dialog for assigning parameters

Figure 3.17: Order information page

48

6 Select a customer in box number 3, then choose a

product in box number 4 and click button number 5 to

add demand of the product to that customer. Dialog for

enter number of demand will appear.

7 Repeat step 6 for each customer in box number 3 until a

product is assigned to every customer. Click button

 to confirm the parameters and exit the

dialog.

8 In the vehicle routing dialog, choose menu GRun->Run

Path Routing & Truck SchedulingH to run the vehicle

routing process.

9 After the process finish, the solution will be displayed in

road map and tables on the bottom of the dialog.

3.7 Conclusion

A software was developed to solve the vehicle routing problem. It was

modified from a vehicle routing software which originally was used for large scale

problems and ignored the time constraint by using Savings algorithm and A* search

algorithm. The software was proved to be effective by testing it with published instances

with best known solutions. A procedure to use the system was also developed to

facilitate the use of the system.

CHAPTER IV

SYSTEM EVALUATION

After development and validation phases, the system was tested in order

to prove that solutions resulted from the system are suitable for the problem. This

chapter describes the system evaluation which includes the evaluation procedure, the

information of the customers used for the test, results and discussion.

4.1 Evaluation Procedure

In order to prove that the system would work properly, it was tested with

a set of 78 customers. Information of the customers, including locations of the customers

was acquired from customer survey conducted in the delivery area. The demands of the

customers varied from one to four units per customer. 90% of customers order 1 unit,

5% order 2 units, 4% order 3 units and 1% order 4 units, as shown in Figure 4.1.

Capacity limit of each vehicle was set to 40 units and time constraint was set to 1 hour

30 minutes. Drop-off time for each customer was 2 minutes or 0.0334 hour. The test was

run on a laptop with Intel Pentium Dual-Core 1.73 GHz, RAM 1014 MB and Windows XP

operating system. Additionally, the operating procedure described in 3.6 was used to

run the system test to prove the validity of the procedure.

Figure 4.1: Distribution of demand

70

4 3
1

0

10

20

30

40

50

60

70

80

1 2 3 4

Units

C
u
s
to
m
e
rs

Number of customer

50

4.2 Test Input Data

Data of customers used for the test includes locations and demands.

The information was acquired from customer survey in the delivery area. Detail of the

test data is shown on Table 4.1. The identification numbers for each customer are shown

in GIDH column. The second column of the table shows the potential customers(names

Table 4.1: Customer(s data used for testing

ID Name Demand EdgeID X Y

1 a 1 1365 2677 2188

2 b 1 1365 2680 2216

3 c 1 1365 2684 2238

4 d 2 1365 2679 2215

5 e 1 1365 2697 2318

6 f 1 1365 2701 2335

7 g 1 1365 2701 2335

8 h 1 1365 2685 2244

9 i 1 1365 2700 2345

10 j 1 1368 2863 2406

11 k 1 1368 2863 2399

12 l 1 1383 2838 2420

13 m 1 1383 2836 2405

14 n 4 1370 2818 2234

15 o 1 546 1811 2698

16 p 1 546 1831 2737

17 q 1 86 1750 3017

18 r 1 86 1749 2972

19 s 1 80 1704 3028

20 t 1 67 1653 2740

21 u 1 279 1492 3026

22 v 1 272 1469 2946

23 w 1 272 1457 2971

24 x 1 908 2611 3459

25 y 1 908 2607 3435

26 z 1 1408 2705 3482

27 aa 1 1475 2974 3485

28 ab 1 2367 3021 3222

29 ac 1 1449 2886 3421

30 ad 1 37 2964 2332

31 ae 2 1362 2620 2319

32 af 3 1362 2614 2282

33 ag 1 1362 2621 2348

34 ah 1 236 1427 2951

35 ai 1 268 1467 2905

36 aj 1 279 1505 2988

37 ak 1 305 1565 2963

38 al 1 305 1559 2989

39 am 1 266 1417 3050

ID Name Demand EdgeID X Y

40 an 1 127 1373 2994

41 ao 1 113 1298 3058

42 ap 1 113 1390 2842

43 aq 1 274 1459 2805

44 ar 3 103 1406 2845

45 as 1 292 952 3069

46 at 1 297 1152 2855

47 au 1 480 1281 3266

48 av 1 165 1080 3204

49 aw 2 1385 2852 2314

50 ax 1 1385 2851 2300

51 ay 1 41 3014 2204

52 az 1 41 3020 2239

53 ba 1 68 1668 2656

54 bb 1 78 1664 2715

55 bc 1 83 1703 2693

56 bd 1 83 1722 2714

57 be 1 79 1721 2814

58 bf 1 79 1719 2840

59 bg 1 65 1610 2695

60 bh 1 67 1644 2730

61 bi 1 312 1612 2922

62 bj 1 312 1605 2951

63 bk 1 312 1601 2974

64 bl 2 113 1351 2915

65 bm 1 134 1000 3073

66 bn 1 134 932 3027

67 bo 1 51 866 3189

68 bp 1 51 801 3159

69 bq 1 136 910 3131

70 br 3 166 1078 3242

71 bs 1 505 1322 3308

72 bt 1 507 1348 3296

73 bu 1 528 1367 3347

74 bv 1 459 1348 3250

75 bw 1 279 1459 3137

76 bx 1 124 1396 2885

77 by 1 114 1384 2940

78 bz 1 112 1455 2872

51

which are currently not known. The location of each customer can be plotted in the

Bangkok road map as shown in Figure 4.2. Each customer(s location is represented in

coordinate system, shown in column GXH and GYH, which must be associated with the

road, or edge, it is located in. The column GEdgeIDH shows the identification number of

the edge. Demands of the customers are generated according to the distribution shown

in Figure 4.1.

Customer(s location used in the system is represented in coordinate

system which must be processed with shortest path finding to calculate the distance

between delivery points for routing process. Demand is the number of units. The

constraints include capacity and total time to reach the last customer. On the other

hand, the instances(input used for system validation in CHAPTER III also represents

customer location in coordinate system with Euclidean distance calculation. Its demand

is also the number of units. Capacity is the only constraint for the instance. With the

reasons that the routing process uses only data of distance between delivery points,

demand and constraints for its procedure, and time constraint is not too complex to be

relaxed, the evaluation input is equivalent to the instances(input.

52

Fi
g

ur
e

4.
2:

 L
oc

at
io

n
of

 p
ot

en
tia

l c
us

to
m

er
s

us
ed

 fo
r

te
st

in
g

Th
e

d
ep

ot

53

4.3 Results and Discussion

The results of the test are described in this section. Additionally, its

discussion is presented to illustrate the advantages and disadvantages of the system.

4.3.1 Results

Result from the program includes routes summary and details of each

route, as shown in Figure 4.3 to Figure 4.6. Each route of the result must satisfy both

capacity and time constraints of the problem. The system test takes 1 hour 6 minutes 47

seconds. The summary of the result is shown on Table 4.2 and detail of each route is

shown on Table A.1. The solution has 4 routes with the loaded demands of 16 units, 29

units, 22 units and 24 units respectively. The demands indicate that the solution does

not violate the capacity constraint. Additionally, the travelling times to last customer for

the routes are 44 minutes, 1 hour 19 minutes, 1 hour, and 56 minutes respectively.

According to the result, it can be suggested that every motorcycle is able to deliver the

meal to its customers within specific time. It can be summarized that the system can find

solutions which satisfy both capacity and time constraints. The total cost of the result

can be calculated from Baht 7,000 per week for 4 motorcycles, and transportation cost

Baht 56.32 per day, which equal to Baht 7,394.24 per week.

Table 4.2: Routes summary of result from the test

Route

No.
Vehicle

Round

No.

Loaded

Demand

(unit)

Travel Distance

(kilometre)

Travelling time to last

customer (hour)

Cost

(baht)

���������1 Motorycle 1 16 11.47 0:44 12.62

���������2 Motorycle 1 29 17.16 1:19 18.88

���������3 Motorycle 1 22 12.52 1:00 13.77

���������4 Motorycle 1 24 10.05 0:56 11.05

54

Figure 4.3: Example of entering customer order

Figure 4.4: Running the system after entering the orders

55

Figure 4.5: Result of the software

Figure 4.6: All routes displayed in the Bangkok road map

4.3.2 Discussion

It can be noticed that the result as obtained can be considered not an

optimum level. There are still rooms of delivery that can be added. This depends entirely

56

on the strong marketing approach conducted by the company. It is possible for change

of input data.

Beside the possibility for additional customer demand as described

above, it is considered that the total demand of 91 units can be divided into 3 routes.

Therefore, expenditures can be consequently reduced with the adjustments as

following.

• Time Constraint

 The results show that the time constraint affects the number of routes.

Therefore, another test was conducted with the same input and parameters, but the time

constraint was set to 1 hour and 45 minutes. The software was also modified to show the

arrival time for each customer, as shown in Figure 4.7. The test takes 1 hour 5 minutes

22 seconds. Summary of the results is shown on Table 4.3 and detail of each route is

shown on Table A.2, Appendix. The result has only 3 routes. The demands of the routes

are 24 units, 37 units and 30 units with the travelling times of 1 hour 15 minutes, 1 hour

42 minutes, and 1 hour 4 minutes respectively. The total cost of the result can be

calculated from Baht 5,250 per week for 3 motorcycles and transportation cost baht

51.06 per day, which equal to Baht 5,607.42 per week. 5 customers in the second route

cannot receive the meal boxes within 1 hour 30 minutes.

Table 4.3: Routes summary of result from the time frame adjustment

Route

No.
Vehicle

Round

No.

Loaded

Demand

(unit)

Travel Distance

(kilometre)

Travelling time to last

customer (hour)

Cost

(baht)

���������1 Motorycle 1 24 16.8 1:15 18.48

���������2 Motorycle 1 37 18.87 1:42 20.75

���������3 Motorycle 1 30 10.76 1:04 11.83

57

According to the time frame adjustment, the overall cost was reduced by

24.16%. However, 5 customers will not receive the meal boxes within the time frame of 1

hour 30 minutes. The company may consider dispatching the second route 15 minutes

earlier than the others. The company may pay Baht 2,000 for the fixed charge of the

earlier dispatched route of which motorcyclist has to reach the depot earlier than others.

It is a better choice as compared to hiring another motorcycle with additional fixed

charge of Baht 1,750. Nevertheless, this can be done with the conditions that meal

boxes must be ready for delivery earlier and the 5 first customers in that route can

accept the delivery of meal boxes earlier than the agreed time.

• Drop-off Time

Because the time constraint affects the result, number of customers, of

which each takes 2 minutes for dropping off the meal boxes, is another important

variable. For example, if a motorcycle delivers 40 meal boxes to 40 customers, most of

the time, or 80 minutes, will be used for dropping off the boxes and there will be only 10

Figure 4.7: Arrival time for each customer, generated by the program

58

minutes left for the transportation. Therefore, if the company can reduce the drop-off

time, the fleet size should be reduced.

According to this assumption, another test was run with the adjustment

of drop-off time. The drop-off time was initially reduced to 1 minute 30 seconds. The test

takes 1 hour 23 minutes and 43 seconds. The result is the same as the test with time

frame adjustment. The summary is shown on Table 4.4 and details of each route are the

same as the one resulted from the test with time frame adjustment, as shown on Table

A.2. Consequently, the total expenditure can be calculated equal to Baht 5,607.42 per

week which is the same as the result of time frame adjustment. Therefore, it can be

considered that reducing drop-off time can reduce the fleet size and total cost.

Table 4.4: Routes summary of result from the first drop-off time adjustment

Route

No.
Vehicle

Round

No.

Loaded

Demand

(unit)

Travel Distance

(kilometre)

Travelling time to last

customer (hour)

Cost

(baht)

���������1 Motorycle 1 24 16.8 1:04 18.48

���������2 Motorycle 1 37 18.87 1:25 20.75

���������3 Motorycle 1 30 10.76 0:54 11.83

 Additionally, the drop-off time adjustment was refined by increasing it to

1 minutes and 45 seconds. The test takes 1 hour 24 minutes and 9 seconds. The

summary of results is shown on Table 4.5 and details of each route are shown on Table

A.3. The weekly expenditures include fixed charge of Baht 5,250 per week and

transportation charge of Baht 53.73 per day. The total weekly payment is equal to Baht

5,626.11 per week.

59

 Because the longest time used to reach the last customer is 1 hour 24

minutes, it is possible for the drop-off time for each customer to be longer than 1 minute

45 seconds. Therefore, further refinement was done with the same routes by re-

calculating only the travelling time to the last customer with longer drop-off time of 1

minute 50 seconds, 1 minute 55 seconds, and 2 minutes respectively. The results of the

further refinement are shown on Table 4.6. The results show that the fleet size can be

reduced with reduction of only 5 seconds for drop-off time.

Table 4.6: Travelling time to last customer, re-calculated from the test with drop-off timse

of 1 minute 45 seconds

1 min 45 sec 1 min 50 sec 1 min 55 sec 2 min

1 1:24:00 1:26:05 1:28:10 1:30:15

2 0:59:00 1:00:45 1:02:30 1:04:15

3 1:22:00 1:24:25 1:26:50 1:29:15

Route No.
Drop-off Time (hour:minute:second)

The drop-off time adjustment is seemed to be a better choice compared

to dispatching earlier. However, the drop-off time of two minutes used in the system is

just a fair estimate. To ensure that the time is shorter than 1 minute 55 seconds, the

company has to find a practical method to reduce the drop-off time.

4.4 Conclusion

The system was tested with a set of 78 customers after its development.

The test result does not violate both constraints. The result show the possibility for

Table 4.5: Routes summary of result from the second drop-off time adjustment

Route

No.
Vehicle

Round

No.

Loaded

Demand

(unit)

Travel Distance

(kilometre)

Travelling time to last

customer (hour)

Cost

(baht)

���������1 Motorycle 1 29 19.86 1:24 21.84

���������2 Motorycle 1 30 10.76 0:59 11.83

���������3 Motorycle 1 32 18.24 1:22 20.06

60

additional demands. On the other hand, cost reduction can be done by time frame and

drop-off time adjustments.

CHAPTER V

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This thesis studied the vehicle routing problem of a planned breakfast

delivery service in Bangkok. The business plans to use motorcycles for the delivery. The

company has containers for loading up to 40 meal boxes which will be fasten with the

motorcycles daily. The delivery expenditures include Baht 1,750 of weekly payment for

salary of each delivery man, and Baht 1.10 per kilometre for transportation charge. The

depot is located near Rama IX Road and Srinakarintra Road with the delivery area of

approximately 5 kilometre radius around it. The problem has limitation of vehicle

capacity and time frame which each vehicle has to reach its last customer. The purpose

of developing the vehicle routing system is to find solutions for the case company to

deliver meals to its customer with optimal fleet size and total travel distance under the

condition that each vehicle must be loaded not more than its capacity and must take

travelling time not longer than the specific time frame. The system was developed with

assumptions including weekly changed delivery points, one trip per day for each

motorcycle, ignorance of the condition of traffic and irregularities such as accidents and

closing routes, excluding the expressway and the motorway from delivery routes, two-

way traffic in small roads with average velocities of 25 kilometre per hour, one-way traffic

for each side of main streets with dividing islands with average velocities of 45 kilometre

per hour, and drop-off time of 2 minutes for each customer. The scope of thesis includes

finding a method for problem solving, modelling the problem, implementation in

computerized simulation program, data preparation for the system, formulating the

operating procedure of the system for the company, and testing the system.

The research initially reviewed related theories and applications of

theories, with the purposes of studying characteristic and solution approaches of the

problem. Because only location of the customers can be used for the routing, the

problem is consisted of shortest path problem and vehicle routing problem. Most of

62

reviewed researches use the Clarke-Wright(s method, Savings algorithm, due to its

simplicity.

The solution approaches used in the vehicle routing system includes

Savings algorithm for the routing process and A* search algorithm for shortest path

problem. Savings algorithm was chosen for the routing process because of its simplicity

and widely usages. The procedure of the approach includes initially building a set of

routes which each customer is assigned to each route, calculating of saving value

between each pair of customers, selecting the highest saving value, and merging the

routes to form the solution while feasible. A* search algorithm implemented in the system

uses distance of the path and the distances from all routes in the path to target node for

finding consideration. The developed system is divided into 3 parts:

• Inputs includes customers(locations and customers(demands

• Computation uses the input in the algorithms to find a solution for

the problem

• Outputs are displayed in road map. Detail and summary of all

routes are also shown in the system.

The system was developed by modifying a vehicle routing program

developed by Viroj Putvithee [32] with a copyright of National Electronic and Computer

Technology Center (NECTEC), member of National Science and Technology

Development Agency (NSTDA), and Water Pacific Part., Ltd. The program originally

used Forward algorithm, a modification of A* search algorithm, and a modification of

savings algorithm. The program can solve the vehicle routing problem of trucks with

capacity constraint, without time constraint. Because the software was developed for big

scale problem, the shortest path finding ignores the case of having several customers

on the same road, the distance from road intersection to customers, and choosing start

and target nodes which give the actual shortest path. Additionally, the solution

procedure starts from routing process using only direct distance between customers,

63

then finds the actual travelling path by using the shortest path module. Because of the

development for truck routing, the software had to be modified to suit the small scale

problem like motorcycles routing. The modification was made in 2 parts: shortest path

finding control module and routing process. The modification of shortest path finding

control module includes adding the case of having several customers located in same

edge, using alternate node of edges to find actual shortest path, and consideration of

distance from node to customer location. For the routing process, the savings algorithm

module, of which procedure is already described in 3.3.2 Computation, was developed.

Additionally, the solution finding was redesigned to use the shortest path in the routing

process for its accuracy. The shortest path computation module, user interface and

output display module of the software are not modified. The user interface uses Thai

language for practicality. The software is tested with instances of capacitated vehicle

routing problem in order to prove that it can effectively find a solution for the problem.

The instances, authored by Augerat et al, can be found in [2] and is divided into 3 set:

A, B, P. Results of set A are different from the known best results in average of 5.03%.

The average difference of set B is 4.04% and that of set P is 9.50%. The overall average

is 6.17% which indicates that the performance of the developed system is close to the

most effective approach. The number of resulted routes which is mostly as same as the

best result shows the ability of the system to minimize the fleet size The procedure of

operating the system was also formulated for the case company.

The system was tested with 78 customers. The customers(locations are

retrieved from customer survey conducted in the delivery area. The drop-off time is 2

minutes and demands of the customers varied from one to four units per customer. 90%

of customers order 1 unit, 5% order 2 units, 4% order 3 units and 1% order 4 units. The

time constraint was 1 hour 30 minutes and maximum capacity was 40 units. Result of the

test has 4 routes with demands of 16 units, 29 units, 22 units and 24 units, and the

travelling time of 44 minutes, 1 hour 19 minutes, 1 hour, and 56 minutes respectively.

The total operating expenditure is Baht 7394.24 per week. The result indicates that the

system can find solutions which satisfy both constraints. According to the result, all

routes of the result have a lot of room left for their capacity. Although the result has

64

flexibility, the number of routes can be reduced to 3 routes because the total demand is

91 units.

In order to explore the possibility of improving the result, another test

with allowance to violate the time constraint was performed. The result has 3 routes of

which one violates the time constraint. The cost was reduced by Baht 1,786.82 per week

or 24.16% to Baht 5,607.42 per week. The company can choose to dispatch one vehicle

15 minutes earlier than initially planned or let 5 customers receive their meals up to 15

minutes late. The former alternative may be negotiated with the contracted motorcycle

with some extra pay which obviously can be cheaper than hiring another motorcycle.

Another way to improve the result besides allowing more delivery time in

a route is to reduce the drop-off time. The drop-off time was reduced from 2 minutes.

The reduction of only 5 seconds of drop-off time can reduce the number of routes, and

consequently the fleet size from four to three. However, the drop-off time of two minutes

is a fair estimate. Therefore, the company has to find a practical method to reduce the

drop-off time.

5.2 Recommendations

This section explains the implementation of the developed system in this

study. It also recommends further work that can add value to this research.

A. Implementation of the system

• Because this thesis does not use real data, the company has

to collect the real data of customers which can be plotted in

the Bangkok roadmap of the system.

• The resulted fleet size in this thesis is just an example. The

company should run the system with real data before starting

of the operation.

B. Extension of the system

65

• The travelling time in the system is calculated with the

average velocities of 25 kilometre per hour and 45 kilometre

per hour. To make the system more realistic to the actual

traffic condition, different and varying velocities may be

considered to calculate the travelling time.

• In some situation, the vehicles must not arrive each customer

sooner or later than the specific time window assigned by

that customer. Therefore, the system should be modified to

suit the problem conditions.

• The routing process can be modified with other approaches

such as Simulated Annealing or applying routes improvement

approaches with a constructive approach.

REFERENCES

[1] Orawan Tunsitijareankun. A heuristic approach for solving the vehicle-routing

problem in solid wastes collection in Bang Khen area. Master(s thesis

Department of Industrial Engineering Faculty of Engineering Chulalongkorn

University, 1991.

[2] Bernabé Dorronsoro Diaz. The VRP Web [Online]. Collaboration between AUREN

and the Language and Computation Science department of the University of

Málaga, Available from : http://neo.lcc.uma.es/radi-aeb/WebVRP/, [2007].

[3] Naruporn Kanchanarat. A transportation routing system: a case study of transporting

knok-down furniture. Master(s thesis Department of Industrial Engineering

Faculty of Engineering Chulalongkorn University, 1999.

[4] Pongpaut Totrakool. A heuristic search method for a vehicle routing problem in a

medical supplies distribution system. Master(s thesis Department of Industrial

Engineering Faculty of Engineering Chulalongkorn University, 2003.

[5] Wikipedia. Branch and bound [Online]. Available from :

http://en.wikipedia.org/wiki/Branch_and_bound, [2007].

[6] Krisakrai Manimmanakorn. Vehicle routing for gasoline delivery. Master(s thesis.

Department of Industrial Engineering Faculty of Engineering Chulalongkorn

University, 1995.

[7] Sean L. Forman. Nearest Neighbor Algorithm [Online]. Mathematics and Computer

Science Department, Saint Joseph(s University. Available from :

http://www.baseball-reference.com/travel/class/nearest.html, [2007].

[8] Paul A. Jensen. Operations Research : Model & Method (Chapter 5) [Online].

University of Texas, Available from :

http://www.me.utexas.edu/~jensen/methods/net.pdf/netshp.pdf, [2007].

[9] Jesper Larsen & Jens Clausen. The Shortest Path Problem [Online]. Class slides

Technical University of Denmark, Available from :

http://www.imada.sdu.dk/~jbj/DM85/lec6a.pdf, [2007].

[10] Somchai Prasitjutrakul. All-Pairs Shortest Path Problem [Online]. Class slides,

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn

 67

University, Available from :

http://www.cp.eng.chula.ac.th/~somchai/spj/slides/misc/AllPairsShortestPath.pdf

, [2007].

[11] Wikipedia. Shortest path problem [Online]. Available from :

http://en.wikipedia.org/wiki/Shortest_path_problem, [2007].

[12] Olli Bräysy. Genetic Algorithms for the Vehicle Routing Problem with Time Windows.

Arpakannus 1/2001, Special issue on Bioinformatics and Genetic Algorithms,

2001, pp. 33-38.

[13] Wikipedia. Dijkstra(s algorithm [Online]. Available from :

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm, [2007].

[14] Boris V. Cherkassky, Andrew V. Goldberg, Tomas Radzik. Shortest path algorithms:

Theory and Experimental Evaluation. Technical Report 93-1480, Computer

Science Department, Stanford University, 1993.

[15] F. Benjamin Zhan. Three Fastest Shortest Path Algorithms on Real Road Networks:

Data Structures and Procedures. Journal of Geographic Information and

Decision Analysis, 1, 1 : pp. 69-82.

[16] F. Benjamin Zhan, Charles E. Noon. Shortest Path Algorithms: An Evaluation using

Real Road Networks. Transportation Science, 32, 1(1998).

[17] Wikipedia. Bellman-Ford algorithm [Online]. Available from :

http://en.wikipedia.org/wiki/Bellman-Ford_algorithm, [2007].

[18] Wikipedia. A* search algorithm [Online]. Available from :

http://en.wikipedia.org/wiki/A%2A_search_algorithm, [2007].

[19] Computer Science Department, Cornell University. Recitation 26: A* search

[Online]. Available from :

http://www.cs.cornell.edu/courses/cs312/2007sp/recitations/rec26.html, [2007].

[20] Martin Johnson. Informed Search Methods [Online]. Institute of Information and

Mathematical Sciences, Massey University. Available from :

http://www.massey.ac.nz/~mjjohnso/notes/59302/l04.html, [2007].

[21] Wikipedia. Floyd;Warshall algorithm [Online]. Available from :

http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm, [2007].

 68

[22] Marco Pellegrini. Algorithm and Data Structure APSP with negative weights

[Online]. Class slides, Math. Department, Parma University. Spring, 2002.

Available from :

http://www.cs.unipr.it/~zaffanella/Teaching/AlgoritmiStruttureDati/parma-03-21-

six.pdf, [2007].

[23] Wikipedia. Johnson(s algorithm [Online]. Available from :

http://en.wikipedia.org/wiki/Johnson's_algorithm, [2007].

[24] Travelling Salesman Problem: Insertion Algorithms [Online]. Online Logistics

Tutorial, H. Milton Stewart School of Industrial & Systems Engineering, College of

Engineering, Georgia Institute of Technology. May 19, 1999. Available from :

http://www2.isye.gatech.edu/logisticstutorial/vehicle/tsp/tsp009__.htm, [2007].

[25] Stefan Røpke. Polynomial time heuristics for the VRP [Online]. Department of

Computer Science, University of Copenhagen. September, 2005. Available from

: http://www.diku.dk/undervisning/2005e/426/slides2_4.pdf, [2007].

[26] Marco Dorigo. Ant Colony Optimization [Online]. IRIDIA, Université Libre de

Bruxelles, Belgium. Available from : http://www.aco-metaheuristic.org, [2007].

[27] Alain Hertz, Eric Taillard, Dominique do Werra. A TUTORIAL ON TABU SEARCH

[Online]. Available from :

http://www.cs.colostate.edu/~whitley/CS640/hertz92tutorial.pdf, [2007].

[28] Michel Gendreau. AN INTRODUCTION TO TABU SEARCH [Online]. Centre de

recherche sur les transports and Département d´informatique et de recherche

opérationnelle, Université de Montréal. July 2002. Available from :

http://www.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm, [2007].

[29] Ann Tighe and Finlay Smith. A Review of Artificial Intelligence Techniques in Fleet

Logistics [Online]. Technical Report. Department of Information Technology,

National University of Ireland, Galway, Ireland. 2002. Available from :

http://www.it.nuigalway.ie/publications/TR/abstracts/NUIG-IT-091002.pdf, [2007].

[30] K.C. Tan, L.H. Lee, Q.L. Zhu, K. Qu. Heuristic methods for vehicle routing problem

with time windows. pp.281-295, Artificial Intelligence in Engineering, Vol.15,

Issue 3, Jul 2001. Elsevier Science.

 69

[31] Vipada Supavita and Duangpan Krichcharnchai. Prototype of transportation

management system [Online]. Conference paper. Operations Research

Conference, 2006, Thailand. Available from :

http://as.nida.ac.th/~ornet/ORCRN2006/PAPERS/transport.pdf, [2007].

[32] Viroj Putvithee, et al. Development of Vehicle Assignment and Routing Software for

Goods Distribution System. Water Pacific Part., Ltd. Funded by National

Electronics and Computer Technology Center (NECTEC), member of National

Science and Technology Development Agency (NSTDA), Thailand. 2004.

 70

APPENDIX

Route Details from Routing Program

 71

Table A.1: Route details from a run of the routing program with initial conditions

(The first line lists the sequence of the customer names in the route. The following lines

tell how to travel from one customer to the next one in the sequence)

Route

No.
Detail of route

1 ���������1 == Motorcycle ; q ; r ; s ; bf ; be ; bb ; t ; bh ; bg ; ar ; bx ; by ; an ; ao

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ������������	
�����ก��� --> ����ก��� --> �����
��
��	�ก���

� �� --> ������������	
������
��
��	�ก���� �� --> �.���������24 --> .

��������� --> �.���������18 --> q

 Path 2 : q --> �.���������18 --> r

 Path 3 : r --> �.���������18 --> road --> �.���������16 --> s

 Path 4 : s --> �.���������16 --> bf

 Path 5 : bf --> �.���������16 --> be

 Path 6 : be --> �.���������16 --> bb

 Path 7 : bb --> �.���������16 --> road --> �.���������14 --> t

 Path 8 : t --> �.���������14 --> bh

 Path 9 : bh --> �.���������14 --> bg

 Path 10 : bg --> �.���������14 --> .��������� --> �.���������8 --> ar

 Path 11 : ar --> �.���������8 --> �.�������ก��31 --> bx

 Path 12 : bx --> �.�������ก��31 --> �.�������ก��31-33 --> by

 Path 13 : by --> �.�������ก��31-33 --> �.�������ก��33 --> an

 Path 14 : an --> �.�������ก��33 --> �.���������8 --> �.�������ก��29 --> ao

 Path 15 : ao --> �.�������ก��29 --> .�������ก�� --> �.�������ก�� 53 --> �.������

�ก�� 55 --> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

2 ���������2 == Motorcycle ; aa ; ac ; z ; x ; y ; bv ; bt ; bu ; bs ; au ; av ; br ; bp ; bo ;

bq ; bn ; bm ; as ; at ; bd ; bc ; ba ; aq ; bz ; ai ; v ; w

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก�� 55 --

> .�������ก�� --> ก	
!� --> .�������ก�� --> �.�������ก��62 --> aa

 Path 2 : aa --> �.�������ก��62 --> road --> �.�������ก��60 --> ac

 72

Route

No.
Detail of route

 Path 3 : ac --> �.�������ก��60 --> road --> �.�������ก��58 --> road --> z

 Path 4 : z --> road --> �.�������ก��54 --> x

 Path 5 : x --> �.�������ก��54 --> y

 Path 6 : y --> �.�������ก��54 --> .�������ก�� --> �	�"���������� .��������� --> .

��������� --> ���������4 --> bv

 Path 7 : bv --> ���������4 --> ���������4 �#�7 --> bt

 Path 8 : bt --> ���������4 �#�7 --> �������$���#�7 ก
!�#�8 --> ���������4 �#�
8 --> bu

 Path 9 : bu --> ���������4 �#�8 --> �������$���#�7 ก
!�#�8 --> �������$���#�

6 ก
!�#�7 --> bs

 Path 10 : bs --> �������$���#�6 ก
!�#�7 --> �������$���#�5 ก
!�#�6 -->

���������4 �#�5 --> au

 Path 11 : au --> ���������4 �#�5 --> ���������4 --> ���������4-���������2 -->

�.���������2 --> av

 Path 12 : av --> �.���������2 --> br

 Path 13 : br --> �.���������2 --> .��������� --> %&�ก	
!� ����ก��'(()� --> .

��������� --> �.���������1 --> bp

 Path 14 : bp --> �.���������1 --> bo

 Path 15 : bo --> �.���������1 --> .��������� --> �.���������3/1 --> bq

 Path 16 : bq --> �.���������3/1 --> road --> .��������� --> �.���������5 --> �.

��������5 ��ก1 --> bn

 Path 17 : bn --> �.��������5 ��ก1 --> bm

 Path 18 : bm --> �.��������5 ��ก1 --> �.���������5 --> as

 Path 19 : as --> �.���������5 --> .��������� --> �.���������7 --> at

 Path 20 : at --> �.���������7 --> .��������� --> ก	
!� ���� �.���������25 --> .

��������� --> �.���������18 --> bd

 Path 21 : bd --> �.���������18 --> bc

 73

Route

No.
Detail of route

 Path 22 : bc --> �.���������18 --> ba

 Path 23 : ba --> �.���������18 --> .��������� --> �.���������10 --> aq

 Path 24 : aq --> �.���������10 --> .��������� --> �.���������8 --> �.�������ก��
35 --> bz

 Path 25 : bz --> �.�������ก��35 --> �.�������ก��35-37 --> ai

 Path 26 : ai --> �.�������ก��35-37 --> �.�������ก��37 --> v

 Path 27 : v --> �.�������ก��37 --> w

 Path 28 : w --> �.�������ก��37 --> .�������ก�� --> �.�������ก�� 53 --> �.������

�ก�� 55 --> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

3 ���������3 == Motorcycle ; ag ; ae ; af ; p ; o ; bl ; ap ; ah ; am ; al ; ak ; bk ; bj ; bi ;

aj ; u ; bw ; ab

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ก	
!� ���� ABAC --> �.���������24 --> �.���������24/1 -->

ag

 Path 2 : ag --> �.���������24/1 --> ae

 Path 3 : ae --> �.���������24/1 --> af

 Path 4 : af --> �.���������24/1 --> .��������� --> �.���������22 --> p

 Path 5 : p --> �.���������22 --> o

 Path 6 : o --> �.���������22 --> .��������� --> �.���������8 --> �.�������ก��29

--> bl

 Path 7 : bl --> �.�������ก��29 --> ap

 Path 8 : ap --> �.�������ก��29 --> �.���������8 --> �.�������ก��35 --> ah

 Path 9 : ah --> �.�������ก��35 --> �.�������ก��35-37 --> am

 Path 10 : am --> �.�������ก��35-37 --> �.�������ก��37 --> �.�������ก��37-39 -->

�.�������ก��39 --> �.���������12 --> �.#&���*4 --> al

 Path 11 : al --> �.#&���*4 --> ak

 Path 12 : ak --> �.#&���*4 --> �.���������12 --> bk

 74

Route

No.
Detail of route

 Path 13 : bk --> �.���������12 --> bj

 Path 14 : bj --> �.���������12 --> bi

 Path 15 : bi --> �.���������12 --> �.�������ก��39 --> aj

 Path 16 : aj --> �.�������ก��39 --> u

 Path 17 : u --> �.�������ก��39 --> bw

 Path 18 : bw --> �.�������ก��39 --> .�������ก�� --> �.�������ก�� 53 --> ab

 Path 19 : ab --> �.�������ก�� 53 --> �.�������ก�� 55 --> �.�������ก�� 57 --> �.

�������ก�� 57/1 --> �	
��
����

4 ���������4 == Motorcycle ; az ; ay ; ad ; n ; aw ; ax ; k ; j ; l ; m ; a ; d ; b ; c ; h ; e ; f

; g ; i

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ก	
!� --> �.���������26 --> �	�"��������� .��������� -->

 : .��������� --> ก	
!� --> .��������� --> �.���������30/1 --> az

 Path 2 : az --> �.���������30/1 --> ay

 Path 3 : ay --> �.���������30/1 --> .��������� --> �.���������30 --> ad

 Path 4 : ad --> �.���������30 --> .��������� --> �.���������26/2 --> road --> �.

���������26/1 --> n

 Path 5 : n --> �.���������26/1 --> road --> �.���������26/2 --> aw

 Path 6 : aw --> �.���������26/2 --> ax

 Path 7 : ax --> �.���������26/2 --> k

 Path 8 : k --> �.���������26/2 --> j

 Path 9 : j --> �.���������26/2 --> road --> �.���������26/1 --> l

 Path 10 : l --> �.���������26/1 --> m

 Path 11 : m --> �.���������26/1 --> .��������� --> �.��������� 24/2 --> a

 Path 12 : a --> �.��������� 24/2 --> d

 Path 13 : d --> �.��������� 24/2 --> b

 75

Route

No.
Detail of route

 Path 14 : b --> �.��������� 24/2 --> c

 Path 15 : c --> �.��������� 24/2 --> h

 Path 16 : h --> �.��������� 24/2 --> e

 Path 17 : e --> �.��������� 24/2 --> f

 Path 18 : f --> �.��������� 24/2 --> g

 Path 19 : g --> �.��������� 24/2 --> i

 Path 20 : i --> �.��������� 24/2 --> �.���������24 --> ก	
!� --> �.�������ก��57 -

-> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

 76

Table A.2: Route details from a run of the routing program with relaxation of time frame

or drop-off time of 1:30 minute

(The first line lists the sequence of the customer names in the route. The following lines

tell how to travel from one customer to the next one in the sequence)

Route

No.
Detail of route

1 ���������1 == Motorcycle ; q ; r ; s ; bf ; be ; bb ; t ; bh ; bg ; ar ; bx ; by ; an ; ao ; p

; o ; bl ; ap ; ah ; am ; ab

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ������������	
�����ก��� --> ����ก��� --> �����
��
��	�ก���

� �� --> ������������	
������
��
��	�ก���� �� --> �.���������24 --> .

��������� --> �.���������18 --> q

 Path 2 : q --> �.���������18 --> r

 Path 3 : r --> �.���������18 --> road --> �.���������16 --> s

 Path 4 : s --> �.���������16 --> bf

 Path 5 : bf --> �.���������16 --> be

 Path 6 : be --> �.���������16 --> bb

 Path 7 : bb --> �.���������16 --> road --> �.���������14 --> t

 Path 8 : t --> �.���������14 --> bh

 Path 9 : bh --> �.���������14 --> bg

 Path 10 : bg --> �.���������14 --> .��������� --> �.���������8 --> ar

 Path 11 : ar --> �.���������8 --> �.�������ก��31 --> bx

 Path 12 : bx --> �.�������ก��31 --> �.�������ก��31-33 --> by

 Path 13 : by --> �.�������ก��31-33 --> �.�������ก��33 --> an

 Path 14 : an --> �.�������ก��33 --> �.���������8 --> �.�������ก��29 --> ao

 Path 15 : ao --> �.�������ก��29 --> .�������ก�� --> �	�"���������� �.�����������ก2

--> �.���������24��ก2 --> �.���������24 --> .��������� --> �.���������22 -->

p

 Path 16 : p --> �.���������22 --> o

 Path 17 : o --> �.���������22 --> .��������� --> �.���������8 --> �.�������ก��

 77

Route

No.
Detail of route

29 --> bl

 Path 18 : bl --> �.�������ก��29 --> ap

 Path 19 : ap --> �.�������ก��29 --> �.���������8 --> �.�������ก��35 --> ah

 Path 20 : ah --> �.�������ก��35 --> �.�������ก��35-37 --> am

 Path 21 : am --> �.�������ก��35-37 --> �.�������ก��37 --> .�������ก�� --> �.

�������ก�� 53 --> ab

 Path 22 : ab --> �.�������ก�� 53 --> �.�������ก�� 55 --> �.�������ก�� 57 --> �.

�������ก�� 57/1 --> �	
��
����

2 ���������2 == Motorcycle ; aa ; ac ; z ; x ; y ; bv ; bt ; bu ; bs ; au ; av ; br ; bp ; bo ;

bq ; bn ; bm ; as ; at ; bd ; bc ; ba ; aq ; bz ; ai ; v ; w ; al ; ak ; bk ; bj ; bi ; aj ; u ;

bw

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก�� 55 --

> .�������ก�� --> ก	
!� --> .�������ก�� --> �.�������ก��62 --> aa

 Path 2 : aa --> �.�������ก��62 --> road --> �.�������ก��60 --> ac

 Path 3 : ac --> �.�������ก��60 --> road --> �.�������ก��58 --> road --> z

 Path 4 : z --> road --> �.�������ก��54 --> x

 Path 5 : x --> �.�������ก��54 --> y

 Path 6 : y --> �.�������ก��54 --> .�������ก�� --> �	�"���������� .��������� --> .

��������� --> ���������4 --> bv

 Path 7 : bv --> ���������4 --> ���������4 �#�7 --> bt

 Path 8 : bt --> ���������4 �#�7 --> �������$���#�7 ก
!�#�8 --> ���������4 �#�
8 --> bu

 Path 9 : bu --> ���������4 �#�8 --> �������$���#�7 ก
!�#�8 --> �������$���#�

6 ก
!�#�7 --> bs

 Path 10 : bs --> �������$���#�6 ก
!�#�7 --> �������$���#�5 ก
!�#�6 -->

���������4 �#�5 --> au

 Path 11 : au --> ���������4 �#�5 --> ���������4 --> ���������4-���������2 -->

 78

Route

No.
Detail of route

�.���������2 --> av

 Path 12 : av --> �.���������2 --> br

 Path 13 : br --> �.���������2 --> .��������� --> %&�ก	
!� ����ก��'(()� --> .

��������� --> �.���������1 --> bp

 Path 14 : bp --> �.���������1 --> bo

 Path 15 : bo --> �.���������1 --> .��������� --> �.���������3/1 --> bq

 Path 16 : bq --> �.���������3/1 --> road --> .��������� --> �.���������5 --> �.

��������5 ��ก1 --> bn

 Path 17 : bn --> �.��������5 ��ก1 --> bm

 Path 18 : bm --> �.��������5 ��ก1 --> �.���������5 --> as

 Path 19 : as --> �.���������5 --> .��������� --> �.���������7 --> at

 Path 20 : at --> �.���������7 --> .��������� --> ก	
!� ���� �.���������25 --> .

��������� --> �.���������18 --> bd

 Path 21 : bd --> �.���������18 --> bc

 Path 22 : bc --> �.���������18 --> ba

 Path 23 : ba --> �.���������18 --> .��������� --> �.���������10 --> aq

 Path 24 : aq --> �.���������10 --> .��������� --> �.���������8 --> �.�������ก��
35 --> bz

 Path 25 : bz --> �.�������ก��35 --> �.�������ก��35-37 --> ai

 Path 26 : ai --> �.�������ก��35-37 --> �.�������ก��37 --> v

 Path 27 : v --> �.�������ก��37 --> w

 Path 28 : w --> �.�������ก��37 --> �.�������ก��37-39 --> �.�������ก��39 --> �.

���������12 --> �.#&���*4 --> al

 Path 29 : al --> �.#&���*4 --> ak

 Path 30 : ak --> �.#&���*4 --> �.���������12 --> bk

 Path 31 : bk --> �.���������12 --> bj

 79

Route

No.
Detail of route

 Path 32 : bj --> �.���������12 --> bi

 Path 33 : bi --> �.���������12 --> �.�������ก��39 --> aj

 Path 34 : aj --> �.�������ก��39 --> u

 Path 35 : u --> �.�������ก��39 --> bw

 Path 36 : bw --> �.�������ก��39 --> .�������ก�� --> �.�������ก�� 53 --> �.

�������ก�� 55 --> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

3 ���������3 == Motorcycle ; ag ; ae ; af ; az ; ay ; ad ; n ; aw ; ax ; k ; j ; l ; m ; a ; d ; b

; c ; h ; e ; f ; g ; i

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ก	
!� ���� ABAC --> �.���������24 --> �.���������24/1 -->

ag

 Path 2 : ag --> �.���������24/1 --> ae

 Path 3 : ae --> �.���������24/1 --> af

 Path 4 : af --> �.���������24/1 --> .��������� --> ก	
!� ���� ��.�
����ก --> .

��������� --> ก	
!� --> .��������� --> �.���������30/1 --> az

 Path 5 : az --> �.���������30/1 --> ay

 Path 6 : ay --> �.���������30/1 --> .��������� --> �.���������30 --> ad

 Path 7 : ad --> �.���������30 --> .��������� --> �.���������26/2 --> road --> �.

���������26/1 --> n

 Path 8 : n --> �.���������26/1 --> road --> �.���������26/2 --> aw

 Path 9 : aw --> �.���������26/2 --> ax

 Path 10 : ax --> �.���������26/2 --> k

 Path 11 : k --> �.���������26/2 --> j

 Path 12 : j --> �.���������26/2 --> road --> �.���������26/1 --> l

 Path 13 : l --> �.���������26/1 --> m

 Path 14 : m --> �.���������26/1 --> .��������� --> �.��������� 24/2 --> a

 80

Route

No.
Detail of route

 Path 15 : a --> �.��������� 24/2 --> d

 Path 16 : d --> �.��������� 24/2 --> b

 Path 17 : b --> �.��������� 24/2 --> c

 Path 18 : c --> �.��������� 24/2 --> h

 Path 19 : h --> �.��������� 24/2 --> e

 Path 20 : e --> �.��������� 24/2 --> f

 Path 21 : f --> �.��������� 24/2 --> g

 Path 22 : g --> �.��������� 24/2 --> i

 Path 23 : i --> �.��������� 24/2 --> �.���������24 --> ก	
!� --> �.�������ก��57 -

-> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

 81

Table A.3: Route details from a run of the routing program with drop-off time of 1:45

minute

(The first line lists the sequence of the customer names in the route. The following lines

tell how to travel from one customer to the next one in the sequence)

Route

No.
Detail of route

1 ���������1 == Motorcycle ; q ; r ; s ; bf ; be ; bb ; t ; bh ; bg ; ar ; bx ; by ; an ; ao ; p

; o ; bl ; ap ; ah ; am ; aa ; ac ; z ; x ; y ; ab

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ������������	
�����ก��� --> ����ก��� --> �����
��
��	�ก���

� �� --> ������������	
������
��
��	�ก���� �� --> �.���������24 --> .

��������� --> �.���������18 --> q

 Path 2 : q --> �.���������18 --> r

 Path 3 : r --> �.���������18 --> road --> �.���������16 --> s

 Path 4 : s --> �.���������16 --> bf

 Path 5 : bf --> �.���������16 --> be

 Path 6 : be --> �.���������16 --> bb

 Path 7 : bb --> �.���������16 --> road --> �.���������14 --> t

 Path 8 : t --> �.���������14 --> bh

 Path 9 : bh --> �.���������14 --> bg

 Path 10 : bg --> �.���������14 --> .��������� --> �.���������8 --> ar

 Path 11 : ar --> �.���������8 --> �.�������ก��31 --> bx

 Path 12 : bx --> �.�������ก��31 --> �.�������ก��31-33 --> by

 Path 13 : by --> �.�������ก��31-33 --> �.�������ก��33 --> an

 Path 14 : an --> �.�������ก��33 --> �.���������8 --> �.�������ก��29 --> ao

 Path 15 : ao --> �.�������ก��29 --> .�������ก�� --> �	�"���������� �.�����������ก2

--> �.���������24��ก2 --> �.���������24 --> .��������� --> �.���������22 -->

p

 Path 16 : p --> �.���������22 --> o

 Path 17 : o --> �.���������22 --> .��������� --> �.���������8 --> �.�������ก��

 82

Route

No.
Detail of route

29 --> bl

 Path 18 : bl --> �.�������ก��29 --> ap

 Path 19 : ap --> �.�������ก��29 --> �.���������8 --> �.�������ก��35 --> ah

 Path 20 : ah --> �.�������ก��35 --> �.�������ก��35-37 --> am

 Path 21 : am --> �.�������ก��35-37 --> �.�������ก��37 --> .�������ก�� --> ก	
!

� --> .�������ก�� --> �.�������ก��62 --> aa

 Path 22 : aa --> �.�������ก��62 --> road --> �.�������ก��60 --> ac

 Path 23 : ac --> �.�������ก��60 --> road --> �.�������ก��58 --> road --> z

 Path 24 : z --> road --> �.�������ก��54 --> x

 Path 25 : x --> �.�������ก��54 --> y

 Path 26 : y --> �.�������ก��54 --> .�������ก�� --> ก	
!� --> .�������ก�� --> �.

�������ก�� 53 --> ab

 Path 27 : ab --> �.�������ก�� 53 --> �.�������ก�� 55 --> �.�������ก�� 57 --> �.

�������ก�� 57/1 --> �	
��
����

2 ���������2 == Motorcycle ; ag ; ae ; af ; az ; ay ; ad ; n ; aw ; ax ; k ; j ; l ; m ; a ; d ; b

; c ; h ; e ; f ; g ; i

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก��57 --

> �.���������24 --> ก	
!� ���� ABAC --> �.���������24 --> �.���������24/1 -->

ag

 Path 2 : ag --> �.���������24/1 --> ae

 Path 3 : ae --> �.���������24/1 --> af

 Path 4 : af --> �.���������24/1 --> .��������� --> ก	
!� ���� ��.�
����ก --> .

��������� --> ก	
!� --> .��������� --> �.���������30/1 --> az

 Path 5 : az --> �.���������30/1 --> ay

 Path 6 : ay --> �.���������30/1 --> .��������� --> �.���������30 --> ad

 Path 7 : ad --> �.���������30 --> .��������� --> �.���������26/2 --> road --> �.

���������26/1 --> n

 83

Route

No.
Detail of route

 Path 8 : n --> �.���������26/1 --> road --> �.���������26/2 --> aw

 Path 9 : aw --> �.���������26/2 --> ax

 Path 10 : ax --> �.���������26/2 --> k

 Path 11 : k --> �.���������26/2 --> j

 Path 12 : j --> �.���������26/2 --> road --> �.���������26/1 --> l

 Path 13 : l --> �.���������26/1 --> m

 Path 14 : m --> �.���������26/1 --> .��������� --> �.��������� 24/2 --> a

 Path 15 : a --> �.��������� 24/2 --> d

 Path 16 : d --> �.��������� 24/2 --> b

 Path 17 : b --> �.��������� 24/2 --> c

 Path 18 : c --> �.��������� 24/2 --> h

 Path 19 : h --> �.��������� 24/2 --> e

 Path 20 : e --> �.��������� 24/2 --> f

 Path 21 : f --> �.��������� 24/2 --> g

 Path 22 : g --> �.��������� 24/2 --> i

 Path 23 : i --> �.��������� 24/2 --> �.���������24 --> ก	
!� --> �.�������ก��57 -

-> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

3 ���������3 == Motorcycle ; bv ; bt ; bu ; bs ; au ; av ; br ; bp ; bo ; bq ; bn ; bm ; as ;

at ; bd ; bc ; ba ; aq ; bz ; ai ; v ; w ; al ; ak ; bk ; bj ; bi ; aj ; u ; bw

 Path 1 : �	
��
���� --> �.�������ก�� 57/1 --> �.�������ก�� 57 --> �.�������ก�� 55 --

> .�������ก�� --> ก	
!� --> .�������ก�� --> �	�"���������� .��������� --> .

��������� --> ���������4 --> bv

 Path 2 : bv --> ���������4 --> ���������4 �#�7 --> bt

 Path 3 : bt --> ���������4 �#�7 --> �������$���#�7 ก
!�#�8 --> ���������4 �#�
8 --> bu

 Path 4 : bu --> ���������4 �#�8 --> �������$���#�7 ก
!�#�8 --> �������$���#�

 84

Route

No.
Detail of route

6 ก
!�#�7 --> bs

 Path 5 : bs --> �������$���#�6 ก
!�#�7 --> �������$���#�5 ก
!�#�6 -->

���������4 �#�5 --> au

 Path 6 : au --> ���������4 �#�5 --> ���������4 --> ���������4-���������2 --> �.

���������2 --> av

 Path 7 : av --> �.���������2 --> br

 Path 8 : br --> �.���������2 --> .��������� --> %&�ก	
!� ����ก��'(()� --> .

��������� --> �.���������1 --> bp

 Path 9 : bp --> �.���������1 --> bo

 Path 10 : bo --> �.���������1 --> .��������� --> �.���������3/1 --> bq

 Path 11 : bq --> �.���������3/1 --> road --> .��������� --> �.���������5 --> �.

��������5 ��ก1 --> bn

 Path 12 : bn --> �.��������5 ��ก1 --> bm

 Path 13 : bm --> �.��������5 ��ก1 --> �.���������5 --> as

 Path 14 : as --> �.���������5 --> .��������� --> �.���������7 --> at

 Path 15 : at --> �.���������7 --> .��������� --> ก	
!� ���� �.���������25 --> .

��������� --> �.���������18 --> bd

 Path 16 : bd --> �.���������18 --> bc

 Path 17 : bc --> �.���������18 --> ba

 Path 18 : ba --> �.���������18 --> .��������� --> �.���������10 --> aq

 Path 19 : aq --> �.���������10 --> .��������� --> �.���������8 --> �.�������ก��
35 --> bz

 Path 20 : bz --> �.�������ก��35 --> �.�������ก��35-37 --> ai

 Path 21 : ai --> �.�������ก��35-37 --> �.�������ก��37 --> v

 Path 22 : v --> �.�������ก��37 --> w

 Path 23 : w --> �.�������ก��37 --> �.�������ก��37-39 --> �.�������ก��39 --> �.

���������12 --> �.#&���*4 --> al

 85

Route

No.
Detail of route

 Path 24 : al --> �.#&���*4 --> ak

 Path 25 : ak --> �.#&���*4 --> �.���������12 --> bk

 Path 26 : bk --> �.���������12 --> bj

 Path 27 : bj --> �.���������12 --> bi

 Path 28 : bi --> �.���������12 --> �.�������ก��39 --> aj

 Path 29 : aj --> �.�������ก��39 --> u

 Path 30 : u --> �.�������ก��39 --> bw

 Path 31 : bw --> �.�������ก��39 --> .�������ก�� --> �.�������ก�� 53 --> �.

�������ก�� 55 --> �.�������ก�� 57 --> �.�������ก�� 57/1 --> �	
��
����

 86

BIOGRAPHY

Mr. Thanat Suensilpong was born on 27
th
 of March 1979 in Bangkok,

Thailand. He obtained a Bachelor degree of Engineering in Computer Engineering from

Chulalongkorn University, Thailand in 2000. He has been working at Pen K Intertrading

Co., Ltd. in the position of engineer since 2001. In 2004, he enrolled as a part-time

student working toward a Master(s degree in engineering management at the Regional

Centre for Manufacturing systems Engineering, Chulalongkorn University.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Background
	1.2 Thesis Objectives
	1.3 Scope of the Research and Assumptions
	1.4 Methodology
	1.5 Expected Benefit

	CHAPTER II LITERATURE REVIEW
	2.1 Shortest Path Problem
	2.2 Vehicle Routing Problem
	2.3 Applications of Theories
	2.4 Conclusion

	CHAPTER III PROBLEM FORMULATION AND MODELLING, AND SOFTWAREDEVELOPMENT
	3.1 Problem Description
	3.2 Problem Modelling Concept
	3.3 Model
	3.4 Software Development
	3.5 System Validation
	3.6 Procedure of Operating the Vehicle Routing System
	3.7 Conclusion

	CHAPTER IV SYSTEM EVALUATION
	4.1 Evaluation Procedure
	4.2 Test Input Data
	4.3 Results and Discussion
	4.4 Conclusion

	CHAPTER V CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations

	References
	Appendix
	Vita

