

การควบคุมแบบโมเดลพรีดิกทีฟรวมกบัขายงานนวิรัลสําหรับกระบวนการกําจดัสนมิเหล็ก

นางสาววชิรา ดาวสุด

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี
คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย

ปการศึกษา 2549
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL FOR A STEEL PICKLING PROCESS

Miss Wachira Daosud

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Engineering Program in Chemical Engineering

Department of Chemical Engineering
Faculty of Engineering

Chulalongkorn University
Academic year 2006

Copyright of Chulalongkorn University

 vi

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my thesis advisor, Associate Professor

Paisan Kittisupakorn, for his inspiration, encouragement and supporting throughout

my thesis. I would like to thank my thesis co-advisor, Associate Professor Mohamed

Azlan Hussain, for helping and providing valuable advice.

 I wish to especially thank the other members of my thesis committee,

Professor Piyasan Praserthdam, Dr. Montree Wongsri and Dr. Suphot Phatanasri, for

their time and useful comments on this thesis.

 I gratefully acknowledged the financial support from the Thailand Research

Fund (TRF). Many thanks to all my friends, colleagues in my research group and

staffs in the Department of Chemical Engineering, Chulalongkorn University and

University of Malaya for their friendship and assistance.

 Finally, I would like to express my deepest gratitude to my beloved parents

and my brother for the endless love, inspiration and encouragement.

CONTENT

 PAGE

ABSTRACT (IN THAI)…………………………………………............ iv

ABSTRACT (IN ENGLISH)…………………………………………..... v

ACKNOWLEDGEMENTS……………………………………………... vi

CONTENT………………………………………………………………. vii

LIST OF TABLES……………………………………………………..... x

LIST OF FIGURES……………………………………………………... xi

NOMENCLATURE…………………………………………………….. xviii

CHAPTER

I INTRODUCTION………………………………………. 1

1.1 Research Objectives………………………………. . 2

1.2 Contributions……………………………………..... 3

1.3 Dissertation Overview……………………………... 3

II LITERATURE REVIEWS…………………………….... 5

2.1 Neural Network.. . 5

2.1.1 Applications of neural network…………….... 6

2.2 Model Predictive Control…………………………. . 11

2.2.1 Applications of MPC………………............... 13

III THEORY OF NEURAL NETWORK AND MODEL

 PREDICTIVE CONTROL……………………………… 15

3.1 Neural Network Introduction……………………..... 15

3.2 Neural Network Architectures……………………... 18

3.2.1 Models of a neuron………………………..... 18

3.2.2 Types of activation function………………... 19

3.2.3 Feedforward neural networks……….…........ 22

3.2.4 Recurrent neural networks…………….…..... 24

 3.3 Neural Network Training…………………………. . 25

 3.3.1 Supervised training………………………... . 25

viii

 PAGE

 3.3.2 Unsupervised training…………………….... 25

 3.3.3 Reinforcement training…………………….. 26

 3.4 Feedforward Multilayer Perceptron……………….. 26

 3.5 Training Algorithm………………………………... 30

 3.5.1 The delta rule……………………………..... 30

 3.5.2 The backpropagation method……………..... 31

 3.5.3 Levenberg-Marquardt method……………... 36

 3.6 Model Predictive Control………………………… . 37

 3.6.1 MPC algorithms…………………………..... 39

 3.6.2 Formulation of model predictive control

 Problem…………………………………….. 41

 3.6.3 Model predictive control strategy………….. 42

 3.6.4 Advantages and Disadvantages of MPC….. . 43

 IV NEURAL NETWORK MODELING AND INVERSE

 NEURAL NETWORK MODELING FOR A STEEL

 PICKLING PROCESS………………………………….. 45

4.1 A Steel Pickling Process…………………………... 45

4.2 Neural Network Modeling………………………… 49

4.3 Procedure for Obtaining Neural Network Forward

Models…………………………………………….. 49

4.4 Identification of Neural Network Inverse Models.. . 57

4.5 Procedure for Obtaining Neural Network Inverse

Models…………………………………………….. 58

4.6 The Minimum MSE Method……………………... . 60

4.7 Simulation Results………………………………… 60

V MODEL PREDICTIVE CONTROL BASED ON

NEURAL NETWORK FOR A STEEL PICKLING

PROCESS………………………………………………... 67

5.1 Neural Network Model Based Predictive Control…. 67

5.2 Simulation Results…………………………………. 71

ix

 PAGE

VI NEURAL NETWORK INVERSE MODEL BASED

 CONTROLLER FOR THE CONTROL OF A STEEL

 PICKLING PROCESS………………………………….. 87

6.1 Neural network direct inverse control strategy

 (NNDIC)…………………………………………... 87

6.2 Simulation Results and Discussion of NNDIC…..... 92

 6.2.1 Nominal case………………………………. 92

 6.2.2 Disturbance case…………………………... 96

 6.2.3 Model mismatch case…………………….. . 103

 6.2.4 Noise case…………………………………. 110

6.3 Dual Mode Control based on Neural Network

 Inverse Model Strategy……………………………. 113

6.4 Results and Discussion of Dual Mode Control……. 113

6.4.1 Nominal case………………………………. 114

6.4.2 Disturbance case…………………………... 116

6.4.3 Model mismatch case…………………….. . 119

VII CONCLUSIONS………………………………………... 122

7.1 A Steel Pickling Process Modeling………………. . 122

7.2 Neural Network Direct Inverse Control (NNDIC)

and Dual Mode Control (DM)…………………….. 123

7.3 Neural Network based Model Predictive Control

 (NNMPC)………………………………………….. 124

REFERENCES………………………………………………………….. 125

APPENDICES…………………………………………………………... 135

 APPENDIX A. MATLAB R2006a – Neural Network Modeling 136

 APPENDIX B. MATLAB R2006a – The Control of NNMPC 139

VITA………………………………………………………………........ . 148

 x

LIST OF TABLES
PAGE

Table 4.1 MSE value for different number of hidden nodes in the

 neural network forward models of the 5%, 10% and

 15% HCl baths and the first rinsing bath……………………. 61

Table 4.2 MSE value for different number of hidden nodes in the

 neural network inverse models of the 5%, 10% and

 15% HCl baths and the first rinsing bath……………………. 62

Table 5.1 Performance comparison between NNMPC and PI control

 under the disturbance case…………………………………... 72

Table 5.2 Performance comparison between NNMPC and PI control

under the model mismatch case……………………………... 76

Table 5.3 Performance comparison between NNMPC and PI control

 under the noises case…………………………………………. 83

Table 6.1 Performance comparison between NNDIC and PI control

 under the nominal case………………………………………. 96

Table 6.2 Performance comparison between NNDIC and PI control

 under the disturbance case (15% increase of the

 concentration, C20)…………………………………………... 102

Table 6.3 Performance comparison between NNDIC and PI control

 under the model mismatch case (15% increase of

 the reaction rate, k)………………………………………….. 109

Table 6.4 Performance of NNDIC under the noise case……………….. 112

Table 6.5 Performance comparison between Dual mode control,

 NNDIC and PI control under the nominal case……………... 116

Table 6.6 Performance comparison between DM control, NNDIC

 and PI control under the disturbance case

 (15% increasing of the concentration, C20)………………….. 117

Table 6.7 Performance comparison between DM control, NNDIC

 and PI control under the model mismatch case

 (15% increase of the reaction rate, k)……………………….. 120

 xi

LIST OF FIGURES
 PAGE

Figure 3.1 The primitive yet powerful human brain……………………. 16

Figure 3.2 Dendrites, axons and synapse in a biological neuron……….. 17

Figure 3.3 Nonlinear model of a neuron………………………………... 21

Figure 3.4 (a) Threshold function. …………………………………….... 22

 (b) Piecewise-linear function………………………………. . 22

 (c) Sigmoid function for varying slope parameter a………… 22

Figure 3.5 Feedforward neural networks……………………………….. 23

Figure 3.6 Recurrent neural networks…………………………………... 24

Figure 3.7 (a) Architecture of a three-layer perceptron…………………. 29

 (b) A block diagram representation of the perceptron………. 29

Figure 3.8 MPC Strategy………………………………………………... 43

Figure 4.1 Flow diagram of pickling baths……………………………... 48

Figure 4.2 Flow diagram of rinsing baths……………………………….. 48

Figure 4.3 Procedure for obtaining forward and inverse neural

 network models………………………………………………. 51

Figure 4.4 Training data set of 5% HCl bath

 (a) Manipulated variable (Flow rate F2)…………………….. 52

 (b) Concentration of 5% HCl bath (C1)……………………... 52

Figure 4.5 Training data set of 10% HCl bath

 (a) Manipulated variable (Flow rate F3)…………………….. 53

 (b) Concentration of 10% HCl bath (C2)……………………. 53

Figure 4.6 Training data set of 15% HCl bath

 (a) Manipulated variable (Flow rate F5)…………………….. 54

 (b) Concentration of 15% HCl bath (C3)……………………. 54

Figure 4.7 Training data set of the first rinsing bath

 (a) Manipulated variable (Flow rate F6)…………………….. 55

 (b) Concentration of the first rinsing bath (C4)……………... 55

Figure 4.8 Structure for the training of the forward neural network model 57

Figure 4.9 Structure for the training of the inverse neural network model 59

 xii

 PAGE

Figure 4.10 The validation result of 5% HCl bath neural network model

 (structure 5-4-1)……………………………………………... 63

Figure 4.11 The validation result of 10% HCl bath neural network model

 (structure 9-4-1)……………………………………………... 63

Figure 4.12 The validation result of 15% HCl bath neural network model

 (structure 7-8-1)……………………………………………... 64

Figure 4.13 The validation result of 1st rinsing bath neural network model

 (structure 7-4-1)……………………………………………... 64

Figure 4.14 The validation result of 5% HCl bath inverse neural network

 model (structure 5-4-1)………………………………………. 65

Figure 4.15 The validation result of 10% HCl bath inverse neural network

 model (structure 9-8-1)………………………………………. 65

Figure 4.16 The validation result of 15% HCl bath inverse neural network

 model (structure 7-12-1)…………………………………….. 66

Figure 4.17 The validation result of 1st rinsing bath inverse neural network

 model (structure 7-16-1)…………………………………….. 66

Figure 5.1 The neural network model of 5% HCl bath (structure 5-4-1).. 69

Figure 5.2 The neural network model of 10% HCl bath (structure 9-4-1) 69

Figure 5.3 The neural network model of 15% HCl bath (structure 7-8-1) 70

Figure 5.4 Flow diagram of a steel pickling process control……………. 70

Figure 5.5 Multivariable NNMPC strategy……………………………... 71

Figure 5.6 NNMPC control for HCl acid concentration

 (a) 5% HCl bath……………………………………………... 73

 (b) 10% HCl bath……………………………………………. 73

 (c) 15% HCl bath……………………………………………. 74

Figure 5.7 PI control for HCl acid concentration

 (a) 5% HCl bath……………………………………………... 74

 (b) 10% HCl bath……………………………………………. 75

 (c) 15% HCl bath……………………………………………. 75

Figure 5.8 Concentration control in 5%HCl bath under the disturbance case

 (a) NNMPC………………………………………………….. 77

 (b) PI control…………………………………………………. 77

 xiii

PAGE

Figure 5.9 Concentration control in 10%HCl bath under the disturbance case

 (a) NNMPC …………………………………………………. 78

 (b) PI control………………………………………………… 78

Figure 5.10 Concentration control in 15%HCl bath under the disturbance case

 (a) NNMPC………………………………………………… . 79

 (b) PI control………………………………………………… 79

Figure 5.11 Concentration control in 5%HCl bath under

 the model mismatch case

 (a) NNMPC………………………………………………… . 80

 (b) PI control………………………………………………… 80

Figure 5.12 Concentration control in 10%HCl bath under

 the model mismatch case

 (a) NNMPC………………………………………………… . 81

 (b) PI control………………………………………………… 81

Figure 5.13 Concentration control in 15%HCl bath under

 the model mismatch case

 (a) NNMPC………………………………………………… . 82

 (b) PI control………………………………………………… 82

Figure 5.14 Concentration control in 5%HCl bath under the noise case

 (a) NNMPC………………………………………………….. 84

 (b) PI control…………………………………………………. 84

Figure 5.15 Concentration control in 10%HCl bath under the noise case

 (a) NNMPC………………………………………………….. 85

 (b) PI control…………………………………………………. 85

Figure 5.16 Concentration control in 15%HCl bath under the noise case

 (a) NNMPC………………………………………………….. 86

 (b) PI control…………………………………………………. 86

Figure 6.1 The inverse neural network controller of 5% HCl bath

 (structure 5-4-1)……………………………………………... 88

Figure 6.2 The inverse neural network controller of 10% HCl bath

 (structure 9-8-1)……………………………………………… 88

 xiv

PAGE

Figure 6.3 The inverse neural network controller of 15% HCl bath

 (structure 7-12-1)……………………………………………. 89

Figure 6.4 The inverse neural network controller of 1st rinsing bath

 (structure 7-16-1)……………………………………………. 90

Figure 6.5 Flow diagram of pickling baths control system……………... 91

Figure 6.6 Flow diagram of rinsing baths control system………………. 91

Figure 6.7 Neural network direct inverse model control strategy………. 92

Figure 6.8 Concentration control in 5% HCl bath under the nominal case

 (a) NNDIC…………………………………………………... 93

 (b) PI control………………………………………………… 93

Figure 6.9 Concentration control in 10% HCl bath under the nominal case

 (a) NNDIC…………………………………………………... 94

 (b) PI control………………………………………………… 94

Figure 6.10 Concentration control in 15% HCl bath under the nominal case

 (a) NNDIC…………………………………………………... 94

 (b) PI control………………………………………………… 95

Figure 6.11 Concentration control in 1st rinsing bath under the nominal case

 (a) NNDIC…………………………………………………... 95

 (b) PI control………………………………………………… 95

Figure 6.12 Concentration control in 5%HCl bath under the disturbance case

 (15% increase of the concentration, C20)

 (a) NNDIC…………………………………………………... 97

 (b) PI control………………………………………………… 97

Figure 6.13 Concentration control in 10%HCl bath under the disturbance

 case (15% increase of the concentration, C20)

 (a) NNDIC…………………………………………………... 97

 (b) PI control………………………………………………… 98

Figure 6.14 Concentration control in 15% HCl bath under the disturbance

 case (15% increase of the concentration, C20)

 (a) NNDIC…………………………………………………... 98

 (b) PI control………………………………………………… 98

 xv

PAGE

Figure 6.15 Concentration control in 1st rinsing bath under the disturbance

 case (15% increase of the concentration, C20)

 (a) NNDIC…………………………………………………... 99

 (b) PI control………………………………………………… 99

Figure 6.16 Concentration control in 5% HCl bath under the disturbance

 case (15% decrease of the concentration, C20)

 (a) NNDIC…………………………………………………... 99

 (b) PI control………………………………………………… 100

Figure 6.17 Concentration control in 10% HCl bath under the disturbance

 case (15% decrease of the concentration, C20)

 (a) NNDIC…………………………………………………... 100

 (b) PI control………………………………………………… 100

Figure 6.18 Concentration control in 15% HCl bath under the disturbance

 case (15% decrease of the concentration, C20)

 (a) NNDIC…………………………………………………... 101

 (b) PI control………………………………………………… 101

Figure 6.19 Concentration control in 1st rinsing bath under the disturbance

 case (15% decrease of the concentration, C20)

 (a) NNDIC…………………………………………………... 101

 (b) PI control………………………………………………… 102

Figure 6.20 Concentration control in 5% HCl bath under the model

 mismatch case (15% increase of the reaction rate, k)

 (a) NNDIC…………………………………………………... 104

 (b) PI control………………………………………………… 104

Figure 6.21 Concentration control in 10% HCl bath under the model

 mismatch case (15% increase of the reaction rate, k)

 (a) NNDIC…………………………………………………... 104

 (b) PI control………………………………………………… 105

Figure 6.22 Concentration control in 15% HCl bath under the model

 mismatch case (15% increase of the reaction rate, k)

 (a) NNDIC…………………………………………………... 105

 (b) PI control………………………………………………… 105

 xvi

PAGE

Figure 6.23 Concentration control in 1st rinsing bath under the model

 mismatch case (15% increase of the reaction rate, k)

 (a) NNDIC…………………………………………………... 106

 (b) PI control………………………………………………… 106

Figure 6.24 Concentration control in 5% HCl bath under the model

 mismatch case (15% decrease of the reaction rate, k)

 (a) NNDIC………………………………………………….. 106

 (b) PI control………………………………………………… 107

Figure 6.25 Concentration control in 10% HCl bath under the model

 mismatch case (15% decrease of the reaction rate, k)

 (a) NNDIC…………………………………………………... 107

 (b) PI control………………………………………………… 107

Figure 6.26 Concentration control in 15% HCl bath under the model

 mismatch case (15% decrease of the reaction rate, k)

 (a) NNDIC…………………………………………………... 108

 (b) PI control………………………………………………… 108

Figure 6.27 Concentration control in 1st rinsing bath under the model

mismatch case (15% decrease of the reaction rate, k)

 (a) NNDIC…………………………………………………... 108

 (b) PI control………………………………………………… 109

Figure 6.28 Concentration control by NNDIC under the noise case

 with the disturbance in C20 (+15%)

 (a) 5% HCl Bath…………………………………………….. 110

 (b) 10% HCl Bath…………………………………………… 110

 (c) 15% HCl Bath…………………………………………… 111

 (d) 1st rinsing Bath…………………………………………... 111

Figure 6.29 Concentration control by NNDIC under the noise case

 with the model mismatch in k (+15%)

 (a) 5% HCl Bath…………………………………………….. 111

 (b) 10% HCl Bath…………………………………………… 111

 (c) 15% HCl Bath……………………………………………. 112

 (d) 1st rinsing Bath…………………………………………... 112

 xvii

PAGE

Figure 6.30 Concentration control in 15%HCl bath under the nominal case

 (a) DM control………………………………………………. 115

 (b) NNDIC…………………………………………………… 115

 (c) PI control…………………………………………………. 115

Figure 6.31 Concentration control in 15%HCl bath under the disturbance

 case (15% increase of the concentration, C20)

 (a) DM control………………………………………………. 117

 (b) NNDIC…………………………………………………... 118

 (c) PI control………………………………………………… 118

Figure 6.32 Concentration control in 15% HCl under the model mismatch

 case (15% increase of reaction rate, k)

 (a) DM control………………………………………………. 120

 (b) NNDIC…………………………………………………... 121

 (c) PI control………………………………………………… 121

NOMENCLATURES

CHAPTER III

a slope parameter of the sigmoid function

b bias

h equality constraint functions

J Jacobian matrix

k inequality constraint functions

n number of neurons

o output vector

P length of the prediction horizon

t0 current time

u value of the internal potential

kv induced local field of the neuron

w synaptic weight

W interconnection matrix of the synaptic weights

x input vector

xj input of synapse j

y output vector

yk output of neuron k

CHAPTER IV

A area of operating tank [= 7.29x10-2 m2]

C concentration of HCl [mol/l]

C20 20% by weight concentration of HCl

F volumetric rate [l/min]

h height of operating tank [m]

k reaction rate constant [= 3.267x10-4 mol/(l min)]

q amount of acid solution that stuck with samples [=2x10-3 l/min]

t time [min]

V volume of operating tank [m3]

 xix

GREEK SYMBOLS

α momentum

δ error

φ activation function

η learning coefficient

Ψ nonlinear bounded activation function

Ψ diagonal nonlinear operator with (typically identical) sigmoid

activation functions

Θ bias

Γ weighting parameter

SUPERSCRIPT

[s] the s-th layer

SUBSCRIPTS

w water

sp setpoint

CHAPTER I

INTRODUCTION

 Chemical manufacturing processes present many challenging control

problems, including: nonlinear dynamic behavior; multivariable interactions between

manipulated and controlled variables; unmeasured state variables; unmeasured and

frequency disturbances; high-order and distributed processes; uncertain and time-

varying parameters; un-modeled dynamics; constraints on manipulated and state

variables; and (variable) dead time on inputs and measurements. A number of control

approaches and algorithms that are able to handle some of the above process

characteristics have been presented in the academic literature in recent years. Bequette

(1991) gives a review of various approaches such as internal model approaches,

differential geometric approaches, reference system synthesis techniques, including

internal decoupling and Generic Model Control (GMC), Model Predictive Control

(MPC) and also various special and ad hoc approaches. Many of these approaches are

not able to handle the various process characteristics and requirements met in

industrial applications and some of the approaches can only be applied for special

classes of models.

 Model Predictive Control appears to be the only general approach which can

handle most of the common process characteristics and industrial requirements in a

satisfactory way. It also seems to be the approach which are most suitable for the

development of general and application independent software, which is essential for

the development of cost-effective applications. The key of the successful use of MPC

in solving the process problem is the accurate model. However, chemical processes

have been traditionally controlled using linear system analysis and design tools even

though they are the inherent nonlinear process.

 Recently, neural networks have been successfully applied in identification and

controlling nonlinear processes. Neural networks offer alternative nonlinear models

for MPC of industrial systems (Lightbody et al., 1997; Doherty et al., 1997; Henson,

1998; Hussain, 1999). Different ways of neural models being embedded in MPC

 2

systems were reviewed by two recent surveys (Yu and Gomm, 2002; Lightbody and

Irwin, 1997). It is noted that while neural network modeling and control techniques

are investigated for nonlinear systems, the current methods proposed and tested by

simulations and some implementations to laboratory rigs are mainly for single-input

single-output (SISO) systems (Gomm et al., 1997; Lennox et al., 1998). Applications

of neural networks in chemical process modeling and MPC have been investigated for

SISO systems (Rohani et al., 1999; Daosud et al., 2005; Psichogios et al., 1991;

Elman et al., 1990). Very few investigations into neural control for multiple-input

multiple-output (MIMO) chemical processes have been reported.

 The work presented in this dissertation is focused on the implementation of a

model predictive control based on neural network (NNMPC) technique to control a

MIMO chemical process. A steel pickling process which is the highly nonlinear

dynamic behavior, multivariable and interaction between variables is chosen to

represent such a system. Since the success of MPC is largely depend on the

availability of models of the process to be controlled, this research concentrates on the

development of neural network model for describing the dynamics of the steel

pickling process. The developed neural network model is then used in MPC

algorithm.

1.1 Research Objectives

The overall objective of this research concentrates on the application of model

predictive control based on neural network in an industrial chemical process. The

steel pickling process is chosen for an industrial case study. The neural network

models of this process have been developed from simulation data of the process. The

developed process models are also used for control purpose. From the view of this

objective, this research can be divided into two sections:

1. Developing the process models for describing the steel pickling process

behavior by using neural network strategy.

 3

2. An implementation of a model predictive control based on neural network

technique in industrial chemical process, the steel pickling process.

• Investigating the performance of model predictive control based on

neural network for the control of the steel pickling process.

• Comparing the performance of model predictive control based on

neural network with the other control strategy such as inverse neural

network and the convention control technique.

1.2 Contributions

The main contributions of this dissertation are:

1. The models for describing the behavior of the steel pickling process (MIMO

process) have been developed based on neural network technique.

2. The model predictive control based on neural network technique has been

developed for the tighter control of MIMO process and highly nonlinear, steel

pickling process.

3. The inverse neural network controllers have been developed for the control of the

steel pickling process.

1.3 Dissertation Overview

This dissertation is organized as follows. Chapter 2 reviews the literature for

work related to history, concepts and background of artificial neural network and

model predictive control and their applications as studied by previous researchers.

 Chapter 3 discusses the artificial neural network and model predictive control

strategy. Since neural network model is used in MPC algorithm for NNMPC

technique, the structure of neural network and the formulation of MPC problem are

provided in this chapter.

 4

Chapter 4 begins with the process description of a steel pickling process

studied in this work. The mathematical model of the steel pickling process derived

from mass balances is developed. Forward and inverse neural networks model are

presented in order to use as process model and controller of the steel pickling process.

Chapter 5 describes the implementation of NNMPC to control the steel

pickling process. The neural network models developed in Chapter 4 are used here to

design the NNMPC controller. To evaluate the performance of NNMPC, results are

compared with a traditional PI controller. Simulation studies of the NNMPC and PI

controllers are demonstrated and discussed.

Chapter 6 describes the implementation of inverse neural network (InvNN) to

control the steel pickling process. A Dual Mode (DM) control strategy is presented in

order to remove some offset obtaining from InvNN control. To evaluate the

performance of DM, results are compared with the InvNN and a traditional PI

controller. Simulation studies of the DM, InvNN and PI controllers are demonstrated

and discussed.

Chapter 7 gives a conclusion of this dissertation.

CHAPTER II

LITERATURE REVIEWS

2.1 Neural Network

Many of the concepts behind artificial neural networks (ANNs) were first

discussed by biologists in the nineteenth century. For instance, William James

suggested in 1890 that the activity at one point in the brain was due to the culminative

activities of other points in the brain. This is a core feature of an artificial neuron

developed 50 years later (i.e. the McCulloch-Pitts neuron). It was not until the 1940’s

that significant theoretical advances were made (e.g. McCulloch and Pitts, 1943;

Hebb, 1949). In the 1960s researchers were able to dispose of their cumbersome

analogue computer hardware and pursue their work through digital computer

simulation. This led to the perceptron (Rosenblatt, 1962), which is still widely used.

But the 1960s also heralded a lull in ANN research, usually attributed to the work of

Minsky and Papert (1969), which highlighted substantial limitations of the single

layer perceptron network. In the late 1970s interest in neural computing was rekindled

and this interest was accelerated in the 1980s due to numerous theoretical

advancements (i.e. Hopfield, 1982; Hinton et al., 1984; Rumelhart et al., 1986;

Kohonen, 1988; Grossberg, 1988).

A good review of the history of neural computation can be found in Widrow

(1990) or from the excellent collection of early papers, by Anderson and Rosenfeld

(1988). Almost 50 different types of neural network architectures are developed,

although only some of them are in common use. There are numerous introductory

level books to neural computation. A more detailed presentation and analysis can be

found for example in Rumelhart and McClelland (1986) or Herz et al. (1991). Since

then neural network control has progressed rapidly and also real industrial

applications have been reported, e.g. Widrow et al. (1994), especially in Japan, e.g.

Asakawa and Takagi (1994). A computer survey (INSPEC) considering the

experimental or practical applications of the neural network control in 1994 resulted

 6

262 journal articles and 869 conference papers. Of course only a portion of all these

were real on-line tests of neural network control. The fuzzy control was excluded

from the search to reduce the number of articles, although Neuro-fuzzy systems form

an entity and it is often hard to distinguish between all the approaches, except by the

title.

2.1.1 Applications of neural network

Neural network has been used widely in system identification and control.

They are used to model all types of processed regardless of whether the processes are

linear or non-linear (Pham and Oh, 1999). A feedforward neural network has been

used successfully by Petrova et al. (1998) in modeling a fermentation process where

the network is trained to predict the specific growth rate. They successfully used the

neural network in performing system identification to obtain the kinetic models of the

specific growth rate and the specific consumption rate. These parameters are the most

important process properties in fermentation process modeling.

Mei and Chen (1997) have studied the use of feedforward neural network in

fermentation process to harvest four metabolic products consisting of acetic acid,

acetoin, ethanol, and 2, 3-butanediol where 2, 3-BDL is the target product. A neural

network model is trained to provide step ahead prediction of the process. Performance

of neural network prediction in the bio-reaction systems is studied by varying the size

if its learning interval. The sizes of data sampling interval were found to contribute

vastly on the prediction. They have concluded that the identification results from the

neural network with higher step prediction are more reliable and produced better

results, improving significantly the identification of the system.

The use of artificial neural networks for modeling in High Performance Liquid

Chromatography (HPLC) testing method development for amiloride and

methylchlothiazide separation was studied by Agatonavic-Kustrin et al. (1998). The

independent input variables were pH and methanol percentage and the outputs were

the capacity factors. The results were compared to well-known statistical method

consisting of multiple nonlinear regression analysis. The study had shown that the

networks were able to predict the experimental responses more accurately than the

 7

conventional regression analysis. The neural network showed to be a very powerful

tool in HPLC testing method development that give better results to those that are

obtained by the multiple regression technique.

Studies have taken place in order to model and understand the dynamic

properties of power plant process behavior. Lu and Hogg (2000) utilized a 200

MWatt oil-fired drum-type boiler-turbine-generator unit power plant and a derived

mathematical model in order to obtain its process model. They have used the neural

network modeling by implementing a supervised training of neural networks to

improve training time. They have also looked into practical aspects for selecting the

testing and validation data to ensure sufficient excitations covering its proper dynamic

behavior. They have extracted and mapped out the power plant open-loop dynamics

for use in their neural network training in order to obtain the model in load and no-

load operation conditions of the power plant.

A blast furnace, which is a common process device in manufacturing of iron

and steel is modeled using artificial feedforward neural network in a research carried

out by Radhakrishnan and Mohamed (2000). Their work successfully exhibited that

neural network is capable of identifying the optimum process operating properties.

The neural network is also used as the estimator of such complex process to estimate

the unknown or hard to measure parameter in the process. Real time process data

equivalent to six months of process operational period was used as the training data in

order to train the networks. Initially, they have to deal with 51 possible network inputs

but they have reduced them to 35 through correlation analysis method. By varying the

numbers of hidden layers, they have shown that the training produced better

convergence profiles. The neural model worked together with an expert system to

predict the blast temperature, humidity and pressure trim and used for the stove

control system. Performance controller is evaluated from the quantity of sulfur in the

hot metal before and after the implementation of the expert system. Purer hot metal

were obtained from the process, which incorporate the neural network control system.

Online identification of a pilot scale fluidized-bed coal gasification unit using

neural networks was performed by Nougues et al. (2000) where neural network

process models of the coal gasification unit were obtained. They implemented the

 8

neural network model and trained them in serial and parallel to various system

identification strategies. The neural network models are the used in a model based

control strategy. They have shown that the neural network can be used to model a

nonlinear system such as this process and the network can be easily incorporated with

other system such as the expert system. They have also used neural networks to

predict the possible defects for the system.

Taking example of a heat transport system, Leger et al. (1997) have

demonstrated the feasibility of neural networks in implementing fault diagnostic to

the system. The neural network is trained in order to try to minimize the false signals,

which occurs in normal process operations. The main objective is to capture the error

at its roots. This is done with the help of signature pattern evaluation of the fault

diagnosis. Once the neural fault diagnostic system is up and running, the operator can

pin point directly where the error and fault originated.

Neural network in control applications, there are many neural network

implemented as process controllers in various types of strategies in control

application. A feedforward neural network neural network is shown to have vast

capability in the control engineering field. Despite of this, many are still in simulation

and trial stages. Simulation studies have proven that the neural network is capable of

being a feasible and reliable process controller. However, the only ultimate test

platform is its online application in any process. In many industrial processes,

conventional proportional-integral-derivative, on-off, continuous and programmable

logic controllers (PLC) still dominate real world applications. Dealing with them

raises the controller tuning issue. The tuning parameters normally involve using the

closed loop tuning method, the Ziegler-Nichols or the Cohen-Coon method that are

normally tedious and time consuming.

Chan et al. (1995) conducted a study to have neural network contributing to

the conventional proportional-integral-derivative controller tuning process. According

to these investigations, it is not necessary to have detail knowledge about the process

to pre-tune the controller and they proposed a method based on neural network to

fine-tune the controller continuously. This is done by monitoring the performance of

its closed loop criteria. Performance objective such as the normalized peak rise time,

 9

overshoot, peak-to-peak height and its final error are selected as inputs to the network.

Once the trained neural network is implemented, it adjusts the proportional and

integral values, which are directly used in the process as the newly suggested tuning

parameters.

Nikravesh et al. (2000) studied the application of neural network in

controlling various chemical processes. In their work, neural networks have been

applied to various nonlinear systems such as the continuous stirred tank (CSTR) and

the neutralization process. Neural network is used to model the process while its

mathematical inverse, which act as a controller is used to regulate the process. It is

shown that the neural network controller exhibited better performance in controlling

the non-isothermal CSTR over the conventional controllers with faster rise time and

less offsets.

Control algorithm based on neural networks has also been applied by Acosta

et al. (1999) to a PUMA robot manipulator arm that has five degrees of freedom

movements. This control strategy exhibited the use of a neural network in providing

crucial parameters to the PID controllers used to control joint angles and velocities. A

decentralized model has been assumed, where a controller is attached with each joint

and a separate neural network is used to adjust the parameters of each controller.

Neural network is trained to predict the best modification to the parameters of the

conventional controllers in order to regulate the robot manipulator joint angles and its

velocities. The results have shown better response in achieving the desired robotic

manipulator joint angle and velocities in order to accomplish desired manipulator

coordinates as given by the user.

Neural network control can be implemented in various control strategies such

as in the direct inverse and internal model-based control. Hussain (1999) has

discussed possible applications of these techniques to chemical process using neural

network approach. The internal model based control structure that consists of the

inverse neural network model as the controller and a parallel forward is modified and

adaptive properties are introduced into the strategy by Liew et al. (1999). They have

utilized this idea and simulated the strategy to control biomass concentration in a

fermentation unit. In this adaptive scheme, the sliding window learning method is

 10

modified from the original idea from Breusegem et al. (1991). The control strategy

exhibited great improvement in the control results especially in rejecting process

disturbances.

Neural network control approach was carried out online by Zammareno and

Vega (1997) and was applied to a melter unit commonly used in sugar production

industries. In their work, the neural network was trained to capture the process

dynamics and implemented in the model predictive control strategy.

Dutta and Rhinehart (1999) worked on a 6-stage, lab-scale, atmospheric

distillation column separating a methanol-water mixture. Two separate neural network

models were utilized in inverse model based scheme to predict the boil up and reflux

for the process. Experimental results showed that the neural network control

outperformed the available advanced control strategy for the distillation column using

model predictive control that was proposed by Gupta and Rhinehart (1994).

Online implementation of inverse model based and conventional neural

network internal model control strategies have been reported by Hussain and

Kershenbaum (2000) using a pilot scale reactor system. They have successfully show

and validated the simulation results to control the system’s temperature by using

neural network. They have tested the inverse model based control strategies including

the internal model based control using neural network. The controller showed good

performance when tested for setpoint tracking and load disturbance rejection.

Neural network control of a plant for xylose production used in paper

manufacturing factories was proposed and implemented by Alvarez et al. (1999).

Xylose was obtain from hard wood hemicellulose and was processed in a reactor.

Heat is released to the surrounding due to the process being highly exothermic. Neural

network control was used to manage and regulate the reactor temperature. Quality of

the xylose produced is highly dependent to the reactor process temperature. The

online results showed an improvement in the temperature stabilization time as

compared to that obtained using a classic PID controller.

 11

2.2 Model Predictive Control

Model predictive control (MPC), a control algorithm that uses an optimizer to

solve for the control trajectory over a future time horizon based on a dynamic model

of the process, has become a standard control technique in the process industries over

the past two decades. MPC is commonly used for constrained multiple-input/multiple-

output (MIMO) control problems which are often encountered in the process

industries.

Model predictive control has appeared in several branches of the control

literature during the past thirty years. The concept of using an open loop optimal

control computation to synthesize a feedback controller is so natural that it probably

occurred to many researchers in the optimal control field in the late 1950s and 1960s.

In their textbook on optimal control, Lee and Markus describe the approach while

pointing out that current (as of 1967) hardware and software make real time

implementation of the controller difficult. In their review, Garcia et al. (1989) cite

Propoi (1963) as the first to introduce, explicitly, the finite moving horizon.

In the electrical engineering literature, model predictive control is usually

called receding (or moving) horizon control. Although this name is clearly more

descriptive of the general approach, we will also refer to it as model predictive control

since this name has become entrenched in the chemical engineering literature.

Kleinman (1970) uses the finite horizon concept to find a state feedback gain that

stabilizes linear time invariant systems. Thomas (1975) formulates a quadratic

objective function penalizing only the input with the constraint that the state must be

zero at the end of the horizon. He shows this formulation results in a state feedback

that stabilizes linear time invariant systems. Kwon and Pearson (1977) generalize

these results by considering the linear time varying system and using the standard

quadratic performance objective including the constraint that x(t0+T)=0. They show

that the receding horizon controller can stabilize linear time varying systems. Kwon et

al. (1983) also consider linear time varying systems with the quadratic objective. They

show the solution to this problem is also stabilizing state feedback law. Mayne and

Michalska (1990) consider the quadratic objective function with final time constraint

 12

for the nonlinear system. They show that, under certain conditions, the receding

horizon controller stabilizes the nonlinear system.

The MPC framework is also used in aerospace engineering applications. Most

publications concern aircraft trajectory optimization (Brusch, 1974; Johnson, 1975).

Attention is presently being given to solving nonlinear, constrained optimal

trajectories over finite horizons for real time guidance (Bless and Hodges, 1990;

Jansch and Paus (1990); Psiaki and Park, 1990).

The use of MPC in the chemical engineering field started in the process

industries in the 1970s under the names of “model predictive heuristic control” or

“model algorithmic control” (Richalet et al., 1978; Mehra et al., 1982) and “dynamic

matrix control” (Cutler and Ramaker, 1979; Prett and Gillette, 1979). The recent

review by Garcia et al. (1989) covers the chemical engineering literature on MPC.

The survey paper (Garcia et al. 1989) refers to Model Predictive Control (MPC) as

that family of controllers in which there is a direct use of explicit and separate

identifiable model. The same process model is also implicitly used to compute the

control action in a such way that the control design specifications are satisfied.

Control design methods based on the MPC concept have found a wide

acceptance in industrial applications due to their high performance and robustness.

There are several variants of model predictive control methods, like Dynamic Matrix

Control (DMC), Model Algorithmic Control (MAC) and Internal Model Control

(IMC). Nonlinear versions of these have also been developed, for example a nonlinear

IMC concept, e.g. Economou et al. (1986). Another, largely independently developed

branch of MPC, called Generalized Predictive Control (GPC), is aimed more for

adaptive control, e.g. Clarke and Mohtadi (1989). For the current state-of-the-art, see

Clarke (1994).

Model predictive control in this sense is a broad area and some confusion is

encountered, because the abbreviation MPC is often used to mean receding horizon

(RHPC) or long range predictive control (LRPC), where a model is used to predict the

process output several steps into the future and the control action is computed at each

step by numerical minimization of the prediction errors i.e. no specific controller is

 13

used. This is quite different from the concept where the model is controlled with a

implicitly derived specific controller, like in many IMC approaches.

2.2.1 Applications of MPC

Nonlinear model predictive control has been applied to a wide variety of

process systems. For instance, Norquay et al. (1999) used a nonlinear Wiener MPC to

control overhead composition of a C2 splitter. Simulation studies, using the Wiener

model for the plant representation, have shown the Wiener MPC based scheme to be

successful in rejecting major disturbances and comparisons with linear IMC and IMC

using a logarithmic transformation on the output showed the Wiener based version to

be superior, as expected for a nonlinear process.

Ju et al. (2000) proposed a nonlinear MPC to control a fabric filtration

process. The control algorithm formulated in a multiple-objective optimization

framework takes economic into consideration. The global optimization technique is

used to compute a manipulated input profile. Simulation results showed that the

proposed MPC is especially suitable to the filtration process where the set point

change and process disturbance occur frequently.

Seki et al. (2002) formulated the nonlinear MPC based on a successively

linearized nonlinear model and applied it to an industrial polypropylene semi batch

reactor process as well as to a high density polyethylene (HDPE) continuous stirred

tank reactor process. For the semi batch reactor, the nonlinear MPC successfully

prevented thermal runaway of the reactor temperature control. For the continuous

reactor, the nonlinear MPC improved the closed loop performance during the grade

changeover operation, compared with the conventional linear MPC.

Neural networks have successfully been applied to model based control of

nonlinear systems. General guidelines can be found from Nahas et al. (1992),

Psichogios and Ungar (1991), Hunt and Sbarbaro (1991) and Ydstie (1990). A

nonlinear MPC algorithm has been proposed which extends the capacities of Linear

Predictive Controllers to control nonlinear systems by Kaeahan et al. (1997). A neural

network was used to model the deviation of the nonlinear system from its linear MPC

 14

model. Proposed algorithm was tested in control of an industrial multi-component

high purity distillation column by simulation. Results of NNMPC show high

improvement in control of system over linear MPC algorithm.

Lin and Stephen (1998) developed a NNMPC. In order to study the

effectiveness of NNMPC, a simulation case of wastewater neutralization process was

chosen as a test case. The purpose of neutralization was to adjust the pH value to meet

the requirements of the different processing units in the wastewater treatment system.

Results obtained show that NNMPC could be considered as a powerful alternative

control technique for wastewater neutralization processes.

Wei et al. (2002) proposed MPC strategy based on a feedforward neural

network model for an industrial polypropylene process. To infer product properties

on-line, a dynamic process model was developed and a recursive prediction error

method was used to update the model parameters when there is a significant model

prediction error. To obtain optimal control strategy during grade transitions, a

nonlinear MPC controller was developed based on a neural network model, which is

trained using the input-output data of process model. Performance of the nonlinear

controller was compared with a conventional PID controller. Application results

indicate that MPC controller can obtain satisfactory performance and consequently

results in significant reduction in transition time and product variability.

CHAPTER III

THEORY OF NEURAL NETWORK AND

MODEL PREDICTIVE CONTROL

This chapter outlines a commonly used type of neural network (NN) and

model predictive control (MPC). NN architecture, a widely studied feedforward

neural networks and MPC algorithms are discussed.

Neural network model is like human newborns where it needs to be

developed, trained and taught to perform desired tasks. This brings to the method of

how we can develop the neural network models. Methods to train them are presented,

which will illustrate the procedures in detail to obtain reliable neural network models.

3.1 Neural Network Introduction

The term artificial neural network originates from research which attempted to

understand, and proposed simple models of, the operation of the human brain. The

neural network is a model, which emulates the operation of our brain that is capable

of computing vast amount of information to obtain certain results or actions.

Nowadays, computers are still using serial operation in carrying out their assigned

tasks but increased performance and speed of the computers and workstations made it

possible to achieve near parallel computational power in order to mimic our own

brain operation.

Studies to comprehend the organization of brains have spread over the

scientific and academic research platforms all around the world. Research has shown

that human brains have about 1011 neurons and 1014 synapses. Each synapse is

connected to a different neuron and communicates directly with one out of every

hundred million cells, which is a small fraction of the total cells in the human brain

 16

(Hardcastle, 1999). This gives us idea of how complex our brains are. Figure 3.1

shows the simplified anatomy of the human brain.

Figure 3.1 - The primitive yet powerful human brain.

Neurons are arranged in a dense mass, also know as the neuropil, in the

cranium with only about two tenths of a millimeter separating each cell. On average,

each cell has a cell body or soma which is the large and round central body in which

almost all the logical functions of the neuron are realized. At one end of the soma, a

single axon radiates outward, the bursts into a veritable forest of branches. At the end,

crowd of dendrites extends from the cell. Incoming signals from other neurons pass

through the dendrites to the soma, or impinge directly upon the cell body. The cell

body computes a weighted average of the incoming pulses and then the axon

transmits the results to new cells. Figure 3.2 shows a schematic sketch of the natural

sets of neurons that consists of dendrites, axons, synapses and cell body. The axon

delivers output of the neuron to connections or other neurons. The dendrite provides

large surface area for connections with the other axons from other neurons. The

synapse simulates other neurons to fire and respond. All these activities occur in about

one thousandth of a second. These interactions also take place between layers of the

 17

brain. The artificial neural networks work closely to this operating principle of the

human brain as signals are propagated through the layers of the networks in order to

compute the outputs. The artificial neural network researcher has utilized just a piece

of the capabilities of the human brain but yet they can be successfully applied in many

applications such as in system identifications, control, prediction and recognition.

This also brings us to appreciate more of our brain that is definitely a major gift from

the creator himself.

Figure 3.2 - Dendrites, axons and synapse in a biological neuron.

The brain is capable of processing parallel information received from our

sensors related to our hearing, sight, touch, feel and smell. Due to this, we can

perform walking, reading and listening at the same time. This task requires large

amount of data inputs and output to carry out this act. The use of artificial neural

network has been motivated by this capability and remarkable performances have

been achieved with neural networks in various fields of research areas.

As mentioned before, artificial neural network is a computational model of our

brain. It consists of several highly interconnected computational units working in

parallel. Electrically, a neuron is equivalent to a few electronic logical gates. Neural

networks overcome the knowledge acquisition bottleneck associated with expert

 18

systems by acquiring their knowledge of certain process through training sessions. It

also possesses the generalization capability of fuzzy expert systems.

3.2 Neural Network Architectures

Artificial neural networks generally consist of several interconnected

processing elements or neurons. Their types are sectioned into various categories.

Arrangement and nature of the connections will determine their structure while the

manner in which, the connection weights are adjusted and altered to achieve desired

outputs by its learning algorithm governs the overall behavior of the network. Hence,

neural networks are classified according to their structure and learning algorithms into

two basic types of network, i.e. feedforward and recurrent networks (Pham, 1995).

3.2.1 Models of a neuron

A neuron is an information-processing unit that is fundamental to the

operation of a neural network. The block diagram of figure 3.3 shows the model of a

neuron, which forms the basis for designing (artificial) neural networks. Here we

identify three basic elements of the neuronal model (Hakin, 1999) :

 1. A set of synapses or connecting links, each of which is characterized by a

weight or strength of its own. Specifically, a signal xj at the input of synapse j

connected to neuron k is multiplied by the synaptic weight wkj. It is important to make

a note of the manner in which the subscripts of the synaptic weight wkj are written.

The first subscript refers to the neuron in question and the second subscript refers to

the input end of the synapse to which the weight refers. Unlike a synapse in the brain,

the synaptic weight of an artificial neuron may lie in a range that includes negative as

well as positive values.

 2. An adder for summing the input signals, weighted by the respective

synapses of the neuron; the operations described here constitute a linear combiner.

 19

 3. An activation function of limiting the amplitude of the output of a neuron.

The activation function is also referred to as a squashing function in that it squashes

(limits) the permissible amplitude range of the output signal to some finite value.

Typically, the normalized amplitude range of the output of a neuron is written as the

closed unit interval [0,1] or alternatively [-1,1].

3.2.2 Types of activation function

The activation function, denoted by)(vϕ , defines the output of a neuron in

terms of the induced local field v. Here we identify three basis types of activation

functions:

 1. Threshold function. For this type of activation function, described in figure

3.4(a),

⎩
⎨
⎧

<
≥

=
00
01

)(
vif
vif

vϕ (3.1)

In engineering literature, this form of a threshold function is commonly referred to as

a Heaviside function. Correspondingly, the output of neuron k employing such a

threshold function is expressed as

⎩
⎨
⎧

<
≥

=
00
01

k

k
k vif

vif
y (3.2)

where kv is the induced local field of the neuron; that is,

∑
=

+=
m

j
kjkjk bxwv

1

 (3.3)

Such a neuron is referred to in the literature as the McCulloch-Pitts model, in

recognition of the pioneering work done by McCulloch and Pitts (1943). In this

model, the output of a neuron takes on the value of 1 if the induced local field of that

 20

neuron is nonnegative, and 0 otherwise. This statement describes the all-or-none

property of the McCulloch-Pitts model.

 2. Piecewise-linear function. For the piecewise-linear function described in

figure 3.4 (b)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−≤

−>>+

+≥

=

2
1,0

2
1

2
1,

2
1,1

)(

v

vv

v

vϕ (3.4)

where the amplification factor inside the linear region of operation is assumed to be

unity. This form of an activation function may be viewed as an approximation to a

nonlinear amplifier. The following two situations may be viewed as special forms of

the piecewise-linear function:

• A linear combiner arises if the linear region of operation is maintained without

running into saturation.

• The piecewise-linear function reduces to a threshold function if the amplification

factor of the linear region is made infinitely large.

 3. Sigmoid function. The sigmoid function, whose graph is s-shaped, is by far

the most common form of activation function used in the construction of artificial

neural networks. It is defined as a strictly increasing function that exhibits a graceful

balance between linear and nonlinear behavior. An example of the sigmoid function is

the logistic function, defined by

)exp(1
1)(

av
v

−+
=ϕ (3.5)

where a is the slope parameter of the sigmoid function. By varying the parameter a,

we obtain sigmoid function of different slopes, as illustrated in figure 3.4 (c). In fact,

the slope at the origin equals a/4. In the limit, as the slope parameter approaches

 21

infinity, the sigmoid function becomes simply a threshold function. Whereas a

threshold function assumes the value of 0 or 1, a sigmoid function assumes a

continuous range of values from 0 to 1. Note also that the sigmoid function is

differentiable, whereas the threshold function is not.

Figure 3.3 - Nonlinear model of a neuron.

wk1

wk2

wkm

∑∑ φ(.)

x1

x2

xm

Input
Signals

Bias
bk

Summing
junction

vk
Output

yk

Synaptic
weights

Activation
function

 22

 (a)

 (b)

 (c)

Figure 3.4 - (a) Threshold function. (b) Piecewise-linear function. (c) Sigmoid

 function for varying slope parameter a.

3.2.3 Feedforward neural networks

An artificial feedforward neural networks (AFNN) consists of various layers.

Signal propagates from the input layer to the output layer through unidirectional

connections from one layer to another layer. A simple configuration is a two-layer

model as shown in figure 3.5. The first layer is the input layer while the second is the

hidden and the output layer. These layers are connected to each other by connection

 23

weights to determine the strength of the connections. The weights will have freedom

to be changed in an adaptive fashion during the learning or training session. The

strength of the connection is adjusted to achieve certain targeted values, which is

determined by the training algorithms. A simple example of the feedforward neural

network is the multilayer perceptron (MLP). Signals are propagated in the forward

direction, from the input to the next hidden and the output layers of the network.

There are no connections in the reverse and lateral directions of the network. The

learning vector quantization (LVQ) network and the group method of data handling

(GMDH) network are other examples of feedforward network (Pham, 1995).

Figure 3.5 - Feedforward neural networks.

1

Om

Hidden
Layer

WI,H WI,O

Bias
Bias

I1

I2

In

1

O1

O2

Input
Layer

Output
Layer

 24

3.2.4 Recurrent neural networks

In the recurrent networks, the output of the neurons can be fed back to the

same neurons or to the neurons in the other layers. Signal can propagate in both

forward and backward directions. Examples of recurrent networks include the

Hopfield network, the Elman network and the Jordan network. Recurrent networks

have a dynamic memory where their outputs at a given instant reflect the current

inputs as well as previous inputs and outputs as shown in figure 3.6. The presence of

feedback loops has a profound impact on the learning capability of the network and

on its performance. Moreover, the feedback loops involve the use of particular

branches composed of unit-delay elements, which results in a nonlinear dynamical

behavior, assuming that the neural network contains nonlinear units (Haykin, 1999).

Figure 3.6 - Recurrent neural networks.

Node
i

Internal
feedbacks

Wji

Node
j

Node
k

Wkj

I1

I2

In

O

Input
Layer

Output
Layer

I3

I4

Hidden
Layer

 25

3.3 Neural Network Training

Training the network refers to changing its weights and biases, which are

altered adaptively to minimize the error between the actual targeted values and that of

network output. The training session is carried out repeatedly to minimize this error

using various schemes. The training of the neural network is generally into three

major categories, which will be described later. Neural network training are

sometimes referred to as machine learning algorithms, because changing its

connection weights causes the network to learn solutions to a problem. The strength

of a connection between the neurons is stored as a weight value for the specific

connection. The system stores new knowledge by adjusting these connecting weights.

The learning ability of a neural network is determined by its architecture and by the

algorithmic method chosen for training. The three general schemes to train the neural

network are as follows.

3.3.1 Supervised training

A supervised training is a training algorithm for creating a function from

training data, which has been obtained from actual process behavior. The network is

trained to map the inputs to the corresponding correct output. As the inputs are

applied to the network, the networks are compared to the targets. The training

algorithms then used the error between the output and target to adjust the weights and

biases of the network in order to move the network outputs closer to the targets. In

this method, the trainer knows exactly the desired output. The error between the

actual and desired output is used to modify the strengths of the connections i.e.

weights between neurons and the training performed until it reaches the required

performance. This method of training is used in most applications.

3.3.2 Unsupervised training

In unsupervised training, weights and biases are modified in response to

network inputs only. There are no target outputs available. Rather, provision is made

for a task- independent measure of the quality of representation that the network is

required to learn, and the free parameters of the network are optimized with respect to

 26

that measure. Once the network has become tuned to the statistical regularities of the

input data, it develops the ability to form internal representations for encoding

features of the input and thereby to create new classes automatically. This method is

also used as the pre- processing for the supervised training method to improve

training for better convergence. The hidden neurons must find ways to organize

themselves. In this approach, no sample outputs are provided to the network against

which it can be compared to the predicted performance for a given input vector.

3.3.3 Reinforcement training

This method requires reinforcements from the outside. The connections

between the neurons in the hidden layer are randomly arranged and reshuffled as the

network approaches its solution in solving the problem. Reinforcement learning is

also a form of supervised learning, since it requires a trainer. It may be a training set

of data or an observer who grades the performance of the network results. Both

unsupervised and reinforcement suffers from relative slowness and inefficiency due to

its reliance on random shuffling to determine proper connection weights.

Reinforcement learning is closely related to dynamic programming, which was

developed by Bellman (1957) in the context of optimal control theory. Dynamic

programming provides the mathematical formalism for sequential decision making.

By casting reinforcement learning within the framework of dynamic programming,

the subject matter becomes all the richer for it, as demonstrated in Bertsekas and

Tsitsiklis (1996).

3.4 Feedforward Multilayer Perceptron

There are many different types of neural networks and this work is confined to

feedforward ANNs, the multilayer perceptron (MLP), which is employed as nonlinear

process models.

Standard multilayer perceptrons (MLP) are a large class of feedforward neural

networks with neurons arranged in layers. Generally, all neurons in a layer are

connected to all neurons in the adjacent layers through uni-directional links. These

 27

links are represented by synaptic weights. The synaptic weights act as signal

multipliers on the corresponding links (interconnections). For example, in a three

layer perceptron schematically depicted in figure 3.7 the neurons are grouped in

sequentially connected layers; each layer is numbered 0, 1, 2 or 3. The neurons of

layer 0 (sometimes called the input layer) do not perform computation, but only feed

input signals to the neurons of layer 1 called the first hidden layer. The last layer

(layer 3) is the output layer where the response of the network comes from. The

neuron layers between the input pattern and the output layer are called hidden layers.

Generally, there is no theoretical limit on the number of hidden layers, but usually in

practice there will be only one or two hidden layers. It has been shown theoretically

that it is sufficient to use a maximum of three layers (two hidden layers and one

output layer) to solve an arbitrarily complex pattern classification problem (Rumelhart

and McClellan, 1986). Each neuron is connected to all neurons of the two adjacent

layers and to no other neurons. Note that connections within a layer or from higher to

lower layers are not permitted. The arrows indicate the flow of information (signals).

Generally, the multilayer perceptron has a different number of neurons and different

synaptic weights for different layers. Each neuron of the MLP is characterized by one

output and many inputs which are the outputs of the neurons in the preceding layer.

 Let uj
[s] denote the value of the internal potential (signal) of the j-th neuron

located in the s-th layer (s = 1, 2, 3) (Figure 3.7). The weighted sum of the inputs is

computed by the neuron according to the formula

[] [] []∑
−

=

− ===
1

0

1 ,),,2,1;3,2,1(
sn

i
s

s
i

s
ji

s
j njsowu K (3.6)

where wji
[s] are the synaptic weights by which the j-th neuron multiplies the inputs

[] [] [] []
iiii

s
i

s
i yoxoox === − 301 ,, and ns is the number of neurons in the s-th layer.

 The neuron output is computed by passing the weighted sum of its inputs (i.e.

the internal potential uj
[s]) by a nonlinear bounded activation function Ψj

[s], i.e.

 28

[] [] []() [] [] []

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ψ=Ψ= ∑

−

=

−
1

0

1
sn

i

s
i

s
ji

s
j

s
j

s
j

s
j owuo (3.7)

For convenience and simplicity of consideration the bias term []s
jΘ is handled here (as

usual) in a manner uniform with the synaptic weights [] []s
j

s
jw Θ=0 by considering it as a

weight connecting a neuron whose activation is always equal to unity. When

processing data input signals are fed into the network by the input neurons and for

each layer the outputs are computed successively and fed into the neurons of the next

layer up to the output layer. Each layer of the network can be represented by the

nonlinear matrix operator (Narendra and Parthasarthy, 1990.)

[] [] [] [][],ssss xWo Ψ= (3.8)

where

[] =so [] [] [][]s

n
ss

s
ooo ,,, 21 K T is the output vector,

[] =sx [] [] [][]s
n

ss
s

xxx
1

,,, 21 −
K T is the input vector,

[] [] ,1−= ss ox
[] =sW [][]() () ∈+×+ − 11 1ss nn

s
jiw)1()1(1+×+ −ℜ ss nn is the interconnection matrix of the

synaptic weights in the s-th layer,

 [][]⋅sΨ is a diagonal nonlinear operator with (typically identical) sigmoid

activation functions.

Hence, the input-output mapping of the three layer perceptron can be represented in

the compact matrix form

[] [] [] [] [] [] [][][][]xWWWxy 112233 ΨΨΨΨ ==

A functional block diagram representation of the above mapping is shown in figure

3.7(b)

 29

 The neurons usually take activity in the normalized range from +1 to -1 (in

some applications the range from +1 to 0 is used). It should be noted that all synaptic

weights are kept constant or fixed during the computation and their values determine

the network behavior and its capability to correctly process (map) the input data or

signals. In order to obtain the required network behavior the values of the synaptic

weights must be properly computed. This means that the MLP must be trained. Such a

computation is called the learning or training process. During the training process

information is also propagated back through the network and it is used to update the

synaptic weights successively first in the output layer, next in the second hidden layer

and in the last step in the first hidden layer.

(a)

(b)

Figure 3.7- (a) Architecture of a three-layer perceptron

 (b) A block diagram representation of the perceptron

 30

3.5 Training Algorithm

The purpose of the training algorithm is to enable the ANN to represent a

mapping which describes the I/O behavior of a non-linear system. To achieve this, the

algorithm attempts to minimise an objective function by adjusting the ANN weight

parameters. The objective function is a measure of how well the ANN fits a set of I/O

training data patterns which the system has produced. Since in this work, we are

concerned with the feedforward neural network, which utilizes the supervised training

method, we will describe the training algorithm involved for training the feedforward

in the next section.

3.5.1 The delta rule

In order to train a single layer network, one of the earliest supervised learning

methods used is the delta rule. In this method, the inputs are presented to the network

and the outputs are calculated. These outputs are then compared to the targeted values

and the difference between them is calculated to give the error, δ., i.e.

=δ target - output (3.9)

The change of the weights is proportional to the previous calculated error, the input

and a learning coefficient as given below,

ixi ηδ=∆ (3.10)

itwtw ii ∆+=+)()1((3.11)

where ix is the inputs before the weight changes and η is the learning coefficient with

value chosen randomly. In order to obtain better convergence during training, the

learning rate coefficient is normally set between the values of 0 to 1. The

disadvantage of this rule is that the output of the network must be known in order to

calculate and adjust the weights. Due to this, the delta rule is only applicable

 31

efficiently for a single layer network. As for the multi layer network, the

backpropagation method is proposed and will be described in the next section.

3.5.2 The backpropagation method

 The objective of this training method is to train the weights of a multilayer

network in order to obtain the desired and the targeted outputs corresponding to a

given set of inputs to the network. The methodology of the conventional

backpropagation method is mentioned below (Hussain, 1994):

• Weights and biases are initialized with values between -1 and 1 randomly.

• Inputs are summed and propagated to the hidden layer for a node j as:

∑
=

+=
iN

i
jijij OWnet

1

1 θ (3.12)

• Output from node j is given by

)(2
jj netfO = (3.13)

where f is the transfer function or activation function used in the hidden

nodes

• Hidden layer output is propagated to node k at the output layer given as:

∑
=

+=
jN

j
kjkjk OWnet

1

2 θ (3.14)

• Output from the node k is:

)(3
kk netfO = (3.15)

• Error is calculated at the output layer as:

 32

∑
=

−=
kN

k
kk Ote

1

23)(
2
1 (3.16)

• Weights are adjusted along the negative gradient descent of the error, e as:

kj
kj w

ew
∂
∂

−=∆ η (3.17)

where η is the learning rate applied in the training

• Weights in the output and the hidden layers are then corrected using equations

below:

∑
=

−=∆
kN

k
kjkijjji wOOOw

1

3122)1(δη and (3.18)

2333)1()(jkkkkkj OOOOtw −−=∆ η

• A momentum term is then added to equation (3.18) to facilitate convergence

and to avoid local minima to occur.

)1()()(−+∆=∆ twtwtw α (3.19)

where α is the momentum term

 An advantage of the BP algorithm is its computational efficiency, since the

number of computations per epoch of BP (an ANN is said to have been trained for

one epoch when all the training vectors have been processed once) is proportional to

W x N, where W is the total number of network weights and N is the data length. On

the other hand, BP is a gradient descent type algorithm which moves along the local

negative gradient of the cost function and consequently can be slow to converge,

particularly when the search encounters a local minimum, a saddle point or a long

valley in the cost function surface. While the momentum term does assist the search

 33

when the gradient information is poor, the algorithm is still relatively inefficient and

its performance is dependent on the choice of suitable values for the learning gain and

momentum.

 Numerous algorithms have been proposed to circumvent the problems

associated with BP and some of the main categories are outlined :-

• Refining backpropagation. Procedures for adjusting the learning gain and

momentum terms during training to try to prevent the search from oscillating or

becoming trapped in a local minima have been suggested (Battiti, 1989; Le Chun

et al., 1993).

• Conjugate gradient methods. Gradient descent performs a fixed step length search

in the direction of negative gradient and this is not efficient for reasons already

discussed. The Conjugate gradient algorithm (Hestenes and Stiefel, 1952; Fletcher

and Reeves, 1964) performs a series of searches in directions which are conjugate,

or non-interfering, to each other. An outline of the algorithm is :-

1. Initialise weights. Choose the initial search direction using gradient descent.

2. Minimise the cost function in the new search direction. This can be done using

a line search technique (Luenberger, 1984). Update the network weights.

3. Stop if a termination criteria is satisfied.

4. Evaluate a new search direction which is conjugate to all previous search

directions. This means that the components of the new search direction that are

parallel to all the previous search directions (which are zero since they already

have been minimized) are kept fixed.

5. Go to 2.

 34

 For a quadratic cost function the conjugate gradient algorithm will converge to

the minimum in at most W steps, where the number of computations for each step,

like BP, is in proportion to N x W (a step is akin to an epoch because this is a batch

method). This is a significant improvement in the convergence rate over gradient

descent methods with only a small (linear) increase in computational effort.

However, for a neural network, the cost function will not generally be quadratic

and this can result in degeneration of the conjugacy of the search directions.

Hence, it is usually necessary to periodically reset the search direction according to

some rule. The conjugate gradient method has been used to train MLP neural

networks (Leonard and Kramer, 1990; Johansson et al., 1992; Charalambous,

1992).

• Quasi-Newton methods These methods make use of the second derivative, or

Hessian, of the cost function. This curvature information gives a better perception

of the cost function topology enabling a more efficient choice of search direction.

The full Newton method, which is a batch update, can be computationally

prohibitive since it necessitates the calculation of the Hessian and the inverse

Hessian with the number of computations required per step in proportion to N x

W2 and W3 respectively. Quasi-Newton methods bypass this problem by building

up an approximation to the Hessian inverse using a recursive algorithm which only

uses information from the first derivative of the cost function.

 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a widely used quasi-

Newton procedure which has been shown to give superior convergence to gradient

descent (Dennis and Schnabel, 1983). However, BFGS requires the storage and

update of the approximated Hessian inverse matrix which is of size W x W, and

this can lead to prohibitive memory requirements when applied to large networks

(Nahas et al., 1992). The limited memory BFGS algorithm considerably reduces

the memory and computational requirements but at the cost of less efficient search

direction estimates (Robitaille et al., 1996). Limited memory BFGS has been

applied to training MLP neural networks (Batti, 1989; Irwin et al., 1994; Robitaille

et al., 1996).

 35

• Stochastic search methods These methods introduce a random element into the

search for the weights to assist the search to escape from local minima in the cost

function surface. The methods which have been applied to training neural networks

include :-

 ♦ Simulated annealing (Kilpatrick et al., 1983) was inspired from mathematical

models of the energy state of annealing molten metals. The algorithm is controlled

by a single parameter, termed temperature. As training progresses, the temperature

is reduced slowly to steer the search towards the global minimum with a random

excitation providing escape from local minima.

♦ The chemotaxis algorithm (Bremermann and Anderson, 1989) is a similar idea

where weights are perturbed by the addition of a random vector generated by a

multivariate Gaussian probability density function. The standard deviation of the

probability density function is reduced as training proceeds, in an analogous

manner to the reduction of temperature in simulated annealing.

♦ A genetic algorithm (Holland, 1975) is a non-linear optimisation technique based

on evolutionary principles and has been applied to a variety of problems including

the training of neural networks. The individual weights are represented by binary

strings which are concatenated into one large string. Training is accomplished by

combining subsets of a ‘population’ of such strings according to genetically

inspired rules to form new strings. A new population is formed from some of the

‘fittest’ strings of the old population (fitness is related to how well the network is

trained) and some new random strings. A possible advantage of genetic algorithms

is that the algorithm combines elements of directed and random search methods

(Brown and Harris, 1994).

 In summary, several MLP ANN training algorithms have recently been

proposed which do offer faster convergence than BP, but generally this comes at the

cost of increased computational complexity and greater memory needs. Furthermore,

none of the algorithms seem to overcome one of the most consequential pitfalls of BP

which is the possibility of the search converging to a local, rather than the global,

 36

minimum. Recently, alternative training algorithms, which converge faster, have been

proposed and these are discussed in the next section.

3.5.3 Levenberg-Marquardt method

Levenberg-Marquardt method is a nonlinear least square optimization

algorithm based on Newton’s method (Marquardt, 1963). To minimize a function

)(xV with respect to the parameter vector x, then Newton’s method would be:

[])()(
12 xVxVx ∇∇−=∆

− (3.20)

Here,)(2 xV∇ is the Hessian matrix and)(xV∇ is the gradient. Suppose that)(xV is a

sum of squares function,

∑
=

=
N

i
i xexV

1

2)()((3.21)

then it can shown that

)()()(xexJxV T=∇ (3.22)

)()()()(2 xSxJxJxV T +=∇ (3.23)

Where)(xJ is the Jacobian matrix and

∑
=

∇=
N

i
ii xexexS

1

2)()()((3.24)

For the Gauss-Newton method, it is assumed that 0)(≈xS , and the weight updates in

equation (3.20) becomes,

[])()()()(
1

xexJxJxJx TT −
=∆ (3.25)

 37

The Levenberg-Marquardt modification to the Gauss-Newton method is,

[])()()()(
1

xexJIxJxJx TT −
+=∆ µ (3.26)

The parameter µ is multiplied by some factor β whenever a step would result in an

increased)(xV . When a step reduces)(xV , µ is divided by β . Notice that when µ

is large, the algorithm becomes steepest descent with step 1/ µ , while for smaller µ ,

the algorithm becomes Gauss-Newton (Pivonka and Zizka, 1996). The Levenberg-

Marquardt method interpolates between the approaches based on the maximum

neighborhood and in which the truncated Taylor-series gives an adequate

representation of the nonlinear model. The method has been found to be advantageous

as compared to others. This method is used to train the neural network model in this

work.

3.6 Model Predictive Control

The essence of MPC is to optimize, over the manipulated inputs, forecasts of

process behavior. The forecasting is accomplished with a process model and

therefore, the model is the essential element of an MPC controller. The models are not

perfect forecasters, and feedback can overcome some effects of poor models, but

starting with a poor process model is akin to driving a car at night without headlights;

the feedback may be a bit late to be truly effective.

 In general, model predictive control can be divided into two classes: linear

model predictive control and nonlinear model predictive control. Linear MPC refers

to a family of MPC schemes in which linear models are used to predict the system

dynamics even though the dynamics of the system is nonlinear, while nonlinear MPC

refers to the general cases in which the dynamic system models, performance

objective, and constraints may be in nonlinear function of state, input and output

variables.

 38

• Linear Models : Historically, the models of choice in early industrial MPC

applications were time domain, input/output, step, or impulse response

models. Part of the early appeal of MPC for practitioners in the process

industrials was undoubtedly the ease of understanding provided by this model

form. It has become more common for MPC researchers, however, to discuss

linear models in state-space form:

jjj BuAxxBuAx
dt
dx

+=+= +1

jj CxyCxy ==

 In which x is the n-vector of states, y is the p-vector of (measurable) outputs,

u is the m-vector of (manipulable) inputs, and t is the continuous-time and j is

the discrete-time sample number. Continuous-time models may be more

familiar to those with a classical control background in transfer functions, but

discrete-time models are very convenient for digital computer implementation.

Linear models in the process industries are, by nature, empirical models and

identified from input/output data. The idea model form for identification

purposes is perhaps best left to the experts in identification theory, but a

survey of that literature indicates no disadvantage to using state-space models

inside the MPC controller.

 The discussion of MPC in state-space form has several advantages,

including easy generalization to multivariable systems, ease of analysis of

closed-loop properties, and online computation. Furthermore, starting with this

model form, the wealth of linear systems theory, the linear quadratic (LQ)

regulator theory, Kalman filtering theory, internal model principle, etc., is

immediately accessible of use in MPC.

• Nonlinear Models : The use of nonlinear models in MPC is motivated by the

possibility of improving control by improving the quality of the forecasting.

The fundamentals in any process control problem, conservation of mass,

momentum and energy, considerations of phase equilibrium, relationships of

 39

chemical kinetics and properties of final products, all introduce nonlinearity

into the process description. Determining the setting in which the use of

nonlinear models for forecasting delivers improved control performance is an

open issue. For continuous process maintained at nominal operating conditions

and subject to small disturbances, the potential improvement would appear

small. For processes operated over large regions of the state space, semibatch

reactors, frequent product grade changes, processes subject to large

disturbances, for example, the advantages of nonlinear models appear larger.

(Rawlings, 2000).

3.6.1 MPC algorithms

Several reviews and comparative studies of the main MPC algorithms have

been published, for example by De Keyser, Van de Welde and Dumortier (1988),

Garcia, Prett and Morari (1989), Kramer and Ubehauen (1991) and Qin and Badgwell

(l996). Their application particular to the chemical process industry has been

described by Eaton and Rawlings (1992). Industrial applications have also been

described by Richalet (1993). There are several textbooks on MPC, for instance those

by Prett and Garcia (1988), Bitmead, Gevers and Wertz (1990), Soeterboek (1992),

Camacho and Bordons (1995), Camacho and Bordons (1999) and Maciejowski

(2000). There is also a special feature on MPC recently published in the IEE

Computing and Control Engineering Journal (Roberts, 1999).

 The various techniques are differentiated by different types of model and

performance function employed. Presented from an historical perspective, some of the

main algorithms are:-

• Model Algorithmic Control, MAC, initially called Model Predictive

Heuristic Control, MPHC, (Richalet et al., 1976). This uses an impulse

response model, which is valid only for open-loop stable processes, and

minimizes the variance of the error between the output and a reference

trajectory computed as a first-order system.

 40

• Dynamic Matrix Control, DMC, (Cutler and Ramaker, 1980). This is

similar to MAC but uses a step response model instead of an impulse

response model. This technique was originally applied in Shell Oil as early

as 1973. The method was extended to include input and output constraint

handling using quadratic programming to solve the constrained

optimization problem, giving rise to Quadratic Dynamic Matrix Control,

QDMC, (Morshedi and Haydel, 1983). The DMC algorithm can also be

derived for a general discrete state-space model (Prett and Garcia, 1988).

• Extended Prediction Self Adaptive Control, EPSAC, (Keyser and

Cuawenberghe, 1985) uses a discrete (z-transform) transfer function to

model the process and a simple control law structure calculated

analytically using a quadratic performance function assuming u(t) stays

constant from instant t. The process model also includes measurable

disturbances.

• Generalised Predictive Control, GPC, (Clarke et al., 1987), using a

quadratic performance function, with weighting of control effort, and a

auto -regressive moving average with exogenous variables model

(ARMAX). It also provides an analytic solution for the optimal control in

the absence of constraints.

 DMC and GPC are perhaps the most popular techniques. There are several

extensions to GPC including techniques with guarantee stability through end-point

equality constraints (Clarke and Scattolini, 1992; Mosca and Zhang, 1992), and by

stabilising the process prior to the objective function optimization (Kouvaritakis et al.,

1992). The GPC technique, using a method known as Constrained Stable Generalised

Predictive Control, CSGPC, (Rossiter and Kouvaritakis, 1993) has also been extended

to guarantee feasibility and stability when there are input constraints as well as

terminal constraints (Rossiter et al., 1996; Rossiter et al., 1997). Although most of the

work has been performed in discrete time GPC has also been formulated in

continuous time (Demircioglu and Gawthrop; 1991, 1992). A state space model

description for GPC controllers has also been developed (Ordys and Clarke, 1993;

 41

Gawthrop et al., 1998). Nonlinear model predictive control based on state space

models and the receding horizon concept has also been developed, for example by

Mayne and Michalska (1990), who perform a stability analysis, and Balchen et al.

(1992). Integration of economic objectives within the performance function has also

been performed, (Becerra et al., 1998). Several commercial companies offer software

products for implementation of model predictive control, for example MDC (SMOC),

Predictive Control (CONNOISSEUR), AspenTech (DMCplus) and Honeywell

(RMPCT).

3.6.2 Formulation of model predictive control problem

The problem to be solved by the model predictive controller may be stated as

)](),(),([min
)(

tytxtu
tu

Φ (3.27)

subject to

 0),(=− uxf
dt
dx

 0),(=− uxgy

 0),(=uxh

 0),(≥uxk

 00)(xtx =

with

],[00 Pttt +∈

in which u is the input vector, y is the output vector, and x is the state vector. The time

interval is from the current time, t0, to some finite time in the future, t0+P, in which P

 42

is the length of the prediction horizon. The scalar functional Φ is the controller’s

performance objective, the functions f and g determine the plant model, and h and k

are equality and inequality constraint functions that may be specified as further

performance objectives. The generality of the performance objective, as opposed to

standard integral square error between output and set point, provides the opportunity

to design the MPC controller for higher level functions such as energy or waste

minimization.

3.6.3 Model predictive control strategy

Model Predictive Control,MPC, usually contains the following three ideas (Camacho

and Bordons, 1999):-

1. Explicit use of a model to predict the process output along a future time

horizon.

2. Calculation of a control sequence to optimize a performance index.

3. A receding horizon strategy, so that at each instant the horizon is moved

towards the future, which involves the application of the first control signal of

the sequence calculated at each step.

The strategy is illustrated as shown in figure 3.8 and described as follows (Camacho

and Bordons, 1999):-

1. The predicted future outputs t)|k (ty +ˆ , P 1 k L= for the prediction horizon P

are calculated at each instant t using the process model. These depend upon

the known values up to instance t (past inputs and outputs), including the

current output (initial condition) y(t) and on the future control signals

1 - P 0 k t),ku(t L=+ | , to be calculated. (Note - the notation x(t+k|t) indicates

the value of x at time instant t+k calculated at time instant t).

 43

2. The sequence of future control signals is computed to optimize a performance

criterion, often to minimise the error between a reference trajectory and the

predicted process output. Usually the control effort is included in the

performance criterion.

3. Only the current control signal u(t|t) is transmitted to the process. At the next

sampling instant y(t+1) is measured and step 1 is repeated and all sequences

brought up to date. Thus u(t+l|t+l) is then calculated using the receding

horizon concept.

Figure 3.8 - MPC Strategy

3.6.4 Advantages and Disadvantages of MPC

Some of the main advantages are:-

• Concepts are intuitive and attractive to industry.

• Can be used to control a great variety of processes, including those with non-

minimum phase, long time delay or open-loop unstable characteristics.

P

P

 44

• Can deal with multivariable, multi-input multi-output as well as single-input

single-output processes.

• Process constraints can readily be treated within the optimization process.

• Readily applicable to batch processes where the future reference signals are

known.

• An open technology which allows for future extensions.

A significant disadvantage is:-

• Requirement of an appropriate model of the process.

CHAPTER IV

NEURAL NETWORK MODELING AND INVERSE NEURAL

NETWORK MODELING FOR A STEEL PICKLING PROCESS

4.1 A Steel Pickling Process

It has been known that many chemical industrial plants cause environmental

problems due to the usage of chemicals in their production lines. One such industry is

the steel pickling plant which is a fundamental industry in Thailand and has long

existed and served the country’s steel demand. The steel pickling process utilizes

concentrated chemicals in the production lines and the wastewater released from the

process contains hazardous materials and usually causes major environmental

problems. Therefore, production scheduling and control of this pickling process are

inevitably needed to minimize the amount of hazardous material contained in the

released wastewater and also to maintain the concentration of acid solution in the

tanks in order to obtain the maximum reaction rate at the same time.

 The steel pickling process consists of two major steps: pickling and rinsing

steps (Kittisupakorn and Kaewpradit, 2003). The purpose of the pickling step is to

remove surface oxides (scales) and other contaminants out of metals by an immersion

of the metals into an aqueous acid solution. Metals are immersed in pickling baths,

containing 5, 10 and 15% by weight of hydrochloric acid (HCl), respectively, in order

to remove the scales from the metals. The metals move counter current to the acid

stream. The reaction occurring in the pickling baths is as follows:

FeO + 2HCl → FeCl2 +H2O (4.1)

Drag in-out pickling solution is removed from the metal surface using rinsing water

during the rinsing step, which consists of three pure water baths. The metals move

opposite to the rinsing water flow. Here, the amount of drag out solution of each bath

is assumed to be equal to the amount of drag in solution. It should be noted that the

 46

steel pickling process studied in this work as illustrated in figure 4.1 and 4.2 is one of

several existing configurations.

The following assumptions are made for the purpose of this study.

• The system is supposed to be perfectly mixed and isothermal.

• All state variables are measurable directly.

• Density of liquid is assumed to be constant.

• The deterioration of pickling efficiency resulting from iron concentration is

considered negligible.

 Based on the above assumptions, the mathematical model of the continuous

steel pickling process (Figure 4.1 and 4.2) for the change in volume and concentration

can be derived for both the pickling and rinsing steps as follows.

• Pickling step (occurring in the 5, 10 and 15% HCl baths)

 qFF
dt

dh
A −−= 12

1 (4.2)

1123
2 FFF

dt
dh

A −−= (4.3)

10354
3 FFFF

dt
dh

A −−+= (4.4)

111122
11)(
)(

rVqFCCF
dt

CVd
−+−= (4.5)

221122331
22)(
)(

rVqFFCCFqC
dt

CVd
−++−+= (4.6)

442052
33)(

CFCFqC
dt

CVd
++= 331033)(rVqFFC −++− (4.7)

 47

• Rinsing step (occurring in three pure water baths)

946
4 FFF

dt
dh

A −−= (4.8)

67
5 FF

dt
dh

A −= (4.9)

78
6 FF

dt
dh

A −= (4.10)

)(
)(

944563
44 qFFCCFqC

dt
CVd

++−+= (4.11)

)(
)(

65674
55 qFCCFqC

dt
CVd

+−+= (4.12)

)(
)(

7685
66 qFCCFqC

dt
CVd

w +−+= (4.13)

The meanings of all these variables are specified in the nomenclature. To complete

the mathematical modeling of this continuous process, the expression of the reaction

rate, equation (4.1), in the pickling baths needs to be imposed. The reaction is

assumed to be first order neglecting liquid diffusion and the deterioration of pickling

efficiency. Therefore, the rate of reaction studied here solely depends upon acid

concentration as shown below:

r = kC (4.14)

where k is the reaction rate constant.

 The objective of this work is to control the concentration of HCl in all the

pickling baths (C1, C2 and C3) and the pH (or H+ concentration (C4)) in the first

rinsing bath to a desired set point by manipulating inlet flows F2, F3, F5 and F6.

 48

Since a neural network-based model is used for the control, we will first describe the

procedure for neural network modeling and its use for control in the next section.

Figure 4.1 - Flow diagram of pickling baths

Figure 4.2 - Flow diagram of rinsing baths

 49

4.2 Neural Network Modeling

Neural networks have the advantages of distributed information processing

and the inherent potential for parallel computation. They can learn sufficiently

accurate models and provide good nonlinear control when model equations are not

known or only partial state information is available (Psichogios and Ungar, 1991;

Hussain, 2003). Due to their parallel processing capability nonlinear nature and their

ability to do without a priori knowledge neural networks can be used successfully to

capture dynamic, nonlinear models of complex, multivariable systems. They therefore

offer potential benefits in MPC strategies.

 Although various types of neural network exist such as multi-layer perception

(MLP), radial basis function (RBF) network and recurrent neural network (RNN),

they consist of the same basic features: nodes, layers and connection. In this work,

multi-layered feedforward network is used for the neural network since it is one of the

most popular and successful neural network architectures suited to a wide range of

applications in prediction, process modeling and control.

4.3 Procedure for Obtaining Neural Network Forward Models

Forward modeling refers to training the neural network model to predict the

plant output, C(k+1). The detailed procedures to find neural network models for the

various baths are summarized in figure 4.3.

 In the data preparing, training and validation data sets are obtained by

selecting appropriate excitation signals (relating to operating condition range and

manipulated variable constrains) from the simulation of the steel pickling process

models by solving equation (4.2) to (4.13). These equations are solved to obtain the

process states according to various changes in the manipulated variables, i.e. flow

rates (F2 , F3, F5 and F6). Data are selected to define the input and the output to the

neural networks. The inputs are relevant data that are used in training to map out the

defined output of the network. The training data sets of three pickling baths and the

 50

first rinsing bath are shown in figure 4.4 to 4.7. Mathematically, four neural network

models and are expressed as the function of inputs to the model as shown below:

• The pickling Baths

o 5% HCl Bath :

C1(k+1) = f (F2(k-1),F2(k),C2(k-1),C2(k),C1(k))

o 10% HCl Bath :

C2(k+1) = f (F2(k-1),F2(k), F3(k-1),F3(k), C1(k-1),C1(k),C3(k-1),

C3(k), C2(k))

o 15% HCl Bath :

C3(k+1) = f (F3(k-1),F3(k), F5(k-1),F5(k), C2(k-1),C2(k), C3(k))

• Rinsing baths

o 1st Rinsing bath:

C4(k+1) = f (F6(k-1),F6(k), C3(k-1),C3(k), C5(k-1),C5(k),

C4(k))

 The inputs of neural network are the past and present values of the variables

which effect to the state variable in each bath. The data sets need to be scaled in order

to overcome the significant minimum and maximum values used in the training

process. Raw process data generated earlier are scaled down to between 0.05-0.95

using the following equations:

05.0
)min(max

)05.095.0)(min(
+⎥

⎦

⎤
⎢
⎣

⎡
−

−−
=

valuevalue
valueValueACValueSD (4.15)

The actual value is given by

valuevaluevalueValueSDValueAC min
)05.095.0(

)min)(max05.0(
+⎥

⎦

⎤
⎢
⎣

⎡
−

−−
= (4.16)

where ValueSD is the scaled down value and ValueAC is the actual value.

 51

Prepare input/desired data for
training and cross validation

Design the structure of network
(the number of hidden layers and nodes
in hidden Layer, Activation function)

Set the initial weight

Train the network with training data sets
until MSE is less than specified value

Test the Network with validation data set

Examine the desired MSE

Obtain the neural
network model

Set the new network structure
by changing the number of hidden
layers and nodes in hidden Layer

Reinitialize weight

yes

yes

no

no

Figure 4.3 - Procedure for obtaining forward and inverse neural network models.

 52

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

Pattern

Fl
ow

 r
at

e
F2

 (l
/m

in
)

Manipulated variable of 5% HCl Bath (Training data set)

(a)

0 500 1000 1500 2000

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Concentration of 5% HCl Bath (Training data set)

Pattern

C
on

ce
nt

ra
tio

n
C

1
(m

ol
/l)

(b)

Figure 4.4 - Training data set of 5% HCl bath (a) Manipulated variable (Flow rate F2)

 (b) Concentration of 5% HCl bath (C1)

 53

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

Pattern

Fl
ow

 r
at

e
F3

 (l
/m

in
)

Manipulated variable of 10% HCl Bath (Training data set)

(a)

0 500 1000 1500 2000
1.5

2

2.5

3

3.5

Pattern

C
on

ce
nt

ra
tio

n
C

2
(m

ol
/l)

Concentration of 10% HCl Bath (Training data set)

(b)

Figure 4.5 - Training data set of 10% HCl bath (a) Manipulated variable (Flow rate

 F3) (b) Concentration of 10% HCl bath (C2)

 54

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

Pattern

Fl
ow

 r
at

e
F5

 (l
/m

in
)

Manipulated variable of 15% HCl Bath (Training data set)

(a)

0 500 1000 1500 2000
2.5

3

3.5

4

4.5

5

Pattern

C
on

ce
nt

ra
tio

n
C

3
(m

ol
/l)

Concentration of 15% HCl Bath (Training data set)

(b)

Figure 4.6 - Training data set of 15% HCl bath (a) Manipulated variable (Flow rate

 F5) (b) Concentration of 15% HCl bath (C3)

 55

0 500 1000 1500 2000
0

0.5

1

1.5

2

Pattern

Fl
ow

 r
at

e
F6

 (l
/m

in
)

Manipulated variable of the first rinsing bath (Training data set)

(a)

0 500 1000 1500 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

Pattern

C
on

ce
nt

ra
tio

n
C

4
(m

ol
/l)

Concentration of the first rinsing bath (Training data set)

(b)

Figure 4.7 - Training data set of the first rinsing bath (a) Manipulated variable

 (Flow rate F6) (b) Concentration of the first rinsing bath (C4)

 56

 For neural network design, suitable neural network structure or configuration

needs to be selected. The important aspects to consider are the number of hidden

nodes, layers and transfer function used in the neural network. In this work, we use

the sigmoidal function as the activation function of the nodes in the hidden layer and

linear function neurons in its output layer. The defined neural networks are trained

with the Levenberg-Marquardt algorithm in the Matlab Neural Network Toolbox

where the common objective is to reduce the error between the neural network

predicted value and the actual targeted value. Structure for the training of the forward

neural network model is shown in figure 4.8. The training stops when the desired

mean squared error (MSE) reaches the specified value of 0.001. The MSE is

expressed mathematically below:

∑
=

−=
n

k
Ntg kFkF

n
MSE

1

2))()((1 (4.17)

where n is the number of data, Ftg is the target/desired flow value and FN is the neural

network output.

 After training, the trained neural networks are validated by validation data

sets. If the validation routine is not satisfactory, the neural network is not properly

trained and requires more training. This can be done by re-initializing the weights and

biases and to re-train the neural network for the next loop. Reconfiguring the neural

network architecture can also help to increase the quality of the neural network simply

by increasing or decreasing the number of hidden nodes.

 57

Figure 4.8 - Structure for the training of the forward neural network model.

4.4 Identification of Neural Network Inverse Models

There are several ways to carry out this identification process of the neural

network inverse models. The technique used in this work is known as the generalized

inverse learning method. Here, the network is fed with the required future or reference

output together with the past inputs and the past output variables to predict the current

input or control action. The trained network represents the inverse model of the

system. The assignment of the input nodes consists of the past and present values of

the known flows and concentrations associated with the individual tanks and the

desired value of the plant output, C(k + 1), which corresponds to the required set

point or reference signal. The output node of the neural network model consists of the

manipulated variable for the tank, i.e. flow entering the associated tank. Although

various prediction horizons can be used for inverse models, this study concentrates on

a simple one-step ahead horizon which assumes that there is no additional time delay

between the control action and the output. The trained inverse model is then utilized

as the controller in the direct inverse control method, which will be described later.

PLANT

NEURAL
NETWORK

MODEL

TRAINING
SIGNAL

Z-1

Z-k

Z-1

Z-k

F(k)

C(k+1) ^

C(k+1)

+

_

 58

4.5 Procedure for Obtaining Neural Network Inverse Models

The detailed procedures to find reliable inverse neural network models for the

various tanks are summarized in figure 4.3 which has the same steps as the procedures

of the forward models but different in some details. The procedures to obtain inverse

neural network models of the steel pickling process are described below:

1. Preparing training and validation data sets by selecting appropriate

excitation signals from the simulation of the steel pickling process models

by solving equation (4.2) to (4.13).

2. Selecting data to define the input and the output to the neural networks.

Mathematically, four inverse models are expressed as the function of inputs

to the model as shown below:

• Pickling baths

◦ 5% HCl bath:

F2(k) = f-1 (F2(k − 1), C2(k − 1), C2(k),C1(k), C1(k + 1))

◦ 10% HCl bath:

F3(k) = f-1 (F2(k − 1), F2(k), F3(k − 1), C1(k − 1), C1(k),

 C3(k − 1), C3(k), C2(k), C2(k + 1))

◦ 15% HCl bath:

F5(k) = f-1 (F3(k − 1), F3(k), F5(k − 1), C2(k − 1),C2(k),

C3(k),C3(k + 1))

• Rinsing baths

◦ 1st Rinsing bath:

F6(k) = f-1 (F6(k − 1),C3(k − 1),C3(k), C5(k − 1),C5(k),

C4(k),C4(k + 1))

3. Scaling the data sets in order to overcome the significant minimum and

maximum values used in the training process. Raw process data are scaled

down to between 0.05 and 0.95 using equation 4.15 and 4.16

 59

4. Selecting the suitable neural network structure or configuration by

considering the number of hidden nodes, layers and transfer function used in

the neural network. For neural network inverse models, we use the sigmoidal

function as the activation function of the nodes in the hidden layer and linear

function in outer layer (only one hidden layer is used in all the networks).

5. Initializing the weights and biases prior to the network training.

6. Training the defined neural networks with the Levenberg–Marquardt

method. The training stops when the desired mean squared error (MSE)

reaches the specified value of 0.001. Structure for the training of the inverse

neural network model is shown in figure 4.9.

7. The validation data sets that are not used during the training session are

employed as the performance-monitoring element to achieve the specified

validation error where the training is stopped while the final result will be a

properly trained neural network.

8. If the validation routine is not satisfactory, the neural network is not properly

trained and requires more training by re-initializing the weights and biases

and to re-train the neural network for the next loop.

Figure 4.9 - Structure for the training of the inverse neural network model.

PLANT

NEURAL
NETWORK

TRAINING
SIGNAL

Z-1 Z-k

Z-1

Z-k

F(k)

F(k)
^

C(k+1)

+

_

 60

4.6 The Minimum MSE Method

In this work, the optimum structures are selected by the minimum MSE

method. The hidden nodes are varied from 4 to 20 nodes. The MSE error is then

monitored and the one that corresponds to the minimum MSE value is selected for

determining the final number of hidden nodes. Table 4.1 shows the MSE values

obtained from the neural network forward model and Table 4.2 shows the MSE values

obtained from the neural network inverse model for the 5%, 10% and 15% HCl baths

and the first rinsing bath using different number of hidden nodes. Based on the

minimizing MSE error values, it is found that 4, 4, 8 and 4 hidden nodes appear to be

the best to be applied respectively for the 5%, 10% and 15% HCl baths and the first

rinsing bath forward models and 4, 8, 12 and 16 hidden nodes appear to be the best to

be applied respectively for the 5%, 10% and 15% HCl baths and the first rinsing bath

inverse models which will be used as controllers in the control strategy.

4.7 Simulation Results

After training process, the neural networks are validated by the validation data

sets for the performance-monitoring. Figure 4.10 to 4.13 show the results of neural

network model validation of each bath with optimal neural network structure (5-4-1,

9-4-1, 7-8-1 and 7-4-1 structures, respectively). Figure 4.14 to 4.17 show the results

of neural network inverse model validation of each bath with optimal neural network

structure (5-4-1, 9-8-1, 7-12-1 and 7-16-1 structures, respectively). The result in these

figures indicated that the forward and inverse neural network models predict the

concentration of HCl acid solution and flow rate in each bath identically to the

validation data.

 61

Table 4.1. MSE value for different number of hidden nodes in the neural network

forward models of the 5%, 10% and 15% HCl baths and the first rinsing bath.

Bath Numbers of hidden nodes
Mean Squared Error (MSE)

after validation

 4 1.276 x 10-6

 8 1.919 x 10-5

5% HCl Bath 12 1.942 x 10-5

 16 1.758 x 10-5

 20 2.140 x 10-5

 4 8.069 x 10-6

 8 1.867 x 10-5

10% HCl Bath 12 2.194 x 10-5

 16 9.191 x 10-6

 20 5.525 x 10-4

 4 7.441 x 10-4

 8 2.437 x 10-5

15% HCl Bath 12 7.478 x 10-4

 16 8.654 x 10-4

 20 5.524 x 10-4

 4 7.055 x 10-6

 8 1.406 x 10-5

1st Rinsing Bath 12 1.430 x 10-5

 16 1.208 x 10-5

 20 1.187 x 10-5

 62

Table 4.2. MSE value for different number of hidden nodes in the neural network

inverse models of the 5%, 10% and 15% HCl baths and the first rinsing bath.

Bath Numbers of hidden nodes
Mean Squared Error (MSE)

after validation

 4 7.792 x 10-4

 8 9.834 x 10-4

5% HCl Bath 12 9.584 x 10-4

 16 8.701 x 10-4

 20 1.700 x 10-3

 4 1.041 x 10-4

 8 2.381 x 10-5

10% HCl Bath 12 1.547 x 10-4

 16 1.904 x 10-4

 20 2.654 x 10-4

 4 1.268 x 10-4

 8 3.211 x 10-5

15% HCl Bath 12 2.088 x 10-5

 16 2.214 x 10-5

 20 1.082 x 10-4

 4 1.208 x 10-5

 8 1.406 x 10-5

1st Rinsing Bath 12 1.430 x 10-5

 16 7.055 x 10-6

 20 1.187 x 10-5

 63

Figure 4.10 - The validation result of 5% HCl bath neural network model

 (structure 5-4-1)

Figure 4.11 - The validation result of 10% HCl bath neural network model

 (structure 9-4-1)

MSE = 1.015 x 10-6

MSE = 7.522 x 10-6

 64

Figure 4.12 - The validation result of 15% HCl bath neural network model

 (structure 7-8-1)

Figure 4.13 - The validation result of 1st rinsing bath neural network model

 (structure 7-4-1)

MSE = 2.062 x 10-5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

C
on

ce
nt

ra
tio

n
(m

ol
/l)

Pattern

Validation of #1 Rinsing Bath Neural Network Model

Plant Output
NN Output

MSE = 9.123 x 10-6

 65

Figure 4.14 - The validation result of 5% HCl bath inverse neural network model

 (structure 5-4-1)

Figure 4.15 - The validation result of 10% HCl bath inverse neural network model

 (structure 9-8-1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

Fl
ow

 ra
te

 F
2

(l/
m

in
)

Pattern

Validation of 5% HCl Bath Inverse Neural Network Model

MV (F2)
InvNN Output

MSE = 8.100 x 10-4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

Fl
ow

 ra
te

 F
3

(l/
m

in
)

Pattern

Validation of 10% HCl Bath Inverse Neural Network Model

MV (F3)
InvNN Output

MSE = 1.012 x 10-4

 66

Figure 4.16 - The validation result of 15% HCl bath inverse neural network model

 (structure 7-12-1)

Figure 4.17 - The validation result of 1st rinsing bath inverse neural network model

 (structure 7-16-1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

Fl
ow

 ra
te

 F
5

(l/
m

in
)

Pattern

Validation of 15% HCl Bath Inverse Neural Network Model

MV (F5)
InvNN Output

MSE = 2.167 x 10-5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

Fl
ow

 ra
te

 F
6

(l/
m

in
)

Pattern

Validation of #1 Rinsing Bath Inverse Neural Network Model

MV (F6)
InvNN Output

MSE =1.108 x 10-5

CHAPTER V

MODEL PREDICTIVE CONTROL BASED ON NEURAL

NETWORK FOR A STEEL PICKLING PROCESS

The model predictive control based on neural network (NNMPC) technique is

investigated in this chapter for application to a steel pickling process which is

commonly found in the steel industries of Thailand. The process involves removal of

surface oxides (scales) and other contaminants out of metals by an immersion of the

metals into an aqueous acid solution, which consists of three acid baths in series. Due

to the highly nonlinear dynamic behavior, multivariable and interaction between baths

cause this process to be difficult to control by conventional controllers. It is, therefore,

the aim of this work to apply the neural network model predictive control strategy for

controlling such a nonlinear system. To demonstrate the robustness and reliability of

the proposed control strategy, tests involving the set point tracking under nominal

condition and various disturbances including model mismatch and noise are

performed in these studies.

5.1 Neural Network Model Based Predictive Control

 As mentioned in Chapter 4, the neural network models of a steel pickling

process are developed from data sets that obtained by selecting appropriate excitation

signals from the simulation of the steel pickling process models by solving equation

(4.2) to (4.13). The neural network models of a steel pickling process are shown in

figure 5.1 to 5.3. These neural network models are then used in the control algorithm

for controlling the process to the desired objective. Process control configuration of a

steel pickling process is shown in figure 5.4.

 The neural network MPC strategy developed in this work is shown in figure

5.5. In this approach, a neural network model is used to predict the future process

response over the prediction horizon. The predictions are passed to a optimization

 68

routine which attempts to minimize a specified objective function (Equation (5.1)) in

searching an optimal control signal Fj(k) at each sample instant. The objective

function has a form of predictive control strategy as follows,

∑ ∑∑∑
=

=
=

=
−+∆Γ++−+Γ

532

2

1

3

1

2

1
1

,,

)]([)])|()(([min
j

m

l j
F

l
i

p

l
C
lF5 F3, F2, lkFklkCilkCspi ji

 (5.1)

Subject to

 plFlKFF jjj ,,1,)()()(maxmin K=≤+≤
 532 andj ,=

p is a parameter specifying the prediction horizon; Ci is the concentration in each

bath, with the ith element specifying the parameter for the corresponding bath. iC
lΓ is

weighting parameter used to give different weights to different squared tracking

errors. If all variables in equation (5.1) are in a similar range, then the choice of

identity parameters may suffice. Cspi is the set point to introduce a feedback in order

to compensate the system steady state error (Figure 5.5).

 The simulations have been done using the neural network models to find a set

of suitable control parameters, i.e. values for the parameters, p; m (control horizon)

and iC
lΓ . With NNMPC feedback, the control results indicate that longer prediction

horizons tend to produce more aggressive control action, more overshoot and faster

response. For control horizon (m), shortening the control horizon relative to the

prediction horizon tends to produce less aggressive controllers and slower system

response. According to this, the choice of p includes an equal number of future

predictions of each output in objective function which, with this setting of p is 8 and

the control horizon (m) is set as 4. iC
lΓ is chosen as identity vector because the outputs

of process are scaled before they are use in the network process model. Successive

quadratic programming (SQP) is used to solve the multivariable optimization problem

of minimizing objective function in equation (5.1) with respect to Fj and to produce a

solution constrained within the process input operating ranges.

 69

Figure 5.1 - The neural network model of 5% HCl bath (structure 5-4-1)

Figure 5.2 - The neural network model of 10% HCl bath (structure 9-4-1)

F2(k)

C1(k+1)

C1(k)

C2(k)

C2(k-1)

F2(k-1)

C2(k+1)

C2(k)

F3(k-1)

F2(k)

F3(k)

C1(k)

C1(k-1)

C3(k)

C3(k-1)

F2(k-1)

 70

Figure 5.3 - The neural network model of 15% HCl bath (structure 7-8-1)

Figure 5.4 - Flow diagram of a steel pickling process control.

F5(k) C3(k+1)

C3(k)

C2(k)

C2(k-1)

F5(k-1)

F3(k)

F3(k-1)

C20

F2,

 NNMPC

C1 C2 C3

F3,

F5

F1 F11 F10

q q q

F4

 71

Figure 5.5 - Multivariable NNMPC strategy.

5.2 Simulation Results

The multivariable NNMPC strategy is applied to control the concentration of

HCl in the 5%HCl, 10%HCl and 15%HCl bath to the values of 1.40, 2.87 and 4.41

(mol/l) by adjusting the manipulated variables F2, F3 and F5 respectively. They are

divided into four cases of control studies, which are the set point tracking case,

disturbance case, model mismatch case and noise case, respectively.

 For set point tracking case, the controllers are designed to bring the

concentration of HCl in each bath to the desired value. The initial set points are set at

1.29, 2.77 and 4.30 (mol/l) and changed to 1.35 and 1.40 (mol/l) for 5% HCl bath,

2.80 and 2.87 (mol/l) for 10% HCl bath and 4.35 and 4.41 (mol/l) for 15% HCl bath

at 15 and 30 min, respectively. The control results of NNMPC in figure 5.6 show

that, although there exists effects among input and output variables of acid baths,

suitable control has been found to drive the process response to follow the set points

without overshoot and oscillations. The satisfactory performance is due to the full

representation of nonlinear dynamics of process by neural network models. For

comparison, three PI controllers have designed for the four loops within the process.

The controllers are designed using the Ziegler-Nichols closed loop method around

one operating point and subsequent fine tuning. The maximum of manipulated flow

rate is limited at value of 2 (l/min) as reference to pump flow rate limit. The control of

HCl concentration in three baths using PI show a poor performance as display in

Process Optimizer

NN Models

MPC
Ci(k)

Fi(k) Cspi Ci(k)

 72

figure 5.7 because of the nonlinear dynamics of the baths. They show the overshoot of

control variables and rigorous adjusting of manipulated variables.

 For disturbance case, which is the change in the concentration C20 in the

stream F5, introduced by random increasing and reducing 15% from its nominal

operation values. Figure 5.8 to 5.10 show the results of NNMPC and PI control for the

5%HCl, 10%HCl and 15%HCl bath respectively by random increasing and reducing

15% of C20 from its nominal value. It can be seen from figure 5.8 to 5.10 that the

NNMPC strategy brought the concentrations to the required value by gradually

increasing the flow rate of F2, F3 and F5 while PI control bring the concentrations to

the set point by rigorous adjusting of the flow rates and cause the overshoot in process

response. Table 5.1 summarizes the IAE values of NNMPC and PI control for the

three baths. They indicate that NNMPC has more robustness and give better control

performance than PI controllers with smaller IAE error values, when disturbances are

present in the system.

Table 5.1 Performance comparison between NNMPC and PI control under the

disturbance case.

IAE Values
Bath

NNMPC PI

5% HCl Bath 0.223 0.308

10% HCl Bath 0.266 0.332

15% HCl Bath 0.220 0.421

 73

(a)

(b)

Figure 5.6 - NNMPC control for HCl acid concentration: (a) 5% HCl bath;

 (b) 10% HCl bath; and (c) 15% HCl bath

 74

(c)

Figure 5.6(Cont.) - NNMPC control for HCl acid concentration: (a) 5% HCl bath;

 (b) 10% HCl bath; and (c) 15% HCl bath

(a)

Figure 5.7 - PI control for HCl acid concentration: (a) 5% HCl bath;

 (b) 10% HCl bath; and (c) 15% HCl bath

 75

(b)

(c)

Figure 5.7(Cont.) - PI control for HCl acid concentration: (a) 5% HCl bath;

 (b) 10% HCl bath; and (c) 15% HCl bath

 76

 For the model mismatch case, the rate of reaction in acid bath is considered as

the model mismatch in parameter. The model mismatch is introduced by randomly

increasing and reducing 15% of the kinetic rate constant from its nominal value.

Figure 5.11 to 5.13 show the results of NNMPC and PI control for the 5%HCl,

10%HCl and 15%HCl bath by random increasing and reducing 15% of the rate of

reaction. Figure 5.11 to 5.13 illustrate that the NNMPC strategy brought the

concentrations to the set points by gradually increasing the flow rate of F2, F3 and F5

while PI control bring the concentrations to the set points by rigorous adjusting of the

flow rates cause the overshoot in process response and using long time back to the set

points. Table 5.2 shows the IAE values of NNMPC and PI control for the three baths.

They indicated that NNMPC has more robustness and give better control performance

than PI controllers, similar to the disturbance case study.

Table 5.2 Performance comparison between NNMPC and PI control under the model

mismatch case.

IAE Values
Bath

NNMPC PI

5% HCl Bath 0.218 0.311

10% HCl Bath 0.266 0.331

15% HCl Bath 0.130 0.420

 77

(a)

(b)

Figure 5.8 - Concentration control in 5%HCl bath under the disturbance case:

 (a) NNMPC (b) PI control.

 78

(a)

(b)

Figure 5.9 - Concentration control in 10%HCl bath under the disturbance case:

 (a) NNMPC (b) PI control.

 79

(a)

(b)

Figure 5.10 - Concentration control in 15%HCl bath under the disturbance case:

 (a) NNMPC (b) PI control.

 80

(a)

(b)

Figure 5.11 - Concentration control in 5%HCl bath under the model mismatch case:

 (a) NNMPC (b) PI control.

 81

(a)

(b)

Figure 5.12 - Concentration control in 10%HCl bath under the model mismatch case:

 (a) NNMPC (b) PI control.

 82

(a)

(b)

Figure 5.13 - Concentration control in 15%HCl bath under the model mismatch case:

 (a) NNMPC (b) PI control.

 83

 For the noises case, noises accounting to 2% random values from the output

measurement, are introduced into the system to further test its robustness and

performance of the NNMPC approach under close to real situations. The results in

figure 5.14 to 5.16 show that the NNMPC strategy can control the system and bring

the concentrations to desired value, while PI control bring the concentrations to the set

point by rigorous adjusting of flow rates causing the overshoot in process response

and corresponding with noise make the control variable very far from the desired

value. Table 5.3 shows the IAE values of NNMPC and PI control for the three baths

under noise effects. These results show the robustness and stability of the NNMPC

when dealing with noise effects and more robust than PI controllers.

Table 5.3 Performance comparison between NNMPC and PI control under the noises

case.

IAE Values
Bath

NNMPC PI

 5% HCl Bath 0.350 0.410

 10% HCl Bath 0.304 0.471

 15% HCl Bath 0.278 0.375

 84

(a)

(b)

Figure 5.14 - Concentration control in 5%HCl bath under the noise case: (a) NNMPC

 (b) PI control.

 85

(a)

(b)

Figure 5.15 - Concentration control in 10%HCl bath under the noise case:

 (a) NNMPC (b) PI control.

 86

(a)

(b)

Figure 5.16 - Concentration control in 15%HCl bath under the noise case:

 (a) NNMPC (b) PI control.

CHAPTER VI

NEURAL NETWORK INVERSE MODEL BASED CONTROLLER

FOR THE CONTROL OF A STEEL PICKLING PROCESS

6.1 Neural network direct inverse control strategy (NNDIC)

In this chapter, the neural network direct inverse control (NNDIC) method is

used for the control strategy of a steel pickling process (Daosud et al., 2005). This

strategy consists of the neural network inverse model that acts as the controller placed

in series with the process under control. In this work, the neural network inverse

models trained as described in chapter 4 (Figure 6.1 to 6.4) are utilized to predict the

manipulated flow rates of each bath to bring the process to desired conditions. Process

control configuration of a steel pickling process is shown in figure 6.5 to 6.6

 As shown in figure 6.7, the controller predicts the control action, F(k), by

having current and past values of the process model state variables and the past

control action as well as the required set point as its inputs. The prediction of the

controller action, i.e. manipulated variable is normally sufficient to make the value of

the controlled variable, C(k + 1), change according to the set point. The control

structure is fairy simple and works fairy well in many non-linear plants (Hussain et

al., 2003). This control strategy is then implemented in the steel pickling process to

control the HCl concentrations in baths, C1, C2, C3 and C4, by manipulating the

flow, F2, F3, F5 and F6. The control performance is tested under the nominal case

and with disturbances case, model mismatch and noise added into the process. The

simulation results and discussion of these control studies are described in the next

section.

 88

Figure 6.1 - The inverse neural network controller of 5% HCl bath (structure 5-4-1)

Figure 6.2 - The inverse neural network controller of 10% HCl bath (structure 9-8-1)

C2(k+1)

C2(k)

F3(k-1)

F2(k)

F3(k) C1(k)

C1(k-1)

C3(k)

C3(k-1)

F2(k-1)

F2(k)

C1(k+1)

C1(k)

C2(k)

C2(k-1)

F2(k-1)

 89

Figure 6.3 - The inverse neural network controller of 15% HCl bath (structure 7-12-1)

F5(k)

C3(k+1)

C3(k)

C2(k)

C2(k-1)

F5(k-1)

F3(k)

F3(k-1)

 90

Figure 6.4 - The inverse neural network controller of 1strinsing bath (structure 7-16-1)

F6(k)

C4(k+1)

C4(k)

C5(k)

C5(k-1)

C3(k)

C3(k-1)

F6(k-1)

 91

Figure 6.5 - Flow diagram of pickling baths control system.

Figure 6.6 - Flow diagram of rinsing baths control system.

F3 F4

 92

Figure 6.7 - Neural network direct inverse model control strategy.

6.2 Simulation Results and Discussion of NNDIC

In the simulation studies, the objective is to control the concentration of HCl

in the 5% HCl, 10% HCl, 15% HCl and 1st rinsing bath to the values of 1.40, 2.87,

4.41 and 1x10−3 mol/l (pH 3) by adjusting the manipulated variables F2, F3, F5 and

F6, respectively. They are divided into four cases of control studies, which are the

nominal case, disturbance case, model mismatch case and noise case, respectively.

6.2.1 Nominal case

In this case, the controllers are designed to bring the concentration of HCl in

each bath to the desired value when the initial condition is set at steady state for 20

min without controller action. Figure 6.8(a), 6.9(a), 6.10(a) and 6.11(a) show the

control of HCl concentration in the 5% HCl, 10% HCl, 15% HCl and 1st rinsing bath

using NNDIC, respectively and figure 6.8(b), 6.9(b), 6.10(b) and 6.11(b) show them

with PI control. The results in these figures indicate that NNDIC can bring the

concentrations closely to the set points and give minimal offsets while PI control can

bring the controlled variable to the set points without offsets. However, drastic change

of the manipulated variable and oscillation at the initial state when starting control for

the PI control can be remarkably observed. Their performances are also evaluated

Csp F(k) C(k+1) Neural network
inverse model action

as controller
Plant

z-1

z-n

z-1

z-n

 93

using the integral absolute error (IAE). The IAE results for the nominal case of these

four baths are summarized in Table 6.1. They all showed that relatively, the PI

controllers give better results than NNDIC in term of lesser IAE values since there are

no offsets in using the PI control strategy. It is noted that although, the PI controllers

can handle the system well in the nominal case, the control action of the PI method is

less smooth than that of the NNDIC method.

(a)

(b)

Figure 6.8 - Concentration control in 5% HCl bath under the nominal case:

 (a) NNDIC (b) PI control.

 C
 1

 C1 Set point
 C1 Output

 94

(a)

(b)

Figure 6.9 - Concentration control in 10% HCl bath under the nominal case:

 (a) NNDIC (b) PI control.

(a)

Figure 6.10 - Concentration control in 15% HCl bath under the nominal case:

 (a) NNDIC (b) PI control.

 C2 Set point
 C2 Output

C
 2

 95

(b)

Figure 6.10 (Cont.) - Concentration control in 15% HCl bath under the nominal case:

 (a) NNDIC (b) PI control.

(a)

(b)

Figure 6.11 - Concentration control in 1st rinsing bath under the nominal case:

 (a) NNDIC (b) PI control.

C
 3

 96

Table 6.1 Performance comparison between NNDIC and PI control under the nominal

case.

IAE Values
Bath

NNDIC PI

 5% HCl Bath 2.109 0.342

 10% HCl Bath 37.925 2.607

 15% HCl Bath 21.697 13.281

 1st Rinsing Bath 0.274 0.007

6.2.2 Disturbance case

In this case, the disturbance, which is the change in the concentration C20 in

the stream F5, is introduced by increasing and reducing 15% from its nominal

operation values. Initially, the process is left under control until t = 200 min, at which

instant, the disturbance is introduced. During the period t = 200–300 min, the control

action is halted to the last value to allow the process to respond to the new load

condition. At t = 300 min, the PI and neural network based control action are

introduced back into the system. Figure 6.12 to 6.15 show the results of NNDIC and

PI control for the 5% HCl, 10% HCl, 15% HCl and 1st rinsing bath by increasing 15%

of C20 from its nominal value. It can be seen from these figures that when the

disturbance is introduced (t = 200–300 min), the process responds by an increase in

the concentration of the baths due to the increase of HCl concentration (C20) to the

15% HCl bath. After t = 300 min, the NNDIC strategy can bring back the

concentrations close to the required value by gradually decreasing the manipulated

flow rates (F2, F3, F5 and F6), while PI control strategy bring the concentrations to

the set point with oscillation. In reducing the concentration C20 by 15%, the results

show that the NNDIC strategy can still control the process and bring the

concentrations to their set points but the PI controllers bring the concentrations to the

set point with oscillation that can be clearly observed from figure 6.18. Table 6.2

summarizes the IAE values of NNDIC and PI control for the four baths. They indicate

that NNDIC has more robustness and give better control performance than PI

controllers with much smaller IAE error values, when disturbances are present in the

system.

 97

(a)

(b)

Figure 6.12 - Concentration control in 5%HCl bath under the disturbance case (15%

 increase of the concentration, C20): (a) NNDIC (b) PI control.

(a)

Figure 6.13 - Concentration control in 10%HCl bath under the disturbance case (15%

 increase of the concentration, C20): (a) NNDIC (b) PI control.

 C
 1

 C1 Set point
 C1 Output

 C2 Set point
 C2 Output

 98

(b)

Figure 6.13(Cont.) - Concentration control in 10%HCl bath under the disturbance

 case (15% increase of the concentration, C20): (a) NNDIC (b) PI control.

(a)

(b)

Figure 6.14 - Concentration control in 15% HCl bath under the disturbance case (15%

 increase of the concentration, C20): (a) NNDIC (b) PI control.

C
 2

 C

 3

 99

(a)

(b)

Figure 6.15 - Concentration control in 1st rinsing bath under the disturbance case

 (15% increase of the concentration, C20): (a) NNDIC (b) PI control.

(a)

Figure 6.16 - Concentration control in 5% HCl bath under the disturbance case (15%

 decrease of the concentration, C20): (a) NNDIC (b) PI control.

 pH Set point
 pH Output

 100

(b)

Figure 6.16 (Cont.) - Concentration control in 5% HCl bath under the disturbance

 case(15% decrease of the concentration, C20):(a) NNDIC (b) PI control

(a)

(b)

Figure 6.17 - Concentration control in 10% HCl bath under the disturbance case (15%

 decrease of the concentration, C20): (a) NNDIC (b) PI control.

 C
 1

C

 2

 101

(a)

(b)

Figure 6.18 - Concentration control in 15% HCl bath under the disturbance case (15%

 decrease of the concentration, C20): (a) NNDIC (b) PI control.

(a)

Figure 6.19 - Concentration control in 1st rinsing bath under the disturbance case

 (15% decrease of the concentration, C20): (a) NNDIC (b) PI control.

 C
 3

 102

(b)

Figure 6.19 (Cont.) - Concentration control in 1st rinsing bath under the disturbance

 case (15% decrease of the concentration, C20): (a) NNDIC (b) PI control.

Table 6.2 Performance comparison between NNDIC and PI control under the

disturbance case (15% increase of the concentration, C20).

IAE Values
Bath

NNDIC PI

 5% HCl Bath 3.508 10.899

 10% HCl Bath 77.595 146.633

 15% HCl Bath 74.997 702.675

 1st Rinsing Bath 0.444 0.782

 103

6.2.3 Model mismatch case

The rate of reaction in acid bath is considered as the model mismatch in

parameter. The model mismatch is introduced by increasing and reducing 15% of the

kinetic rate constant from its nominal value. Initially, the process is left under control

until t = 200 min, at which instant, the model mismatch is introduced. During the

period t = 200–300 min, the process control action is halted to the latest value to allow

the process to respond to the new mismatch condition. At t = 300 min, the PI and

neural network based control action are introduced back into the system. Figure 6.20

to 6.23 show the results of NNDIC and PI control for 5% HCl, 10% HCl, 15% HCl

and 1st rinsing bath by increasing 15% of the rate of reaction. When model mismatch

(t = 200–300 min) is introduced, the process responds by a decrease in concentration

in baths due to the increase of the rate of reaction in acid bath. After t = 300 min, the

NNDIC strategy bring back the concentrations close to their required values by

gradually increasing the manipulated flow rates (F2, F3, F5 and F6), while PI control

strategy bring the concentrations to the set point with drastic change of the

manipulated variable and oscillation.

 In reducing 15% of the rate of reaction, the results again show that the NNDIC

strategy can control the process and bring the concentrations to their set points but PI

controller bring the concentrations to the set point with oscillation that can be clearly

observed from figure 6.26. Table 6.3 shows the IAE values of NNDIC and PI control

for the four baths. They indicate that NNDIC has more robustness and give better

control performance than PI controllers, similar to the disturbance case study. The

robustness of the NNDIC can be explained by the fact that the obtained NN inverse

model for the use in the NNDIC was trained with the wide range of operating

conditions whereas the PI controller was tuned based on a nominal condition.

 104

(a)

(b)

Figure 6.20 - Concentration control in 5% HCl bath under the model mismatch case

 (15% increase of the reaction rate, k): (a) NNDIC (b) PI control.

(a)

Figure 6.21 - Concentration control in 10% HCl bath under the model mismatch case

 (15% increase of the reaction rate, k): (a) NNDIC (b) PI control.

C
 1

 C1 Set point
 C1 Output

 C2 Set point
 C2 Output

 105

(b)

Figure 6.21 (Cont.) - Concentration control in 10% HCl bath under the model

 mismatch case (15% increase of the reaction rate, k):

 (a) NNDIC (b) PI control.

(a)

(b)

Figure 6.22 - Concentration control in 15% HCl bath under the model mismatch case

 (15% increase of the reaction rate, k): (a) NNDIC (b) PI control.

C
 2

C

 3

 106

(a)

(b)

Figure 6.23 - Concentration control in 1st rinsing bath under the model mismatch case

 (15% increase of the reaction rate, k): (a) NNDIC (b) PI control.

(a)

Figure 6.24 - Concentration control in 5% HCl bath under the model mismatch case

 (15% decrease of the reaction rate, k): (a) NNDIC (b) PI control.

 pH Set point
 pH Output

 107

(b)

Figure 6.24 (Cont.) - Concentration control in 5% HCl bath under the model

 mismatch case (15% decrease of the reaction rate, k):

 (a) NNDIC (b) PI control.

(a)

(b)

Figure 6.25 - Concentration control in 10% HCl bath under the model mismatch case

 (15% decrease of the reaction rate, k): (a) NNDIC (b) PI control.

 C2 Set point
 C2 Output

 108

(a)

(b)

Figure 6.26 - Concentration control in 15% HCl bath under the model mismatch case

 (15% decrease of the reaction rate, k): (a) NNDIC (b) PI control.

(a)

Figure 6.27 - Concentration control in 1st rinsing bath under the model mismatch case

 (15% decrease of the reaction rate, k): (a) NNDIC (b) PI control.

 C3 Set point
 C3 Output

 pH Set point
 pH Output

 109

(b)

Figure 6.27(Cont.) - Concentration control in 1st rinsing bath under the model

 mismatch case (15% decrease of the reaction rate, k):

 (a) NNDIC (b) PI control.

Table 6.3 Performance comparison between NNDIC and PI control under the model

mismatch case (15% increase of the reaction rate, k).

IAE Values
Bath

NNDIC PI

 5% HCl Bath 11.116 181.503

 10% HCl Bath 101.759 244.167

 15% HCl Bath 73.782 209.544

 1st Rinsing Bath 0.424 0.696

 110

6.2.4 Noise case

Noises, accounting to 2% random values from the output measurement, are

introduced into the system to further test its robustness and performance of the

NNDIC approach under close to real situations. They are introduced under the model

mismatch and disturbance cases as mentioned previously. The steps are the same as in

the model mismatch and disturbance case, i.e. during the period t = 200–300 min, the

process control action is halted to the latest value to allow the process to respond to

the model mismatch and disturbance load conditions. At t = 300 min, the neural

network-based control action is introduced back into the system. The results in figure

6.28 and 6.29 show that the NNDIC strategy can control the system in the both cases

(model mismatch with noise and disturbance with noise) and bring the concentrations

to desired set points in all these baths. Table 6.4 shows the IAE values of NNDIC for

the four baths in both cases under noise effects. These results show the robustness and

stability of the NNDIC when dealing with noise and disturbance effects

simultaneously.

(a) (b)

Figure 6.28 - Concentration control by NNDIC under the noise case with the

 disturbance in C20 (+15%): (a) 5% HCl Bath (b) 10% HCl Bath

 (c) 15% HCl Bath (d) 1st rinsing Bath.

 111

 (c) (d)

Figure 6.28(Cont.) - Concentration control by NNDIC under the noise case with the

 disturbance in C20 (+15%): (a) 5% HCl Bath (b) 10% HCl Bath

 (c) 15% HCl Bath (d) 1st rinsing Bath.

(a) (b)

Figure 6.29 - Concentration control by NNDIC under the noise case with the model

 mismatch in k (+15%): (a) 5% HCl Bath (b) 10% HCl Bath

 (c) 15% HCl Bath (d) 1st rinsing Bath.

 112

(b) (d)

Figure 6.29(Cont.) - Concentration control by NNDIC under the noise case with

 the model mismatch in k (+15%): (a) 5% HCl Bath

 (b) 10% HCl Bath (c) 15% HCl Bath (d) 1st rinsing Bath.

Table 6.4 Performance of NNDIC under the noise case.

IAE Values
Bath

disturbance with noise model mismatch with noise

5% HCl Bath 78.139 56.6884
10% HCl Bath 345.742 245.509

15% HCl Bath 317.110 179.934

1st Rinsing Bath 0.501 0.472

 113

6.3 Dual Mode Control based on Neural Network Inverse Model Strategy

Normally, the implementation of the inverse neural network model to control

the process gives some errors between set point and control variable (offset) since an

exact inverse model is difficult to obtain as have been proved theoretically (Hussain,

1997) and observed from the previous section. In order to remove this offset and

improve the process response, proportional-integral (PI) controller is implemented in

this proposed dual mode control strategy which makes use of both inverse neural

network and PI controller. The basis concept of the dual mode algorithm can be

divided into two modes of operation. That is, in the first mode, the inverse neural

network controller is applied whenever error between the state (control variables) and

set point lies outside the limit values, E (Equation (6.1)), while a controller in the

second mode, the PI controller is employed inside the limit error region to bring the

state to the desired set point. In this work the limited values is set of ±3% of the set

point in each baths, where E is defined as:

() EkCCsp =− (6.1)

The main benefit of the dual mode controller is that, under nominal operating condition

when the state are located far away from set point, the inverse neural network

controller can bring the state to the desired set point without drastic change of the

manipulated variable and oscillation. However, when the state are located within

limited region (E), PI controller start to control and bring the state to the desired set

point without offset which normally occur when controlling using the inverse neural

network controller only. In addition, the control action given by the PI controller in

dual mode gradually changes and is less drastic as compared when using the

conventional controller (PI) alone.

6.4 Results and Discussion of Dual Mode Control

The objective of the simulation studies is to control the concentration of HCl

in the 5%HCl, 10%HCl, 15%HCl and 1st rinsing bath to values of 1.40, 2.87, 4.41 and

 114

1x10-3 mol/liter (pH 3) by adjusting the manipulated variable F2, F3, F5 and F6

respectively. They are divided into three cases of control studies, which are the

nominal case, disturbance case and model mismatch case, respectively.

6.4.1 Nominal case

The controllers are designed to bring the concentration of HCl in each bath to

the desired value when the initial condition is set at the steady state and leave the

process without controller for 20 min after that start to control by controllers. Figure

6.30 (a), (b) and (c) show the control of HCl concentration in 15%HCl bath using dual

mode control, NNDIC and PI control, respectively. The results in these figures

indicate that dual mode controller can bring the concentration to the desired set point

without any offset and oscillation of manipulated variable while the NNDIC bring the

concentration closely to the set point with minimal offset. The PI controller bring the

concentration to the set point without offset but however there is drastic change of the

manipulated variable and large oscillation in the initial state of the control. These

control strategies are also applied for the 5%HCl, 10%HCl and 1st rinsing bath;

however, only the 15%HCl bath control result is given because this bath has highest

HCl concentration and is very difficult to control, from which we can observe the

effect of the controllers. Their performances are also evaluated using the Integral

Absolute Error (IAE). The IAE results for the nominal case of these four baths are

summarized in Table 6.5. They showed that relatively, the PI controllers give better

results than dual mode control and NNDIC in term of lesser IAE values for the 5%

HCl, 10% HCl and 1st Rinsing Baths. For the 15%HCL bath, the control action of PI

controller is very drastic causing overshoot of concentration and therefore higher IAE

value is obtained as compared to the DM controller.

 115

(a)

(b)

(c)

Figure 6.30 - Concentration control in 15%HCl bath under the nominal case :

 (a) DM control (b) NNDIC (c) PI control

 116

Table 6.5 Performance comparison between Dual mode control, NNDIC and PI

control under the nominal case

IAE Values
Bath

DM NNDIC PI

 5% HCl Bath 1.756 2.109 0.342

 10% HCl Bath 3.425 37.925 2.607

 15% HCl Bath 4.967 21.697 13.281

 1st Rinsing Bath 0.044 0.274 0.007

6.4.2 Disturbance case

In this case, the disturbance, which is the change in the concentration of C20 in

the stream F5, is introduced by increasing and reducing 15% from its nominal

operation values. Initially, the process is left under control until t= 200 minutes, at

which instant, a disturbance is introduced. During the period t=200 to 300 min, the

control action is halted to the last value to allow the process to respond to the new

load condition. At t=300 min, the DM, NNDIC and PI control action are introduced

back into the system. Figure 6.31 shows the results of the DM, NNDIC and PI control

for 15%HCl bath by increasing 15% of C20 from its nominal value. It can be seen

from figure 6.31 that when the disturbance is introduced (t=200 to 300 min), the

process responds by the increase in concentration of the baths due to the increase of

HCl concentration (C20) to 15% HCl bath. After t=300 min, the DM strategy can

bring back the concentrations to the required value without offset and oscillation,

while NNDIC strategy bring back the concentrations close to the required value and

give offsets and the PI control strategy cannot bring the concentrations to the set

point. Relatively, similar results are obtained in the 10%HCl bath and 1st rinsing bath.

In 5% HCl bath PI controller can bring the concentration to its set point but there is

rigorous adjusting of the F2 causing overshoot in concentration. In reducing the

concentration C20 by 15%, the results show that the DM strategy can still control the

process and bring the concentrations to their set points, while NNDIC strategy bring

the concentrations to their set points with slight offsets and PI controller bring the

 117

concentrations to the set point with oscillation. Table 6.6 summarizes the IAE values

of DM control, NNDIC and PI control for the four baths. They indicate that the DM

controller has most robustness and give better control performance than the NNDIC

controller and PI controller with very much smaller IAE error values, when

disturbances are present in the system.

Table 6.6 Performance comparison between DM control, NNDIC and PI control

under the disturbance case (15% increasing of the concentration, C20)

IAE Values
Bath

DM NNDIC PI

 5% HCl Bath 1.183 3.508 12.252

 10% HCl Bath 3.661 77.595 623.919

 15% HCl Bath 38.492 74.997 696.903

 1st Rinsing Bath 0.052 0.444 0.087

(a)

Figure 6.31 - Concentration control in 15%HCl bath under the disturbance case

 (15% increase of the concentration, C20) : (a) DM control

 (b) NNDIC. (c) PI control.

 118

(b)

(c)

Figure 6.31(Cont.) - Concentration control in 15%HCl bath under the disturbance

 case (15% increase of the concentration, C20) : (a) DM control

 (b) NNDIC. (c) PI control.

 119

6.4.3 Model mismatch case

In this work, the rate of reaction in acid bath is considered as the model

mismatch in the parameter under consideration. The model mismatch is introduced by

increasing and reducing 15% of the kinetic rate constant from its nominal value.

Initially, the process is left under control until t= 200 min, at which instant, the model

mismatch is introduced. During the period t=200 to 300 min, the process control

action is halted to the latest value to allow the process to respond to new load

condition. At t=300 min, the DM, NNDIC and PI control action are introduced back

into the system. Figure 6.32 shows the results of DM, NNDIC and PI control for

15%HCl bath by increasing 15% of the rate of reaction. When the model mismatch is

introduced (t=200 to 300 min), the process responds by a decrease in concentration in

baths due to the increase of rate of reaction in acid bath. After t=300 min, the DM

control bring back the concentrations to their required values without the offset, while

NNDIC strategy bring back the concentrations close to their required values and give

offsets and PI control strategy bring the concentrations to the set point with drastic

change of the manipulated variable and oscillation.

 In reducing 15% of the rate of reaction, the results again show that the DM

control can control the process and bring the concentrations to their set points, while

NNDIC strategy can control the process and bring the concentrations close to their set

points with slight offsets and PI control strategy bring the concentrations to the set

point with drastic change of the manipulated variable and oscillation. Table 6.7 shows

the IAE values of DM control, NNDIC and PI control for the four baths. They again

indicate that the DM control has most robustness and give better control performance

than NNDIC and PI controller, similar to the disturbance case study.

 120

Table 6.7 Performance comparison between DM control, NNDIC and PI control

under the model mismatch case (15% increase of the reaction rate, k)

IAE Values
Bath

DM NNDIC PI

 5% HCl Bath 3.998 11.116 136.385

 10% HCl Bath 8.162 101.759 220.565

 15% HCl Bath 11.665 73.782 289.428

 1st Rinsing Bath 0.049 0.424 0.041

(a)

Figure 6.32 - Concentration control in 15% HCl under the model mismatch case (15%

 increase of reaction rate, k): (a) DM control (b) NNDIC (c) PI control

 121

(b)

(c)

Figure 6.32(Cont.) - Concentration control in 15% HCl under the model mismatch case

 (15% increase of reaction rate, k): (a) DM control.

 (b) NNDIC. (c) PI control.

CHAPTER VII

CONCLUSIONS

The objective of this research is to develop and implement an advanced

control scheme for the control of a nonlinear multivariable chemical process. Since

the real chemical processes are non-linear and multivariable interacting systems,

which make them difficult to control by using conventional controllers, model-based

advance control techniques are then required to obtain tighter control.

The work presented in this dissertation studies on a model predictive control

based on neural network (NNMPC) to control a steel pickling process which has

highly nonlinear dynamic behavior and involves multivariable interactions in nature.

Since the MPC controller uses a model of controlled process in its algorithm to

determine manipulated variables then the modeling of the process is very importance.

However, in many cases it is even impossible to obtain a suitable process model due

to the complexity of the underlying processes or the lack of knowledge of critical

parameters of the models. Therefore, in this work, the neural network is used to

develop the model of a steel pickling process. The developed neural network models

are then used in the MPC algorithm. In addition to implementation of inverse neural

network (InvNN) and Dual Mode controller (DM) to a steel pickling process is

investigated. The main issues studied in this research are summarized below.

7.1 A Steel Pickling Process Modeling

For system identification based on neural networks, process data are prepared

and used to train and validate neural network models. In this work, neural networks

process models based on input-output information have been developed to predict the

hydrochloric acid concentration of a steel pickling process which has highly nonlinear

dynamic behavior and multivariable interaction. Various neural networks

architectures have been trained using Lenvenberg- Marquardt techniques, and the

 123

accuracy of the obtained models has been evaluated using validation data set. The

optimal neural network architectures are obtained using minimum MSE technique.

The simulation results have shown that the multilayer feedforward neural network

models provide sufficiently accurate prediction of acid concentrations and pH values

of the process. Therefore, with the obtained neural network models, advanced model

based control techniques, i.e., NNMPC, are then applicable to control the steel

pickling process.

7.2 Neural Network Direct Inverse Control (NNDIC) and Dual Mode Control

(DM)

A neural network direct inverse control (NNDIC) strategy was tested and

implemented for controlling the concentrations of pickling and rinsing baths in a steel

pickling process which is highly non-linear and involves multivariable interactions in

nature. It was observed that the neural network inverse model-based control strategy

can bring the controlled variables closely to their set points with minimal oscillations

in all cases studied, i.e., nominal case, disturbance case, model mismatch case and

noise case. Comparison of performance with the conventional PI controller indicated

that NNDIC was more robust than the PI controller and gave better results in cases

involving disturbances, model mismatches and noise. The PI gave slightly better

results in the nominal case in term of offset rejection but rigorous oscillation was

observed as compared to the neural network method.

Nevertheless, inverse neural network model is not the exact model, and then

normally the offset occurs when implemented in control of the process as mention

above. Therefore, the dual mode is an attractive control methodology for process

control application because it can remove the offset and improves robustness of the

controller. In this work dual mode control strategy is tested and implemented for

controlling concentrations of pickling and rinsing baths in a steel pickling process.

Lenvenberg- Marquardt techniques and MSE minimization technique are used for

training and choosing the optimal inverse neural network model structures,

respectively. It was observed that DM control strategy can bring the control variables

to their set points without offset and oscillations in all cases studies, i.e., nominal

 124

case, disturbance case and model mismatch case. Comparison of performance with

NNDIC and the conventional PI controller indicated that DM control strategy gave

better results in cases involving disturbances, and model mismatches which gave

lesser IAE values than NNDIC and PI control. These results show that DM control

strategy give good control results for highly nonlinear and multivariable system such

as the steel pickling process, and can improve the robustness of control system and

remove the offset when compared to the NNDIC and conventional PI control strategy.

7.3 Neural Network based Model Predictive Control (NNMPC)

The implementation of a neural network model based predictive controller,

MIMO controller, to a steel pickling process is investigated. The obtained multilayer

feedforward neural network models have been employed to predict the future process

response in MPC algorithm for controlling the concentrations of pickling in a steel

pickling process. It was observed that NNMPC can bring the control variables to their

desired set points without oscillations and drastic changing of manipulated variables

in all cases studies, i.e., set point tracking case, disturbance case, model mismatch

case and noise case. Comparison of performance with the conventional PI controller

indicated that NNMPC was more robust than the PI controller and gave better control

results in cases involving disturbances, model mismatches and noise. These results

show that NNMPC controllers are robust in nature and highly promising to be

implemented in such highly nonlinear multivariable systems such as the steel pickling

process.

REFERENCES

Acosta, L., Marichal, G. N., Moreno, L., Rodrigo, J. J., Hamilton, A. and Mendez, J.

A., A robotic system based on neural network controllers. Artificial

Intelligence in Engineering 13(1999): 393-398

Agatonovic-Kustin, S., Zecevic, M., Zivanovic, L. J. and Tucker, I. G., Application of

artificial neural networks in HPLC method development. Journal of

Pharmaceutical and Biomedical Analysis 17(1998): 69-76.

Alvarez, E., Riverol, Carmen, Navaza, J.M., Control of chemical processes using

neural networks: implementation in a plant for xylose production. ISA

Transactions 38(1999): 375-382.

Anderson, J. A. and Rosenfeld (Eds.), E., Neurocomputing: Foundations of Research.

Cambridge: MIT Press, 1988.

Asakawa, K. and Takagi, H., Neural networks in Japan. Communications of the

ACM. 37, 3(1994): 106-112.

Balchen, J. G., Ljungquist, D. and Strand, S., State-space predictive control. Chemical

Engineering Science 47(1992): 787-807.

Batti, R., Accelerated backpropagation learning : two optimization methods. Complex

Systems 3(1989): 331-342.

Becen-a V. M., Roberts, P. D. and Griffiths, G. W., Novel developments in process

optimisation using predictive control. J. Proc. Cont 8(1998): 117-138.

Bequette, B. W., Nonlinear control of chemical processes: A review. Ind. Eng. Chem.

Res 30(1991): 1391-1413.

Bitmead, R. R., Gevers, M. and Wertz, V., Adaptive Optimal Control. The Thinking

Man’s GPC: Prentice Hall Intemational, 1990.

Bless, R. R. and Hodges, D. H., Finite element solution of optimal control problems

with inequality constraints. Proceedings of the 1990 American Control

Conference(May 1990): 242-247.

Bremermann, H. J. and Anderson, R. W., An alternative to backpropagation: A simple

rule for synaptic modification for neural net training and memory. Internal

report, Dept. of Mathematics, Univ. of California Berkley, 1989.

 126

Brown, M. and Harris, C., Neurofuzzy Adaptive Modelling and Control. Prentice-

Hall, 1994.

Brusch, R. G., A nonlinear programming approach to space shuttle trajectory

optimization. J Optimization Theory Appl. 13(1974): 94-118.

Camacho, E. F. and Bordons, C., Model Predictive Control in the Process Industry.

Sprhger-Verlag: Berlin, Germany, 1995.

Camacho, E. F. and Bordons, C., Model Predictive Control. Springer-Verlag. (an

update of Camacho and Bordons), 1999.

Chan, K. C., Leong, S. S., Lin, G. C. I., A neural network PI controller tuner.

Artificial intelligence in Engineering 9(1995): 167-176.

Charalambous, C., Conjugate gradient algorithm for efficient training of artificial

neural networks. IEE Proc. G. 139, 3(1992).

Clarke, D. W. (Eds.), Advances in Model-Based Control. Oxford University Press,

1994.

Clarke, D. W. and Mohtadi, C., Properties of generalized predictive control.

Automatica 25, 6(1989): 859-875.

Clarke, D. W., Mohtadi, C. and Tuffs, P. S., Generalised Predictive Control - Part I.

The basic algorithm. Automatica 23(1987): 137-148.

Clarke, D. W. and Scattolini, R., Constrained receding horizon predictive control. IEE

Proceedings D. 138(1992): 347-354.

Cutler, C. R, Morshedi, A. and Haydel, J., An industrial perspective on advanced

control. AIChE Annual Meeting, Washington, D.C., USA(1983).

Cutler, C. R. and Ramaker, B. L., Dynamic matrix control-a computer control

algorithm. AIChE National Meeting, Houston, TX(April 1979).

Cutler, C. R and Ramaker, B. L., Dynamic matrix control - a computer control

algorithm. Proceedings of the Joint Automatic Control Conference. San

Francisco, USA(1980).

Daosud, W., Thitiyasook, P., Arpornwichanop, A., Kittisupakorn, P. and Hussain M.

A., Neural network inverse model-based controller for the control of a steel

pickling process. Computers & Chemical Engineering 29, 10(2005): 2049-

2264.

De Keyser RM.C. and Van Cuawenberghe, A.R., Extended prediction self-adaptive

control. Proceedings of IFAC Symposium on Identification and system

Parameter Estimation. York, VK(1985): 1317-1322.

 127

De Keyser RM. C., Van de Welde Ph. G. A. and Dumortier F. G. A., A comparative

study of self-adaptive long range predictive control methods. Automatica.

24(1988): 149-163.

Demircioglu, H. and Gawthrop, P. J., Continuous time generalised predictive control.

Automatica. 27(1991): 55-74.

Demircioglu, H. and Gawthrop, P. J., Multivariable continuous time generalised

predictive control. Automatica. 28(1992): 697-713.

Dennis, J. E. and Schnabel, R. B., Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Prentice-Hall, 1983.

Doherty, S. K., Gomm, J. B., and Williams, D., Experiment design considerations for

non-linear system identification using neural networks. Computers and

Chemical Engineering. 21, 3(1997): 327–346.

Dutta, P. and Rhinehart, R. R., Application of neural network control to distillation

and an experimental comparison with other advanced controllers. ISA

Transactions. 38(1999): 251-278.

Eaton, J. W. and Rawlings, J. B., Model predictive control of chemical processes.

Chemical Engineering Science 47(1992): 705-720.

Economou, C. G., Morari, M. and Palsson, B. O., Internal model control 5. Extension

to nonlinear systems. Ind. Eng. Chem. Process Des. Dev 25(1986): 403-411.

Elman, J., Finding structure in time. Cognitive Science. 14(1990): 179-211.

Fletcher, R. and Reeves, C. M., Function minimization by conjugate gradients.

Comput. J. 7(1964): 149-154.

Garcia, C. E., Prett, D. M. and Morari, M., Model predictive control: theory and

practice-a survey. Automatica. 25(1989): 335-348.

Gawthrop, P. J., Demircioglu, H. and Siller-Alcala I. I., Multivariable continuous-

time generalised predictive control: A state-space approach to linear and

nonlinear systems. IEE Proceedings D. 145(1998): 241-250.

Gomm, J. B., Evans, J. T. and Williams, D., Development and performance of a

neural network predictive controller. Control Engineering Practice. 5, 1(1997):

49–60.

Grossberg, S., Nonlinear neural networks: Principles, mechanisms and architectures.

Neural Networks 1, 1(1988): 17-62.

 128

Gupta, A. and Rhinehart, R. R., Experimental comparison of advanced control

techniques on a lab-scale distillation column. Proc. Amer. Cont. Conf., Seattle,

WA, paper FA 10-4(June 1994): 21-23.

Hardcastle, V. G., What we don’t know about brains, Stud. Hist. Phil. & Biomed. Sci.

1, 30(1999): 69-89.

Haykin, S., Neural Networks : A Comprehensive Foundation. Second edition.

Prentice Hall International, Inc., 1999.

Hebb, D. O., The Organization of Behaviour. Wiley, 1949.

Henson, M. A., Nonlinear model predictive control: Current status and future

directions. Computers & Chemical Engineering. 23, 2(1998): 187–202.

Hertz, J., Krogh, A. and Palmer, R. G., Introduction to the Theory of the Neural

Computation. Addison-Wesley, 1991.

Hestenes, M. R. and Stiefel, E., Methods of conjugate gradients for solving linear

systems. J. of Research of the National Bureau of Standards. 49, 6(1952): 409-

436.

Hinton, G. E., Sejnowski, T. J. and Ackley, D., Boltzmann machines: Constraint

satisfaction networks that learn. Technical Report CMU CS 84 119, Carnegie

Mellon University, Pittsburgh, USA., 1984.

Holland, J. M., Adaption in natural and artificial systems. University of Michigan

Press, 1975.

Hopfield, J. J., Neural networks and physical systems with emergent collective

computational abilities. Proc. Of the National Academy of Scientists

79(1982): 2554-2558.

Hunt, K. J., Sbarbaro, D., Neural networks for nonlinear internal model control. IEE

Proceedings-D. 138, 5(1991): 431-438.

Hussain, M. A., Transfer report, Neural networks for process control. Imperial

College of Science and Technology, London, 1994.

Hussain, M. A., in H. E. Rauch (ed.), Neural network inverse model control strategy

discrete the analysis for relative order two system. Artificial intelligence in

real-time control., 1997.

Hussain, M. A., Review of the applications of neural networks in chemical process

control-simulation and online implementation. Artificial Intelligence in

Engineering 13(1999): 55-68.

 129

Hussain, M. A., Neural Network Techniques and Application in Chemical Process

Control System. CRC Press, 2003.

Hussain, M. A. and Kershenbaum, L. S., Implementation of an inverse-model-based

control strategy using neural networks on a partially simulated exothermic

reactor. Trans IChemE. 78, part A(March 2000): 299-311.

Hussain, M. A., Ng, C. W, Aziz, N. and Mujtaba, I. M., Neural network techniques

and applications in chemical process control systems. Intelligent systems

Techniques and Applications. 5, N. J: CRC press, 2003.

Irwin, G. W., Lightbody, G. and McLoone, S. F., Offline training of feedforward

neural networks. Proc. Irish DSP and Control Conf., IDSPCC’94, Dublin,

1994.

Jansh, C. and Paus, M., Aircraft trajectory optimization with direct collocation using

movable gidpoints. Proceedings of the 1990 American Control

Conference(May 1990): 262-267.

Johansson, E. M., Dowla, F. U. and Goodman, D. M., Backpropagation learning for

multilayer feedforward neural networks using the conjugate gradient method.

Int. J. of Neural Systems. 2(1992): 291-301.

Johnson, I. L., Optimization of the solid-rocket assisted space shuttle ascent

trajectory. J. Spacecraft. 12(1975): 765-769.

Ju, J., Chiu, M. S. and Tien, C., Multiple-objective based model predictive control of

pulse jet fabric filters. Trans IChemE. 78 Part A(2000): 581-589.

Kaeahan, O., Ozgen, C., Hahci, U. and Leblebicioglu, K., Nonlinear model predictive

controller using neural network, IEEE.(1997): 690-693.

Kilpatrick, S., Gelatt, C. D. and Vecchi, M. P., Optimization by simulated annealing.

Science. 220(1983): 671-680.

Kittisupakorn, P. and Kaewpradit, P., Integrated data reconciliation with generic

model control for the steel pickling process. Korean J. Chem. Eng. 20(2003):

985.

Kleinman, D. L., An easy way to stabilize a linear constant system. IEEE Trans.

Autom. Control. 15(1970): 692.

Kohonen, T., An introduction to neural computing. Neural Networks. 1, 1(1988): 3-

16.

 130

Kouvaritakis, B., Rossiter J. A. and Chang A. O. T., Stable generalised predictive

control: An algorithm with guaranteed stability. IEE Proceedings D.

139(1992): 349-362.

Kramer, K. and Ubehauen, H., Predictive adaptive control. Comparison of main

algorithms. Proceedings of European Control Conference. Grenoble,

France(1991): 327-332.

Kwon, W. H., Bruckstein, A. M. and Kailath, T., Stabilizing state-feedback design via

the moving horizon method. Int. J. Control 37(1983): 631-643.

Kwon, W. H. and Pearson, A. E., A modified quadratic cost problem and feedback

stabilization of a linear system. IEEE Trans. Autom. Control 22(1977): 838-

842.

Le Chun, Y., Simard, P. Y. and Pearlmutter, B., Automatic learning rate

maximization by online estimation of the Hessian’s eigenvectors. In: Hanson,

S. J., Cowan, J. D. and Giles, C. L. (eds), Advances in neural information

processing systems. 5(1993): 156-163.

 Leger, R. P., Garland, W. J. and Poehlmann, W. F. S., Fault detection and diagnosis

using statistical control charts and artificial neural networks. Artificial

intelligence in engineering. 12(1997): 35-47.

Lennox, B., Montague, G. A., Frith, A. M. and Beaumont, A. J., Non-linear model-

based predictive control of gasoline engine air– fuel ratio. Transactions of the

Institute of Measurement and Control. 20, 2(1998): 103–112.

Leonard, J. A. and Kramer, M. A., Improvements of the backpropagation algorithm

for training neural networks. Computers Chem. Engng. 14(1990): 337- 341.

Liew, S. H., Ho, P.Y., Hussain, M. A., and Kittisupakorn, P., Neural networks in

adaptive control techniques, Regional Symposium of Chemical Engineering

1999, Songkhla, Thailand, 2(1999): B23-1-B23-6.

Lightbody, G., and Irwin, G. W., Non-linear control structures based on embedded

neural system models. IEEE Transactions on Neural Networks. 8, 3(1997):

553–567.

Lightbody, G., O’Reilly, P., Irwin, G. W., Kelly, K. and McCormick, J., Neural

modelling of chemical plant using MLP and b-spline networks. Control

Engineering Practice. 5, 11(1997): 1501–1515.

 131

Lin E. K. and Stephen, S. M., Wastewater neutralization control using a neural

network based model predictive controller, Proceedings of the American

Control Conference, Philadelphia, Pennsylvania(June 1998): 3896-3898.

Lu, S. and Hogg, B. W., Dynamic nonlinear modeling of power plant by physical

principles and neural networks. Electrical Power and Energy Systems.

22(2000): 67-78.

Luenberger, D. G., Linear and Nonlinear Programming. Addison-Wesley, 1984.

Maciejowski, J., Predictive Control With Constraints. Addison Wesley Longman,

2000.

Marquardt, An algorithm for least squares estimation of nonlinear parameters. J. Soc.

Ind. Appl. Maths.(1963): 434-441.

Mayne, D. Q. and Michalska, H., Receding horizon control of nonlinear systems.

IEEE Trans autom. Control 35(1990): 814-824.

McCulloch, W. S. and Pitts, W., A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics. 5(1943): 115-133.

Mehra, R. K., Rouhani, R., Eterno, J., Richalet, J. and Rault, A., Model algorithmic

control: review and recent development, Engineering Foundation Conference

on Chemical Process Control II.(1982): 287-310.

Mei-J. S, Cheng-L., H., A neural network study on the dynamic identification of a

fermentation system. Bioprocess Engineering. 17(1997): 203-213.

Minsky, M. and Papert, S., Perceptrons: Expanded Edition. MIT Press, 1969.

Mosca, E. and Bang, J., Stable redesign of predictive control. Automatica. 28(1992):

1229-1233.

Nahas, E. P., Henson, M. A. and Seborg, D. E., Nonlinear internal model control

strategy for neural network models. Computers Chem. Engng. 16, 12(1992):

1039-1057.

Narendra, K. S. and Parthasarthy, K., Identification and control of dynamical systems

using neural networks. IEEE Trans. Neural Networks. 1(1990): 1-27.

Nikravesh, M., Farell, A. E. and Stanford, T.G., Control of nonisothermal CSTR with

time varying parameters via dynamic neural network control (DNNC).

Chemical Engineering Journal. 76(2000): 1-16.

Norquay, S. J., Palazoglu, A. and Romagnoli, J. A., Application of Wiener model

predictive control (WMPC) to an industrial C2-splitter. Journal of Process

Control 9(1999): 461-473.

 132

Nougues, J. M., Pan, Y. G., Velo, E. and Puigjaner, L., Identification of a pilot scale

fluidized-bed coal gasification unit by using neural networks. Applied

Thermal Engineering. 20(2000): 1561-1575.

Ordys A. W. and Clarke D. W., A state-space description for GPC controllers. Int. J.

Sys. Sci. 29(1993): 1727-1744.

Petrova, M., Koprinkova, P., Patarinska, T. and Bliznakova, M., Neural network

modeling of fermentation processes, specific growth rate model. Bioprocess

Engineering 18(1998): 281-287.

Pham, D. T., An introduction to artificial neural networks, Neural Networks for

Chemical Engineerings, A.B. Bulsari (Editor), Computer-Aided Chemical

Engineering 6, Chapter 1(1995): 1-19.

Pham, D. T. and Oh, S. J., Identification of plant inverse dynamics using neural

networks. Artificial Intelligence in Engineering. 13(1999): 309-320.

Pivonka, P. and Zizka, J., Neural controllers in real-process control, Applications of

Artificial Intelligence. Advanced Manufacturing Forum. 1, Edited by Nuno J.

Mamede and Carlos Pinto-Ferreira, Scitec Publications Ltd, 1996: 255-264.

Prett, D. M. and Garcia, C. E., Fundamental Process Control. Butterworths, Boston,

USA., 1988.

Prett, D. M. and Gillette, R. D., Optimization and constrained multivariable control of

a catalytic cracking unit, AIChE National Meeting, Houston, TX(April 1979).

Propoi, A. I., Use of linear programming methods for synthesizing sampled-data

automatic systems. Autom. Remote Control 24(1963): 837-844.

Psiaki, M. L. and Park, K., Trajectory optimization for real-time guidance: Part 1,

time-varying LQR on a parallel processor, Proceedings of the 1990 American

Control Conference.(May 1990): 248-253.

Psichogios, D. C. and Ungar, L. H., Direct and indirect model based control using

artificial neural networks. Ind. Eng. Chem. Res. 30(1991): 2564-2573.

Qin J. and Badgwell T. A., An overview of industrial model predictive control

technology. Proceedings of Chemical Process Control V. Tahoe City,

Califomia, AICHE Symposium Series 316, 93(1997): 232-256.

Radhakrishnan, V. R. and Mohamed, A. R., Neural networks for the identification and

control of blast furnace hot metal-quality. Journal of Process Control.

10(2000): 509-524.

 133

Rawlings, J. B., Tutorial Overview of Model Predictive Control, IEEE Control

Systems Magazine.(June 2000): 38-52.

Richalet, J., Industrial applications of model based predictive control. Automatica.

29(1993): 1251-1274.

Richalet, J., Rault, A., Testud J. L. and Papon J., Algorithmic control of industrial

processes. Proceedings of 4th IFAC Symposium on Identification and System

Parameter Estimation, Tbilisi, URSS, 1976.

Richalet, J., Rault, A., Testud J. L. and Papon J., Model predictive heuristic control:

Application to industrial processes. Automatica. 14(1976): 413-428.

Roberts, P. D., A brief overview of model predictive control. (Special Feature: Model

Predictive Control: Editorial). Computing & Control Engineering Journal.

10(1999): 186-188.

Robitaille, B., Marcos, B., Veillette, M. and Payre, G., Modified quasi- Newton

methods for training neural networks. Computers Chem. Engng. 20, 9(1996):

1133-1140.

Rohani, S., Haeri, M., and Wood, H. C., Modelling and control of a continuous

crystallization process—Part 2: Model predictive control. Computers &

Chemical Engineering. 23, 3(1999): 279–286.

Rosenblatt, F., Principles of neurodynamics: Perceptrons and the theory of brain

mechanisms. Spartan Books, 1962.

Rossiter, J. A., Gossner, J. R. and Kouvaritakis, B., Constrained cautious stable

predictive control. IEE Proceedings D. 144(1997): 313-323.

Rossiter, J. A. and Kouvaritakis B., Constrained stable generalised predictive control.

IEE Proceedings D. 140(1993): 243-254.

Rossiter, J. A., Kouvaritakis, B. and Gossner, J. R., Guaranteeing feasibility in

constrained stable generalized predictive control. IEE Proceedings D.

143(1996): 463-469.

Rumelhart, D. E., Hinton, G. E. and Williams R. J., Learning internal representations

by error propagation. In: Rumelhart, D.E. and McClelland (eds.), Parallel

distributed processing., MIT Press, 1986.

Rumelhart, D. E. and McClelland, J. L. (Eds.), Parallel Distributed Processing:

Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT

Press, 1986.

 134

Seki, H., Ogawa, M., Ooyama, S., Akamatsu, K., Ohshima, M. and Yang, W.,

Industrial application of a nonlinear model predictive control to

polymerization reactors. Control Engineering Practice. 9(2002): 819-828.

Soeterboek, R., Predictive Control. A Unifed Approach. Cambridge, UK: Prentice

Hall Intemational, 1992.

Thomas, Y. A., Linear quadratic optimal estimation and control with receding

horizon. Electron. Lett. 11(1975): 19-21.

Wei, J., Xu, Y. and Zhang, J., Neural networks based Model predictive control of an

industrial polypropylene process, Proceedings of the 2002 IEEE International

Conference on Control Applications, Glasgow, Scotland, U.K.(September

2002): 397-402.

Widrow, B., 30 years of adaptive neural networks: perceptron, madaline and

backpropagation. proc. IEEE.(August 1990): 27.

Widrow, B., Rumelhart, D. E. and Lehr, M. A., Neural Networks: Applications in

Industry, Business and Science. Communications of the ACM. 37, 3(1994):

93-105.

Ydstie, B. E., Forecasting and Control using Adaptive Connectionistic Networks.

Computers Chem. Engng. 4/5(1990): 583-599.

Yu, D. L. and Gomm, J. B., Implementation of neural network predictive control to a

multivariable chemical reactor. Control Engineering Practice. 11(2002): 1315-

1323.

Zamarreno, J. M. and Vega, P., Identification and predictive control of a melter unit

used in the sugar industries. Artificial Intelligence in Engineering II.(1997):

365-373.

APPENDICES

APPENDIX A

MATLAB R2006a – Neural Network Modeling

 This MATLAB source code will create a feedforward neural network with 4

hidden nodes in hidden layer and one output node in output layer. The number of

inputs to the network is defined from the size of the input matrix where if input is a

matrix of 5 x 2000, the number of input to the network is 5. There are 2000 pairs of

training data used in the training of this network.

 The transfer functions used in the hidden and output layers are sigmoidal and

linear respectively. The network is trained with the Lavenberg-Marquardt training

algorithm.

%===
function Modeling
clear
load TrainData.mat
load TestData.mat

%=============
% scale down data
%=============
xmaxin=[2;2;4;4;3];
xminin=[0;0;0;0;0];
dmax=0.95;
dmin=0.05;
xmaxout=[3];
xminout=[0];

TrainInDown1 = ScDown(InTrain1,xmaxin,xminin,dmax,dmin);
TrainOutDown1= ScDown(OutTrain1,xmaxout,xminout,dmax,dmin);
TrainInDown2 = ScDown(InTrain2,xmaxin,xminin,dmax,dmin);
TrainOutDown2= ScDown(OutTrain2,xmaxout,xminout,dmax,dmin);
TestInDown = ScDown(InTest,xmaxin,xminin,dmax,dmin);
TestOutDown = ScDown(OutTest,xmaxout,xminout,dmax,dmin);

%=================
%network initialization
%=================
 S1=4;
 S2=1;

 137

 NetB1=newff(minmax(TrainIn1),[S1 S2],{'tansig' 'purelin'},'trainlm');

 NetB1.trainParam.goal=0;
 NetB1.trainParam.epochs=1000;
 NetB1.trainParam.min_grad=1e-10;
 NetB1.trainparam.show=100;

 dmse=1e-4;
 round=1;
 msenn=1;
 ssenn=1;
 mseR(:,1)=msenn;
 sseR(:,1)=ssenn;

%================
% Network Training
%================
 while msenn>=dmse
 set=(round/2-floor(round/2));
 switch set
 case 0
 input=TrainInDown1;
 target=TrainOutDown1;

 case 0.5
 input=TrainInDown2;
 target=TrainOutDown2;

 end

 [NetB1,tr,Y,E,Pf,Af]=train(NetB1,input,target);

 NNOutputtest=sim(NetB1,TestInDown);
 error=NNOutputtest-TestOutDown;
 msenn=mse(error);
 ssenn=sse(error);

 mseR(:,round)=msenn;
 sseR(:,round)=ssenn;

 [NNTestOut] = ScUp(NNOutputtest,xmaxout,xminout,dmax,dmin);

 if msenn>=3
 NetB1=init(NetB1);
 end

 if round>=15
 msenn=0;
 ssenn=0;
 end

 138

 time=0:length(NNTestOut(1,:))-1;
 round=round+1;
 end

 save 4ModelB1.mat NetB1 S1 S2 xmaxin xminin dmax dmin xmaxout xminout

 figure
 plot(time,OutTest,'r',time,NNTestOut,'b:')
 title('Validation of Neural Network Model')
 legend('C1 Target','C1 Output')
 ylabel('Concentration (mol/l)')
 xlabel('Pattern')

APPENDIX B

MATLAB R2006a – The Control of NNMPC

This MATLAB source code simulates a model predictive control based on

neural network (NNMPC) to control a steel pickling process. The developed neural

network models are used in the MPC algorithm for prediction of the future process

response.

%===
function closeloop
clear
global i p c1sp c2sp c3sp H1 H2 H3 c20 C1 C2 C3 C11 C22 C33 dt PP F2k F3k F5k
i=1;
p=4;
PP=8;

TTime =45;
dt = 0.1;
Numdata = TTime/dt;
samptime = 0.5;
j=0;

% Constant value
A1=0.0729; A2=0.0729; A3=0.0729;
A4=0.0729; A5=0.0729; A6=0.0729;
k1i=0.003267; k2i=0.003267; k3i=0.003267;
c20i=6.034;
cw=1*10^-7;
c1sp=1.29;
c2sp=2.77;
c3sp=4.3;
c1spi(1)=1.29;
c2spi(1)=2.77;
c3spi(1)=4.3;
pH4sp=3;
pH5sp=5;
pH6sp=7;

% Drag in-out
drag=(0.0005/1000);
q=drag;
qest(1)=drag;

 140

% Initial values of manipulated variables
F2(1)=0.0465/1000;
F3(1)=0.0916/1000;
F5(1)=0.1235/1000;

F6(1)=0.001/1000 ;
F7(1)=0.001/1000 ;
F8(1)=0.001/1000;

% Initial values of disturbance
F4(1)=0/1000 ;

% Initial values of other variables
F1(1)=F2(1)-q ;
F9(1)=F6(1)-F4(1);
F10(1)=F5(1)+F4(1)-F3(1);
F11(1)=F3(1)-F2(1);

h1(1)=0.205; c1(1)=1.2;
h2(1)=0.205; c2(1)=2.67;
h3(1)=0.205; c3(1)=4.2;
h4(1)=0.205; c4(1)=1*10^-7;
h5(1)=0.205; c5(1)=1*10^-7;
h6(1)=0.205; c6(1)=1*10^-7;

rate1(1)=0; rate2(1)=0; rate3(1)=0;

sumF5=F5(1)*dt; sumF1=F1(1)*dt;

Hwait=waitbar(0,'Simulation in Progress ...');

for k=1:1:Numdata
 waitbar(k/Numdata);

 if k>=150
 c1sp=1.35;
 c2sp=2.8;
 c3sp=4.35;
 end
 if k>=300
 c1sp=1.4;
 c2sp=2.87;
 c3sp=4.408;
 end

 c20=c20
 k1=k1i;
 k2=k2i;
 k3=k3i;

 141

 % Process
 h1(k+1)=h1(k)+(dt/A1)*(F2(k)-F1(k)-q);
 h2(k+1)=h2(k)+(dt/A2)*(F3(k)-F2(k)-F11(k));
 h3(k+1)=h3(k)+(dt/A3)*(F4(k)+F5(k)-F3(k)-F10(k));

 V1=A1*h1(k); V2=A2*h2(k); V3=A3*h3(k);

 if k>1
 rate1(k)=k1*c1(k); rate2(k)=k2*c2(k); rate3(k)=k3*c3(k);
 end

 c1(k+1)=c1(k)+(dt/V1)*((F2(k)*c2(k))-((F1(k)+q)*c1(k)))-(dt)*rate1(k);
 if c1(k+1)<0 c1(k+1)=1*10^-7; end;
 c2(k+1)=c2(k)+(dt/V2)*((q*c1(k))+(F3(k)*c3(k))-((F2(k)+q+F11(k))*c2(k)))-
 (dt)*rate2(k);
 if c2(k+1)<0 c2(k+1)=1*10^-7; end;
 c3(k+1)=c3(k)+(dt/V3)*((q*c2(k))+(F4(k)*c4(k))-((F3(k)+q+F10(k))*c3(k)))-
 (dt)*rate3(k)+(dt/V3)*(F5(k)*c20);
 if c3(k+1)<0 c3(k+1)=1*10^-7; end;

 H1=h1(k+1);
 H2=h2(k+1);
 H3=h3(k+1);

 C1=c1(k+1);
 C2=c2(k+1);
 C3=c3(k+1);

 C11=c1(k);
 C22=c2(k);
 C33=c3(k);

 F2k=F2(k);
 F3k=F3(k);
 F5k=F5(k);

 if k==j|k==1
 Fopt=MPCNN(p,F2(k),F3(k),F5(k));
 F2(k+1)=Fopt(1);
 F3(k+1)=Fopt(p1+1);
 F5(k+1)=Fopt(p1+p2+1);
 j=j+5;
 else
 F2(k+1)=F2(k);
 F3(k+1)=F3(k);
 F5(k+1)=F5(k);
 end

 142

 % Disturbance
 F1(k+1)=F2(k+1)-q;
 F4(k+1)=F4(k);
 F10(k+1)=F5(k+1)+F4(k+1)-F3(k+1);
 F11(k+1)=F3(k+1)-F2(k+1);
 c4(k+1)=c4(k);

 c1spi(k+1) = c1sp;
 c2spi(k+1) = c2sp;
 c3spi(k+1) = c3sp;

 i=1;
end
close(Hwait)

for k = 1:1:Numdata+1
 ti(k) = (k-1)*dt;
end;

IAE1 = 0;
err1 = c1spi - c1;
err21 = abs(err1)*dt;
IAEc1 = sum(err21);

IAE2= 0;
err2 = c2spi - c2;
err22 = abs(err2)*dt;
IAEc2 = sum(err22);

IAE3 = 0;
err3 = c3spi - c3;
err23 = abs(err3)*dt;
IAEc3 = sum(err23);

figure
subplot(211),plot(ti,c1,':r',ti,c1spi,'-r'),...
ylabel('Concentration (mol/l)'),
legend('C1','set point')
Title('5% HCl Bath')
subplot(212),plot(ti,F2*1000,'-r'),...
ylabel('F2 flow rate (l/min)'),
legend('F2')
Xlabel('Time (min)'),

figure
subplot(211),plot(ti,c2,':r',ti,c2spi,'-r'),...
ylabel('Concentration (mol/l)'),
legend('C2','set point')
Title('10% HCl Bath')

 143

subplot(212),plot(ti,F3*1000,'-r'),...
ylabel('F3 flow rate (l/min)'),
legend('F3')
Xlabel('Time (min)'),

figure
subplot(211),plot(ti,c3,':r',ti,c3spi,'-r'),...
ylabel('Concentration (mol/l)'),
legend('C3','set point')
Title('15% HCl Bath')
subplot(212),plot(ti,F5*1000,'-r'),...
ylabel('F5 flow rate (l/min)'),
legend('F5')
Xlabel('Time (min)'),

figure
subplot(311),plot(ti,h1,':r'),...
ylabel('Hight (m)'),
Title('Hight')
subplot(312),plot(ti,h2,'-r'),...
ylabel('Hight (m)'),
subplot(313),plot(ti,h3,'-r'),...
ylabel('Hight (m)'),
Xlabel('Time (min)'),

%===

function xopt=MPCNN(p,F2mv,F3mv,F5mv)

int1=ones(p,1)*(0.1/1000);
int2=ones(p,1)*(0.1/1000);
int3=ones(p,1)*(0.1/1000);
lb1=ones(1,p)*0;
ub1=ones(1,p)*2/1000;
lb2=ones(1,p)*0;
ub2=ones(1,p)*10/1000;
lb3=ones(1,p)*0;
ub3=ones(1,p)*2/1000;

OPTIONS=OPTIMSET('TolFun',1e-6,'TolX',1e-
6,'MaxFunEvals',5000,'MaxIter',5000,);
[xopt,Fval,conv]=fmincon(@obj,[int1;int2;int3],[],[],[],[],[lb1 lb2 lb3],[ub1 ub2

 ub3],[],OPTIONS);

%===

function f = obj(Fin)
load 4ModelB1.mat
load 4ModelB2.mat
load 4ModelB3.mat

 144

global i p c1sp c2sp c3sp H1 H2 H3 c20 C1 C2 C3 C11 C22 C33 dt PP F2k F3k F5k
clear SimCon

cc1=C1;
cc2=C2;
cc3=C3;
cc11=C11;
cc22=C22;
cc33=C33;
F22k=F2k;
F33k=F3k;
F55k=F5k;
cc11down=ScDown(cc11,Pi(12,2),Pi(12,1),0.95,0.05);
cc22down=ScDown(cc22,Pi(13,2),Pi(13,1),0.95,0.05);
cc33down=ScDown(cc33,Pi(14,2),Pi(14,1),0.95,0.05);
F22kdown=ScDown(F22k,Pi(2,2),Pi(2,1),0.95,0.05);
F33kdown=ScDown(F33k,Pi(3,2),Pi(3,1),0.95,0.05);
F55kdown=ScDown(F55k,Pi(5,2),Pi(5,1),0.95,0.05);

for m=1:1:p
 f2(m)=Fin(m);
end

for m=1:1:p
 f3(m)=Fin(p+m);
end

for m=1:1:p
 f5(m)=Fin(p+p+m);
end

for n=1:1:PP

 if n>p
 f2(n)=f2(n-1);
 end
 if n>p
 f3(n)=f3(n-1);
 end

 if n>p
 f5(n)=f5(n-1);
 end
end

f=0;
fin1sum=0;
fin2sum=0;
fin3sum=0;
c1spdown=ScDown(c1sp,Pi(12,2),Pi(12,1),0.95,0.05);

 145

c2spdown=ScDown(c2sp,Pi(13,2),Pi(13,1),0.95,0.05);
c3spdown=ScDown(c3sp,Pi(14,2),Pi(14,1),0.95,0.05);

for j=1:1:PP

 SimCon(1,1)=ScDown(f2(1),Pi(2,2),Pi(2,1),0.95,0.05);
 SimCon(2,1)=ScDown(f3(1),Pi(3,2),Pi(3,1),0.95,0.05);
 SimCon(3,1)=ScDown(f5(1),Pi(5,2),Pi(5,1),0.95,0.05);
 SimCon(4,1)=ScDown(cc1,Pi(12,2),Pi(12,1),0.95,0.05);
 SimCon(5,1)=ScDown(cc2,Pi(13,2),Pi(13,1),0.95,0.05);
 SimCon(6,1)=ScDown(cc3,Pi(14,2),Pi(14,1),0.95,0.05);
 SimCon(7,1)=ScDown(10^-7,Ri(15,2),Ri(15,1),0.95,0.05);

 %B1
 SimConB1(1,j)=SimCon(1,j);
 if j<=1
 SimConB1(2,j)=F22kdown;
 else
 SimConB1(2,j)=SimCon(1,j-1);
 end
 SimConB1(3,j)=SimCon(5,j);
 if j<=1
 SimConB1(4,j)=cc22down;
 else
 SimConB1(4,j)=SimCon(5,j-1);
 end
 SimConB1(5,j)=SimCon(4,j);

 %B2
 SimConB2(1,j)=SimCon(1,j);
 if j<=1
 SimConB2(2,j)=F22kdown;
 else
 SimConB2(2,j)=SimCon(1,j-1);
 end
 SimConB2(3,j)=SimCon(2,j);
 if j<=1
 SimConB2(4,j)=F33kdown;
 else
 SimConB2(4,j)=SimCon(2,j-1);
 end
 SimConB2(5,j)=SimCon(4,j);
 if j<=1
 SimConB2(6,j)=cc11down;
 else
 SimConB2(6,j)=SimCon(4,j-1);
 end
 SimConB2(7,j)=SimCon(6,j);
 if j<=1
 SimConB2(8,j)=cc33down;

 146

 else
 SimConB2(8,j)=SimCon(6,j-1);
 end
 SimConB2(9,j)=SimCon(5,j);

 %B3
 SimConB3(1,j)=SimCon(2,j);
 if j<=1
 SimConB3(2,j)=F33kdown;
 else
 SimConB3(2,j)=SimCon(2,j-1);
 end
 SimConB3(3,j)=SimCon(3,j);
 if j<=1
 SimConB3(4,j)=F55kdown;
 else
 SimConB3(4,j)=SimCon(3,j-1);
 end
 SimConB3(5,j)=SimCon(5,j);
 if j<=1
 SimConB3(6,j)=cc22down;
 else
 SimConB3(6,j)=SimCon(5,j-1);
 end
 SimConB3(7,j)=SimCon(7,j);
 if j<=1
 SimConB3(8,j)=SimCon(7,1);
 else
 SimConB3(8,j)=SimCon(7,j-1);
 end
 SimConB3(9,j)=SimCon(6,j);

 if j+1>p
 SimCon(1,j+1)=ScDown(f2(p),Pi(2,2),Pi(2,1),0.95,0.05);
 else
 SimCon(1,j+1)=ScDown(f2(j+1),Pi(2,2),Pi(2,1),0.95,0.05);
 end

 if j+1>p
 SimCon(2,j+1)=ScDown(f3(p),Pi(3,2),Pi(3,1),0.95,0.05);
 else
 SimCon(2,j+1)=ScDown(f3(j+1),Pi(3,2),Pi(3,1),0.95,0.05);
 end

 if j+1>p
 SimCon(3,j+1)=ScDown(f5(p),Pi(5,2),Pi(5,1),0.95,0.05);
 else
 SimCon(3,j+1)=ScDown(f5(j+1),Pi(5,2),Pi(5,1),0.95,0.05);
 end

 147

 SimCon(4,j+1)=sim(netB1,SimConB1(:,j));
 SimCon(5,j+1)=sim(netB2,SimConB2(:,j));
 SimCon(6,j+1)=sim(netB3,SimConB3(:,j));
 SimCon(7,j+1)=SimCon(7,j);

 if j==1
 Delf2=SimCon(1,j)-SimCon(1,j);
 else
 Delf2=SimCon(1,j)-SimCon(1,j-1);
 end

 if j==1
 Delf3=SimCon(2,j)-SimCon(2,j);
 else
 Delf3=SimCon(2,j)-SimCon(2,j-1);
 end

 if j==1
 Delf5=SimCon(3,j)-SimCon(3,j);
 else
 Delf5=SimCon(3,j)-SimCon(3,j-1);
 end

 fin1(j)=(c1spdown-SimCon(4,j))^2+Delf2^2;
 fin2(j)=(c2spdown-SimCon(5,j))^2+Delf3^2;
 fin3(j)=(c3spdown-SimCon(6,j))^2+Delf5^2;

end

 for j=1:1:PP
 fin1sum=fin1sum+fin1(j);
 end

 for j=1:1:PP
 fin2sum=fin2sum+fin2(j);
 end

 for j=1:1:PP
 fin3sum=fin3sum+fin3(j);
 end

f=fin1sum+fin2sum+fin3sum;

%===

 148

VITA

 Miss Wachira Daosud was born in Prachinburi, on December 21, 1976. After

completing high school from Assumption College Sriracha in 1994, she graduated her

Bachelor Degree of Engineering in Chemical Engineering from Burapha University in

1998. She began her graduate studies when she entered the Graduate School of

Chulalongkorn University and completed her Doctoral Degree of Engineering in

Chemical Engineering in 2006.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Research Objectives
	1.2 Contributions
	1.3 Dissertation Overview

	Chapter II Literature Reviews
	2.1 Neural Network
	2.2 Model Predictive Control

	Chapter III Theory of Neural Network and model Predictive Control
	3.1 Neural Network Introduction
	3.2 Neural Network Architectures
	3.3 Neural Network Training
	3.4 Feedforward Multilayer Perceptron
	3.5 Training Algorithm
	3.6 Model Predictive Control

	Chapter IV Neural Network Modeling and Inverse Neural network Modeling for a Steel Pickling Process
	4.1 A Steel Pickling Process
	4.2 Neural Network Modeling
	4.3 Procedure for Obtaining Neural Network Forward Models
	4.4 Identification of Neural Network Inverse Models
	4.5 Procedure for Obtaining Neural Network Inverse Models
	4.6 The Minimum MSE Method
	4.7 Simulation Results

	Chapter V Model Predictive Control Based on Neural network for a Steel Pickling Process
	5.1 Neural Network Model Based Predictive Control
	5.2 Simulation Results

	Chapter VI Neural Network Inverse Model Based Controller for the Control of a Steel Pickling Process
	6.1 Neural network direct inverse control strategy (NNDIC)
	6.2 Simulation Results and Discussion of NNDIC
	6.3 Dual Mode Control based on Neural Network Inverse Model Strategy
	6.4 Results and Discussion of Dual Mode Control

	Chepter VII Conclusions
	7.1 A Steel Pickling Process Modeling
	7.2 Neural Network Direct Inverse Control (NNDIC) and Dual Mode Control(DM)
	7.3 Neural Network based Model Predictive Control (NNMPC)

	References
	Appendix
	Vita

