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CHAPTER I 

 

INTRODUCTION 

 
   Chemical manufacturing processes present many challenging control 

problems, including: nonlinear dynamic behavior; multivariable interactions between 

manipulated and controlled variables; unmeasured state variables; unmeasured and 

frequency disturbances; high-order and distributed processes; uncertain and time-

varying parameters; un-modeled dynamics; constraints on manipulated and state 

variables; and (variable) dead time on inputs and measurements. A number of control 

approaches and algorithms that are able to handle some of the above process 

characteristics have been presented in the academic literature in recent years. Bequette 

(1991) gives a review of various approaches such as internal model approaches, 

differential geometric approaches, reference system synthesis techniques, including 

internal decoupling and Generic Model Control (GMC), Model Predictive Control 

(MPC) and also various special and ad hoc approaches. Many of these approaches are 

not able to handle the various process characteristics and requirements met in 

industrial applications and some of the approaches can only be applied for special 

classes of models. 

 

    Model Predictive Control appears to be the only general approach which can 

handle most of the common process characteristics and industrial requirements in a 

satisfactory way. It also seems to be the approach which are most suitable for the 

development of general and application independent software, which is essential for 

the development of cost-effective applications. The key of the successful use of MPC 

in solving the process problem is the accurate model. However, chemical processes 

have been traditionally controlled using linear system analysis and design tools even 

though they are the inherent nonlinear process. 

 

    Recently, neural networks have been successfully applied in identification and 

controlling nonlinear processes. Neural networks offer alternative nonlinear models 

for MPC of industrial systems (Lightbody et al., 1997; Doherty et al., 1997; Henson, 

1998; Hussain, 1999). Different ways of neural models being embedded in MPC 
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systems were reviewed by two recent surveys (Yu and Gomm, 2002; Lightbody and 

Irwin, 1997). It is noted that while neural network modeling and control techniques 

are investigated for nonlinear systems, the current methods proposed and tested by 

simulations and some implementations to laboratory rigs are mainly for single-input 

single-output (SISO) systems (Gomm et al., 1997; Lennox et al., 1998). Applications 

of neural networks in chemical process modeling and MPC have been investigated for 

SISO systems (Rohani et al., 1999; Daosud et al., 2005; Psichogios et al., 1991; 

Elman et al., 1990). Very few investigations into neural control for multiple-input 

multiple-output (MIMO) chemical processes have been reported. 

 

    The work presented in this dissertation is focused on the implementation of a 

model predictive control based on neural network (NNMPC) technique to control a 

MIMO chemical process. A steel pickling process which is the highly nonlinear 

dynamic behavior, multivariable and interaction between variables is chosen to 

represent such a system. Since the success of MPC is largely depend on the 

availability of models of the process to be controlled, this research concentrates on the 

development of neural network model for describing the dynamics of the steel 

pickling process. The developed neural network model is then used in MPC 

algorithm. 

 

 

1.1   Research Objectives 

 

The overall objective of this research concentrates on the application of model 

predictive control based on neural network in an industrial chemical process. The 

steel pickling process is chosen for an industrial case study. The neural network 

models of this process have been developed from simulation data of the process. The 

developed process models are also used for control purpose. From the view of this 

objective, this research can be divided into two sections: 

1. Developing the process models for describing the steel pickling process 

behavior by using neural network strategy. 
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2. An implementation of a model predictive control based on neural network 

technique in industrial chemical process, the steel pickling process. 

• Investigating the performance of model predictive control based on 

neural network for the control of the steel pickling process. 

• Comparing the performance of model predictive control based on 

neural network with the other control strategy such as inverse neural 

network and the convention control technique. 

 

 

1.2   Contributions 

 

The main contributions of this dissertation are: 

1. The models for describing the behavior of the steel pickling process (MIMO 

process) have been developed based on neural network technique. 

2. The model predictive control based on neural network technique has been 

developed for the tighter control of MIMO process and highly nonlinear, steel 

pickling process.  

3. The inverse neural network controllers have been developed for the control of the 

steel pickling process. 

 

 

1.3   Dissertation Overview 

 

This dissertation is organized as follows. Chapter 2 reviews the literature for 

work related to history, concepts and background of artificial neural network and 

model predictive control and their applications as studied by previous researchers. 

 

   Chapter 3 discusses the artificial neural network and model predictive control 

strategy. Since neural network model is used in MPC algorithm for NNMPC 

technique, the structure of neural network and the formulation of MPC problem are 

provided in this chapter. 
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Chapter 4 begins with the process description of a steel pickling process 

studied in this work. The mathematical model of the steel pickling process derived 

from mass balances is developed. Forward and inverse neural networks model are 

presented in order to use as process model and controller of the steel pickling process. 

 

Chapter 5 describes the implementation of NNMPC to control the steel 

pickling process. The neural network models developed in Chapter 4 are used here to 

design the NNMPC controller. To evaluate the performance of NNMPC, results are 

compared with a traditional PI controller. Simulation studies of the NNMPC and PI 

controllers are demonstrated and discussed. 

 

Chapter 6 describes the implementation of inverse neural network (InvNN) to 

control the steel pickling process. A Dual Mode (DM) control strategy is presented in 

order to remove some offset obtaining from InvNN control. To evaluate the 

performance of DM, results are compared with the InvNN and a traditional PI 

controller. Simulation studies of the DM, InvNN and PI controllers are demonstrated 

and discussed. 

 

Chapter 7 gives a conclusion of this dissertation. 

 



CHAPTER II 

 

LITERATURE REVIEWS 

 
 

2.1   Neural Network 

 

Many of the concepts behind artificial neural networks (ANNs) were first 

discussed by biologists in the nineteenth century. For instance, William James 

suggested in 1890 that the activity at one point in the brain was due to the culminative 

activities of other points in the brain. This is a core feature of an artificial neuron 

developed 50 years later (i.e. the McCulloch-Pitts neuron). It was not until the 1940’s 

that significant theoretical advances were made (e.g. McCulloch and Pitts, 1943; 

Hebb, 1949). In the 1960s researchers were able to dispose of their cumbersome 

analogue computer hardware and pursue their work through digital computer 

simulation. This led to the perceptron (Rosenblatt, 1962), which is still widely used. 

But the 1960s also heralded a lull in ANN research, usually attributed to the work of 

Minsky and Papert (1969), which highlighted substantial limitations of the single 

layer perceptron network. In the late 1970s interest in neural computing was rekindled 

and this interest was accelerated in the 1980s due to numerous theoretical 

advancements (i.e. Hopfield, 1982; Hinton et al., 1984; Rumelhart et al., 1986; 

Kohonen, 1988; Grossberg, 1988). 

 

A good review of the history of neural computation can be found in Widrow 

(1990) or from the excellent collection of early papers, by Anderson and Rosenfeld 

(1988). Almost 50 different types of neural network architectures are developed, 

although only some of them are in common use. There are numerous introductory 

level books to neural computation. A more detailed presentation and analysis can be 

found for example in Rumelhart and McClelland (1986) or Herz et al. (1991). Since 

then neural network control has progressed rapidly and also real industrial 

applications have been reported, e.g. Widrow et al. (1994), especially in Japan, e.g. 

Asakawa and Takagi (1994). A computer survey (INSPEC) considering the 

experimental or practical applications of the neural network control in 1994 resulted 
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262 journal articles and 869 conference papers. Of course only a portion of all these 

were real on-line tests of neural network control. The fuzzy control was excluded 

from the search to reduce the number of articles, although Neuro-fuzzy systems form 

an entity and it is often hard to distinguish between all the approaches, except by the 

title. 

 

2.1.1   Applications of neural network  

 

Neural network has been used widely in system identification and control. 

They are used to model all types of processed regardless of whether the processes are 

linear or non-linear (Pham and Oh, 1999). A feedforward neural network has been 

used successfully by Petrova et al. (1998) in modeling a fermentation process where 

the network is trained to predict the specific growth rate. They successfully used the 

neural network in performing system identification to obtain the kinetic models of the 

specific growth rate and the specific consumption rate. These parameters are the most 

important process properties in fermentation process modeling.  

 

Mei and Chen (1997) have studied the use of feedforward neural network in 

fermentation process to harvest four metabolic products consisting of acetic acid, 

acetoin, ethanol, and 2, 3-butanediol where 2, 3-BDL is the target product. A neural 

network model is trained to provide step ahead prediction of the process. Performance 

of neural network prediction in the bio-reaction systems is studied by varying the size 

if its learning interval. The sizes of data sampling interval were found to contribute 

vastly on the prediction. They have concluded that the identification results from the 

neural network with higher step prediction are more reliable and produced better 

results, improving significantly the identification of the system. 

 

The use of artificial neural networks for modeling in High Performance Liquid 

Chromatography (HPLC) testing method development for amiloride and 

methylchlothiazide separation was studied by Agatonavic-Kustrin et al. (1998). The 

independent input variables were pH and methanol percentage and the outputs were 

the capacity factors. The results were compared to well-known statistical method 

consisting of multiple nonlinear regression analysis. The study had shown that the 

networks were able to predict the experimental responses more accurately than the 
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conventional regression analysis. The neural network showed to be a very powerful 

tool in HPLC testing method development that give better results to those that are 

obtained by the multiple regression technique. 

 

Studies have taken place in order to model and understand the dynamic 

properties of  power plant process behavior. Lu and Hogg (2000) utilized a 200 

MWatt oil-fired drum-type boiler-turbine-generator unit power plant and a derived 

mathematical model in order to obtain its process model. They have used the neural 

network modeling by implementing a supervised training of neural networks to 

improve training time. They have also looked into practical aspects for selecting the 

testing and validation data to ensure sufficient excitations covering its proper dynamic 

behavior. They have extracted and mapped out the power plant open-loop dynamics 

for use in their neural network training in order to obtain the model in load and no-

load operation conditions of the power plant. 

 

A blast furnace, which is a common process device in manufacturing of iron 

and steel is modeled using artificial feedforward neural network in a research carried 

out by Radhakrishnan and Mohamed (2000). Their work successfully exhibited that 

neural network is capable of identifying the optimum process operating properties. 

The neural network is also used as the estimator of such complex process to estimate 

the unknown or hard to measure parameter in the process. Real time process data 

equivalent to six months of process operational period was used as the training data in 

order to train the networks. Initially, they have to deal with 51 possible network inputs 

but they have reduced them to 35 through correlation analysis method. By varying the 

numbers of hidden layers, they have shown that the training produced better 

convergence profiles. The neural model worked together with an expert system to 

predict the blast temperature, humidity and pressure trim and used for the stove 

control system. Performance controller is evaluated from the quantity of sulfur in the 

hot metal before and after the implementation of the expert system. Purer hot metal 

were obtained from the process, which incorporate the neural network control system. 

 

Online identification of a pilot scale fluidized-bed coal gasification unit using 

neural networks was performed by Nougues et al. (2000) where neural network 

process models of the coal gasification unit were obtained. They implemented the 
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neural network model and trained them in serial and parallel to various system 

identification strategies. The neural network models are the used in a model based 

control strategy. They have shown that the neural network can be used to model a 

nonlinear system such as this process and the network can be easily incorporated with 

other system such as the expert system. They have also used neural networks to 

predict the possible defects for the system. 

 

Taking example of a heat transport system, Leger et al. (1997) have 

demonstrated the feasibility of neural networks in implementing fault diagnostic to 

the system. The neural network is trained in order to try to minimize the false signals, 

which occurs in normal process operations. The main objective is to capture the error 

at its roots. This is done with the help of signature pattern evaluation of the fault 

diagnosis. Once the neural fault diagnostic system is up and running, the operator can 

pin point directly where the error and fault originated. 

 

Neural network in control applications, there are many neural network 

implemented as process controllers in various types of strategies in control 

application. A feedforward neural network neural network is shown to have vast 

capability in the control engineering field. Despite of this, many are still in simulation 

and trial stages. Simulation studies have proven that the neural network is capable of 

being a feasible and reliable process controller. However, the only ultimate test 

platform is its online application in any process. In many industrial processes, 

conventional proportional-integral-derivative, on-off, continuous and programmable 

logic controllers (PLC) still dominate real world applications. Dealing with them 

raises the controller tuning issue. The tuning parameters normally involve using the 

closed loop tuning method, the Ziegler-Nichols or the Cohen-Coon method that are 

normally tedious and time consuming. 

 

Chan et al. (1995) conducted a study to have neural network contributing to 

the conventional proportional-integral-derivative controller tuning process. According 

to these investigations, it is not necessary to have detail knowledge about the process 

to pre-tune the controller and they proposed a method based on neural network to 

fine-tune the controller continuously. This is done by monitoring the performance of 

its closed loop criteria. Performance objective such as the normalized peak rise time, 
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overshoot, peak-to-peak height and its final error are selected as inputs to the network. 

Once the trained neural network is implemented, it adjusts the proportional and 

integral values, which are directly used in the process as the newly suggested tuning 

parameters. 

 

Nikravesh et al. (2000) studied the application of  neural network in 

controlling various chemical processes. In their work, neural networks have been 

applied to various nonlinear systems such as the continuous stirred tank (CSTR) and 

the neutralization process. Neural network is used to model the process while its 

mathematical inverse, which act as a controller is used to regulate the process. It is 

shown that the neural network controller exhibited better performance in controlling 

the non-isothermal CSTR over the conventional controllers with faster rise time and 

less offsets. 

 

Control algorithm based on neural networks has also been applied by Acosta 

et al. (1999) to a PUMA robot manipulator arm that has five degrees of freedom 

movements. This control strategy exhibited the use of a neural network in providing 

crucial parameters to the PID controllers used to control joint angles and velocities. A 

decentralized model has been assumed, where a controller is attached with each joint 

and a separate neural network is used to adjust the parameters of each controller. 

Neural network is trained to predict the best modification to the parameters of the 

conventional controllers in order to regulate the robot manipulator joint angles and its 

velocities. The results have shown better response in achieving the desired robotic 

manipulator joint angle and velocities in order to accomplish desired manipulator 

coordinates as given by the user. 

 

Neural network control can be implemented in various control strategies such 

as in the direct inverse and internal model-based control. Hussain (1999) has 

discussed possible applications of these techniques to chemical process using neural 

network approach. The internal model based control structure that consists of the 

inverse neural network model as the controller and a parallel forward is modified and 

adaptive properties are introduced into the strategy by Liew et al. (1999). They have 

utilized this idea and simulated the strategy to control biomass concentration in a 

fermentation unit. In this adaptive scheme, the sliding window learning method is 
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modified from the original idea from Breusegem et al. (1991). The control strategy 

exhibited great improvement in the control results especially in rejecting process 

disturbances. 

 

Neural network control approach was carried out online by Zammareno and 

Vega (1997) and was applied to a melter unit commonly used in sugar production 

industries. In their work, the neural network was trained to capture the process 

dynamics and implemented in the model predictive control strategy. 

 

Dutta and Rhinehart (1999) worked on a 6-stage, lab-scale, atmospheric 

distillation column separating a methanol-water mixture. Two separate neural network 

models were utilized in inverse model based scheme to predict the boil up and reflux 

for the process. Experimental results showed that the neural network control 

outperformed the available advanced control strategy for the distillation column using 

model predictive control that was proposed by Gupta and Rhinehart (1994). 

 

Online implementation of inverse model based and conventional neural 

network internal model control strategies have been reported by Hussain and 

Kershenbaum (2000) using a pilot scale reactor system. They have successfully show 

and validated the simulation results to control the system’s temperature by using 

neural network. They have tested the inverse model based control strategies including 

the internal model based control using neural network. The controller showed good 

performance when tested for setpoint tracking and load disturbance rejection. 

 

Neural network control of a plant for xylose production used in paper 

manufacturing factories was proposed and implemented by Alvarez et al. (1999). 

Xylose was obtain from hard wood hemicellulose and was processed in a reactor. 

Heat is released to the surrounding due to the process being highly exothermic. Neural 

network control was used to manage and regulate the reactor temperature. Quality of 

the xylose produced is highly dependent to the reactor process temperature. The 

online results showed an improvement in the temperature stabilization time as 

compared to that obtained using a classic PID controller. 
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2.2   Model Predictive Control 

 

Model predictive control (MPC), a control algorithm that uses an optimizer to 

solve for the control trajectory over a future time horizon based on a dynamic model 

of the process, has become a standard control technique in the process industries over 

the past two decades. MPC is commonly used for constrained multiple-input/multiple-

output (MIMO) control problems which are often encountered in the process 

industries. 

 

Model predictive control has appeared in several branches of the control 

literature during the past thirty years. The concept of using an open loop optimal 

control computation to synthesize a feedback controller is so natural that it probably 

occurred to many researchers in the optimal control field in the late 1950s and 1960s. 

In their textbook on optimal control, Lee and Markus describe the approach while 

pointing out that current (as of 1967) hardware and software make real time 

implementation of the controller difficult. In their review, Garcia et al. (1989) cite 

Propoi (1963) as the first to introduce, explicitly, the finite moving horizon. 

 

In the electrical engineering literature, model predictive control is usually 

called receding (or moving) horizon control. Although this name is clearly more 

descriptive of the general approach, we will also refer to it as model predictive control 

since this name has become entrenched in the chemical engineering literature. 

Kleinman (1970) uses the finite horizon concept to find a state feedback gain that 

stabilizes linear time invariant systems. Thomas (1975) formulates a quadratic 

objective function penalizing only the input with the constraint that the state must be 

zero at the end of the horizon. He shows this formulation results in a state feedback 

that stabilizes linear time invariant systems. Kwon and Pearson (1977) generalize 

these results by considering the linear time varying system and using the standard 

quadratic performance objective including the constraint that x(t0+T)=0. They show 

that the receding horizon controller can stabilize linear time varying systems. Kwon et 

al. (1983) also consider linear time varying systems with the quadratic objective. They 

show the solution to this problem is also stabilizing state feedback law. Mayne and 

Michalska (1990) consider the quadratic objective function with final time constraint 
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for the nonlinear system. They show that, under certain conditions, the receding 

horizon controller stabilizes the nonlinear system. 

 

The MPC framework is also used in aerospace engineering applications. Most 

publications concern aircraft trajectory optimization (Brusch, 1974; Johnson, 1975). 

Attention is presently being given to solving nonlinear, constrained optimal 

trajectories over finite horizons for real time guidance (Bless and Hodges, 1990; 

Jansch and Paus (1990); Psiaki and Park, 1990). 

 

The use of MPC in the chemical engineering field started in the process 

industries in the 1970s under the names of “model predictive heuristic control” or 

“model algorithmic control” (Richalet et al., 1978; Mehra et al., 1982) and “dynamic 

matrix control” (Cutler and Ramaker, 1979; Prett and Gillette, 1979). The recent 

review by Garcia et al. (1989) covers the chemical engineering literature on MPC. 

The survey paper (Garcia et al. 1989) refers to Model Predictive Control (MPC) as 

that family of controllers in which there is a direct use of explicit and separate 

identifiable model. The same process model is also implicitly used to compute the 

control action in a such way that the control design specifications are satisfied.  

 

Control design methods based on the MPC concept have found a wide 

acceptance in industrial applications due to their high performance and robustness. 

There are several variants of model predictive control methods, like Dynamic Matrix 

Control (DMC), Model Algorithmic Control (MAC) and Internal Model Control 

(IMC). Nonlinear versions of these have also been developed, for example a nonlinear 

IMC concept, e.g. Economou et al. (1986). Another, largely independently developed 

branch of MPC, called Generalized Predictive Control (GPC), is aimed more for 

adaptive control, e.g. Clarke and Mohtadi (1989). For the current state-of-the-art, see 

Clarke (1994).  

    

Model predictive control in this sense is a broad area and some confusion is 

encountered, because the abbreviation MPC is often used to mean receding horizon 

(RHPC) or long range predictive control (LRPC), where a model is used to predict the 

process output several steps into the future and the control action is computed at each 

step by numerical minimization of the prediction errors i.e. no specific controller is 
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used. This is quite different from the concept where the model is controlled with a 

implicitly derived specific controller, like in many IMC approaches. 

    

2.2.1   Applications of MPC 

 

Nonlinear model predictive control has been applied to a wide variety of 

process systems. For instance, Norquay et al. (1999) used a nonlinear Wiener MPC to 

control overhead composition of a C2 splitter. Simulation studies, using the Wiener 

model for the plant representation, have shown the Wiener MPC based scheme to be 

successful in rejecting major disturbances and comparisons with linear IMC and IMC 

using a logarithmic transformation on the output showed the Wiener based version to 

be superior, as expected for a nonlinear process. 

 

Ju et al. (2000) proposed a nonlinear MPC to control a fabric filtration 

process. The control algorithm formulated in a multiple-objective optimization 

framework takes economic into consideration. The global optimization technique is 

used to compute a manipulated input profile. Simulation results showed that the 

proposed MPC is especially suitable to the filtration process where the set point 

change and process disturbance occur frequently. 

 

Seki et al. (2002) formulated the nonlinear MPC based on a successively 

linearized nonlinear model and applied it to an industrial polypropylene semi batch 

reactor process as well as to a high density polyethylene (HDPE) continuous stirred 

tank reactor process. For the semi batch reactor, the nonlinear MPC successfully 

prevented thermal runaway of the reactor temperature control. For the continuous 

reactor, the nonlinear MPC improved the closed loop performance during the grade 

changeover operation, compared with the conventional linear MPC. 

   

Neural networks have successfully been applied to model based control of 

nonlinear systems. General guidelines can be found from Nahas et al. (1992), 

Psichogios and Ungar (1991), Hunt and Sbarbaro (1991) and Ydstie (1990). A 

nonlinear MPC algorithm has been proposed which extends the capacities of Linear 

Predictive Controllers to control nonlinear systems by Kaeahan et al. (1997). A neural 

network was used to model the deviation of the nonlinear system from its linear MPC 
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model. Proposed algorithm was tested in control of an industrial multi-component 

high purity distillation column by simulation. Results of NNMPC show high 

improvement in control of system over linear MPC algorithm. 

 

Lin and Stephen (1998) developed a NNMPC. In order to study the 

effectiveness of NNMPC, a simulation case of wastewater neutralization process was 

chosen as a test case. The purpose of neutralization was to adjust the pH value to meet 

the requirements of the different processing units in the wastewater treatment system. 

Results obtained show that NNMPC could be considered as a powerful alternative 

control technique for wastewater neutralization processes. 

 

Wei et al. (2002) proposed MPC strategy based on a feedforward neural 

network model for an industrial polypropylene process. To infer product properties 

on-line, a dynamic process model was developed and a recursive prediction error 

method was used to update the model parameters when there is a significant model 

prediction error. To obtain optimal control strategy during grade transitions, a 

nonlinear MPC controller was developed based on a neural network model, which is 

trained using the input-output data of process model. Performance of the nonlinear 

controller was compared with a conventional PID controller. Application results 

indicate that MPC controller can obtain satisfactory performance and consequently 

results in significant reduction in transition time and product variability. 

 

 

 

 

 



CHAPTER III 

 

THEORY OF NEURAL NETWORK AND  

MODEL PREDICTIVE CONTROL 
 

 

This chapter outlines a commonly used type of neural network (NN) and 

model predictive control (MPC). NN architecture, a widely studied feedforward 

neural networks and MPC algorithms are discussed.  

    

Neural network model is like human newborns where it needs to be 

developed, trained and taught to perform desired tasks. This brings to the method of 

how we can develop the neural network models. Methods to train them are presented, 

which will illustrate the procedures in detail to obtain reliable neural network models.  

 

 

3.1   Neural Network Introduction 

 

The term artificial neural network originates from research which attempted to 

understand, and proposed simple models of, the operation of the human brain. The 

neural network is a model, which emulates the operation of our brain that is capable 

of computing vast amount of information to obtain certain results or actions. 

Nowadays, computers are still using serial operation in carrying out their assigned 

tasks but increased performance and speed of the computers and workstations made it 

possible to achieve near parallel computational power in order to mimic our own 

brain operation. 

 

Studies to comprehend the organization of brains have spread over the 

scientific and academic research platforms all around the world. Research has shown 

that human brains have about 1011 neurons and 1014 synapses. Each synapse is 

connected to a different neuron and communicates directly with one out of every 

hundred million cells, which is a small fraction of the total cells in the human brain 



 16

(Hardcastle, 1999). This gives us idea of how complex our brains are. Figure 3.1 

shows the simplified anatomy of the human brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - The primitive yet powerful human brain. 

 

 

Neurons are arranged in a dense mass, also know as the neuropil, in the 

cranium with only about two tenths of a millimeter separating each cell. On average, 

each cell has a cell body or soma which is the large and round central body in which 

almost all the logical functions of the neuron are realized. At one end of the soma, a 

single axon radiates outward, the bursts into a veritable forest of branches. At the end, 

crowd of dendrites extends from the cell. Incoming signals from other neurons pass 

through the dendrites to the soma, or impinge directly upon the cell body. The cell 

body computes a weighted average of the incoming pulses and then the axon 

transmits the results to new cells. Figure 3.2 shows a schematic sketch of the natural 

sets of neurons that consists of dendrites, axons, synapses and cell body. The axon 

delivers output of the neuron to connections or other neurons. The dendrite provides 

large surface area for connections with the other axons from other neurons. The 

synapse simulates other neurons to fire and respond. All these activities occur in about 

one thousandth of a second. These interactions also take place between layers of the 
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brain. The artificial neural networks work closely to this operating principle of the 

human brain as signals are propagated through the layers of the networks in order to 

compute the outputs. The artificial neural network researcher has utilized just a piece 

of the capabilities of the human brain but yet they can be successfully applied in many 

applications such as in system identifications, control, prediction and recognition. 

This also brings us to appreciate more of our brain that is definitely a major gift from 

the creator himself. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - Dendrites, axons and synapse in a biological neuron. 

 

 

The brain is capable of processing parallel information received from our 

sensors related to our hearing, sight, touch, feel and smell. Due to this, we can 

perform walking, reading and listening at the same time. This task requires large 

amount of data inputs and output to carry out this act. The use of artificial neural 

network has been motivated by this capability and remarkable performances have 

been achieved with neural networks in various fields of research areas. 

 

As mentioned before, artificial neural network is a computational model of our 

brain. It consists of several highly interconnected computational units working in 

parallel. Electrically, a neuron is equivalent to a few electronic logical gates. Neural 

networks overcome the knowledge acquisition bottleneck associated with expert 
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systems by acquiring their knowledge of certain process through training sessions. It 

also possesses the generalization capability of fuzzy expert systems. 

 

 

3.2   Neural Network Architectures 

 

Artificial neural networks generally consist of several interconnected 

processing elements or neurons. Their types are sectioned into various categories. 

Arrangement and nature of the connections will determine their structure while the 

manner in which, the connection weights are adjusted and altered to achieve desired 

outputs by its learning algorithm governs the overall behavior of the network. Hence, 

neural networks are classified according to their structure and learning algorithms into 

two basic types of network, i.e. feedforward and recurrent networks (Pham, 1995). 

 

3.2.1   Models of a neuron 

 

A neuron is an information-processing unit that is fundamental to the 

operation of a neural network. The block diagram of figure 3.3 shows the model of a 

neuron, which forms the basis for designing (artificial) neural networks. Here we 

identify three basic elements of the neuronal model (Hakin, 1999) : 

 

    1. A set of synapses or connecting links, each of which is characterized by a 

weight or strength of its own. Specifically, a signal xj at the input of synapse j 

connected to neuron k is multiplied by the synaptic weight wkj. It is important to make 

a note of the manner in which the subscripts of the synaptic weight wkj are written. 

The first subscript refers to the neuron in question and the second subscript refers to 

the input end of the synapse to which the weight refers. Unlike a synapse in the brain, 

the synaptic weight of an artificial neuron may lie in a range that includes negative as 

well as positive values. 

 

    2. An adder for summing the input signals, weighted by the respective 

synapses of the neuron; the operations described here constitute a linear combiner.  
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    3. An activation function of limiting the amplitude of the output of a neuron. 

The activation function is also referred to as a squashing function in that it squashes 

(limits) the permissible amplitude range of the output signal to some finite value. 

Typically, the normalized amplitude range of the output of a neuron is written as the 

closed unit interval [0,1] or alternatively [-1,1]. 

 

3.2.2   Types of activation function 

 

The activation function, denoted by )(vϕ , defines the output of a neuron in 

terms of the induced local field v. Here we identify three basis types of activation 

functions: 

 

    1. Threshold function. For this type of activation function, described in figure 

3.4(a),  
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In engineering literature, this form of a threshold function is commonly referred to as 

a Heaviside function. Correspondingly, the output of neuron k employing such a 

threshold function is expressed as 
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where kv is the induced local field of the neuron; that is, 
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Such a neuron is referred to in the literature as the McCulloch-Pitts model, in 

recognition of the pioneering work done by McCulloch and Pitts (1943). In this 

model, the output of a neuron takes on the value of 1 if the induced local field of that 
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neuron is nonnegative, and 0 otherwise. This statement describes the all-or-none 

property of the McCulloch-Pitts model. 

 

    2. Piecewise-linear function. For the piecewise-linear function described in 

figure 3.4 (b) 
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where the amplification factor inside the  linear region of operation is assumed to be 

unity. This form of an activation function may be viewed as an approximation to a 

nonlinear amplifier. The following two situations may be viewed as special forms of  

the piecewise-linear function: 

• A linear combiner arises if the linear region of operation is maintained without 

running into saturation. 

• The piecewise-linear function reduces to a threshold function if the amplification 

factor of the linear region is made infinitely large. 

 

    3. Sigmoid function. The sigmoid function, whose graph is s-shaped, is by far 

the most common form of activation function used in the construction of artificial 

neural networks. It is defined as a strictly increasing function that exhibits a graceful 

balance between linear and nonlinear behavior. An example of the sigmoid function is 

the logistic function, defined by 
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where a is the slope parameter of the sigmoid function. By varying the parameter a, 

we obtain sigmoid function of different slopes, as illustrated in figure 3.4 (c). In fact, 

the slope at the origin equals a/4. In the limit, as the slope parameter approaches 
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infinity, the sigmoid function becomes simply a threshold function. Whereas a 

threshold function assumes the value of 0 or 1, a sigmoid function assumes a 

continuous range of values from 0 to 1. Note also that the sigmoid function is 

differentiable, whereas the threshold function is not.  

 

 

 

 

 

 
 

 

Figure 3.3 - Nonlinear model of a neuron. 
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Figure 3.4 - (a) Threshold function. (b) Piecewise-linear function. (c) Sigmoid  

                           function for varying slope parameter a. 

 

 

3.2.3   Feedforward neural networks 

 

An artificial feedforward neural networks (AFNN) consists of various layers. 

Signal propagates from the input layer to the output layer through unidirectional 

connections from one layer to another layer. A simple configuration is a two-layer 

model as shown in figure 3.5. The first layer is the input layer while the second is the 

hidden and the output layer. These layers are connected to each other by connection 
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weights to determine the strength of the connections. The weights will have freedom 

to be changed in an adaptive fashion during the learning or training session. The 

strength of the connection is adjusted to achieve certain targeted values, which is 

determined by the training algorithms. A simple example of the feedforward neural 

network is the multilayer perceptron (MLP). Signals are propagated in the forward 

direction, from the input to the next hidden and the output layers of the network. 

There are no connections in the reverse and lateral directions of the network. The 

learning vector quantization (LVQ) network and the group method of data handling 

(GMDH) network are other examples of feedforward network (Pham, 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Feedforward neural networks. 
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3.2.4   Recurrent neural networks 

  

In the recurrent networks, the output of the neurons can be fed back to the 

same neurons or to the neurons in the other layers. Signal can propagate in both 

forward and backward directions. Examples of recurrent networks include the 

Hopfield network, the Elman network and the Jordan network. Recurrent networks 

have a dynamic memory where their outputs at a given instant reflect the current 

inputs as well as previous inputs and outputs as shown in figure 3.6. The presence of 

feedback loops has a profound impact on the learning capability of the network and 

on its performance. Moreover, the feedback loops involve the use of particular 

branches composed of unit-delay elements, which results in a nonlinear dynamical 

behavior, assuming that the neural network contains nonlinear units (Haykin, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - Recurrent neural networks. 
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3.3   Neural Network Training 

 

Training the network refers to changing its weights and biases, which are 

altered adaptively to minimize the error between the actual targeted values and that of 

network output. The training session is carried out repeatedly to minimize this error 

using various schemes. The training of the neural network is generally into three 

major categories, which will be described later. Neural network training are 

sometimes referred to as machine learning algorithms, because changing its 

connection weights causes the network to learn solutions to a problem. The strength 

of a connection between the neurons is stored as a weight value for the specific 

connection. The system stores new knowledge by adjusting these connecting weights. 

The learning ability of a neural network is determined by its architecture and by the 

algorithmic method chosen for training. The three general schemes to train the neural 

network are as follows. 

 

3.3.1   Supervised training 

 

A supervised training is a training algorithm for creating a function from 

training data, which has been obtained from actual process behavior. The network is 

trained to map the inputs to the corresponding correct output. As the inputs are 

applied to the network, the networks are compared to the targets. The training 

algorithms then used the error between the output and target to adjust the weights and 

biases of the network in order to move the network outputs closer to the targets. In 

this method, the trainer knows exactly the desired output. The error between the 

actual and desired output is used to modify the strengths of the connections i.e. 

weights between neurons and the training performed until it reaches the required 

performance. This method of training is used in most applications. 

 

3.3.2   Unsupervised training 

 

In unsupervised training, weights and biases are modified in response to 

network inputs only. There are no target outputs available. Rather, provision is made 

for a task- independent measure of the quality of representation that the network is 

required to learn, and the free parameters of the network are optimized with respect to 
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that measure. Once the network has become tuned to the statistical regularities of the 

input data, it develops the ability to form internal representations for encoding 

features of the input and thereby to create new classes automatically. This method is 

also used as the pre- processing for the supervised training method to improve 

training for better convergence. The hidden neurons must find ways to organize 

themselves. In this approach, no sample outputs are provided to the network against 

which it can be compared to the predicted performance for a given input vector. 

 

3.3.3   Reinforcement training 

 

This method requires reinforcements from the outside. The connections 

between the neurons in the hidden layer are randomly arranged and reshuffled as the 

network approaches its solution in solving the problem. Reinforcement learning is 

also a form of supervised learning, since it requires a trainer. It may be a training set 

of data or an observer who grades the performance of the network results. Both 

unsupervised and reinforcement suffers from relative slowness and inefficiency due to 

its reliance on random shuffling to determine proper connection weights. 

Reinforcement learning is closely related to dynamic programming, which was 

developed by Bellman (1957) in the context of optimal control theory. Dynamic 

programming provides the mathematical formalism for sequential decision making. 

By casting reinforcement learning within the framework of dynamic programming, 

the subject matter becomes all the richer for it, as demonstrated in Bertsekas and 

Tsitsiklis (1996). 

 

 

3.4   Feedforward Multilayer Perceptron 

 

There are many different types of neural networks and this work is confined to 

feedforward ANNs, the multilayer perceptron (MLP), which is employed as nonlinear 

process models.  

 

Standard multilayer perceptrons (MLP) are a large class of feedforward neural 

networks with neurons arranged in layers. Generally, all neurons in a layer are 

connected to all neurons in the adjacent layers through uni-directional links. These 
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links are represented by synaptic weights. The synaptic weights act as signal 

multipliers on the corresponding links (interconnections). For example, in a three 

layer perceptron schematically depicted in figure 3.7 the neurons are grouped in 

sequentially connected layers; each layer is numbered 0, 1, 2 or 3. The neurons of 

layer 0 (sometimes called the input layer) do not perform computation, but only feed 

input signals to the neurons of layer 1 called the first hidden layer. The last layer 

(layer 3) is the output layer where the response of the network comes from. The 

neuron layers between the input pattern and the output layer are called hidden layers. 

Generally, there is no theoretical limit on the number of hidden layers, but usually in 

practice there will be only one or two hidden layers. It has been shown theoretically 

that it is sufficient to use a maximum of three layers (two hidden layers and one 

output layer) to solve an arbitrarily complex pattern classification problem (Rumelhart 

and McClellan, 1986). Each neuron is connected to all neurons of the two adjacent 

layers and to no other neurons. Note that connections within a layer or from higher to 

lower layers are not permitted. The arrows indicate the flow of information (signals). 

Generally, the multilayer perceptron has a different number of neurons and different 

synaptic weights for different layers. Each neuron of the MLP is characterized by one 

output and many inputs which are the outputs of the neurons in the preceding layer. 

 

    Let uj
[s] denote the value of the internal potential (signal) of the j-th neuron 

located in the s-th layer (s = 1, 2, 3) (Figure 3.7). The weighted sum of the inputs is 

computed by the neuron according to the formula 
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where wji
[s] are the synaptic weights by which the j-th neuron multiplies the inputs 
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    The neuron output is computed by passing the weighted sum of its inputs (i.e. 

the internal potential uj
[s]) by a nonlinear bounded activation function Ψj

[s], i.e. 
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For convenience and simplicity of consideration the bias term [ ]s
jΘ  is handled here (as 

usual) in a manner uniform with the synaptic weights [ ] [ ]s
j

s
jw Θ=0  by considering it as a 

weight connecting a neuron whose activation is always equal to unity. When 

processing data input signals are fed into the network by the input neurons and for 

each layer the outputs are computed successively and fed into the neurons of the next 

layer up to the output layer. Each layer of the network can be represented by the 

nonlinear matrix operator (Narendra and Parthasarthy, 1990.) 
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where 
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jiw )1()1( 1+×+ −ℜ ss nn   is the interconnection matrix of the 

synaptic weights in the s-th layer, 

 [ ][ ]⋅sΨ  is a diagonal nonlinear operator with (typically identical) sigmoid 

activation functions. 

 

Hence, the input-output mapping of the three layer perceptron can be represented in 

the compact matrix form 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ][ ][ ][ ]xWWWxy 112233 ΨΨΨΨ ==  

 

A functional block diagram representation of the above mapping is shown in figure 

3.7(b)  
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    The neurons usually take activity in the normalized range from +1 to -1 (in 

some applications the range from +1 to 0 is used). It should be noted that all synaptic 

weights are kept constant or fixed during the computation and their values determine 

the network behavior and its capability to correctly process (map) the input data or 

signals. In order to obtain the required network behavior the values of the synaptic 

weights must be properly computed. This means that the MLP must be trained. Such a 

computation is called the learning or training process. During the training process 

information is also propagated back through the network and it is used to update the 

synaptic weights successively first in the output layer, next in the second hidden layer 

and in the last step in the first hidden layer. 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

Figure 3.7- (a) Architecture of a three-layer perceptron 

                                  (b) A block diagram representation of the perceptron 
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3.5   Training Algorithm 

 

The purpose of the training algorithm is to enable the ANN to represent a 

mapping which describes the I/O behavior of a non-linear system. To achieve this, the 

algorithm attempts to minimise an objective function by adjusting the ANN weight 

parameters. The objective function is a measure of how well the ANN fits a set of I/O 

training data patterns which the system has produced. Since in this work, we are 

concerned with the feedforward neural network, which utilizes the supervised training 

method, we will describe the training algorithm involved for training the feedforward 

in the next section. 

 

3.5.1   The delta rule 

 

In order to train a single layer network, one of the earliest supervised learning 

methods used is the delta rule. In this method, the inputs are presented to the network 

and the outputs are calculated. These outputs are then compared to the targeted values 

and the difference between them is calculated to give the error, δ., i.e. 

 

=δ target - output       (3.9) 

 

The change of the weights is proportional to the previous calculated error, the input 

and a learning coefficient as given below, 

 

ixi ηδ=∆         (3.10) 

 

itwtw ii ∆+=+ )()1(        (3.11) 

 

where ix is the inputs before the weight changes and η  is the learning coefficient with 

value chosen randomly. In order to obtain better convergence during training, the 

learning rate coefficient is normally set between the values of 0 to 1. The 

disadvantage of this rule is that the output of the network must be known in order to 

calculate and adjust the weights. Due to this, the delta rule is only applicable 
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efficiently for a single layer network. As for the multi layer network, the 

backpropagation method is proposed and will be described in the next section. 

 

3.5.2   The backpropagation method 

 

    The objective of this training method is to train the weights of a multilayer 

network in order to obtain the desired and the targeted outputs corresponding to a 

given set of inputs to the network. The methodology of the conventional 

backpropagation method is mentioned below (Hussain, 1994): 

• Weights and biases are initialized with values between -1 and 1 randomly. 

• Inputs are summed and propagated to the hidden layer for a node j as: 
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• Output from node j is given by 
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where f  is the transfer function or activation function used in the hidden 

nodes 

• Hidden layer output is propagated to node k  at the output layer given as: 
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• Output from the node k  is: 
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• Error is calculated at the output layer as: 
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• Weights are adjusted along the negative gradient descent of the error, e  as: 
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where η  is the learning rate applied in the training 

 

• Weights in the output and the hidden layers are then corrected using equations 

below: 
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• A momentum term is then added to equation (3.18) to facilitate convergence 

and to avoid local minima to occur. 

 

)1()()( −+∆=∆ twtwtw α       (3.19) 

 

where α  is the momentum term 

 

    An advantage of the BP algorithm is its computational efficiency, since the 

number of computations per epoch of BP (an ANN is said to have been trained for 

one epoch when all the training vectors have been processed once) is proportional to 

W x N, where W is the total number of network weights and N is the data length. On 

the other hand, BP is a gradient descent type algorithm which moves along the local 

negative gradient of the cost function and consequently can be slow to converge, 

particularly when the search encounters a local minimum, a saddle point or a long 

valley in the cost function surface. While the momentum term does assist the search 
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when the gradient information is poor, the algorithm is still relatively inefficient and 

its performance is dependent on the choice of suitable values for the learning gain and 

momentum. 

 

    Numerous algorithms have been proposed to circumvent the problems 

associated with BP and some of the main categories are outlined :- 

 

• Refining backpropagation. Procedures for adjusting the learning gain and 

momentum terms during training to try to prevent the search from oscillating or 

becoming trapped in a local minima have been suggested (Battiti, 1989; Le Chun 

et al., 1993). 

 

•  Conjugate gradient methods. Gradient descent performs a fixed step length search 

in the direction of negative gradient and this is not efficient for reasons already 

discussed. The Conjugate gradient algorithm (Hestenes and Stiefel, 1952; Fletcher 

and Reeves, 1964) performs a series of searches in directions which are conjugate, 

or non-interfering, to each other. An outline of the algorithm is :- 

 

1. Initialise weights. Choose the initial search direction using gradient descent. 

 

2. Minimise the cost function in the new search direction. This can be done using 

a line search technique (Luenberger, 1984). Update the network weights. 

 

3. Stop if a termination criteria is satisfied. 

 

4. Evaluate a new search direction which is conjugate to all previous search 

directions. This means that the components of the new search direction that are 

parallel to all the previous search directions (which are zero since they already 

have been minimized) are kept fixed. 

 

5. Go to 2. 
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    For a quadratic cost function the conjugate gradient algorithm will converge to 

the minimum in at most W steps, where the number of computations for each step, 

like BP, is in proportion to N x W (a step is akin to an epoch because this is a batch 

method). This is a significant improvement in the convergence rate over gradient 

descent methods with only a small (linear) increase in computational effort. 

However, for a neural network, the cost function will not generally be quadratic 

and this can result in degeneration of the conjugacy of the search directions. 

Hence, it is usually necessary to periodically reset the search direction according to 

some rule. The conjugate gradient method has been used to train MLP neural 

networks (Leonard and Kramer, 1990; Johansson et al., 1992; Charalambous, 

1992). 

 

• Quasi-Newton methods These methods make use of the second derivative, or 

Hessian, of the cost function. This curvature information gives a better perception 

of the cost function topology enabling a more efficient choice of search direction. 

The full Newton method, which is a batch update, can be computationally 

prohibitive since it necessitates the calculation of the Hessian and the inverse 

Hessian with the number of computations required per step in proportion to N x 

W2 and W3 respectively. Quasi-Newton methods bypass this problem by building 

up an approximation to the Hessian inverse using a recursive algorithm which only 

uses information from the first derivative of the cost function. 

 

    The Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a widely used quasi-

Newton procedure which has been shown to give superior convergence to gradient 

descent (Dennis and Schnabel, 1983). However, BFGS requires the storage and 

update of the approximated Hessian inverse matrix which is of size W x W, and 

this can lead to prohibitive memory requirements when applied to large networks 

(Nahas et al., 1992). The limited memory BFGS algorithm considerably reduces 

the memory and computational requirements but at the cost of less efficient search 

direction estimates (Robitaille et al., 1996). Limited memory BFGS has been 

applied to training MLP neural networks (Batti, 1989; Irwin et al., 1994; Robitaille 

et al., 1996). 
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• Stochastic search methods These methods introduce a random element into the 

search for the weights to assist the search to escape from local minima in the cost 

function surface. The methods which have been applied to training neural networks 

include :- 

 

 ♦ Simulated annealing (Kilpatrick et al., 1983) was inspired from mathematical 

models of the energy state of annealing molten metals. The algorithm is controlled 

by a single parameter, termed temperature. As training progresses, the temperature 

is reduced slowly to steer the search towards the global minimum with a random 

excitation providing escape from local minima. 

 

♦ The chemotaxis algorithm (Bremermann and Anderson, 1989) is a similar idea 

where weights are perturbed by the addition of a random vector generated by a 

multivariate Gaussian probability density function. The standard deviation of the 

probability density function is reduced as training proceeds, in an analogous 

manner to the reduction of temperature in simulated annealing. 

 

♦ A genetic algorithm (Holland, 1975) is a non-linear optimisation technique based 

on evolutionary principles and has been applied to a variety of problems including 

the training of neural networks. The individual weights are represented by binary 

strings which are concatenated into one large string. Training is accomplished by 

combining subsets of a ‘population’ of such strings according to genetically 

inspired rules to form new strings. A new population is formed from some of the 

‘fittest’ strings of the old population (fitness is related to how well the network is 

trained) and some new random strings. A possible advantage of genetic algorithms 

is that the algorithm combines elements of directed and random search methods 

(Brown and Harris, 1994). 

 

    In summary, several MLP ANN training algorithms have recently been 

proposed which do offer faster convergence than BP, but generally this comes at the 

cost of increased computational complexity and greater memory needs. Furthermore, 

none of the algorithms seem to overcome one of the most consequential pitfalls of BP 

which is the possibility of the search converging to a local, rather than the global, 
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minimum. Recently, alternative training algorithms, which converge faster, have been 

proposed and these are discussed in the next section.  

 

3.5.3   Levenberg-Marquardt method 

 

Levenberg-Marquardt method is a nonlinear least square optimization 

algorithm based on Newton’s method (Marquardt, 1963). To minimize a function 

)(xV  with respect to the parameter vector x, then Newton’s method would be: 
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Here, )(2 xV∇  is the Hessian matrix and )(xV∇  is the gradient. Suppose that )(xV  is a 

sum of squares function, 
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then it can shown that 
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Where )(xJ  is the Jacobian matrix and 
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For the Gauss-Newton method, it is assumed that 0)( ≈xS , and the weight updates in 

equation (3.20) becomes, 
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The Levenberg-Marquardt modification to the Gauss-Newton method is, 
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The parameter µ  is multiplied by some factor β  whenever a step would result in an 

increased )(xV . When a step reduces )(xV , µ  is divided by β . Notice that when µ  

is large, the algorithm becomes steepest descent with step 1/ µ , while for smaller µ , 

the algorithm becomes Gauss-Newton (Pivonka and Zizka, 1996). The Levenberg-

Marquardt method interpolates between the approaches based on the maximum 

neighborhood and in which the truncated Taylor-series gives an adequate 

representation of the nonlinear model. The method has been found to be advantageous 

as compared to others. This method is used to train the neural network model in this 

work. 

 

 

3.6   Model Predictive Control 

 

The essence of MPC is to optimize, over the manipulated inputs, forecasts of 

process behavior. The forecasting is accomplished with a process model and 

therefore, the model is the essential element of an MPC controller. The models are not 

perfect forecasters, and feedback can overcome some effects of poor models, but 

starting with a poor process model is akin to driving a car at night without headlights; 

the feedback may be a bit late to be truly effective. 

 

   In general, model predictive control can be divided into two classes: linear 

model predictive control and nonlinear model predictive control. Linear MPC refers 

to a family of MPC schemes in which linear models are used to predict the system 

dynamics even though the dynamics of the system is nonlinear, while nonlinear MPC 

refers to the general cases in which the dynamic system models, performance 

objective, and constraints may be in nonlinear function of state, input and output 

variables. 
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• Linear Models : Historically, the models of choice in early industrial MPC 

applications were time domain, input/output, step, or impulse response 

models. Part of the early appeal of MPC for practitioners in the process 

industrials was undoubtedly the ease of understanding provided by this model 

form. It has become more common for MPC researchers, however, to discuss 

linear models in state-space form: 
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               In which x is the n-vector of states, y is the p-vector of (measurable) outputs, 

u is the m-vector of (manipulable) inputs, and t is the continuous-time and j is 

the discrete-time sample number. Continuous-time models may be more 

familiar to those with a classical control background in transfer functions, but 

discrete-time models are very convenient for digital computer implementation. 

Linear models in the process industries are, by nature, empirical models and 

identified from input/output data. The idea model form for identification 

purposes is perhaps best left to the experts in identification theory, but a 

survey of that literature indicates no disadvantage to using state-space models 

inside the MPC controller. 

 

               The discussion of MPC in state-space form has several advantages, 

including easy generalization to multivariable systems, ease of analysis of 

closed-loop properties, and online computation. Furthermore, starting with this 

model form, the wealth of linear systems theory, the linear quadratic (LQ) 

regulator theory, Kalman filtering theory, internal model principle, etc., is 

immediately accessible of use in MPC.  

 

• Nonlinear Models : The use of nonlinear models in MPC is motivated by the 

possibility of improving control by improving the quality of the forecasting. 

The fundamentals in any process control problem, conservation of mass, 

momentum and energy, considerations of phase equilibrium, relationships of 
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chemical kinetics and properties of final products, all introduce nonlinearity 

into the process description. Determining the setting in which the use of 

nonlinear models for forecasting delivers improved control performance is an 

open issue. For continuous process maintained at nominal operating conditions 

and subject to small disturbances, the potential improvement would appear 

small. For processes operated over large regions of the state space, semibatch 

reactors, frequent product grade changes, processes subject to large 

disturbances, for example, the advantages of nonlinear models appear larger. 

(Rawlings, 2000). 

 

3.6.1   MPC algorithms 

 

Several reviews and comparative studies of the main MPC algorithms have 

been published, for example by De Keyser, Van de Welde and Dumortier (1988), 

Garcia, Prett and Morari (1989), Kramer and Ubehauen (1991) and Qin and Badgwell 

(l996). Their application particular to the chemical process industry has been 

described by Eaton and Rawlings (1992). Industrial applications have also been 

described by Richalet (1993). There are several textbooks on MPC, for instance those 

by Prett and Garcia (1988), Bitmead, Gevers and Wertz (1990), Soeterboek (1992), 

Camacho and Bordons (1995), Camacho and Bordons (1999) and Maciejowski 

(2000). There is also a special feature on MPC recently published in the IEE 

Computing and Control Engineering Journal (Roberts, 1999). 

 

    The various techniques are differentiated by different types of model and 

performance function employed. Presented from an historical perspective, some of the 

main algorithms are:- 

 

• Model Algorithmic Control, MAC, initially called Model Predictive 

Heuristic Control, MPHC, (Richalet et al., 1976). This uses an impulse 

response model, which is valid only for open-loop stable processes, and 

minimizes the variance of the error between the output and a reference 

trajectory computed as a first-order system.  
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• Dynamic Matrix Control, DMC, (Cutler and Ramaker, 1980). This is 

similar to MAC but uses a step response model instead of an impulse 

response model. This technique was originally applied in Shell Oil as early 

as 1973. The method was extended to include input and output constraint 

handling using quadratic programming to solve the constrained 

optimization problem, giving rise to Quadratic Dynamic Matrix Control, 

QDMC, (Morshedi and Haydel, 1983). The DMC algorithm can also be 

derived for a general discrete state-space model (Prett and Garcia, 1988). 

 

• Extended Prediction Self Adaptive Control, EPSAC, (Keyser and 

Cuawenberghe, 1985) uses a discrete (z-transform) transfer function to 

model the process and a simple control law structure calculated 

analytically using a quadratic performance function assuming u(t) stays 

constant from instant t. The process model also includes measurable 

disturbances. 

 

• Generalised Predictive Control, GPC, (Clarke et al., 1987), using a 

quadratic performance function, with weighting of control effort, and a 

auto -regressive moving average with exogenous variables model 

(ARMAX). It also provides an analytic solution for the optimal control in 

the absence of constraints. 

 

    DMC and GPC are perhaps the most popular techniques. There are several 

extensions to GPC including techniques with guarantee stability through end-point 

equality constraints (Clarke and Scattolini, 1992; Mosca and Zhang, 1992), and by 

stabilising the process prior to the objective function optimization (Kouvaritakis et al., 

1992). The GPC technique, using a method known as Constrained Stable Generalised 

Predictive Control, CSGPC, (Rossiter and Kouvaritakis, 1993) has also been extended 

to guarantee feasibility and stability when there are input constraints as well as 

terminal constraints (Rossiter et al., 1996; Rossiter et al., 1997). Although most of the 

work has been performed in discrete time GPC has also been formulated in 

continuous time (Demircioglu and Gawthrop; 1991, 1992). A state space model 

description for GPC controllers has also been developed (Ordys and Clarke, 1993; 
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Gawthrop et al., 1998). Nonlinear model predictive control based on state space 

models and the receding horizon concept has also been developed, for example by 

Mayne and Michalska (1990), who perform a stability analysis, and Balchen et al. 

(1992). Integration of economic objectives within the performance function has also 

been performed, (Becerra et al., 1998). Several commercial companies offer software 

products for implementation of model predictive control, for example MDC (SMOC), 

Predictive Control (CONNOISSEUR), AspenTech (DMCplus) and Honeywell 

(RMPCT). 

 

3.6.2   Formulation of model predictive control problem 

 

The problem to be solved by the model predictive controller may be stated as 
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in which u is the input vector, y is the output vector, and x is the state vector. The time 

interval is from the current time, t0, to some finite time in the future, t0+P, in which P 
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is the length of the prediction horizon. The scalar functional Φ  is the controller’s 

performance objective, the functions f and g determine the plant model, and h and k 

are equality and inequality constraint functions that may be specified as further 

performance objectives. The generality of the performance objective, as opposed to 

standard integral square error between output and set point, provides the opportunity 

to design the MPC controller for higher level functions such as energy or waste 

minimization. 

 

3.6.3    Model predictive control strategy 

 

Model Predictive Control,MPC, usually contains the following three ideas (Camacho 

and Bordons, 1999):- 

 

1. Explicit use of a model to predict the process output along a future time 

horizon. 

 

2. Calculation of a control sequence to optimize a performance index. 

 

3. A receding horizon strategy, so that at each instant the horizon is moved 

towards the future, which involves the application of the first control signal of 

the sequence calculated at each step. 

 

The strategy is illustrated as shown in figure 3.8 and described as follows (Camacho 

and Bordons, 1999):- 

 

1.   The predicted future outputs t)|k  (ty +ˆ , P 1  k L=  for the prediction horizon P 

are calculated at each instant t using the process model. These depend upon 

the known values up to instance t (past inputs and outputs), including the 

current output (initial condition) y(t) and on the future control signals 

1 - P 0  k t),ku(t L=+ | , to be calculated. (Note - the notation x(t+k|t) indicates 

the value of x at time instant t+k calculated at time instant t). 
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2. The sequence of future control signals is computed to optimize a performance 

criterion, often to minimise the error between a reference trajectory and the 

predicted process output. Usually the control effort is included in the 

performance criterion. 

 

3.  Only the current control signal u(t|t) is transmitted to the process. At the next 

sampling instant y(t+1) is measured and step 1 is repeated and all sequences 

brought up to date. Thus u(t+l|t+l) is then calculated using the receding 

horizon concept.  

 

 

 

 
 

Figure 3.8 - MPC Strategy 

 

 

 

3.6.4   Advantages and Disadvantages of MPC  

 

Some of the main advantages are:- 

• Concepts are intuitive and attractive to industry. 

• Can be used to control a great variety of processes, including those with non-

minimum phase, long time delay or open-loop unstable characteristics. 

P

P 
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• Can deal with multivariable, multi-input multi-output as well as single-input 

single-output processes. 

• Process constraints can readily be treated within the optimization process. 

• Readily applicable to batch processes where the future reference signals are 

known. 

• An open technology which allows for future extensions. 

 

A significant disadvantage is:- 

• Requirement of an appropriate model of the process. 

 



CHAPTER IV 

 

NEURAL NETWORK MODELING AND INVERSE NEURAL 

NETWORK MODELING FOR A STEEL PICKLING PROCESS 

 
 

4.1   A Steel Pickling Process 

 

It has been known that many chemical industrial plants cause environmental 

problems due to the usage of chemicals in their production lines. One such industry is 

the steel pickling plant which is a fundamental industry in Thailand and has long 

existed and served the country’s steel demand. The steel pickling process utilizes 

concentrated chemicals in the production lines and the wastewater released from the 

process contains hazardous materials and usually causes major environmental 

problems. Therefore, production scheduling and control of this pickling process are 

inevitably needed to minimize the amount of hazardous material contained in the 

released wastewater and also to maintain the concentration of acid solution in the 

tanks in order to obtain the maximum reaction rate at the same time. 

 

    The steel pickling process consists of two major steps: pickling and rinsing 

steps (Kittisupakorn and Kaewpradit, 2003). The purpose of the pickling step is to 

remove surface oxides (scales) and other contaminants out of metals by an immersion 

of the metals into an aqueous acid solution. Metals are immersed in pickling baths, 

containing 5, 10 and 15% by weight of hydrochloric acid (HCl), respectively, in order 

to remove the scales from the metals. The metals move counter current to the acid 

stream. The reaction occurring in the pickling baths is as follows: 

 

FeO + 2HCl → FeCl2 +H2O      (4.1) 

 

Drag in-out pickling solution is removed from the metal surface using rinsing water 

during the rinsing step, which consists of three pure water baths. The metals move 

opposite to the rinsing water flow. Here, the amount of drag out solution of each bath 

is assumed to be equal to the amount of drag in solution. It should be noted that the 
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steel pickling process studied in this work as illustrated in figure 4.1 and 4.2 is one of 

several existing configurations. 

The following assumptions are made for the purpose of this study. 

• The system is supposed to be perfectly mixed and isothermal. 

• All state variables are measurable directly. 

• Density of liquid is assumed to be constant. 

• The deterioration of pickling efficiency resulting from iron concentration is 

considered negligible. 

 

    Based on the above assumptions, the mathematical model of the continuous 

steel pickling process (Figure 4.1 and 4.2) for the change in volume and concentration 

can be derived for both the pickling and rinsing steps as follows. 

• Pickling step (occurring in the 5, 10 and 15% HCl baths) 
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• Rinsing step (occurring in three pure water baths) 
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The meanings of all these variables are specified in the nomenclature. To complete 

the mathematical modeling of this continuous process, the expression of the reaction 

rate, equation (4.1), in the pickling baths needs to be imposed. The reaction is 

assumed to be first order neglecting liquid diffusion and the deterioration of pickling 

efficiency. Therefore, the rate of reaction studied here solely depends upon acid 

concentration as shown below: 

 

r = kC          (4.14) 

 

where k is the reaction rate constant. 

 

    The objective of this work is to control the concentration of HCl in all the 

pickling baths (C1, C2 and C3) and the pH (or H+ concentration (C4)) in the first 

rinsing bath to a desired set point by manipulating inlet flows F2, F3, F5 and F6. 
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Since a neural network-based model is used for the control, we will first describe the 

procedure for neural network modeling and its use for control in the next section. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.1 - Flow diagram of pickling baths 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.2 - Flow diagram of rinsing baths 
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4.2   Neural Network Modeling 

 
Neural networks have the advantages of distributed information processing 

and the inherent potential for parallel computation. They can learn sufficiently 

accurate models and provide good nonlinear control when model equations are not 

known or only partial state information is available (Psichogios and Ungar, 1991; 

Hussain, 2003). Due to their parallel processing capability nonlinear nature and their 

ability to do without a priori knowledge neural networks can be used successfully to 

capture dynamic, nonlinear models of complex, multivariable systems. They therefore 

offer potential benefits in MPC strategies. 

 

    Although various types of neural network exist such as multi-layer perception 

(MLP), radial basis function (RBF) network and recurrent neural network (RNN), 

they consist of the same basic features: nodes, layers and connection. In this work, 

multi-layered feedforward network is used for the neural network since it is one of the 

most popular and successful neural network architectures suited to a wide range of 

applications in prediction, process modeling and control. 

 

 

4.3   Procedure for Obtaining Neural Network Forward Models 

 

Forward modeling refers to training the neural network model to predict the 

plant output, C(k+1). The detailed procedures to find neural network models for the 

various baths are summarized in figure 4.3.  

 

    In the data preparing, training and validation data sets are obtained by 

selecting appropriate excitation signals (relating to operating condition range and 

manipulated variable constrains) from the simulation of the steel pickling process 

models by solving equation (4.2) to (4.13). These equations are solved to obtain the 

process states according to various changes in the manipulated variables, i.e. flow 

rates (F2 , F3, F5 and F6). Data are selected to define the input and the output to the 

neural networks. The inputs are relevant data that are used in training to map out the 

defined output of the network. The training data sets of three pickling baths and the 
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first rinsing bath are shown in figure 4.4 to 4.7. Mathematically, four neural network 

models and are expressed as the function of inputs to the model as shown below: 

 

• The pickling Baths 

o 5% HCl Bath :   

C1(k+1) = f (F2(k-1),F2(k),C2(k-1),C2(k),C1(k))                                

o 10% HCl Bath :  

C2(k+1) = f (F2(k-1),F2(k), F3(k-1),F3(k), C1(k-1),C1(k),C3(k-1), 

C3(k), C2(k)) 

o 15% HCl Bath :  

C3(k+1) = f (F3(k-1),F3(k), F5(k-1),F5(k), C2(k-1),C2(k), C3(k)) 

 

• Rinsing baths 

o 1st Rinsing bath: 

C4(k+1) = f (F6(k-1),F6(k), C3(k-1),C3(k), C5(k-1),C5(k), 

C4(k)) 

 

    The inputs of neural network are the past and present values of the variables 

which effect to the state variable in each bath. The data sets need to be scaled in order 

to overcome the significant minimum and maximum values used in the training 

process. Raw process data generated earlier are scaled down to between 0.05-0.95 

using the following equations:   
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The actual value is given by 
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where ValueSD is the scaled down value and ValueAC  is the actual value. 
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Prepare input/desired data for 
training and cross validation  

Design the structure of network
(the number of hidden layers and nodes
in hidden Layer, Activation function)

Set the initial weight

Train the network with training data sets
until MSE is less than specified value

Test the Network with validation data set 

Examine the desired MSE

Obtain the neural
network model

Set the new network structure
by changing the number of hidden 
layers and nodes in hidden Layer

Reinitialize weight

yes

yes

no

no

 
 

 
 
 

Figure 4.3 - Procedure for obtaining forward and inverse neural network models. 
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Figure 4.4 - Training data set of 5% HCl bath (a) Manipulated variable (Flow rate F2)       

                    (b) Concentration of 5% HCl bath (C1) 



 53

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

Pattern

Fl
ow

 r
at

e 
F3

 (l
/m

in
)

Manipulated variable of 10% HCl Bath (Training data set)

 
(a) 

 

0 500 1000 1500 2000
1.5

2

2.5

3

3.5

Pattern

C
on

ce
nt

ra
tio

n 
C

2 
(m

ol
/l)

Concentration of 10% HCl Bath (Training data set)

 
(b) 

 

Figure 4.5 - Training data set of 10% HCl bath (a) Manipulated variable (Flow rate   

                    F3) (b) Concentration of 10% HCl bath (C2) 
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Figure 4.6 - Training data set of 15% HCl bath (a) Manipulated variable (Flow rate  

                    F5) (b) Concentration of 15% HCl bath (C3) 
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Figure 4.7 - Training data set of the first rinsing bath (a) Manipulated variable        

                    (Flow rate F6) (b) Concentration of the first rinsing bath (C4) 
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    For neural network design, suitable neural network structure or configuration 

needs to be selected. The important aspects to consider are the number of hidden 

nodes, layers and transfer function used in the neural network. In this work, we use 

the sigmoidal function as the activation function of the nodes in the hidden layer and 

linear function neurons in its output layer. The defined neural networks are trained 

with the Levenberg-Marquardt algorithm in the Matlab Neural Network Toolbox 

where the common objective is to reduce the error between the neural network 

predicted value and the actual targeted value.  Structure for the training of the forward 

neural network model is shown in figure 4.8. The training stops when the desired 

mean squared error (MSE) reaches the specified value of 0.001. The MSE is 

expressed mathematically below: 

 

∑
=

−=
n

k
Ntg kFkF

n
MSE

1

2))()((1       (4.17) 

 

where n is the number of data, Ftg is the target/desired flow value and FN is the neural 

network output. 

 

    After training, the trained neural networks are validated by validation data 

sets. If the validation routine is not satisfactory, the neural network is not properly 

trained and requires more training. This can be done by re-initializing the weights and 

biases and to re-train the neural network for the next loop. Reconfiguring the neural 

network architecture can also help to increase the quality of the neural network simply 

by increasing or decreasing the number of hidden nodes. 
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Figure 4.8 - Structure for the training of the forward neural network model. 

 

 

4.4   Identification of Neural Network Inverse Models  

 

There are several ways to carry out this identification process of the neural 

network inverse models. The technique used in this work is known as the generalized 

inverse learning method. Here, the network is fed with the required future or reference 

output together with the past inputs and the past output variables to predict the current 

input or control action. The trained network represents the inverse model of the 

system. The assignment of the input nodes consists of the past and present values of 

the known flows and concentrations associated with the individual tanks and the 

desired value of the plant output,    C(k + 1), which corresponds to the required set 

point or reference signal. The output node of the neural network model consists of the 

manipulated variable for the tank, i.e. flow entering the associated tank. Although 

various prediction horizons can be used for inverse models, this study concentrates on 

a simple one-step ahead horizon which assumes that there is no additional time delay 

between the control action and the output. The trained inverse model is then utilized 

as the controller in the direct inverse control method, which will be described later. 
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4.5   Procedure for Obtaining Neural Network Inverse Models 

 

The detailed procedures to find reliable inverse neural network models for the 

various tanks are summarized in figure 4.3 which has the same steps as the procedures 

of the forward models but different in some details. The procedures to obtain inverse 

neural network models of the steel pickling process are described below: 

 

1. Preparing training and validation data sets by selecting appropriate 

excitation signals from the simulation of the steel pickling process models 

by solving equation (4.2) to (4.13).  

 

2. Selecting data to define the input and the output to the neural networks. 

Mathematically, four inverse models are expressed as the function of inputs 

to the model as shown below:  

 

• Pickling baths 

◦ 5% HCl bath: 

F2(k) = f-1 (F2(k − 1), C2(k − 1), C2(k),C1(k), C1(k + 1))  

◦ 10% HCl bath: 

F3(k) = f-1 (F2(k − 1), F2(k), F3(k − 1), C1(k − 1), C1(k),         

                C3(k − 1), C3(k), C2(k), C2(k + 1))  

◦ 15% HCl bath: 

F5(k) = f-1 (F3(k − 1), F3(k), F5(k − 1), C2(k − 1),C2(k), 

C3(k),C3(k + 1)) 

• Rinsing baths 

◦ 1st Rinsing bath: 

F6(k) = f-1 (F6(k − 1),C3(k − 1),C3(k), C5(k − 1),C5(k), 

C4(k),C4(k + 1)) 

 

3. Scaling the data sets in order to overcome the significant minimum and 

maximum values used in the training process. Raw process data are scaled 

down to between 0.05 and 0.95 using equation 4.15 and 4.16 
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4. Selecting the suitable neural network structure or configuration by 

considering the number of hidden nodes, layers and transfer function used in 

the neural network. For neural network inverse models, we use the sigmoidal 

function as the activation function of the nodes in the hidden layer and linear 

function in outer layer (only one hidden layer is used in all the networks). 

 

5. Initializing the weights and biases prior to the network training. 

 

6. Training the defined neural networks with the Levenberg–Marquardt 

method. The training stops when the desired mean squared error (MSE) 

reaches the specified value of 0.001. Structure for the training of the inverse 

neural network model is shown in figure 4.9. 

 

7. The validation data sets that are not used during the training session are 

employed as the performance-monitoring element to achieve the specified 

validation error where the training is stopped while the final result will be a 

properly trained neural network. 

 

8. If the validation routine is not satisfactory, the neural network is not properly 

trained and requires more training by re-initializing the weights and biases 

and to re-train the neural network for the next loop. 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.9 - Structure for the training of the inverse neural network model. 
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4.6   The Minimum MSE Method 

 

In this work, the optimum structures are selected by the minimum MSE 

method. The hidden nodes are varied from 4 to 20 nodes. The MSE error is then 

monitored and the one that corresponds to the minimum MSE value is selected for 

determining the final number of hidden nodes. Table 4.1 shows the MSE values 

obtained from the neural network forward model and Table 4.2 shows the MSE values 

obtained from the neural network inverse model for the 5%, 10% and 15% HCl baths 

and the first rinsing bath using different number of hidden nodes. Based on the 

minimizing MSE error values, it is found that 4, 4, 8 and 4 hidden nodes appear to be 

the best to be applied respectively for the 5%, 10% and 15% HCl baths and the first 

rinsing bath forward models and 4, 8, 12 and 16 hidden nodes appear to be the best to 

be applied respectively for the 5%, 10% and 15% HCl baths and the first rinsing bath 

inverse models which will be used as controllers in the control strategy. 

 

 

4.7   Simulation Results 

 

After training process, the neural networks are validated by the validation data 

sets for the performance-monitoring. Figure 4.10 to 4.13 show the results of neural 

network model validation of each bath with optimal neural network structure (5-4-1, 

9-4-1, 7-8-1 and 7-4-1 structures, respectively). Figure 4.14 to 4.17 show the results 

of neural network inverse model validation of each bath with optimal neural network 

structure (5-4-1, 9-8-1, 7-12-1 and 7-16-1 structures, respectively). The result in these 

figures indicated that the forward and inverse neural network models predict the 

concentration of HCl acid solution and flow rate in each bath identically to the 

validation data.  
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Table 4.1. MSE value for different number of hidden nodes in the neural network 

forward models of the 5%, 10% and 15% HCl baths and the first rinsing bath. 

 

Bath Numbers of hidden nodes 
Mean Squared Error (MSE) 

after validation 

 4 1.276 x 10-6 

 8 1.919 x 10-5 

5% HCl Bath 12 1.942 x 10-5 

 16 1.758 x 10-5 

 20 2.140 x 10-5 

 4 8.069 x 10-6 

 8 1.867 x 10-5 

10% HCl Bath 12 2.194 x 10-5 

 16 9.191 x 10-6 

 20 5.525 x 10-4 

 4 7.441 x 10-4 

 8 2.437 x 10-5 

15% HCl Bath 12 7.478 x 10-4 

 16 8.654 x 10-4 

 20 5.524 x 10-4 

 4 7.055 x 10-6 

 8 1.406 x 10-5 

1st Rinsing Bath 12 1.430 x 10-5 

 16 1.208 x 10-5 

 20 1.187 x 10-5 
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Table 4.2. MSE value for different number of hidden nodes in the neural network 

inverse models of the 5%, 10% and 15% HCl baths and the first rinsing bath. 

 

Bath Numbers of hidden nodes 
Mean Squared Error (MSE) 

after validation 

 4 7.792 x 10-4 

 8 9.834 x 10-4 

5% HCl Bath 12 9.584 x 10-4 

 16 8.701 x 10-4 

 20 1.700 x 10-3 

 4 1.041 x 10-4 

 8 2.381 x 10-5 

10% HCl Bath 12 1.547 x 10-4 

 16 1.904 x 10-4 

 20 2.654 x 10-4 

 4 1.268 x 10-4 

 8 3.211 x 10-5 

15% HCl Bath 12 2.088 x 10-5 

 16 2.214 x 10-5 

 20 1.082 x 10-4 

 4 1.208 x 10-5 

 8 1.406 x 10-5 

1st Rinsing Bath 12 1.430 x 10-5 

 16 7.055 x 10-6 

 20 1.187 x 10-5 
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Figure 4.10 - The validation result of 5% HCl bath neural network model 

              (structure 5-4-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 - The validation result of 10% HCl bath neural network model 

                               (structure 9-4-1) 
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Figure 4.12 - The validation result of 15% HCl bath neural network model 

                                (structure 7-8-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 - The validation result of 1st rinsing bath neural network model 

                               (structure 7-4-1) 
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Figure 4.14 - The validation result of 5% HCl bath inverse neural network model  

                           (structure 5-4-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 - The validation result of 10% HCl bath inverse neural network model  

                          (structure 9-8-1) 
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Figure 4.16 - The validation result of 15% HCl bath inverse neural network model  

                          (structure 7-12-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 - The validation result of 1st rinsing bath inverse neural network model  

                         (structure 7-16-1) 

0   200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

Fl
ow

 ra
te

 F
5 

(l/
m

in
)

Pattern

Validation of 15% HCl Bath Inverse Neural Network Model

 

 
MV (F5)
InvNN Output

MSE = 2.167 x 10-5 

0   200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

Fl
ow

 ra
te

 F
6 

(l/
m

in
)

Pattern

Validation of #1 Rinsing Bath Inverse Neural Network Model

 

 
MV (F6)
InvNN Output

MSE =1.108 x 10-5 



CHAPTER V 

 

MODEL PREDICTIVE CONTROL BASED ON NEURAL 

NETWORK FOR A STEEL PICKLING PROCESS 

 
 

The model predictive control based on neural network (NNMPC) technique is 

investigated in this chapter for application to a steel pickling process which is 

commonly found in the steel industries of Thailand. The process involves removal of 

surface oxides (scales) and other contaminants out of metals by an immersion of the 

metals into an aqueous acid solution, which consists of three acid baths in series. Due 

to the highly nonlinear dynamic behavior, multivariable and interaction between baths 

cause this process to be difficult to control by conventional controllers. It is, therefore, 

the aim of this work to apply the neural network model predictive control strategy for 

controlling such a nonlinear system. To demonstrate the robustness and reliability of 

the proposed control strategy, tests involving the set point tracking under nominal 

condition and various disturbances including model mismatch and noise are 

performed in these studies. 

    
 
5.1   Neural Network Model Based Predictive Control  

 

  As mentioned in Chapter 4, the neural network models of a steel pickling 

process are developed from data sets that obtained by selecting appropriate excitation 

signals from the simulation of the steel pickling process models by solving equation 

(4.2) to (4.13). The neural network models of a steel pickling process are shown in 

figure 5.1 to 5.3. These neural network models are then used in the control algorithm 

for controlling the process to the desired objective. Process control configuration of a 

steel pickling process is shown in figure 5.4. 

 

    The neural network MPC strategy developed in this work is shown in figure 

5.5. In this approach, a neural network model is used to predict the future process 

response over the prediction horizon. The predictions are passed to a optimization 
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routine which attempts to minimize a specified objective function (Equation (5.1)) in 

searching an optimal control signal Fj(k) at each sample instant. The objective 

function has a form of predictive control strategy as follows, 
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Subject to 
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p is a parameter specifying the prediction horizon; Ci is  the concentration in each 

bath, with the ith element specifying the parameter for the corresponding bath. iC
lΓ is 

weighting parameter used to give different weights to different squared tracking 

errors. If all variables in equation (5.1) are in a similar range, then the choice of 

identity parameters may suffice. Cspi is the set point to introduce a feedback in order 

to compensate the system steady state error (Figure 5.5). 

 

    The simulations have been done using the neural network models to find a set 

of suitable control parameters, i.e. values for the parameters, p; m (control horizon) 

and iC
lΓ . With NNMPC feedback, the control results indicate that longer prediction 

horizons tend to produce more aggressive control action, more overshoot and faster 

response. For control horizon (m), shortening the control horizon relative to the 

prediction horizon tends to produce less aggressive controllers and slower system 

response. According to this, the choice of p includes an equal number of future 

predictions of each output in objective function which, with this setting of p is 8 and 

the control horizon (m) is set as 4. iC
lΓ is chosen as identity vector because the outputs 

of process are scaled before they are use in the network process model. Successive 

quadratic programming (SQP) is used to solve the multivariable optimization problem 

of minimizing objective function in equation (5.1) with respect to Fj and to produce a 

solution constrained within the process input operating ranges. 
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Figure 5.1 - The neural network model of 5% HCl bath (structure 5-4-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 - The neural network model of 10% HCl bath (structure 9-4-1) 
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Figure 5.3 - The neural network model of 15% HCl bath (structure 7-8-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - Flow diagram of a steel pickling process control. 
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Figure 5.5 - Multivariable NNMPC strategy. 

 

 

5.2   Simulation Results 

 

The multivariable NNMPC strategy is applied to control the concentration of 

HCl in the 5%HCl, 10%HCl and 15%HCl bath to the values of 1.40, 2.87 and 4.41 

(mol/l) by adjusting the manipulated variables F2, F3 and F5 respectively. They are 

divided into four cases of control studies, which are the set point tracking case, 

disturbance case, model mismatch case and noise case, respectively.  

 

    For set point tracking case, the controllers are designed to bring the 

concentration of HCl in each bath to the desired value. The initial set points are set at 

1.29, 2.77 and 4.30 (mol/l) and changed to 1.35 and 1.40 (mol/l) for 5% HCl bath, 

2.80 and 2.87 (mol/l) for 10% HCl bath and 4.35 and 4.41 (mol/l) for 15% HCl bath 

at 15 and 30 min, respectively.  The control results of NNMPC in figure 5.6 show 

that, although there exists effects among input and output variables of acid baths, 

suitable control has been found to drive the process response to follow the set points 

without overshoot and oscillations. The satisfactory performance is due to the full 

representation of nonlinear dynamics of process by neural network models. For 

comparison, three PI controllers have designed for the four loops within the process. 

The controllers are designed using the Ziegler-Nichols closed loop method around 

one operating point and subsequent fine tuning. The maximum of manipulated flow 

rate is limited at value of 2 (l/min) as reference to pump flow rate limit. The control of 

HCl concentration in three baths using PI show a poor performance as display in 
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figure 5.7 because of the nonlinear dynamics of the baths. They show the overshoot of 

control variables and rigorous adjusting of manipulated variables. 

 

    For disturbance case, which is the change in the concentration C20 in the 

stream F5, introduced by random increasing and reducing 15% from its nominal 

operation values. Figure 5.8 to 5.10 show the results of NNMPC and PI control for the 

5%HCl, 10%HCl and 15%HCl bath respectively by random increasing and reducing 

15% of C20 from its nominal value. It can be seen from figure 5.8 to 5.10 that the 

NNMPC strategy brought the concentrations to the required value by gradually 

increasing the flow rate of F2, F3 and F5 while PI control bring the concentrations to 

the set point by rigorous adjusting of the flow rates and cause the overshoot in process 

response. Table 5.1 summarizes the IAE values of NNMPC and PI control for the 

three baths. They indicate that NNMPC has more robustness and give better control 

performance than PI controllers with smaller IAE error values, when disturbances are 

present in the system. 

 

 

Table 5.1 Performance comparison between NNMPC and PI control under the 

disturbance case. 

 

IAE Values 
Bath 

NNMPC PI 

5% HCl Bath 0.223 0.308 

10% HCl Bath 0.266 0.332 

15% HCl Bath 0.220 0.421 
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(a) 

 

 

 
(b) 

 

Figure 5.6 - NNMPC control for HCl acid concentration: (a) 5% HCl bath;                   

                             (b) 10% HCl bath; and (c) 15% HCl bath 
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(c) 

 

Figure 5.6(Cont.) - NNMPC control for HCl acid concentration: (a) 5% HCl bath;  

                                   (b) 10% HCl bath; and (c) 15% HCl bath 

 

 
(a) 

 

Figure 5.7 - PI control for HCl acid concentration: (a) 5% HCl bath;  

                      (b) 10% HCl bath; and (c) 15% HCl bath 
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(b) 

 
(c) 

 

 

Figure 5.7(Cont.) - PI control for HCl acid concentration: (a) 5% HCl bath;  

                                        (b) 10% HCl bath; and (c) 15% HCl bath 
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    For the model mismatch case, the rate of reaction in acid bath is considered as 

the model mismatch in parameter. The model mismatch is introduced by randomly 

increasing and reducing 15% of the kinetic rate constant from its nominal value. 

Figure 5.11 to 5.13 show the results of NNMPC and PI control for the 5%HCl, 

10%HCl and 15%HCl bath by random increasing and reducing 15% of the rate of 

reaction. Figure 5.11 to 5.13 illustrate that the NNMPC strategy brought the 

concentrations to the set points by gradually increasing the flow rate of F2, F3 and F5 

while PI control bring the concentrations to the set points by rigorous adjusting of the 

flow rates cause the overshoot in process response and using long time back to the set 

points. Table 5.2 shows the IAE values of NNMPC and PI control for the three baths. 

They indicated that NNMPC has more robustness and give better control performance 

than PI controllers, similar to the disturbance case study. 

 

Table 5.2 Performance comparison between NNMPC and PI control under the model 

mismatch case. 

 

IAE Values 
Bath 

NNMPC PI 

5% HCl Bath 0.218 0.311 

10% HCl Bath 0.266 0.331 

15% HCl Bath 0.130 0.420 
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(a) 

 

 
(b) 

 

Figure 5.8 - Concentration control in 5%HCl bath under the disturbance case:               

                            (a) NNMPC (b) PI control. 
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(a) 

 

 
(b) 

 

Figure 5.9 - Concentration control in 10%HCl bath under the disturbance case:             

                          (a) NNMPC (b) PI control. 
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(a) 

 

 
(b) 

 

Figure 5.10 - Concentration control in 15%HCl bath under the disturbance case:           

                           (a) NNMPC (b) PI control. 
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(a) 

 

 
(b) 

 

Figure 5.11 - Concentration control in 5%HCl bath under the model mismatch case:    

                        (a) NNMPC (b) PI control. 

 

 

 



 81

 

 
(a) 

 

 
(b) 

 

Figure 5.12 - Concentration control in 10%HCl bath under the model mismatch case:  

                       (a) NNMPC (b) PI control. 
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(a) 

 

 
(b) 

 

Figure 5.13 - Concentration control in 15%HCl bath under the model mismatch case:  

                       (a) NNMPC (b) PI control. 
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    For the noises case, noises accounting to 2% random values from the output 

measurement, are introduced into the system to further test its robustness and 

performance of the NNMPC approach under close to real situations. The results in 

figure 5.14 to 5.16 show that the NNMPC strategy can control the system and bring 

the concentrations to desired value, while PI control bring the concentrations to the set 

point by rigorous adjusting of flow rates causing the overshoot in process response 

and corresponding with noise make the control variable very far from the desired 

value.  Table 5.3 shows the IAE values of NNMPC and PI control for the three baths 

under noise effects. These results show the robustness and stability of the NNMPC 

when dealing with noise effects and more robust than PI controllers. 

 

Table 5.3 Performance comparison between NNMPC and PI control under the noises 

case. 

 

IAE Values 
Bath 

NNMPC PI 

   5% HCl Bath 0.350 0.410 

   10% HCl Bath 0.304 0.471 

   15% HCl Bath 0.278 0.375 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 84

 
(a) 

 

 
(b) 

 

Figure 5.14 - Concentration control in 5%HCl bath under the noise case: (a) NNMPC  

                       (b) PI control. 
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(a) 

 

 
(b) 

 

Figure 5.15 - Concentration control in 10%HCl bath under the noise case:  

                    (a) NNMPC (b) PI control. 
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(a) 

 

 
(b) 

 

Figure 5.16 - Concentration control in 15%HCl bath under the noise case:  

           (a) NNMPC (b) PI control. 



CHAPTER VI 

 

NEURAL NETWORK INVERSE MODEL BASED CONTROLLER 

FOR THE CONTROL OF A STEEL PICKLING PROCESS 
 

 

6.1   Neural network direct inverse control strategy (NNDIC) 

 

In this chapter, the neural network direct inverse control (NNDIC) method is 

used for the control strategy of a steel pickling process (Daosud et al., 2005). This 

strategy consists of the neural network inverse model that acts as the controller placed 

in series with the process under control. In this work, the neural network inverse 

models trained as described in chapter 4 (Figure 6.1 to 6.4) are utilized to predict the 

manipulated flow rates of each bath to bring the process to desired conditions. Process 

control configuration of a steel pickling process is shown in figure 6.5 to 6.6 

 

    As shown in figure 6.7, the controller predicts the control action, F(k), by 

having current and past values of the process model state variables and the past 

control action as well as the required set point as its inputs. The prediction of the 

controller action, i.e. manipulated variable is normally sufficient to make the value of 

the controlled variable, C(k + 1), change according to the set point. The control 

structure is fairy simple and works fairy well in many non-linear plants (Hussain et 

al., 2003). This control strategy is then implemented in the steel pickling process to 

control the HCl concentrations in baths, C1, C2, C3 and C4, by manipulating the 

flow, F2, F3, F5 and F6. The control performance is tested under the nominal case 

and with disturbances case, model mismatch and noise added into the process. The 

simulation results and discussion of these control studies are described in the next 

section. 
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Figure 6.1 - The inverse neural network controller of 5% HCl bath (structure 5-4-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 - The inverse neural network controller of 10% HCl bath (structure 9-8-1) 
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Figure 6.3 - The inverse neural network controller of 15% HCl bath (structure 7-12-1) 
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Figure 6.4 - The inverse neural network controller of 1strinsing bath (structure 7-16-1) 
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Figure 6.5 - Flow diagram of pickling baths control system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6 - Flow diagram of rinsing baths control system. 
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Figure 6.7 - Neural network direct inverse model control strategy. 
 

 
6.2   Simulation Results and Discussion of NNDIC 

 

In the simulation studies, the objective is to control the concentration of HCl 

in the 5% HCl, 10% HCl, 15% HCl and 1st rinsing bath to the values of 1.40, 2.87, 

4.41 and 1x10−3 mol/l (pH 3) by adjusting the manipulated variables F2, F3, F5 and 

F6, respectively. They are divided into four cases of control studies, which are the 

nominal case, disturbance case, model mismatch case and noise case, respectively. 

 

6.2.1   Nominal case 

 

In this case, the controllers are designed to bring the concentration of HCl in 

each bath to the desired value when the initial condition is set at steady state for 20 

min without controller action. Figure 6.8(a), 6.9(a), 6.10(a) and 6.11(a) show the 

control of HCl concentration in the 5% HCl, 10% HCl, 15% HCl and 1st rinsing bath 

using NNDIC, respectively and figure 6.8(b), 6.9(b), 6.10(b) and 6.11(b) show them 

with PI control. The results in these figures indicate that NNDIC can bring the 

concentrations closely to the set points and give minimal offsets while PI control can 

bring the controlled variable to the set points without offsets. However, drastic change 

of the manipulated variable and oscillation at the initial state when starting control for 

the PI control can be remarkably observed. Their performances are also evaluated 
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using the integral absolute error (IAE). The IAE results for the nominal case of these 

four baths are summarized in Table 6.1. They all showed that relatively, the PI 

controllers give better results than NNDIC in term of lesser IAE values since there are 

no offsets in using the PI control strategy. It is noted that although, the PI controllers 

can handle the system well in the nominal case, the control action of the PI method is 

less smooth than that of the NNDIC method. 

 

 

 
 

 

 
(a) 

 

 
(b) 

 
 

Figure 6.8 - Concentration control in 5% HCl bath under the nominal case:  

           (a) NNDIC (b) PI control. 

 
 
 

   
   

 C
 1

 

           C1 Set point 
           C1 Output 



 94

 

 
(a) 

 

 
(b) 

 
Figure 6.9 - Concentration control in 10% HCl bath under the nominal case:                 

                            (a) NNDIC (b) PI control. 

 

 
(a) 

 
Figure 6.10 - Concentration control in 15% HCl bath under the nominal case:              

                             (a) NNDIC (b) PI control. 

           C2 Set point 
           C2 Output 

   
   

C
 2

 



 95

 

 
(b) 

 
Figure 6.10 (Cont.) - Concentration control in 15% HCl bath under the nominal case:              

                                    (a) NNDIC (b) PI control. 

 
(a) 

 
(b) 

Figure 6.11 - Concentration control in 1st rinsing bath under the nominal case:              

                             (a) NNDIC (b) PI control. 
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Table 6.1 Performance comparison between NNDIC and PI control under the nominal 

case. 

IAE Values 
Bath 

NNDIC PI 

   5% HCl Bath 2.109 0.342 

   10% HCl Bath 37.925 2.607 

   15% HCl Bath 21.697 13.281 

   1st Rinsing Bath 0.274 0.007 

 

6.2.2 Disturbance case 

 

In this case, the disturbance, which is the change in the concentration C20 in 

the stream F5, is introduced by increasing and reducing 15% from its nominal 

operation values. Initially, the process is left under control until t = 200 min, at which 

instant, the disturbance is introduced. During the period t = 200–300 min, the control 

action is halted to the last value to allow the process to respond to the new load 

condition. At    t = 300 min, the PI and neural network based control action are 

introduced back into the system. Figure 6.12 to 6.15 show the results of NNDIC and 

PI control for the 5% HCl, 10% HCl, 15% HCl and 1st rinsing bath by increasing 15% 

of C20 from its nominal value. It can be seen from these figures that when the 

disturbance is introduced (t = 200–300 min), the process responds by an increase in 

the concentration of the baths due to the increase of HCl concentration (C20) to the 

15% HCl bath. After t = 300 min, the NNDIC strategy can bring back the 

concentrations close to the required value by gradually decreasing the manipulated 

flow rates (F2, F3, F5 and F6), while PI control strategy bring the concentrations to 

the set point with oscillation. In reducing the concentration C20 by 15%, the results 

show that the NNDIC strategy can still control the process and bring the 

concentrations to their set points but the PI controllers bring the concentrations to the 

set point with oscillation that can be clearly observed from figure 6.18. Table 6.2 

summarizes the IAE values of NNDIC and PI control for the four baths. They indicate 

that NNDIC has more robustness and give better control performance than PI 

controllers with much smaller IAE error values, when disturbances are present in the 

system. 
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(a) 

 

 
(b) 

 
Figure 6.12 - Concentration control in 5%HCl bath under the disturbance case (15%  

                       increase of the concentration, C20): (a) NNDIC (b) PI control. 

 

 
(a) 

Figure 6.13 - Concentration control in 10%HCl bath under the disturbance case (15%  

                       increase of the concentration, C20): (a) NNDIC (b) PI control. 
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(b) 

 
Figure 6.13(Cont.) - Concentration control in 10%HCl bath under the disturbance  

   case (15% increase of the concentration, C20): (a) NNDIC (b) PI control. 

 

 
(a) 

 
(b) 

 
Figure 6.14 - Concentration control in 15% HCl bath under the disturbance case (15%  

                       increase of the concentration, C20): (a) NNDIC (b) PI control. 
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(a) 

 
(b) 

Figure 6.15 - Concentration control in 1st rinsing bath under the disturbance case  

         (15% increase of the concentration, C20): (a) NNDIC (b) PI control. 

 
(a) 

Figure 6.16 - Concentration control in 5% HCl bath under the disturbance case (15%  

                       decrease of the concentration, C20): (a) NNDIC (b) PI control. 
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(b) 

 
Figure 6.16 (Cont.) - Concentration control in 5% HCl bath under the disturbance  

     case(15% decrease of the concentration, C20):(a) NNDIC (b) PI control 

 

 
(a) 

 
(b) 

Figure 6.17 - Concentration control in 10% HCl bath under the disturbance case (15%  

     decrease of the concentration, C20): (a) NNDIC (b) PI control. 
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(a) 

 
(b) 

Figure 6.18 - Concentration control in 15% HCl bath under the disturbance case (15%  

     decrease of the concentration, C20): (a) NNDIC (b) PI control. 

 

 
(a) 

Figure 6.19 - Concentration control in 1st rinsing bath under the disturbance case  

  (15% decrease of the concentration, C20): (a) NNDIC (b) PI control. 
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(b) 

 
Figure 6.19 (Cont.) - Concentration control in 1st rinsing bath under the disturbance  

                     case (15% decrease of the concentration, C20): (a) NNDIC (b) PI control. 

 

 
 
 

Table 6.2 Performance comparison between NNDIC and PI control under the 

disturbance case (15% increase of the concentration, C20). 

 

IAE Values 
Bath 

NNDIC PI 

   5% HCl Bath 3.508 10.899 

   10% HCl Bath 77.595 146.633 

   15% HCl Bath 74.997 702.675 

   1st Rinsing Bath 0.444 0.782 
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6.2.3   Model mismatch case 

 

The rate of reaction in acid bath is considered as the model mismatch in 

parameter. The model mismatch is introduced by increasing and reducing 15% of the 

kinetic rate constant from its nominal value. Initially, the process is left under control 

until t = 200 min, at which instant, the model mismatch is introduced. During the 

period t = 200–300 min, the process control action is halted to the latest value to allow 

the process to respond to the new mismatch condition. At t = 300 min, the PI and 

neural network based control action are introduced back into the system. Figure 6.20 

to 6.23 show the results of NNDIC and PI control for 5% HCl, 10% HCl, 15% HCl 

and 1st rinsing bath by increasing 15% of the rate of reaction. When model mismatch            

(t = 200–300 min) is introduced, the process responds by a decrease in concentration 

in baths due to the increase of the rate of reaction in acid bath. After t = 300 min, the 

NNDIC strategy bring back the concentrations close to their required values by 

gradually increasing the manipulated flow rates (F2, F3, F5 and F6), while PI control 

strategy bring the concentrations to the set point with drastic change of the 

manipulated variable and oscillation. 

    

    In reducing 15% of the rate of reaction, the results again show that the NNDIC 

strategy can control the process and bring the concentrations to their set points but PI 

controller bring the concentrations to the set point with oscillation that can be clearly 

observed from figure 6.26. Table 6.3 shows the IAE values of NNDIC and PI control 

for the four baths. They indicate that NNDIC has more robustness and give better 

control performance than PI controllers, similar to the disturbance case study. The 

robustness of the NNDIC can be explained by the fact that the obtained NN inverse 

model for the use in the NNDIC was trained with the wide range of operating 

conditions whereas the PI controller was tuned based on a nominal condition. 
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(a) 

 
(b) 

Figure 6.20 - Concentration control in 5% HCl bath under the model mismatch case  

             (15% increase of the reaction rate, k): (a) NNDIC (b) PI control. 

 

 
(a) 

Figure 6.21 - Concentration control in 10% HCl bath under the model mismatch case  

            (15% increase of the  reaction rate, k): (a) NNDIC (b) PI control. 
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(b) 

Figure 6.21 (Cont.) - Concentration control in 10% HCl bath under the model  

                               mismatch case (15% increase of the  reaction rate, k):  

                                          (a) NNDIC (b) PI control. 

 

 
(a) 

 
(b) 

Figure 6.22 - Concentration control in 15% HCl bath under the model mismatch case  

            (15% increase of the  reaction rate, k): (a) NNDIC (b) PI control. 

   
   

C
 2

 
   

   
C

 3
 



 106

 
(a) 

 

 
(b) 

Figure 6.23 - Concentration control in 1st rinsing bath under the model mismatch case  

           (15% increase of the  reaction rate, k): (a) NNDIC (b) PI control. 

 

      
(a) 

Figure 6.24 - Concentration control in 5% HCl bath under the model mismatch case  

              (15% decrease of the  reaction rate, k): (a) NNDIC (b) PI control. 
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(b) 

Figure 6.24 (Cont.) - Concentration control in 5% HCl bath under the model  

                   mismatch case (15% decrease of the  reaction rate, k):  

                   (a) NNDIC (b) PI control. 

 
(a) 

 

 
(b) 

Figure 6.25 - Concentration control in 10% HCl bath under the model mismatch case  

                       (15% decrease of the  reaction rate, k): (a) NNDIC (b) PI control. 
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(a) 

 

 
(b) 

Figure 6.26 - Concentration control in 15% HCl bath under the model mismatch case  

                       (15% decrease of the  reaction rate, k): (a) NNDIC (b) PI control. 

 
(a) 

Figure 6.27 - Concentration control in 1st rinsing bath under the model mismatch case  

                       (15% decrease of the  reaction rate, k): (a) NNDIC (b) PI control. 
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(b) 

Figure 6.27(Cont.) - Concentration control in 1st rinsing bath under the model  

                                        mismatch case (15% decrease of the  reaction rate, k):  

                                        (a) NNDIC (b) PI control. 

 

 

Table 6.3 Performance comparison between NNDIC and PI control under the model 

mismatch case (15% increase of the reaction rate, k). 

 

IAE Values 
Bath 

NNDIC PI 

   5% HCl Bath 11.116 181.503 

   10% HCl Bath 101.759 244.167 

   15% HCl Bath 73.782 209.544 

   1st Rinsing Bath 0.424 0.696 
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6.2.4   Noise case 

 

Noises, accounting to 2% random values from the output measurement, are 

introduced into the system to further test its robustness and performance of the 

NNDIC approach under close to real situations. They are introduced under the model 

mismatch and disturbance cases as mentioned previously. The steps are the same as in 

the model mismatch and disturbance case, i.e. during the period t = 200–300 min, the 

process control action is halted to the latest value to allow the process to respond to 

the model mismatch and disturbance load conditions. At t = 300 min, the neural 

network-based control action is introduced back into the system. The results in figure 

6.28 and 6.29 show that the NNDIC strategy can control the system in the both cases 

(model mismatch with noise and disturbance with noise) and bring the concentrations 

to desired set points in all these baths. Table 6.4 shows the IAE values of NNDIC for 

the four baths in both cases under noise effects. These results show the robustness and 

stability of the NNDIC when dealing with noise and disturbance effects 

simultaneously. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)   
 

Figure 6.28 - Concentration control by NNDIC under the noise case with the  

                   disturbance in C20 (+15%): (a) 5% HCl Bath  (b) 10% HCl Bath 

       (c) 15% HCl Bath (d) 1st rinsing Bath. 
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                                     (c)                                                                                    (d) 
 
 

Figure 6.28(Cont.) - Concentration control by NNDIC under the noise case with the  

                                   disturbance in C20 (+15%): (a) 5% HCl Bath  (b) 10% HCl Bath   

                                    (c) 15% HCl Bath  (d) 1st rinsing Bath. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
 

Figure 6.29 - Concentration control by NNDIC under the noise case with the model  

       mismatch in  k (+15%): (a) 5% HCl Bath (b) 10% HCl Bath  

                         (c) 15% HCl Bath  (d) 1st rinsing Bath. 
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(b) (d)  
 

Figure 6.29(Cont.) - Concentration control by NNDIC under the noise case with  

                       the model mismatch in  k (+15%): (a) 5% HCl Bath  

   (b) 10% HCl Bath (c) 15% HCl Bath  (d) 1st rinsing Bath. 

   
 
 

 
Table 6.4 Performance of NNDIC under the noise case. 

 

IAE Values 
Bath 

disturbance with noise model mismatch with noise 

5% HCl Bath 78.139 56.6884 
10% HCl Bath 345.742 245.509 

15% HCl Bath 317.110 179.934 

1st Rinsing Bath 0.501 0.472 
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6.3   Dual Mode Control based on Neural Network Inverse Model Strategy 

 

Normally, the implementation of the inverse neural network model to control 

the process gives some errors between set point and control variable (offset) since an 

exact inverse model is difficult to obtain as have been proved theoretically (Hussain, 

1997) and observed from the previous section. In order to remove this offset and 

improve the process response, proportional-integral (PI) controller is implemented in 

this proposed dual mode control strategy which makes use of both inverse neural 

network and PI controller. The basis concept of the dual mode algorithm can be 

divided into two modes of operation. That is, in the first mode, the inverse neural 

network controller is applied whenever error between the state (control variables) and 

set point lies outside the limit values, E (Equation (6.1)), while a controller in the 

second mode, the PI controller is employed inside the limit error region to bring the 

state to the desired set point. In this work the limited values is set of ±3% of the set 

point in each baths, where E is defined as: 

 

( ) EkCCsp =−                                                          (6.1) 

 

The main benefit of the dual mode controller is that, under nominal operating condition 

when the state are located far away from set point, the inverse neural network 

controller can bring the state to the desired set point without drastic change of the 

manipulated variable and oscillation. However, when the state are located within 

limited region (E), PI controller start to control and bring the state to the desired set 

point without offset which normally occur when controlling using the inverse neural 

network controller only. In addition, the control action given by the PI controller in 

dual mode gradually changes and is less drastic as compared when using the 

conventional controller (PI) alone.  

 

 

6.4   Results and Discussion of Dual Mode Control 

 

The objective of the simulation studies is to control the concentration of HCl 

in the 5%HCl, 10%HCl, 15%HCl and 1st rinsing bath to values of 1.40, 2.87, 4.41 and  
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1x10-3 mol/liter (pH 3) by adjusting the manipulated variable F2, F3, F5 and F6 

respectively. They are divided into three cases of control studies, which are the 

nominal case, disturbance case and model mismatch case, respectively. 

 

6.4.1   Nominal case 

 

The controllers are designed to bring the concentration of HCl in each bath to 

the desired value when the initial condition is set at the steady state and leave the 

process without controller for 20 min after that start to control by controllers. Figure 

6.30 (a), (b) and (c) show the control of HCl concentration in 15%HCl bath using dual 

mode control, NNDIC and PI control, respectively. The results in these figures 

indicate that dual mode controller can bring the concentration to the desired set point 

without any offset and oscillation of manipulated variable while the NNDIC bring the 

concentration closely to the set point with minimal offset. The PI controller bring the 

concentration to the set point without offset but however there is drastic change of the 

manipulated variable and large oscillation in the initial state of the control. These 

control strategies are also applied for the 5%HCl, 10%HCl and 1st rinsing bath; 

however, only the 15%HCl bath control result is given because this bath has highest 

HCl concentration and is very difficult to control, from which we can observe the 

effect of the controllers. Their performances are also evaluated using the Integral 

Absolute Error (IAE). The IAE results for the nominal case of these four baths are 

summarized in Table 6.5. They showed that relatively, the PI controllers give better 

results than dual mode control and NNDIC in term of lesser IAE values for the 5% 

HCl, 10% HCl and 1st Rinsing Baths. For the 15%HCL bath, the control action of PI 

controller is very drastic causing overshoot of concentration and therefore higher IAE 

value is obtained as compared to the DM controller.  
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(a) 

 

        

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 

Figure 6.30 - Concentration control in 15%HCl bath under the nominal case :  

                              (a) DM control (b) NNDIC (c) PI control 
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Table 6.5 Performance comparison between Dual mode control, NNDIC and PI 

control under the nominal case  

 

IAE Values 
Bath 

DM NNDIC PI 

   5% HCl Bath 1.756 2.109 0.342 

   10% HCl Bath 3.425 37.925 2.607 

   15% HCl Bath 4.967 21.697 13.281 

   1st Rinsing Bath 0.044 0.274 0.007 

 

 

6.4.2   Disturbance case 

 

In this case, the disturbance, which is the change in the concentration of C20 in 

the stream F5, is introduced by increasing and reducing 15% from its nominal 

operation values. Initially, the process is left under control until t= 200 minutes, at 

which instant, a disturbance is introduced. During the period t=200 to 300 min, the 

control action is halted to the last value to allow the process to respond to the new 

load condition. At t=300 min, the DM, NNDIC and PI control action are introduced 

back into the system. Figure 6.31 shows the results of the DM, NNDIC and PI control 

for 15%HCl bath by increasing 15% of C20 from its nominal value. It can be seen 

from figure 6.31 that when the disturbance is introduced (t=200 to 300 min), the 

process responds by the increase in concentration of the baths due to the increase of 

HCl concentration (C20) to 15% HCl bath. After t=300 min, the DM strategy can 

bring back the concentrations to the required value without offset and oscillation, 

while NNDIC strategy bring back the concentrations close to the required value and 

give offsets and the PI control strategy cannot bring the concentrations to the set 

point. Relatively, similar results are obtained in the 10%HCl bath and 1st rinsing bath. 

In 5% HCl bath PI controller can bring the concentration to its set point but there is 

rigorous adjusting of the F2 causing overshoot in concentration. In reducing the 

concentration C20 by 15%, the results show that the DM strategy can still control the 

process and bring the concentrations to their set points, while NNDIC strategy bring 

the concentrations to their set points with slight offsets and PI controller bring the 



 117

concentrations to the set point with oscillation. Table 6.6 summarizes the IAE values 

of DM control, NNDIC and PI control for the four baths. They indicate that the DM 

controller has most robustness and give better control performance than the NNDIC 

controller and PI controller with very much smaller IAE error values, when 

disturbances are present in the system.  

 

Table 6.6 Performance comparison between DM control, NNDIC and PI control 

under the disturbance case (15% increasing of the concentration, C20) 

 

IAE Values 
Bath 

DM NNDIC PI 

   5% HCl Bath 1.183 3.508 12.252 

   10% HCl Bath 3.661 77.595 623.919 

   15% HCl Bath 38.492 74.997 696.903 

   1st Rinsing Bath 0.052 0.444 0.087 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

Figure 6.31 - Concentration control in 15%HCl bath under the disturbance case           

                            (15% increase of the concentration, C20) : (a) DM control   

                             (b) NNDIC. (c) PI control. 
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(b) 

 

 

 

 

 

 

 

 

 

(c) 

                                                                                                                          

Figure 6.31(Cont.) - Concentration control in 15%HCl bath under the disturbance  

 case (15% increase of the concentration, C20) : (a) DM control   

                                     (b) NNDIC. (c) PI control. 
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6.4.3   Model mismatch case 

 

In this work, the rate of reaction in acid bath is considered as the model 

mismatch in the parameter under consideration. The model mismatch is introduced by 

increasing and reducing 15% of the kinetic rate constant from its nominal value. 

Initially, the process is left under control until t= 200 min, at which instant, the model 

mismatch is introduced. During the period t=200 to 300 min, the process control 

action is halted to the latest value to allow the process to respond to new load 

condition. At t=300 min, the DM, NNDIC and PI control action are introduced back 

into the system. Figure 6.32 shows the results of DM, NNDIC and PI control for 

15%HCl bath by increasing 15% of the rate of reaction. When the model mismatch is 

introduced (t=200 to 300 min), the process responds by a decrease in concentration in 

baths due to the increase of rate of reaction in acid bath. After t=300 min, the DM 

control bring back the concentrations to their required values without the offset, while 

NNDIC strategy bring back the concentrations close to their required values and give 

offsets and PI control strategy bring the concentrations to the set point with drastic 

change of the manipulated variable and oscillation.  

 

   In reducing 15% of the rate of reaction, the results again show that the DM 

control can control the process and bring the concentrations to their set points, while 

NNDIC strategy can control the process and bring the concentrations close to their set 

points with slight offsets and PI control strategy bring the concentrations to the set 

point with drastic change of the manipulated variable and oscillation. Table 6.7 shows 

the IAE values of DM control, NNDIC and PI control for the four baths. They again 

indicate that the DM control has most robustness and give better control performance 

than NNDIC and PI controller, similar to the disturbance case study. 
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Table 6.7 Performance comparison between DM control, NNDIC and PI control 

under the model mismatch case  (15% increase of the reaction rate, k)  

 

IAE Values 
Bath 

DM NNDIC PI 

   5% HCl Bath 3.998 11.116 136.385 

   10% HCl Bath 8.162 101.759 220.565 

   15% HCl Bath 11.665 73.782 289.428 

   1st Rinsing Bath 0.049 0.424 0.041 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

Figure 6.32 - Concentration control in 15% HCl under the model mismatch case (15%  

                   increase of reaction rate, k): (a) DM control (b) NNDIC (c) PI control 
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(b) 

 

 

 

 

 

 

 

 

 

(c) 

 

Figure 6.32(Cont.) - Concentration control in 15% HCl under the model mismatch case  

                                  (15% increase of reaction rate, k): (a) DM control.  

                                  (b) NNDIC. (c) PI control. 



CHAPTER VII 

 

CONCLUSIONS 
 

  

The objective of this research is to develop and implement an advanced 

control scheme for the control of a nonlinear multivariable chemical process. Since 

the real chemical processes are non-linear and multivariable interacting systems, 

which make them difficult to control by using conventional controllers, model-based 

advance control techniques are then required to obtain tighter control.  

 

The work presented in this dissertation studies on a model predictive control 

based on neural network (NNMPC) to control a steel pickling process which has 

highly nonlinear dynamic behavior and involves multivariable interactions in nature. 

Since the MPC controller uses a model of controlled process in its algorithm to 

determine manipulated variables then the modeling of the process is very importance. 

However, in many cases it is even impossible to obtain a suitable process model due 

to the complexity of the underlying processes or the lack of knowledge of critical 

parameters of the models. Therefore, in this work, the neural network is used to 

develop the model of a steel pickling process. The developed neural network models 

are then used in the MPC algorithm. In addition to implementation of inverse neural 

network (InvNN) and Dual Mode controller (DM) to a steel pickling process is 

investigated. The main issues studied in this research are summarized below. 

 

 

7.1 A Steel Pickling Process Modeling 

 

For system identification based on neural networks, process data are prepared 

and used to train and validate neural network models. In this work, neural networks 

process models based on input-output information have been developed to predict the 

hydrochloric acid concentration of a steel pickling process which has highly nonlinear 

dynamic behavior and multivariable interaction. Various neural networks 

architectures have been trained using Lenvenberg- Marquardt techniques, and the 
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accuracy of the obtained models has been evaluated using validation data set. The 

optimal neural network architectures are obtained using minimum MSE technique. 

The simulation results have shown that the multilayer feedforward neural network 

models provide sufficiently accurate prediction of acid concentrations and pH values 

of the process. Therefore, with the obtained neural network models, advanced model 

based control techniques, i.e., NNMPC, are then applicable to control the steel 

pickling process. 

 

 

7.2 Neural Network Direct Inverse Control (NNDIC) and Dual Mode Control 

(DM) 

 

A neural network direct inverse control (NNDIC) strategy was tested and 

implemented for controlling the concentrations of pickling and rinsing baths in a steel 

pickling process which is highly non-linear and involves multivariable interactions in 

nature. It was observed that the neural network inverse model-based control strategy 

can bring the controlled variables closely to their set points with minimal oscillations 

in all cases studied, i.e., nominal case, disturbance case, model mismatch case and 

noise case. Comparison of performance with the conventional PI controller indicated 

that NNDIC was more robust than the PI controller and gave better results in cases 

involving disturbances, model mismatches and noise. The PI gave slightly better 

results in the nominal case in term of offset rejection but rigorous oscillation was 

observed as compared to the neural network method.  

 

Nevertheless, inverse neural network model is not the exact model, and then 

normally the offset occurs when implemented in control of the process as mention 

above. Therefore, the dual mode is an attractive control methodology for process 

control application because it can remove the offset and improves robustness of the 

controller. In this work dual mode control strategy is tested and implemented for 

controlling concentrations of pickling and rinsing baths in a steel pickling process. 

Lenvenberg- Marquardt techniques and MSE minimization technique are used for 

training and choosing the optimal inverse neural network model structures, 

respectively. It was observed that DM control strategy can bring the control variables 

to their set points without offset and oscillations in all cases studies, i.e., nominal 
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case, disturbance case and model mismatch case. Comparison of performance with 

NNDIC and the conventional PI controller indicated that DM control strategy gave 

better results in cases involving disturbances, and model mismatches which gave 

lesser IAE values than NNDIC and PI control. These results show that DM control 

strategy give good control results for highly nonlinear and multivariable system such 

as the steel pickling process, and can improve the robustness of control system and 

remove the offset when compared to the NNDIC and conventional PI control strategy. 

 

 

7.3 Neural Network based Model Predictive Control (NNMPC) 

 

The implementation of a neural network model based predictive controller, 

MIMO controller, to a steel pickling process is investigated. The obtained multilayer 

feedforward neural network models have been employed to predict the future process 

response in MPC algorithm for controlling the concentrations of pickling in a steel 

pickling process. It was observed that NNMPC can bring the control variables to their 

desired set points without oscillations and drastic changing of manipulated variables 

in all cases studies, i.e., set point tracking case, disturbance case, model mismatch 

case and noise case. Comparison of performance with the conventional PI controller 

indicated that NNMPC was more robust than the PI controller and gave better control 

results in cases involving disturbances, model mismatches and noise. These results 

show that NNMPC controllers are robust in nature and highly promising to be 

implemented in such highly nonlinear multivariable systems such as the steel pickling 

process. 
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APPENDICES 



APPENDIX A 

 

MATLAB R2006a – Neural Network Modeling 

 
 This MATLAB source code will create a feedforward neural network with 4 

hidden nodes in hidden layer and one output node in output layer. The number of 

inputs to the network is defined from the size of the input matrix where if input is a 

matrix of 5 x 2000, the number of input to the network is 5. There are 2000 pairs of 

training data used in the training of this network. 

 

 The transfer functions used in the hidden and output layers are sigmoidal and 

linear respectively. The network is trained with the Lavenberg-Marquardt training 

algorithm. 

 

%=========================================================== 
function Modeling   
clear 
load TrainData.mat 
load TestData.mat 
  
%============= 
% scale down data 
%============= 
xmaxin=[2;2;4;4;3]; 
xminin=[0;0;0;0;0]; 
dmax=0.95; 
dmin=0.05; 
xmaxout=[3]; 
xminout=[0]; 
  
TrainInDown1 = ScDown(InTrain1,xmaxin,xminin,dmax,dmin); 
TrainOutDown1= ScDown(OutTrain1,xmaxout,xminout,dmax,dmin); 
TrainInDown2 = ScDown(InTrain2,xmaxin,xminin,dmax,dmin); 
TrainOutDown2= ScDown(OutTrain2,xmaxout,xminout,dmax,dmin); 
TestInDown   = ScDown(InTest,xmaxin,xminin,dmax,dmin); 
TestOutDown  = ScDown(OutTest,xmaxout,xminout,dmax,dmin); 
  
%================= 
%network initialization 
%================= 
     S1=4; 
     S2=1; 
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    NetB1=newff(minmax(TrainIn1),[S1 S2],{'tansig' 'purelin'},'trainlm'); 
     
    NetB1.trainParam.goal=0; 
    NetB1.trainParam.epochs=1000; 
    NetB1.trainParam.min_grad=1e-10; 
    NetB1.trainparam.show=100; 
     
    dmse=1e-4; 
    round=1; 
    msenn=1; 
    ssenn=1; 
    mseR(:,1)=msenn; 
    sseR(:,1)=ssenn; 
 
%================ 
% Network Training  
%================ 
  while msenn>=dmse 
         set=(round/2-floor(round/2)); 
         switch set 
         case 0 
             input=TrainInDown1; 
             target=TrainOutDown1; 
              
         case 0.5 
             input=TrainInDown2; 
             target=TrainOutDown2; 
              
         end 
                           
         [NetB1,tr,Y,E,Pf,Af]=train(NetB1,input,target); 
          
         NNOutputtest=sim(NetB1,TestInDown); 
         error=NNOutputtest-TestOutDown; 
         msenn=mse(error); 
         ssenn=sse(error); 
             
         mseR(:,round)=msenn; 
         sseR(:,round)=ssenn; 
          
         [NNTestOut] = ScUp(NNOutputtest,xmaxout,xminout,dmax,dmin);          
          
         if msenn>=3 
             NetB1=init(NetB1); 
         end 
                        
         if round>=15 
             msenn=0; 
             ssenn=0; 
         end 
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         time=0:length(NNTestOut(1,:))-1; 
         round=round+1; 
 end 
              
     save 4ModelB1.mat NetB1 S1 S2 xmaxin xminin dmax dmin xmaxout xminout 
      
     figure 
         plot(time,OutTest,'r',time,NNTestOut,'b:') 
         title('Validation of Neural Network Model') 
         legend('C1 Target','C1 Output') 
         ylabel('Concentration (mol/l)') 
         xlabel('Pattern') 
          
      
 



APPENDIX B 

 

MATLAB R2006a – The Control of NNMPC  
 

This MATLAB source code simulates a model predictive control based on 

neural network (NNMPC) to control a steel pickling process. The developed neural 

network models are used in the MPC algorithm for prediction of the future process 

response. 

 

%=========================================================== 
function closeloop 
clear  
global i p c1sp c2sp c3sp H1 H2 H3 c20 C1 C2 C3 C11 C22 C33 dt PP F2k F3k F5k 
i=1; 
p=4; 
PP=8; 
  
TTime =45;    
dt = 0.1;     
Numdata = TTime/dt; 
samptime = 0.5; 
j=0; 
  
% Constant value 
A1=0.0729;     A2=0.0729;     A3=0.0729;   
A4=0.0729;     A5=0.0729;     A6=0.0729;  
k1i=0.003267;   k2i=0.003267;    k3i=0.003267; 
c20i=6.034;      
cw=1*10^-7; 
c1sp=1.29; 
c2sp=2.77;    
c3sp=4.3; 
c1spi(1)=1.29;       
c2spi(1)=2.77;      
c3spi(1)=4.3; 
pH4sp=3;        
pH5sp=5;        
pH6sp=7; 
  
% Drag in-out  
drag=(0.0005/1000); 
q=drag; 
qest(1)=drag; 
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% Initial values of manipulated variables 
F2(1)=0.0465/1000;    
F3(1)=0.0916/1000; 
F5(1)=0.1235/1000; 
  
F6(1)=0.001/1000 ;         
F7(1)=0.001/1000 ;           
F8(1)=0.001/1000; 
  
% Initial values of disturbance 
F4(1)=0/1000 ;     
  
% Initial values of other variables 
F1(1)=F2(1)-q   ;     
F9(1)=F6(1)-F4(1); 
F10(1)=F5(1)+F4(1)-F3(1); 
F11(1)=F3(1)-F2(1); 
  
h1(1)=0.205;  c1(1)=1.2;  
h2(1)=0.205;  c2(1)=2.67;  
h3(1)=0.205;  c3(1)=4.2; 
h4(1)=0.205;  c4(1)=1*10^-7;  
h5(1)=0.205;  c5(1)=1*10^-7;  
h6(1)=0.205;  c6(1)=1*10^-7;  
  
rate1(1)=0; rate2(1)=0; rate3(1)=0;  
    
sumF5=F5(1)*dt; sumF1=F1(1)*dt;   
  
  
Hwait=waitbar(0,'Simulation in Progress ...'); 
  
for k=1:1:Numdata 
    waitbar(k/Numdata); 
     
    if k>=150 
        c1sp=1.35;    
        c2sp=2.8;  
        c3sp=4.35; 
    end 
    if k>=300 
        c1sp=1.4;       
        c2sp=2.87;      
        c3sp=4.408; 
    end 
         
    c20=c20 
    k1=k1i; 
    k2=k2i; 
    k3=k3i; 
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    % Process         
    h1(k+1)=h1(k)+(dt/A1)*(F2(k)-F1(k)-q);     
    h2(k+1)=h2(k)+(dt/A2)*(F3(k)-F2(k)-F11(k));     
    h3(k+1)=h3(k)+(dt/A3)*(F4(k)+F5(k)-F3(k)-F10(k));     
        
    V1=A1*h1(k);       V2=A2*h2(k);       V3=A3*h3(k);  
     
    if k>1        
      rate1(k)=k1*c1(k);    rate2(k)=k2*c2(k);    rate3(k)=k3*c3(k);      
    end       
     
    c1(k+1)=c1(k)+(dt/V1)*((F2(k)*c2(k))-((F1(k)+q)*c1(k)))-(dt)*rate1(k);       
    if c1(k+1)<0  c1(k+1)=1*10^-7; end;     
    c2(k+1)=c2(k)+(dt/V2)*((q*c1(k))+(F3(k)*c3(k))-((F2(k)+q+F11(k))*c2(k)))-  
                   (dt)*rate2(k);       
    if c2(k+1)<0  c2(k+1)=1*10^-7; end;     
    c3(k+1)=c3(k)+(dt/V3)*((q*c2(k))+(F4(k)*c4(k))-((F3(k)+q+F10(k))*c3(k)))- 
                  (dt)*rate3(k)+(dt/V3)*(F5(k)*c20);     
    if c3(k+1)<0  c3(k+1)=1*10^-7; end;   
     
    H1=h1(k+1); 
    H2=h2(k+1); 
    H3=h3(k+1); 
     
    C1=c1(k+1); 
    C2=c2(k+1); 
    C3=c3(k+1); 
     
    C11=c1(k); 
    C22=c2(k); 
    C33=c3(k); 
     
    F2k=F2(k); 
    F3k=F3(k); 
    F5k=F5(k); 
  
  if k==j|k==1     
     Fopt=MPCNN(p,F2(k),F3(k),F5(k)); 
     F2(k+1)=Fopt(1);     
     F3(k+1)=Fopt(p1+1);  
     F5(k+1)=Fopt(p1+p2+1);      
     j=j+5; 
  else 
     F2(k+1)=F2(k);     
     F3(k+1)=F3(k);  
     F5(k+1)=F5(k);  
  end 
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  % Disturbance 
  F1(k+1)=F2(k+1)-q; 
  F4(k+1)=F4(k);  
  F10(k+1)=F5(k+1)+F4(k+1)-F3(k+1); 
  F11(k+1)=F3(k+1)-F2(k+1); 
  c4(k+1)=c4(k); 
      
  c1spi(k+1) = c1sp;   
  c2spi(k+1) = c2sp; 
  c3spi(k+1) = c3sp; 
   
  i=1; 
end 
close(Hwait) 
     
for k = 1:1:Numdata+1 
  ti(k) = (k-1)*dt;     
end;  
  
IAE1 = 0; 
err1 = c1spi - c1; 
err21 = abs(err1)*dt; 
IAEc1 = sum(err21); 
  
IAE2= 0; 
err2 = c2spi - c2; 
err22 = abs(err2)*dt; 
IAEc2 = sum(err22); 
  
IAE3 = 0; 
err3 = c3spi - c3; 
err23 = abs(err3)*dt; 
IAEc3 = sum(err23); 
  
figure 
subplot(211),plot(ti,c1,':r',ti,c1spi,'-r'),... 
ylabel('Concentration (mol/l)'), 
legend('C1','set point') 
Title('5% HCl Bath')  
subplot(212),plot(ti,F2*1000,'-r'),... 
ylabel('F2 flow rate (l/min)'), 
legend('F2') 
Xlabel('Time (min)'), 
  
figure 
subplot(211),plot(ti,c2,':r',ti,c2spi,'-r'),... 
ylabel('Concentration (mol/l)'), 
legend('C2','set point') 
Title('10% HCl Bath') 
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subplot(212),plot(ti,F3*1000,'-r'),... 
ylabel('F3 flow rate (l/min)'), 
legend('F3') 
Xlabel('Time (min)'), 
  
figure 
subplot(211),plot(ti,c3,':r',ti,c3spi,'-r'),... 
ylabel('Concentration (mol/l)'), 
legend('C3','set point') 
Title('15% HCl Bath')  
subplot(212),plot(ti,F5*1000,'-r'),... 
ylabel('F5 flow rate (l/min)'), 
legend('F5') 
Xlabel('Time (min)'), 
  
figure 
subplot(311),plot(ti,h1,':r'),... 
ylabel('Hight (m)'), 
Title('Hight') 
subplot(312),plot(ti,h2,'-r'),... 
ylabel('Hight (m)'), 
subplot(313),plot(ti,h3,'-r'),... 
ylabel('Hight (m)'), 
Xlabel('Time (min)'), 
  
%=========================================================== 
 
function xopt=MPCNN(p,F2mv,F3mv,F5mv) 
  
int1=ones(p,1)*(0.1/1000); 
int2=ones(p,1)*(0.1/1000); 
int3=ones(p,1)*(0.1/1000); 
lb1=ones(1,p)*0; 
ub1=ones(1,p)*2/1000; 
lb2=ones(1,p)*0; 
ub2=ones(1,p)*10/1000; 
lb3=ones(1,p)*0; 
ub3=ones(1,p)*2/1000; 
  
OPTIONS=OPTIMSET('TolFun',1e-6,'TolX',1e-
6,'MaxFunEvals',5000,'MaxIter',5000,); 
[xopt,Fval,conv]=fmincon(@obj,[int1;int2;int3],[],[],[],[],[lb1 lb2 lb3],[ub1 ub2  

     ub3],[],OPTIONS); 
 
%=========================================================== 
  
function f = obj(Fin) 
load 4ModelB1.mat 
load 4ModelB2.mat 
load 4ModelB3.mat 
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global   i p c1sp c2sp c3sp H1 H2 H3 c20 C1 C2 C3 C11 C22 C33 dt PP F2k F3k F5k 
clear SimCon  
  
cc1=C1; 
cc2=C2; 
cc3=C3; 
cc11=C11; 
cc22=C22; 
cc33=C33; 
F22k=F2k; 
F33k=F3k; 
F55k=F5k; 
cc11down=ScDown(cc11,Pi(12,2),Pi(12,1),0.95,0.05); 
cc22down=ScDown(cc22,Pi(13,2),Pi(13,1),0.95,0.05);  
cc33down=ScDown(cc33,Pi(14,2),Pi(14,1),0.95,0.05);  
F22kdown=ScDown(F22k,Pi(2,2),Pi(2,1),0.95,0.05);   
F33kdown=ScDown(F33k,Pi(3,2),Pi(3,1),0.95,0.05);   
F55kdown=ScDown(F55k,Pi(5,2),Pi(5,1),0.95,0.05);  
  
for m=1:1:p 
    f2(m)=Fin(m); 
end 
  
for m=1:1:p 
    f3(m)=Fin(p+m); 
end 
  
for m=1:1:p 
    f5(m)=Fin(p+p+m); 
end 
  
for n=1:1:PP 
     
     if n>p 
        f2(n)=f2(n-1); 
     end 
     if n>p 
        f3(n)=f3(n-1); 
     end 
     
     if n>p 
        f5(n)=f5(n-1); 
     end 
end 
  
f=0; 
fin1sum=0; 
fin2sum=0; 
fin3sum=0; 
c1spdown=ScDown(c1sp,Pi(12,2),Pi(12,1),0.95,0.05);  
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c2spdown=ScDown(c2sp,Pi(13,2),Pi(13,1),0.95,0.05);  
c3spdown=ScDown(c3sp,Pi(14,2),Pi(14,1),0.95,0.05); 
  
for j=1:1:PP 
     
     SimCon(1,1)=ScDown(f2(1),Pi(2,2),Pi(2,1),0.95,0.05);  
     SimCon(2,1)=ScDown(f3(1),Pi(3,2),Pi(3,1),0.95,0.05);  
     SimCon(3,1)=ScDown(f5(1),Pi(5,2),Pi(5,1),0.95,0.05); 
     SimCon(4,1)=ScDown(cc1,Pi(12,2),Pi(12,1),0.95,0.05); 
     SimCon(5,1)=ScDown(cc2,Pi(13,2),Pi(13,1),0.95,0.05);  
     SimCon(6,1)=ScDown(cc3,Pi(14,2),Pi(14,1),0.95,0.05);  
     SimCon(7,1)=ScDown(10^-7,Ri(15,2),Ri(15,1),0.95,0.05); 
               
     %B1 
     SimConB1(1,j)=SimCon(1,j);  
        if j<=1 
        SimConB1(2,j)=F22kdown;  
        else  
        SimConB1(2,j)=SimCon(1,j-1);  
        end 
       SimConB1(3,j)=SimCon(5,j);  
        if j<=1 
        SimConB1(4,j)=cc22down;  
        else  
        SimConB1(4,j)=SimCon(5,j-1);  
        end 
       SimConB1(5,j)=SimCon(4,j); 
      
     %B2 
     SimConB2(1,j)=SimCon(1,j);  
        if j<=1 
        SimConB2(2,j)=F22kdown;  
        else  
        SimConB2(2,j)=SimCon(1,j-1); 
        end 
     SimConB2(3,j)=SimCon(2,j);  
        if j<=1 
        SimConB2(4,j)=F33kdown;  
        else  
        SimConB2(4,j)=SimCon(2,j-1);  
        end 
      SimConB2(5,j)=SimCon(4,j);  
        if j<=1 
        SimConB2(6,j)=cc11down;  
        else  
        SimConB2(6,j)=SimCon(4,j-1);  
        end 
     SimConB2(7,j)=SimCon(6,j);  
        if j<=1 
        SimConB2(8,j)=cc33down;  
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        else  
        SimConB2(8,j)=SimCon(6,j-1);  
        end 
    SimConB2(9,j)=SimCon(5,j);  
     
    %B3 
    SimConB3(1,j)=SimCon(2,j);  
        if j<=1 
        SimConB3(2,j)=F33kdown;  
        else  
        SimConB3(2,j)=SimCon(2,j-1);  
        end 
     SimConB3(3,j)=SimCon(3,j);  
        if j<=1 
        SimConB3(4,j)=F55kdown;  
        else  
        SimConB3(4,j)=SimCon(3,j-1); 
        end 
      SimConB3(5,j)=SimCon(5,j);  
        if j<=1 
        SimConB3(6,j)=cc22down;  
        else  
        SimConB3(6,j)=SimCon(5,j-1); 
        end 
     SimConB3(7,j)=SimCon(7,j); 
        if j<=1 
        SimConB3(8,j)=SimCon(7,1);  
        else  
        SimConB3(8,j)=SimCon(7,j-1);  
        end 
    SimConB3(9,j)=SimCon(6,j);  
     
    if j+1>p 
        SimCon(1,j+1)=ScDown(f2(p),Pi(2,2),Pi(2,1),0.95,0.05);   
    else 
        SimCon(1,j+1)=ScDown(f2(j+1),Pi(2,2),Pi(2,1),0.95,0.05);   
    end 
     
    if j+1>p 
        SimCon(2,j+1)=ScDown(f3(p),Pi(3,2),Pi(3,1),0.95,0.05);   
    else 
        SimCon(2,j+1)=ScDown(f3(j+1),Pi(3,2),Pi(3,1),0.95,0.05);   
    end 
     
    if j+1>p 
        SimCon(3,j+1)=ScDown(f5(p),Pi(5,2),Pi(5,1),0.95,0.05);  
    else 
        SimCon(3,j+1)=ScDown(f5(j+1),Pi(5,2),Pi(5,1),0.95,0.05);   
    end 
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    SimCon(4,j+1)=sim(netB1,SimConB1(:,j)); 
    SimCon(5,j+1)=sim(netB2,SimConB2(:,j)); 
    SimCon(6,j+1)=sim(netB3,SimConB3(:,j)); 
    SimCon(7,j+1)=SimCon(7,j); 
     
   if j==1 
        Delf2=SimCon(1,j)-SimCon(1,j); 
    else 
        Delf2=SimCon(1,j)-SimCon(1,j-1); 
    end 
     
    if j==1 
        Delf3=SimCon(2,j)-SimCon(2,j); 
    else 
        Delf3=SimCon(2,j)-SimCon(2,j-1); 
    end 
     
    if j==1 
        Delf5=SimCon(3,j)-SimCon(3,j); 
    else 
        Delf5=SimCon(3,j)-SimCon(3,j-1); 
    end 
     
    fin1(j)=(c1spdown-SimCon(4,j))^2+Delf2^2; 
    fin2(j)=(c2spdown-SimCon(5,j))^2+Delf3^2; 
    fin3(j)=(c3spdown-SimCon(6,j))^2+Delf5^2; 
   
end 
  
  
 for j=1:1:PP 
        fin1sum=fin1sum+fin1(j); 
 end 
  
 for j=1:1:PP 
        fin2sum=fin2sum+fin2(j); 
 end 
  
 for j=1:1:PP 
        fin3sum=fin3sum+fin3(j); 
 end 
  
f=fin1sum+fin2sum+fin3sum; 
         
%=========================================================== 
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