มอร์โฟเมตรีของใบ ความแปรผันทางพันธุกรรม และวงศ์วานทางวิวัฒนาการของ

กวาวเครือแดง Butea superba ในประเทศไทย

นางสาวจิรัฏติกาล แก้วเมืองมูล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาเทคโนโลยีชีวภาพ

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2549

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

LEAF MORPHOMETRY, GENETIC VARIATION, AND

PHYLOGENY OF Butea superba IN THAILAND

Miss Jirattikarn Kaewmuangmoon

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master of Science Program in Biotechnology

Faculty of Science

Chulalongkorn University

Academic Year 2006

Copyright of Chulalongkorn University

Thesis Title	LEAF MORPHOMETRY, GENETIC VARIATION AND	
	PHYLOGENY OF RED KWAO KRUA Butea superba IN	
	THAILAND	
By	Miss Jirattikarn Kaewmuangmoon	
Field of study	Biotechnology	
Thesis Advisor	Assistant Professor Chanpen Chanchao, Ph.D.	
Thesis Co-advisor	Associate Professor Wichai Cherdshewasart, D.Sc.	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

..... Chairman

(Associate Professor Somsak Panha, Ph.D.)

Champen Chanchat Thesis Advisor

(Assistant Professor Chanpen Chanchao, Ph.D.)

http://www.washington.co.advisor

(Associate Professor Wichai Cherdshewasart, D.Sc.)

..... Member

(Tosak Seelanan, Ph.D.)

N. Ngamrojanavanieh Member

(Associate Professor Nattaya Ngamrojanavanich, Ph.D.)

จิรัฏติกาล แก้วเมืองมูล: มอร์ โฟเมตรีของใบ ความแปรผันทางพันธุกรรม และวงส์วานทางวิวัฒนาการ ของกวาวเครือแดง *Butea superba* ในประเทศไทย (LEAF MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY OF RED KWAO KRUA *Butea superba* IN THAILAND) อ.ที่ปรึกษา: ผศ. คร. จันทร์เพ็ญ จันทร์เจ้า, อ.ที่ปรึกษาร่วม: รศ. คร. วิชัย เชิดชีวศาสตร์, 125 หน้า

้กวาวเครือแคง *Butea superba* Roxb. เป็นพืชสมนไพรไทยในกล่มพืชตระกลถั่ว รากมีลักษณะเป็นหัวมี ประโยชน์ในการใช้เสริมสมรรถภาพทางเพศของเพศชายได้ ในงานวิจัยนี้ได้ทำการวิเคราะห์ทางมอร์โฟเมตรีและ ทางพันธกรรมของกวาวเครือแคงจากแหล่งต่างๆ ทำการเก็บตัวอย่างใบที่โตเต็มที่จาก 29 แหล่ง เพื่อการวิเคราะห์ ทางด้านมอร์โฟเมตรีของใบ และเก็บใบจาก 34 แหล่ง เพื่อการวิเคราะห์ทางด้านพันธุกรรม ในส่วนของการ ้วิเคราะห์ทางมอร์โฟเมตรีได้นำค่าพารามิเตอร์มา 9 ค่าเพื่อใช้ในการวัด ซึ่งประกอบไปด้วย ความยาวก้านใบ (PL), เส้นผ่านสนย์กลางของก้านใบ (PD), ความยาวก้านใบประกอบ (RL), ความยาวข้อใบ (PLL), ความยาวของใบ ปลาย (TLL), ความกว้างของใบปลาย (TLB), ความยาวหูใบ (SPL), มุมองศาที่ฐานของใบปลาย (AB°) และ ้ จำนวนคู่ของเส้นใบที่ใบปลาย (NPV) นำผลของการวัดมาวิเคราะห์ด้วยวิธี factor analysis และจัดกลุ่มด้วยวิธี cluster analysis จากการวิเคราะห์ด้วย factor analysis ได้ค่าพารามิเตอร์ที่เหมาะสมต่อการทดลองเพียง 7 ค่าจาก ทั้งหมด 9 ค่า และนำมาจัดกล่มได้ 3 factor เมื่อพิจารณาจากการจัดกล่มด้วยการพลอตกราฟของ factor score ไม่ ้สามารถจัดกลุ่มสายพันธุ์กวาวเครือแดงในประเทศไทยได้อย่างชัดเจน โดยใช้ก่าพารามิเตอร์ดังกล่าว นอกจากนี้ พบว่าผลของเดนโดรแกรมที่ได้จาก cluster analysis ให้ผลที่สอดคล้องกับกราฟของ factor score โดยไม่สามารถ แยกสายพันฐ์กวาวเครือแดงได้อย่างชัดเจน อย่างไรก็ตามพบว่าผลของ correlation ของ factor score กับละติจูด และลองทิจุดแสดงให้เห็นถึง clinal pattern ของความยาวของใบกวาวเครือแดงในประเทศไทย กล่าวคือขนาดของ ใบจะมีความยาวเพิ่มขึ้นจากทิศเหนือไปทิศใต้ใน factor ที่ 1 และมีความยาวลดลงจากทิศเหนือไปทิศใต้ใน factor ที่ 2

ในส่วนของการวิเคราะห์ทางพันธุกรรม ทำการศึกษาความแปรผันที่บริเวณ *rbcL*, *trn*LF-cd และ *trn*LFcf โดยทำการเพิ่มปริมาณลำดับเบสในบริเวณดังกล่าวโดยเทคนิคพีซีอาร์ ได้ขนาดผลิตภัณฑ์ที่ความยาว 300, 550 และ 1,000 bp ตามลำดับ หลังจากทำการหาลำดับเบสของผลิตภัณฑ์ จึงทำการจัดกลุ่มโดยใช้ maximum parsimony (MP) และวิธี neighbor-joining วงศ์วานทางวิวัฒนาการของ *rbcL* แสดงให้เห็นถึงความแปรผันทาง วิวัฒนาการของสายพันธุ์ของกวาวเครือแดงในประเทศไทยต่ำ ส่วนวงศ์วานทางวิวัฒนาการของ *trn*LF-cd และ *trn*LF-cf แสดงให้เห็นถึงความแปรผันทางวิวัฒนาการของสายพันธุ์ของกวาวเครือแดงในประเทศไทยสูง นอกจากนั้นยังได้ทำการวิเคราะห์ความแปรผันทางพันธุกรรมโดยใช้เทคนิคอาร์เอพีดี ซึ่งพบว่าผลการทดลองที่ได้ สอดคล้องกับผลของการวิเคราะห์โดยการใช้ลำดับเบสของบริเวณ *trn*LF-cd และ *trn*LF-cf สามารถสรุปได้ว่า สายพันธุ์ของกวาวเครือแดงในประเทศไทยมีความหลากหลายทางพันธุกรรมสูง

สาขาวิชา ปีการศึกษา เทคโนโลยีชีวภาพ 2549

ลายมือชื่อนิสิต	จรัฦตักอ	เกิงเมืองหล	
ลายมือชื่ออาจารย์า์	ู ที่ปรึกษาณิ่น	nsintry Jums	121
ลายมือชื่ออาจารย์ท์	ี่ปรึกษาร่วม	ium	^

4772245023: MAJOR BIOTECHNOLOGY

KEY WORD: LEAF MORPHOMETRY/ PHYLOGENY/ Butea superba/ rbcL gene/ trnLF gene/ GENETIC VARIATION

JIRATTIKARN KAEWMUANGMOON: LEAF MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY OF RED KWAO KRUA *Butea superba* IN THAILAND. THESIS ADVISOR: ASST. PROF. CHANPEN CHANCHAO, Ph.D., THESIS CO-ADVISOR: ASSOC. PROF. WICHAI CHERDSHEWASART, D.Sc., 125 pp.

Butea superba (Red Kwao Krua) are Thai herbal leguminous plants. Its tuberous roots are widely used for estrogen replacement therapy. It reported that Kwao Krua from different localities performed different estrogenic activity. Morphometric and genetic analyses were used in this research. Leaves of B. superba were collected from 29 localities throughout Thailand for morphometric analysis and from 34 localities for genetic analysis. In morphometric analysis, 9 parameters [petiole length (PL), petiole diameter (PD), rachis length (RL), petiolet length (PLL), terminal leaflet length (TLL), terminal leaflet breadth (TLB), stipule length (SPL), angle of first leaf border (AB^o), and number of pairs of primary veins (NPV)] were used for factor and cluster analyses. For factor analysis, 7 out of 9 morphometric characters were selected as new variable and could be grouped into 3 new factors. Due to graph plotting of factor scores, no cultivars could be separated from each others. Moreover, a dendrogram generated by cluster analysis supported the graph of factor score that *B. superba* cultivars could not separate into groups. However, result on correlation analysis of factor scores against latitude and longitude shows clinal patterns in morphometric characters of B. superba leaf in Thailand. From the North to the South, leaf length increase in size in factor 1 but decreases in size in factor 2.

In genetic analysis, variation of rbcL, trnLF-cd, and trnLF-cf regions was determined. Amplified PCR products of 300, 550, and 1,000 bp by PCR were obtained, respectively. After direct sequencing, nucleotide base were obtained and clustered by using maximum parsimony (MP) and neighbor-joining (NJ) method. Considering a phylogenetic tree of rbcL, low genetic variation was obtained but not 2 phylogenetic trees of trnLF-cd and trnLF-cf. Furthermore, RAPD was used to investigate genetic variation. The obtained result also supported the result by direct sequencing method in both trnLF-cd and trnLF-cf region. It can summarize that *B. superba* cultivars had high genetic variation.

Field of study

Biotechnology 2006

Academic year

Student's signature. Jirattikarn K. Advisor' signature. Chanpen Cloudus Co-advisor' signature. Inch

ACKNOWLEDGEMENTS

I would like to express my deep gratitude and appreciation to Asst. Prof. Dr. Chanpen Chanchao, my advisor and Assoc. Prof. Dr. Wichai Cherdshewasart, my co-advisor for their encouragements, valuable suggestions, advices, discussions, and helpful guidances throughout this research.

My appreciation is also expressed to Assoc. Prof. Dr. Somsak Panha, Dr. Tosak Seelanunt, and Assoc. Prof. Dr. Nattaya Ngamrojanavanich for serving as thesis committee.

Specially, I would like to thank Asst. Prof. Dr. Jessada Denduangboripant for his supports in computer and phylogeny program.

I sincerely thank members of CBCB and members of Kwao Krua Lab, Department of Biology, Chulalongkorn University for all of their help.

Furthermore, I would like to thank my best friends, Mr. Sarun Kaewmuangmoon, Mr. Trin Suwanvijitr, Ms. Pachcharaporn Suksawat, and Ms. Muchima Nimpao for their help in collection of *B. superba*.

This research was financially supported by Center of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University, under the Research Program on Conservation and Utilization of Biodiversity # CEB_M_18_2005, Thailand Research Fund, grant # MRG4780007, TRF/ BIOTEC Special Program for Biodiversity Research and Training grant, and Graduate School of Chulalongkorn University.

Finally, my greatest indebtedness is expressed to my father and mother who always give me unlimited and warmest love, understanding, support, and encouragement throughout my life.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

vii

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGMENTS	vi
CONTENTS	vii
LIST OF FIGURES	X
LIST OF TABLES	xiii
ABBREVIATION	xv
CHAPTER I: INTRODUCTION	1
CHAPTER II: LITERATURE REVIEWS	4
Botanical characteristics of <i>B. superba</i> Roxb	4
Taxonomy of the genus Butea	6
Previous works of the genus Butea	7
Previous works of <i>B. superba</i> Roxb	9
Chemical constituents	14
Morphometric study	15
Plant molecular phylogenetic	16
Phylogenetic systematics	16
Technique for phylogenetic analysis in plants	17
PCR amplification on gene target	17
RAPD analysis	19
Plant chloroplast DNA	19
Program for phylogenetic tree construction	21
Maximum parsimony and Neighbour-joining	22
CHAPTER III: MATERIALS AND METHODS	23
Morphometric analysis	23
Morphometric study equipments	23
Collection leaves sample	23
Measrement	23

Page
Data analysis25
Genetic analysis27
Instruments27
Inventory supplies27
Chemicals28
PCR primers
RAPD primers29
Collection of young leaves
DNA extraction
Agarose gel electrophoresis
Polymerase Chain Reaction (PCR)
PCR product purification
DNA sequencing and phylogenetic analysis
Random Amplified Polymorphic DNA (RAPD)
RAPD data analysis
CHAPTER IV: RESULTS
Morphometry
Collection leaves sample
Factor analysis
Cluster analysis41
Clinal patterns in characteristics of <i>B. superba</i> in Thailand41
Genetic variation analysis46
DNA extraction
PCR amplification47
Sequence analysis
Phylogenetic analysis73
RAPD analysis
RAPD Phylogram86
CHAPTER V: DISCUSSIONS
Sampling collections
Morphometry study
DNA sequence
RAPD analysis

Page

Phylogenetic relationship	91
Genetic variation between <i>B. superba</i> cultivars	92
CHAPTER VI: CONCLUTIONS	93
REFERENCES	94
APPENDICES	105
BIOGRAPHY	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

	Page	
Figure 1.	Butea superba Roxb. Its feature (a), tuberous roots (b), stem (c),	
	and flowers (d)5	
Figure 2.	Structure of Butin from seeds of <i>Butea monosperma</i> 7	
Figure 3.	Sturcture of Medicarpin of <i>Butea monosperma</i> stem barks8	
Figure 4.	Structure of 5, 2'-dihydroxy-3, 6, 7-trimethoxyflavone-5- O - β -D-	
	xylopyranosyl-(1 \rightarrow 4)- <i>O</i> - β -D-glucopyranoside from stem barks of	
	Butea monosperma stem barks9	
Figure 5.	Structure of the chemical constituents of <i>Butea superba</i> Roxb12	
Figure 6.	Structure of the chemical constituents of <i>Butea superba</i> Roxb13	
Figure 7.	Map of chloroplast DNA trnL-F region in plants. It illustrates	
	many universal primers (a-f) used in phylogenetic study20	
Figure 8.	Parameters of terminal leaflet breadth (TLB), terminal leaflet length	
	(TLL), rachis length (RL), petiole length (PL) and petiole diameter	
	(PD)	
Figure 9.	Parameters of number of pairs of primary veins (NPV) and angle	
	of first leaf border (AB ^o)	
Figure 10.	Parameters of petiolet length (PLL) and stipule length (SPL)25	
Figure 11.	Map of leave collection. Thirty four cultivars of <i>B. superba</i> were	
0	collected from 24 provinces in Thailand for both morphometric	
	and genetic analysis	
Figure 12.	Plots of factor scores 1 and factor scores 2 generated by Principal	
	Component Analysis (PCA)	
Figure 13.	Plots of factor scores 1 and factor scores 3 generated by Principal	
	Component Analysis (PCA)	

Figure 14.	Plots of factor scores 2 and factor scores 3 generated by Principal
	Component Analysis (PCA)40
Figure 15.	A dendrogram constructed by a cluster analysis. B. superba is

Page

Page

Figure 22.	High MW DNA of <i>B. superba</i> on 0.8% agarose gel	.46
Figure 23.	PCR products of <i>rbc</i> L on 1.2% agarose gel	.47
Figure 24.	PCR products of <i>trnl</i> F-cd on 1.2% agarose gel	.48
Figure 25.	PCR products of <i>trnl</i> F-cf on 1.2% agarose gel	.48
Figure 26.	A 247 bp character matrix based on partial <i>rbc</i> L of	
	chloroplast DNA sequence	.58
Figure 27.	A 283 bp character matrix based on partial <i>trnlF</i> -cd of	
	chloroplast DNA sequences.	64
Figure 28.	A 473 bp character matrix based on partial <i>trnl</i> F-cf of	
	chloroplast DNA sequences	69
Figure 29.	A rooted phylogenetic tree of <i>rbcL</i> sequence inferred by	
	neighbor-joining method.	.75
Figure 30.	A rooted phylogenetic tree of <i>trnl</i> F-cd sequence inferred by	
	neighbor-joining method	76
Figure 31.	A rooted phylogenetic tree of <i>trnl</i> F-cf sequence inferred by	
	neighbor-joining method	.77
Figure 32.	Neighbour-joining tree tree of Nei-Li genetic distance among 34	
	populations of <i>B. superba</i> . And <i>B. monosperma</i> (Bm)	.85

LIST OF TABLES

xiii

Table 1.	Chemical constituents of <i>B. superba</i> tuber14
Table 2.	Lists of 5 primers for PCR amplification
Table 3.	Lists of 5 arbitrary primers for RAPD reaction
Table 4.	Thirty five cultivars of <i>B. superba</i> were collected in Thailand and
	their code name
Table 5.	Collection of leave sample in Thailand
Table 6.	Correlation of geographic trends in morphometric characters of
	B. superba from Thailand 41
Table 7.	The results of PCR amplification in 3 pair of primers
Table 8.	Results of Sequencing of PCR product
Table 9.	Percentages of base composition of <i>rbc</i> L sequences of <i>B. superba</i> 70
Table 10.	Percentages of base composition of <i>trn</i> LF-cd sequences of <i>B. superba</i> 71
Table 11.	Percentages of base composition of trnLF-cf sequences of B. superba72
Table 12.	The <i>rbcL</i> sequence divergence (%) based on pairwise comparisons
	among the <i>B. superba</i> samples in Thailand
Table 13.	The <i>trnl</i> F-cd sequence divergence based on pairwise comparisons
	among the <i>B. superba</i> samples in Thailand81
Table 14.	The <i>trnl</i> F-cf sequence divergence based on pairwise comparisons
	among the <i>B. superba</i> samples in Thailand83

Table 15.	Total number of bands, monomorphic and polymorphic band	
	within 34 cultivars of <i>B. superba</i> and the <i>B. monosperma</i>	
	revealed by RAPD analysis using primer OPA19, OPA12,	
	OPA7, OPD2, and OPC15	84
Table 16.	RAPD sequence divergence based on pairwise comparisons	
	among the <i>B. superba</i> samples in Thailand	86

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Page

ABBREVIATIONS

A, T, G, C	deoxy nucleotide triphosphate (dNTP) containing	
	Adenine, Thymine, Cytosine, and Guanine, respectively	
bp	base pair	
°C	degree Celcius	
DNA	deoxyribonucleic acid	
EDTA	Ethylene diamine tetra-acetic acid	
HCl	hydrochloric acid	
kb	kilobase	
mg	milligram	
min	minute	
ml	milliliter	
mM	millimolar	
mtDNA	mitochondrial DNA	
ng	nanogram	
NJ	Neighbor Joining	
PCR	Polymerase Chain Reaction	
RFLP	Restriction Fragment Length Polymorphism	
Rbcl	RuBisCo large subunit	
rpm	revolution per minute	
sec	second	
TEMED	N, N, N, N'-tetra methyl ethylene diamine	
Tris	tris (hydroxyl methyl) aminomethane	
trnLF	RNA-Leucine-Phenylalanine	
UPGMA	Unweighted Pair Group Method using Arithmetic	
	averages	
UV	ultraviolet	
V	volt	
μg	microgram	
μl	microlitre	
μΜ	micromolar	

CHAPTER I

INTRODUCTION

Butea superba Roxb. is an herb in family Leguminosae with the common Thai name of "red Kwao Krua". It is a crawler plant, wraps itself around a large tree. The leaves are compound with alternate 3-leaflets. Flower color is yellowish orange. It grows well in an outdoor area (Roengsumran *et al.*, 2000). *B. superba* is abundantly distributed in deciduous forest in many parts of Thailand. This indigenous herb has been traditionally consumed among Thai males for the purpose of rejuvenation as well as maintenance of sexual performance or prevention of erectile dysfunction (Suntara, 1931).

Crude extract of *B. superba* tuberous root contained 2 groups of chemical constituents, carboxylic acid, steroid, steroid glycoside, flavonoid, and flavonoid glycoside (Ruksil, 1995). Recently 5 chemical including A carpin (Medicarpin) and four isoflavone were isolated from the tuber roots of *B. superba* Roxb. (Ngamrojanavanich *et al.*, 2007). Flavonoid and flavonoid glycoside could inhibit cAMP phosphodiesterase which stimulates the function of the central nervous system and leads to the increase in male sexual performance (Roengsumran *et al.*, 2000). It had an effect on anti-proliferation of MCF-7 and Hela cells (Cherdshewasart *et al.*, 2004a,b). Moreover, chemicals in *B. superba* can exhibit significant inhibitory activity on acetylcholinesterase and can increase levels of acetylcholine in a body. This is helpful in clinical trial on erectile dysfunction in Thai- male and in treatment of Alzheimer's disease (Cherdshewasart and Nimsakul, 2003; Ingkaninan *et al.*, 2003).

According to a large-scale survey on the distribution and diversity of Kwao Krua since 1998, *P. mirifica* can be widely distributed throughout different locations or habitats (Cherdshewasat, Subtang, and Dahlan, 2006). *P. mirifica* was found in 28 provinces while *B. superba* was found in 24 provinces (Pulcharoen, 2005). It is reported that *P. mirifica* from different locations performs different bioactivity and contains various isoflavone contents (Parnruensan, 2000; Cherdshewasart, Kitsamai and Malaivijitnond, 2006).

Morphometric and genetic variation of *B. superba* in Thailand has not been reported although many cultivars have been found throughout the country.

In other plants of leguminosae, morphometric and genetic variation was reported by using morphometric method, DNA sequencing, and Random Amplified Polymorphic DNA (RAPD) technique. Moreno-Sánchez (2004) studied graphic approach of *Archaeopteris* leaves by using morphometric analysis. Mienie, Smith and Pretorius (1995) used RAPD technique to identify South African soybean cultivars. Kass and Wink (1996) investigated the molecular evolution of the leguminosae and determined a phylogeny of legumes in three subfamilies based on *rbc*L-sequences. Weder (2002) used RAPD-polymerase chain reaction (RAPD-PCR) technique to identify legume species in food. Zhang, Yang, and Rao (2005) discovered genetic variation of amphicarpic species, *Amphicarpaea edgeworthii* Benth (Leguminosae) based on RAPD markers. They used 13 RAPD primers to investigate the variation and found that genetic variation was high among populations and was similar within populations. Martins *et al.* (2006) studied genetic variation among and within Portuguese landraces of common white bean (*Phaseolus vulgaris* L.) by RAPD analysis.

Morphometric and genetic variation of red Kwao Krua in Thailand is scared. In *B. superba*, morphometric and genetic variation has never been reported. Therefore, we aim to determine both variations of *B. superba* cultivars in Thailand. Samples were collected from various provinces. Nine morphometric characters in mature leaf was analyzed. In addition, variation in partial sequences of RuBisCO large subunit (*rbcL*) and transfer RNA-Leucine-Phenylalanine in the chloroplast DNA (*trnL*-F) would be studied by using DNA sequencing and RAPD analysis. Molecular phylogenetic relationship among *B. superba* cultivars in Thailand would be analysed. The obtained result will provide information on basic biology, biodiversity, geographic variation, and genetic relationship among *B. superba* cultivars in Thailand. In addition, it may apply to conservation biology of *B. superba* and agricultural knowledge of herbal plants in Thailand. Therefore, our study on *B. superba* will provide a first survey on the population genetic structure by using molecular markers. Also, it may help to select the best cultivar of *B. superba* for pharmaceutical application in the future.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

LITERATURE REVIEW

Butea superba Roxb. is one of well-known Kwao Krua plants in Thailand. Its common name is "red Kwao Krua". As traditional medicine, its tuberous root and stem is always used in male rejuvenation. It could provide strength and power and could increase sexual performance in male. People believe that it is one of a miracle herb (Sutjit, 2003; Tanasugarm, 2001).

2.1 Botanical characteristics of Butea superba Roxb.

Butea superba Roxb. is a plant in family Leguminosae and subfamily Papilionoideae. Its local names are Kwao Krua, Jan Krua, Tan Jom Thong and Thong Krua (Samitinun, 1980). *B. superba* Roxb. is a climber plant growing independently, and wrapping itself around trees. Leaves are pinately-tree foliates and acuminate leaflet. It leaf stalk is long. A flower is large in size with yellowish orange color (Figure 1) and blooms during winter to summer. Petals are three times longer than calyx. A pod is 3-4 inches long and oblong in shape with silvery silky short hair [Kurz, 1877; Brandis, 1990; Cherdshewasart (unpublished)]. Roots of mature plant are 8 to 9 inches long and later turn into tubers. If it is cuts, the tuberous roots will release red sap. It can reproduce through seeds (sexual reproduction) and stem cutting (asexual reproduction).

B. superba is a large twining wood found in a deciduous forest in the northern, the central, the western, and the northeastern regions of Thailand. It was found in the same habitat as *Pueraria mirifica* and also found in a mountainous area.

Figure 1. *Butea superba* Roxb. Its feature (a), tuberous root (b), stem (c), and flowers (d) were presented. (Photo by W. Cherdshewasart)

2.2 Taxonomy of the genus Butea (Honton, 2005)

Regnum *Plantae* Common name: Plant kingdom

Division *Magnoliophyta* Cronquist Common name: *Angiosperms*

Subdivision Magnoliophytina Frohne & U. Jensen ex Reveal

Classis Rosopsida Batsch

Subclassis Rosidae Takht.

SuperOrdo Fabanae R. Dahlgren ex Reveal

Ordo *Fabales* Bromhead Common name: *Legumes*

Familia Leguminosae Juss.

Genus *Butea* Roxb. ex Will. Common name: *Butea*

Specie *Butea superba* Roxb. Common name: *red Kwao Krua*

2.3 Previous work of the genus Butea

Razdan *et al.* (1969) investigated anti-fertility effects and pharmacological actions of *Butea frondosa* seed by using an alcoholic extract, chloroform extract, and aqueous extract. They found that only the alcohol extract is active. It has a distinct anti-fertility effect on rats without a clear-cut of dose-response relationship. Estrous cycle was unaffected by the extracts. Differences between control and treated groups were insignificant regarding to anti-estrogenic activity and androgenic activity. Pharmacological and toxic effects are probably unrelated to the anti-fertility action of the extract.

Mehta *et al.* (1983) studied isolation and *in vitro* antimicrobial efficiency of *Butea monosperma* seed oil to human pathogenic bacteria and phytopathogenic fungi. The *in vitro* antimicrobial efficiency was studied by filter paper disk method against several human pathogenic bacteria and fungi. Result showed that the isolated gave a significant bactericidal and fungicidal effect.

Bhargava (1986) isolated butin from seeds of *Butea monosperma* (Figure 2) and administered orally to adult female rats at the doses of 5, 10, and 20 mg/kg BW from day 1 to day 5 of pregnancy. It showed anti-implantation activity at 40%, 70%, and 90% of treated animals, respectively. Besides, butin is known as weak estrogen.

Figure 2. Structure of butin from seeds of *Butea monosperma*.

Bandara *et al.* (1989) isolated petroleum and ethyl acetate crude extract of *Butea monosperma* stem barks (Figure 3). They found medicarpin compound that it showed significant antifungal activity against *Cladosporium cladosporioides*.

Figure 3. Structure of medicarpin of *Butea monosperma* stem barks.

Prashanth et al. (2001) investigated methanol extract of Butea monosperma seeds in India. Due to in vitro test, it showed significantly anthelmintic activity.

Soman et al. (2004) studied an effect of Butea fromdosa leave extract on stress, anxiety, and cognition on rats. The results showed that both aqueous and alcoholic extracts possess anti-stress activity. In addition, Ramachandran et al. (2004) investigated the aphrodisiac activity of B. frondosa bark extract on male rats. They reported that the extract could reduce and increase aphrodisiac activity significantly on male rats.

Yavada et al. (2005) found a potentially anti-viral flavone glycoside isolated from B. monosperma O. Kuntz seed. Its structure was determined by various spectral analysis and chemical degradations as 5, 2'-dihydroxy-3, 6, 7-trimethoxy-flavone -5-O- β -D-xylopyranosyl-(1 \rightarrow 4)-O- β -D-glucopyranoside (Figure 4). Furtheremore, Gunakkunru et al. (2005) investigated the anti-diarrhea potential by the ethanol extract of B. monosperma (Lam) Kuntz stem barks. Their experiments were on Wistar albino rats. The obtained results establish the efficacy and substantiation folk medicine for a non-specific treatment for diarrhea. Besides, Sumitra *et al.* (2006) investigated alcoholic extract of *B. monosperma* (Lam) Kuntz stem barks on healing tissue injury in rats. The results also showed that *B. monosperma* extract possesses antioxidant properties which are able to reduce lipid peroxidation.

Figure 4. Structure of 5, 2 -dihydroxy-3, 6, 7-trimethoxyflavone-5-O- β -D-xylopyranosyl- $(1\rightarrow 4)$ -O- β -D-glucopyranoside of *Butea monosperma* stem barks.

2.4 Previous work of Butea superba Roxb.

Ruksilp (1995) investigated a tuberous root of *B. superba* Roxb. collected from Lampang province. It was finely crushed and extracted by hexane, chloroform, methanol, and water. A fraction of crude extract by column chromatography led to isolation of 5 compounds. These compounds were a mixture of carboxylic acids (C_{22} - C_{26}), a mixture of steroids (campesterol, stigmasterol, and β -sitosterol), a mixture of steroid glycosides (β -sitosterol-3-O- β -D-glycopyranoside and stigmateryl-3-O- β -D-glycopyranoside), 3, 7, 3[']-trihydroxy-4[']-methoxyflavone, and 3, 3[']-dihydroxy-4[']-methoxyflavone-7-O- β -D-glycopyranoside (Figure 5 and 6).

In 1998, Yavada and Reddy discovered new bioactive compounds. There are flavonol glycoside, 3, 5, 7, 3, 4 -pentahydroxy-8-methoxy-flavonol-3-O- β -Dxylopyranosyl (1 \rightarrow 2) - α -L-rhamnopyranoside. All of them were isolated from stem barks of *B. superba* Roxb. They showed antimicrobial activity against 1) plant pathogenic fungi which are *Trich viride*, *Aspergillus funigatus*, *A. niger*, *A. terrus*, *Penicillium expansum*, *Helmtnthosporium oryzae*, *Botxitis cinerea*, *Rhizopus oligosporus*, *R. chinensis*, *Klebsiella pneumoniae*, *Fusarium moniliforme*, 2) grampositive bacteria which are *Streptococcus phyogenus*, *Staphylococcus aureus*, *Bacillus subtilis*, and gram-negative bacteria which are *Escherichia coli*, *Proteus vulgaris*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*. The maximum inhibitory effect was to *H. oryzae*, *A. niger*, *B. cinerea* and gram-positive bacteria.

Roengsumran *et al.* (2000) found 2 compounds of 3, 7, 3 -trihydroxy-4 methoxyflavone and 3, 5 -dihydroxy-4 -ethoxyflavone-7-O- β -D-glycopyranoside. Both of them showed inhibition of cAMP phosphodiesterase activity which was capable to stimulate the function of the central nervous system at IC₅₀ value of 190 and 58 µg/ml, respectively.

Manosroi *et al.* (2001) reported the preliminary chronic toxicity of *B. superba* on rats at the doses of 5 and 100 mg/kg BW. There was no adverse effect on essential organs except the sperm count was increased. Abnormal sperms were found at the treatment of 5 mg/kg BW.

Pongpanparadon *et al.* (2002) determined the primary toxicological effects of *B. superba* Roxb. Dried powder by micronucleus and dominant lethal tests were undertaken. The results showed that 1,000 mg/kg BW/day of aqueous solution was more significantly effective in inducing the formation of micronuclei in polychromatic erythrocytes than control (p<0.01). *B. superba* Roxb. extract had no effect on body weight of treated rats. In addition, Boongapim (2002) assessed the vasodilating effect of isolated human umbilical vein with mode of action of ethanol extract of *B. superba* Roxb. The results showed inhibitory effect of *B. superba* Roxb. extract on histamine-induced vascular contraction. Moreover, the inhibitory effect depended on time and KCl concentration. It was related to endothelium function.

Ingkaninan *et al.* (2003) searched new acetylcholinesterase (AChE) inhibitor from 32 plants used in Thai traditional rejuvenating and neurotonic remedies such as a drug for the symptomatic treatment of Alzheimer's disease. They reported that the methanol extract from stem barks of *B.superba* Roxb. showed 50-65% inhibitory activity on AChE. In addition, Cherdshewasart and Nimsakul (2003) studied the effect of *B. superba* Roxb. on erectile dysfunction (ED) on Thai males aged 30-70 years. Three month randomized double-blind clinical trial was carried out in volunteers with ED. The result showed that 82.4% of patients exhibited noticeable improvement without apparent toxicity.

Cherdshewasart, Cheewasopit and Picha (2004) investigated ethanol extract of *B. superba* Roxb. with proliferation and anti-proliferation effect on the growth of MCF-7 cells at 10, 100 and 1,000 μ g/ml with and ED₅₀ value of 370.91 μ g/ml. The data was evaluated after 4 days of incubation. Also, the results presented the relation of a possible anti-estrogen mechanism and a potent cytotoxic effect.

Figure 5.Structure of the chemical constituents of *Butea superba* Roxb.
(Ruksilp, 1995).

Figure 6.Structure of the chemical constituents of *Butea superba* Roxb.
(Ruksilp, 1995).

2.5 Chemical constituents of *Butea superba* Roxb.

A plant tuber exhibited some chemicals closely related to that of *P. mirifica* but some chemicals are different. *B. superba* tuberous root contained 5 groups of chemical constituents. They are carboxylic acid, steroid, steroid glycoside, flavonoid, and flavonoid glycoside (Table 1, Raksilp, 1995; Loontaisong, 2005). Macromolecules (protein, lipid, and starch) were also found. Flavonoid glycoside (3, 7-dihydroxy-8-methoxyflavone 7-O- α -L-rhamnopyranoside) was found in stem of Indian *B. superba* (Yavada and Reddy, 1998).

Category	Chemical	References
Carboxylic acid	Straight chain carboxylic acid (C_{22} -	Ruksilp, 1995
	C_{26}	
	3-hexacosanoyloxy-propane-1, 2-diol	Loontaisong, 2005
Steroid	Campesterol, stigmasterol,	
	β-sitosterol.	
Steroid glycoside	β-sitosteryl 1-3-o-β-D-	
5	glucopyranoside, stigmasteryl 1-3-o-	E.
616	β-D-glucopyranoside	3
Flavonoid	3, 7, 3-trihydro-4 ['] -methoxyflavone	Ruksilp,1995
Flavonoid	3- 3'-dihydroxy-4'-methoxyflavone-7-	Ruksilp, 1995
glycoside	o-B-D-glucopyranoside	
	3, 7-dihydroxy-8-methoxyflavone-7-	Yavada and Reddy, 1998
	O-α-L-rhamnopyranoside	
	5, 4 ['] -dihydroxy-7-methoxy-isoflavone	Loontaisong, 2005

uber.
(

(Prunetin)	
3-hydroxy-9-methoxypterocarpan	Loontaisong, 2005
(Medicarpin)	
7-hydroxy-4'-methoxy-isoflavone	Loontaisong, 2005
(Pormononetin)	
7-hydroxy-6-4 - dimethoxy is of lavone	Loontaisong, 2005
7, 4 -dimethoxyisoflavone (Butein and	Subba and Seshadri, 1949
Butin)	

2.6 Morphometric analysis

Morphometry is the measurement of particular structures of organisms and analysed by statistics. Morphometric methods are usually the best substitutes of complicating qualitative descriptions of shape variables (Moreno-Sánchez, 2004). To identify species, morphology characters are the most evident features. They are the basis for the description and identification of cultivars (Perries, 1998). Many researches used several organs of plants to study morphometry such as leaf, seed, fruits, flower, etc. For example, Ridder-Numan *et al.* (1997) used pollen morphology to identify plants in 4 genera of *Butea, Kunstleria, Meizotropis,* and *Spatholobus.* Moreno-Sánchez (2004) used 3 parameters of leaf shape for comparison of plants in genus *Archaeopteris.* Andrés-Agustín *et al.* (2006) studied morphometry of organs of cherimoya (*Annona cherimola* Mill.) and analysed fruit parameters in order to characterize cultivars. The data was applied to germplasm selection. The multivariate analyses were performed by Principal Component Analysis method (PCA) of Factor analysis and then statistically clustered by the unweighted pair group method with arithmetic average (UPGMA). A dendrogram could be used to separate the interesting plants into groups.

2.7 Plant molecular phylogenetic

2.7.1 Phylogenetic systematics

Phylogenetic systematics or simply 'phylogenetics' is a methodology described by Willi Hennig, a German entomologist in 1950. Phylogeny indicates the origin and evolution of a set of organisms, usually a set of species. A major task of systematics is to determine the ancestral relationship among groups of organisms.

There are several types of characters which can be used for phylogenetic analyses such as morphological characters and molecular characters. Morphological characters are the simple source of characters in most groups of organisms. External characters are more predominant than internal characters because they are easy to observe. Some of them can be quantified as a reference. For example, color patterns may be measured by wavelength. Molecular character is an alternative to use for phylogenetic analysis. For example, in 1972, Kohne *et al.* introduced DNA sequencing to analyse phylogeny of primate. After that, most phylogeneticists have been interested in finding nucleotide sequences, especially at non-coding regions to determine the relationship among organisms.

There are 2 different major methods to construct phylogenetic trees. The first method is a 'distance method' which converts aligned sequences into a pairwise distance matrix and inputs that matrix into a tree constructing method. The second method is a 'discrete method' which considers an individual nucleotide site directly. The distance method should be used when the original data are in the form of genetic distances. However, if we have the nucleotide or protein sequences, we should analyse them with a discrete method in order to avoid the loss of information that occurs when sequences are converted into distances. The discrete methods are different from the distance methods as they operate directly on the sequences rather than pair wise distances.

Neighbor-joining is a popular distance method. In a tree, sum of branch lengths is minimal. The major discrete method is maximum parsimony which chooses the tree (or trees) that require fewest evolutionary changes.

2.7.2 Technique for phylogenetic analysis in plants

2.7.2.1 PCR amplification on gene target

For phylogenetic studies in plants, a target gene must be selected. Different genes have different mutation rates. Analysis of non-coding regions permits assessment of phylogenetic relationships at lower taxonomic levels because they evolve more rapidly than coding regions.

For example, target genes used in phylogenetic analysis are chloroplast genes (Clegg *et al.*, 1994; Kelchner, 2000; Olmstead *et al.*, 1998). The modes of chloroplast DNA evolution (cpDNA) in plants are usually conserved in terms of genome sizes, structures, gene contents, and linear orders of genes among lineages of land plants. This conservative mode suggests that any change in structure and content of chloroplast genome may provide significant phylogenetic implications and therefore be useful for the study of phylogenetic relationships. The chloroplast genome evolves at a slower rate than the nuclear genome. However, some regions change either more rapidly or more slowly than the average. Nucleotide substitution rates vary among plant lineages. Therefore, cpDNA is useful in determining the relationship of organisms at the inter-generic, the inter-specific, and the intra-specific levels (Plamer,

1998). Later, specific primers will be designed for Polymerase Chain Reaction (PCR) to amplify the gene target.

The basic protocol of PCR (Taberlet *et al.*, 1991) is simple as below: (1) Double stranded DNA is denatured at high temperature to form single strands (templates); (2) Short oligonucleotide primers bind complementary to the single strand templates at the flanking ends at lower annealing temperature; (3) The temperature is raised for primers extension in order to synthesize new strands; and (4) The newly synthesized double stranded DNA are denatured at high temperature. The cycles have been repeated many times in order that the amplification of target DNA can perform continuously. The amount of increased target DNA will be exponential. PCR is a powerful technique in plant molecular systematics because it can provide reproducible targeted DNA from herbarium specimens. The ability of amplification can determine the quality of DNA whether it is already degraded or is still good (Doyle *et al.* 1995).

Savolainen *et al.* (1995) found that amplification of DNA from some herbarium samples might be difficult sometimes because there was some oxidized material co-precipitated with DNA. Also, they found that the addition of some certain additives could overcome the inhibiting activities of some herbarium extracts.

จุฬาลงกรณ์มหาวิทยาลัย

2.7.2.2 RAPD analysis

Randomly Amplified Polymorphic DNA (RAPD) is a Polymerase Chain Reaction (PCR)-based technique. Arbitrary primers are used to detect changes in the DNA sequence at random sites in the genome (Yoke-Kqueen, 2006). Accordding to Martinez *et al.* (1998), fingerprint of genomic DNA was able to detect hybrids and races of species. There are 2 steps (amplification and electrophoresis) involving in RAPD.

RAPD method described by Williams *et al.* (1990) is faster and less expensive than RFLP analysis. This technique has been used in cultivar identification of many crops including *Stylosanthes* (Kazan *et al.*, 1993), papaya (Stiles *et al.*, 1993), celery (Yang and Quiros, 1993), and apple (Koller et al., 1993). There are few reports on the use of RAPD in characterization of soybean (Lark *et al.*, 1992; Caetanoanolles *et al.*, 1993; Paiva *et al.*, 1994; Prabhu and Gresshoff, 1994). Additionally, Williams *et al.* (1990) could differentiate 2 soybean species by RAPD analysis. Lark *et al.* (1992) used RAPD analysis on soy bean species and found that they consisted of 11 domesticated cultivars, 9 wild cultivars, and 5 perennial cultivars.

2.7.3 Plant chloroplast DNA

The ribulose 1, 5 bisphosphate carboxylase/ oxygenase (*rbcL*) is the most widely used gene in plant phylogenetic construction (Palmer *et al.*, 1998; Chase and Ablert, 1998; Soltis and Soltis, 1998). It was chosen to generate large molecular dataset of angiosperms (Chase *et al.*, 1993) and was used in large-scale analyses of green plants (Lewis *et al.*, 1997; Källersjö *et al.*, 1998; Cuenoud *et al.*, 2000; Savolainen *et al.*, 2000; Albach *et al.*, 2001).

Recent molecular phylogenetic studies using nucleotide sequences of the gene encoding the large subunit of *rbc*L successfully revealed the phylogenetic relationship. Phylogenetic studies using chloroplast DNA could confirm the evolutionary distinctiveness of evolutionary lineages of species (Downie *et al.*, 2000; Wu *et al.*, 2006).

Nowadays, chloroplast DNA transfer RNA-Leucine and phenylalanine region (*trn*L-F) is also widely used in studying molecular phylogenetic. Due to Figure 7, these regions are non-coding sites which their sequences are conserved and highly varied.

Figure 7. Map of chloroplast DNA *trn*L-F region in plants. It illustrates many universal primers (a-f) used in phylogenetic study (Taberlet *et al.*, 1991).

Many researches used partial sequences of *rbcL* and *trnL-F* to study molecular evolution in plant to study molecular phylogenetics (Käss and Wink, 1996; Negrisolo *et al.*, 2004; Kathriarachchi *et al.*, 2005; Huang, 2005; Müller *et al.*, 2006; Chung *et al.*, 2007).

2.7.4 Program for phylogenetic tree construction

Before construction, nucleotide sequences would be analyzed by using these following computer programs:

BioEdit: It is a program for biological sequence editing. It runs on Windows 95/ 98/ NT/ 2000/ XP or on general PC computer. It provides the basic functions for protein and nucleic sequence editing, alignment, and analysis.

Chromas: It is also a PC program that is used to check and compare the DNA sequence data that are received by sequencing process. Then, these data are modified into Fasta formatted file before they would be aligned by using Clustal program.

Clustal X (PC program) and Clustal W (http://www.ebi.ac.uk/clustalw): There are 2 computer tools in generating DNA or protein data matrix. All DNA sequences would be aligned all together (multiple sequence alignment). Also, the best matches for selected sequences would be calculated. The Clustal programs can compare all sequences from left to right. Then, similarity of DNA data matrix can be seen.

PAUP* (Phylogenetic Analysis Using Parsimony) version 4.0b10: It is a Macintosh computer program to construct a phylogenetic tree. This program works only on Macintosh Power PC and mainly uses maximum parsimony searching approaches to analyze the completely aligned data matrix. All data must be converted
and saved as Nexus formatted file before phylogenetic tree construction will be conducted. Phylogenetic analyses are performed by using neighbor-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA) methods in this program. Then, bootstrap analysis with 1,000 replicates is applied by the PAUP in order to evaluate supporting for nodes estimated in a parsimony tree. Lastly, the trees will present the relationship.

2.7.5 Maximum parsimony and neighbor-joining

Data matrix is used to calculate the relationships among taxa. There are several methods (either discrete or distance) to construct a phylogenetic tree (or trees). One most popular method among discrete methods is 'maximum parsimony' which chooses the tree (or trees) that requires the fewest evolutionary changes (Page and Holmes, 1998).

Neighbor-joining is distance methods and is widely used for phylogenetic tree construction. Neighbor-joining technique is a clustering method but can not optimize a fitting criterion between tree and data. However, it is a good method to estimate a minimum evolution tree.

CHAPTER III

MATERIALS AND METHODS

3.1 Morphometric analysis

3.1.1 Morphometric study equipments

- Vernia caliper
- Ruler

3.1.2 Collection of leaves sample

Leave of *Butea superba* Roxb. were collected from several locations in Thailand (except the South) since Febuary 2005 to October 2006 (Figure 11). Twenty-five mature leaves at about 2 meters from its shoots were picked for morphometry. Moreover, leave of *B. monosperma* (synonym: *B. frondosa*) were classified as an outgroup.

3.1.3 Measurement

Nine characters were measured and analyzed statistically (Figure 8-10).The used characters were petiole length (PL), petiole diameter (PD), rachis length (RL), petiolet length (PLL), terminal leaflet length (TLL), terminal leaflet breadth (TLB), stipule length (SPL), angle of first leaf border (AB^o), and number of pairs of primary veins (NPV).

Figure 8. Parameters of terminal leaflet breadth (TLB), terminal leaflet length (TLL), rachis length (RL), petiole length (PL), and petiole diameter (PD).

Figure 9. Parameters of number of pairs of primary veins (NPV) and angle of first leaf border (AB°) .

Figure 10. Parameters of petiolet length (PLL) and stipule length (SPL).

3.1.4 Data analysis

A statistic was used to perform a factor analysis on the leave length of 9 characters. This method provides characters those have larger loadings in various factors and allows the parsimonious reduction in the number of characters needed for further analysis. After that, cluster analysis (SPSS for windows 14.0) was used to investigate the relationship among cultivars. Finally, correlation was used to explore clinal patterns in the characteristics of *B. superba* leaves in Thailand.

Figure 11. Map of leaf collection. Thirty four cultivars of *B. superba* were collected from 24 provinces in Thailand for both morphometric and genetic analyses.

3.2 Genetic analysis

3.2.1 Instruments

- Autoclave, model: Conbraco, Conbraco Ind. Inc., USA

- Automatic micropipette P10, P20, P100, P200, and P1000 (Gilson-medical

electronics, S.A., France)

- Freezer $(-20^{\circ}C)$
- Horizontal gel electrophoresis apparatus, model: Mupid, Advance Co., Ltd.,

Japan

- High speed microcentrifuge, model: Centrifuge 5410 (Eppendorf, Germany)
- Magnetic stirrer, model: PC-320 (Corning, USA)
- Polaroid camera, model: direct screen instant camera DS 34 H-34

(Peca products, UK)

- Microincubator, model: M-36, Taitec, Japan
- Incubator, model: Memmert, Germany
- Microwave oven, model: Sharp carousel R7456 (Sharp, Thailand)
- PCR machine, model: GeneAmp[®] PCR system 9700

(Applied Biosystem, Singapore)

- Electronic UV transilluminator (Ultra ium Inc., USA)
- Vortex, model: MS I minishaker (IKA-works, Inc., USA)

3.2.2 Inventory supplies

- Polaroid film
- Filter paper Whatman 3 mm (Whatman international Ltd., England)
- Microcentrifuge tubes (0.5 and 1.5 ml)
- Pipette tips (10, 200, and 1000 µl)

- Thin-wall microcentrifuge tube (0.2 ml)
- Whatman laboratory sealing film (Whatman international Ltd., England)

3.2.3 Chemicals

- Absolute ethanol, CH₃CH₂OH, M. W. = 46.07 (Merck, Germany)
- Agarose (Research organics, USA)
- Boric acid (Research organics, USA)
- Ethedium bromide
- DNA ladder marker 100 bp (catalog # SM0321), Fermentas Life Science
- DNA λ HindIII marker (catalog # SM0101), Fermentas Life Science
- Ethylene diamine tetra-acetic acid (EDTA), $C_{10}H_{16}N_2O_8$, M. W. = 292.2

(Serve feinbiochemica GmbH & Co., USA)

- 95% Ethyl alcohol, CH_3CH_2OH , M.W. = 46, Thailand

- 2x PCR Master mix solution (*i*-Taq) (catalog # 25027), iNtRON BIOTECHNOLOGY
- QIAquick[®] PCR purification kit (catalog # 28104), Qiagen, Germany
- AccuPrep[®] PCR purification kit (catalog # K-3034), BIONEER, Korea
- QIAamp[®] DNA mini kit (catalog # 51304), Qiagen, Germany
- Nucleospin[®] Plant mini kits (catalog # 740570.50), MACHEREY-NAGEL,

Germany

Tris-(Hydroxymrtyl)-aminomethane, NH₂C(CH₂OH)₃, M.W. = 121.14,
 Pharmacia Biotech, USA

3.2.4 PCR primers

All oligonucleotides (Table 2 and 3) were synthesized by Bioservice unit of National Science and Technology Development Agency (NSTDA), Bangkok, Thailand.

Primer name	Direction	Sequence (5' to 3')	Reference
rbcL (BuL3)	forward	AGGTTCTGTTACTAACATGT	-
rbcL (BuR3)	reverse	GGTCTCTCCAACGCATAAAT	-
trnL (UAA)	forward	CGAAATCGGTAGACGCTACG	Taberlet et al.,
5' exon primer_c		16	1991
trnL (UAA)	reverse	GGGGATAGAGGGACTTGAAC	Taberlet et al.,
3' exon primer_d	2000		1991
<i>trn</i> F (GAA)	reverse	ATTTGAACTGGTGACACGAG	Taberlet et al.,
primer_f	10.0100		1991

Table 2.Lists of 5 primers for PCR amplification.

3.2.5 RAPD primers

Table 3.Lists of 5 arbitrary primers for RAPD reaction

Primer	Sequence (5' to 3')	Reference
OPA-07	GAAACGGGTG	Mienie <i>et al.</i> (1995)
OPA-12	TCGGCGATAG	Mienie <i>et al.</i> (1995)
OPA-19	CAAACGTCGG	Mienie <i>et al.</i> (1995)
OPC-15	GACGGATCAG	Mienie <i>et al.</i> (1995)
OPD-2	GGACCCAACC	Mienie <i>et al.</i> (1995)

All 5 RAPD primers were designed and selected due to Mienie et al. (1995).

3.2.6 Collection of young leaves

Fresh young leaves of *B. superba* were collected from several part of Thailand. Furthermore, *B. monosperma* (synonym *B. frondosa*) was used as control. Localities of sample collections of 34 cultivars are shown in Table 4. Fresh young leaves were stored at -20° C until DNA extraction was performed.

Table 4.	Thirty five cultivars of <i>B. superba</i> were collected in Thailand and their
	code name.

	Number	Cultivars	Code	
	1	Kanchanaburi	KC 1	
	2	Kanchanaburi	KC 2	
	3	Kanchanaburi	KC 3	
	4	Khon Kaen	КК	
	5	Chantaburi	СТ	
	6	Chachoengsao	CC	
	7	Chonburi	СВ	
	8	Chaiyaphum	CHY	
6	9	Chiangrai	CR 1	
6	10	Chiangrai	CR 2	0
ทำ	11	Tak	ТК	ล
	12	Nakhon ratchasima	NAK	
	13	Nakhon sawan	NS 1	
	14	Nakhon sawan	NS 2	
	15	Nakhon sawan	NS 3	
	16	Buriram	BR	

Number	Cultivars	Code
17	Prachenburi	PB
18	Phitsanulok	PS 1
19	Phitsanulok	PS 2
20	Phitsanulok	PS 3
21	Phetchaboon	PC
22	Ratchaburi	RAT 1
23	Ratchaburi	RAT 2
24	Ratchaburi	RAT 3
25	Ratchaburi	RAT 4
26	Lopburi	LB
27	Lampang1	LP 1
28	Lampang2	LP 2
29	Loei	LY
30	Sakhonnakorn	SK
31	Saraburi	SR
32	Sukhothai	SU
33	Nongbualamphu	NB
34	Uttaradit	UTT

จุฬาลงกรณ์มหาวิทยาลัย

3.2.7 DNA extraction

Genomic DNA was extracted from an individual cultivar of *B. superba* by either of 2 kits as below.

- Genomic DNA extraction by DNeasy plant mini kit (Qiagen, catalog # 69103)

A leaf powder ground in liquid nitrogen was mixed by 400 μ l of AP1 buffer and 4 μ l of 100 mg/ml RNase A stock solution. It was vortexed, incubated at 65°C for 10 min, and mixed by inverting during incubation. Later, 130 μ l of buffer AP2 was added, mixed, and incubated for 5 min on ice. The lysate was applied to a QIAshredder spin-column set and centrifuged for 2 min. A flow-through fraction was transferred to a new tube and mixed by 1.5 volumes of AP3. The mixture (650 μ l) was applied to the DNeasy mini spin-column set and centrifuged for one min. After that flow-through was discarded. The remaining sample was added to the spin column and was centrifuged for another min. The column was placed in a new tube and 500 μ l of AW buffer was added. It was then centrifuged for another min. More 500 μ l of AW buffer added, and centrifuged for 2 min. The spin column was transferred to a new tube and 50 μ l of 65°C preheated buffer AE was transferred onto the DNAeasy membrane. The column was incubated for 5 min at RT and then centrifuged for 1 min. More 50 μ l of preheated buffer was added to elute DNA. DNA was finally stored at -20 °C freezer.

- Genomic DNA extraction by NucleoSpin[®] Plant mini kits (MACHEREY-NAGEL, catalog # 740570.50)

Dry tissue (20 mg) was ground by a pestle and motar, mixed by 400 μ l of buffer CO, and homogenized. Ten μ l of RNase A solution (1 mg/ml) was added. The

mixture was then incubated at 60°C for 30 min. Centrifugation of the mixture was done at maximum speed for 5 min and 300 μ l of the clear lysate was transferred to a new microcentrifuge tube. Three hundred μ l of buffer C4 and 200 μ l of absolute ethanol were added into the tube (C4 buffer and absolute ethanol must be premixed before used). The mixture was loaded into a provided 2 ml Nucleospin[®] plant column, centrifuged for 1 min. Later, the flow-through was discarded. Buffer CW (400 μ l) was added to the membrane of the column. About 700 μ l and 200 μ l of buffer C5 were then used to wash a silica membrane for the second and third times, respectively. To dry the silica membrane completely, the column was centrifuged at maximum speed for another 2 min. Finally, a highly pure genomic DNA was eluted from the membrane by 50 μ l heated buffer CE twice. The eluted DNA solution was kept at - 20°C before used.

3.2.8 Agarose gel electrophoresis

In order to determine the quality of genomic DNA, 0.8% (w/v) agarose gel was prepared. The loading sample was mixed between 5 μ l of genomic DNA and 1x loading dye (5x loading dye: 25 mM Tris-HCl at pH 7.0, 0.05% bromophenol blue, 150 mM EDTA, and 25% glycerol). Also, λ *Hin*d III marker (200 ng) was used as a standard marker. Electrophoresis was performed by using 1x TBE buffer (0.05 M Tris-HCl at pH 8.0, 0.05 M Boric acid, and 0.65 M EDTA) as running buffer at 100 V for 50 min. After that, the gel was stained by 10 μ g/ml Ethedium bromide (EtBr) for 5 min and destained by d-H₂O for 30 min. Genomic DNA was visible under UV light and photographed.

3.2.9 Polymerase Chain Reaction (PCR)

Primers designed using Primer 3 program were by (http://fokker.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Forward primers (BuL3: 5'- AGGTT CTGTT ACTAA CATGT -3' and primer c: 5'- CGAAA TCGGT AGACG CTACG -3') and reverse primers (BuR3: 5'- GGTCT CTCCA ACGCA TAAAT -3', primer_d: 5'- GGGGA TAGAG GGACT TGAAC -3', and primer_f: 5'- ATTTG AACTG GTGAC ACGAG -3') were synthesized. PCR reaction was carried out in 2x PCR Master mix solution (i-Taq) (catalog # 25027), iNtRON BIOTECHNOLOGY, 2 µM of each FW and RW primer, and genomic DNA (200 ng). PCR condition by *rbcL and trnLF* amplification were as followed: 94°C for 2 min, 30 sec, followed by 35 cycles of 94°C for 1 min; 59°C for 1 min; and 72°C for 3 min, and a final extension step at 72°C for 10 min. The PCR product was electrophoresed on 1.2% agarose gel at 100 V for 1 h.

3.2.10 PCR product purification

Any contaminants in PCR mixture must be removed by purification before sequencing. In this research, 2 kits were used to purify PCR product.

- Purification by QIAquick[®] PCR purification kit (Qiagen, catalog # 28104)

Five times volume of buffer PB were mixed with 1x volume of PCR product. The mixture was then transferred to a QIAquick[®] spin column which would be centrifuged at 13,000 rpm for 1 min. Flow through (FT) was discarded. Buffer PE of 750 μ l was added to the column which would be centrifuged at 13,000 rpm for 1 min. After that, FT was discarded again. The column was centrifuged additionally at 13,000 rpm for 1 min. The column was removed to a new 1.5 ml microcentrifuge tube. Buffer EB (30 μ l) was added to the center of the column. It was incubated at RT for 2 min and was centrifuged at 8,000 rpm for 1 min.

- Purification by *AccuPrep*[®] PCR purification kit (BIONEER, catalog # K-3034)

Five times volume of buffer PB was added to 1x volume of the PCR reaction. A binding column was placed in a 2 ml tube. Later, sample was applied to the column. It was centrifuged at maximum speed for 30-60 sec. The flow-through was discarded. Buffer WB (500 μ l) was added to the column tube. It was centrifuged at maximum speed for 30-60 sec. Again, the flow-through was discarded. More buffer WB (500 μ l) was added. Additional centrifugation was performed to confirm that the membrane was completely dry. The binding column was placed in a clean 1.5 ml tube. Buffer EL (30 μ l) was added to the center of the binding column filter. It was incubated at RT for 1 min and centrifuged at maximum speed for 1 min. The eluted DNA was kept at -20°C.

3.2.11 DNA sequencing and phylogenetic analysis

Purified PCR products were sequenced by Bioservice unit (BSU) and Research center, Ramathibodi hospital. Then, partial DNA sequences were aligned initially by using the multiple sequence alignment program CLUSTAL X. The data were saved to NEXUS file formatted for further phylogenetic tree construction. Phylogenetic analyses were performed by using neighbor-joining (NJ) and UPGMA (PAUP*4.0b10) (Swofford, 2000). In order to investigate the support for nodes estimated in a parsimony tree, bootstrap analysis with 1000 replicates were undertaken by PAUP*4.0b10.

3.2.12 Random Amplified Polymorphic DNA (RAPD)

Due to Mienie *et al.* (1995), 15 RAPD primers were tried. Considering amplification ability, 5 primers were selected (Table 3). A reaction was carried out in a volume of 20 μ l. It contained 10 μ l of PCR master mix, 4 μ l of primer, 4 μ l of sterile water, and 2 μ l of DNA.

An amplification reaction was performed by the 2400 thermal controller with the following cycles: 94°C for 2 min, 30 sec, followed by 45 cycles of 94°C for 1 min; 36°C for 1.5 min; and 72°C for 3 min, and a final extension step at 72°C for 10 min. Each reraction of 35 DNA samples was amplified twice to ensure that the PCR profiles were reproducible. Amplified products were electrophoresed on 2.0% agarose gel at 80 V for 1 h 30 min, stained by Ethedium bromide, and photographed by Polaroid camera under UV light.

3.2.13 RAPD data analysis

Amplified bands in a size range from 0.1 to 1.5 kb were scored. Neighbourjoining cluster analysis was performed to demonstrate the relationships among populations by considering Nei-Li genetic distance (PAUP*4.0b10).

จุฬาลงกรณมหาวทยาลย

CHAPTER IV

RESULTS

4.1 Morphometry

4.1.1 Collection of leaves

Butea superba leaves were collected from 5 parts (the northern, the northeastern, the central, the western, and the eastern parts) of Thailand. In term of morphometric analysis, we could collect mature leaves from only 29 of total 34 cultivars (in 24 provinces). Moreover, 34 cultivars could be collected for genetic analysis. The detail was in Table 5.

Table 5.	Collection	of	leave	in	Thailand.	Non-analysis	(N/A)	indicated
	unavailable	cul	tivars o	f co	llections.			

	No.	Province	Code name	Morphometric analysis	Genetic analysis
			KC 1	+	+
	1	Kanchanaburi	KC 2	+	+
			KC 3	N/A	+
	2	Khon Kaen	КК	+	+
	3	Chantaburi	СТ	+	+
	4	Chachoengsao	CC	+ริการ	+
	5	Chonburi	СВ	+	+ 07
9	6	Chaiyaphum	CHY	N/A	+ 1 28
. "	-		CD 1		
		Chiangrai	CRI	+	+
			CK 2	N/A	+
	8	Tak	ТК	+	+
	9	Nakorn ratchasima	Nak	+	+
	10	Nakhon sawan	NS 1	+	+
	10	i takiloli buttuli	NS 2	+	+
			NS 3	+	+

		Code	Morphometric	Genetic
No.	Province	name	analysis	analysis
11	Buriram	BR	+	+
12	Prachenburi	PB	+	+
13	Phitsanulok	PS 1 PS 2	+ +	++++
		PS 3	+	+
14	Phetchaboon	PC	N/A	+
		Rat 1 Rat 2	+	+
15	Ratchaburi	Rat 3	+	+
		Rat 4	+	+
16	Lopburi	LB	+	+
17	Lampang 1	LP1	+	+
18	Lampang 2	LP2	+	+
19	Loei	LY	+	+
20	Sakhonnakorn	SK	+	+
21	Saraburi	SR	+	+
22	Sukhothai	SU	+	+
23	Nongbualamphu	NB	+	+
24	Uttaradit	UTT	N/A	+

4.1.2 Factor analysis

In each population, Principal Component Analysis (PCA) method of factor analyses was performed by using raw data of each of 9 morphometric characters. After that, factor loadings would be obtained. Since only factor loading greater than 0.6 would be selected for further analysis, there are only 7 qualified morphometric characters as indicated below (Figure 8-10):

- 1. petiole diameter PD
- 2. number of pairs of primary veins NPV
- 3. stipule length SPL

- 4. petiole length PL
- 5. rachis length RL
- 6. terminal leaflet breadth TLB
- 7. angle of first leaf border AB°

The factor analysis of leave length of 7 selected morphometric characters can divide them into 3 groups. First factor was accounted for 34.24% of total variation and was mainly associated with petiole diameter (PD), number of pairs of primary veins (NPV), rachis length (RL), and terminal leaflet breadth (TLB). The 2nd factor was accounted for 17.17% and was mainly associated with stipule length (SPL) and petiolet length (PLL). The 3rd factor was mainly associated with angle of first leaf border (AB^o). This factor was accounted for 11.48% of total variation.

Interactive graph was based on factor 1, factor 2, and factor 3. Figure 12-14 showed the distribution of *B. superba* populations.

Figure 12. Plots of factor score 1 and factor scores 2 generated by Principal Component Analysis (PCA). *B. superba* were coded by collecting locations.

Figure 13. Plots of factor scores 1 and factor score 3 generated by Principal Component Analysis (PCA). *B. superba* were coded by collecting locations.

 Figure 14.
 Plots of factor scores 2 and factor score 3 generated by Principal

 Component Analysis (PCA). B. superba were coded by collecting locations.

4.1.3 Cluster analysis

A dendrogram was constructed by a cluster analysis of the squeared euclidian distances between means of factor scores (Figure 15). Dendrograms revealed that collected *B. superba* could not separate into groups.

4.1.4 Clinal patterns in the characteristic of *B. superba* in Thailand

To explore clinal patterns in the characteristics of *B. superba*, factor scores were plotted against latitude and longitude. Gradual transitions of characters from the South to the North and the West to the East are indicated (Figure 16-21). Result of correlation analyses of factor scores against latitude and longitude are summarized in Table 6. A distinct and highly significant slope (P \leq 0.05) is observed in latitude and longitude. In conclusion, from the North to the South, leaf length increase in size in factor 1 but decrease in size in factor 2.

Table 6.	Correlation of geographic trends in morphometric characters of						
	B. superba from Thailand. ** Correlation is significant at the 0.0	1					
	level (2-tailed).						

Predictor	Dependent variable	R value	P significant
Latitude	Factor 1	0.212**	0.00^{**}
	(PD,RL,NPV,TLB)		
60	Factor 2	-0.241**	0.00^{**}
6 6	(SPL, PLL)	הו ההוו	
	Factor 3	-0.68	0.068
0000	(AB^0)		
Longtitude	Factor 1	0.020	0.595
9	(PD,RL, NPV,TLB)		
	Factor 2	0.058	0.116
	(SPL, PLL)		
	Factor 3	0.046	0.218
	(AB)		

Rescaled Distance Cluster Combine 15 20 CASE 0 5 10 25 Label ----+ + - --+----+---Chantaburi Lampang 1 Nongbualamphu Prachenburi Khon Kaen Chonburi Buriram Ratchaburi 2 Ratchaburi 4 Ratchaburi 3 Lampang 2 Sakhonnakorn Phitsanulok 1 Loei Sukhothai Nakhon ratchasima Kanchanaburi 2 Nakhon sawan 1 Phitsanulok 2 Chiangrai Saraburi Chachoengsao Tak Phitsanulok 3 Ratchaburi 1 Nakhon sawan 2 Nakhon sawan 3 Lopburi Kanchanaburi 1

Dendrogram using Average Linkage (Between Groups)

Figure 15.

 ∇

A dendrogram constructed by a cluster analysis. *B. superba* is classified by

collecting locations.

Figure 16. Geographic trends in morphometric characters of *B. superba* in Thailand, latitude and ordinate; factor score 1 as derived from PCA. Value labels refer to major sampling locations.

Figure 17. Geographic trends in morphometric characters of *B. superba* in Thailand, latitude and ordinate; factor score 2 as derived from PCA. Value labels refer to major sampling locations.

Figure 18. Geographic trends in morphometric characters of *B. superba* in Thailand, latitude and ordinate; factor score 3 as derived from PCA. Value labels refer to major sampling locations.

Figure 19. Geographic trends in morphometric characters of *B. superba* in Thailand, longitude and ordinate; factor score 1 as derived from PCA. Value labels refer to major sampling locations.

Figure 20. Geographic trends in morphometric characters of *B. superba* in Thailand, longitude and ordinate; factor score 2 as derived from PCA. Value labels refer to major sampling locations.

Figure 21. Geographic trends in morphometric characters of *B. superba* in Thailand, longitude and ordinate; factor score 3 as derived from PCA. Value labels refer to major sampling locations

4.2 Genetic variation analysis

4.2.1 DNA extraction

Genomic DNA of fresh young leaves of *B. superba* were extracted by QIAamp® DNA mini kit and Nucleospin® DNA mini kit. Good quality of genomic DNA is determined by sharp and high molecular weight (MW) band on agarose gel. High MW of genomic DNA (about 23 kb in length) is presented (Figure 22).

Figure 22. High MW DNA of *B. superba* on 0.8% agarose gel. Lane 1-6 indicate individual genomic DNA while lane M represents λ *Hin*d III as standard DNA marker.

4.2.2 PCR amplification

PCR is a technique for *in vitro* DNA amplification of specific sequence by simultaneous primer extension of complementary strand of DNA. After electrophoresis on 1.2% agarose gel and EtBr staining, PCR product was visible under UV light. Size of the product was estimated by comparing to 100 bp DNA ladder. Due to primer design, expected PCR products amplified by *rbcL*, *trn*LF-cd and *trn*LF-cf primers were 300 bp, 550 bp, and 1,000 bp, respectively (Figure 23-25 and Table 7).

Figure 23. PCR products of *rbc*L on 1.2% agarose gel. Lane 1-7 and 9-10 contain the PCR product of *B. superba*. In addition, lane 8 contains no PCR product of *Butea sp.* (outgroup control). Lane M represents 100 bp ladder as DNA marker.

Figure 24. PCR products of *trn*LF-cd on 1.2% agarose gel. Lane 1-5 contains the PCR product of *B. superba*. Lane M represents 100 bp ladder as DNA marker.

Figure 25. PCR products of *trn*LF-cf on 1.2% agarose gel. Lane 1-7 and 9 contains the PCR product of *B. superba*. In addition, lane 8 contains no PCR product of outgroup control (*Butea sp.*). Lane M represents 100 bp ladder as DNA marker.

48

Table 7.The results of PCR amplification by 3 pairs of primers.

NT			rbcL		
No.	Cultivars	Code	(BuL 3 and BuR 3)	trnLF-ca	trnLF-ci
1	Kanchanaburi 1	KC 1	+	+	+
2	Kanchanaburi 2	KC 2	+	+	+
3	Kanchanaburi 3	KC 3	+	+	+
4	Khon Kaen	КК	+	+	+
5	Chantaburi	СТ	+	+	+
6	Chachoengsao	CC	+	+	+
7	Chonburi	СВ	+	+	+
8	Chaiyaphum	CHY	+	+	+
9	Chiangrai 1	CR 1	+	+	+
10	Chiangrai 2	CR 2	+	+	+
11	Tak	ТК	+	+	+
12	Nakhon ratchasima	NAK	+	+	+
13	Nakhon sawan 1	NS 1	+	+	+
14	Nakhon sawan 2	NS 2	+	+	+
15	Nakhon sawan 3	NS 3	+	+	+
16	Buriram	BR	+	+	+
17	Prachenburi	PB	1219151	15	+
18	Phitsanulok 1	PS 1	+	+ •	+
19	Phitsanulok 2	PS 2	118729	ยาละ	-
20	Phitsanulok 3	PS 3	+	+	+
21	Phetchaboon	PC	+	+	+
22	Ratchaburi 1	RAT 1	+	+	+
23	Ratchaburi 2	RAT 2	+	+	+
24	Ratchaburi 3	RAT 3	+	+	+
25	Ratchaburi 4	RAT 4	+	+	+

+ indicated a visible PCR band while the - indicated an invisible PCR band.

No.	Species	Code	<i>rbc</i> L BuL 3 and BuR 3	<i>trn</i> LF-cd	trnLF-cf
26	Lopburi	LB	+	+	+
27	Lampang 1	LP 1	+	+	+
28	Lampang 2	LP 2	+	+	+
29	Loei	LY	+	+	-
30	Sakhonnakorn	SK	+	+	+
31	Saraburi	SR	+	+	+
32	Sukhothai	SU	+	+	+
33	Nongbualamphu	NB	+	+	+
34	Uttaradit	UTT	+	+	+

Outgroup controls

No.	Species	Code	<i>rbc</i> L BuL 3 and BuR 3	trnLF-cd	trnLF-cf
1	B. monosperma (syn. B. frondosa)	Bm	+	_	_
2	Butea sp.	Con	+115-12-	-	-
3	P. mirifica	Pm	+	+	+
4	P. lobata	Pl	+	+	+

+ indicated a visible PCR band while the – indicated an invisible PCR band

According to Table 7, *rbc*L primer could amplify DNA of all 34 cultivars of *B*. *superba* and DNA of *B. monosperma*, *P. mirifica*, and *P. lobata* (outgroup control). The *trn*LF-cd primer could amplify DNA of 33 cultivars of *B. superba* except DNA of Phitsanulok 2 cultivar. Moreover, *trn*LF-cf primer could amplify DNA of 32 cultivars of *B. superba* except DNA of Phitsanulok 2 and Loei cultivars. Table 8.Results of sequencing of PCR product recorded in Table 7. P indicates
positive/ obtained nucleotide sequence. F indicates negative/ failed to
obtained nucleotide sequence. In addition, N/A indicates no analysis/ no
PCR band.

No	Cultivers	Codo	rbcL	tmI F od	trnI F-of
110.	Cuuvars	Code	(BuL 3 and BuR 3)	untr-cu	
1	Kanchanaburi 1	KC 1	Р	Р	F
2	Kanchanaburi 2	KC 2	Р	F	F
3	Kanchanaburi 3	KC 3	Р	Р	Р
4	Khon kaen	KK	Р	Р	Р
5	Chantaburi	СТ	Р	Р	Р
6	Chachoengsao	CC	Р	Р	Р
7	Chonburi	СВ	Р	Р	Р
8	Chaiyaphum	СНҮ	Р	Р	Р
9	Chiangrai 1	CR 1	Р	Р	Р
10	Chiangrai 2	CR 2	Р	Р	Р
11	Tak	ТК	Р	F	F
12	Nakhon ratchasima	NAK	Р	Р	Р
13	Nakhon sawan 1	NS 1	F	Р	Р
14	Nakhon sawan 2	NS 2	Р	Р	Р
15	Nakhon sawan 3	NS 3	Р	Р	Р
16	Buriram	BR	Р	P	Р
17	Prachenburi	РВ	Р	P	Р
18	Phitsanulok 1	PS 1	Р	F	F
19	Phitsanulok 2	PS 2	Р	F	N/A
20	Phitsanulok 3	PS 3	Р	Р	Р
21	Phetchaboon	PC	Р	Р	Р
22	Ratchaburi 1	RAT 1	Р	Р	Р
23	Ratchaburi 2	RAT 2	Р	Р	Р

No.	Cultivars	Code	<i>rbc</i> L (BuL 3 and BuR 3)	trnLF-cd	<i>trn</i> LF-cf
24	Ratchaburi 3	RAT 3	Р	Р	Р
25	Ratchaburi 4	RAT 4	Р	Р	Р
26	Lopburi	LB	Р	Р	F
27	Lampang 1	LP 1	F	Р	Р
28	Lampang 2	LP 2	Р	Р	Р
29	Loei	LY	Р	Р	N/A
30	Sakhonnakorn	SK	Р	Р	Р
31	Saraburi	SR	Р	Р	Р
32	Sukhothai	SU	Р	Р	Р
33	Nongbualamphu	NB	Р	F	F
34	Uttaradit	UTT	Р	Р	Р

Table 8. (continued)

Outgroup control

No.	Species	Code	<i>rbc</i> L BuL 3 and BuR 3	trnLF-cd	trnLF-cf
1	B. monosperma (syn. B. frondosa)	Bm	P	N/A	N/A
2	Butea sp.	Con	N/A	N/A	N/A
3	P. mirifica	Pm	P	Р	Р
4	P. lobata	Pl	Р	Р	Р

4.2.3 Sequence analysis

After PCR amplification, PCR products of *rbc*L of *B. superba* from all collecting localities in Thailand were purified and sequenced. In Table 8, nucleotide sequences of chloroplast gene, *rbc*L, were obtained from 32 cultivars of *B. superba*, 29 cultivars of *trn*LF-cd regions, and 25 sequences of *trn*LF-cf regions, respectively.

The obtained sequence length of *rbcL*, *trn*LF-cd, and *trn*LF-cf regions were 247, 229, and 410 bp, respectively. They contain high A+T content with the average of 58.58% on *rbcL* region, 67.46% in *trn*LF-cd region, and 63.87% in *trn*LF-cf region (Table 9-11). In addition, multiple alignment sequence by clustal X comparisons revealed nucleotide variation in the form of single base pair substitution (Figure 22-24). Then, the pairwise distance in pair of *rbcL*, *trn*LF-cd, and *trn*LF-cf sequences by PAUP*4.0b10 were 0-1.2%, 0 - 51.22%, and 0 - 98.23 %, respectively (Table 12, 13 and 14).

Alignment: BuL3 and BuR3 primers of rbcL region

			$\left \cdots \right \cdots \left \right $		
DG 2) 50 mmananna a
PSZ	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
Nak	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
CHY Dat 4	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
Rat4	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
KC3	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
Rats	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
BR	TGCGCGCTCT	ACGTCTGGAG	GATTIGCGAA		
Rat2	TGCGCGCTCT	ACGICIGGAG	GATTTGCGAA		
Rati		ACGICIGGAG	GATTIGCGAA		
KCI NG2		ACGICIGGAG	GATTIGCGAA		
NS3		ACGICIGGAG	GATTIGCGAA		
KK		ACGICIGGAG	GATTIGCGAA		
BM(Outgroup)	TGCGCGCTCT	ACGICIGGAG	GATTIGCGAA		
NS2 NS2	TGCGCGCGCTCT	ACGICIGGAG	CATTTCCCAA	TCCCTATIC	
PSS du	TGCGCGCICI	ACGICIGGAG	GATTIGCGAA		
ND	TGCGCGCGCTCT	ACGICIGGAG	CATTTCCCAA	TCCCTATIC	
	TCCCCCCCTCT	ACGICIGGAG	CATTTCCCAA	TCCCTATIC	
UCC Tab	TGCGCGCTCT	ACGICIGGGG	GATTIGCGAA	TCCCTATIC	
DC	TCCCCCCTCT	ACGTCTCCAC	CATTTCCCAA	TCCCTATIC	
KC2	TGCGCGCTCT	ACGICIGGAG	CATTTCCCAA	TCCCTATIC	
SR	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTC	
Ст	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	ТСССТАТТТС	ΤΤΑΤΑΤΤΑΔΑ
LY	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	ΤΤΑΤΑΤΤΑΑΑ
PB	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	тесстаттте	ΤΤΑΤΑΤΤΑΑΑ
CR1	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
LB	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
SK	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
CB	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
PM(outgroup)	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
PL(outgroup)	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
LP2	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
PS1	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
CC	TGCGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATATTAAA
CR2	TACGCGCTCT	ACGTCTGGAG	GATTTGCGAA	TCCCTATTTC	TTATGTTAAA
Clustal Co	* ******	******	* * * * * * * * * *	******	**** ****

P92					
Nak	ACTIICCAAG	GTCCCCCTCA	TCCCATCCAA	GTTGAGAGAG	
CHY	ACTITCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ΔΤΔΔΔΤΤΩΔΔ
Rat4	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
KC3	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
Rat3	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
BR	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
Rat2	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
Rat1	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
KC1	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
NS3	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
кк	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
BM	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
NS2	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
PS3	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
SU	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
NB	ACTTTACAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
Utt	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
Tak	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
PC	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
KC2	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
SR	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
CT	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
LY	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
PB	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
CR1	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
LB	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
SK	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
CB	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
PM	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
PL	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
LP2	ACTTTCCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
PSI	ACT"I"I"CCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
	ACTITICCAAG	GTCCGCCTCA	TGGCATCCAA	GTTGAGAGAG	ATAAATTGAA
CRZ	ACT TTCCAAG	GTCCGCCTCA	TGGCATCCAA	GITIGAGAGAG	ATAAATTGAA
CIUSTAL CO					

540) 120) 130) 14() 150
PS2	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
Nak	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
CHY Data	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGGT
Rat4	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
KC3	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
Rat3	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGGT
BR	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGGT
Rat2	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGGT
Rati	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	'TA'I'TAAACC'I'	AAA'I''I'GGGG'I'
KC1	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
NS3	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
KK	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
BM	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
NS2	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
PS3	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
SU	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
NB	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
Utt	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
Tak	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
PC	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
KC2	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
SR	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
CT	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
LY	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
PB	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
CR1	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
LB	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
SK	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
CB	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
PM	CAAGTATGGT	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
PL	CAAGTATGGT	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
LP2	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
PS1	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
CC	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
CR2	CAAGTATGGC	CGTCCCCTAT	TAGGATGTAC	TATTAAACCT	AAATTGGGGT
Clustal Co	* * * * * * * * *	* * * * * * * * * *	*******	******	* * * * * * * * * *

		160) 170) 180) _ 190	ວ ່ 200
PS2		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Nak		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
CHY		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Rat4		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
KC3		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Rat3		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
BR		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Rat2		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Rat1		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
KCl		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
NS3		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
KK		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
BM		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
NS2		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
PS3		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
SU		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
NB		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Utt		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Tak		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
PC		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
KC2		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
SR		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
CT		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
LY		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
PB		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
CR1		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
LB		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
SK		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
CB		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
PM		TATCCGCTAA	GAATTATGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
PL		TATCCGCTAA	GAATTATGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
LP2		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
PS1		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
CC		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
CR2		TATCCGCTAA	GAATTACGGT	AGAGCAGTTT	ATGAATGTCT	TCGTGGGGGA
Clustal	Co	* * * * * * * * * *	***** ***	*******	*******	* * * * * * * * * *
	210) 220) 230) 240)	
------------	------------	------------	------------	------------	---------------	
PS2	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Nak	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
CHY	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Rat4	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
KC3	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Rat3	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
BR	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Rat2	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Rat1	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
KC1	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
NS3	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
KK	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
BM	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
NS2	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
PS3	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
SU	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
NB	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Utt	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Tak	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
PC	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
KC2	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
SR	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
CT	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
LY	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
PB	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
CR1	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
LB	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
SK	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
CB	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
PM	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
PL	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
LP2	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
PS1	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
CC	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
CR2	CTTGATTTTA	CCAAAGATGA	TGAAAATGTG	AATTCCCAAC	CATTTAT	
Clustal Co	*****	******	******	******	* * * * * * *	

Figure 26. A 247 bp character matrix based on partial *rbc*L of chloroplast DNA sequences of 32 cultivars of *B. superba*. Asterisks * indicate that all samples provide nucleotide identity.

จฬาลงกรณมหาวิทยาลย

Alignment: trnLF-c and trnLF-d primers of trnLF-cd region

	10) 20) 30) 4	0 50
CR2	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTATAAAG	TGATAATAAA
LP1	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
KC3	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Rat4	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
CB	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Utt	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
KK	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
CT	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
PC	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
NS3	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
NS2	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Rat3	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Rat2	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Rat1	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
LP2	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
CR1	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
СНҮ	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
PS3	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAT
CC	CCAAATCCTG	TTTCCTGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Pm	CCAAATCCCG	TTTTCCGAAA	ACAAAGAAAA	GTTCGGAAAG	TGATAATAAA
Pl	CCAAATCCCG	TTTTCCGAAA	ACAAAGAAAA	GTTCGGAAAG	TGATAATAAA
SK	CCAAATCCTG	TTGGCCGAGA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
NS1	CCAAATCCTG	TCCCCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
LB	CCAAATCGTG	TCCCCCGAAA	ACAAGGGAAA	GTTTGGAAAG	TGATAATAAA
LY	CCAAATCCTG	TCCCCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
SR	CCAAATCCTG	TCCTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATAAA
Nak	CCAAATCCTG	TCTTCCGAAA	ACGAAGAAAA	GTTTAGAAAG	TGATAATAAA
SU	CCAAATCCTG	TTTTCCGAAA	ACAAAGAAAA	GTTTAGAAAG	TGATAATATG
KC1	CCAAATCCTG	TTTTCCGAAA	ACGAAGAAAA	GTTTAGAAAG	TGATAATAAA
BR	CCAAATCCTG	TCCCCCGAAA	ACGGGAAAAG	GTTTAGAAAG	TGATAATAAA
PB	CCAAATCCTG	TTTTCCGAAA	ACGACGAAAA	GTTTAGAAAG	TGATAATAAT
Clustal Co	****** *	* * * * *	** **	*** ****	* * * * * * * *

	60) 7() 80) 90) 100
CR2	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
LP1	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
KC3	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Rat4	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
CB	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Utt	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
KK	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
CT	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
PC	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
NS3	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
NS2	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Rat3	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Rat2	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Rat1	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
LP2	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
CR1	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
CHY	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
PS3	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
CC	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Pm	AAAGGGATAG	GTGCAGAGAC	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT
Pl	AAAGGGATAG	GTGCAGAGAC	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT
SK	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAAGGGAGTT
NS1	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGACCT
LB	AAAGGGATGG	GTGCAGAGAC	TCGGTGGAAG	CTGTTCTAAC	AAATGGAGCT
LY	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
SR	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	AAATGGAGTT
Nak	AAAGGGATAG	GCGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	ACATGGAGTT
SU	AAAGGGATAG	GCGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	ACATGGAGTT
KC1	AAAGGGA <mark>TA</mark> G	GTGCAGAGAC	TCGATGGAAG	CTGTTCTAAC	ACATGGAGTT
BR	AAAGGGATAG	GTGCAGAGAC	TCGATGGAAG	GTGTTGTAAC	ACATGGAGAT
PB	TAAGGGAGTG	GCGCTGAGAC	TCGTTGGTTG	GTGTTGTAAC	ACATGGAGTT
Clustal Co	***** *	* ** *****	** *** *	**** ****	* * * * *

CB2	GACTA		ТЭССАААСС ТТАССАААСС		
LP1	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
KC3	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Rat4	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
CB	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Utt	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
KK	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
СТ	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
PC	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
NS3	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
NS2	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Rat3	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Rat2	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Rat1	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
LP2	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
CR1	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
СНҮ	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
PS3	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
CC	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Pm	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG	AATCCTTCCA	TCAAAATTCC
Pl	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG	AATCCGTCCA	TCAAAATTCC
SK	GAATA	-CTTTTTGCG	TTATGAAAGG	GATCATTCCA	TCAAAATT
NS1	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
LB	GACTA	-CTTTTTGCG	TAGGAAAGGA	AATCATTCCC	TCAAAATT
LY	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
SR	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
Nak	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAAAATT
SU	GACTA <mark>-</mark>	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCT	TCACGATT
KC1	GACTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCACGATT
BR	GAGTA	-CTCCTTGCA	CTAGGAAAGG	AATCCTTCCA	TCACGATT
PB	GAGTA	-CTTTTTGCA	TTAGGAAAGG	AATCATTCCA	TCAACGTT
Clustal Co	** *	** ****	* *	*** ***	*** **

	160	0 170) 180) 190	200
CR2					TTCAATTG
LP1					TTCAATTG
KC3					TTCAATTG
Rat4					TTCAATTG
CB					TTCAATTG
Utt					TTCAATTG
KK					TTCAATTG
CT					TTCAATTG
PC					TTCAATTG
NS3					TTCAATTG
NS2					TTCAATTG
Rat3					TTCAATTG
Rat2					TTCAATTG
Rat1					TTCAATTG
LP2					TTCAATTG
CR1					TTCAATTG
CHY					TTCAATTG
PS3					TTCAATTG
CC					TTCAATTG
Pm	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT	ATTTCAATTG
Pl	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT	ATTTCAATTG
SK					TTCAATTG
NS1					TTCAATTG
LB					TTGAATTG
LY					TTCAATTG
SR					TTCAATTG
Nak					TTCAATTG
SU					TTCAATTG
KC1					TTCAATTG
BR					TTCAATTG
PB					TTCAATTG
Clustal Co					** *****

	 210	···· ····)	···· ····) 230	···· ····) 240	···· ····) 250
CR2	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
LP1	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
KC3	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Rat4	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
СВ	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Utt	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
KK	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
СТ	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
PC	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
NS3	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
NS2	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Rat3	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Rat2	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Ratl	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
LP2	ATTAA <mark>TGA</mark>	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
CR1	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
CHY	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
PS3	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
CC	ATT <mark>AATGA</mark>	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Pm	ATTAATGA	-AGATCCATT	TGTGATCAAA	ATATTCACAA	ATGAAAGATG
Pl	ATTA <mark>AT</mark> GA	-AGATCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
SK	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
NS1	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
LB	ATTAATGAGG	GAGCTCCGTT	TGTAAAA	ATATTCACAA	ATGAAAGATG
LY	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAGGATG
SR	ATTAAT <mark>G</mark> A	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
Nak	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCCCAA	ATGAAAGATG
SU	ATTAATG <mark>A</mark>	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAGGGATG
KC1	ATTAATG <mark>A</mark>	-AGCTCCATT	TGTGATAAAA	ATATTCTCAA	ATGAGGGATG
BR	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAAAGATG
PB	ATTAATGA	-AGCTCCATT	TGTGATAAAA	ATATTCACAA	ATGAGGGATG
Clustal Co	* * * * * * * *	** *** **	*** ***	***** ***	**** ****

	260) 270	280)
CR2	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
LP1	TGAATCAAAT	CACTGTCCAA	GTTGAAGAAA	AGA
KC3	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Rat4	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
CB	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Utt	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
KK	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
CT	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
PC	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
NS3	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
NS2	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Rat3	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Rat2	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Ratl	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
LP2	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
CR1	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
СНҮ	TGAATCAAAT	CAAT-TCCGA	GTTGAAGAAA	AGA
PS3	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
CC	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Pm	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Pl	TGAATCAA	T-TCCAA	GTTGAAGAAA	AGA
SK	TGGATGAAAT	CCAT-TCCAA	GTTGAAGAAA	AGA
NS1	TGAATCAAAT	CAAT-TCTAA	GTTGAAGAAA	AGA
LB	AGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
LY	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
SR	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Nak	TGAATCACAT	CAAT-TCCAA	GTTGAAGAAA	AGA
SU	TGAATCACAT	CAAT-TGCTC	GTTGATGAAA	AGA
KC1	TGAATCACAT	CCAT-TCTTC	GTTGAAGAAA	AGA
BR	TGGATGAAAT	CCAT-TCCAA	GTTGAAAAAA	GGA
PB	TGAATCAAAT	CAAT-TCCAA	GTTGAAGAAA	AGA
Clustal Co	* * * *	* *	**** ***	* *

Figure 27. A 283 bp character matrix based on partial *trn*LF-cd of chloroplast DNA sequences of 29 cultivars of *B. superba*. Asterisks * indicate that all samples provide nucleotide identity.

ิลฬาลงกรณมหาวทยาลย

			· · · · · · · ·		
DG 2					J 50
P53	CCAAAICCIG		GAAGAAAGCI	IAGIIIAGAA	AGIGAIAAIA
SK.	CCAAAICCIG			AAGIIIAGAA	AGIGAIAAIA
Pm	CCAAAICCCG	TTTTCCGAA-	-AACAAAGAA	AAGIICGGAA	AGIGAIAAIA
AD 0	CCAAATCCCCG	TTTTCCGAA-	-AACAAAGAA	AAGTTCGGAA	AGTGATAATA
CR2	CCAAATCCTG	TTTTTCCCGAA-	-AACAAAGAA	AAGTTTATAA	ACTGATAATA
NSI	CCAAATCCTG	TCCCCCGA	AAACAAAGAA	AAGTTTAGAA	AGTGATAATA
CC	CCAAATCCTG	TTTCCTCCGA	AAACAAAGAA	AAG'I"I"I'AGAA	AGTGATAATA
Rat4	CCAAATCCTG	'I''I''I''I''CCGAA-	-AACAAAGAA	AAG'I"I"I'AGAA	AGTGATAATA
CR1	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
Rat3	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
NS2	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
LP1	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
NS3	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
PC	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
CB	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
Rat2	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
LP2	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
KC3	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
Ratl	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
CHY	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
CT	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
KK	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
Utt	CCAAATCCTG	TTTTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
SR	CCAAATCCTG	TCCTCCGAA-	-AACAAAGAA	AAGTTTAGAA	AGTGATAATA
Nak	CCAAATCCTG	TCTTCCGAA-	-AACGAAGAA	AAGTTTAGAA	AGTGATAATA
SU	CCAAATCCTG	TTTTCCGAA-	-AACGAAGAA	AAGGTTAGAA	AGTGATAATA
PB	CCAAAGCCTG	TTTGCCGAC-	-AACGTCGAA	AAGGTGGGAA	AGTGATAATT
BR	CCAAAGCCTG	TCCCCCGAA-	-AACGG-GAA	AAGGTGGGAA	AGTGATAATT
Clustal Co	**** * * *		** *	** * **	* ******

....|....|....|....|....|....| 60 70 80 90 100

			a a a a a a	a amaga maga		
PS3		ATAAAGGGAT	AGGTGCAGAG	ACTCGATGGG	AAGCTGTTCT	AACAAA'I'GGA
SK		AAAAAGGGAT	AGGTGCAGAG	ACTCCCTGG-	ATGCTGTTCT	AACAAAGGGA
Pm		AAAAAGGGAT	AGGTGCAGAG	ACTCAATGG-	AAGCTGTTCT	AACAAACGGA
Pl		AAAAAGGGAT	AGGTGCAGAG	ACTCAATGG-	AAGCTGTTCT	AACAAACGGA
CR2		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
NS1		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
CC		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
Rat4		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
CR1		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
Rat3		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
NS2		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
LP1		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
NS3		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
PC		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
СВ		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
Rat2		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
LP2		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
KC3		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
Rat1		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
CHY		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
CT		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
KK		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
Utt		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
SR		AAAAAGGGAT	AGGTGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACAAATGGA
Nak		AGAAAGGGAT	AGGCGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACACATGGA
SU		TGAAAGGGAT	AGGCGCAGAG	ACTCGATGG-	AAGCTGTTCT	AACACATGGA
PB		TGTAAGGGAG	TGGCGCTGAG	ACTCGTTGG-	TTGGTGTTGT	TACTCACGGA
BR		TGAAAGGGAG	AGGCGCAGAG	ACTCGATGG-	AAGGTGTTGT	AACACATGGA
Clustal	Co	* * * * * *	** ** ***	**** ***	* **** *	** * ***

	110) 120) 130) 14	0 150
PS3	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
SK	GTTGAATA	CTTTTTT	GCGTTATGAA	AGGGATCATT	CTCTCAAAA-
Pm	GTTGACGATT	TTTCCTTTTT	GCATTAGGAA	AAGAATCCTT	CCATCAAAAT
Pl	GTTGACGATT	TTTCCTTTTT	GCATTAGGAA	AAGAATCCGT	CCATCAAAAT
CR2	GTTGACTACT	CTT-CCTTTT	GCATTGGGAA	AGGAATCATT	CCATCAAAA-
NS1	CCTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
CC	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
Rat4	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
CR1	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
Rat3	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
NS2	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
LP1	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
NS3	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
PC	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
CB	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
Rat2	GTTGACT <mark>A</mark>	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
LP2	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
KC3	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
Ratl	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
CHY	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
CT	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
KK	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
Utt	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
SR	GTTGACTA	CTTTTTT	GCATTAGGAA	AGGAATCATT	CCATCAAAA-
Nak	GTTG <mark>ACTA</mark>	CTTTTT	GCATTAGGAA	AGGAATCCTT	CCAGCACAA-
SU	GTTGACTA	CTTTTT	GCATTAGGAA	AGGAATCATT	CCTTCACGA-
PB	GTTGAGTA	CTCCTT	GCTCTAGGAA	AGGAATCCTT	CCCGCACGT-
BR	GATGAGTA	CTCCTT	GCACTAGGAA	AGGAATCCTT	CCATCACGA-
Clustal Co	*** *	* **	** * ***	* * *** *	* **

			·····		
	160	0 170	0 180) 19	0 200
PS3					TTTTCAA
SK					GAATAAA
Pm	TCCAGGAATG	GATCAAAGAT	AAACATATAT	ATACTGAAAT	ACTATTTCAA
Pl	TCCAGGAATG	GATCAAAGAT	AAACATATAT	ATACTGAAAT	ACTATTTCAA
CR2					TTTTCAA
NS1					TTTTCAA
CC					TTTTCAA
Rat4					TTTTCAA
CR1					TTTTCAA
Rat3					TTTTCAA
NS2					TTTTCAA
LP1					TTTTCAA
NS3				e	TTTTCAA
PC					TTTTCAA
СВ		a		<u></u>	TTTTCAA
Rat2			<u></u>		TTTTCAA
LP2					TTTTCAA
KC3					TTTTCAA
Rat1					TTTTCAA
CHY					TTTTCAA
СТ					TTTTCAA
KK					TTTTCAA
Utt					TTTTCAA
SR					
Nak					
SII					
PB					
BR					
Clustal Co					* *
CIUSCAI CO					

	210) 220) 230) 240	250
PS3	TTGATTAATG	AAGGCTCCAT	TTGT-GATAA	AAATATTCTA	AATGAAAG
SK	TTGATAAATG	AAG-CTCCAT	TTGT-GGGAA	AAAAATTCCC	CCCTGCTGGG
Pm	TTGATTAATG	AAG-ATCCAT	TTGT-GATCA	AAATATTCAC	AAATGA-AAG
Pl	TTGATTAATG	AAG-ATCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
CR2	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
NS1	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
CC	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
Rat4	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
CR1	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
Rat3	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
NS2	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
LP1	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
NS3	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
PC	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
CB	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
Rat2	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
LP2	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
KC3	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
Rat1	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
CHY	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
CT	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
KK	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
Utt	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
SR	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-AAG
Nak	TTGATTAATG	AAGCTCCCTC	TTGT-GATAA	AAATATTCCC	AAATGA-GAG
SU	TTGATTAATG	AAG-CTCCAT	TTGT-GATAA	AAATATTCAC	AAATGA-GGG
PB	TTGAGGGGTG	GTGCTCCCTC	TTGTCGATTA	TAATATTC	TGAGGGG
BR	TTGAGGAATA	GAAGCTCCAC	TTGT-GAAAA	AAATATTCAC	AAATGGGGGG
Clustal Co	**** *	* *	**** * *	** ****	*

DIC		IIGAGGAAIA	GAAGCICCAC	IIOI GAAAA	AAAIAIICAC	AAA1000000
Clustal	Co	**** *	* *	**** * *	** ****	*
		260) 270) 280) 290) 300
PS3		ATGTGAATCA	AATCAATT	CCAAGGT-TG	AAGAAAAGAT	GGAATAT-TC
SK		AGGTAGGTGA	AATCCACC	CCCCGTTGTA	GAAAAAAGGC	GAATAAA-TT
Pm		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
Pl		ATGTGAATC-	AATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
CR2		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
NS1		ATGTGAATCA	AATCAATT	CTAAGTTG	AAGAAAAGAT	GGAATAT-TC
CC		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
Rat4		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
CR1		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
Rat3		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
NS2		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
LP1		ATGTGAATCA	AATCACTG-T	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
NS3		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
PC		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
СВ		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
Rat2		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
LP2		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
ксз		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
Rat1		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
CHY		ATGTGAATCA	AATCAATT	CCGAGTTG	AAGAAAAGAT	GGAATAT-TC
CT		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAG-TC
KK		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
Utt		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAT-TC
SR		ATGTGAATCA	AATCAATT	CCAAGTTG	AAGAAAAGAT	GGAATAG-TC
Nak		ATGTGAATCA	CATCAATT	CCGGGTTG	ATGAAAAGAA	GGAGTGTGTC
SU		ATGTGAATCA	CATCAATT	GCTCGTTG	ATGAAAAGAT	GGAGTGTGTC
PB		AGGATGTGT-	CTCCGACGTC	CCCTGTTG	CCGCCCAGAG	GGGGGGGTCT
BR		AGAGGACCCA	CTCCAGAGAC	ACTCGATG	A-AAACAGGA	GGGGGGGTGT
Clustal	Co	*		* *	* *	*

	360	370	380	390	0 <u>4</u> 00
PS3	CAACTGAA	CAATCAGACG	AGAATAA-GG	ATAGAGTCCT	ATTCTAC
SK	ACACGGGAAA	AAATAGGACG	GGGACAA-AA	GATGCCCCCT	TATGTTCTAC
Pm	АТ	TAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
Pl	AACTGAT	TAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
CR2	A-ACGGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
NS1	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
CC	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
Rat4	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
CR1	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
Rat3	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
NS2	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
LP1	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
NS3	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
PC	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
CB	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
Rat2	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
LP2	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
KC3	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
Rat1	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
CHY	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
CT	AACTGAT	CAATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
KK	AACTGATC	GAGTCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
Utt	AACTGAT	CGATCAGACG	AGAATAA-AG	ATAGAGTCCT	ATTCTAC
SR	AACTGAT	CAGTCAGACG	AGAATAA-GG	ATAGAGTCCT	ATTCTAC
Nak	AACTGTG-TC	GAGCGAGACG	AGAATAATGG	ATAGAGTCCT	ATTCTAC
SU	ATCTGTTC	GGTCGAGACG	AGAGTGT-GG	ATAGAGTCCT	ATTCTAC
PB	-TGTGGG	GGATCGGCCG	AGGGGAA-CG	CTCGCGTCCG	GTCCGGC
BR	GTGTGGG	GGAGACG	AGAGCGGG	ATAGAGTCCT	ATTCGAC
Clustal Co		* **	*	* **	* * *

CR1	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
Rat3	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
NS2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
LP1	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
NS3	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
PC	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
CB	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
Rat2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
LP2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
KC3	ATTG-AT <mark>CAA</mark>	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
Ratl	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
CHY	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
CT	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
KK	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
Utt	GTTG-ATCGA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTT
SR	ATTG-GT <mark>CA</mark> A	ATCATTCAC-	-TCCATCATA	GTCTGATAGA	TCCTT
Nole		CTCACTCAC	TOOTTOTT	CTCTCATACA	TOOTT

PB

BR

Clustal Co

		$ \dots \dots $		$ \dots \dots \dots $	$\begin{vmatrix} \dots \\ \dots $
PS3	CTTGGATCAA	ATCATTCACG	TTCCGTCATA	ATCTGATAGA	TCCCTTTGAA
SK	ATGGGATCAA	GTCTTTTTC-	-TCCATAAAC	AGATAGAAAC	TTTTTTGGAG
Pm	ATTG-ATCAA	ATTATTCAC-	-TCCATCATA	ATCTGATAGA	TCCCTTGAAG
Pl	ATTG-ATCAA	ATTATTCAC-	-TCCATCATA	ATCTGATAGA	TCCCTTGAAG
CR2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
NS1	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
CC	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
Rat4	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
CR1	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
Rat3	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
NS2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
LP1	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
NS3	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
PC	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
CB	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
Rat2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
LP2	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
KC3	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
Rat1	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
CHY	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
CT	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
KK	ATTG-ATCAA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
Utt	GTTG-ATCGA	ATCATTCAC-	-TCCATCATA	ATCTGATAGA	TCCTTTGAAC
SR	ATTG-GTCAA	ATCATTCAC-	-TCCATCATA	GTCTGATAGA	TCCTTTGAAC
Nak	GTTG-AGCAA	GTCAGTCAC-	-TCCATCATA	GTCTGATAGA	TCCTTTGTAC
SU	GGTG-GTCAA	GTCAGTCAC-	-TCCATCATA	GTCTGATGGA	TCCTTTGTCC

GTGT--TCTG GCAAGCTCT- --CCTTGGTA AGCGGAGGGA TCCTCTGTTT

GCAA--GTCG GTCACGCCA- --TCATGGCA AGAGGAGACA TCGTCCACCT

*

* *

הפס	410 געמעמעמעמ	42U 227277277	/ 430 // 10		45U
P55	AIGICAAIAC	CGACAACAAI	GAAAIIIAIA	GCGGGGGGGGAA	AAICCGICG
Dm	AGGGCAIICC	CCAAAAAAAAG	GGAAIIIIA CAAATTTATA	GGGGGGGGGAGAA	AAICCCCCC
FIII DI	ATGICAATAC	CCACAACAAI	CANATTTAIA	GIAAGAGGAA -	AAICCGICG
г <u>т</u>	ATGICAATAC	CCACAACAAI	CANATTTAIA	GIAAGAGGAA -	AAICCGICG
NS1	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AAICCGICG
CC NOT	ATGICAATAC	CGACAACAAT	CAAATTTATA	GTAAGAGGAA -	AATCCGICG
Dat4	ATGICAATAC	CGACAACAAT	CAAATTTATA	GTAAGAGGAA -	AATCCGTCG
CP1	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AAICCGICG
Rat 3	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AAICCGICG
NS2	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
T.P1	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
NS3	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
PC	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
CB	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
Rat2	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
LP2	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
KC3	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
Rat1	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
СНУ	ATGTCAATAC	CGACAACAAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
СТ	ATGTCAATAC	CGACACCAAT	GATATTTATA	GTAAGAGGAA -	AATCCGTCG
KK	ATGTCAATAC	CGACGACGAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
Utt	ATGTCAATAC	CGACAACGAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
SR	ATGTCAATAC	CGACAACGAT	GAAATTTATA	GTAAGAGGAA -	AATCCGTCG
Nak	GTGTCTATAC	CGAGGGCGGT	GGAAGTTATA	GTAAGAGGAA -	AATCCGGCG
SU	GGGTCGATAC	CGA-GGCGGT	GATAGGTATA	GTAAGAGGAA -	AGTCCGGCG
PB	CTGTCGGTGG	GGGGGGGCGTT	GGGTTTTTTT	TTTGGAGGGG C	AACCCGGCT
BR	GGGCCGATAG	GGAGGGCGGA	GAGAGGAAAA	GTAAGAGGAA	AGTCCGGCC
Clustal Co	* * *		*	* *	* ** *
	···· ···· 460	···· ··· 470	···· ····) 480	···· ··· ·	
PS3	 460 ACTTTAGA	 470 AAGTCGTGAG) 480 GGT	···· ··· · 9 490	
PS3 SK	 460 ACTTTAGA CCACTTTAAA	 470 AAGTCGTGAG AATCGGGGGGG) 480 GGT GGT	.) 490	
PS3 SK Pm	 460 ACTTTAGA CCACTTTAAA ACTTAAGA	AAGTCGTGAG AAGTCGTGAG AATCGGGGGGG AATCGTGAGG) 48(GGT GGT GTT	.) 490	
PS3 SK Pm Pl	 460 ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA	 47(AAGTCGTGAG AATCGGGGGG AATCGTGAGG AATCGTGAGG	 GGT GGT GTT GTT GTT	.) 490	
PS3 SK Pm Pl CR2	 460 ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA	 47(AAGTCGTGAG AATCGGGGGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	 GGT GGT GTT GTT GTT	.) 490	
PS3 SK Pm Pl CR2 NS1	ACTTTAGA CACTTTAAA ACTTTAAA ACTTAAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT	.) 490	
PS3 SK Pm Pl CR2 NS1 CC	ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT	. 9 490	
PS3 SK Pm Pl CR2 NS1 CC Rat4	ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT	.) 490	
PS3 SK Pm Pl CR2 NS1 CC CC Rat4 CR1	ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGGGGGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	
PS3 SK Pm Pl CR2 NS1 CC CC Rat4 CR1 Rat3	ACTTTAGA CCACTTTAGA CCACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 470 AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2	ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 470 AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1	ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3	ACTTTAGA CCACTTTAGA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC	ACTTTAGA CCACTTTAGA CCACTTTAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	470 AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB	ACTTTAGA CCACTTTAGA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2	ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 47(AAGTCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	.	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2	ACTTTAGA CCACTTTAAA ACTTAAGA ACTTAAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA ACTTTAGA	 470 AAGTCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 9 490	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3		 470 AAGTCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	.	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1		 470 AAGTCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	.	8
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CHY		 470 AAGTCGTGAG AATCGGGGGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	.	9
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CHY CT	460 -ACTTTAGA CCACTTTAAA -ACTTAAGA -ACTTAAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA -ACTTTAGA	470 AAGTCGTGAG AATCGGGGGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 490	9
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CHY CT KK		470 AAGTCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT	. 490	9
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CHY CT KK Utt		470 AAGTCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT		3
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CCHY CT KK Utt SR		470 AAGTCGTGAG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT		ງ ງງ
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CHY CT KK Utt SR Nak		470 AAGTCGTGAG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT) วร เยาลัย
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat1 CHY CT KK Utt SR Nak SU		470 AAGTCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT) าร เยาลัเ
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat2 LP2 KC3 Rat1 CHY CT KK UUT SR Nak SU PB		470 AAGTCGTGAGG AATCGTGAGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT		าร
PS3 SK Pm Pl CR2 NS1 CC Rat4 CR1 Rat3 NS2 LP1 NS3 PC CB Rat2 LP2 KC3 Rat2 LP2 KC3 Rat1 CHY CT KK ULT SR Nak SU PB BR		470 AAGTCGTGAGG AATCGTGAGG GGCCGTGAGG GGCCGTGAGG GGCGGGGGGGGGG	GGT GGT GTT GTT GTT GTT GTT GTT GTT GTT		าร

Figure 28. A 473 bp character matrix based on partial *trn*LF-cf of chloroplast DNA sequences of 26 cultivars of *B. superba*. Asterisks * indicate that all samples provide nucleotide identity.

Taxon	А	С	G	Т	# sites
CC	0.28455	0.19919	0.21545	0.30081	246
LP2	0.28455	0.19919	0.21545	0.30081	246
PS1	0.28455	0.19919	0.21545	0.30081	246
СТ	0.28455	0.19919	0.21545	0.30081	246
LY	0.28455	0.19919	0.21545	0.30081	246
PB	0.28455	0.19919	0.21545	0.30081	246
CR1	0.28455	0.19919	0.21545	0.30081	246
LB	0.28455	0.19919	0.21545	0.30081	246
SK	0.28455	0.19919	0.21545	0.30081	246
СВ	0.28455	0.19919	0.21545	0.30081	246
SR	0.28455	0.19919	0.21545	0.30081	246
KC2	0.28455	0.19919	0.21545	0.30081	246
NB	0.28862	0.19512	0.21545	0.30081	246
Tak	0.28455	0.19919	0.21545	0.30081	246
PC	0.28455	0.19919	0.21545	0.30081	246
PS3	0.28455	0.19919	0.21545	0.30081	246
SU	0.28455	0.19919	0.21545	0.30081	246
NS2	0.28455	0.19919	0.21545	0.30081	246
NS3	0.28455	0.19919	0.21545	0.30081	246
KK	0.28455	0.19919	0.21545	0.30081	246
Ratl	0.28455	0.19919	0.21545	0.30081	246
KC1	0.28455	0.19919	0.21545	0.30081	246
BR	0.28455	0.19919	0.21545	0.30081	246
Rat2	0.28455	0.19919	0.21545	0.30081	246
KC3	0.28455	0.19919	0.21545	0.30081	246
CR2	0.28455	0.19919	0.21545	0.30081	246
Rat3	0.28455	0.19919	0.21545	0.30081	246
CHY	0.28455	0.19919	0.21545	0.30081	246
Rat4	0.28455	0.19919	0.21545	0.30081	246
PS2	0.28455	0.19919	0.21545	0.30081	246
Nak	0.28455	0.19919	0.21545	0.30081	246
Utt	0.28049	0.19919	0.21951	0.30081	246
BM	0.28455	0.19919	0.21545	0.30081	246
PM	0.28455	0.19106	0.21545	0.30894	246
PL	0.28455	0.19106	0.21545	0.30894	246
Mean	0.28455	0.19861	0.21556	0.30128	246.00
Mean %	28.46%	19.86%	21.56%	30.13%	

Table 9.Percentages of base composition of *rbc*L sequences of *B. superba*.

จุฬาลงกรณ์มหาวิทยาลย

Taxon	A	С	G	Т	# sites
CR1	0.41485	0.13100	0.18341	0.27074	229
KC3	0.41485	0.13100	0.18341	0.27074	229
LP2	0.41485	0.13100	0.18341	0.27074	229
Nak	0.39738	0.15284	0.18777	0.26201	229
PB	0.35371	0.13537	0.21834	0.29258	229
NS2	0.41485	0.13100	0.18341	0.27074	229
NS3	0.41485	0.13100	0.18341	0.27074	229
PC	0.41485	0.13100	0.18341	0.27074	229
PS3	0.41048	0.13100	0.18341	0.27511	229
Rat1	0.41485	0.13100	0.18341	0.27074	229
Rat2	0.41485	0.13100	0.18341	0.27074	229
Rat3	0.4148 <mark>5</mark>	0.13100	0.18341	0.27074	229
Rat4	0.41485	0.13100	0.18341	0.27074	229
SR	0.41485	0.13974	0.18341	0.26201	229
SU	0.36245	0.14847	0.20524	0.28384	229
CR2	0.41485	0.13100	0.17904	0.27511	229
СТ	0.41485	0.13100	0.18341	0.27074	229
KK	0.41485	0.13100	0.18341	0.27074	229
NS1	0.41485	0.14847	0.17904	0.25764	229
Utt	0.41485	0.13100	0.18341	0.27074	229
SK	0.39738	0.12664	0.21397	0.26201	229
BR	0.37991	0.15721	0.22271	0.24017	229
CB	0.4148 <mark>5</mark>	0.13100	0.18341	0.27074	229
CC	0.41485	0.13100	0.18341	0.27074	229
CHY	0.41048	0.13100	0.18777	0.27074	229
KC1	0.36681	0.14847	0.20087	0.28384	229
LB	0.38428	0.14410	0.23144	0.24017	229
LY	0.41048	0.14410	0.18777	0.25764	229
LP1	0.41048	0.13537	0.18341	0.27074	229
Pm	0.39738	0.15284	0.17467	0.27511	229
Pl	0.40175	0.14847	0.17904	0.27074	229
Mean	0.40485	0.13678	0.18932	0.26905	229
Mean%	40.49%	13.68%	18.93%	26.91%	

Table 10.Percentages of base composition of *trn*LF-cd sequences of *B. superba*.

Taxon	А	С	G	Т	# sites
CR1	0.39268	0.15854	0.17317	0.27561	410
KC3	0.39268	0.15854	0.17317	0.27561	410
LP2	0.39268	0.15854	0.17317	0.27561	410
Nak	0.31220	0.17073	0.25854	0.25854	410
PB	0.15122	0.21707	0.36098	0.27073	410
NS2	0.39268	0.15854	0.17317	0.27561	410
NS3	0.39268	0.15854	0.17317	0.27561	410
PC	0.39268	0.15854	0.17317	0.27561	410
PS3	0.36341	0.15122	0.21951	0.26585	410
Rat1	0.39268	0.15854	0.17317	0.27561	410
Rat2	0.39268	0.15854	0.17317	0.27561	410
Rat3	0.39268	0.15854	0.17317	0.27561	410
Rat4	0.39024	0.15854	0.17561	0.27561	410
SR	0.38049	0.16341	0.18780	0.26829	410
SU	0.28780	0.16829	0.27073	0.27317	410
CR2	0.39024	0.16098	0.17317	0.27561	410
CT	0.38780	0.16098	0.17561	0.27561	410
KK	0.38537	0.15854	0.18293	0.27317	410
NS1	0.39268	0.16829	0.17073	0.26829	410
Utt	0.38293	0.15854	0.18293	0.27561	410
SK	0.35122	0.17805	0.23902	0.23171	410
BR	0.29268	0.20244	0.34878	0.15610	410
CB	0.39268	0.15854	0.17317	0.27561	410
CC	0.39268	0.16098	0.17317	0.27317	410
CHY	0.39024	0.15854	0.17561	0.27561	410
LP1	0.39024	0.16098	0.17561	0.27317	410
Pm	0.40976	0.15366	0.16098	0.27561	410
Pl	0.40976	0.15122	0.16585	0.27317	410
Mean	0.37099	0.16385	0.19747	0.26768	410.00
Mean (%)	37.1%	16.39%	19.75%	26.77%	

Table 11.Percentages of base composition of *trn*LF-cf sequences of *B. superba*.

4.2.4 Phylogenetic analysis

Partial *rbcL*, *trnL*F-cd, and *trnL*F-cf sequences of *B. superba* collected in Thailand (the northern, the northeastern, the western, the eastern, and the central parts) were analyzed to gain insights into the inter- and intra- genetic relationships. The phylogenetic relationships were inferred by using the neighbor-joining (NJ) and Maximum pasimony Method (MP).

Phylogenetic trees of *rbcL* showed 32 cultivars of *B. superba* and 3 species of outgroup (*B. monosperma, P. mirifica, and P. lobata*) as in Figure 29. Considering the tree, *B. superba* cultivars could not separate into groups. They had high similarity sequence but low genetic distance (Table 12).

A phylogenetic tree of *tm*LF-cd (Figure 30) showed 2 major groups (I and II). Group I had 3 minor groups (IA, IB, and IC). The IA minor group had high similarity sequence and low genetic distance (Table 13). According to the IB minor group, a sequence of Sukhothai cultivar was closely similar to Kanchanaburi 1 cultivar with 86 bootstrap values. In addition, the IC minor group had high variation but could not show bootstrap value which is less than 50%. Moreover, Group II had only Sakhonnakorn cultivar that separates from the others.

A phylogenetics tree of *trn*LF-cf (Figure 31) showed 2 major groups. Group I is composed of 2 minor groups. Group II is composed of only Sakhonnakorn cultivar of *B. superba* (same results with *trn*LF-cd). The IA minor group had low genetic distance and had high similarity sequence within groups (Table 14). The IB minor group had high variation within groups. Prachenburi and Buriram cultivars were separated into the IB minor group and had high bootstrap value with 99%.

According to 3 phylogenetic trees, *B. superba* cultivars had high variation in *trn*LFcd and *trn*LF-cf regions but not in *rbc*L gene. In addition, Sukhothai cultivar was closely similar to Kanchanaburi 1 cultivar with 86 bootstrap values in *trn*LF-cd region. Prachenburi and Buriram cultivars were closely similar in sequences with 99% bootstrap value in *trn*LFcf region.

Moreover, Sakhonnakorn cultivar was separated from the others due to compared sequences of *trn*LF-cd and *trn*LF-cf regions.

Figure 29. A rooted phylogenetic tree of *rbc*L sequence inferred by neighbor-joining method. Confidence probabilities are shown on the branches.

Figure 30. A rooted phylogenetic tree of *trn*LF-cd sequence inferred by neighborjoining method. Confidence probabilities are shown on the branches.

Figure 31. A rooted phylogenetic tree of *trn*LF-cf sequence inferred by neighborjoining method. Confidence probabilities are shown on the branches.

77

Table 12.The *rbcL* sequence divergence (%) based on pairwise comparisons
among *B. superba* samples in Thailand
(see Table 4 for abbreviated names).

Kimura 2-parameter distance matrix

	1	2	3	4	5	6	7	8	9
1 CC				NAMA					
2 LP2	0.00000	-							
3 PS1	0.00000	0.00000	_						
4 CT	0.00000	0.00000	0.00000	-					
5 LY	0.00000	0.00000	0.00000	0.00000	-				
6 PB	0.00000	0.00000	0.00000	0.00000	0.00000	-			
7 CR1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-		
8 LB	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-	
9 SK	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-
10 CB	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
11 SR	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
12 KC2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
13 NB	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408
14 Tak	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
15 PC	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
16 PS3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
17 SU	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
18 NS2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
19 NS3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
20 KK	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
21 Ratl	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
22 KC1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
23 BR	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
24 Rat2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
25 KC3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
26 CR2	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820
27 Rat3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
28 CHY	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
29 Rat4	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
30 PS2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
31 Nak	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
32 Utt	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408
33 вм 🔤	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
34 PM	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820
35 PL	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820

Kimura 2-parameter distance matrix (continued)

	10	11	12	13	14	15	16	17	18
10 CB	-								
11 SR	0.00000	-							
12 KC2	0.00000	0.00000	-						
13 NB	0.00408	0.00408	0.00408	-					
14 Tak	0.00000	0.00000	0.00000	0.00408	-				
15 PC	0.00000	0.00000	0.00000	0.00408	0.00000	-			
16 PS3	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	-		
17 SU	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	-	
18 NS2	0.00000	0.00000	0.0000	0.00408	0.00000	0.00000	0.00000	0.00000	-
19 NS3	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
20 KK	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
21 Ratl	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
22 KC1	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
23 BR	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
24 Rat2	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
25 KC3	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
26 CR2	0.00820	0.00820	0.00820	0.01231	0.00820	0.00820	0.00820	0.00820	0.00820
27 Rat3	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
28 CHY	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
29 Rat4	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
30 PS2	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
31 Nak	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
32 Utt	0.00408	0.00408	0.00408	0.00818	0.00408	0.00408	0.00408	0.00408	0.00408
33 BM	0.00000	0.00000	0.00000	0.00408	0.00000	0.00000	0.00000	0.00000	0.00000
34 PM	0.00820	0.00820	0.00820	0.01231	0.00820	0.00820	0.00820	0.00820	0.00820
35 PL	0.00820	0.00820	0.00820	0.01231	0.00820	0.00820	0.00820	0.00820	0.00820

Kimura 2-	parameter	distance	distance matrix (continued)						
	19	20	21	22	23	24	25	26	27
19 NS3									
20 KK	0.00000	-							
21 Ratl	0.00000	0.00000	Ο.						
22 KC1	0.00000	0.00000	0.00000	199					
23 BR	0.00000	0.00000	0.00000	0.00000	104				
24 Rat2	0.00000	0.00000	0.00000	0.00000	0.00000	-			
25 KC3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			
26 CR2	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820		
27 Rat3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00820	-
28 CHY	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00820	0.00000
29 Rat4	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00820	0.00000
30 PS2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00820	0.00000
31 Nak	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00820	0.00000
32 Utt	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.00408	0.01235	0.00408
33 BM	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00820	0.00000
34 PM	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.01653	0.00820
35 PL	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.00820	0.01653	0.00820

Kimura 2-parameter distance matrix (continued)

		28	29	30	31	32	33	34	35	-
28 0	СНУ	-								
29 F	Rat4	0.00000	-							
30 E	?S2	0.00000	0.00000	-						
31 N	Jak	0.00000	0.00000	0.00000	-					
32 T	Jtt	0.00408	0.00408	0.00408	0.00408	-				
33 E	BM	0.00000	0.00000	0.00000	0.00000	0.00408	-			
34 E	PM	0.00820	0.00820	0.00820	0.00820	0.01235	0.00820	-		
35 E	PL	0.00820	0.00820	0.00820	0.00820	0.01235	0.00820	0.00000	-	
										 -

Table 13.The *trn*LF-cd sequence divergence based on pairwise comparisons among

the B. superba samples in Thailand

(see Table 4 for abbreviated names).

	1	2	3	4	5	6	7	8	9
1 CR1									
2 KC3	0.00000	-							
3 LP2	0.00000	0.00000	_						
4 Nak	0.02668	0.02668	0.02668	- K					
5 PB	0.08796	0.08796	0.08796	0.08803	-				
6 NS2	0.00000	0.00000	0.00000	0.02668	0.08796	-			
7 NS3	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	-		
8 PC	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	-	
9 PS3	0.00438	0.00438	0.00438	0.03121	0.08305	0.00438	0.00438	0.00438	-
10 Ratl	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
11 Rat2	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
12 Rat3	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
13 Rat4	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
14 SR	0.00881	0.0088 <mark>1</mark>	0.00881	0.02668	0.09781	0.00881	0.00881	0.00881	0.01323
15 SU	0.06377	0.06377	0.06377	0.06380	0.10845	0.06377	0.06377	0.06377	0.06378
16 CR2	0.00438	0.00438	0.00438	0.03121	0.09291	0.00438	0.00438	0.00438	0.00879
17 CT	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
18 KK	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
19 NS1	0.02681	0.02681	0.02681	0.04510	0.11804	0.02681	0.02681	0.02681	0.03132
20 Utt	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
21 SK	0.04964	0.04964	0.04964	0.07820	0.13871	0.04964	0.04964	0.04964	0.05432
22 BR	0.11381	0.11381	0.11381	0.11357	0.14996	0.11381	0.11381	0.11381	0.11883
23 CB	0.00000	0.00000	0.00000	0.02668	0.08796	0.00000	0.00000	0.00000	0.00438
24 CC	0.00881	0.00881	0.00881	0.03586	0.09781	0.00881	0.00881	0.00881	0.01323
25 CHY	0.00439	0.00439	0.00439	0.03125	0.09286	0.00439	0.00439	0.00439	0.00879
26 KC1	0.05434	0.05434	0.05434	0.04982	0.10316	0.05434	0.05434	0.05434	0.05904
27 LB	0.14529	0.14529	0.14529	0.16672	0.23438	0.14529	0.14529	0.14529	0.15051
28 LY	0.01778	0.01778	0.01778	0.03586	0.09781	0.01778	0.01778	0.01778	0.02224
29 LP1	0.00438	0.00438	0.00438	0.03121	0.09291	0.00438	0.00438	0.00438	0.00879
30 Pm	0.47025	0.47025	0.47025	0.52096	0.60463	0.47025	0.47025	0.47025	0.47850
31 Pl	0.46219	0.46219	0.46219	0.51226	0.59520	0.46219	0.46219	0.46219	0.47037

Kimura	2-parameter	distance	matrix

Kimura 2-parameter distance matrix (continued)

		10	11	12	13	14	15	16	17	18	
10											
11	Rati	-	_								
12	Rat3	0.00000	0.00000	-							
13	Rat4	0.00000	0.00000	0.00000	_						
14	SR	0.00881	0.00881	0.00881	0.00881	_					
15	SU	0.06377	0.06377	0.06377	0.06377	0.07339	_				
16	CR2	0.00438	0.00438	0.00438	0.00438	0.01323	0.06854	-			
17	СТ	0.00000	0.00000	0.00000	0.00000	0.00881	0.06377	0.00438	-		
18	кк	0.00000	0.00000	0.0000	0.00000	0.00881	0.06377	0.00438	0.00000	-	
19	NS1	0.02681	0.02681	0.02681	0.02681	0.01772	0.09306	0.03132	0.02681	0.02681	
20	Utt	0.00000	0.00000	0.00000	0.00000	0.00881	0.06377	0.00438	0.00000	0.00000	
21	SK	0.04964	0.04964	0.04964	0.04964	0.05434	0.11799	0.05432	0.04964	0.04964	
22	BR	0.11381	0.11381	0.11381	0.11381	0.10340	0.15577	0.11883	0.11381	0.11381	
23	СВ	0.00000	0.00000	0.00000	0.00000	0.00881	0.06377	0.00438	0.00000	0.00000	
24	CC	0.00881	0.00881	0.00881	0.00881	0.01778	0.07339	0.01323	0.00881	0.00881	
25	СНУ	0.00439	0.00439	0.00439	0.00439	0.01328	0.06377	0.00879	0.00439	0.00439	
26	KC1	0.05434	0. <mark>054</mark> 34	0.05434	0.05434	0.06386	0.04500	0.05904	0.05434	0.05434	
27	LB	0.14529	0.14529	0.14529	0.14529	0.13436	0.21842	0.15051	0.14529	0.14529	
28	LY	0.01778	0.01778	0.01778	0.01778	0.00881	0.07339	0.02224	0.01778	0.01778	
29	LP1	0.00438	0.00438	0.00438	0.00438	0.01323	0.06854	0.00879	0.00438	0.00438	
30	Pm	0.47025	0.47 <mark>0</mark> 25	0.47025	0.47025	0.48678	0.52981	0.47850	0.47025	0.47025	
31	Pl	0.46219	0.4 <mark>6219</mark>	0.46219	0.46219	0.47845	0.52096	0.47037	0.46219	0.46219	
	1ra 2.	-parameter	distance	matrix (continued)					
						23	24				
19	NS1	-									
20	Utt	0.02681	- A.								
21	SK	0.06861	0.04964	-							
22	BR	0.10836	0.11381	0.12415	_						
23	СВ	0.02681	0.00000	0.04964	0.11381	-					
24	CC	0.02681	0.00881	0.05434	0.11381	0.00881	-				
25	СНХ	0.03141	0.00439	0.05434	0.11911	0.00439	0.01328				
26	KC1	0.07346	0.05434	0.09789	0.12415	0.05434	0.06386	0.05434	-		
27	LB	0.13412	0.14529	0.18270	0.22993	0.14529	0.14529	0.15085	0.21229	-	
28	LY	0.01772	0.01778	0.05908	0.10340	0.01778	0.01778	0.02233	0.06386	0.13436	
29	LP1	0.03132	0.00438	0.05432	0.11883	0.00438	0.01323	0.00879	0.05904	0.15051	
30	Pm	0.52126	0.47025	0.50507	0.62491	0.47025	0.48678	0.47845	0.52096	0.58899	
31	Pl	0.51241	0.46219	0.49694	0.61460	0.46219	0.47845	0.47025	0.51226	0.57878	
 Kimu	(imura 2-parameter distance matrix (continued)										

 28
 29
 30
 31

 28
 LY

 29
 LP1
 0.02224

 30
 Pm
 0.49526
 0.47037

 31
 P1
 0.48678
 0.46237
 0.00879

Table 14.The *trn*LF-cf sequence divergence based on pairwise comparisons
among the *B. superba* samples in Thailand

(see Table 4 for abbreviated names).

Kimura 2-parameter distance matrix

		1	2	3	4	5	6	7	8	9
2	KC3	0.00000	-							
3	LP2	0.00000	0.00000	-						
4	Nak	0.52649	0.52649	0.52649	-					
5	PB	0.94144	0.94144	0.94144	0.79525					
6 7	NS2	0.00000	0.00000	0.00000	0.52649	0.94144	-	_		
8	PC PC	0.00000	0.00000	0.00000	0.52649	0.94144	0.00000	0.0000	_	
9	PS3	0.58785	0.58785	0.58785	0.45311	0.95934	0.58785	0.58785	0.58785	-
10	Rat1	0.00000	0.00000	0.00000	0.52649	0.94144	0.00000	0.00000	0.00000	0.58785
11	Rat2	0.00000	0.00000	0.00000	0.52649	0.94144	0.00000	0.00000	0.00000	0.58785
12	Rat3	0.00000	0.00000	0.00000	0.52649	0.94144	0.00000	0.00000	0.00000	0.58785
13	Rat4	0.00244	0.00244	0.00244	0.52649	0.93210	0.00244	0.00244	0.00244	0.58785
14	SR	0.01986	0.01986	0.01986	0.52632	0.94029	0.01986	0.01986	0.01986	0.61563
15	50	0.51255	0.51255	0.51255	0.31356	0.80233	0.51255	0.51255	0.51255	0.65375
17	CRZ	0.01980	0.00736	0.00736	0.53108	0.94029	0.00736	0.01980	0.01980	0.59836
18	кк	0.25400	0.25400	0.25400	0.51255	0.91490	0.25400	0.25400	0.25400	0.58926
19	NS1	0.01482	0.01482	0.01482	0.54683	0.97915	0.01482	0.01482	0.01482	0.61563
20	Utt	0.00985	0.00985	0.00985	0.52147	0.91391	0.00985	0.00985	0.00985	0.58241
21	SK	0.73440	0.73440	0.73440	0.71704	1.04451	0.73440	0.73440	0.73440	0.80947
22	BR	0.75144	0.75144	0.75144	0.61715	0.69653	0.75144	0.75144	0.75144	0.94576
23	СВ	0.00000	0.00000	0.00000	0.52649	0.94144	0.00000	0.00000	0.00000	0.58785
24	CC	0.00000	0.00000	0.00000	0.52649	0.94144	0.00000	0.00000	0.00000	0.58785
25	CHY T D1	0.00244	0.00244	0.00244	0.52147	0.94144	0.00244	0.00244	0.00244	0.59334
20	DPI	0.98232	0.98232	0.98232	1.05742	1.62518	0.98232	0.98232	0.98232	1.09660
28	Pl	0.95574	0.95574	0.95574	1.01056	1.68612	0.95574	0.95574	0.95574	1.07926
Kim	ura 2	-parameter	distance	matrix (continued	.)				
		10	11	12	13	14	15	16	17	18
10	Rat1	-								
12	Rat3	0.00000	0.00000	_						
13	Rat4	0.00244	0.00244	0.00244	-					
14	SR	0.01986	0.01986	0.01986	0.02240	-				
15	SU	0.51255	0.51255	0.51255	0.50755	0.51732	- <i>2</i>			
16	CR2	0.01980	0.01980	0.01980	0.02232	0.04029	0.52694	-		
17	CT	0.00736	0.00736	0.00736	0.00982	0.02235	0.52186	0.02733	-	
18	KK	0.25400	0.25400	0.25400	0.25046	0.27928	0.38060	0.26777	0.26058	-
19	NS1	0.01482	0.01482	0.01482	0.01733	0.02490	0.54323	0.03509	0.02230	0.27556
20	UTT	0.00985	0.00985	0.00985	0.01235	0.02495	0.51255	0.02997	0.01728	0.25758
21	BD	0.75440	0.75144	0.75440	0.73440	0.74093	0.70353	0.76093	0.75417	0.09/12
23	CB	0.00000	0.00000	0.00000	0.00244	0.01986	0.51255	0.01980	0.00736	0.25400
24	CC	0.00000	0.00000	0.00000	0.00244	0.01986	0.51255	0.01980	0.00736	0.25400
25	CHY	0.00244	0.00244	0.00244	0.00490	0.02240	0.51255	0.02232	0.00982	0.25758
26	LP1	0.50083	0.50083	0.50083	0.49575	0.52227	0.31499	0.51481	0.51061	0.18474
27	Pm	0.98232	0.98232	0.98232	0.98232	0.98839	1.08078	1.00030	0.99230	0.88808
28	Pl	0.95574	0.95574	0.95574	0.95574	0.97974	1.01448	0.98378	0.96494	0.92583
Kim	ura 2	-parameter	distance	matrix (continued	 .)				
		 1 Q	 20	 91	 ??	 ??	24	 25	 ?6	 27
				2± 						
19	NS1	-								
20	Utt	0.02495	-							
21	SK	0.76093	0.72795	-						
22	BR	0.73577	0.72954	0.96546	-					
∠3 24	CB	0.01482	0.00985	0.73440	0.75144	-	-			
25	CHY	0.01733	0.01235	0.73440	0.75144	0.00244	0.00244	-		
26	LP1	0.53178	0.50083	0.62019	0.72245	0.50083	0.50083	0.50083	-	
27	Pm	1.03364	0.96681	0.93873	1.24867	0.98232	0.98232	0.99026	0.86721	-
28	Pl	1.00734	0.93986	0.92686	1.24612	0.95574	0.95574	0.96387	0.90104	0.16585

4.2.5 **RAPD analysis**

Five primers of RAPD were selected and analyzed by neighbour-joining cluster to demonstrate the relationships among cultivars using Nei-Li genetic distance (PAPU*4.0, Swofford, 1998). Only a reproducible band was score as 1 (presence). Non reproducible band was score as 0 (absence). Total of 48 RAPD fragments by 5 primers (OPA19, OPA12, OPA7, OPD2, and OPC15) were visible. Polymorphic bands by each primer were 10, 10, 11, 7, and 10, respectively (Table 18). Primer OPA19 gave RAPD bands ranging from 200 bp – 1200 bp. Primer OPA12 gave RAPD bands ranging from 200 bp – 1500 bp. Primer OPA7 gave RAPD bands ranging from 200 bp – 1500 bp. Primer OPA7 gave RAPD bands ranging from 200 bp – 1500 bp. Finally, primer OPC15 gave RAPD band ranging from 200 bp – 1500 bp.

Table 15.Total number of bands, monomorphic, and polymorphic band within
34 cultivars of *B. superba* and *B. monosperma* revealed by RAPD
analysis using primer OPA19, OPA12, OPA7, OPD2, and OPC15.

Primer name	No. of total bands	No. of monomorphic bands	No. of polymorphic bands
OPA19	10	0	10
OPA12	10	0	10
OPA7	11	0	11
OPD2	7	0	7
OPC15	10	0	10
Total	48	0	48 (100%)

Figure 32. Neighbor-joining tree of Nei-Li genetic distance among 34 populations of *B. superba* and *B. monosperma* (Bm).

4.2.6 **RAPD Phylogram**

Phylogenetic tree of RAPD was shown in Figure 32. There are 2 separated major groups. Group I contained 19 cultivars of *B. superba* and was separated from Group II with 57% bootstrap value.

In addition, Group II contained 4 cultivars of *B. superba* was separated from others with 65% bootstrap value.

Table 16.RAPD sequence divergence based on pairwise comparisons amongB. superba samples in Thailand (see Table 4 for abbreviated names).

Nei-Li distance matrix

-
15474 -
09401 0.19536
11128 0.22070
36844 0.23580
06161 0.17621
11667 0.10190
14978 0.31392
15957 0.32752
18021 0.27472
15474 0.16580
10696 0.24290
16580 0.02575
32085 *0.88954
22460 0.06797
14049 0.14295
11667 0.15474

Nei-Li distance matrix (continued)

		10	11	12	13	14	15	16	17	18
10	NS2	-								
11	NS3	0.01495	_							
12	PB	0.16310	0.18605	-						
13	PS1	0.03731	0.05331	0.10796	-					
14	PS3	0.06797	0.08786	0.08148	0.05331	-				
15	Rat1	0.07709	0.05229	0.16794	0.08265	0.12842	-			
16	Rat2	0.08576	0.06031	0.18021	0.09180	0.13942	0.01518	-		
17	Rat3	0.12191	0.08265	0.13290	0.09130	0.12362	0.04389	0.03128	-	
18	LB	0.09996	0.06278	0.18605	0.11049	0.06797	0.11189	0.12133	0.10571	-
19	LP2	0.09180	0.06390	0.20636	0.09879	0.12842	0.07581	0.08332	0.06797	0.07789
20	LY	0.20422	0.22841	0.25631	0.18605	0.11667	0.24973	0.26266	0.28327	0.17621
21	SR	*0.88954	*0.88954	*0.88954	0.34618	*0.88954	*0.88954	*0.88954	*0.88954	*0.88954
22	SU	0.26575	0.22070	0.23580	0.24635	0.17109	0.24290	0.25631	0.20422	0.16580
23	NB	0.11049	0.06797	0.16580	0.09744	0.05112	0.10190	0.11189	0.09401	0.04814
24	UTT	0.09401	0.05743	0.17621	0.08148	0.05975	0.08911	0.09879	0.08003	0.05500
Nei-Li distance matrix (continued)										
		19	20	21	22	23	24			
19	LP2			/ // .						
20	LY	0.24973	-							
01	an	+0 99054	+0 99054							

21	SR	*0.88954	*0.889 <mark>5</mark> 4	-		
22	SU	0.24290	0.09401	*0.88954	110 3 7	
23	NB	0.10190	0.15474	*0.88954	0.14295	- 12
24	UTT	0.08911	0.16580	*0.88954	0.15474	0.00741

* Undefined distance

CHAPTER V

DISCUSSION

5.1 Sampling collections

Considering sampling collections, *B. superba* is distributed in all parts of Thailand (the northern, the central, the northeastern, the eastern, and the western parts) except the southern part (Figure 11). It might be that *B. superba* can not grow in a tropical rain forest in the southern part of Thailand. Due to our survey since 1998, *B. superba* habitats are always bamboo forests, dry evergreen forests, and mixed deciduous forests. According to Table 5, some cultivars in some localities could not be collected for morphometric analysis. That involved in the natural problems such as raining season. It made ground surface very slippery. Flash flood in the northern and the central parts occurred in Thailand in 2006. That caused us to lose a lot of mature leaves, but not fresh young leaves for genetic analysis. Therefore, field trip should be performed more often. It should be better if a survey can be performed in all seasons.

5.2 Morphometry analysis

Twenty five mature leaves of each cultivar were collected. This is based on Hidalgo (2003). It would provide an experimental error below 10%. Nine morphometric parameters were measured by a ruler and a vernier caliper. The chosen parameters in this research were recommended by Perrier (1998), González-Andrés (2001), and Andrés-Agustín (2006). Only 7 morphometric parameters (PD, NPV, SPL, RL, TLB, AB⁰, and PL) from total of 9 morphometric parameters (Figure 8 - 10) were analyzed according to Factor analysis using SPSS for window (Ruttner, 1988; Tilde *et al.*, 2000; Hepburn *et al.*, 2001; Chaiyavong, 2001). In addition, 7 morphometric parameters could be divided into 3 factors (Figure 12-14). For the multivariate analysis, a data matrix was prepared by mean values of all cultivars (Appendix II). Two different multivariate analyses [Principal Component Analysis (PCA) and Cluster Analysis (CA)] were carried out. A dendrogram was constructed by Hierarchical Cluster analysis of squared Euclidean distance between means of factor score (Figure 15). The results showed that *B. superba* cultivars could not be separated into groups. In this research, stronger discriminations were provided by the PCA analysis. It indicated that 9 parameters of leaf length were not enough to separate *B. cultivars* into groups.

The result of correlation of geographic trends in morphometric characteristics of *B. superba* from Thailand was shown in Table 6. Analysis of factor scores against longitude (P<0.05) shows clinal patterns in the characters of *B. superba* in Thailand. Considering PD, NPV, RL, and TLB parameters in factor 1, *B. superba* increases in size from the North to the South. In addition, SPL and PLL parameters in factor 2 decrease in size from the North to the South (Figure 16-21).

In our research, only leaf morphometry was used. According to Andrés-Agustín (2006), morphometry of cherimoya cultivars (*Annona cherimola* Mill) was determined by leaf, seed, flowers, and fruit parameters. Although more parameters should be used, our result is the first or beginning survey to cluster *B. superba* cultivars.

5.3 DNA sequences

This research includes the data of DNA sequences of several cultivars of *B. superba* for the first time. First of all, we had to extract DNA from *B. superba* leaf. High MW and sharp band of genomic DNA should be observed in order to indicate a good quality (Figure 22). We used 3 pairs of primers to amplify DNA (Table 2). Product of *rbc*L at 300 bp, product of *trn*LF-cd at 550 bp, and product of *trn*LF-cf at 1,000 bp were obtained, respectively (Figure 23 - 25). According to Table 7, we failed to obtain a single band from *trn*LF-cf of Phitsanulok 2 and Loei cultivars. It might be that the sequences of both cultivars are much different from others, especially the difference at the primer binding sites. Failing to obtain a sequence of PCR product as recorded in Table 8 may come from contamination of the product. Then, we aligned all obtained sequences and constructed phylograms by using NJ and MP analysis.

5.4 RAPD analysis

For further experiments, we used RAPD technique to support the result of DNA sequencing. Selected RAPD primers were based on Mienie *et al.* (1995) which performed RAPD to identify South African soybean cultivars. Those primers were used for amplification of DNA of *B. superba* because both belong to the group of Leguminosae. The obtained sequences of products amplified by the selected RAPD primers were analyzed by neighbor-joining cluster. It demonstrates the relationships among cultivars by using Nei-Li genetic distance (PAPU*4.0, Swofford, 1998). Only a reproducible band was score for presence 1 or for absence 0. Total of 48 RAPD fragments from 5 primers (OPA19, OPA12, OPA7, OPD2, and OPC15) were obtained. Polymorphic bands by each primer were 10, 10, 11, 7, and 10 bands, respectively (Table 15). The result indicates that polymorphism could be determined

among cultivars. There are high levels of genetic variation within cultivars. Primers were specific with some cultivars and were not able to amplify DNA of some cultivars. In the future, more RAPD primers should be tried.

5.5 Phylogenetic relationship

Four phylogenetic trees of *rbcL*, *trn*LF-cd, and *trn*LF-cf from DNA sequences and 1 phylogenetic tree from 5 RAPD primers were obtained. According to phylogenetic analysis by NJ and MP, *rbcL* sequences could be not separated into groups (Figure 29). It is probably that *rbcL* gene of *B. superba* came from the same ancestor. Moreover, *rbcL* gene is a coding regions and this region is expected to have low genetic variation.

In addition, phylogeny of *trn*LF-cd can separate *B. superba* cultivars into 2 major groups (Figure 30). The IA minor group in group I shows low genetic variation among *B. superba* cultivars. The IB and IC minor groups have high genetic variation. Furthermore, Group II has only Sakhonnakorn cultivar. It indicates that Sakhonnakorn cultivars are genetically different from the others

Moreover, phylogeny of *trn*LF-cf can separate *B. superba* cultivars into 2 major groups (Figure 31). The IA minor group in group I shows low genetic variation like Figure 30 although shorter sequences were obtained to construct a *trnL*F-cf tree.

Finally, phylogeny generated by RAPD primers could separate *B. superba* cultivars into 2 groups (Figure 32). Group I had high genetic variation. The tree generated by RAPD primers was different from the trees of *rbcL*, *trn*LF-cd, and *trn*LF-cf in term that the tree generated by RAPD primers could show the node of closely sequences of cultivars from the same province. For example, the node of Rat 1 and Rat 2 is close to the node of NS 2 and NS 3.

5.6 Genetic variation among B. superba cultivars

According to Figure 29 - 31, some cultivars can be separated from the others, especially Sakhonnakorn cultivar. Sequences amplified by *rbc*L primer are almost similar among *B. superba* cultivars. It indicated that *rbc*L primer was designed from conserved regions. That leads to low genetic variation in *B. superba* cultivars. Sequences amplified by *trn*LF-cd and *trn*LF-cf present higher genetic variation among cultivars than sequences amplified by *rbc*L. The obtained sequences can separate an outgroup from *B. superba* cultivars. SU and KC 1 cultivars are closely similar in sequences after being amplified by *trn*LF-cd. Moreover, PB and BR cultivars are closely similar in sequences of *trn*LF-cf primers. Also, they provide the bootstrap values of 86 and 99, respectively.

It can be concluded that geographic and genetic data are not related to each other. The cultivars from the same part of Thailand still have different genetic distance except some cultivars from the same province (Rat 1 - 3 cultivars) are closely related.

In the future, chemical content analysis will be obtained. The relationship among morphometric variation, genetic variation, and chemical content variation will be discovered. This information will lead to the selection of the best cultivar for commercial purpose.

CHAPTER VI

CONCLUSIONS

1. According to factor analysis, 3 factors of parameters can be distinguished. The 1st factor accounted for 34.24% of total variation was mainly associated with petiole diameter (PD), number of pairs of primary veins (NPV), rachis length (RL), and terminal leaflet breadth (TLB). The 2nd factor was accounted for 17.17% and was mainly associated with stipule length (SPL) and petiolet length (PLL). The 3rd factor was mainly associated with angle of the first leaf border (AB⁰). This factor was accounted for 11.48% of total variation.

2. Considering on cluster analysis, it demonstrates that *B. superba* cultivars could not separated into groups by 9 parameter of morphometric method.

3. By correlation analysis, clinal patterns in the characters of *B. superba* in Thailand were determined. *B. superba* leaves increase in size from the North to the South of Thailand in factor 1 and decrease in size from the North to the South in factor 2.

4. Sequences of amplified *rbc*L coding gene of *B. superba* indicate low level of genetic diversity among cultivars originating from different geographic localities in Thailand.

5. Sequence of amplified *trn*LF-cd and *trn*LF-cf of *B. superba* indicated high level of genetic diversity among cultivars. Both primers can separate *P. mirifica* and *P. lobata* form *B. superba*.
6. According to MP and NJ analyses, 3 phylogenetic trees were constructed. Cultivars were separated into groups which are based on *trn*LF-cd and *trn*LF-cf regions. For example, Sakhonnakorn cultivar was clearly separated from the rest.

7. High polymorphic patterns were visible by RAPD. Phylogeny shows 2 majors group of *B. superba* cultivars. High genetic variation was in group I.

8. Due to our data, morphometry can not determine the variation of *B. superba* collected in Thailand. In contrast, RAPD is effective enough in analyzing the difference of *B. superba* cultivars in Thailand

REFERENCES

- Albach, D.C., Soltis, P.S., Soltis, D.E., Olmstead, R.G. 2001. Phylogenetic analysis of asterias based on sequences of four genes. *Analysis Molecular Botany Garden*. 88: 163–212.
- Andrés-Agustín, J., González-Andrés, F., Nieto-Angle, R. and Barrientos-Priego, A.
 F. 2006. Morphometry of the organs of cherimoya (*Annona cherimola* Mill.) and analysis of fruit parameters for the characterization of cultivars, and Mexican germplasm selection. *Scientia horticulturae*. 107: 337-346.
- Bandara, M. K., Kumar, N.S. and Samaranayake. 1989. An antifungal constituent from the stem bark of *Butea monosperma*. *Journal of Ethnopharmacology*. 25: 73-75.
- Bhargava, S. K. 1986. Estrogenic and postcoial anticonceptive activity in rats of butin isolated from Butea monosperma seed. *Journal of Ethnoplarmacology*. 18: 95-101.
- Boongapim, R. 2002. Effect of the extract from Butea superba on isolated human umbilical vein. Master's Thesis. Medical Science. Chulalongkorn University.
- Caetanoanolles, G., Bassam, B.J., Gresshoff, P.M. 1993. Enhanced detection of polymorphic DNA by multiple arbitrary amplicon profiling of endonucleasedigested DNA-identification of markers tightly linked to the supermodulation locus in soybean. *Molecular Genetic*. 241: 57–64.
- Chase, M.W. *et al.* 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene *rbcL. Annual Missouri Botany Garden.* 80, 528-580.

- Chase, M.W., Albert, V.A., 1998. A perspective on the contribution of plastid rbcL
 DNA sequences to angiosperm phylogenetics. In: Soltis, D.E., Soltis, P.S.,
 Doyle, J.J. (Eds.), *Molecular Systematics of Plants II*: DNA Sequencing.
 Kluwer, Boston.
- Cherdshewasart, W., Cheewasopit, W. and Picha, P. 2004a. The differential antiproliferation effect of white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells. *Journal of Ethnopharmacology*. 93: 255-260.
- Cherdshewasart, W., Cheewasopit, W. and Picha, P. 2004b. Anti-proliferation effects of the white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of HeLa cells. *Journal of Scientific Research of Chulalongkorn University*. 29(1): 27-32.
- Cherdshewasart, W., Kitsamai, Y. and Malaivijitnond, S. 2006. Estrogenic activity of the wild *Pueraria mirifica* evaluated by vaginal cornification assay, in preparation.
- Cherdshewasart, W. and Nimsakul, N. 2003. The clinical trial of *Butea superba* as an herbal alternative treatment for erectile dysfunction. *Asian Journal of Andrology*. 5: 243-246.
- Cherdshewasart, W., Subtang, S. and Dahlan, W. 2006. Diversity of major isoflavonoids of the Thai phytoestrogen rich herb, *Pueraria mirifica* in comparison with Pueraria lobata, in preparation.
- Chung, J. D., Lin, T. P., Chen, Y. L., Cheng, Y. P., and Hwang, S. Y. 2007. Phylogeographic study reveals the origin and evolutionary history of a Phodoendron species complex in Taiwan. *Molecular Phylogenetics and Evolution*. 42: 14-24.

- Clegg, M.T., Gaut, B.S., Learn, G.H.J., Morton, B.R. 1994. Rates and patterns of chloroplast DNA evolution. *Proc. Natl. Acad. Sci.* USA 91: 6795–6801.
- Cuenoud, P., Martinez, M.D.P., Loizeau, P.-A., Spichiger, R., Andrews, S., Manen, J.-F. 2000. Molecular phylogeny and biogeography of the genus Ilex L. (Aquifoliaceae). *Annual of Botany*. 85: 111–122.
- Downie, S.R., Watson, M.F., Spalik, K., Katz-Downie, D.S. 2000. Molecular systematics of Old world Apioideae (Apiaceae): relationships among some members of tribe *Peucedaneae* sensu lato, the placement of several islandendemic species, and resolution within the apioid superclade. *Canada Journal* of Botany. 78: 506–528.
- Doyle, J.J., Doyle, J.L.1995. A rapid DNA isolation procedure for small quantities of fresh leaf material. *Phytochemistry*. Bull. 19, 11–15.

Gonza'lez-Andre's, F. 2001. La Caracterizacio'n Morfolo'gica. In: Gonza'lez-Andre's, F., Pita-Villamil, J.M. (Eds.), Conservacio'n y Caracterizacio'n de Recursos Fitogene'ticos. *Publicaciones I.N.E.A. Valladolid*, España, pp. 199–217.

- Gunakkunru, A., Padmanaban, K., Thirumal, P., Pritila, J., Parimala, G., Vengatesan,
 N., Gnanasekar, N., Perianayagam, J. B., Sharma, S. K. and Pillai. K. K. 2005.
 Anti-diarrhoeal activity of *Butea monosperma* in experimental animals. *Journal of Ethonopharmacology*. 98: 241-244.
- Hidalgo, R., 2003. Variabilidad gene´tica y caracterizacio´n de especies vegetales.
 In Ana´lisis estadı´stico de datos de caracterizacio´n morfolo´gica en
 Recursos Fitogene´ticos.
- Honton, J. 2005. *Program 'complete botanica' version 2.0*. [Online]. Available from: <u>http://www.crescentbloom.com</u>.

- Huang, J., Giannasi, D. E., and Price, R. A. 2005. Phylogenetic relationships inEphedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences.*Molecular Phylogenetics and Evolution*. 35: 48-59.
- Ingkanian, K., Temkitthawon, P., Chuenchom K., Yuyaem, T. and Thongnoi, W. 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. *Journal of Ethnopharmacology*. 89(23): 261-264.
- Lark, K.G., Evans, J., Basha, F., Bogden, R., Copeland, R., Ellison, R., Horne, D.,
 Lee, K., McDonald, K., Pierson, J., Schuster, W., Wilhelm, P., Yu, Y. 1992.
 Molecular phylogeny as a genetic tool for soybean breeding. *Soybean Genetic Newslation*. 19: 174–181.
- Lewis, P.A., Mishler, B.D., Vilgalys, R., 1997. Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. *Molecular Phylogenetic and Evolution*. 7: 377–393.
- Loontaisong, A. 2005. Chemical constituents and biological activity of *Butea superba* Roxb. Master's Thesis, Faculty of Science, Chulalongkorn University.
- Kallersjo, M., Farris, J.S., Chase, M.W., Bremer, B., Fay, M., Humphries, C.J.,
 Petersen, G., Seberg, O., Bremer, K. 1998. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveal support for major clades of green plants, land plants, seed plants and flowering plants. *Plant Systematic. Evolution*. 213: 259–87.
- Kathriarachchi, H., Hoffmann, P., Samuel, R., Wurdack, K. J., and Chase M. W. 2005. Molecular phylogenetics of Phyllanthaceae inferred from five genes

(plastid *atp*B, *mat*K, 3 *ndh*F, *rbc*L, and nuclear *PHYC*). *Molecular Phylogenetics and Evolotion*. 36: 112-134.

- Käss, E., and Wink, M. 1996. Molecular Evolution of the Leguminosae: Phylogeny of the Three Subfamilies Based on *rbc*L-sequences. Biochemical Systematics and Ecology. 24(5): 365-378.
- Kazan, K., Manners, J.M., Cameron, D.F. 1993. Genetic variation in agronomically important species of *Stylosanthes* determined using random amplified polymorphic DNA markers. *Theory Apply of Genetic*. 85: 882–888.
- Kelchner, S.A. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. *Annual Molecular Botany Garden*.
 87: 482–498.
- Kohne, D.E., Chiscon, J.A., Hoyer, B.H. 1972. Evolution of primate DNA sequence. *Journal of Human Evolution*. 1: 627-644.
- Koller, B., Lehmann, A., McDermott, J.M., Gessler, C. 1993. Identification of apple cultivars using RAPD markers. Theor. *Application of Genetic*. 85: 901–904.
- Kurz, Z. 1877. *Forest Flora of British Burma Vol. 1*. Calcutta. Office of the superintendent of government prining.
- Manosroi, A., Saowadon, S. and Manosroi, J. 2001. Preliminary chronic toxicity study of red kwao krua (*Butea superba*, Roxb) and White kwao krua (*Pueraria mirifica*, Airy Shaw and Suvatabandhy) in rats. *SWU Journa ofl Pharmaceutical Scencei*. 9(1): 1-12
- Martinez, I., Malmheden Yman, I. 1998. Species identification in meat products by RAPD analysis. *Food Research International*. 31: 459–466.

Matin, S.R., Vences, F.J., Saenz de miera, L.E., Barroso, M.R. and Carnide, V. 2006.

RAPD analysis of genetic diversity among and within Portuguese landraces of common white bean (*Phaseolus vulgaris* L.). *Scientia Horticulture*. 108: 133-142.

- Mehta, B. K., Dubey, A., Bokadia, M. M. and Mehta, S. C. 1983. Isolation in vitro antimicrobial efficiency of *Butea monosperma* seed oil on human phathogenic bacteria and Phytopathogenic fungi. Advanced Cell Technology Microbiology of Hungary. 30:75-77.
- Mienie, C., Smit, M., and Pretorius, P. 1995. Use of random amplified of South African soybean cultivars. *Field Crops Research*. 43: 43-49.
- Moreno-Sánchez, M. 2004. Graphic approach for morphometric analysis of *Archaeopteria* leaves. *Annales de Palẽontologie*. 90: 161-173.
- Müller, K., Borsch, T., and Hilu, K. W. 2006. Phylogenetic utility of rapidly evolving DNA at high taxonomical level: Contrasting *mat*K, *trn*T-F, and *rbc*L in basal angiosperms. *Molecular Phylogentics and Evolution*. 41: 99-117.
- Negrisolo, E., Maistro, S., Incarbone, M., Moro, I., Valle, L. D., Broady, P. A., and Andreoli, C. 2004. Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial *rbcL* genes. *Molecular Pylogenetics and Evolution*. 33: 156-170.
- Ngamrojanavanich, N., Loontaisong, A., Pengprecha, S., Cherdshewasart, W., Pornpakakul, S., Pudhom, K., Roengsumran, S and Petsom, A. 2007. Cytotoxic constituents from *Butea superba* Roxb. *Journal of Ethnopharmacology*. 109: 354-358.
- Olmstead, R.G., Reeves, G., Yen, A.C. 1998. Patterns of sequence evolution and implications for parsimony analysis of chloroplast DNA. In: Soltis, D.E., Soltis, P.S., Doyle, J.J. (Eds.), *Molecular Systematics of Plants* II: DNA

Sequencing. Kluywer, Boston.

- Paiva, E., Vilarinhos, A.D., Debarros, E.G., Sediyama, C.S., Moreira, M.A. 1994. Use of the random amplified polymorphic DNA technique to characterize soybean (*Glycine max* (L. Merrill)) genotypes. *Revista Brasileirn Genetic*. 17: 287-290.
- Palmer, J.D., Jansen, R.K., Michaels, H.J., Chase, M.W., Manhart, J.R., 1998.
 Analysis of chloroplast DNA variation. *Annual Molecula Botany Garden* 75,1180-1206.
- Panriansaen, R. 2000. Characterization of Pueraria mirifica populations from various parts of Thailand. Master's Thesis, Chulalongkorn University.
- Perriers, X. 1998. Analyse de la diversité génétique: Mesures de dissimilarité et representations arbores. Thése doctorat. Université de Montpellier II. Montpellier.
- Pongpanparadon, A., Aritajat, S. and Saenphet, K. 2002. The toxicology of *Butea* superba, Roxb. Southeast Asian Journal Tropical Medicine Public Healthy. 33: 155-158.
- Prabhu, R.R., Gresshoff, P.M. 1994. Inheritance of polymorphic markers generated byDNAamplification fingerprinting and their use as genetic markers in soybean. *Plant Molecular Biology*. 26: 105–116.
- Prashanth, D., Asha, M. K., Amit, A. and Padmaja, R. 2001. Anthelmintic activity of *Butea monosperma. Fitoterapia.* 72: 421-422.

Pulcharoen, K., Cherdshewasart, W., Rengpipat, S. 2005. Mutagenic and antimutagenic activities of extracts from white kwao krua Pueraria mirifica, red kwao krua Butea superba and black kwao krua Mucuna collettii by ames test. Master's Thesis, Program in Biotechnology, Faculty of Science, Chulalongkorn University. 153 pp.

- Raksilp, T. 1995. *Chemical constituents of the tuberous roots of Butea superba Roxb*. Master's Thesis. Chulalongkorn University.
- Raachandran, S., Sridhar, Y., Sam, S. K., Saravanan, M., Leonard, J. T., Anbalgan, N. and Sridhar, S. K. 2004. Aphrodisiac activity of *Butea frondosa* Koen. Ex Roxb. Extract in male rat. *Phytomedicine*. 11: 165-168.
- Razdan, M. K., Kapila, K. and Bhide, N. K. 1969. Antifertility effect and some pharmacological actions of *Butea frondosa* seed extracts. *Indian Journal of Phytophamacology*. 13: 239-249.
- Ridder-Numan, J. W. A. and van der Ham, R. W. J. M. 1997. Pollen morphology of *Butea, Kunstleria, Meizotropis* and *Spatholobus* (Leguminosae, Papilionoideae), with notes on their position in the tribes Millettieae and Phaseoleae. *Review of Palaeobotany and Palynology*. 96: 255-280.
- Roengsumran, S., Petsom, A. Ngamrojnavanich, N., Rugsilp, T., Sittiwicheanwong,
 P., Khorphueng, P., Cherdshewasart, W. and Chaichantipyuth, C. 2000.
 Flavonoid and flavonoid glycoside from *Butea superba* and their cAMP
 Phosphodiesterase inhibitory Activity. *Journal of the Science Faculty of Chiang Mai University* 1: 170-176.
- Savolainen, V., Chase, M.W., Hoot, S.B., Morton, C.M., Soltis, D.E., Bayer, C., Fay, M.F., De Bruijn, A.Y., Sullivan, S., Qiu, Y.-L. 2000. Phylogenetics of flowering plants based upon a combined analysis of plastid *atpB* and *rbcL* gene sequences. *Systematic Biology*. 49: 306–362.
- Savolainen, V., Fay, M.F., Albach, D.C., Backlund, M., Van der Bank, M., Cameron,
 K.M., Johnson, S.A., Lledo, L., Pintaud, J.C., Powell, M., Sheanan, M.C.,
 Soltis, D.E., Soltis, P.S., Weston, P., Whitten, W.M., Wurdack, K.J., Chase,

M.W. 1995. A nearly complete familial analysis of the *rbc*L gene sequences. *Phylogeny of the eudicots*. Kew Bull. 55: 257–309.

- Soltis, D.E., Soltis, P.S., 1998. Introduction. In: Soltis, D.E., Soltis, P.S., Doyle, J.J.
 (Eds.), *Molecular Systematics of Plants II*: DNA Sequencing. Kluywer, Boston.
- Soman, I., Mengi, S. A. and Kasture, S. B. 2004. Effect of leaves of *Butea frondosa* on stress, anxiety, and cognition in rats. *Phamacology Biochemistry Behavior*. 79: 11-16.
- Stiles, J.I., Lemme, C., Sondur, S., Morshidi, M.B., Manshardt, R. 1993. Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. *Theory Apply of Genetic*. 85: 697-701.
- Subba, R.V. and Seshadri, T.R. 1949. Chemical composition of the flower of *Butea* superba. Journal of Science Indian Research. 8B: 178-179.
- Suntara, A. 1931. The remedy pamphlet of Kwao Krua tuber of Luanganusarnsuntarakromkarnphiset Chiang Mai: Upatipongsa Press Chiang Mai. pp. 1-13 (in Thai).
- Sumitra, M., Manikandan, P. and Suguna, L. 2005. Efficacy of *Butea monosperma* on dermal wound healing in rats. *International Journal of Biochemistry Cell Biology.* 37: 566-573.
- Sutjit, W. 2003. The antioxidant test, Ames'test and Micronuclei test of chemical extract from White Kwao Krua (Pueraria mirifica), Red Kwao Krua (Butea superba Roxb), Black Kwao Krua (Mucuna collettii) and Kudzu (Pueraria lobata). Master's Thesis, Faculty of Science, Chulalongkorn University.
- Tanasugarn, L. 2001. When papent rights may not be enforceable: The case of Kwao Krua patent. *Intellectual Property and International Trade Court*. Thailand.

- Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. 1991. University primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17: 1105-1109.
- Weder, J., 2002. Species Identification of Bean, Pea and Other Legumes by RAPD PCR after DNA Isolation using Membrane Columns. Lebensm.-Wiss.
 University of Technology. 36: 277-283.
- Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.
 Nucl. Acids Research. 18: 6531-6535.
- Wu, S.H., Hwang, C.Y., Lin, T.P., Chung, J.D., Cheng, Y.P., Hwang, S.Y. 2006.
 Contrasting phylogeographic patterns of two closely related species, *Machilus thunbergii* and *Machilus kusanoi* (Lauraceae), in Taiwan. *Journal of Biogeography*. 33: 936-947.
- Yang, X., Quiros, C. 1993. Identification and classification of celery cultivars with RAPD markers. *Theory Apply of Genetic*. 86: 205-212.
- Yoke-Kqueen, C and Radu, S. 2006. Random amplified polymorphic DNA analysis of genetically modified organisms. *Journal of Biotechnology*. 127: 161-166.
- Yavada, R. N. and Reedly, K. I. S. 1998. A novel flavone glycoside from the stems of *Butea superba. FITOERAPIA*. Vol.LXIX (3): 269-270.
- Yavada, R. and Tiwari, L. 2005. A poteintial antiviral flavone glycoside from the seeds of *Butea monosperma* O. Kuntze. *Journal of Asian National Productivity Research*. 7: 185-188.
- Zhang, Y., Yang, J. and Rao, G. 2005. Genetic diversity of an amphicarpic species, Amphicarpaea edgeworthii Benth. (Leguminosae) based on RAPD markers. Biochemical Systematics and Ecology. 33: 1246-1257.

APPENDICES

Coordinate No Sampling area code Longitude Latitude Kanchanaburi 1 KC1 1 14.6251076521 99.0873080573 Kanchanaburi 2 KC2 2 14.5104187721 99.2365880565 Kanchanaburi 3 KC 3 3 14.4365076521 99.4876580547 4 Khon Kaen KK 16.5157476497 102.103642066 Chantaburi CT 5 12.8166630257 102.16825325 Chachoengsao CC 6 13.6176836419 101.41629037 CB Chonburi 7 13.3013575092 101.307945148 Chaiyaphum CHY 8 101.958630758 15.7495335472 Chiangrai 1 CR1 9 19.9234756964 99.9260901905 Chiangrai 2 CR2 10 19.9234756964 99.9260901905 Tak TK 11 16.5991435917 98.8377214542 Nakhon ratchasima NAK 12 15.0106952434 102.172490531 Nakhon sawan 1 NS 1 13 15.7044058077 100.092577664 NS₂ Nakhon sawan 2. 14 15.7044058077 100.092577664 Nakhon sawan 3 NS 3 15 15.7044058077 100.092577664 Buriram BR 15 14.8287900598 103.014088222 PB Prachenburi 17 101.661011708 14.081945926 Phitsanulok 1 PS 1 18 16.8990584232 100.482408205 Phitsanulok 2 PS₂ 19 16.8990584232 100.482408205 Phitsanulok 3 PS 3 20 16.8990584232 100.482408205 PC Phetchaboon 21 16.2553390872 101.084767117 RAT 1 Ratchaburi 1 22 13.5904004023 99.5252179977 Ratchaburi 2 RAT 2 23 13.5904004023 99.5252179977 Ratchaburi 3 RAT 3 24 13.5904004023 99.5252179977 RAT4 Ratchaburi 4 25 13.5904004023 99.5252179977 LB Lopburi 26 14.9414112878 100.767904682 Lampang 1 LP 1 27 18.3315799986 99.5094143632 Lampang 2 LP2 28 18.3315799986 99.5094143632 Loei LY 29 101.491640015 17.4005045127 Sakhonnakorn SK 30 17.3429318627 103.827286701 Saraburi SR 31 14.7029252082 100.878847838 Sukhothai SU 32 17.2622420621 99.6615550691 Nongbualamphu NB 33 17.2535133858 102.253903114

UTT

17.6696092002

100.514325475

Uttaradit

34

APPENDIX I Collection of *Butea superba* in Thailand

APPENDIX II

Sample no.		PL	RL	PLL	SPL	TLL	TLB	PD	NPV	AB ^o
Kanchanaburi (KC1)	Mean	6.70	31.77	1.45	0.48	27.78	21.10	0.47	5.17	37.17
	Std. Deviation	0.72	2.46	0.23	0.09	1.90	1.57	0.08	0.41	4.45
	SE	0.14	0.49	0.05	0.02	0.38	0.31	0.02	0.08	0.89
Kanchanaburi (KC2)	Mean	44.18	8.68	1.13	0.76	39.87	33.07	0.66	6.5	28.3
	Std. Deviation	3.36	0.56	0.09	0.12	4.59	2.04	0.04	0.53	2.06
	SE	0.67	0.11	0.02	0.02	0.92	0.41	0.01	0.11	0.41
Khon Kaen (KK)	Mean	32.59	10.60	0.61	0.49	33.04	33.12	0.80	6.00	34.48
	Std. Deviation	1.86	0.39	0.06	0.08	1.57	1.48	0.00	0.00	1.51
	SE	0.36	0.07	0.01	0.02	0.30	0.29	0.00	0.00	0.29
Chantaburi (CT)	Mean	9.10	32.60	1.14	0.44	29.42	30.28	0.72	6.40	30.00
	Std. Deviation	0.60	2.72	0.09	0.17	4.28	3.54	0.11	0.55	4.00
	SE	0.12	0.54	0.02	0.03	0.86	0.71	0.02	0.11	0.80
Chachoengsao (CC)	Mean	8.60	35.94	1.40	0.72	33.96	34.18	0.74	7.00	15.80
	Std. Deviation	1.20	4.11	0.12	0.40	2.69	3.43	0.05	0.71	3.63
	SE	0.24	0.82	0.02	0.08	0.54	0.69	0.01	0.14	0.73
Chonburi (CB)	Mean	9.20	39.16	1.48	0.50	33.04	28.54	0.80	6.00	34.40
	Std. Deviation	1.91	3.75	0.43	0.16	2.96	3.11	0.17	0.71	3.51
	SE	0.38	0.75	0.09	0.03	0.59	0.62	0.03	0.14	0.70
Chiangrai (CR 1)	Mean	32.54	9.43	1.05	0.95	31.62	30.74	0.70	7.00	25.84
	Std. Deviation	1.04	0.41	0.14	0.13	1.04	1.46	0.00	0.00	1.80
	SE	0.21	0.08	0.03	0.03	0.21	0.29	0.00	0.00	0.36
	Mean	45.14	10.68	0.84	1.04	32.26	27.28	0.68	6	25.8
Tak (TK)	Std. Deviation	1.27	0.11	0.18	1.13	1.92	0.00	2.47	2.10	0.03
	SE	0.25	0.02	0.04	0.23	0.38	0.00	0.49	0.42	0.01

Means and Standard Deviation of morphometric characters of Butea suprba in Thailand

จุฬาลงกรณมหาวิทยาลย

Sample no.		PL	RL	PLL	SPL	TLL	TLB	PD	NPV	AB°
Nakorn ratchasima	Mean	41.6	12.0	1.0	0.6	42.9	39.2	0.7	7.0	13.4
(Nak)	Std. Deviation	2.2	0.7	0.0	0.1	1.3	1.1	0.0	0.0	1.4
	SE	0.4	0.1	0.0	0.0	0.3	0.2	0.0	0.0	0.3
Nakhon sawan (NS 1)	Mean	36.76	0.98	0.54	10.36	31.00	7.00	35.30	31.90	0.68
	Std. Deviation	3.03	0.04	0.23	0.47	2.24	0.00	3.04	2.31	0.08
	SE	0.61	0.01	0.05	0.09	0.45	0.00	0.61	0.46	0.02
Nakhon sawan (NS 2)	Mean	32.56	9.60	0.94	0.64	31.87	26.33	0.52	5.00	30.24
	Std. Deviation	3.90	0.87	0.14	0.11	2.36	2.53	0.05	0.00	2.92
	SE	0.78	0.17	0.03	0.02	0.47	0.51	0.01	0.00	0.58
Nakhon sawan (NS 3)	Mean	30.61	<mark>6.</mark> 75	0.68	0.49	28.95	24.92	0.53	5.20	37.20
	Std. Deviation	3.31	0.71	0.21	0.11	1.59	2.44	0.05	0.40	2.62
	SE	0.66	0.14	0.04	0.02	0.32	0.49	0.01	0.08	0.52
Buriram (BR)	Mean	8.72	27.46	1.56	0.46	36.8	34.84	0.8	6.4	34.4
	Std. Deviation	1.93	6.25	0.32	0.18	2.08	2.47	0.10	0.55	3.65
	SE	0.39	1.25	0.06	0.04	0.42	0.49	0.02	0.11	0.73
Prachenburi (PB)	Mean	33.06	9.21	1.00	0.20	30.49	29.21	0.70	6.00	16.44
	Std. Deviation	2.14	0.23	0.00	0.00	1.41	1.04	0.01	0.00	3.55
	SE	0.43	0.05	0.00	0.00	0.28	0.21	0.00	0.00	0.71
Phitsanulok (PS 1)	Mean	29.16	7.08	1.18	0.44	40.52	35.66	0.60	5.00	17.64
	Std. Deviation	1.10	0.23	0.08	0.05	1.19	1.86	0.00	0.00	1.75
	SE	0.22	0.05	0.02	0.01	0.24	0.37	0.00	0.00	0.35

108

<u>u.22</u> 0.05 0.02 0.01 0.24 0.

APPENDIX II (continued)

Means and Standard Deviation of morphometric characters of Butea suprba in Thailand

Sample no		PI	RI	PLI	SPI	тн	TIB	PD	NPV	AB ⁰
Phitsanulok (PS 2)	Mean	47.71	11.57	1.28	0.67	39.26	34.38	0.66	6.68	40.70
	Std. Deviation	2.73	0.94	0.12	0.08	7.89	1.84	0.07	0.80	1.74
	SE	0.55	0.19	0.02	0.02	1.58	0.37	0.01	0.16	0.35
Phitsanulok (PS 3)	Mean	31.82	7.58	1.12	0.86	38.38	27.58	0.62	5.44	33.88
	Std. Deviation	3.10	0.85	0.11	0.22	8.55	3.02	0.08	0.51	1.69
	SE	0.62	0.17	0.02	0.04	1.71	0.60	0.02	0.10	0.34
Ratchaburi (Rat 1)	Mean	34.04	7.64	1.00	0.70	31.76	25.35	0.60	6.00	41.20
	Std. Deviation	3.56	0.49	0.00	0.07	1.73	1.59	0.00	0.00	0.87
	SE	0.71	0 <mark>.1</mark> 0	0.00	0.01	0.35	0.32	0.00	0.00	0.17
Ratchaburi (Rat 2)	Mean	39.51	8.99	1.66	0.65	41.88	32.25	0.70	6.00	32.48
	Std. Deviation	1.62	0.64	0.13	0.05	1.26	1.41	0.00	0.00	1.33
	SE	0.32	0.13	0.03	0.01	0.25	0.28	0.00	0.00	0.27
Ratchaburi (Rat 3)	Mean	26.54	8.20	1.69	0.49	30.80	29.38	0.60	5.68	27.60
	Std. Deviation	0.85	0.21	0.07	0.03	0.99	0.89	0.00	0.48	1.80
	SE	0.17	0.04	0.01	0.01	0.20	0.18	0.00	0.10	0.36
	Mean	35.26	10.86	1.63	0.38	35.00	37.36	0.78	5.00	36.52
	Std. Deviation	2.01	0.73	0.14	0.09	1.83	1.52	0.08	0.00	2.87
Ratchaburi (Rat 4)	SE	0.40	0.15	0.03	0.02	0.37	0.30	0.02	0.00	0.57
	Mean	44.43	6.93	1.04	0.65	28.03	26.29	0.54	5.36	24.60
	Std. Deviation	1.74	0.43	0.11	0.05	1.57	2.93	0.05	0.49	1.78
Lopburi (LB)	SE	0.35	0.09	0.02	0.01	0.31	0.59	0.01	0.10	0.36
Lampang 1 (LP1)	Mean	32.10	8.58	1.00	0.50	34.15	32.58	0.70	6.00	34.22
	Std. Deviation	1.19	0.49	0.00	0.08	2.01	2.01	0.00	0.00	1.65
	SE	0.23	0.09	0.00	0.01	0.39	0.39	0.00	0.00	0.32

Sample no.		PL	RL	PLL	SPL	TLL	TLB	PD	NPV	AB ⁰
Lampang 2(LP2)	Mean	7.76	22.18	1.80	0.18	32.32	30.86	0.57	6.00	27.20
	Std. Deviation	1.28	1.21	0.16	0.03	2.35	4.10	0.08	0.71	5.07
	SE	0.26	0.24	0.03	0.01	0.47	0.82	0.02	0.14	1.01
Loei (LY)	Mean	44.90	10.57	1.40	0.34	36.51	36.99	0.69	6.72	21.96
	Std. Deviation	2.05	0.38	0.17	0.05	1.70	1.40	0.07	0.45	1.04
	SE	0.39	0.07	0.03	0.01	0.33	0.27	0.01	0.09	0.20
Sakhonnakorn (SK)	Mean	7.10	23.82	1.54	0.40	34.86	26.20	0.70	6.60	41.60
	Std. Deviation	1.30	3.66	0.36	0.12	2.65	3.06	0.07	0.55	3.21
	SE	0.26	0.73	0.07	0.02	0.53	0.61	0.01	0.11	0.64
Saraburi (SR)	Mean	8.34	34.28	1.06	0.80	25.78	26.28	0.64	6.40	24.00
	Std. Deviation	0.67	2.06	0.09	0.07	3.48	2.01	0.05	0.55	2.83
	SE	0.13	0.41	0.02	0.01	0.70	0.40	0.01	0.11	0.57
Sukhothai (SU)	Mean	45.24	10.65	1.02	0.46	43.29	35.61	0.70	6.00	21.08
	Std. Deviation	2.25	0.85	0.04	0.09	1.44	1.67	0.00	0.00	1.41
	SE	0.43	0.16	0.01	0.02	0.28	0.32	0.00	0.00	0.27
Nongbualamphu	Mean	29.08	7.33	0.96	0.29	30.38	27.83	0.70	6.00	34.08
(NB)	Std. Deviation	0.79	0.48	0.10	0.03	1.96	1.35	0.01	0.00	1.41
	SE	0.16	0.10	0.02	0.01	0.39	0.27	0.00	0.00	0.28
<i>B. monosperma</i> (Bm)	Mean	15.76	7.33	0.72	0.00	23.06	17.66	0.70	6.00	34.72
	Std. Deviation	1.25	0.48	0.13	0.00	1.56	1.27	0.01	0.00	1.97
Outgroup	SE	0.25	0.10	0.03	0.00	0.31	0.25	0.00	0.00	0.39

APPENDIX III

Factor analysis

9 leaf parameters of 34 cultivars of Butea superba and an outgroup (Butea monosperma).

	Component					
	1	2	3			
Zscore(TLB)	.836					
Zscore(RL)	.805					
Zscore(TLL)	.695					
Zscore(PD)	.647					
Zscore(NPV)						
Zscore(PL)						
Zscore(PLL)		.718				
Zscore(SPL)		699				
Zscore(AB)			.683			

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

Rotated Component Matrix

-	Component					
	1	2	3			
Zscore(PD)	.786					
Zscore(RL)	.704					
Zscore(TLB)	.689		711			
Zscore(NPV)	.669		2.191			
Zscore(TLL)						
Zscore(SPL)		.749				
Zscore(PLL)		669				
Zscore(PL)						
Zscore(AB)		1000	803			

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

		Initial Eigenvalu	ies	Extractio	on Sums of Squar	red Loadings	Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.081	34.235	34.235	3.081	34.235	34.235	2.630	29.225	29.225
2	1.545	17.172	51.407	1.545	17.172	51.407	1.550	17.224	46.448
3	1.033	11.480	62 <mark>.886</mark>	1.033	11.480	62.886	1.479	16.438	62.886
4	.872	9.684	72.571		6 A				
5	.782	8.690	81.260						
6	.594	6.596	87.857	// a 1	Ch C A				
7	.512	5.687	93. <mark>544</mark>						
8	.352	3.916	97.460		Castle A				
9	.229	2.540	100.000						

Total Variance Explained

Extraction Method: Principal Component Analysis.

APPENDIX IV

Correlation analysis

		REGR factor	REGR factor	REGR factor	
		score 1 for	score 2 for	score 3 for	
		analysis 1	analysis 1	analysis 1	Latitude
REGR factor score	Pearson Correlation	1	.000	.000	.212**
1 for analysis 1	Sig. (2-tailed)	and the second se	1.000	1.000	.000
	Sum of Squares and Cross-products	724.000	.000	.000	193.703
	Covariance	1.000	.000	.000	.268
	N	725	725	725	725
REGR factor score	Pearson Correlation	.000	1	.000	241**
2 for analysis 1	Sig. (2-tailed)	1.000		1.000	.000
	Sum of Squares and Cross-products	.000	724.000	.000	-220.529
	Covariance	.000	1.000	.000	305
	N	725	725	725	725
REGR factor score	Pearson Correlation	.000	.000	1	068
3 for analysis 1	Sig. (2-tailed)	1.000	1.000		.068
	Sum of Squares and Cross-products	.000	.000	724.000	-62.022
	Covariance	.000	.000	1.000	086
	Ν	725	725	725	725
Latitude	Pearson Correlation	.212**	241**	068	1
	Sig. (2-tailed)	.000	.000	.068	
	Sum of Squares and Cross-products	193.703	-220.529	-62.022	1153.845
	Covariance	.268	305	086	1.594
	Ν	725	725	725	725

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

Correlation analysis

		REGR factor	REGR factor	REGR factor	
		score 1 for	score 2 for	score 3 for	
		analysis 1	analysis 1	analysis 1	longtitude
REGR factor score	Pearson Correlation	1	.000	.000	.020
1 for analysis 1	Sig. (2-tailed)		1.000	1.000	.595
	Sum of Squares and Cross-products	724.000	.000	.000	25.493
	Covariance	1.000	.000	.000	.035
	N	725	725	725	725
REGR factor score	Pearson Correlation	.000	1	.000	.058
2 for analysis 1	Sig. (2-tailed)	1.000		1.000	.116
	Sum of Squares and Cross-products	.000	724.000	.000	75.256
	Covariance	.000	1.000	.000	.104
	N	725	725	725	725
REGR factor score	Pearson Correlation	.000	.000	1	.046
3 for analysis 1	Sig. (2-tailed)	1.000	1.000		.218
	Sum of Squares and Cross-products	.000	.000	724.000	58.999
	Covariance	.000	.000	1.000	.081
	N	725	725	725	725
longtitude	Pearson Correlation	.020	.058	.046	1
	Sig. (2-tailed)	.595	.116	.218	
	Sum of Squares and Cross-products	25.493	75.256	58.999	2294.194
	Covariance	.035	.104	.081	3.169
	N	725	725	725	725

Correlations

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

114

APPENDIX V

A. Reagent preparation

Agarose gel electrophoresis

- 1) 1% (w/v) agarose gel
 - agarose 0.3 g
 - 1x TBE buffer 30 ml

2) 1x Tris Boric EDTA buffer (TBE buffer), pH 8.0

- Tris aminomethane (50 mM)	108	g
- Boric acid (50 mM)	50.4	g
- EDTA (0.65 mM)	7.44	g

Adjust pH to be 8.0 and quantitate volume to be 1,000 ml.

Polyacrylamide gel electrophoresis (PAGE)

1) 8% (v/v) polyacrylamide gel		
- 30% acrylamide solution (29.2% Bio-rad [®] acrylamide monomer:	0.8% t	ois-
acrylamide)	4.8	ml
- 10x TBE buffer (1x)	1.2	ml
- 10% APS [(NH ₄) ₂ S ₂ O ₈] (3%)	240	μl
- TEMED (0.2%)	15	μl
- d-H ₂ O	17.7	ml

2) 5x loading dye

- 1 M Tris-Hcl, pH 6.8 (0.312 M)	0.6 ml
- Glycerol (50% v/v)	5.0 ml
- 10% (w/v) SDS	2.0 ml
- 2-Mercaptoethanol	0.5 ml
- 1% Bromophenol blue	0.1 g
- d-H ₂ O	0.9 ml

One part of sample buffer was added to four parts of sample. The mixture was heated for 5 min in boiling water before loading to the gel.

APPENDIX VI

RAPD primers

OPA 7

M 11 12 13 14 15 16 17 18 19 20

จุฬาลงกรณ์มหาวิทยาลัย

OPA 7

M 30 31 32 33 34

34

OPA 12

Μ

30

M 11 12 13 14 15 16 17 18 19 20

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

OPA 19

M 14 15 16 17 18 19 20 control 21 22 23

ลถาบนงทยบวกกว

M 24 25 26 27 28 29 30 31 32 33 34

OPD 2

BIOGRAPHY

Miss Jirattikarn Kaewmuangmoon was born on January 6, 1982 in Lamphun province, Thailand. She finished her secondary school level from Chakkhumkanathun School in 2000, Lamphun province. After that, she got a Bachelor's Degree in Biology from Department of Biology, Faculty of Science, Chulalongkorn University in 2003. At present, she is a graduate candidate in Master's Degree in Biotechnology, Faculty of Science, Chulalongkorn University.

Research presentation:

- Kaewmuangmoon, J., Chanchao, C., and Cherdshewasart, W. 2005. Leaf morphometry, Genetic variation and Phylogeny of *Butea superba* in Thailand. Abstract. *The 10th Biological Sciences Graduate Congress*, National University of Singapore, Singapore.
- Kaewmuangmoon, J., Chanchao, C., and Cherdshewasart, W. 2005. Leaf morphometry, Genetic variation, and Phylogeny of *Butea superba* in Thailand. Abstract. *The KMITL International Conference on Science and Applied Science 2006*, Bangkok, Thailand.
- Kaewmuangmoon, J., Chanchao, C., and Cherdshewasart, W. 2005. Leaf morphometry, Genetic variation, and Phylogeny of *Butea superba* in Thailand. Abstract. *The 14th Faculty of Science Congress, Chulalongkorn University*, Bangkok, Thailand.
- Kaewmuangmoon, J., Chanchao, C., and Cherdshewasart, W. 2006. Leaf
 morphometry, Genetic variation, and Phylogeny of *Butea superba* in Thailand.
 Abstract. *The 10th BRT annual Conference*, Krabi, Thailand

จุฬาลงกรณมหาวทยาลย