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CHAPTER I

INTRODUCTION

The content of a polynomial with coefficients in Z is defined to be the greatest

common divisor of its coefficients and a polynomial is said to be primitive if and

only if its content is 1. Gauss’ lemma is stated that the product of two primitive

polynomials is again primitive. In [1], Arturo Magidin and David McKinnon stud-

ied this for polynomials with coefficients in the ring of integers OL of a number

field L. Unlike, the ring of integers Z, for any number field L, OL may not be a

unique factorization domain. Fortunately, in OL, the factorization of ideals as a

product of prime ideals is unique. The content of a polynomial with coefficients

in OL is defined to be the ideal generated by its coefficients and a polynomial is

said to be primitive if and only if its content is OL. Gauss’ lemma is also true in

OL, i.e. the product of two primitive polynomials is primitive.

A function field K over a finite field k is a finite separable field extension over

k(x) where x is a transcendental element. In this research, we study whether these

properties still hold in function fields.



CHAPTER II

PROPERTIES OF FUNCTION FIELDS

2.1 Function Fields and Integrallity

In this section, we will give the definition of function fields and their properties.

Let k be a finite field of q elements for some prime power q. We introduce function

fields by the following definition.

Definition 2.1.1. Let k be a finite field and x a transcendental element.

A function field K over k is a finite separable field extension over k(x).

From now on, we use K as a function field over k together with x a transcen-

dental element.

Definition 2.1.2. Let L be a field extension over k(x). α ∈ L is said to be

integral over k[x] if there exist a0, a1, . . . , an−1 ∈ k[x] such that

αn + an−1α
n−1 + · · · + a1α + a0 = 0.

Definition 2.1.3. Let L be a field extension over k(x). The set of all elements

in L that are integral over k[x] forms a subring of L containing k[x]. It is called

the integral closure of k[x] in L, denoted by OL.

For a function field K over k we have :

Theorem 2.1.4. Let K be a function field over k. Then K is the field of fractions

of OK.
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Proof. Let α ∈ K. Since K is a finite field extension over k(x), K is a algebraic

extension over k(x). Consequently, α is algebraic over k(x). Then there exist

a0, a1, . . . , an−1 ∈ k(x) such that αn + an−1α
n−1 + · · · + a1α + a0 = 0. Moreover,

there exists 0 6= d ∈ k[x] ⊆ OK such that dai ∈ k[x] for all i. By multiplying dn

to both sides of the previous equation, we have

(dα)n + dan−1(dα)n−1 + · · · + dn−1a1(dα) + dna0 = 0

Since dai ∈ k[x] for all i, dα is integral over k[x]. Thus dα := β ∈ OK , so α = β
d
.

Hence K is the field of quotients of OK as desired.

Definition 2.1.5. Let R be an integral domain and F its field of fractions. R is

said to be an integrally closed domain if for every α ∈ F , if α is integral over R,

then α ∈ R.

In order to show that k[x] is an integrally closed domain, we need the following

theorem.

Theorem 2.1.6. If R is a unique factorization domain, then R is an integrally

closed domain.

Proof. See [7].

Since k is a field, k[x] is a Euclidean domain and so a unique factorization

domain. By applying the previous theorem, we have

Corollary 2.1.7. k[x] is an integrally closed domain.



4

2.2 Dedekind Domains

Definition 2.2.1. An integral domain D is called a Dedekind domain if and only

if

(i) D is integrally closed,

(ii) D is Noetherian,

(iii) Every nonzero prime ideal of D is a maximal ideal.

The concept of Dedekind domain takes an important role in this thesis because

we can uniquely write a nonzero proper ideal as a product of prime ideals (maximal

ideals) as stated in the next theorem.

Theorem 2.2.2. (Unique Factorization of Ideal)

Every nonzero proper ideal in a Dedekind domain D can be written uniquely

as a product of prime ideals (maximal ideals).

Proof. See [2].

Next, we will show that k[x] and OK are Dedekind domains. We have already

known that k[x] is integrally closed, so we have to show that k[x] is Noetherian

and every nonzero prime ideal of k[x] is a maximal ideal.

Theorem 2.2.3. Every principal ideal domain is Noetherian.

Proof. See [5].

Theorem 2.2.4. A nonzero ideal in a principal ideal domain is maximal if and

only if it is prime.

Proof. See [5].
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Since k[x] is a principal ideal domain, by Theorem 2.2.3 and Theorem 2.2.4,

k[x] is a Dedekind domain as we desire. Finally, we have the following corollary.

Corollary 2.2.5. k[x] is a Dedekind domain.

Similar to the number field case, OK is also a Dedekind domain by the following

theorem.

Theorem 2.2.6. Let D be a Dedekind domain with the field of fractions F , and

let L be a finite field extension of F . Then the integral closure of D in L is a

Dedekind domain.

Proof. See [3].

By Corollary 2.2.5, k[x] is a Dedekind domain with the field of fractions k(x)

and K is a finite separable extension of k(x), so we apply Theorem 2.2.6 to this

fact. Hence OK is a Dedekind domain as stated in the following corollary.

Corollary 2.2.7. Let K be a function field over k. Then OK is a Dedekind

domain.

Since the ideals of a Dedekind domain can be uniquely factorized as the prod-

uct of its prime ideals, we can define the divisibility of ideals in a Dedekind domain

as follows:

Definition 2.2.8. Let A and B be ideals in a Dedekind domain D. We say that

A divides B, denoted by A|B, if there exists an ideal C such that B = AC.

Moreover, we have an easier method to determine the divisibility of ideals in

the following proposition.

Proposition 2.2.9. Let A and B be ideals in a Dedekind domain D. Then A|B

if and only if B ⊆ A.
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Proof. See [2].

Next, we will define the definition of lying over prime ideal and some of its

property which we will use in Lemma 3.2.2.

Definition 2.2.10. Let R and A be rings such that R ⊆ A. If Q is a prime ideal

of A, then Q ∩ R is a prime ideal of R. A prime ideal Q of A is said to lie over a

prime ideal P of R in case Q ∩ R = P .

Proposition 2.2.11. If A is integral over R, then for each prime ideal P of R,

there exists a prime ideal Q of A which lies over P .

Proof. See [5].

2.3 Ideal Class Groups

Definition 2.3.1. Let D be a Dedekind domain and F its field of fractions. A

fractional ideal of D is the set of the form αI, for some α ∈ F − {0} and some

ideal I of D.

Note that every ordinary ideal of a Dedekind domain D is a fractional ideal of

D. From now on, we use D0 as the group of all nonzero principal fractional ideals

of OK and D1 as the group of nonzero fractional ideals of OK .

Definition 2.3.2. The quotient group Cl(K) = D1/D0 is called the class group

of K. The order of Cl(K) is denoted by hK and is called the class number of K.

Next, we will provide the definition of valuations, places, product formula and

global fields.
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Definition 2.3.3. Let F be a field. A valuation on F is a real-valued function

on F | · | satisfying

(i) |x| ≥ 0, with equality if and only if x = 0,

(ii) |x + y| ≤ |x| + |y|,

(iii) |xy| = |x||y|.

Definition 2.3.4. Two valuations | · |1 and | · |2 on a field F are said to be

equivalent if and only if they give the same topology on F . An equivalence class

of valuations on F is called a place on F .

Theorem 2.3.5. Let F be a field. Let | · |1 and | · |2 be valuations on F . Then

the following conditions are equivalent:

(i) | · |1 is equivalent to | · |2,

(ii) if |a|1 < 1, then |a|2 < 1 for all a ∈ F ,

(iii) if |a|1 > 1, then |a|2 > 1 for all a ∈ F ,

(iv) |a|1 = |a|γ2 for some positive real γ and all a ∈ F .

Proof. See [6].

Definition 2.3.6. A set S of places on F is said to satisfy a product formula if

for any a ∈ F×, |a|P = 1 for almost all P ∈ S and
∏

P∈S

|a|P = 1.

(Here | · |P is a valuation in a place P .)

Definition 2.3.7. A global field is a field with a set of places satisfying a product

formula.

Let p′ ∈ k[x] be an irreducible polynomial, δp′ the degree of p′ and a ∈ k(x)−

{0}. Then we can write a =
∏

p

pυp(a) where υp(a) ∈ Z. There are finitely many

irreducible polynomials p′′ ∈ k[x] such that υp′′(a) 6= 0. We define the p′-adic

valuation | · |p′ on k(x) by

|a|p′ = q−δp′υp′ (a) and |0|p′ = 0.
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Moreover, the equivalence class of | · |p′ is denoted by Pp′ . In addition, we define

a valuation | · |∞ on k(x) by

|a|∞ = q

∑

p

δpυp(a)

and |0|∞ = 0.

Similarly, the equivalence class of | · |∞ is denoted by ∞.

Theorem 2.3.8. The set S := {Pp|p ∈ k[x] is a monic irreducible polynomial} ∪

{∞} is a set of places on k(x).

Proof. We have to prove that if p′, p′′ are distinct monic irreducible polynomials,

then | · |p′ and | · |p′′ are inequivalent. First, we consider

|p′|p′ = q−δp′ < 1 and |p′|p′′ = q−δp′′0 = q0 = 1.

By Theorem 2.3.5, | · |p′ is not equivalent to | · |p′′ . On the other hand, we have

|p′|p′ = q−δp′ < 1 and |p′|∞ = qδp′ > 1.

By Theorem 2.3.5, | · |p′ is not equivalent to | · |∞. Hence the set

S := {Pp|p ∈ k[x] is a monic irreducible polynomial} ∪ {∞}

is a set of places on k(x) as desired.

Theorem 2.3.9. k(x) is a global field.

Proof. We claim that k(x) together with the set of places

S := {Pp|p ∈ k[x] is a monic irreducible polynomial} ∪ {∞}

satisfy a product formula. Let a ∈ k(x)−{0}. Then there are finitely many monic

irreducible polynomials p′ ∈ k[x] such that υp′(a) 6= 0. Hence υp′′(a) = 0 and so
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|a|p′′ = qυp′′ (a) = q0 = 1 for almost all monic irreducible polynomials p′′ ∈ k[x].

Consequently, |a|P = 1 for almost all P ∈ S. Moreover

∏

P∈S

|a|P = (
∏

p

|a|p) · |a|∞

= q

−

∑

p

δpυp(a)

· q

∑

p

δpυp(a)

= q

−

∑

p

δpυp(a) +
∑

p

δpυp(a)

= q0

= 1.

Hence k(x) is a global field.

Additionally, K is a global field due to the following theorem.

Theorem 2.3.10. Any separable extension of a global field is again a global field.

Proof. See [6].

Corollary 2.3.11. K is a global field.

Finally, the class number of K is finite as the consequence of the following

theorem.

Theorem 2.3.12. The ideal class group of any global field is finite.

Proof. See [6].



CHAPTER III

GAUSS’ LEMMA FOR FUNCTION FIELDS

3.1 Differences between Z and OK

In this section, we would like to find out the difference between Z and OK .

By the fundamental theorem of arithmetic Z is a unique factorization domain.

Unfortunately OK may not be a unique factorization domain. First, we need to

show five theorems in order to give an example that OK may not be a UFD.

Theorem 3.1.1. Let f(y) be a monic polynomial in k[x][y]. Suppose that

f(y) = g(y)h(y) where g(y) and h(y) are monic polynomials in k(x)[y]. Then

g(y), h(y) ∈ k[x][y].

Proof. Let f(y) be a monic polynomial in k[x][y]. Suppose that f(y) = g(y)h(y)

where g(y) and h(y) are monic polynomials in k(x)[y]. Let m,n be monic poly-

nomials in k[x] of smallest degree such that mg(y), nh(y) ∈ k[x][y]. Thus the

greatest common divisor of coefficients of mg(y) and nh(y) are in k[x]. Next,

we claim that mn ∈ k − {0}. Assume that mn /∈ k − {0}. Then mn = 0 or

deg(mn) ≥ 1. Since k[x] is an integral domain and m,n 6= 0, mn 6= 0 and so

deg(mn) ≥ 1. Let r be an irreducible polynomial in k[x] such that r|mn. Since

r is irreducible, k[x]/(r(x)) is an integral domain, and so is (k[x]/(r(x)))[y]. By

considering the equation

(mg(y))(nh(y)) = mnf(y)
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in (k[x]/(r(x)))[y], we have

(mg(y))(nh(y)) = mnf(y) = 0.

Because (k[x]/(r(x)))[y] is an integral domain, mg(y) = 0 or nh(y) = 0. Without

loss of generality, suppose that mg(y) = 0. Then r divides the greatest common

divisor of coefficients of mg(y), a contradiction. Consequently, mn ∈ k − {0} as

we claim. Hence m,n ∈ k − {0}, so g(y), h(y) ∈ k[x][y] as desired.

Theorem 3.1.2. Let α ∈ k(x) be integral over k[x] and f(y) the monic polynomial

in k[x][y] of least degree having α as a root. Then f(y) is irreducible over k(x).

Proof. Let α ∈ k(x) be integral over k[x] and f(y) the monic polynomial in

k[x][y] of least degree having α as a root. Assume that f(y) = g(y)h(y) where

g(y) and h(y) are monic nonconstant polynomials in k(x)[y]. By Theorem 3.1.1,

g(y), h(y) ∈ k[x][y]. Since 0 = f(α) = g(α)h(α), g(α) = 0 or h(α) = 0. Fur-

thermore, deg(g(y)), deg(h(y)) < deg(f(y)), this contradicts to the minimality of

deg(f(y)). Hence f(y) is irreducible over k(x).

Theorem 3.1.3. Let k be a finite field of characteristic p 6= 2 and x a tran-

scendental element. Let f(x) ∈ k[x] be squarefree. Then K = k(x,
√

f(x)) is a

function field over k. Moreover OK = k[x,
√

f(x)].

Proof. Let k be a finite field of characteristic p 6= 2 and x a transcendental element.

Let f(x) ∈ k[x] be squarefree and K = k(x,
√

f(x)). Initially, we will show that

K is a function field over k. It is obvious that K is a finite extension of k(x),

and so an algebraic extension of k(x). Since char(k) = p 6= 2,
√

f(x) 6= −
√

f(x).

So the minimal polynomial of
√

f(x) over k(x) is y2 − f(x) and has two distinct

roots. Hence K is a separable extension of k(x). Eventually, K is a function field

over k.
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In addition, we claim that OK = k[x,
√

f(x)]. First, we will show that OK ⊇

k[x,
√

f(x)]. Let α ∈ k[x,
√

f(x)]. Thus α = a(x)+b(x)
√

f(x) where a(x), b(x) ∈

k[x]. If b(x) = 0, then α = a(x) ∈ k[x] ⊆ OK . Assume that b(x) 6= 0. Then

g(y) := [y − (a(x) + b(x)
√

f(x))][y − (a(x) − b(x)
√

f(x))]

= [(y − a(x)) − b(x)
√

f(x))][(y − a(x)) + b(x)
√

f(x))]

= (y − a(x))2 − b2(x)f(x)

= y2 − 2a(x)y + [a2(x) − b2(x)f(x)].

Therefore g(y) ∈ k[x][y] is a monic polynomial having α as a root. Hence α ∈ OK .

Next, we will show that OK ⊆ k[x,
√

f(x)]. Let β ∈ OK ⊆ K. Then β =

c(x) + d(x)
√

f(x) where c(x), d(x) ∈ k(x). If d(x) = 0, then β = c(x) ∈ k(x) and

β ∈ OK . Since k[x] is an integrally closed domain, β ∈ k[x] ⊆ k[x,
√

f(x)].

For d(x) 6= 0, we have

h(y) := [y − (c(x) + d(x)
√

f(x))][y − (c(x) − d(x)
√

f(x))]

= [(y − c(x)) − d(x)
√

f(x))][(y − c(x)) + d(x)
√

f(x))]

= (y − c(x))2 − d2(x)f(x)

= y2 − 2c(x)y + [c2(x) − d2(x)f(x)]

∈k(x)[y]

Therefore h(y) is the minimal polynomial of β over k(x). Consequently, the

conjugates β̄ of β = c(x) + d(x)
√

f(x) are β itself and β̄ = c(x) − d(x)
√

f(x).

Thus

Tr(β) = β + β̄ = (c(x) + d(x)
√

f(x)) + (c(x) − d(x)
√

f(x)) = 2c(x) ∈ k[x].

Since the characteristic p 6= 2, c(x) ∈ k[x]. Moreover,

N(β) = ββ̄ = (c(x) + d(x)
√

f(x))(c(x)− d(x)
√

f(x)) = c2(x)− d2(x)f(x) ∈ k[x].
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Since c(x) ∈ k[x], c2(x) ∈ k[x]. Therefore l(x) := d2(x)f(x) ∈ k[x]. We claim

that d(x) ∈ k[x]. Since d(x) ∈ k(x), we can write

d(x) =
r(x)

s(x)
where r(x), s(x) ∈ k[x], s(x) 6= 0 and gcd(r(x), s(x)) = 1.

Then

d2(x)f(x) =
r2(x)

s2(x)
f(x) =l(x), so

r2(x)f(x) =s2(x)l(x).

Thus s2(x)|r2(x)f(x), Because gcd(r(x), s(x)) = 1, s2(x)|f(x). Since f(x) is

squarefree, s(x) must be a unit of k[x], so s(x) ∈ k − {0}. Consequently, d(x) =

r(x)
s(x)

∈ k[x]. Therefore β = c(x) + d(x)
√

f(x) ∈ k[x,
√

f(x)]. Hence OK =

k[x,
√

f(x)] as desired.

Theorem 3.1.4. Let K be a function field over k. Then u ∈ OK is a unit if and

only if N(u) ∈ k − {0}.

Proof. Let K be a function field over k. Initially, we will prove the sufficient

condition. Let u ∈ OK be a unit. Then there exists v ∈ OK such that uv = 1,

so N(u)N(v) = N(uv) = 1. Since u, v ∈ OK , N(u), N(v) ∈ k[x], so are units

in k[x]. Therefore N(u), N(v) ∈ k − {0}. To prove the necessary condition, let

u ∈ OK be such that N(u) ∈ k − {0}. Then (N(u))−1 ∈ k − {0} is integral over

k[x] Because u ∈ OK ⊆ K, u−1 ∈ K. Let u = u1, u2, . . . , un be all conjugates

of u for some n ∈ N. Since u ∈ OK , u2, . . . , un are also integral over k[x]. Thus

u−1 = u2 . . . un(N(u))−1 is integral over k[x]. Therefore u−1 ∈ OK . Hence u is a

unit in OK .
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Theorem 3.1.5. Let K be a function field over k and a, b ∈ OK − {0}. Then

(i) if a|b in OK, then N(a)|N(b) in k[x],

(ii) if N(a) is irreducible in k[x], then a is irreducible in OK,

(iii) if a and b are associate, then N(a) = cN(b) where c ∈ k − {0}.

Proof. Let K be a function field over k and a, b ∈ OK −{0}. To prove (i), suppose

that a|b in OK . Then there exists c ∈ OK such that b = ac, so N(b) = N(a)N(c).

Since a, b, c ∈ OK , N(a), N(b), N(c) ∈ k[x] Thus N(a)|N(b) in k[x]. In order

to prove (ii), assume that N(a) is irreducible in k[x]. Suppose that a = bc for

some b, c ∈ OK . Then N(a) = N(b)N(c) and N(a), N(b), N(c) ∈ k[x] because

a, b, c ∈ OK . Since N(a) is irreducible in k[x], N(b) or N(c) is a unit in k[x].

Without loss of generality, suppose that N(b) is a unit in k[x], so N(b) ∈ k−{0}.

By Theorem 3.1.4, b is a unit in OK . Hence a is irreducible in OK . Finally, to

prove (iii), assume that a and b are associate. Then there exists a unit u ∈ OK

such that a = bu, so N(a) = N(b)N(u). By Theorem 3.1.4, c := N(u) ∈ k − {0}.

Therefore N(a) = cN(b) where c ∈ k − {0}.

In the next example, we will illustrate that OK may not be a unique factor-

ization domain.

Example 3.1.6. Let K = F3(x,
√

2x3 + x + 1) and f(x) = 2x3 + x + 1. Then

f(0) = f(1) = f(2) = 1, so f(x) is irreducible and squarefree. By Theorem

3.1.3, K is a function field and OK = F3[x,
√

2x3 + x + 1]. Let α ∈ OK =

F3[x,
√

2x3 + x + 1]. Thus α = a(x) + b(x)
√

2x3 + x + 1 where a(x), b(x) ∈ F3[x].

Therefore the conjugates of α = a(x) + b(x)
√

2x3 + x + 1 is α itself and ᾱ =

a(x) − b(x)
√

2x3 + x + 1. Let A := F3[x,
√

2x3 + x + 1] − F3[x] and β ∈ A. Then
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β = c(x) + d(x)
√

2x3 + x + 1 where c(x), d(x) ∈ F3[x] and d(x) 6= 0. Therefore

N(β) = ββ̄ =(c(x) + d(x)
√

2x3 + x + 1)(c(x) − d(x)
√

2x3 + x + 1)

=c2(x) − d2(x)(2x3 + x + 1)

=c2(x) + 2d2(x)(2x3 + x + 1)

=c2(x) + d2(x)(x3 + 2x + 2)

Thus c2(x) = 0 or deg(c2(x)) = 2deg(c(x)) is even. On the other hand, deg(d2(x)(x3+

2x + 2)) = 2deg(d(x)) + 3 ≥ 3 is odd. Thus deg(c2(x)) 6=deg(d2(x)(x3 + 2x + 2)).

Consequently, deg(N(β)) =deg(c2(x) + d2(x)(x3 + 2x + 2)) cannot be reduced by

the characteristic 3 of F3 and deg(N(β)) ≥ 3. Additionally, if we let δ ∈ F3[x],

then δ = h(x) ∈ F3[x] and N(δ) = h2(x).

To show that OK is not a unique factorization domain, we choose

γ = (x + 2) +
√

2x3 + x + 1. Then

γγ̄ = N(γ) = [(x + 2) +
√

2x3 + x + 1][(x + 2) −
√

2x3 + x + 1]

= (x + 2)2 + 2(2x3 + x + 1)

= (x2 + 4x + 4) + (x3 + 2x + 2)

= x3 + x2

= x · x · (x + 1)

Thus N(γ) = N(γ̄) = x3 + x2, N(x) = x2 and N(x + 1) = (x + 1)2. By Theorem

3.1.5 (iii), γ is not associate to either x or x + 1. Similarly, γ̄ is not associate to

either x or x + 1.

Next, we will illustrate that x, x+ 1, γ and γ̄ are irreducible in OK . First, it is

obvious that there is no element in F3[x] has norm either x or x+1. Moreover, there

is no element in A has norm either x or x + 1 since deg(x) =deg(x + 1) = 1 < 3.

By Theorem 3.1.4 and Theorem 3.1.5 (i), x and x+1 are irreducible in OK . For γ
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and γ̄, similar to the previous case, there is no element in OK has norm x(x + 1).

In addition, there is no element in A has norm x2 since deg(x2) = 2 < 3. It is

easy to see that the elements in OK of norm x2 must be x and 2x. With out

loss of generality, suppose that x divides γ. Then there exists λ ∈ OK such that

γ = xλ. Since λ ∈ OK = F3[x],we can write λ as r(x) + s(x)
√

2x3 + x + 1 where

r(x), s(x) ∈ F3[x]. Furthermore,

(x + 2) +
√

2x3 + x + 1 =γ

=xλ

=x(r(x) + s(x)
√

2x3 + x + 1)

=xr(x) + xs(x)
√

2x3 + x + 1.

Therefore xs(x) = 1, but deg(xs(x)) =deg(x)+deg(s(x)) ≥ 1 and deg(1) = 0,

a contradiction. Consequently, x does not divide γ and so x does not divide γ̄.

Hence there is no element in OK of norm x, x + 1, x(x + 1). Moreover, x and 2x

which are the elements in OK of norm x2 do not divide either γ or γ̄. By Theorem

3.1.4 and Theorem 3.1.5 (i), γ and γ̄ are irreducible in OK . Finally, OK is not a

unique factorization domain.

3.2 Gauss’ Lemma

We have already known that the content of a polynomial in Z[y] is the great

common divisor of its coefficients. Initially, we would like to define the content of

a polynomial in OK [y], but OK may not be a unique factorization domain as we

illustrate in the previous section. Therefore the great common divisor of elements

in OK may not exist. Eventually, we will give the definition of content as follows:

Definition 3.2.1. For a polynomial f(y) ∈ OK [y], the content of f(y) in K,

denoted by contK(f), is the ideal of OK generated by the coefficients of f(y). The
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polynomial f(y) is primitive in K if contK(f) = OK .

As we see in the previous definition, if we replace OK by Z and K by Q, the

content of a polynomial in Z[y] is the ideal of Z generated by its coefficients. In

the different point of view, it is the ideal of Z generated by the great common

divisor of its coefficients because Z is a principal ideal domain. On the other

hand, a polynomial in Z[y] is primitive if its content is Z ,which is the ideal of Z

generated by 1. Hence the Definition 3.2.1 is a generalization of the definition of

content.

The content of a polynomial clearly depends on K because it is an ideal of

OK . By applying Theorem 2.2.2 to OK which is a Dedekind domain, it is shown

that the property of being primitive does not depend on specific K.

Lemma 3.2.2. (Independence of Primitivity)

Let K and K ′ be function fields over the same finite field k. Let f(y) ∈

OK [y], OK′ [y]. Then f(y) is primitive in K if and only if it is primitive in K ′.

Proof. Let K and K ′ be function fields over k. Let L be the smallest field con-

taining both K and K ′. Then f(y) ∈ OL[y]. Without loss of generality, we

consider the field K ⊆ L. Claim that f(y) is primitive in K if and only if

it is primitive in L. In order to prove the necessary condition, suppose that

f(y) := any
n + · · · + a1y + a0 is not primitive in K. Then contK(f) 6= OK . By

Theorem 2.2.2, contK(f) = P1P2 . . . Pm where m ∈ N and Pj are prime ideals of

OK for all j. Thus ai ∈ contK(f) = P1P2 . . . Pm ⊆ P1 for all i. Let Q1 be a prime

ideal in OL lying over P1. Hence Q1 ∩ OK = P1, so ai ∈ Q1 for all i. Therefore

contL(f) ⊆ Q1 ⊂ OL. Finally, f(y) is not primitive in L.

On the other hand, suppose that f(y) := any
n + · · ·+a1y +a0 is not primitive

in L. Then contL(f) 6= OL. Similar to the necessary condition, there exists a

prime ideal Q2 of OL such that ai ∈ Q2 for all i. Let P2 := Q2 ∩ OK . Therefore
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P2 is a prime ideal of OK Since f(y) ∈ OK [y], ai ∈ OK for all i, so ai ∈ P2 for all

i. Thus contK(f) ⊆ P2 ⊂ OK . Hence f(y) is not primitive in K.

Therefore f(y) is primitive in K if and only if it is primitive in L. Similarly,

we have f(y) is primitive in K ′ if and only if it is primitive in L. Hence f(y) is

primitive in K if and only if it is primitive in K ′ as desired.

Gauss’ lemma is stated that the product of two primitive polynomials is also

primitive. This lemma remains true by the definition of content in Definition

3.2.1. Hence we acquire the next important theorem, Gauss’ lemma for function

fields.

Theorem 3.2.3. (Gauss’ Lemma for Function Fields)

The product of two primitive polynomials is primitive.

Proof. Let K be a function field over k, f(y), g(y) ∈ OK [y] be primitive polyno-

mials. Write

f(y) :=
n

∑

i=0

aiy
i, g(y) :=

m
∑

j=0

bjy
j and f(y)g(y) := h(y) :=

r
∑

l=0

cly
l

Let P be a prime ideal in OK . If ai ∈ P for all i, then contK(f) ⊆ P ⊂ OK , so f(y)

is not primitive, a contradiction. Then there exists the smallest i0 ∈ {0, 1, . . . , n}

such that ai0 /∈ P and the smallest j0 ∈ {0, 1, . . . ,m} such that bj0 /∈ P . Consider

ci0+j0 = a0bi0+j0 + · · · + ai0−1bj0+1

+ ai0bj0

+ ai0+1bj0−1 + · · · + ai0+j0b0.

Since a0, . . . , ai0−1 ∈ P , a0bi0+j0 +· · ·+ai0−1bj0+1 ∈ P . And because b0, . . . , bj0−1 ∈

P , ai0+1bj0−1+· · ·+ai0+j0b0 ∈ P . Assume that ai0bi0 ∈ P . Since P is a prime ideal,

ai0 ∈ P or bi0 ∈ P , a contradiction. Thus ai0bi0 /∈ P , so ci0+j0 /∈ P . Therefore we



19

have for every prime ideal P of OK , there exists a coefficient cP of h(y) such that

cP /∈ P . Because P is arbitrary, contK(h) = OK . Hence h(y) is primitive.

3.3 Complete Factorization

In section 3.1, we have already shown that OK may not be a unique factor-

ization domain. Therefore OK may not be a principal ideal domain since every

principal ideal domain is a unique factorization domain. Let A be an ideal in OK .

Although A may not be principal, there exists a finite extension L of K such that

AOL is principal by using Theorem 2.3.12 to obtain the following lemma.

Lemma 3.3.1. (Extending to a Principal Ideal)

Let K be a function field over k, and A be an ideal of OK. Then there exists

r ∈ N such that Ar is principal. In particular, there exists a finite extension L of

K such that AOL is principal.

Proof. By Theorem 2.3.12, the ideal class number of K is finite, says r ∈ N. Then

Ar ∈ D0, so Ar = (a) for some a ∈ K. Take L = K(a1/r) where a1/r is a fixed rth

root of a. Therefore

(a1/r)r = (a) = ArOL = (AOL)r.

Moreover, it is clear that L is a finite extension of K. Since K is a finite extension

of k(x), L is also a finite extension of k(x). By Corollary 2.2.6, OL is a Dedekind

domain. Hence, by Theorem 2.2.2, AOL = (a1/r).

There is a theorem stated that every nonzero polynomial f(y) ∈ Q[y] can be

written in the form f(y) = cff
∗(y) where cf ∈ Q and f ∗(y) ∈ Z[y] is primitive.

Furthermore cf and f ∗(y) are unique up to multiplication by units in Z. We would

like to apply this theorem to K. Unfortunately it does not work in the function
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field case because OK may not be a principal ideal domain. Hence we have to

apply Lemma 3.3.1 in order to obtain the next theorem.

Theorem 3.3.2. (Factoring Out the Content in Function Fields)

Let K be a function field over k, and f(y) ∈ K[y]. Then there exists a finite

extension L of K such that

f(y) = cff
∗(y)

where cf ∈ L and f ∗(y) ∈ OL[y] is a primitive polynomial. Moreover cf and f ∗(y)

are unique up to multiplication by units in OL.

Proof. Let K be a function field over k, and f(y) ∈ K[y]. Then f(y) := any
n +

· · · + a1y + a0 for some n ∈ N and ai ∈ K for all i. By Theorem 2.1.4, for each i,

ai = bi

ci
where bi, ci ∈ OK . Thus f(y) := bn

cn
yn + · · · + b1

c1
y + b0

c0
.

By multiplying cn . . . c1c0 to both sides of the previous equation, we have

g(y) := (cn . . . c1c0)f(y) = (cn−1 . . . c1c0)bnyn + . . . (cn . . . c2c0)b1y + (cn . . . c2c1)b0.

It is easy to see that g(y) ∈ OK [y]. Therefore contK(g) is an ideal of OK . By

Theorem 3.3.1, there exists a finite extension L of K such that contK(g)OL =

contL(g) is principal. Thus contL(g) = (d) for some d ∈ OL. By considering g(y) ∈

OK [y] ⊆ OL[y], g(y) = d · g∗(y) where g∗(y) ∈ OL[y] is a primitive polynomial, so

we have

(cn . . . c1c0)f(y) =g(y) = d · g∗(y).

f(y) =
d

cn . . . c1c0

· g∗(y).

Since d ∈ OL ⊆ L and cn, . . . , c1, c0 ∈ OK ⊆ K ⊆ L, d
cn...c1c0

∈ L. Let cf =

d
cn...c1c0

and f ∗(y) = g∗(y). Hence f(y) = d
cn...c1c0

· g∗(y) = cff
∗(y) as desired. In

order to prove the uniqueness up to multiplication by units in OL, assume that

f(y) = cff
∗(y) = cgg

∗(y) where cf , cg ∈ L and f ∗(y), g∗(y) ∈ OL[y] are primitive
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polynomials. Then f ∗(y) = cg

cf
· g∗(y) =: c · g∗(y) where c = cg

cf
∈ L. By Theorem

2.1.4, c = u
v

where u, v ∈ OL are relatively prime. Hence v · f ∗(y) = u · g∗(y).

Since f ∗(y), g∗(y) are primitive, (v) = (v)OL = (v)contL(f ∗) = (u)contL(g∗) =

(u)OL = (u). Therefore u and v are associate, so there exists a unit c′ ∈ OL such

that u = c′v. Consequently, c = u
v

= c′ is a unit in OL. Eventually, cf = c−1cg

and f ∗(y) = c ·g∗(y), that is cf and f ∗(y) are unique up to multiplication by units

in OL.

For a polynomial f(y) ∈ Z[y], if f(y) = g(y)h(y) for polynomials g(y), h(y) ∈

Q[y], then f(y) = G(y)H(y) where G(y), H(y) ∈ Z[y]. We also have this theorem

in the function fields version by relying on Theorem 3.2.3 together with Theorem

3.3.2, so we acquire the following theorem as a consequence.

Theorem 3.3.3. (Lifting a Factorization)

Let K be a function field over k and f(y) ∈ OK [y]. If

f(y) = g(y)h(y)

for polynomials g(y), h(y) ∈ K[y], then there exists a finite extension L of K such

that

f(y) = G(y)H(y)

where G(y), H(y) ∈ OL[y], G(y) and H(y) are L-multiples of g(y) and h(y),

respectively.

Proof. Let K be a function field over k and f(y) ∈ OK [y]. Suppose that f(y) =

g(y)h(y) for polynomials g(y), h(y) ∈ K[y]. By Theorem 3.3.2, there exist finite

extensions Lg and Lh of K such that

g(y) = cgg
∗(y) and h(y) = chh

∗(y)



22

where cg ∈ Lg, ch ∈ Lh, g∗(y) ∈ OLg
[y] and h∗(y) ∈ OLh

[y] are primitive poly-

nomials. Since f(y) ∈ OK [y], contK(f) is an ideal of OK . By Theorem 3.3.1,

there exists a finite extension Lf of K such that contK(f)OLf
= contLf

(f) is

principal. Then there exists cf ∈ OLf
such that contLf

(f) = (cf ). By consider-

ing f(y) ∈ OK [y] ⊆ OLf
[y], f(y) = cff

∗(y) where f ∗(y) ∈ OLf
[y] is a primitive

polynomial. Let L be smallest field containing Lf , Lg and Lh. Since Lf , Lg and

Lh are finite extensions of K, L is also a finite extension of K. Hence we have a

finite extension L of K such that

f(y) = cff
∗(y), g(y) = cgg

∗(y) and h(y) = chh
∗(y)

where cf ∈ OL, cg, ch ∈ L and f ∗(y), g∗(y), h∗(y) ∈ OL[y] are primitive polynomi-

als. Thus

cff
∗(y) = f(y) = g(y)h(y) = (cgch)g

∗(y)h∗(y)

By Theorem 3.2.3, g∗(y)h∗(y) is a primitive polynomial. By the uniqueness part

of Theorem 3.3.2, cf = ucgch for some unit u ∈ OL. Because u, cf ∈ OL, cgch =

u−1cf ∈ OL. Let G(y) = cgchg
∗(y) and H(y) = h∗(y). Since cgch ∈ OL and

g∗(y), h∗(y) ∈ OL[y], G(y), H(y) ∈ OL[y]. In addition,

G(y) = chg(y), H(y) = ch
−1h(y) and f(y) = G(y)H(y),

that is G(y) is an L-multiple of g(y), and H(y) is an L-multiple of h(y).

Additionally, we have the Complete Factorization resulting from Theorem 3.3.3

as the next corollary.

Corollary 3.3.4. (Complete Factorization)

Let K be a function field over k and f(y) ∈ OK [y]. Then there exists a finite

extension L of K such that f(y) can be factored into a product of (not necessarily

monic) linear factors in OL[y].
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Proof. Let K be a function field over k and f(y) ∈ OK [y] ⊆ K[y]. Let K ′ be a

splitting field over K of f(y). Then it is obvious that K ′ is a finite extension over

K. Thus f(y) ∈ OK [y] ⊆ OK′ [y] and f(y) splits over K ′. By Theorem 3.3.3, there

exists a finite extension L of K ′ such that f(y) can be factored into a product

of (not necessarily monic) linear factors in OL[y]. Since K ′ is a finite extension

over K, L is also a finite extension over K. Consequently, there exists a finite

extension L of K such that f(y) can be factored into a product of (not necessarily

monic) linear factors in OL[y] as desired.

Furthermore, we have another corollary by specializing to polynomials which

have coefficients in k.

Corollary 3.3.5. Let f(y) ∈ k[x][y]. Then there exists a finite extension L of

k(x) such that f(y) can be factored into a product of (not necessarily monic) linear

factors in OL[y].

Proof. Let f(y) ∈ k[x][y]. Then we have a function field L = k(x), OL = k[x] and

f(y) ∈ k[x][y] ⊆ OL[y]. By Corollary 3.3.4, there exists a finite extension K of

L such that f(y) can be factored into a product of (not necessarily monic) linear

factors in OK [y].

Finally, we will illustrate an example of Corollary 3.3.5 as follows:

Example 3.3.6. Let x be a transcendental element and

f(y) = 3xy2 + xy + (x2 + 1) ∈ F5[x][y]. Then the roots of f are

y =
−x ±

√

x2 − 4(3x)(x2 + 1)

2(3x)

=
4x ±

√

x2 + (3x)(x2 + 1)

x

=
4x ±

√
3x3 + x2 + 3x

x



24

=
4x ±

√

(x + 1)2(3x)

x

=
4x ± (x + 1)

√
3x

x

Therefore we have y = 4x+(x+1)
√

3x
x

, 4x−(x+1)
√

3x
x

= 4x+4(x+1)
√

3x
x

. Consequently,

f(y) =3xy2 + xy + (x2 + 1)

=3x(y − 4x + (x + 1)
√

3x

x
)(y − 4x + 4(x + 1)

√
3x

x
)

=3x(y + 4
4x + (x + 1)

√
3x

x
)(y + 4

4x + 4(x + 1)
√

3x

x
)

=3x(y +
x + 4(x + 1)

√
3x

x
)(y +

x + (x + 1)
√

3x

x
)

Let g(y) := y+ x+4(x+1)
√

3x
x

and h(y) := y+ x+(x+1)
√

3x
x

. Thus f(y) = 3xg(y)h(y)

and f splits over K = F5(x,
√

3x). Since 3x is squarefree, by Theorem 3.1.3, K is

a function field and OK = F5[x,
√

3x]. Furthermore, we let

g′(y) := xg(y) = xy+x+4(x+1)
√

3x and h′(y) := xh(y) = xy+x+(x+1)
√

3x.

Thus g′(y), h′(y) ∈ F5[x,
√

3x][y] = OK [y]. Next, we consider

contK(g′) = (x, x + 4(x + 1)
√

3x) and contK(h′) = (x, x + (x + 1)
√

3x).

Initially, we have

cont2K(g′) =(x, x + 4(x + 1)
√

3x)2

=(x2, x2 + (4x2 + 4x)
√

3x, (3x3 + 2x2 + 3x) + (3x2 + 3x)
√

3x)

=(x2, x(x + (4x + 4)
√

3x), x((3x2 + 2x + 3) + (3x + 3)
√

3x))

Then cont2K(g′) ⊆ (x). Moreover,

(x2 + x)
√

3x = 4[(x2 + (4x2 + 4x)
√

3x) − x2] ∈ cont2K(g′),

also

x+(x2+x)
√

3x = 2[((3x3+2x2+3x)+(3x2+3x)
√

3x)−3x(x2)−2(x2)] ∈ cont2K(g′).
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Finally,

x = (x + (x2 + x)
√

3x) − ((x2 + x)
√

3x) ∈ cont2K(g′).

Hence cont2K(g′) = (x). Next, we have

cont2K(h′) =(x, x + (x + 1)
√

3x)2

=(x2, x2 + (x2 + x)
√

3x, (3x3 + 2x2 + 3x) + (2x2 + 2x)
√

3x)

=(x2, x(x + (x + 1)
√

3x), x((3x2 + 2x + 3) + (2x + 2)
√

3x))

Thus cont2K(h′) ⊆ (x). Furthermore,

(x2 + x)
√

3x = (x2 + (x2 + x)
√

3x) − x2 ∈ cont2K(h′),

and

4x+(x2+x)
√

3x = 3[((3x3+2x2+3x)+(2x2+2x)
√

3x)−3x(x2)−2(x2)] ∈ cont2K(h′).

Therefore

4x = (4x + (x2 + x)
√

3x) − ((x2 + x)
√

3x) ∈ cont2K(h′),

so x = 4 · 4x ∈ cont2K(h′). Eventually, cont2K(h′) = (x).

By the proof of Theorem 3.3.2, the content factored out from g(y) and h(y) is
√

x
x

= 1√
x

and we get L = F5(x,
√

3x,
√

x) = F5(x,
√

x,
√

3) = F5(
√

x,
√

3) a finite

extension of F5(x). Moreover,

g(y) =y +
x + 4(x + 1)

√
3x

x

=
1√
x

(
√

xy +
x + 4(x + 1)

√
3x√

x
)

=
1√
x

(
√

xy +
√

x + 4
√

3(x + 1)),
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and

h(y) =y +
x + (x + 1)

√
3x

x

=
1√
x

(
√

xy +
x + (x + 1)

√
3x√

x
)

=
1√
x

(
√

xy +
√

x +
√

3(x + 1)).

Finally,

f(y) =3xg(y)h(y)

=3x(
1√
x

(
√

xy +
√

x + 4
√

3(x + 1)))(
1√
x

(
√

xy +
√

x +
√

3(x + 1)))

=3(
√

xy +
√

x + 4
√

3(x + 1))(
√

xy +
√

x +
√

3(x + 1)).

Additionally,
√

x is a root of r(y) = y2 + 4x ∈ F5[x][y] and
√

3 is a root of

s(y) = y2 + 2 ∈ F5[x][y], so
√

x,
√

3 ∈ OL. Hence f(y) can be factored into a

product of linear factors in OL[y].
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