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CHAPTER |

INTRODUCTION

Croton roxburghii N.P. Balakr. is a plant in Euphorbiaceae family, in the Croton
genus, commonly known as Plao Yai (central part), Plao Luang (Northern part), Po
(Kamphaeng Phet), Khwa-wuu (Karen-Kanchanaburi), Sa-ku-wa (Karen-Mae Hong Son)
and Haa-yoeng (Shan-Mae Hong Son)

The plant is a medium size deciduous tree. It is widely distributed throughout
Thailand. The calyx and ovary are clothed with minute orbicular silvery scales. The
leaves fall between 5.6-12.0 cm. by 13.0-24.0 cm. in size. The leaf is oblong-lanceolate
shaped. The Flowers are pale yellowish green and solitary in the axials of minute bracts
on long erect racemes. The male flowers are located in the upper part of the racemes
and the famales in the lower part. The male flowers are slender, and have the length of
pedicels of 4.0 mm. The calyx is more than 6.0 mm. long, and segments are woolly. The
twelves stamens are inflexed in bud, and the length of filament is 3.0 mm.. In female
flowers, the pedicels are short and stout. It's sepals are more acute than in the male,
with densely ciliate margins. The diameter of the fruit is less than 1.3 cm., slightly 3-
lobed and clothed with small orbicular and scales. Seeds 8 by 6 mm., ellipsoid, rounded
and quite smooth on the back. The pictures of Croton roxburghii N.P. Balakr. are shown
in Figure 1 (Blatter, Caius and Mhaskar, 1975)

Croton roxburghii N.P. Balakr. is one of the interesting Thai medicinal plants
because it is believed that all parts of the plants can be used as medicine. Its leaves are
used as a tonic, and the flowers are used as a parasiticide, and the fruits are used as a
purgative. The bark is used to treat dyspepsia, and the roots are used-as dysentery.
Moreover this plant has been used in combination with- C. sublyratus to treat gastric

ulcer and gastric cancer.

The objectives of this research.

1. Isolation of labdane diterpenoids from Croton roxburghii N.P. Balakr.

2. Preparation of derivatives of isolated compounds.



3. Examination of the isolated diterpenoids and derivatives for Ol-glucosidase

inhibitory activity.
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Figure 1. Croton roxburghii N.P. Balakr.



Figure 2. Stem bark of Croton roxburghii N.P. Balakr.



CHAPTER I

HISTORICAL

1. Chemical constituents of Croton roxburghii N.P. Balakr.

According to previous phytochemical studies, Croton roxburghii N.P. Balakr. has
been found to be a rich source of diterpenoid compounds. Eight different types of the
main diterpenoid skeletons have been isolated from this plant, namely Cembrane,
Labdane, Clerodane, Cleistanthane, Pimarane, Abietane, Kaurane, and Trachylobane.
In addition to these diterpenoids, triterpenoids, steroids and several other chemical

constituents are also present, as summarized in the Table 1.

Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.

Consituents Parts References

Diterpenoids

1. Cembrane diterpenoids

" crotocembraneic acid [1] stem bark Surachethapan,1996;

Roengsumran et al.,1998

®  neocrotocembraneic acid [2] leaves Achayindee, 1996;

stem bark Roengsumran et al.,1998.
B neocrotocembranal [3] stem- bark Roengsumran et.al.,1999b.
B poilaneic acid [4] stem bark Boontha, 2000.
®  (2E,7E,11E) 1-isopropyl-1,4- stem bark Tanwattanakun,1999.

dihydroxy-4,8-
dimethylcyclotetradeca-2,7,11-

triene-12-carboxylic acid [5]




Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.(continued)

Consituents Parts References
2. Labdane diterpenoids
" ent-8(17), 12(E),14- labdatrien-18- | stem bark Pattamadilok, 1998.
oic acid [6]
" 12,15-epoxy-8 (17),12,14- stem bark Pattamadilok, 1998.
labdatriene [7]
B |abda-7,12 (E) 14-triene [8] stem bark Roengsumran et al.,1999a.
B |abda-7,12 (E) 14-triene-17-al [9] stem bark Roengsumran et al.,1999a.
B |abda-7,12 (E) 14-triene-17-0l [10] | stem bark Roengsumran et al.,1999a.
B |abda-7,12 (E) 14-triene-17-o0ic stem bark Roengsumran et al.,1999a.
acid [11]
B |abda-7,13 (2)-diene-17,12-olide stem bark Baiagern, 1999.
[12]
B |abda-7,13 (2)-diene-17,12-olide- stem bark Baiagern, 1999.
16-ol [13]
B 2-acetoxy-labda-8(17),12 (E),14- stem bark Kuptiyanuwat, 1999.
triene-3-ol [14]
Roengsumran et al., 2001.
B 3-acetoxy-labda-8(17),12 (E),14- stem bark Kuptiyanuwat, 1999.

triene-2-ol [15]

Roengsumran et al., 2001.




Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.(continued)

Consituents Parts References
B |abda-8(17),12 (E),14-triene -2,3- stem bark Kuptiyanuwat, 1999.
diol [16]
Roengsumran et al., 2001.
B 12 (E), 14-labdadiene-7,8-diol [17] | stem bark Boontha, 2000.
B G-acetoxy-12 (E), 14-labdadiene- stem bark Boontha, 2000.
7,8-diol [18]
B 12 (E), 14-labdadiene-6,7,8-triol stem bark Boontha, 2000.
[19]
®  nidorellol [20] stem bark Roengsumran et al.,2002.
3. Clerodane diterpenoids
® (9)-hardwickiic acid [21] root bark Alyar and Seshadri, 1972b.
wood
stem bark Alyar and Seshadri, 1972a;
Surachethapan, 1996;
Baiagern, 1999;
Sirimongkhon, 2000;
Sriyangnok, 2000.
®  11-dehydro-(-)-hardwickiic acid stem bark Aiyar and Seshadri, 1972a.
[22]
root bark Aiyar and Seshadri, 1972b.

wood




Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.(continued)

Consituents Parts References
B (-)-20-benxyloxyhardwickiic acid stem bark Baiagern, 1999.
[23]
®  methyl-15,16-epoxy-12-oxo- stem bark Tanwattanakun, 1999.
3,13(16),14-clerodatriene-20,19-
olide-17-oate [24]
B crovatin [25] stem bark Siriwat, 1999.
®  croblongifolin [26] stem bark Roengsumran et al.,2002.
4. Cleistanthane diterpenoid
® 3,4-seco-cleistantha- stem bark Siriwat, 1999;
4(18),13(17),15-trien-3-o0ic acid Sriyangnok,2000.
[27]
5. Pimarane diterpenoids
® oblongifoliol [28] stem bark Rao et al.,1968.
root bark Alyar and Seshadri, 1972b.
wood
®  19-deoxyoblongifoliol [29] stem bark Rao et al.,1968.
root bark Aiyar and Seshadri, 1972b.

wood




Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.(continued)

Consituents Parts References
®  3-deoxyoblongifoliol [30] stem bark Aiyar and Seshadri, 1971a.
root bark Aiyar and Seshadri, 1972b.
wood
®  oblongifolic acid [31] stem bark Aiyar and Seshadri, 1970.
root bark Aiyar and Seshadri, 1972b.
wood
B ent-isopimara-7,15-diene [32] stem bark Aiyar and Seshadri, 1971b.
root bark Aiyar and Seshadri, 1972b.
wood
®  ent-isopimara-7,15-diene-19- stem bark Aiyar and Seshadri, 1971b.
aldehyde [33]
root bark Aiyar and Seshadri, 1972b.
wood
®  19-hydroxy-ent-isopimara-7,15- stem bark Aiyariand Seshadri, 1971b.
diene [34]
B (-)-pimara-9(11),15-diene-19-0ic stem bark Tanwattanakun, 1999.
acid [35]
B (-)-pimara-9(11),15-diene-19-ol stem bark Tanwattanakun, 1999.

(36]
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Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.(continued)

Consituents Parts References
6. Abeitane diterpenoid
® abeita-7,13-diene-3-one [37] stem bark Sriyangnok, 2000.
7.Kaurane diterpenoid
® ent-kaur-16-en-19-oic acid [38] stem bark Pattamadilok, 1998;
Sirimongkhon, 2000.
8. Trachylobane diterpenoid
® trachyloban-19-oic acid [39] stem bark Boontha, 2000.
Triterpenoid
® acetyl aleuritolic acid [40] stem bark Aiyar and Seshadri, 1971c
Steroids
® campesterol [41] wood Chaicharoenpong, 1996
stem bark Pattamadilok, 1998
B stigmasterol [42] wood Chaicharoenpong, 1996
leaves Achayindee, 1996
stem bark Pattamadilok, 1998
u B—sitosterol [43] stem bark Rao et al., 1968
wood Chaicharoenpong, 1996
leaves Achayindee, 1996




Table 1. Chemical constituents of Croton roxburghii N.P. Balakr.(continued)

11

Consituents Parts References
Steroid Glucosides
® stigmasteryl-3-O-P-D- wood Chaicharoenpong, 1996
glucopyranoside [44]
= B—sitosteryl—3—0— -D- wood Chaicharoenpong, 1996
glucopyranoside [45]
®  campesteryl-3-O-p-D- wood Chaicharoenpong, 1996
glucopyranoside [46]
Coumarin
® 7-hydroxy-6-methoxycoumarin wood Chaicharoenpong, 1996
(Scopoletin) [47]
Miscellaneous
®  mixture of long chain aliphatic | wood Chaicharoenpong, 1996
hydrocarbon (C,,-C..) leaves Achayindee, 1996
®  mixture of long chain aliphatic | wood Chaicharoenpong, 1996
carboxylic acid (C,q, C,,-C,,)
® mixture of long chain alcohol |-leaves Achayindee, 1996
(C28_C29, C31'Ca2, C34)
®  6,10,14-trimethyl-2-pentadecanone | leaves Achayindee, 1996
(48]
®  potassium chloride leaves Achayindee, 1996




Labdane Clerodane

Pimarane Cleistanthane
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Abietane Trachylobane

Kaurane Cembrane

Figure 3. Basic structures of diterpenoid compounds in C. roxburghii N.P. Balakr.
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AN
X
COOH COOH
crotocembraneic acid [1] neocrotocembraneic acid [2]

X

COOH

neocrotocembranal [3] poilaneic acid [4]

OH E/\(\

OH

COOH HOOC K
(2E,7E,11E) 1-isopropyl-1,4-dihydroxy-4,8- ent-8(17), 12(E),14- 12labdatrien-
dimethylcyclotetradeca-2,7,11-triene- 18-oic acid [6]

carboxylic acid [5]

12,15-epoxy-8 (17),12,14- labdatriene [7] labda-7,12 (E) 14-triene [8]

Figure 4. Structural of chemical constituents of C. roxburghii.
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labda-7,12 (E)14-triene-17-al [9] labda-7,12 (E)14-triene-17-ol [10]

labda-7,12 (E)14-triene-17-oic acid [11] labda-7,13 (2)-diene-17,12-olide [12]

HOH,C
CHs

HyCOCO.

HO

~
2
Z
Z
Z

o
N

labda-7,13 (2)-diene-17,12-olide-16-ol [13] 2-acetoxy-labda-8(17),12 (E),14-

triene=3-ol [14]

3-acetoxy-labda-8(17),12 (E),14- labda-8(17),12 (E),14-triene -
triene-2-ol [15] 2,3-diol [16]

Figure 4. Structural of chemical constituents of C. roxburghii. (continued)
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OCOCH;3

12 (E), 14-labdadiene-7,8-diol [17] 6-acetoxy-12 (E), 14-labdadiene-7,8-diol [18]

P
Z
2
Z
Z

OH

12 (E), 14-labdadiene-6,7,8-triol [19] nidorellol [20]

COOH COOH

(-)-hardwickiic acid [21] 11-dehydro-(-)-hardwickiic acid [22]

COOH

(-)-20-benxyloxyhardwickiic acid [23] Methyl-15,16-epoxy-12-0x0-3,13(16),

14-clerodatriene-20,19-olide-17-oate [24]

Figure 4. Structural of chemical constituents of C. roxburghii. (continued)



crovatin [25]

HOOC /

3,4-seco-cleistantha-4(18),13(17),

15-trien-3-oic acid [27]

19-deoxyoblongifoliol [29]

oblongifolic acid [31]

16

croblongifolin [26]

e
HON
N
(C

HOH,

oblongifoliol [28]

3-deoxyoblongifoliol [30]

ent-isopimara-7,15-diene [32]

Figure 4. Structural of chemical constituents of C. roxburghii. (continued)
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N
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OH HOH,C

ent-isopimara-7,15-diene-19-aldehyde [33]  19-hydroxy-ent-isopimara-7,15-diene [34]

RN

.

CH,OH
),15-diene-19-oic acid [35] (-)-pimara-9(11),15-diene-19-ol [36]

OOH

NP\

(-)-pimara-9(1

S
N
S
N
N

N
HOOC®

abeita-7,13-diene-3-one [37]

ent-kaur-16-en-19-oic acid [38]

ooc™

trachyloban-19-oic acid [39] acetyl aleuritolic acid [40]

Figure 4. Structural of chemical constituents of C. roxburghii. (continued)



HO

campesterol: R= C,H, [41] stigmasterol [42]
[-sitosterol : R= CH, [43]

HOH,C
o]
HO P
HO
OH
stigmastery|—3—O—B—D—glucopyranoside [44]
R
HOH,C,
Q
HO Y
HO
OH

B—sitosteryl—B—O—B—D—gIucopyranoside ; R=C,H, [45]
campesteryl—3—O—B—D—gIucopyranoside :R=CH, [46]

Figure 4. Structural of chemical constituents of C. roxburghii. (continued)
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HyCO

X

HO 0 0]

7-hydroxy-6-methoxycoumarin (Scopoletin) [47]

6,10,14-trimethyl-2-pentadecanone [48]

Figure 4. Structural of chemical constituents of C. roxburghii. (continued)
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2. Biological activies of diterpenoids compounds from Croton roxburghii N.P. Balakr.

Diterpenoids compounds isolated from C. roxburghii have been investigated for
many biological activities such as cytotoxicity, antimicrobial, antiplatelet aggregation,
cAMP phosphodiesterase inhibition, antioxidant and antibacterial. The biological
activities which have been reported as potent are cytotoxicity, antiplatelet aggregation,

antimicrobial and insecticidal activities.

2.1 Cytotoxic activity

Some of the diterpene compounds listed in Table 2 have shown to

exhibit in vitro cytotoxicity against many human tumor cell lines, as below.

Table2. Cytotoxic activity of some diterpene compounds from C. roxburghii

IC,(g/mL)
Compounds | KATO-3 | SW620 | BT474 | HEP-G2 | CHAGO References
[13] 7.1 6.5 >10 5 6.4 Baiagern, 1999.
[14] 5.7 7.1 >10 >10 >10 Roengsumran et al.,
2001.

[15] 3.3 >10 5.9 >10 >10 Roengsumran et al.,
2001.

[16] 2.2 2.7 4.6 3.7 3.3 Roengsumran et al.,
2001.

[26] 0.35 0.47 0.12 0.35 0.24 | Roengsumran et al.,
2002.

[36] 6.5 5.9 >10 6.7 6.1 Tanwattanakun, 1999.
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[13] = labda-7,13 (2)-diene-17,12-olide-16-ol

[14] = 2-acetoxy-labda-8 (17),12 (E),14-triene-3-ol

[15] = 3-acetoxy-labda-8 (17),12 (E),14-triene-2-ol

[16] = labda-8(17),12 (E),14-triene -2,3-diol

[26] = croblongifolin

[36] = (-)-pimara-9(11),15-diene-19-0l

Tumor Cell Lines:

KATO-3 = human gastric carcinoma

SW620 = human colon adenocarcinoma

BT474 = human breast ductal carcinoma
HEP-G2 = human liver-hepatoblastoma

CHAGO = human undifferentiated lung carcinoma

From the data in Table 2 it is very interesting to note that, among the three
structurally related labdane diterpenes [14-16], [14] and [15] were less active but more
selective than [16]. The presence of the acetyl group is believed to be the cause of this,
since it is likely that an. acetylation of-these compound-could-decrease their ability to
form hydrogen bond with certain receptor on tumor cells and made them more selective
but less—active (Roengsumran et -al.,r 2001). Furthermore, ‘neocrotocembranol [3]

exhibited cytotoxicity against P-388 cells (lymphoid neoplasm) in vitro with and IC,

value of 6.48 (LLg/mL)(Roengsumran et al.,1999b).
2.2 Antiplatelet aggregation

Another notable compound derived from this plant, is neocrotocembranol [3].

This compound inhibited platelet aggregation induced by thrombin with an IC,, value of
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47.21 (Lg/mL). However, two other cembranoid diterpenes, crotocembraneic acid [1]
and neocrotocembraneic acid [2], showed no inhibitory effect on platelet aggregation.
Thus, the reactive aldehyde functionality was proposed as playing an important part in

this effect. (Roengsumran et al.,1999b).
2.3 Insecticidal activity

(-)-Hardwickiic acid [21], a well-known clerodane diterpene, has been reported
as having insecticidal activity against Alphis craccivora (Aphidae). The compound, at a
dose of 5 ppm/insect, caused 62% mortality of adult female aphids after 24 hours

(Bandara et al., 1987).
2.4 Antimicrobial activity

The clerodane diterpene compound, (-)-hardwickiic acid [21] exhibited
antimicrobial activity against gram-positive bacteria (Bacillus subtilis, Staphylococcus

aureus) and Mycobacterium smegmatis. (Jame, Slice and Edilberto, 1991).
2.5 Inhibition of cAMP phosphodiesterase activity

Cembranoid compounds, crotocembraneic acid [1] and neocrotocembraneic
acid [2] have been reported to act as inhibitors of cAMP phosphodiesterase activity

(Singtothong, 1999).
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3. Biogenetic pathway of diterpenoids in Croton roxburghii N.P. Balakr.

The diterpenes are C 20 compounds biogenetically derived from geranylgeranyl
pyrophosphate. The notable feature of diterpene structures is the fascinating variation
encountered in their skeletons, which accounts for the division of these compounds into
several types. The following correlation chart shows the main diterpene skeletons found

in Croton roxburghii N.P. Balakr. (Devon and Scott, 1972)

OFP
—

Geranylgeranyl pyrophosphate Cembrane

WIN:

rearragement
— — T e
Labdane Halimane

PimaraneAsopimarane

rearragem
rearrangement
Cleistanthane Q@
s Clerodane

Kaurane

Scheme 1. Biogenetic pathway of diterpenoid compounds in C. roxburghii
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4. Antidiabetic agents ; Ol-glucosidase inhibitors

In the 1970s, it was realized that inhibition of all or some of the intestinal
disaccharidases and pancreatic Ol-amylase by inhibitors could regulate the absorption
of carbohydrate and these inhibitors could be used therapeutically in the oral treatment
of the non-insulin dependent diabetes mellitus (type Il diabetes). The Actiniplanes strain
SE 50 yields a potent sucrase inhibitor, acarbose, which inhibits pig intestinal sucrase

with IC,, value of 0.5 LM,

In 1984, the validamycin A-producing organism Streptomyces hygroscopicus
var. limoneus was reported to coproduce valiolamine, which is a potent inhibitor of pig
intestinal maltase and sucrase with [C,; values of 2.2 and 0.049 LM, respectively.
Numerous N-substituted valiolamine derivatives were synthesized to enhance its OL-
glucosidase inhibitory activity in vitro and the very simple derivative voglibose (AO128)
which was obtained by reductive amination of valionamine with dihydroxyacetone, was
selected as the potential oral antidiabetic agent. Its IC., values toward maltase and

sucrase were 0.015 UM and 0.046 LM, respectively.

In 1966, nojirimycin was discovered as the first glucose analog with nitrogen
atom in place of the ring oxygen. Nojirimycin was first described as an antibiotic

produced by Streptomyces roseochromogenes R-468 and S. lavendulae SF-425 and

shown to be a potent inhibitor of OL- and B—glucosidase from various sources. However,
because this iminosugar with the hydroxyl group at C-1 is fairly unstable, it is usually
stored as bisulfite. adducts or it may be reduced by catalytic hydrogenation with a
platinum catalyst or by NaBH, to 1-deoxynojirimycin (DNJ). DNJ was later isolated from
the roots of mulberry trees and called molancline. Despite the excellent:Ql-glucosidase
inhibitory activity in vitro, its efficacy in vivo was only moderate. Therefore, a large
number of DNJ derivatives were prepared in the hope of increasing the in vivo activity.
Thus miglitol was selected as the most favorable inhibitor out of a large number of in
vitro active agents. In 1996, miglitol was granted clearance by the U.S. Food and Drug
Administration (FDA) and was introduced onto the market in 1999 as a more potent

second-generation Ol-glucosidase inhibitor with fewer gastrointestinal side effects.
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Salacia reticulata Wight, known as kothalahimbutu in Singhalese and distributed
in Sri Lanka and Indian forests, has been used as a supplementary food in Japan to
prevent obesity and diabetes. Traditionally, ayurvedic medicine advised that a person

suffering from diabetes should drink water left overnight in a mug carved from

kothalahimbutu wood. Salacinol and Kotalanol have been identified as Ql-glucosidase
inhibiting component from the water-soluble fraction of the roots and stems of S.
reticulate. The |C,, values of salacinol toward rat intestinal maltase, sucrase, and
isomaltase are 3.2, 0.84, and 0.59 Lg/ml, respectively. The inhibitory activities toward
maltase and sucrase are nearly equal to those of acarbose and that toward isomaltase
is much more potent than that of acarbose. Kotalanol shows a more potent inhibitory
activity than salacinol and acarbose toward sucrase. Furthermore salacinol has been
found to more strongly inhibit the increase of serum glucose levels in sucrose-loaded
rats than acarbose. The use of dietary supplement to prevent or treat diabetes will
increase dramatically as knowledge about bioactive components of food in health

increases. (Asano, 2003)
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CHAPTER 1lI

EXPERIMENTAL

1. Source of Plant Material

The stem bark of Croton roxburghii N.P. Balakr was collected from,Loei

province, Thailand.The plant material was authenticated by comparison with the voucher

specimen No. BKF 084729, deposited in the herbarium of Royal Forest Department,

Bangkan, Bangkok, Thailand.

2. General Techniques

2.1

2.2

Analytical Thin Layer Chromatography (TLC)

Technique : One dimension, ascending
Adsorbent : Silica gel 60 F,., precoated plate (E.Merck)
Layer thickness : 0.2 mm.

Developing distance : 6.0 cm.
Temperature . Laboratory room temperature (30-35°C)
Detection . 1. Ultraviolet light at wavelength of 254 nm.
2. lodine vapour

Column Chromatography
2.2.1  Conventional Column Chromatography
Adsorbent : 1. Silica gel 60 (No.7734)(E.Merck)

Particle size 0.063-0.200 nm. (70-230 mesh ASTM)

2. Silica gel 60 (N0.9385)(E.Merck)

Particle size 0.040-0.063 nm. (230-400 mesh ASTM)
Packing method :  Wet packing
Sample loading : The sample was dissolved in a small amount of eluent,

and then applied gently on top of the column.
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Detection: Fractions were examined using TLC technique. In order to
detect the compounds in each, the TLC plate was
observed under UV light at wavelength of 254 nm and
then exposed to iodine vapour.

2.2.2 Flash Column Chromatography

Adsorbent : 1. Silica gel 60 (No.7734)(E.Merck)

Particle size 0.063-0.200 nm. (70-230 mesh ASTM)
2. Silica gel 60 (N0.9385)(E.Merck)
Particle size 0.040-0.063 nm. (230-400 mesh ASTM)

Packing method :  Wet packing

Sample loading : The sample was dissolved in a small amount of eluent,

and then applied gently on top of the column.

Detection : Fractions were examined using TLC technique. In order to
detect the compounds in each, the TLC plate was
observed under UV light at wavelength of 254 nm and

then exposed to iodine vapour.

2.3 Spectroscopic Techniques

2.3.1 Ultraviolet(UV) absortption Spectra

UV spectra were obtained on a Shimadzu UV-160A UV/VIS
spectrophotometer at  Faculty of Pharmaceutical  Sciences,
Chulalongkorn Univesity.

2.3.2 Mass Spectra (MS)

Time of. Flight  spectra (TOF) of isolated compounds were
obtained on a Micromass Platform Il mass spectrometer at 70 €V. at The
National Science and Technology Development Agency of Thailand.
2.3.3 Nuclear Magnetic Resonance (NMR) Spectra

"H NMR spectra and ®C NMR spectra of isolated compounds
were recorded at 300 MHz, on a JEOL JMN (Alpha series) Spectrometer
at the Department of Organic Chemistry, Faculty of Sciences,

Srinakarinwirot University.
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Deuterated chloroform and deuterated methanol were used as

the NMR solvent throughout this study. Spectral data were reported in

ppm scale using the solvent chemical shift as the reference frequency.

Extraction and Isolation

3.1

Extraction of the stem bark of Croton roxburghii N.P. Balakr

The dried, powdered stem bark of Croton roxburghii N.P. Balakr (2 kg.)

was macerated twice with hexane (2 x 2 L) for three days. The obtained extract

was evaporated under reduced pressure at a temperature of approximately

40°C to give 213.7 g of hexane extract (10.69 % wiw)

3.2

Isolation

3.2.1 lIsolation of compounds

The crude hexane extract (10 g) was chromatographed on a
conventional silica gel column (silica gel 60, No.7734, 100 g), eluted
initially with hexane and increasing the polarity of eluent by gradually
adding ethyl acetate to 100%, to yield various fractions of 10 mL each.
The fractions that showed similar TLC patterns were combined, and then
evaporated to give starting materials ent-3-oxo-manoyl oxide (compound
1, 0.38 g), ent-1,2-dehydro-3-oxo-manoyl oxide (compound 2, 0.95 g),
ent-1,2-dehydro-120L -hydroxy-3-oxo-manay! oxide (compound 3, 0.11
9), ent—1B-hydroxy—3—oxo—manoyl oxide (compound 4, 0:14 g), and ent-

3 -hydroxy-manoyl oxide (compound 5, 0.32 g)
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4. Synthesis and Isolation

41 Epoxidation

4.1.1 ent-1,2-dehydro-3-oxo-manoyl oxide-14,15-oxirane

15

-ulllll§ﬁ

m-CPBA/CH ClI
2 2

>

8"y, Room tem
"Me y

o] 3 0 3
Me\\\\ Me Me\\\\\ Me
18 19 18 19
Compound 2 Compound 6

To a solution of compound 2 (ent-1,2-dehydro-3-oxo-manoyl oxide, 0.302 g, 1
mmole) in methylene chloride (3 mL) was added m-chloroperbenzoic acid (m-CPBA,
0.1742 g, 1.2 mmole) at 0°C. The mixture was stirred for 1 hour and then 2 days at room
temperature. The solution was treated with saturated agueous NaHCO, and 10% sodium
sulfite and extracted with CH,Cl,. The organic layer was dried with Na,SO, and
concentrated to give a residue containing crude epoxide compound 6, which was
purified by TLC (silica gel, 15% ethyl acetate in hexane as developing solvent) to give
compound 6 containing-ent-1,2-dehydro-3-oxo-manoyl oxide-14(R),15-oxirane and ent-
1,2-dehydro-3-oxo-manoyl oxide-14(S),15-oxirane (0.261 g,81.76%) as colourless

crystals.

UESS

Compound 6
TOF MS : C,HyO,+Na  : 341.2086



'H and “C NMR (CDCI,)

C# 8C 8H HMBC

1 157.57 7.10 (d, J = 10.4 Hz) C-20

2 125.9 5.86 (d, J = 10.4 Hz) -

3 205 - -

4 44.67 - -

5 52.01 1.78 (m) -

6 20.09 1.52 (m), 1.70(m) -

7 41.887 1.53.(m), 1.92 (m) -

8 71.60 ’ -

9 51.19 1.62 (m) -

10 39.18 { -

11 15.36 1.70 (m), 1.84 (m) -

12 33.79 1.72 (m), 1.90 (m) -

13 76.6 o -

14 59.71 2.79 (m) C-12, C-15, C-16
15 43.79 2.64 (m) C-13, C-14
16 27.64 1.22 (s) C-12, C-13, C-14
17 24.75 1.38 (s) -

18 24.48 1.16 (s) -

19 21.27 1.08 (s) -

20 18.74 1.05 (s) -
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4.1.2 ent-1,2-dehydro-120L-hydroxy-3-oxo-manoyl oxide-14,15-oxirane

OH

15

-||||II|§':,

m-CPBA/CH ClI
272

i 'Il'////,vka Room temp.
20
O ~
Me$$ Me
18 19
Compound 3 Compound 7

To a solution of compound 3 (ent-1,2-dehydro-120L -hydroxy-3-oxo-manoy!
oxide, 0.090 g, 0.283 mmole) in methylene chloride (3 mL) was added m-
chloroperbenzoic acid (m-CPBA, 0.1742 g, 1.2 mmole) at 0°C. The mixture was treated
in the same manner as described in section 4.1.1 to give a residue containing crude
epoxide compound 7, which was purified by TLC (silica gel, 47% ethyl acetate in
hexane as developing solvent) to give compound 7 containing 1,2-dehydro-120L-
hydroxy-3-oxo-manoyl oxide-14(R),15-oxirane and 1,2-dehydro-120L-hydroxy-3-oxo-

manoyl oxide-14(S),15-oxirane (0.066 g, 69.82%) as colourless crystals.

OH

-|||II||§:

0 3
I\/Ie\\\\ Me
18 19
Compound 7
TOF-MS : C,oHy,O,+H : 335.2224
'H and “C NMR (CDCI,)
#
C O¢ O, HMBC
1 157.15 7.127 (d, J=10.4 Hz) C-2,C-20

2 126.01 5.862 (d, J=10.4 Hz) C-1
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10
11
12
13
14
15

16
17
18
19

20

205
44.63
53.18
20.44
41.6
75.0
44.05
38.79
24.42
72.8
73.0
56.5
44.63

27.68
24.85
25.31
20.081
18.9
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- C-1,C-2

- C-19

1.85 (m) C-19

1.52 (m), 1.72 (m) -

1.75 (m), 1.92 (m) -

2.05 (m) C-8, C-12
1.85 (m), 1.94 (m) -

4.0 (g, broad) C-14

3 C-12, C-15, C-16
3.01 (m) C-12, C-15
2.88 (m) C-14

2.78 (m) -

121255 C-14

1.29 (s)

1.15(s)

1.09 (s)

1.01 (s)

4.1.3 ent1 B-hydroxy-3-oxo-manoyl oxide-14,15-oxirane

-nlllll%':

Compound 4

15

m-CPBA/CH ClI

alllie]
T

-

3

-nlllll%

Room temp.

Compound 8
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To a solution of compound 4 (ent—1B—hydroxy—3—oxo—manoyl oxide, 0.16 g, 0.50
mmole) in methylene chloride (3 mL) was added m-chloroperbenzoic acid (m-CPBA,
0.1742 g, 1.2 mmole) at 0°C. The mixture was treated in the same manner as described
in section 4.1.1 to give a residue containing crude epoxide compound 8, which was

purified by TLC (silica gel, 42% ethyl acetate in hexane as developing solvent) to give
compound 8 containing ent—1B—hydroxy—S—oxo—manoyI oxide-14(R),15-oxirane and ent-

1B—hydroxy—3—oxo—manoy| oxide-14(S),15-oxirane (0.13 g, 77.2%) as colourless crystals.
16

-nllll§:

o
Compound 8
TOF-MS : C,,H,,0,+H : 337.2371
'H and "°C NMR (CDCL,)
C# 8C 6H HMBC
1 41.45 2.9 (q; J=8, 4 Hz) C-2,C-3
2 33.63 2.3(q; J=8, 4 Hz) C-1,C-3
2.35 (q; J=8, 4 Hz)
3 214.98 - C-2,C-3,C-18, C-19
4 47 1 - -
5 57.4 1.49 (m) ]
6 20.44 1.50 (m), 1.56 (m) -
7 45.08 2.32 (m) -
8 74.68 - C-16
9 56.47 1.52 (m)
10 42.39 - -

11 1717 1.55 (m), 2.18(m) -
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12 77.7 4.1 (g, broad) C-20

13 71.3 - C-14

14 59.8 2.64 (m) C-13,C-15

15 43.8 2.86 (m) C-13, C-14, C-17
2.75 (m)

16 27.47 1.25 (s) C-8

17 24.61 1.18 (s) C-15

18 24.2 1.04 (s) C-3

19 20.08 1.00 (s) C-3

20 10.99 0.80 (s) C-12

4.1.4 ent-30L-hydroxy-manoyl oxide-14,15-oxirane
16

-||||II|§':,‘
QIS

m-CPBA/CH ClI
2 2

Room temp.
20
HO S HO

$ S

Me  Me N
Me Me
18 19 18 19

Compound 5 Compound 9

To a solution of compound 5 (ent-3QL -hydroxy-manoyl oxide, 0.204 g, 0.671
mmole) in methylene chloride (3 mL) was added m-chloroperbenzoic acid (m-CPBA,
0.1742 g, 1.2 mmole) at 0°C. The mixture was treated in the same manner as described
in section 4.1.1 to. give a residue containing crude epoxide compound 9, which was
purified by TLC (silica gel, 47% ethyl acetate in hexane as developing solvent) to give
compound 9 containing " ent-30(-hydroxy-manoy!l oxide-14(R),15-oxirane and ent-30L-

hydroxy-manoy! oxide-14(S),15-oxirane (0.181 g, 84.20%) as colourless crystals.



TOF-MS

HO

C,,H,,0, + Na

'H and “C NMR (CDCI,)

#
C

© o0 ~N oo o b~ o w N -

P U U
AW N -~ O

15

16

d

C

32.23

25.23
76.08
37.56
56.8
19.46
42.7
70.87
48.88
36.69
15.36
38.67
76.6
59.9

43.85

28.24

U4

Compound 9

= 345.2406

S

H
1.32 (m);1.35 (M)

1.58 (m); 1.94 (m)
3.41 (d, J=2.7 Hz)
1.44 (m)

1.30 (m), 1.54 (m)
1.49 (m), 1.84 (m)

1.46 (m)
1.41 (m), 1.63 (m)
1.62 (m), 1.75.(m)
2.70(dd, J = 5.1 Hz,
J=2.4Hz)
2.87 (dd, J = 11 Hz,
J=5.1Hz)
2.63 (dd, J = 11 Hz,
J=19Hz)
1.29 (s)

HMBC

C-14, C-15

C-14,C-8

C-8,C-15

C-8, C-12,

C-14

C-8

36
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17 24.30 1.33(s) -
18 24.88 1.04 (s) ]
19 21.79 0.91 (s) -
20 15.57 0.9 (s) -

4.2 Oxidation
4.2.1 ent-3-oxo-manoyl oxide-14(R),15-diol

16 16

\\\\\\ L

15

MIIE4S
A
o

Z+ O
—/

QllIE4S

Compound 1 Compound 10
A solution of N-methyl morpholine N-oxide hydrate (NMO, 50% in water,320 mg)

and acetone (3 mL) was treated with Osmium tetroxide (OsO,, 12.7 mg, 0.05 mmole) in
tert-butyl alcohol (3 mL). After 15 min at room temperature, compound 1 (ent-3-oxo-
manoyl oxide 0.315 g, 1.036 mmole) in acetone (2 mL) was added dropwise to the
solution. The reaction was slightly exothermic and was maintained at room temperature
for 2 days. The solution became dark brown. The solution mixture was treated with
saturated aqueous Na,S,0, and was stirred for 30 min. The mixture was extracted with
EtOAc. After drying with Na,SQ,, the solvent was removed and the residue was purified
by column chromatography with n-Hexane-EtOAc-Acetone (8:1.5:0.5) to give compound

10 (34 mg, 9.70%) as a yellow liquid.

-:lllll%j

Compound 10
TOF-MS : C,H,,0, + Na = 361.48
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'H and “C NMR (CDCI,)

C# 8C 8H HMBC
1 32.77 1.45 (m) C-3
2 29.67 2.43 (m) C-3
3 214.57 - C-1,C-2,C18,C-19
4 471 - C-18,C-19
5 48.8 1.50 (m) -
6 19.51 1.05 (m) -
7 42.18 1.48 (m) -
8 75.79 - C-16, C-13
9 49.9 1.40 (m) ]
10 40.46 - -
11 14.8 0.91 (m) -
12 31.49 1.66-1.71(m) -
13 77.44 v C-8, C-17
14 71.68 3.798 (dd, J = 11 Hz, -
J=5H2z)
15 63.08 3.37 (dd, J = 11 Hz, -
S =5
3.1(m)
16 25.15 1.29 (s) C-8
17 23.83 1.34 (s) C-13
18 24.01 1.09 (s) C-19
19 20.85 1.04 (s) C-18

20 15.69 0.92 (s) -
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4.2.2 ent-30(-hydroxy-manoyloxide-14(R),15-diol

16
\\\\\\\ Me

-:lllll%ﬁ

0sO . - CH
sO, g s oy, OH OH
"Me
20
H20—Acetone/[—BuOH/r.t
HO R

Me\\S Me

18 19
Compound 5 Compound 11

A solution of N-methyl morpholine N-oxide hydrate (50% in water,320 mg) and

acetone (3 mL) was treated with Osmium tetroxide (12.7 mg, 0.05 mmole) in tert-butyl

alcohol (3 mL). After 15 min at room temperature, compound 5 (ent-30L-hydroxy-manoy!
oxide,0.311 g, 1.016 mmole) in acetone (2 mL) was added dropwise to the solution. The
reaction was slightly exothermic and was maintained at room temperature for 2 days.
The solution became dark brown. The solution mixture was treated with saturated
aqueous Na,S,0, and was stirred for 30 min. The mixture was extracted with EtOAc.
After drying with Na,SO,, the solvent was removed and the residue was purified by
column chromatography with n-Hexane-CH,Cl,-Acetone (3:2:2.5) to give compound 11

(16 mg, 46.25%) as a yellow liquid.

-|||II|§':,‘

HO

Compound 11

TOF-MS : C,oH;,0,+Na = 363.2502



'H and “C NMR (CDCI,)

#
C

> o0~ W

10
11
12
13
14

15

16
17
18
19
20

S

C

32.27

24.93

79.5

37.20
57.97
19.10

42.82

75.11
48.81
36.40
14.46
34.30
78.7

75.4

62.53

27.63
23.69
24.01
21.41
14.90

S

H

1.32 (m),

1.35 (m)

1.58 (m),

1.94 (m)
3.41(d,J =24 Hz)
1.78 (m)
1.52 (m)
1.70 (m)
1.53 (m)
1.92 (m)

1.44 (m)
1.42-1.62 (m)
1.62-1.77 (m)
3.78 (m),
3:5(m)
3.32(m),
3.33 (m)

1.28 (s)

1.30 (s)

0.95 (s)

0.83 (s)

0.80 (s)
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HMBC

C-5

C-3

C-16

C-20

C-14, C-15
C-8, C-13, C-15
C-8, C-13, C-15
C-8, C-13, C-14
C-8,C-13, C-14
C-8, C-13

C-1,C-5,C-10
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4.3 Acetylation ; ent-3 OL,14(R),15-Triacetyl-manoyl oxide

-ulllll%':‘

OAc OAc

Compound 11 Compound 12

To a solution of compound 11 (ent-30L-hydroxy-manoy! oxide-14,15-diol, 0.162
g, 0.479 mmole) in pyridine (4 mL) were added DMAP (170 mg, 1.35 mmol) and acetic
anhydride (230 mg, 2.25 mmol). The reaction was stirred at room temperature for 2
days. The solvent was removed in vacuo. A saturated aqueous NaHCO, solution was
added to the residue, and the mixture was extracted with diethyl ether. The organic layer
was dried with Na,SO,, and the solvent was removed. Purification by column
chromatography with n-Hexane-EtOAc(1:4) gave compound 12 (0.042 mg, 16.70%) as

a yellow liquid.

Compound 12
TOF-MS:  C,H,,0, =489.07
'H and “C NMR (CD,0D)
C# 8C 6H HMBC
1 31.7 1.32 (m), 1.35 (m) C-20

2 21.75 1.8 (m) -



~N OO o~ W

10
11
12
13
14

15

16
17
18
19
20
21,22, 169.45
23
24
25
26

77.01
35.7
56.6
18.23
41.57

72.3

49.07
35.5

13.72
33.68
74.19
75.89

62.7

26.83
23.61
24.01
22.04
14.53
,169.68,
170.13
19.91
20.07
20.4

450 (d, J =2.5Hz)
1.42 (m)

1.3 (m)

1.51 (m),1.83 (dt,
J=12.0,3.2Hz)

1.44 (m)

1.42 (m), 1.62 (m)

1.61 (m), 1.77 (m)

4.02 (dd, J = 17 Hz,

J =11Hz)

4.88 (dd, J = 17 Hz,
J =9 H2z)

4.39 (dd, J = 11 Hz
J=9H2z)

1.07 (s)

1.12 (s)

0.75 (s)

0.70 (s)

0.65 (s)

1.99(s)
2.004(s)
2.0(s)

42

C-8, C-13

C-8,

C-8, C-9
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4.4 Reduction : ent-SB-hydroxy-manoyl oxide

-ullll|§z
-I|III||§':,

NaBH /MeOH
///// > "’////
20 rt 3hr 7
20
) s \\\\\\
Me  Me $
18 19 1'\49 %ﬁ
Compound 1 Compound 13

Sodium borohydride (0.5 g, 13.21 mmol was dissolved in MeOH 3 mL), and the
solution was stirred at 0°C. Then the solution of compound 1 (3-oxo-manoyl oxide 0.615
g, 2.02 mmole) in MeOH (2 mL) was added dropwise to the solution. The reaction was
slightly exothermic and was maintained at 0°C for 30 mins, raised to the room
temperature, and stirred for 3 hrs. The solution mixture was treated with saturated
aqueous NaHCO, and was stirred for 30 min. The mixture was extracted with EtOAc.
After drying with Na,SO,, the solvent was removed and the residue was purified by
column chromatography with n-Hexane-EtOAc (4:1) to give compound 13 ( 0.3 g,
48.51%) as a solid.

-||III||§:

Me Me
i § : | Compound 13
TOF-MS: ' C,,H.,0, + Na = 3331103
'H and "°C NMR (CDCL,)
#
c 6C 6H HMBC
1 37.2 1.45 (m) C-18, C-19
2 27.2 1.6 (m) C-19

3 78.8 3.2(dd,J=11Hz, 4.8 Hz) C-18, C-19
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4 38.8 - -

5 55.2 1.25 (m) C-19

6 19.51 1.05 (m), 1.08(m) -

7 43.1 1.48 (m), 1.86 (M) C-16

8 73 - C-16

9 55.4 1.40 (m) _

10 36.7 5 -

11 15.39 0.91(m) C-20

12 35.6 1.66 (m),1.80 (m) C-13

13 75 7 C-14

14 147.6 5.8 (dd, J = 17 Hz, C-13,C-8

10.8 Hz)

15 110.3 4.9 (dd, J=10.8 Hz, 1.3Hz) -
5.15(dd, J = 17 Hz, 1.3Hz) -

16 25.4 1.2 (s) C-8, C-14

17 23.01 1.28 (s) -

18 28.4 0.96 (s) C-19

19 16.47 0.3 (s) -

20 15.2 0.2 (s) -

5. Biological activity test

5.1 Cytotoxicity test

Cytotoxicity test was carried out at the Institute of Biotechnology and Genetic
Engineering. Bioassay of cytotoxicity activity against human tumor cell culture in vitro
was performed by the MTT [3-(4,5-dimethylthaizol-2-yl)-2,5-diphenylterazolium bromide]
colorimetric method (Carmichael et al., 1987). In principle, the viable cell number/well is
directly proportional to the production of formazan which, following solubilization, can be

measured spectrophotometrically.
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The human tumor cell line was harvested from exponential-phase maintenance
culture (T-75 cm’ flask), counted by trypan blue exclusion, and dispensed within
replicate 96-well culture plates in 100 LLI volumes using a repeating pipette. Following a
24 h incubation at 37°C, with 5%C0O,, 100% relative humidity, 100 LLI of culture medium
containing sample was dispensed within appropriate well (control group, N=6; each
sample treatment group, N=3). Peripheral wells of each plate (lacking cell) were utilized
for sample blank (N=2) and medium/tetrazolium reagent blank (N=6) background
determination. Culture plates were then incubated for 4 days prior to the addition of
tetrazolium reagent. MTT stock solution was prepared as follows: 5 mg MTT/mL PBS
was steriled and filtered with 0.45 JAm filtered units. MTT working solution was prepared
just prior to culture application by diluting MTT stock solution 1:5 (v/v) in prewarmed
standard culture medium. MTT working solution (50 MI) was added to each culture well
resulting in 50 Wlg MTT/260 LI total medium volume and cultures were incubated at
37°C for 4 to 24 h depending upon individual cell line requirements. Following
incubation, cell monolayers and formazan were inspected microscopically: culture
plates containing suspension lines or detached cells were centrifuged at low speed for 5
min. All 10-20 I of culture medium supernatant was removed from wells by slow
aspiration through a blunt 18-guage needle and replaced with 150 LLI of DMSO using a
pipette. Following through formazan solubilization, the absorbance of each well was
measured using a microculture plate reader at 540 nm (single wavelength, calibration
factor = 1.00)

Cell line growth and growth inhibition were expressed-in terms of mean (X 1
SD) absorbance units and / or percentage of control absorbance( + 18D %) following
subtraction of ‘'mean ‘backgroundabsorbance.

Samples were also tested for cytotoxic activity towards 5 cancer cell lines,
including HEP-G2 (hepatoma), SW 620 (colon), Chago (lung), Kato-3 (gastric) and BT

474 (breast), following the experimental method for bioassay of cytotoxic activity.
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5.2 Ol-glucosidase inhibitory activity
The inhibitory effect of each compound on Ol-glucosidase activity was measured

according to the literature procedure (Matsui, T et al., 1996). Briefly, Ol-glucosidase

from baker's yeast was assayed using 0.1 M phosphate buffer at pH 6.9, and 1 mM p-
nitrophenyl-Ol-D-glucopyranoside (PNP-G) was used as a substrate. The concentration
of the enzymes was 1 U/mL in each experiment. Ol-Glucosidase (40 ML) was incubated
in the absence or presence of various sample (concentration 1 mg/mL, 10 L) at 37°C.
The preincubation time was specified at 10 min and PNP-G solution (950 L) was

added to the mixture. The reaction was carried out at 37°C for 20 min, and then 1 mL of
1M Na,CO, was added to terminate the reaction. Enzymatic activity was quantified by
measuring the absorbance at 405 nm. 1-deoxynorjorimycin was used as the positive

control in this study.



CHAPTER IV

RESULTS AND DISCUSSION

1. Structure Determination

1.1 Identification of Isolated Compounds

The separation of crude hexane extract gave five compound including ent-3-
oxo-manoy! oxide (compound 1), ent-1,2-dehydro-3-oxo-manoyl oxide (compound 2),
ent-1,2-dehydro-120L -hydroxy-3-oxo-manoyl oxide (compound 3), ent—1B—hydroxy-3-
oxo-manoyl oxide (compound 4), and ent-30L-hydroxy-manoyl oxide (compound 5).
Identifications of these compounds were done by TLC comparison with authentic

samples.

1.2 Structure determination of compound 6

Compound 6 was obtained as colourless needles (0.261 g) with melting point of
157- 159°C (CH,Cl,-Hexane). The "H- NMR spectrum (Figure 6) of compound 6 showed
five methyl groups at 5H 1.05(3H, s; H-20), 1.08(3H, s; H-19), 1.16(3H, s; H-18), 1.22(3H,
s; H-16), 1.38(3H, s; H-17) and two olefinic protons at 6H 5.86(1H, d; H-2), 7.10(1H, d;
H-1).

The two of olefinic protons of starting material at SH 5.89 (1H, dd; J=17.6,
10.8Hz; H-14) and 4.94 (1H, dd; J=10.6, 1.4Hz; H15a or b), 5.16 (1H, dd; J=17.2, 1.4Hz;
H15a or b) became to be a methine proton at 2.79 (1H, m; H-14) and two methylene
protons at 6H 2.64 (2H, m; H-15).

The "“C-NMR spectrum (Figure 7) of compound 6 showed twenty carbon
resonances, with a pair of olefinic carbons (SC 125.9, 157.15; C-2, C-1). The pair of
olefinic carbons (8C 147.4, 110.7; C-14, C-15) of the starting material (compound 2)
became the corresponding epoxide carbons, one methine carbon at SC 59.7 (C-14) and

one methylene carbon at 8C 43.79 (C-15).
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In DEPT experiments (Figure 8), all of carbon signals are as similarly related to

the carbon signals of the starting material compound 2 (ent-1,2-dehydro-3-oxo-manoy!
oxide) except that the signals at 60 147.4 (C-14), 110.7 (C-15) disappeared. The two

new signals at 80 43.79 (C-15), and 80 59.7 (C-14) showed their proximity to the oxygen

atom of the oxirane ring in the molecule.

In the TOF-MS spectrum (Figure 12) compound 6 gave a peak [M+Na]” as the
base peak at m/z 341.2093. The molecular formula of compound was assigned as

C20H3003'

2D-NMR techniques were then used to assist in the interpretation of the structure
of this compound. In the HMBC spectrum (Figure 11), the methyl at 8H1.22 ppm (H-16)
correlated with the epoxide moiety at 80 59.71 ppm (C-14). The methine at BH 2.64ppm
(H-14) correlated with SC 76.6 ppm (C-13) and SC 59.71 ppm (C-14).The methylene at

d.,2.79 ppm (H-15) correlated with O 76.6 ppm (C-13) and O, 59.71 ppm (C-14).

1.3 Structure determination of compound 7

Compound 7 was obtained as colourless needles (0.066 g) with melting point of
147- 150°C (CH,Cl,-Hexane). The 'H- NMR spectrum (Figure 13) of compound 7
showed five methyl groups at SH 0.8 (3H, s; H-20), 1.00 (3H, s; H-19), 1.04 (3H, s; H-18),
1.25 (3H, s; H-16), 1.18 (3H, s; H-17) and two olefinic protons at SH 5.86 (1H, d; H-2),
7.127 (1H, d; H-1).

The two of olefinic protons of starting material (compound 3) at 8H 5.81 (1H, dd;
J=17.6, 10.8Hz;H-14) and 5.26 (1H, dd; J=10.6, 1.4Hz; H15a or b, 5.44(1H, dd; J=17.2,
1.4Hz; H15a or b) became a methine proton at 5H 3.01 (1H, m; H-14) and two methylene

protons at O, 2.78, 2.88 (2H, m; H-15).

The "°C-NMR spectrum (Figure14) of compound 7 showed twenty carbon
resonances, with a pair of olefinic carbons (8C 126.01, 157.15 ; C-2,C-1). The pair of

olefinic carbons (8C 142.5, 115.8; C-14, C-15) of starting material (compound 3)



49

became the corresponding epoxide carbons, with one methine carbon at SC 56.5 (C-14)

and one methylene carbon at 80 44.63 (C-15).

In DEPT experiments (Figure15 ), all of carbon signals are as similarly related to
the carbon signals of the starting material compound 3 (ent-1,2-dehydro-120L -hydroxy-
3-oxo-manoyl oxide) except that the signals at 60 1425 (C-14), 115.8 (C-15)

disappeared. The two new signals at 6@ 56.5 (C-15), and 8C 44.63 (C-14) showed their

proximity to the oxygen atom of the oxirane ring in the molecule.

In the TOF-MS spectrum (Figure19) compound 7 gave a pseudo molecular ion
peak [ M +H] " as the base peak at m/z 335.2224. The molecular formula of compound

was assigned as C,,H,,0,.

The 2D-NMR techniques were then used to assist in the interpretation of the
structure of this compound. In the HMBC spectrum (Figure18), the methyl at 8H1.125
ppm (H-16) correlated with the epoxide moiety at 8C 56.5 ppm (C-14). The methine at
d,, 2.64 ppm (H-14) correlated with O, 73.0 ppm (C-13) and O, 56.5 ppm (C-14).The
methylene at O,,2.75, 2.86 ppm (H-15) correlated with O 73.0 ppm (C-13), O, 56.5 ppm

(C-14). and O, 24.85 ppm (C-17).

1.4  Structure determination of compound 8

Compound 8 was obtained as colourless needles (0.181 g) with melting point of
178-180°C (EtOAc-Hexane). The 'H- NMR spectrum (Figure20) of compound 8 showed
five methyl groups at SH 0.8 (3H, s; H-20), 1.0 (3H, s; H-19), 1.04 (3H, s; H-18), 1.25
(3H, s; H-16), 1.18 (3H, s; H-17).

It also showed six of methylene protons at SH 2.94 (m),1.58 (m; H-11), 2.3 (m),
2.35 (m; H-12), 1.50 (m), 1.56 (m; H-6), 2.32 (m; H-7), 1.55 (M), 2.18 (m; H-2), and new
ones at O, 2.75 (m), 2.86 (m; H15).

Four of methine protons at 6H 1.49 (m; H-5), 1.52 (m; H-9), 14.1 (broad; H-12)

and a new one at SH 2.64 (m; H-14) were observed.
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The "“C-NMR spectrum (Figure21) of compound 8 showed twenty carbon

resonances, most of which were similar to the starting material (compound 4), except
that the pair of olefinic carbons (8C147.8 and 110.4 at C-14 and C-15) became the
corresponding epoxide carbons with one methine at 60 59.9 (C-14) and one methylene

at O, 43.85 (C-15).

In DEPT experiments (Figure22), most of carbon signals were as similarly related
to the carbon signals of the starting material compound 4 (ent-1 B—hydroxy—3—oxo—manoy|
oxide) except that the signals at 6C 147.6 (C-14), 110.5 (C-15) disappeared. The two

new signals at 80 43.8 (C-15), and 8C 59.8 (C-14) showed their proximity to the oxygen

atom of the oxirane ring in the molecule.

In the TOF-MS spectrum (Figure 25) compound 8 gave C,,H,,0, a molecular ion
peak [M+H] " as the base peak at m/z 337.2371. The molecular formula of compound

was assigned as C,,H,,0,.

2D-NMR techniques were then used to assist in the interpretation of the structure
of this compound. In the HMBC spectrum (Figure 24), the methyl protons at 8H 1.18 ppm
(H-17) correlated with 60 43.8 ppm (C-15). The methine proton at BH 2.64 ppm (H-14)
correlated with 8C 43.8 ppm (C-15) and 8(; 71.3 ppm (C-13) The methylene at 5H2.75,

2.86 ppm (H-15) correlated with O, 59.8 ppm(C-14), O, 71.3 ppm(C-13) and O, 24.61
ppm (C-17).

1.5  Structure determination of compound 9

Compound 9 was obtained as colourless needles (0.181 g) with melting point of
142-144°C (EtOAc-Hexane). The "H- NMR spectrum (Figure 26) of compound 9 showed
five methyl groups at 8H 0.9 (3H, s; H-20), 0.91 (3H, s; H-19), 1.04 (3H, s; H-18), 1.29
(3H, s; H-16), 1.33 (3H, s; H-17).

It also showed six methylene protons at 8H 1.32-1.35 (m; H-1), 1.58-1.94 (m; H-
2), 1.30-1.57 (m; H-6), 1.49-1.84 (m; H-7), 1.42-1.1.62 (m; H-11), 1.61-1.77 (m; H-12)
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and new ones SH 2.87 (1H, dd; J=11, 5.1 Hz; H15a or b) , 2.63 (1H, dd; J= 11, 1.9 Hz;
H15a or b).

In addition, it exhibited four methine protons at 8H 1.49 (m; H-5),1.52 (m; H-9) 4.1

(broad; H-12), and a new one at 6H 2.64 (m; H-14).
The "“C-NMR spectrum (Figure 26) of compound 10 showed twenty carbon

resonances, similar to the starting material (compound 5), except that the pair of olefinic
carbons (8C147.6 and 110.5 at C-14 and C-15) became the corresponding of epoxide

carbons, with one methine at 80 59.8 (C-14) and a new one methylene at 60 43.8 (C-
15).

In DEPT experiments (Figure 28), most of carbon signals were similar to the
carbon signals of the starting material compound 5 (ent-120L-hydroxy-3-oxo-manoy!
oxide) except that the signals at 6(; 147.6 (C-14), 110.5 (C-15) disappeared. The two

new signals at 80 59.8 (C-15), and 80 43.8 (C-14) showed their proximity to the oxygen

atom of the oxirane ring in the molecule.

In the TOF-MS spectrum (Figure 32) compound 9 gave C,,H,,0, + Na at m/z =
345.2406. The base peak was [M+Na] at m/z = 345.2406. The molecular formula of
compound was assigned as C,,H,,0..

2D-NMR techniques were then used to assist in the interpretation of the structure
of this compound. In the HMBC spectrum (Figure31), the methyl protons at 6H 2.7 ppm
(H-14) correlated with 8C 43.85 ppm (C-15) and 8(; 70.87 ppm (C-8). The methylene at
d,,2.63, 2.87 ppm (H-15) correlated with O, 70.87 ppm (C-8), O, 56.5 ppm (C-14). and

. 33.68:ppm (C-12).

1.6  Structure determination of compound 10

Compound 10 was obtained as a yellow liquid (34 mg). The 'H- NMR spectrum
(Figure33) of compound 10 showed five methyl groups at SH 0.9 (3H, s; H-20), 1.03 (3H,
s; H-19), 1.09 (3H, s; H-18), 1.29 (3H, s; H-16), 1.34 (3H, s; H-17).



52

It also showed seven of methylene protons at 8H 1.45 (m; H-1), 2.43 (m; H-2),
1.50 (m), 1.05 (m; H-6), 1.48 (m; H-7), 0.9 (m; H-11), 1.66-1.71 (m; H-12) and new
methylene at O, 3.62(m), 3.76(m; H15).

In addition, it showed three methine protons at BH 1.50 (m; H-5), 1.40 (m; H-9)
and a new one at 6H 4.008 (dd; J =11.4, 5 Hz. H-14).

The °C-NMR spectrum (Figure34) of compound 10 showed twenty carbon

resonances, similar to the starting material (compound 1), except that the pair of olefinic
carbons (8C147.6 and 110.4 at C-14 and C-15) became carbons of diol structure with

one methine carbon at 6c 71.68 (C-14) and a new methylene carbon at 6c 63.08 (C-15).

In DEPT experiments (Figure 35), most of carbon signals were similar to the

carbon signals of the starting material compound 1 (ent-3-oxo-manoyl oxide) except
thatthe signals at 8(; 147.6 (C-14), 110.4 (C-15) disappeared. The two new signals at 8(;

63.08 (C-15), and 80 71.68 (C-14) showed their proximity to the oxygen atoms of the diol

in the molecule.

In the TOF-MS spectrum (Figure 38), compound 10 gave C,,H,,0, + Na at m/z =
361.48. The base peak was [M+Na] at m/z 361.48. The molecular formula of compound

was assigned as C,,H,,0,.

2D-NMR techniques were then used to assist in the interpretation of the structure
of this compound. In the HMBC spectrum(Figure36), the methyl protons at 8H 1.09 ppm
(H-18) and O, 1.04 ppm (H-19) correlated with O, 214.57 ppm (C-3) the carbonyl
moiety. The methyl proton at SH 1.34 ppm (H-17) correlated with 60 31.49 ppm (C-12),
6(: 75.79 ppm (C-8) and 6C 77.44 ppm (C-13). The methyl protons at 6H 1.29 ppm (H-

16) correlated with O, 75.79 ppm (C-8).
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1.7  Structure determination of compound 11

Compound 11 was obtained as a yellow liquid (16 mg). The "H- NMR spectrum
(Figure39) of compound 11 showed five methyl groups at BH 0.8 ppm (3H, s; H-20), 0.83
(3H, s; H-19), 0.95 (3H, s; H-18), 1.28 (3H, s; H-16), 0.83 (3H, s; H-17).

There were seven methylene protons at 6H 1.32 ppm (m), 1.35 (m; H-1), 1.58
(m), 1.94 (m; H-2),1.3 (m), 1.57 (m; H-6), 1.49 (m), 1.83 (m; H-7), 1.42 (m),1.62 (m; H-
11), 1.62 (m), 1.77 (m; H-12) and new ones at SH 3.32 (m), 3.33 (m; H15).

There were four methine protons at SH 3.41 ppm (d; J=2.4; H-3), 1.42 (m; H-5),
1.44 (m; H-9) and new ones at SH 3.5 (m), 3.77 (m; H-14).

The ""C-NMR spectrum (Figure40) of compound 11 showed twenty carbon

resonances, similar to the starting material (compound 5), except that the pair of olefinic
carbons (5C147.6 and 110.5 at C-14 and C-15) became the corresponding diol

carbons, with one methine at 8C 77(C-14) and one methylene at SC 62.5 (C-15).

In DEPT experiment (Figure 41), most of carbon signal were similar to the carbon
signals of the starting material compound 5 (ent-30L-hydroxy-manoyl oxide) except that
the signals at 60 147.6 (C-14), 110.5 (C-15) disappeared. The two new signals at 60

62.5 (C-15), and SC 77 (C-14) showed their proximity to the oxygen atoms of diol in the

molecule.

In the TOF-MS spectrum (Figure 45) compound.11 gave C,H,,0, + Na at m/z =
363.2507. The base peak was [M+Na]™ at m/z 363.2507. The molecular formula of

compound was assigned as C,,H,,0,.

2D-NMR techniques were then used to assist in the interpretation of the structure
of this compound. In the HMBC spectrum (Figure 44), methyl protons at SH 1.28 (s) ppm
(H-16) correlated with 5C 75.11 ppm (C-8) the quarternary carbon. This quarternary
carbon (C-8) correlated with 8C 77 ppm (C-14), 8(: 62.53 ppm (C-15) and 6C 27.63

ppm (C-16). The methylene proton at 6H 3.2, 3.33 ppm (H-15) correlated with 6c 78.7
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ppm (C-13). The methine proton at 8H 3.5, 3.77ppm (H-14) correlated with 80 75.11

ppm (C-8), O, 78.7 ppm (C-13), O, 62.53 ppm (C-15).

1.8  Structure determination of compound 12

Compound 12 was obtained as a yellow liquid (0.042 mg). The 'H- NMR
spectrum (Figure 46) of compound 12 showed eight methyl groups at SH 0.65 ppm (3H,
s; H-20), 1.12 (3H, s; H-19), 0.70 (3H, s; H-18), 1.07 (3H, s; H-16), 0.75 (3H, s; H-17) and
three methyl acetate groups at BH 1.995 (3H, s; H-24), 2.004 (3H, s; H-25), 2.019 (3H, s;
H-26).

There were seven methylene protons at 8H 1.32 ppm (m; H-1), 1.8 (qg; J=2.5 Hz;
H-2),1.30 (m; H-6), 1.51(m), 1.83 (dt; J=12, 3.2 Hz; H-7), 1.42 (m),1.62 (m; H-11),
1.62(m), 1.77 (m; H-12) and a new methylene at SH 4.39 (dd, J = 11,9 Hz), 4.88 (dd; J =
17, 9 Hz; H15).

There were four methine protons at 8H 4.509 ppm (d; J=2.5; H-3), 1.42 (m; H-
5),1.44 (m; H-9) and a new one at 5H 4.02 (dd; J=17, 11 Hz; H-14).

The C-NMR spectrum (Figure 47) of compound 12 show twenty six carbon

resonances, similar to the starting material (compound 11), except that the three acetate
groups (six carbons, including three of carbonyl carbons and three methyl groups) at 60

169.45, 169.68 and 170.13 ppm (C-21, C-22, C-23) of carbonyl carbons and at 80
19.91, 20.07 and 20.4 ppm (C-24, C-25, C-26) of the three new methyl carbons. These

observations showed that full acetylation was successful on the three hydroxy groups at

. 77.01 ppm (C-3), 77 (C-14) and 62.7 (C-15).

In'DEPT experiments (Figure 48), most of carbon signals were similar the carbon
signals of the starting material compound 11 (ent-30L-hydroxy-manoy! oxide-14(R),15-
diol) except that the signals at 80 147.6 (C-14), 110.5 (C-15) disappeared. The two new

signals at 60 62.5 (C-15), and 8(; 77 (C-14) showed their proximity to the oxygen atoms

of the diol in the molecule.
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In the TOF-MS spectrum (Figure 52) compound 12 gave C,;H,,0, + Na at m/z =
489.07. The base peak was [I\/I+Na]+ at m/z 489.07. The molecular formula of compound

was assigned as C,H,,0,.

2D-NMR techniques were then used to assist in the interpretation of the structure
of this compound. In the HMBC spectrum (Figure 51), methyl protons at 8H 1.07 ppm (s;
H-16) correlated with 6C 72.3 ppm (C-8), a quarternary carbon. This quarternary carbon
(C-8) correlated with 0.75.89 ppm (C-14), O, 62.7 ppm (C-15) and O, 26.83 ppm (C-
16). The methylene proton at 6H 4.39 ppm (dd; J=11, 9 Hz), 4.88 ppm (dd; J=17, 9 Hz;
H-15) correlated with O, 74.19 ppm (C-13).

The methine proton at 8H 4.02 ppm (dd; J=17, 11 Hz; H-14) correlated with 80

72.3 ppm (C-8), O, 74.19 ppm (C-13), O, 62.7 ppm (C-15).

1.9  Structure determination of compound 13

Compound 13 was obtained as a white solid (0.3 g). The 'H- NMR spectrum
(Figure 53) of compound 13 showed eight methyl groups at SH 0.91 ppm (3H, s; H-20),
1.03 (3H, s; H-19), 1.09 (3H, s; H-18), 1.29 (3H, s; H-16), 1.34 (3H, s; H-17).

There were six methylene protons at 6H 1.45 ppm (m; H-1), 1.6 (m; H-2),
1.05(m),1.08 (m; H-6), 1.48 (m), 1.86(m; H-7), 0.91 (m; H-11), 1.66 (m),1.80 (m; H-12).

There were three methine protons at 8H 1.50 ppm (m; H-5), 1.40 (m; H-9), and a
new one at SH 3.6 ppm (dd;J=11, 8 Hz; H-3). Three olefinic protons at BH 5.8 ppm
(dd; J=17, 10.8 Hz; H-14), 4.9 ppm (dd; J= 10.8, 1.3 Hz; H-15a), 5.15 ppm (dd; J=17,
1.3 Hz; H-15b).

The “C-NMR spectrum (Figure 54) of compound 13 showed twenty carbon
resonances, similar to the starting material (compound 1), except the new methine
carbon, generated by reduction with sodium borohydride at 6(; 78.8 ppm (C-3). These
observations showed that the disappearance of carbonyl carbon (compound 1) at 6C

217.2 ppm (C-3) which became the methine oxygenated carbon at 6C 78.8 ppm (C-3).
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In DEPT experiments (Figure 55), most of carbon signals were similar to the
carbon signals of the starting material compound 1 (ent-3-oxo-manoy! oxide) except that
the signals of carbonyl carbon moiety at SC 217.2 ppm (C-3) disappeared. The new

oxygenated carbon signals at SC 78.8 ppm (C-3) showed their proximity the oxygen

atom of alcohol in the molecule.

In the TOF-MS spectrum (Figure 59) compound 13 gave C,,H,,0, + Na at m/z
333.1103. The base peak was [M+Na] at m/z 333.1103. The molecular formula of

compound was assigned as C,,H,,0..

2D-NMR techniques were then used to assist in the interpretation of the structure

of this compound. The c-'"H cosy (Figure 56) and HMQC; (Figure 59) spectra helped
to identify protons with carbon to which they are attached. The methine proton at SH 3.2

ppm (dd; J= 11, 4.8 Hz; H-3) correlated with carbon atom at 80 78.8 ppm (C-3).

The HMBC (Figure 58), methyl protons at 8H 1.2 ppm (s; H-16) correlated with 8(;
147.6 ppm (C-14) and the quarternary carbon 60 73 ppm (C-8). The other quarternary
carbon (C-13) correlated with olefinic carbon at 8C 147.6 ppm (C-14). The methyl protons

at 6H 0.9 ppm (s; H-19) correlated with 60 55.2 ppm (C-5) and the SC 28.4 ppm (C-18).

2. Cytotoxic Activity Test of Isolated Compounds and their derivatives.

Bioassay of cytotoxic activity against human cell cultures in vitro was performed
by the “MTT  [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] ' colorimetric
method. Each isolate was evaluated in a test for cytotoxicity against BT474 (breast
carcinoma), CHAGO (lung carcinoma), HEP-G2 (hepatocarcinoma), KATO-3 (gastric
carcinoma), and SW620 (colon carcinoma). Doxorubicin hydrochloride was used as a
positive control.

The results from Table 3 showed that the compounds 1-13 were inactive as

indicated by the percent survival of cancer cell lines more than 50% in BT 474 (human
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breast ductal carcinoma), CHAGO (human undifferentiated lung carcinoma), HEP-G2
(human liver hepatoblastoma), KATO-3 (human gastric carcinoma), SW620 (human colon

adenocarcinoma).

Table 3 Cytotoxicity data of the derivatives from C. roxburghii.
sample Percent Survival(%)
SW620 BT 474 KATO-3 HEP-G2 CHAGO
Compound 1 96 103 84 109 103
Compound?2 96 91 74 100 101
Compound3 96 127 96 98 101
Compound4 98 92 96 108 101
Compound5 96 103 96 102 101
Compound6 96 7 Ol 100 101
Compound?7 94 82 97 101 98
Compound8 94 94 97 91 100
Compound9 94 91 69 74 102
Compound10 93 81 99 91 102
Compound11 95 75 98 93 100
Compound12 94 91 95 100 102
Compound13 95 89 99 83 100
Doxorubicin 100 100 100 100 100

3. Ol-glucosidase inhibitory activity
In-this study, the Ol-glucosidase inhibitory -activity. of -compounds. 1-13 were
reported. Table 4 showed the % inhibition determined at 1 mg/mL" concentration of test

compound.
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Table 4 Inhibitory activities of the derivatives from C. roxburghii.

Sample % inhibition
Compound 1 44.32
Compound 2 49.03
Compound 3 43.21
Compound 4 46.26
Compound 5 55.12
Compound 6 37.25
Compound 7 37.79
Compound 8 SVae1?)
Compound 9 38.71
Compound 10 42.31
Compound 11 42.41
Compound 12 40.21
Compound13 65.58

1-deoxynojirimycin 79.08

The results for the structure-activity relationship studies showed that SB-C
hydroxy substituted of compound 1 (compound 13) increased the Ol-glucosidase

inhibitory activities more than 30L-C hydroxy substituted (compound 5). Epoxidation of

the exocyclic double bond makes the inhibitory activity reduced.
In summary, most of the compounds (compound. 1-13) determined for OL-

glucosidase inhibitory activities showed moderate Ol-glucosidase inhibitory activities.



CHAPTER V

CONCLUSION

From the stem bark of Croton roxburghii N.P. Balakr. (Euphorbiaceae) , five
diterpene compounds have been isolated. They were identified by TLC in comparision
with previous reports. Compounds 1-5 were identified as ent-3-oxo-manoyl oxide, ent-
1,2-dehydro-3-oxo-manoyl oxide, ent-1,2-dehydro-120L-hydroxy-3-oxo-manoyl oxide,
ent—1B—hydroxy—S—oxo—manoyI oxide, and ent-30L-hydroxy-manoyl oxide, respectively.
The derivatives 6-13, were ent-1,2-dehydro-3-oxo-manoyl oxide-14,15-oxirane, ent-1,2-
dehydro-120L-hydroxy-3-oxo-manoyl oxide-14,15-oxirane, ent-1 B—hydroxy—S—oxo—manoyI
oxide-14,15-oxirane, ent-30L-hydroxy-manoyl oxide-14,15-oxirane, ent-3-0xo-manoy!
oxide-14(R),15-diol, ent-30L-Hydroxy-manoyloxide-14(R),15-diol,  ent-30L,14(R),15-
triacetyl-manoyl oxide and ent—3[3—hydroxy—manoy| oxide, respectively. Its showed no
cytotoxic activity in BT 474 (human breast ductal carcinoma), CHAGO (human
undifferentiated lung carcinoma), HEP-G2 (human liver hepatoblastoma), KATO-3

(human gastric carcinoma), SW620 (human colon adenocarcinoma). most of the
compounds (compound 1-13) determined for Ol-glucosidase inhibitory activities
showed moderate Ol-glucosidase inhibitory activities. Epoxidation of the exocyclic
double bond makes the inhibitory activity reduced. The 3B—C hydroxy substituted of
compound 1 (compound 13) -increased the OlL-glucosidase inhibitory activities more

than 30L-C hydroxy substituted (compound 5).
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