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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

Structural parameter estimation from the measured modal response of a structure 

can be used as an effective means for assessing the structural damage (Doebling et al. 

1996; Shin and Hjelmstad 1996). This method requires a modal test in which a 

structure is stimulated by being shaken under the resonance forces at the natural 

frequencies of the structure. The modal response of the structure (i.e., natural 

frequencies and mode shapes) is obtained from the signals of the displacement 

sensors, which are installed at certain locations on the structure. 

The assessment of damage for structural systems using the measured modal 

response is difficult because of the error (or noise) in the measurements (Shin and 

Hjelmstad 1994; Law et al. 1998). Generally, if the measured data are noise-free the 

damage of a structural member can be evaluated directly from the difference between 

the current and the baseline parameter values. However, with the presence of the 

measurement noise, the parameter values of a structural member can differ from the 

baseline values even when the member is not damaged. Thus, it is important to 

account for the effect of measurement errors in the estimation of the member 

parameters. 

The structural damage assessment method proposed in the current study compares 

the statistical distribution of the system parameters for the current and the baseline 

structures to account for the sensitivity of the system parameters to the noise. The 

statistical distribution of the parameters can be obtained from a Monte Carlo sample 

of the parameter estimates which is generated by repeating the parameter estimation 

algorithms many times using different sets of measured data. Each of the 

measurement data sets can be simulated by adding a random error to the noise-free 

measured data. Hence, the parameter estimates can be treated as random variables.  
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In the current study we apply the output error estimator (OEE) of Banan and 

Hjelmstad (1993) to estimate parameters for the structures under consideration and we 

use the measured data perturbation scheme of Shin and Hjelmstad (1997) to simulate 

the measured response of the structures. Furthermore, we adopt the sensitivity-based 

method and the optimum sensitivity-based method of Araki and Hjelmstad (2001) as 

alternatives to the Monte Carlo simulation method in the statistical parameter 

estimation process. In these methods, the parameter estimation problem is solved only 

once to find the solution from the mean of the measured response. Upon completion 

of the statistical parameter estimation algorithm, a numerical integration scheme is 

applied to the statistical distribution of the system parameters to compute the 

probability of damage. The computed probability indicates the likelihood of a member 

being damaged as a function of the level of damage. To reduce the degree of 

instabilities of solutions to the statistical parameter estimation problem, a 

regularization scheme of Pothisiri and Vatcharatanyakorn (2002) is adopted by adding 

a regularization function algebraically as a penalty term to the parameter estimation 

objective function for the output error estimator (OEE) of Banan and Hjelmstad 

(1993). The proposed method is referred to as the regularized output error estimator 

(ROEE). 

There are many benefits and drawbacks to the statistical damage assessment 

algorithm using the above mentioned statistical parameter estimation methods—the 

Monte Carlo simulation method, the sensitivity-based method, and the optimum 

sensitivity-based method—in conjunction with the OEE and ROEE algorithms. 

Generally, the performance of a statistical damage assessment method can be 

identified by the accuracy of the method in assessing damage. For the current study, a 

statistical identification error (SIE) is proposed to examine the variation in the 

accuracy of the damage assessment algorithm from using different methods of 

statistical parameter estimation. 
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1.2 Literature Review of Parameter Estimation and Damage Assessment 

The modal test of a structure—in which the entire structure is excited by a 

resonant forced vibration and the structural response is measured at certain 

locations—has shown promise as a tool in global damage detection (Doebling et al. 

1996, Shin and Hjelmstad 1996). The measured response of a structural system (i.e., 

natural frequencies and mode shapes), obtained from a modal test, can be used to 

estimate the system parameters. The assessment of damage is carried out by 

monitoring changes in the values of parameters for the structural systems.  

It has been shown that the least-squares minimization of the error function of the 

measured data from a static force test can be used to estimate the stiffness parameters 

of a reinforced concrete bridge structure (Sanayei and Scampoli 1991). In particular, 

the error function, which is nonlinear, is transformed to a linear function by using the 

first-order derivatives of the Taylor’s series approximation. The linearized error 

function is in the form of a Euclidean norm of the difference between the measured 

stiffness parameters and the stiffness parameters from finite element models. The 

minimization problem is solved iteratively until the error function approaches zero.  

The problem of structural parameter estimation from the measured response can 

be cast as the least-squares minimization of the equation errors or the mode output 

errors (Banan and Hjelmstad 1993). The minimization problem can be solved by 

using the recursive quadratic programming (RQP) scheme. In this method, the 

nonlinear objective function is approximated by a series of quadratic functions and the 

corresponding constraints are approximated with linear functions. A set of a priori 

parameter estimates is required to initiate the algorithm, and the parameter values in 

the next iterations are computed from the estimated step lengths and search directions 

of the previous iterations.  

The estimation of the system parameters in the present study uses the measured 

modal response of the structure under consideration as input to the parameter 

estimation algorithm. These response measurements are unavoidably contaminated 

with measurement errors. The measurement error can make the estimated parameters 

for the current structure to be different from the baseline values even when there is no 

damage, leading to an incorrect assessment of damage for the structure (Shin and 
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Hjelmstad 1994 and Law et al. 1998). To account for the sensitivity of the parameter 

estimates to the measurement error, a statistical method in which the probability 

density function of the system parameters for the healthy and the damaged structural 

systems can be used to assess damage of the structural members (Papadopoulas and 

Garcia 1998).  

Yeo et al. (2000) proposed a method for the statistical damage assessment of 

members of a structure by comparing between the probability density function of the 

healthy and damaged system parameters. A hypothesis test is used to identify whether 

to accept or to refuse the existence of damage in members of the structure.  

Pothisiri and Hjelmstad (2003) proposed a statistical damage assessment scheme 

that compares the statistical distribution of the estimated parameters for members of 

the current and the baseline structures. In this method, the output error least-square 

estimator of Banan and Hjelmstad (1993) is used in conjunction with the measured 

data perturbation scheme of Shin and Hjelmstad (1997) to generate a Monte Carlo 

sample of parameter estimates from a set of noisy measurements. The generated set of 

parameter estimates is used to construct the statistical distribution of the system 

parameters that is used to assess damage.   

The statistical distribution of the parameter estimates which is used as the key 

component to the statistical damage assessment methods may be obtained by using 

various algorithms. One such algorithm is to estimate the statistical indices of the 

parameter estimates and use them as the bases for constructing the required statistical 

distribution by assuming certain distribution functions. The statistical indices of the 

parameter estimates (i.e., the mean and the covariance matrix) can generally be 

obtained by using a statistical parameter estimation algorithm. For the current study 

we adopt the sensitivity-based method and the optimum sensitivity-based method 

proposed by Araki and Hjelmstad (2001) to perform statistical parameter estimation.  

One of the key concerns in solving a parameter estimation problem is the 

instabilities of solutions arising from using spatially sparse and noise-polluted 

measurement data. To reduce the degree of instabilities of solutions to the parameter 

estimation problem investigated in the current study, we adopt the regularization 

scheme proposed by Pothisiri and Vatcharatanyakorn (2002). In this technique, a 
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regularization function is added to the initial objective function as a penalty term that 

eradicates the out-of-bound solutions. With the improvement in the accuracy of the 

estimated system parameters by using the regularization technique, the performance 

of a statistical damage assessment scheme is expected to also improve. The technique 

is applied to different methods of the statistical parameter estimation—the Monte 

Carlo simulation method, the sensitivity-based method, and the optimum sensitivity-

based method. 

 

 

1.3 Research Objectives 

The main objective of this research is to develop an effective damage assessment 

algorithm for structural systems from noise-polluted modal response. The present 

study investigates a statistical damage assessment scheme in which the statistics of the 

structural parameters are obtained by using three different methods of statistical 

parameter estimation—the Monte Carlo simulation method, the sensitivity-based 

method, and the optimum sensitivity-based method. These methods are also used in 

conjunction with two optimization algorithms—the output error estimator (OEE) and 

the regularized output error estimator (ROEE)—to perform statistical parameter 

estimations. We characterize a structural system by using a parameterized finite-

element model, and we infer damage from changes in the element parameters in the 

finite-element model of the structure. To account for the effect of the measurement 

noise on the parameter estimates, the measured data perturbation scheme of Shin and 

Hjelmstad (1994) is used to generate a set of noisy measurement data to be used in the 

statistical parameter estimation algorithms. The damage is assessed by comparing the 

statistical distribution of the member parameters for the damaged and the associated 

baseline structure.          

The key objectives of this research can be summarized in the following list 

1.3.1 To implement three different methods of statistical parameter estimation, i.e. 

the Monte Carlo simulation method, the optimum sensitivity-based method 

and the sensitivity-based method and compare their performance when used in 

conjunction with the current statistical damage assessment method. 



 

 

6

 

1.3.2 To evaluate the effectiveness of using the regularization method in the 

structural parameter estimation algorithm to improve the accuracy of the 

statistical damage assessment scheme. 

1.3.3 To improve the computation of the statistical distribution of the parameter 

estimates by using efficient methods of statistical parameter estimation (the 

sensitivity-based method and the optimum sensitivity-based method). 

1.3.4 To develop a computer program that can assess damage of structural systems 

with various types of structural elements, e.g. trusses, frames, beams, etc. 

1.3.5 To device an algorithm that is capable of assessing damage in structural 

members with multiple stiffness parameters. 

 

 

1.4 Scope of Research 

The aim of the current research is to investigate the performance improvement of 

the statistical damage assessment method proposed by Pothisiri and Hjelmstad (2003) 

by using different methods of statistical parameter estimation and the regularization 

technique. For a structure with members consisting of multiple stiffness parameters, 

the statistical damage assessment algorithm is applied by using the optimum 

sensitivity-based method and the regularization technique in the statistical parameter 

estimation. Numerical simulation studies are employed to examine the capabilities of 

the investigated algorithms in assessing damage of two model structures; a simply-

supported bridge truss and a two-story braced frame. The numerical simulation 

procedure is selected over the real case study because our objective is to quantify the 

performance of the algorithm rather than to plainly illustrate its use. In the simulation 

process, the measured data are generated by adding proportional random errors to the 

analytical modal response of a finite-element model of the structure. This allows us to 

investigate different levels of noise in the measurements by simply varying the 

amplitude of the imposed random errors. 

The assumptions adopted in the current study are listed as follows: 

1.4.1 A refined finite element model of the structure is defined. 

1.4.2 The baseline or undamaged properties of the structure are known. 
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1.4.3 The stiffness parameters, i.e. the axial stiffness (EA), the bending stiffness 

(EI) and the shear stiffness (GA) decrease from the baseline values as a result 

of damage while the mass density ( ρ ) remains constant. 

1.4.4 For a structure with members consisting of a single stiffness parameter, 

damage is defined as a drop in a member stiffness parameter between two 

discrete time points. For a structure with members consisting of multiple 

stiffness parameters, damage is modeled by reducing different stiffness 

parameters of the structural members. 

1.4.5 The structure is linear elastic. 

1.4.6 For the measurement data only the mode shapes are subject to measurement 

noise whereas the natural frequencies are noise-free. 

1.4.7 The mode shapes for all modes and degrees of freedom of the structure are 

used as the measurement data. 

1.4.8 The measurement noise is represented by the uniform random variates. 

The manuscript consists of six chapters. Chapter 1 is an introduction. A number 

of research works in the areas of statistical parameter estimation and damage 

assessment are briefly summarized in this chapter. Chapter 2 addresses the issue of 

the concept, principle and theory of the statistical parameter estimation and damage 

assessment. The three algorithms of statistical parameter estimation—i.e., the Monte 

Carlo simulation method, the sensitivity-based method and the optimum sensitivity-

based method—using the output error estimator (OEE) of Banan and Hjelmstad 

(1993) and the regularized output error estimator (ROEE) proposed by Pothisiri and 

Vatcharatanyakorn (2002) are described. Based on the statistical distribution of the 

system parameters, a procedure for assessing the severity of damage proposed by 

Pothisiri and Hjelmstad (2001) is used to compare the results among the three 

methods of statistical parameter estimation that are used in conjunction with the OEE 

and ROEE algorithms. In Chapter 3, simulation studies are carried out for a two-

dimensional, simply supported bridge truss. The simulated single component of 

damage and the two-damage cases are investigated for different levels of noise in the 

measurements. Through simulation studies, the performance of each of the 

investigated algorithms in assessing damage is illustrated. In Chapter 4, statistical 
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simulation studies are carried out for the same structure as in Chapter 3. A statistical 

identification error (SIE) is devised to quantify the levels of performance for each 

algorithm. One hundred different damage cases of the single-damaged-member cases, 

the two-damaged-member cases, and the three-damaged-member cases are 

investigated by examining the SIE values for different levels of noise in the 

measurements. The performance of each of the investigated algorithms in assessing 

damage is evaluated by using the plot of the SIE values and the probability of success 

in detecting damage with respect to different levels of noise in the measurements. In 

Chapter 5, the statistical damage assessment algorithm described in Chapter 2 is 

applied to a two-story braced frame with members consisting of multiple stiffness 

parameters. Again, the simulated cases of single component and multiple components 

of damage are investigated for different levels of measurement noise. The damage is 

modeled by reducing different stiffness parameters of the structural members. Chapter 

6 summarizes principal findings obtained from the current study and discusses future 

research work.   

     



CHAPTER 2 

 

STRUCTURAL PARAMETER ESTIMATION AND DAMAGE ASSESSMENT 

 

 

2.1 Introduction 

Damage in civil engineering structures is inevitable in the face of many 

uncontrollable factors such as fault topographical features of the structural supports, 

hazardous surrounding climates, and severe imposed loading conditions. Damage to a 

structural system can generally be characterized by the reduction of the overall 

stiffness of the structure. The level of the overall structural stiffness reduction is 

indicated by the degree of damage to the structural components, i.e. members of the 

structural system. By using a straightforward parameterization scheme for the 

structural stiffness, damage can be defined as a reduction of the stiffness parameters 

of the structural members between two discrete time inferences. The schematic 

representation of damage is illustrated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The definition of damage as a drop in element constitutive parameter 

value. 
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The derivation of the error function ˆ( , )i ie x Φ  in equations (2.1) and (2.2) is based 

upon the generalized eigenvalue problem of the free undamped vibrational response 

for the ith vibration mode of a structure.   

 

                                                        i i iK(x)Φ MΦλ=                                               (2.3) 

 

in which 

    K(x)   is the linear stiffness matrix of the structural model that is 

parameterized by the parameters x ; 

 iλ   is the eigenvalue (the square of the natural frequency) for the ith 

vibration mode; 

   iΦ   is the the eigenvector (mode shape) for the ith vibration mode; 

and  Μ   is the mass matrix which is composed of the material density 

properties and is assumed to be constant. 

             

Following the work of Pothisiri and Hjelmstad (2001), the first mN  natural 

frequencies and natural modes are assumed to be obtained from a modal test. For each 

mode, it is assumed that the frequency is measured accurately and that the mode 

shape is sampled at certain discrete locations. These measurement locations 

correspond with the degrees of freedom of the finite element model of the structure. 

In particular, the set of degrees of freedom associated with the measurement locations 

of the test structure is defined as ℵ̂  and the set of remaining degrees of freedom is 

defined as ℵ . Moreover, the number of measured and unmeasured degrees of 

freedom are denoted, respectively, as ˆ
dN  and dN . As such, the measured eigenvector 

and the structural system matrices can be partitioned based on these two sets. The ith 

eigenvector can be reordered and partitioned as 

 

                                                        
ˆ

i
i i

i

ΦΦ PΦ =
Φ
⎡ ⎤

≡ ⎢ ⎥
⎣ ⎦

%                                              (2.4) 
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in which    

 P  is a column permutation of the identity matrix; 

 ˆ
iΦ   is the submatrix of the eigenvector components for the ith vibration 

mode  associated with the measured degrees of freedom; 

and  iΦ   is the submatrix of the eigenvector components for the ith vibration 

mode  associated with the unmeasured degrees of freedom.  

 

The structural matrices can be reordered as  

 

                                              ;TK PKP≡%   and  TM PMP≡% .                                  (2.5) 

 

The reordered mass matrix can be partitioned as follows 

 

                                                       11 12

21 22

M M
M =

M M
⎡ ⎤
⎢ ⎥
⎣ ⎦

% %
%

% %
                                             (2.6) 

 

in which 

  1iM%   is the portion of the mass matrix associated with the measured 

degrees of freedom of the structural model; 

and  2iM%   is the portion of the mass matrix associated with the unmeasured 

degrees of freedom of the structural model. 

 

The partitioned mass matrices are defined as 

 

                                         12

21 22

;
0 M

M
M M
⎡ ⎤

≡ ⎢ ⎥
⎣ ⎦

%

% %
  and  11ˆ M

M
0

⎡ ⎤
≡ ⎢ ⎥
⎣ ⎦

%
                             (2.7) 

 

With a given definition of the matrix i iB (x) K(x) Mλ≡ −% , a straightforward 

manipulation of equation (2.3) yields the equivalent expression    
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                                                        ˆ ˆ
i i i iB (x)Φ MΦλ=%                                              (2.8) 

 

The right hand side of the above equation involves only the measured response ˆ
iΦ  

rather than a complete response vector. Also, it should be noted that iB (x)  is 

symmetric, which is different from the definition of Banan and Hjelmstad (1993). 

With these definitions, a measure of error for the output error estimator can be defined 

as 

 

                                             1ˆ ˆ ˆ ˆ,i i i i i ie (x Φ ) Φ QB (x)MΦλ −≡ −                                   (2.9) 

 

in which 

  Q   is the boolean matrix extracting the components of the response 

vector associated with measured degrees of freedom from the 

complete eigenvector by the relationship of ˆ
i iΦ QΦ= . 

 

 

2.3 Statistical Parameter Estimation 

The statistical parameter estimation techniques can be used to account for the 

sensitivity of the solution of a parameter estimation problem due to the uncertainty of 

the measured data. In these methods one can obtain, for the estimated system 

parameters x , the mean x  and the covariance matrix xR  from the mean Φ  and the 

covariance matrix ΦR  of the measurements Φ̂ , respectively. The process of a 

statistical parameter estimation method is illustrated schematically in Figure 2.2.   

 

 

 

  Φ  and ΦR                                                                                                    x  and xR  

 

Figure 2.2 The process of statistical parameter estimation. 
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2.3.2 The Sensitivity-Based Method 

In the sensitivity-based method, nonlinear least-squares minimization is 

performed only once for the mean of the measured response Φ . At each iteration in 

the nonlinear minimization, the error function is linearized with respect to the system 

parameters, and the estimates of the system parameters are updated by solving the 

quadratic programming problem (QPP) resulting from this linearization. The error 

function is also linearized with respect to the measured response, from which we can 

obtain the statistical indices of the parameter estimates at each iteration. The process 

of statistical parameter estimation with the sensitivity-based method is illustrated 

schematically in Figure 2.4. 

Both the sensitivity-based method and the Monte Carlo simulation method have 

their strengths and drawbacks. The sensitivity-based method is comparatively 

efficient because nonlinear optimization, which can be computationally intensive, is 

performed only once to find x  and xR . However, the statistical indices obtained from 

the sensitivity-based method may be unreliable when the error function is highly 

nonlinear because of the linear approximation of the error function. Moreover, the 

sensitivity-based method provides no information on the bias of x  due to the 

nonlinearities in the error function. On the other hand, the Monte  Carlo  simulation  is  

 

                                              

                         1 :n n- =x x                                                                          xx, R  
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Figure 2.4 The process of statistical parameter estimation with the sensitivity-based 

method. 
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ˆ

ˆ
mb mc

m
mb

x x
x

θ −
=                                                (2.90) 

 

With the above definition, the state of member m  of the current structure can be 

described by the event that the actual level of damage lies beyond the prescribed 

level of damage (i.e., (1 )mc mb mX X θ< − ). Let us assume, for the moment, that mcX  

and mbX  are discrete random variables. With a specified level of damage mθ , the 

required probability can be formulated as follows: 

 

     
 

( (1 )) ( (1 ) | ) ( )
mb

mc mb m mc mb m mb mb mb mb
all x

P X X P X X X x P X xθ θ< − = < − = =∑     (2.91) 

 

It is reasonable to assume that the parameter estimates in the current and the baseline 

structure, mcX  and mbX , are statistically independent; that is, 

 

                        ( (1 ) | ) ( (1 ))mc mb m mb mb mc mb mP X X X x P X xθ θ< − = = < −                (2.92) 

 

For continuous mcX  and mbX , equation (2.92) becomes 

 

                        
0

( (1 )) ( (1 )) ( )
mc mbmc mb m X mb m X mb mbP X X F x f x dxθ θ

∞

< − = −∫                (2.93) 

 

The quantity ( (1 ))
mcX mb mF x θ−  on the right hand side of the above equation is 

illustrated by the shaded area under the curve 
mcXf  in Figure 2.7 in the range 

( , (1 )]mb mx θ−∞ − . The damage statements of single-parameter structural members will 

be illustrated later in the simulation study by the relation between 

( (1 ))mc mb mP X X θ< −  and mθ .  
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2.4.2 Damage Assessment of Multi-Parameter Structural Members 

For the structural members consisting of multiple stiffness parameters, the 

proposed statistical damage assessment algorithm must be modified to account for the 

presence of all structural parameters. These parameters may be an axial stiffness, a 

bending stiffness, and a shearing stiffness. In this case, damage should be modeled by 

reducing the different stiffness parameters of the structural members that correspond 

with the physics of the actual damage.  

By using a similar concept to the reliability analysis (Ang and Tang, 1990), the 

status of the current structure and the baseline structure is computed as illustrated in 

Figure 2.8. The status of the structure can be written as a function of the structural 

member parameters. In the illustration, the shaded area denotes the event that the 

structure is not damaged. The calculation of the probability of the event that the 

structure is damaged, or not damaged, requires the knowledge of the distributions 

( )
mcX mcf x  and ( )

mbX mbf x  for the current structure and the baseline structure, 

respectively, or the joint distribution ( ), ,  
mc mbX X mc mbf x x . In practice, this information 

is often unavailable or difficult to obtain for reasons of insufficient data. Furthermore, 

even when the required distributions can be specified, the exact evaluation of the 

probabilities, generally requiring the numerical integration, may be impractical. As a 

practical alternative, equivalent normal distributions may be resorted to in the 

approximation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Identification of the damage statement 
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Not infrequently, the available information or data may be sufficient only to 

evaluate the first and second moments; namely, the mean values and variances of the 

respective random variables. Practical measures of the status of a structure, therefore, 

must be limited to functions of these first two moments. Under this condition, the 

implementation of damage assessment concepts must necessarily be limited to a 

formulation that is based on the first and second moments of the random variables—

that is, restricted to the second-moment formulation (Cornell, 1969; Ang and Cornell, 

1974). It may be emphasized that the second-moment approach is consistent also with 

the equivalent normal representation of non-normal distributions. With the second-

moment approach, if the appropriate forms of the distributions are prescribed, the 

corresponding probability may be evaluated on the basis of equivalent normal 

distributions. 

Let us consider a structural member m comprising multiple stiffness parameters 

{ }1 2,  , ,  
m
pN

m m m mX X X=X K . The random variables representing the current and the 

baseline parameters are denoted as mcX  and mbX , respectively, and m
pN  denotes the 

number of different stiffness parameters for member m. We introduce a baseline 

margin of the member parameters—or the deviation from the baseline parameter 

values—of this structural member as 

                                                               

                                                         m mb mc  = -H X X                                             (2.94) 

 

Based on this definition, the event that m <H 0  represents the “undamaged or healthy 

state” of member m. Likewise, the “damaged state” of member m is described by the 

event that m >H 0 . The boundary separating these two states—the so-called “limit 

state”—is defined as the event when m =H 0 . 

For the current study we propose a linear function of the baseline margin for the 

member parameters in order to assess damage. The proposed function will hereafter 

be referred to as the “baseline function.” Aside from its own usefulness, certain 













CHAPTER 3 

 

SIMULATION STUDY—A BRIDGE TRUSS 

 

 

3.1 Introduction 

In this chapter, we examine the efficacy of the statistical damage assessment 

method presented in Chapter 2 by using a truss structure as the model problem. We 

consider two distinct cases of damage: the single-damaged-member case and the two-

damaged-member case. For each of these damage cases, we generate 10 different 

damage scenarios by randomly varying the location and the severity of damage. The 

performance of the algorithm is assessed in terms of the probability in which the 

actual level of damage for a structural member lies beyond the prescribed level of 

damage, ( )(1 )mc mb mP X X θ< − . This assessment is illustrated through the plot of the 

probability distribution ( )(1 )mc mb mP X X θ< −  for the range 0-100% of the level of 

damage for all members in the structure.  

Due to the presence of noise in the measurements, the statistical parameter 

estimation methods are used to construct the statistical distribution of the parameter 

estimates for the statistical damage assessment. For the current study we examine 

three methods of statistical parameter estimation; i.e., the Monte Carlo simulation 

method, the sensitivity-based method and the optimum sensitivity-based method. We 

use these three methods in conjunction with the output error estimator (OEE) and the 

regularized output error estimator (ROEE) to investigate the performance of the 

present statistical damage assessment scheme from using different statistical 

evaluation schemes and estimators to approximate the distribution of the system 

parameters. This investigation is carried out by examining the plot of the probability 

distribution ( (1 ))mc mb mP X X θ< −  for the member parameters with respect to different 

levels of damage. The effect of varying the levels of noise in the measurements on the 

performance of each algorithm is also investigated in the current study.   
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3.2 Description of the Example Structure 

The structure we investigate herein is a simple-support truss structure with the 

geometry and topology shown in Figure 3.1. In this figure the numbers in circles 

represent the member identification numbers and the numbers in triangles represent 

the nodal identification numbers. The finite-element model of the truss structure 

consists of 11 elements with 11 degrees of freedom. The baseline properties of the 

truss members can be characterized by eleven stiffness parameters, each representing 

the axial stiffness for each member. The cross-sectional area, the stiffness, and the 

mass associated with each of the truss members are listed in Table 3.1. Note that in 

addition to the self weight of the structural members shown in the table, we assume 

that the dead load being imposed upon the structure is uniformly distributed along the 

length of all 11 members with a value of 0.017 kips-sec2/ft/ft. Moreover, all members 

are assumed to have a Young’s modulus of 4.176ด 106 kips/ft2.     

In the current study we assume that all of the 11 structural vibration modes are 

measured and all natural frequencies and mode shapes of the structure are available as 

our measurement information. In addition, the mode shapes are assumed to be 

measured at all 11 degrees of freedom of the structural model as shown in Figure 3.2. 

The free-vibration responses obtained from an eigenvalue analysis of the baseline 

structure are shown in Table 3.2, in which the ith mode shape iΦ  is scaled by using 

the mass matrix M  such that 1T
i i =Φ MΦ .  

 

      

 

 

 

 

 

  

 

Figure 3.1 Geometry and topology of the simple-support truss. 
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Table 3.1 Baseline properties of the truss structure. 

Member ID 

Number 

Member 

Location 
Cross-Sectional Area (in.2) Stiffness Parameter ˆbx  (kips) Mass (kips-sec2/ft/ft) 

1 Diagonal 28.0 8.12ด 105 0.00298 

2 Bottom 40.0 1.16ด 106 0.00425 

3 Diagonal 28.0 8.12ด 105 0.00298 

4 Top 32.0 9.28ด 105 0.00318 

5 Diagonal 28.0 8.12ด 105 0.00298 

6 Bottom 40.0 1.16ด 106 0.00425 

7 Diagonal 28.0 8.12ด 105 0.00298 

8 Top 32.0 9.28ด 105 0.00318 

9 Diagonal 28.0 8.12ด 105 0.00298 

10 Bottom 40.0 1.16ด 106 0.00425 

11 Diagonal 28.0 8.12ด 105 0.00298 

 

 

 

3.3 Statistical Damage Assessment  

The simulation studies conducted in this section consist of single-damaged-

member cases and two-damaged-member cases. For the single-damaged-member 

cases the damage of the structure is represented by a reduction of the stiffness of a 

single structural member whereas for the two-damaged-member cases the damage is 

due to the stiffness reduction of two structural members.  

 

 

 

 

 

 

 

 

 

Figure 3.2 The set of measured degrees of freedom for the truss structure. 
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Table 3.2 Noise-free data for the baseline structure. 

 

 
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode 6th Mode 7th  Mode 8th  Mode 9th  Mode 

10th  

Mode 

11th  

Mode 

Natural 

Frequency 

(Hz) 

7.52 13.10 23.88 36.70 42.87 47.40 52.54 56.22 67.18 78.99 90.27 

Mode Shape 

1st DOF -0.24728 0.27596 -0.09842 0.74436 -0.16395 -0.11704 0.44056 0.46926 0.66564 -0.47303 -0.35455 

2nd DOF 0.28023 -0.02279 0.54413 -0.12041 -0.66300 0.00321 0.96490 0.00484 -0.41867 -0.00360 0.11268 

3rd DOF -0.08799 0.29399 -0.09137 0.16103 0.37317 0.47314 0.00824 0.22963 -0.68011 -0.40920 0.45338 

4th DOF 0.46840 0.16771 0.64623 -0.03952 -0.06496 0.30263 -0.61933 0.32096 0.28618 -0.21368 -0.05079 

5th DOF -0.15371 0.41119 0.21543 0.44232 -0.26596 -0.12822 -0.27599 -0.13535 -0.09732 0.83292 0.37072 

6th DOF 0.53577 0.20150 0.00152 0.35877 0.78183 -0.13049 0.22752 -0.52007 0.09377 0.11138 -0.16068 

7th DOF -0.20394 0.41081 -0.01880 -0.38068 0.04657 0.47008 0.16375 0.04276 0.00479 0.33638 -0.84073 

8th DOF 0.45965 0.25904 -0.59230 -0.23919 -0.09411 -0.42503 0.08437 0.63927 -0.17326 0.23701 0.03655 

9th DOF -0.05827 0.53964 0.00746 -0.17096 -0.26363 -0.68259 -0.29687 -0.47272 -0.35438 -0.79523 -0.27601 

10th DOF 0.26210 0.14110 -0.56737 0.01723 -0.71742 0.72318 -0.09238 -0.53465 0.32129 -0.19434 0.25375 

11th DOF -0.25675 0.43094 0.19543 -0.65856 0.37925 -0.10094 0.38681 0.03838 0.82369 0.01781 1.05958 

 

 

As previously discussed in Chapter 2, statistical parameter estimation is a key 

process in the current statistical damage assessment algorithm. In general, the modal 

response of a structure can be obtained through modal testing—by shaking the 

structure under certain resonance forces at the natural frequencies of the structure. For 

the current study, however, we model the measurement data of the structural response 

by using a computer simulation. The modal responses of the baseline structure in 

Table 3.2 are used as the noise-free measurement data ˆ
bΦ  upon which the mean and 

the covariance matrix of the parameter estimates of the baseline structure, bx  and b
xR , 

are obtained by using different statistical parameter estimation algorithms. The 

statistical parameter estimation process for the baseline structure is illustrated in 

Figure 3.3. For the current structure the noise-free measurement data ˆ
cΦ  are 

computed from an eigenvalue analysis of the structural model parameterized with the 

current stiffness parameters ˆ cx  which are associated with each of the damage cases 

considered. The noise-free data ˆ
cΦ  of the current structure  are  used  to  simulate  the  
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3.3.1 Single-Damaged-Member Cases 

The single-damaged-member cases investigated herein consist of ten different 

combinations of the location and the severity of damage that are randomly generated 

as summarized in Table 3.3. In this table, the noise levels indicate different levels of 

noise amplitude a  that are used in equation (2.35) to generate the noisy 

measurements. For each of the damage cases considered, three different statistical 

parameter estimation methods; i.e., the Monte Carlo simulation method, the 

sensitivity-based method, and the optimum sensitivity-based method, are used in 

conjunction with the OEE and ROEE algorithms to estimate the mean and the 

covariance matrix of parameters.  

 

 

3.3.1.1 Monte Carlo Simulation with OEE Algorithm 

The simulation studies conducted in this section are for the 10 different damage 

cases shown in Table 3.3 in which only a single member is damaged. The severity of 

damage is expressed in terms of the level of damage mθ , as a percentage of reduction 

from the baseline parameters.  

 

 

Table 3.3 Different damage scenarios with single damaged member 

Damage Case Damaged Member Damage Level  Noise Levels 

1 3 63.75% 1%, 3%, 5%, 10%, 15% and 20% 

2 4 3.55% 1%, 3%, 5%, 10%, 15% and 20% 

3 11 51.64% 1%, 3%, 5%, 10%, 15% and 20% 

4 6 41.92% 1%, 3%, 5%, 10%, 15% and 20% 

5 8 14.97% 1%, 3%, 5%, 10%, 15% and 20% 

6 10 30.54% 1%, 3%, 5%, 10%, 15% and 20% 

7 5 84.45% 1%, 3%, 5%, 10%, 15% and 20% 

8 2 21.61% 1%, 3%, 5%, 10%, 15% and 20% 

9 9 96.17% 1%, 3%, 5%, 10%, 15% and 20% 

10 1 78.64% 1%, 3%, 5%, 10%, 15% and 20% 
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In the Monte Carlo simulation method, synthetic measurements are created from 

a single measurement set by using computer-generated random numbers. The 

mathematical expression for this process is shown in equation (2.35). The population 

of the parameter estimates is obtained by repeating the nonlinear least-squares 

minimization of equation (2.10) for each of the artificial measurements. The statistical 

distribution of the population of the estimated system parameters can be directly 

extracted from the computed Monte Carlo sample, from which the mean and the 

covariance matrix of the parameter estimates, x  and xR , can be obtained using the 

standard definition of the mean and the covariance matrix of a finite discrete data set. 

The concept behind Monte Carlo simulation is fairly simple and straightforward. 

Generally, the approximations can improve as the number of synthetic measurements 

increases.  

In our simulation of the measurement data, only the mode shapes are taken as 

noise-polluted whereas the natural frequencies are noise-free. Moreover, the 

measurement information is assumed to be taken for all of the 11 structural vibration 

modes at all degrees of freedom of the structural model.  

Following the work of Pothisiri and Hjelmstad (2003), we assess damage in a 

structural member by using the probability of the event that the value of the estimated 

parameter for that member is smaller than the value of the corresponding parameter 

estimate for the same member in the associated baseline structure to a certain extent 

(i.e., (1 )mc mb mX X θ< − ). By associating the probability value, ( (1 ))mc mb mP X X θ< − , 

with each prescribed level of damage mθ , we can plot the probability distribution for 

the range of 0-100% of the level of damage for all members in the structure as shown 

in the following illustrations. The plot of the probability distribution for a structural 

member can be divided into three parts starting from no damage to 100% damage. 

The constant unit probability value at low levels of damage indicates that the actual 

value of the member parameter is actually smaller than the parameter values 

associated with the damage at these levels. Likewise, the zero probability value at 

high levels of damage implies that there is no chance for the actual severity of damage 

to fall within these regions. Generally, the actual level of damage lies in the transition 

region between the unit probability and zero probability zones that appears as a slope 



 

 

53

 

in the probability distribution. Note that the sensitivity of a member parameter to the 

measurement noise can be drawn from the probability distribution. A sharp drop in 

the probability values within the transition region indicates a low sensitivity of the 

member parameter to noise. A member parameter that is more sensitive to noise 

shows a more gradual decrease in the probability values within the transition zone. 

Hence, it might be difficult to identify a precise level of the actual damage from the 

probability distribution when the level of noise in the measurements is high. However, 

one can always describe the suspected level of damage in terms of probability to 

ensure the level of confidence in the results.  

As previously discussed, the outcome of statistical parameter estimation by using 

the Monte Carlo simulation method can improve as the number of synthetic 

measurements, or the sample size for the parameter estimates, increases. This aspect 

of the algorithm is investigated by using different sample sizes to determine the 

values of the mean and the standard deviation of the parameter estimates. Figures 3.5 

and 3.6 show the variation of the mean and the standard deviation of the parameter 

estimates for the baseline structural members with respect to different sample sizes for  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.5 Variation of the mean of the parameter estimates for the baseline structural 
members with respect to different Monte Carlo sample sizes using 5% noisy 

measurements. 

mbx
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Figure 3.6 Variation of the standard deviation of the parameter estimates for the 

baseline structural members with respect to different Monte Carlo sample sizes using 
5% noisy measurements. 

 

 

the 5% noisy measurement case. It is seen from the figures that 1,000 samples are 

sufficient to ensure the accuracy of the mean and the standard deviation of the 

population of the parameter estimates. Therefore, we use 1,000 Monte Carlo samples 

to construct the statistical distribution of the parameter estimates for the assessment of 

damage in our simulation studies. 

The damage assessment results are illustrated in Figure 3.7 for the ten damage 

cases with 1% noise in the measurements. It can be seen that the damage in all 

damage cases is successfully located and quantified. For example, from the plot of the 

probability distribution of damage case 1 (member 3 damaged with 63.75% severity), 

the severity of damage is suspected to fall in the range of 62.5-87.5%. The level of 

confidence in identifying a suspected level of damage as the actual damage severity is 

indicated by the value of the probability ( (1 ))mc mb mP X X θ< − . For example, the 

probability value of 0.60 for 75% damage in member 3 indicates that it is 60% likely 

that the actual value of the member parameter is smaller than the value of the 

estimated parameter for the member with 75% damage. For the undamaged members, 

mbSD
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Figure 3.7 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 1% noisy measurements. 
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it is seen that member 9 in damage cases 3 and 10 is also indicated a slight chance of 

the member being lightly damaged. Nonetheless, the probability of damage in 

member 9 for damage cases 3 and 10 is small compared with that of the actual 

damaged members.  

The results from the damage cases in which 3%, 5%, 10%, 15% and 20% noisy 

measurements are used are shown in Figures 3.8, 3.9, 3.10, 3.11 and 3.12, 

respectively. It is seen that the actual damaged members are successfully identified 

for 3% and 5% noisy measurements. These members are, however, difficult to 

identify as being damaged when the level of noise in the measurements is increased to 

10% and are unable to identify as being damaged at all for 15% and 20% noise levels. 

This observation leads to a conclusion that the performance of the current damage 

assessment algorithm may decrease as the level of noise in the measurements 

increases. In addition, it is observed that as the level of noise in the measurements 

increases, the decrease in the probability values for a structural member in the 

transition region becomes more gradual. Hence, it is more difficult to identify the 

actual level of damage in a structural member. Nevertheless, it is seen from the results 

of the current simulation that most undamaged members show significantly lower 

probability of being damaged compared with the actual damaged member for 3% and 

5% noisy measurements. However, there is no constant unit-probability zone in the 

distribution of ( (1 ))mc mb mP X X θ< −  for these members. Without the existence of this 

unit-probability zone for the assessed member, one cannot be absolutely certain that 

there is damage in that member. Hence, it is concluded that the deviation of the 

parameter estimate for these undamaged members is merely due to the measurement 

noise. For 10%, 15% and 20% noisy measurements, there is no clear distinction 

between the results for damaged and undamaged members. Hence, it is difficult to 

identify whether a member is damaged or undamaged by visual inspection of the 

simulation results.  

From the results of the current simulation studies, it is evident that the 

performance of the proposed algorithm to assess damage in a structural system is 

limited by the level of noise in the measurements. However, the performance of the 

algorithm  may  also  be  affected  by  the  severity  of  the  damage  in  the   structural   
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Figure 3.8 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 3% noisy measurements. 
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Figure 3.9 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 5% noisy measurements. 
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Figure 3.10 Probability distribution with respect to different levels of damage for the 

single-damaged-member cases from 1,000 samples of parameter estimates (Monte 
Carlo simulation + OEE) using 10% noisy measurements. 
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Figure 3.11 Probability distribution with respect to different levels of damage for the 

single-damaged-member cases from 1,000 samples of parameter estimates (Monte 
Carlo simulation + OEE) using 15% noisy measurements. 



 

 

61

 

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 3(63.75%) with 20% noise

rho

P
(X
m
 <
 X
*m
-rh
o
)

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 4(3.55%) with 20% noise

rho

P
(X
m
 <
 X
*m
-rh
o
)

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

mθ

mθmθ

mθ

mθ mθ

mθmθ

mθ mθ

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.12 Probability distribution with respect to different levels of damage for the 

single-damaged-member cases from 1,000 samples of parameter estimates (Monte 
Carlo simulation + OEE) using 20% noisy measurements. 
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components. To examine the effect of the severity of damage in a structural member 

on the performance of the proposed algorithm, we compare the distribution of 

( (1 ))mc mb mP X X θ< −  for 10 different levels of damage ranging from 5% to 95% in 

member 2 and member 4 with 1%, 3% and 5% noises in the measurements. 

The results for different severities of damage in member 4 are illustrated in 

Figures 3.13, 3.14 and 3.15, respectively, for 1%, 3% and 5% noisy measurements. 

Also, Figures 3.16-3.18 show the results for different damage severities of member 2. 

For the cases where member 4 is damaged, the lowest levels of damage severity 

which can be detected for 1%, 3% and 5% noisy measurements are 15%, 35% and 

65%, respectively. For the cases where member 2 is damaged, the lowest levels of 

damage severity which can be detected are 25% and 35% for 1% and 3% noisy 

measurements, respectively, whereas the algorithm fails to identify damage at all for 

5% noisy measurements. Thus, it is concluded that there is more chance for the 

proposed algorithm to successfully identify damage in a more severely damaged 

structural member.  

 

 

3.3.1.2 The Sensitivity-Based Method with OEE Algorithm 

In this section, the sensitivity-based method is used in conjunction with the OEE 

algorithm to obtain the statistical distribution of the parameter estimates. Again, the 

ten different damage cases in Table 3.3 are used to investigate the performance of the 

algorithm. The simulation results show that for all damage cases the maximum level 

of noise in which damage can be assessed is 10%. For the cases where the level of 

noise in the measurements is more than 10%, the statistical parameter estimation 

algorithm does not converge and hence the assessment of damage is not possible. 

Therefore, only 4 different noise levels— e  = 1%, 3%, 5% and 10%—can be used to 

examine the performance of the current algorithm. 

The results for the ten investigated damage cases with four different levels of 

noise in the measurements are shown in Figures 3.19-3.22. For 1% noisy 

measurements, as illustrated in Figure 3.19, it can be seen that the actual damage in all 

damage cases is successfully located and quantified. Nevertheless, there is no constant  
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Figure 3.13 Probability distribution with respect to different levels of damage for 
different severities of damage in member 4 from 1,000 samples of parameter 
estimates (Monte Carlo simulation + OEE) using 1% noisy measurements. 
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Figure 3.14 Probability distribution with respect to different levels of damage for 
 different severities of damage in member 4 from 1,000 samples of parameter 

estimates (Monte Carlo simulation + OEE) using 3% noisy measurements. 
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Figure 3.15 Probability distribution with respect to different levels of damage for 
 different severities of damage in member 4 from 1,000 samples of parameter 

estimates (Monte Carlo simulation + OEE) using 5% noisy measurements. 
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Figure 3.16 Probability distribution with respect to different levels of damage for 
 different severities of damage in member 2 from 1,000 samples of parameter 

estimates (Monte Carlo simulation + OEE) using 1% noisy measurements. 
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Figure 3.17 Probability distribution with respect to different levels of damage for  
different severities of damage in member 2 from 1,000 samples of parameter 
estimates (Monte Carlo simulation + OEE) using 3% noisy measurements. 
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Figure 3.18 Probability distribution with respect to different levels of damage for 
different severities of damage in member 2 from 1,000 samples of parameter 
estimates (Monte Carlo simulation + OEE) using 5% noisy measurements. 
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Figure 3.19 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and OEE algorithm 

with 1% noisy measurements. 



 

 

70

 

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 3(63.75%) with 3% noise

rho

P
(X
m
 <
 X
*m
(1-
rh
o
))

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 4(3.55%) with 3% noise

rho

P
(X
m
 <
 X
*m
(1-
rh
o
))

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 
 P

(X
* m

c<
X* m

b(
1-

   
m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 
 P

(X
* m

c<
X* m

b(
1-

   
m
))

 

 P
(X

* m
c<

X* m
b(

1-
   

m
))

 

mθ mθ

mθ mθ

mθ mθ

mθ mθ

mθ mθ

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3.20 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and OEE algorithm 

with 3% noisy measurements. 
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Figure 3.21 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and OEE algorithm 

with 5% noisy measurements. 
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Figure 3.22 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and OEE algorithm 

with 10% noisy measurements. 
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unit-probability zone in the distribution of ( (1 ))mc mb mP X X θ< −  for undamaged 

members in any of the damage cases considered. Hence, damage cannot be identified 

in these members. It is also noted that the performance of the damage assessment 

algorithm in this case is better compared to using the Monte Carlo simulation method 

and the OEE algorithm. For the same level of noise in the measurements, the results 

from the sensitivity-based method provide steeper slopes of the probability 

distribution within the transition zone for the damaged and undamaged members 

compared with the results from the Monte Carlo simulation method. 

The results of the algorithm when the level of noise in the measurements is 

increased to 3%, 5%, and 10% are shown in Figures 3.20, 3.21, and 3.22, 

respectively. The actual damaged members are successfully identified for 3% and 5% 

noisy measurements. However, it is difficult to identify the actual damaged members 

from the probability distribution for 10% noisy measurements. 

 

 

3.3.1.3 The Optimum Sensitivity-Based Method with OEE Algorithm 

For the current section we examine the performance of the statistical damage 

assessment algorithm by using the optimum sensitivity-based method and the OEE 

algorithm to estimate the mean and the covariance matrix of the parameter estimates. 

The mean and the covariance matrix of the parameter estimates are used to construct 

the statistical distribution of the system parameters from which the damage is 

assessed. The results from the assessment of damage for all the damage cases of Table 

3.3 show that the maximum level of noise permitting a damage assessment is 10%. As 

for the case of the sensitivity-based method, when the level of noise in the 

measurements is more than 10%, the statistical parameter estimation algorithm does 

not converge, making it impossible to assess damage. Hence, only the results from 

using four levels of measurement noise—i.e., e  = 1%, 3%, 5% and 10%—are 

illustrated in the present section. 

The results for the ten damage cases considered using four different levels of 

noise in the measurements are shown in Figures 3.23-3.26. For 1% noisy 

measurements,  it  can  be  seen  that  the  actual   damage   in   all   damage   cases   is  
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Figure 3.23 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and OEE 

algorithm with 1% noisy measurements. 
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Figure 3.24 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and OEE 

algorithm with 3% noisy measurements. 



 

 

76

 

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 3(63.75%) with 5% noise

rho

P
(X
m
 <
 X
*m
-rh
o
)

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 4(3.55%) with 5% noise

rho

P
(X
m
 <
 X
*m
-rh
o
)

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 
   

  P
(X

* m
c<

X* m
b(

1-
   

m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 
   

  P
(X

* m
c<

X* m
b(

1-
   

m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

mθ mθ

mθ mθ

mθmθ

mθmθ

mθ mθ

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.25 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and OEE 

algorithm with 5% noisy measurements. 
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Figure 3.26 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and OEE 

algorithm with 10% noisy measurements. 
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successfully located and quantified. Again, it is observed that there is no constant 

unit-probability zone in the distribution of ( (1 ))mc mb mP X X θ< −  for undamaged 

members in any of the damage cases considered. Hence, damage cannot be identified 

in these members. It is also noted that the performance of the damage assessment 

algorithm in this case is better compared to using the Monte Carlo simulation method 

and the OEE algorithm.  

The simulation studies of the current damage assessment algorithm for different 

damage cases with 3%, 5% and 10% noise in the measurements show similar trends 

to those of the sensitivity-based method with OEE. Hence, it is also concluded that the 

damage assessment results improve as the level of the measurement noise decreases. 

In addition, it is seen that the results using high levels of noise in the measurements 

exhibit higher variation in the parameter estimates compared with the results using 

lower levels of noise in the measurements as evident from a more gradual decrease in 

the probability distribution. Thus, it can be concluded that the sensitivity of the 

member parameters to noise increases with the noise level. 

 

 

3.3.1.4 Monte Carlo Simulation with ROEE Algorithm 

As previously discussed, the ROEE algorithm is improved from the OEE 

algorithm by adding a regularization function as the penalty term to the objective 

function to reduce the instabilities of the solutions in the parameter estimation 

process. The solutions of the ROEE algorithm are expected to be more clustered than 

those of the OEE algorithm. As before, we assume for our simulation studies that the 

natural frequency measurements are noise-free while the mode shape measurements 

are noise-polluted. We investigate six different levels of noise— e  = 1%, 3%, 5%, 

10%, 15% and 20%—in the measurements. Again, we use the ten damage cases in 

Table 3.3 as the model problems for examining the performance of the proposed 

algorithm.  

The results of the algorithm when the levels of noise in the measurements are 1%, 

3%, 5%, 10%, 15% and 20% are shown in Figures 3.27, 3.28, 3.29, 3.30, 3.31 and 

3.32, respectively. From the results of the simulation study, it is  seen  that  the  actual  
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Figure 3.27 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 1% noisy measurements. 
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Figure 3.28 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 3% noisy measurements. 
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Figure 3.29 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 5% noisy measurements. 
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Figure 3.30 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 10% noisy measurements. 
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Figure 3.31 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 15% noisy measurements. 
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Figure 3.32 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 20% noisy measurements. 
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damaged members are successfully located and quantified for all of the simulated 

damage cases with 1%, 3% and 5% noise in the measurements. For 10% and 15% 

noisy measurements, only the damaged members with high severity of damage can be 

successfully identified. Furthermore, the damage assessment algorithm fails to 

identify any damage at all for 20% noisy measurements. Therefore, it is evident from 

the current example that the performance of the proposed algorithm to assess damage 

in a structural system decreases as the level of noise in the measurements increases. 

Further, it is seen for all of the investigated damage cases that the maximum level of 

the measurement noise in which damage can be assessed is 20%, which is the same as 

when the Monte Carlo simulation method is used in conjunction with the OEE 

algorithm. It is also seen that the results of using Monte Carlo simulation with ROEE 

exhibit higher accuracy in assessing damage compared with those using Monte Carlo 

simulation with OEE, as observed from a more evident constant unit-probability zone 

in the probability distribution for damaged members. Hence, it may be concluded that 

the performance of the proposed algorithm in assessing damage can improve by using 

the regularization scheme. 

 

 

3.3.1.5 The Sensitivity-Based Method with ROEE Algorithm    

In this section, we investigate the performance of the statistical damage 

assessment algorithm by using the sensitivity-based method with OEE to evaluate the 

statistical distribution of the parameter estimates. As with the previous sections, we 

use the ten simulated damage cases of Table 3.3 as our model problems. The results 

show that for all of the damage cases considered the maximum level of noise 

permitting a damage assessment is 15%. This allows us to investigate five levels of 

noise (i.e., e  = 1%, 3%, 5%, 10% and 15%) in the simulated measurement data. 

Figures 3.33-3.37 show the probability distribution, ( (1 ))mc mb mP X X θ< − , for 

each level of damage mθ  in the structural members using different sets of simulated 

noisy measurements. It is seen that the results of the current algorithm are generally 

similar to those of the sensitivity-based method with OEE. Nevertheless, there are 

some differences in that the performance of the current algorithm to assess damage  is  
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Figure 3.33 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and ROEE 

algorithm with 1% noisy measurements. 
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Figure 3.34 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and ROEE 

algorithm with 3% noisy measurements. 
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Figure 3.35 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and ROEE 

algorithm with 5% noisy measurements. 
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Figure 3.36 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and ROEE 

algorithm with 10% noisy measurements. 
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Figure 3.37 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the sensitivity-based method and ROEE 

algorithm with 15% noisy measurements. 
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improved as observed from a more evident constant unit-probability zone in the 

probability distribution for damaged members. In addition, for all of the investigated 

damage cases the maximum level of noise in which damage can be assessed is 15%, 

compared with 10% for the sensitivity-based method with OEE. Hence, it is 

concluded that the performance of the proposed method of assessing damage 

improves by using the ROEE algorithm. 

 

 

3.3.1.6 The Optimum Sensitivity-Based Method with ROEE Algorithm 

The ten damage cases in Table 3.3 are, again, used for evaluating the 

performance of the statistical damage assessment algorithm. For the simulation 

studies conducted in this section we use the ROEE method in conjunction with the 

optimum sensitivity-based scheme to obtain the statistical distribution of the 

parameter estimates. The results from the simulation studies show that for all damage 

cases the maximum level of noise permitting a damage assessment is 20%, and hence 

all of the six levels of the measurement noise in Table 3.3— e  = 1%, 3%, 5%, 10%, 

15% and 20%—are investigated in the present case. 

Figures 3.38-3.43 show the probability distribution, ( (1 ))mc mb mP X X θ< − , for 

each level of damage mθ  in the structural members using different levels of noisy 

incarnations in the simulated measurements. It is seen that the results of the current 

algorithm are generally similar to those obtained from using the optimum sensitivity-

based method with OEE. However, we notice a better performance of the current 

algorithm to assess damage in the structural system, as observed from a more evident 

constant unit-probability zone in the probability distribution for damaged members. 

The maximum level of noise in which damage can be assessed is 20%, compared with 

10% for the optimum sensitivity-based method with OEE. Hence, it is evident that the 

performance of the proposed damage assessment algorithm improves by 

implementing the ROEE algorithm in the statistical parameter estimation process. 
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Figure 3.38 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and 

ROEE algorithm with 1% noisy measurements. 



 

 

93

 

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 3(63.75%) with 3% noise

rho

P
(X
m
 <
 X
*m
-rh
o
)

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 4(3.55%) with 3% noise

rho

P
(X
m
 <
 X
*m
-rh
o
)

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

mθmθ

mθ mθ

mθmθ

mθmθ

mθ mθ

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3.39 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and 

ROEE algorithm with 3% noisy measurements. 
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Figure 3.40 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and 

ROEE algorithm with 5% noisy measurements. 
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Figure 3.41 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and 

ROEE algorithm with 10% noisy measurements. 
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Figure 3.42 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and 

ROEE algorithm with 15% noisy measurements. 
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Figure 3.43 Probability distribution with respect to different levels of damage for the 
single-damaged-member cases using the optimum sensitivity-based method and 

ROEE algorithm with 20% noisy measurements. 
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3.3.2 Two-Damaged-Member Cases 

The two-damaged-member cases investigated herein consist of ten randomly 

generated combinations of the location and the severity of damage as summarized in 

Table 3.4. In this table, the noise levels indicate different levels of noise that are used 

to investigate the performance of the current damage assessment algorithm from using 

different statistical parameter estimation schemes. As for the single-damaged-member 

cases, three different statistical parameter estimation schemes—i.e., the Monte Carlo 

simulation method, the sensitivity-based method and the optimum sensitivity-based 

method—are used in conjunction with the OEE and ROEE algorithms to estimate the 

mean and the covariance matrix of the parameter estimates for the construction of the 

statistical distribution of the system parameters.   

 

 

Table 3.4 Different damage scenarios with two damaged members. 

Damage Case Damaged Members Damage Levels (%) Noise Levels (%) 
3 55.15 

1 
8 78.98 

1%, 3%, 5%, 10%, 15% and 20% 

4 37.18 
2 

8 48.51 
1%, 3%, 5%, 10%, 15% and 20% 

2 90.31 
3 

11 51.64 
1%, 3%, 5%, 10%, 15% and 20% 

6 41.92 
4 

8 14.97 
1%, 3%, 5%, 10%, 15% and 20% 

9 48.12 
5 

5 84.45 
1%, 3%, 5%, 10%, 15% and 20% 

6 54.81 
6 

2 21.61 
1%, 3%, 5%, 10%, 15% and 20% 

7 19.65 
7 

10 48.95 
1%, 3%, 5%, 10%, 15% and 20% 

6 5.93 
8 

10 17.26 
1%, 3%, 5%, 10%, 15% and 20% 

9 96.17 
9 

3 63.75 
1%, 3%, 5%, 10%, 15% and 20% 

1 78.64 
10 

4 64.18 
1%, 3%, 5%, 10%, 15% and 20% 
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The results of the ten simulated damage cases are shown, respectively, in Figures 

3.44-3.49 for the Monte Carlo simulation method with OEE, Figures 3.50-3.53 for the 

sensitivity-based method with OEE, Figures 3.54-3.57 for the optimum sensitivity-

based method with OEE, Figures 3.58-3.63 for the Monte Carlo simulation method 

with ROEE, Figures 3.64-3.68 for the sensitivity-based method with ROEE and 

Figures 3.69-3.74 for the optimum sensitivity-based method with ROEE. 

The results of the current simulation studies are similar to those of the single-

damaged-member cases. It is seen that the damage assessment results can become less 

accurate as the level of noise in the measurements increases. Also, it is observed that 

as the level of noise in the measurements increases, the decrease in the probability 

values for a structural member in the transition region becomes more gradual. 

Therefore, we reach the same conclusion that the performance of the proposed 

algorithm to assess damage in a structural system is limited by the level of noise in 

the measurements.   

It is noted from the results of the damage assessment algorithm by using the 

ROEE algorithm comparing to using the OEE algorithm in the parameter estimation 

process that the maximum level of noise permitting a damage assessment is increased 

from 10% to 15% for the sensitivity-based method and from 10% to 20% for the 

optimum sensitivity-based method, while remaining unchanged for the Monte Carlo 

simulation method. This observation suggests that the ROEE algorithm is somewhat 

more effective when using in conjunction with the optimum sensitivity-based method 

compared to when using with the sensitivity-based and the Monte Carlo simulation 

methods.  
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Figure 3.44 Probability distribution with respect to different levels of damage for the 

two-damaged-members cases from 1,000 samples of parameter estimates (Monte 
Carlo simulation + OEE) using 1% noisy measurements. 
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Figure 3.45 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 3% noisy measurements. 
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Figure 3.46 Probability distribution with respect to different levels of damage for the 

two-damaged-members cases from 1,000 samples of parameter estimates (Monte 
Carlo simulation + OEE) using 5% noisy measurements. 
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Figure 3.47 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 10% noisy measurements. 
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Figure 3.48 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 15% noisy measurements. 
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Figure 3.49 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + OEE) using 20% noisy measurements. 
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Figure 3.50 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and OEE algorithm 

with 1% noisy measurements. 
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Figure 3.51 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and OEE algorithm 

with 3% noisy measurements. 



 

 

108

 

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 3(55.15%) and 8(78.98%) with 5% noise

rho

P
(X
m
 <
 X
*m
(1-
rh
o
))

024681012

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Member ID Number

Damage of member 4(37.18%) and 8(48.51%) with 5% noise

rho

P
(X
m
 <
 X
*m
(1-
rh
o
))

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 
   

  P
(X

* m
c<

X* m
b(

1-
   

m
))

 

   
  P

(X
* m

c<
X* m

b(
1-

   
m
))

 

mθ mθ

mθ mθ

mθ mθ

mθ mθ

mθ mθ

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

Figure 3.52 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and OEE algorithm 

with 5% noisy measurements. 
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Figure 3.53 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and OEE algorithm 

with 10% noisy measurements. 
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Figure 3.54 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and OEE 

algorithm with 1% noisy measurements. 
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Figure 3.55 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and OEE 

algorithm with 3% noisy measurements. 
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Figure 3.56 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and OEE 

algorithm with 5% noisy measurements. 
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Figure 3.57 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and OEE 

algorithm with 10% noisy measurements. 
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Figure 3.58 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 1% noisy measurements. 
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Figure 3.59 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 3% noisy measurements. 
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Figure 3.60 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 5% noisy measurements. 
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Figure 3.61 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 10% noisy measurements. 
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Figure 3.62 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 15% noisy measurements. 
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Figure 3.63 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases from 1,000 samples of parameter estimates (Monte 

Carlo simulation + ROEE) using 20% noisy measurements. 
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Figure 3.64 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and ROEE algorithm 

with 1% noisy measurements. 
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Figure 3.65 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and ROEE algorithm 

with 3% noisy measurements. 
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Figure 3.66 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and ROEE algorithm 

with 5% noisy measurements. 
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Figure 3.67 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and ROEE algorithm 

with 10% noisy measurements. 
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Figure 3.68 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the sensitivity-based method and ROEE algorithm 

with 15% noisy measurements. 
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Figure 3.69 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and ROEE 

algorithm with 1% noisy measurements. 
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Figure 3.70 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and ROEE 

algorithm with 3% noisy measurements. 
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Figure 3.71 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and ROEE 

algorithm with 5% noisy measurements. 
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Figure 3.72 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and ROEE 

algorithm with 10% noisy measurements. 
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Figure 3.73 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and ROEE 

algorithm with 15% noisy measurements. 
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Figure 3.74 Probability distribution with respect to different levels of damage for the 
two-damaged-members cases using the optimum sensitivity-based method and ROEE 

algorithm with 20% noisy measurements. 
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3.4 Chapter Summary 

The damage assessment procedure developed in the previous chapter has been 

tested with the single-damaged-member cases and the two-damaged-member cases of 

10 different simulated damage cases for a simply supported truss structure. Through 

simulation studies, the procedure of assessing damage in the presence of the 

measurement noise was illustrated. To account for the sensitivity of the parameter 

estimates to the measurement noise, we adopt the technique of statistical parameter 

estimation. In particular, we use three different methods of statistical parameter 

estimation—the Monte Carlo simulation method, the sensitivity-based method and the 

optimum sensitivity-based method—to obtain the statistical distribution of the 

parameter estimates that is used as an input to the statistical damage assessment 

algorithm. Evaluation of the statistical distribution of the parameter estimates at the 

potential damage locations has proved reliable as a method for assessing whether 

damage is detectable above the noise in the measurements. From the simulation 

results, it is concluded that the proposed algorithm can assess damage effectively at 

low levels of noise in the measurements. For higher levels of noise in the 

measurements, there are always cases where actually damaged elements are identified 

as undamaged or actually undamaged elements are identified as damaged. However, 

the results have been shown to improve dramatically when the level of noise in the 

measurements decreases. In addition to the level of noise in the measurements, the 

severity of the damage in the structural components also limits the ability of the 

proposed algorithm to assess damage in a structural system.  

From the simulation results, it can be concluded that the performance of the 

proposed statistical damage assessment method is improved by using the 

regularization method on the parameter estimation problem (ROEE) for all of the 

statistical parameter estimation schemes considered. Furthermore, the ROEE 

algorithm is more effective when using with the optimum sensitivity-based method 

compared to when using with the Monte Carlo simulation method and the sensitivity-

based method.  

 



CHAPTER 4 

 

STATISTICAL SIMULATION STUDY—A BRIDGE TRUSS 

 

 

4.1 Introduction 

In the previous chapter, we have used different statistical parameter estimation 

algorithms in conjunction with the proposed damage assessment scheme to quantify 

damage in a simple-support bridge truss by using 10 simulated damage scenarios. In 

this chapter, we use the same truss structure in our simulation studies, but a larger 

number of damage cases is considered to obtain a clearer picture of the performance 

of the proposed algorithm in the statistical sense. A statistical identification error 

(SIE) is devised to quantify the level of accuracy of the damage assessment algorithm. 

We consider three distinct cases of damage: the single-damaged-member cases, the 

two-damaged-member cases, and the three-damaged-member cases. For each of these 

damage cases, we generate 100 different damage scenarios by randomly varying the 

location and the severity of damage. 

As for the previous chapter, we examine three methods of statistical parameter 

estimation; i.e., the Monte Carlo simulation method, the sensitivity-based method, and 

the optimum sensitivity-based method. We use these methods in conjunction with the 

output error estimator (OEE) and the regularized output error estimator (ROEE) to 

investigate the performance of the present statistical damage assessment scheme from 

using different statistical evaluation schemes and estimators by using the statistical 

identification error (SIE) of the damaged member parameters.  

Through statistical simulation studies, the procedures of each of the investigated 

algorithms in assessing damage by using the plot of the SIE value of the damage 

member parameters and the probability of successfully detecting damage with respect 

to different levels of noise in the measurements are illustrated. 

 

 

 





 

 

134

 

respect to the levels of noise in the measurements to illustrate the performance of each 

of the algorithms under consideration. 

For the two-damaged-member cases and three-damaged-member cases, the SIE 

values are computed, respectively, as  

 

                     
( )

2 2
l mSIE SIE

SIE
+

= ;   and   
( )

3 3
l m nSIE SIE SIE

SIE
+ +

=              (4.2) 

 

whereas the subscripts l, m, and n represent the quantity being associated with 

damaged members l, m, and n, respectively. 

 

 

4.3 Simulation Studies 

In our simulation studies, we investigate the performance of each of the 

investigated algorithms in assessing damage by plotting the SIE value with respect to 

different levels of noise in the measurements. The key objective of the present study 

is to examine the efficacy of using the regularization scheme to improve the 

performance of the statistical damage assessment scheme. Again, we use synthetic 

measurements that are generated in accord with equation (2.35). Three statistical 

parameter estimation methods, i.e. the Monte Carlo simulation method, the optimum 

sensitivity-based method and the sensitivity-based method are used in conjunction 

with the OEE and ROEE algorithms to obtain the required statistics of parameter 

estimates for the damage assessment algorithm. The same truss structure of Chapter 3 

is used as our model problem.  

The simulation studies conducted in this section consist of single-damaged-

member cases, two-damaged-member cases and three-damaged-member cases. As in 

Chapter 3, for the single-damaged-member cases the damage of the structure is 

represented by a reduction of the stiffness of a single structural member. For the two-

damaged-member and three-damaged-member cases, the damage is due to the 

stiffness reduction of two and three structural members, respectively. For each of the 
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Figure 4.1 Variation of the average SIE values associated with the successfully-
detected damaged members with respect to different levels of noise in the 

measurements using the Monte Carlo simulation method in conjunction with the 
ROEE algorithm for different numbers of damage cases. 

 

 

simulation method in conjunction with ROEE with respect to different levels of noise 

in the measurements for different numbers of damage cases. It is seen from the figure 

that 100 samples are sufficient to carry out the performance assessment in the range of 

noise levels considered. Therefore, we use 100 damage cases in order to evaluate the 

performance of the statistical damage assessment in our simulation studies. 

Figure 4.2 summarizes the performance of the investigated algorithms with the 

increasing level of noise for the single-damaged-member cases. Figures 4.2(a), 4.2(c) 

and 4.2(e) on the left column show the results from using the OEE algorithm in 

conjunction with the Monte-Carlo simulation method, the optimum sensitivity-based 

method and the sensitivity-based method, respectively. On the right column, figures 

4.2(b), 4.2(d) and 4.2(f) show the results from using the ROEE algorithm in 

conjunction with different statistical parameter estimation methods in the same order. 

Note that each of these plots show the average SIE values for the successfully-

detected damaged members in all of the damage cases considered. 
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Figure 4.2 Variation of the average SIE values associated with the successfully-
detected damaged members with respect to different levels of noise in the 

measurements for 100 single-damaged-member cases using different methods of 
statistical parameter estimation with the OEE and ROEE algorithms. 
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It is seen from the illustration that the average SIE value increases as the level of 

noise in the measurements increases. The results from using the three statistical 

parameter estimation methods with the OEE algorithm show that the maximum level 

of noise permitting a damage assessment is 10% for the optimum sensitivity-based 

method and the sensitivity-based method, and 20% for the Monte Carlo simulation 

method. With the ROEE method, the maximum level of noise is increased to 20% for 

the Monte Carlo simulation and the optimum sensitivity-based methods. For the 

sensitivity-based method, the maximum level of noise is increased to 15%. Moreover, 

the performance of the proposed damage assessment method is somewhat stabilized 

by the regularization effect when using the Monte Carlo simulation method as evident 

from the lower, and less fluctuated, SIE values.  

Figure 4.3 summarizes the probability of success in detecting damage with 

respect to different levels of noise in the measurements for the single-damaged-

member cases. The format of the illustration follows Figure 4.2 in which the left and 

right columns show the results from using the OEE and the ROEE algorithms, 

respectively, in conjunction with different statistical parameter estimation schemes. 

The results from using all three statistical parameter estimation methods with the 

OEE and the ROEE algorithms show that the probability of success in detecting 

damage decreases as the level of noise in the measurements increases. The decrease in 

the probability of success in detecting damage is more gradual for the results using the 

ROEE algorithm. The probability of failing to detect damage increases as the level of 

noise in the measurements increases. Again, we observe a more gradual increase in 

the probability values for the results from using the ROEE algorithm.      

Figure 4.4 is the plot of the distribution of the SIE values which success in 

detecting damage with respect to different levels of noise in the measurements for 

each of the single-damaged-member cases. In the illustration, the left and right 

columns show the results from using the OEE and the ROEE algorithms, respectively, 

in conjunction with different statistical parameter estimation schemes. 

It is seen from the illustration that the variation of the SIE values at each noise 

level is small when the level of noise in the measurements is low due to high success 

in detecting damage. The variation of the SIE values is large when the  level  of  noise  
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Figure 4.3 Probability of success in detecting damage with respect to different levels 
of noise in the measurements for 100 single-damaged-member cases using different 

methods of statistical parameter estimation with the OEE and ROEE algorithms. 
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Figure 4.4 Variation of the SIE values for each of the successfully-detected damaged 
members with respect to different levels of noise in the measurements from 100 
single-damaged-member cases using different methods of statistical parameter 

estimation with the OEE and ROEE algorithms. 
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is high due to low success in detecting damage. Moreover, the fluctuation in the 

performance of the proposed damage assessment method is somewhat stabilized by 

the regularization effect as evident from the smaller variation of the SIE values. 

 

 

4.3.2 Two-Damaged-Member Cases 

The two-damaged-member cases investigated herein consist of 100 different 

combinations of the location and the severity of damage that are randomly generated. 

As for the single-damaged-member cases, three statistical parameter estimation 

methods, i.e. the Monte-Carlo simulation method, the optimum sensitivity-based 

method and the sensitivity-based method, are used in conjunction with the OEE and 

the ROEE algorithms to investigate the performance of the proposed damage 

assessment scheme. The SIE index, as computed from equation (4.2), is used to 

quantify this performance. The level of success of the damage detection is indicated 

by the value of sP , which is the ratio of the number of damages detected to the 

number of actual damages in the structure. We plot the average SIE values, the sP  

values, and the distribution of the SIE values for the 100 damage cases under 

consideration with respect to different levels of noise in the measurements for each of 

the investigated algorithms.   

Figure 4.5 illustrates the overall performance of the presented algorithms with 

respect to the level of the measurement noise for the two-damaged-member cases. 

The format of the illustration follows Figure 4.2 in which the left and right columns 

show the results from using the OEE and the ROEE algorithms, respectively, in 

conjunction with different statistical parameter estimation schemes. Note that the SIE 

values in Figure 4.5 are plotted as the average SIE values for the successfully-detected 

damaged members for the cases in which one and two damaged members are detected 

as well as for all of the 100 damage cases. 

The same sort of results as for the single-damaged-member cases are again seen 

for the two-damage-member cases. The SIE value increases as the level of noise in 

the measurements increases. For all of the investigated damage cases, the ROEE 

method out-performs the OEE  method  in  the  assessment  of  damage  using  all  the  
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Figure 4.5 Variation of the average SIE values for the successfully-detected damaged 
members with respect to different levels of noise in the measurements for the cases in 

which one and two damaged members are detected, and for all 100 damage cases 
using different methods of statistical parameter estimation with the OEE and ROEE 

algorithms. 
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statistical parameter estimation schemes considered with higher levels of 

measurement noise permitting a damage assessment.   

Figure 4.6 summarizes the probability of success in detecting damage with 

respect to different levels of noise in the measurements for the two-damaged-member 

cases. The results from using all three statistical parameter estimation methods with 

the OEE and the ROEE algorithms show that the probability of success in detecting 

both damaged members decreases as the level of noise in the measurements increases. 

However, the probability distribution for the cases using the ROEE algorithm shows a 

more gradual decrease. Moreover, the probability of detecting only a single damaged 

member as well as the probability of detecting no damage at all increases with the 

level of noise in the measurements. Again, a more gradual increase is observed for the 

results from the ROEE algorithm.      

Figures 4.7 and 4.8 show the distribution of the SIE values for the cases in which 

one damaged member and two damaged members are successfully detected, 

respectively, with respect to the level of noise in the measurements. It is seen from the 

illustration for all three statistical parameter estimation methods with the OEE 

algorithm that the variation of the SIE values is small at low levels of noise. This is 

due to the comparatively high success in detecting damage. However, the variation of 

the SIE values becomes quite large at higher levels of noise. The performance of the 

proposed damage assessment method is somewhat improved when the ROEE 

algorithm is used as evident from the smaller variation of the SIE values at all noise 

levels. 

 

 

4.3.3 Three-Damaged-Member Cases 

In this section, we investigate 100 damage cases in which three truss members are 

damaged. We randomly select the locations and the severities of damage for the truss. 

As for the previous cases, we examine three statistical parameter estimation methods, 

i.e. the Monte-Carlo simulation method, the optimum sensitivity-based method and 

the sensitivity-based method, in conjunction with the OEE and the ROEE algorithms 

for the proposed damage assessment scheme.  
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Figure 4.6 Probability of success in detecting damage with respect to different levels 

of noise in the measurements for 100 two-damaged-member cases using different 
methods of statistical parameter estimation with the OEE and ROEE algorithms. 
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Figure 4.7 Variation of the SIE values with respect to different levels of noise for the 
two-damaged-member cases in which only one member is successfully detected as 

damaged using different methods of statistical parameter estimation with the OEE and 
ROEE algorithms. 
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Figure 4.8 Variation of the SIE values with respect to different levels of noise for the 
two-damaged-member cases in which both damaged members are successfully 

detected using different methods of statistical parameter estimation with the OEE and 
ROEE algorithms. 
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Figure 4.9 shows the performance of the algorithms under consideration with 

respect to different levels of noise in the measurements. The SIE values in this figure 

are plotted as the average of the SIE values for the members whose damage can be 

detected for the cases in which one, two, and three damaged members are detected 

and for all of the investigated damage cases. 

It is seen from the illustration that the SIE value increases as the level of noise in 

the measurements increases. For all of the investigated damage cases, the ROEE 

method out-performs the OEE method in the assessment of damage using all the 

statistical parameter estimation schemes considered with higher levels of noise 

permitting a damage assessment.   

Figure 4.10 shows the probability of success in detecting damage with respect to 

different levels of noise in the measurements for the three-damaged-member cases. 

The results from using all three statistical parameter estimation methods with the OEE 

and the ROEE algorithms show that the probability of successfully detecting all 

damaged members as damaged decreases as the level of noise in the measurements 

increases, with a more gradual decrease when the ROEE algorithm is used. In 

addition, the probability of detecting two members, one member and no member as 

damaged increases with the level of noise in the measurements. Again, the increase in 

the probability values for the results obtained from using the ROEE algorithm is more 

gradual.      

Figures 4.11, 4.12 and 4.13 summarize the variation of the SIE values for the 

cases in which one, two and three damaged members are successfully detected, 

respectively. The same sort of results as for the previous damage cases are again seen 

for the three-damaged-member cases. For all three statistical parameter estimation 

methods with the OEE and the ROEE algorithms, the variation of the SIE values is 

small for low levels of noise. The variation of the SIE values becomes larger for 

higher levels of noise. At the same level of noise, the variation of the SIE values is 

smaller when the ROEE algorithm is used, which confirms the improvement of the 

assessment of damage by using the regularization method on the statistical parameter 

estimation schemes considered. 
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Figure 4.9 Variation of the average SIE values for the successfully-detected damaged 
members with respect to different levels of noise in the measurements for the cases in 

which one, two, and three damaged members are detected and for all 100 damage 
cases using different methods of statistical parameter estimation with the OEE and 

ROEE algorithms. 
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Figure 4.10 Probability of success in detecting damage with respect to different levels 
of noise in the measurements for 100 three-damaged-member cases using different 
methods of statistical parameter estimation with the OEE and ROEE algorithms. 
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Figure 4.11 Variation of the SIE values with respect to different levels of noise for the 
three-damaged-member cases in which only one member is successfully detected as 

damaged using different methods of statistical parameter estimation with the OEE and 
ROEE algorithms. 
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Figure 4.12 Variation of the SIE values with respect to different levels of noise for the 
three-damaged-member cases in which two members are successfully detected as 

damaged using different methods of statistical parameter estimation with the OEE and 
ROEE algorithms. 
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Figure 4.13 Variation of the SIE values with respect to different levels of noise for the 
three-damaged-member cases in which all of the three damaged members are 

successfully detected using different methods of statistical parameter estimation with 
the OEE and ROEE algorithms. 
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4.4 Chapter Summary 

The performance of the statistical damage assessment scheme was investigated 

through a simulation study using a truss structure as the model problem. Various 

damage cases with different locations and severities of damage of the truss were 

randomly selected for the single-damaged-member cases, the two-damaged-member 

cases and the three-damaged-member cases, respectively. The statistics of the 

structural parameters are obtained by using three methods of statistical parameter 

estimation, i.e. the Monte-Carlo simulation method, the optimum sensitivity-based 

method and the sensitivity-based method. The performance of the damage assessment 

is identified by using a statistical identification error (SIE) index that approaches zero 

when the assessment is effective. The level of success of the damage detection is 

indicated by the probability of success in detecting damage ( sP ). The performance of 

damage assessment with respect to the level of noise in the measurements is 

illustrated by the variation of the SIE values for all damage cases. The results of the 

simulation study showed that the performance of the present statistical damage 

assessment method can be improved by using the regularization method on the 

parameter estimation scheme for all of the damage cases considered. 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

 

SIMULATION STUDY―A BRACED FRAME WITH MULTI-PARAMETER 

MEMBERS 

 

 

5.1 Introduction 

It has been shown in Chapter 3 and Chapter 4 that the proposed statistical damage 

assessment scheme in conjunction with the OEE and the ROEE algorithms can be 

used to assess damage in a simple-support bridge truss effectively even when the 

measured data are noise-polluted. In this chapter, the optimum sensitivity-based 

method are used in conjunction with the ROEE algorithm in the simulation study of a 

two-story braced frame with members consisting of multiple stiffness parameters. The 

method of damage assessment for multi-parameter structural members proposed in 

Chapter 2 is used in the current study.       

A two-story braced frame is used as our model problem. We consider two distinct 

cases of damage: the damage of the single-parameter frame members and the damage 

of the multiple-parameter frame members. The performance of the proposed 

algorithm is assessed in terms of the probability of the damage m
dP  for member m. The 

performance of the algorithm is illustrated through the variation of the probability of 

the damage m
dP  with respect to different levels of damage in percentage of reduction 

of the corresponding stiffness parameters, coupled with the effect of noise in the 

measurements. In addition, the values of the probability of the damage m
dP  associated 

with the identified damaged members are also ranked in order to identify the accuracy 

of the outcome of the damage assessment scheme.  

 

 

5.2 Description of the Example Structure 

The structure we investigate herein is a two-story braced frame. The geometry and 

the topology of the frame are shown in Figure 5.1. In the figure the numbers in circles  
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Figure 5.1 Geometry and topology of the two-story braced frame. 

 

represent the member identification numbers and the numbers in triangles represent 

the nodal identification numbers. The finite-element model of the braced frame 

consists of 12 elements and 8 nodes with 18 degrees of freedom. The braced-frame 

members can be categorized into two types: (1) the two-parameter members (column 

members 1 – 4 and beam members 5 – 8); and (2) the single-parameter members 

(bracing members 9 – 12). The stiffness parameters for the two-parameter members 

are the axial stiffness (EA) and the bending stiffness (EI). The stiffness parameter for 

the single-parameter members is the axial stiffness (EA). The baseline properties for 

each of the braced frame members are listed in Table 5.1. Note that the self-weight of 

the structural members is calculated based on the unit weight w = 0.145 kips/ft3. In 

addition to the self-weight of the structural members shown in the table, we assume 

that the dead load being imposed upon the structure is uniformly distributed along the 

length of all 12 members with a value of 0.017 kips-sec2/ft/ft. Moreover, all members 

are assumed to have a modulus of elasticity of E  = 582,768 kips/ft2. 
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Table 5.1 Baseline properties of the two-story braced frame. 

Member Location 
Cross 

Section 
(in.× in.) 

Cross-
Sectional 
Area, A 

(in.2) 

I (ft.4) EA 
(kips) 

EI  
(kips-ft2) 

Self Weight 
(kips-sec2/ft/ft) 

Total Weight 
(kips-sec2/ft/ft) 

1 1st-story left 
column 24.×24 576 1.33333 2321573 773858 0.01801 0.03501 

2 1st-story right 
column 24.×24 576 1.33333 2321573 773858 0.01801 0.03501 

3 2nd-story left 
column 22.×22 484 0.94142 1950766 546395 0.01514 0.03214 

4 2nd-story right 
column 22.×22 484 0.94142 1950766 546395 0.01514 0.03214 

5 1st-story left 
beam 10.×18 180 0.23438 725492 136030 0.00563 0.02263 

6 1st-story right 
beam 10.×18 180 0.23438 725492 136030 0.00563 0.02263 

7 2nd-story left 
beam 10.×18 180 0.23438 725492 136030 0.00563 0.02263 

8 2nd-story right 
beam 10.×18 180 0.23438 725492 136030 0.00563 0.02263 

9 1st-story bracing 
member - 57.6 - 232157 - 0.00180 0.01880 

10 1st-story bracing 
member - 57.6 - 232157 - 0.00180 0.01880 

11 2nd-story bracing 
member - 48.4 - 195077 - 0.00151 0.01851 

12 2nd-story bracing 
member - 48.4 - 195077 - 0.00151 0.01851 

 

 

In the current study we assume that the natural frequencies and mode shapes of 

the structure for all of the 18 vibration modes are available as our measurement 

information. Each of the mode shapes are assumed to be measured at all 18 degrees of 

freedom of the structural model as shown in Figure 5.1. The free-vibration responses 

obtained from an eigenvalue analysis of the baseline structure are shown in Table 5.2, 

in which the ith mode shape iΦ  is scaled by using the mass matrix M  such that 

1T
i i =Φ MΦ . 

 

 

5.3 Statistical Damage Assessment of Multi-Parameter Structural Members 

The simulation studies conducted in this section consist of the damage cases of the 

single-parameter members and the damage cases of the two-parameter members. For 

the damage cases of the  single-parameter  members  the  damage  of  the  structure  is 
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Table 5.2 Noise-free data for the baseline structure. 
Mode 1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode 6th Mode 7th Mode 8th Mode 9th Mode 

Natural 
Frequency 

(Hz) 
12.76 30.84 37.26 37.98 61.50 66.25 68.49 90.30 93.82 

Mode Shape 

1st DOF 0.44850 0.18191 -0.02103 -0.71037 0.19426 -0.78431 -0.06250 -0.32238 -0.66131 

2nd DOF 0.01225 0.07540 0.02934 0.03990 -0.18820 0.10030 -0.25800 0.60586 -0.34312 

3rd DOF -0.05712 -0.2763 0.04427 0.01449 0.09431 0.15383 -0.19249 -0.12324 -0.26246 

4th DOF 0.40961 0.00000 0.00000 -0.74302 0.26993 0.00000 -0.09867 0.00000 0.00000 

5th DOF 0.00000 -0.02763 1.67188 0.00000 0.00000 -0.18882 0.00000 -0.06293 0.25037 

6th DOF 0.02844 0.00000 0.00000 -0.02402 -0.06015 0.00000 1.13441 0.00000 0.00000 

7th DOF 0.44850 -0.18191 0.02103 -0.71037 0.19426 0.78431 -0.06250 0.32238 0.66131 

8th DOF -0.01225 0.07540 0.02934 -0.03990 0.18820 0.10030 0.25800 0.60586 -0.34312 

9th DOF -0.05712 0.02763 -0.04427 0.01449 0.09431 -0.15383 -0.19249 0.12324 0.26246 

10th DOF 0.85216 -0.00417 -0.01992 0.75068 -0.03422 -0.38479 -0.05179 0.34389 0.69799 

11th DOF 0.01266 0.09901 0.03203 0.03249 -0.35167 0.12121 -0.32390 0.94714 -0.49965 

12th DOF -0.02252 0.10519 -0.02186 -0.21814 -0.29388 -0.27840 0.10940 0.18921 0.16008 

13th DOF 0.83334 0.00000 0.00000 0.70794 -0.02480 0.00000 -0.13857 0.00000 0.00000 

14th DOF 0.00000 1.57599 0.03666 0.00000 0.00000 0.41602 0.00000 -0.57257 0.25085 

15th DOF 0.00994 0.00000 0.00000 0.17913 0.97308 0.00000 0.04095 0.00000 0.00000 

16th DOF 0.85216 0.00417 0.01992 0.75068 -0.03422 0.38479 -0.05179 -0.34389 -0.69799 

17th DOF -0.01266 0.09901 0.03203 -0.03249 0.35167 0.12121 0.32390 0.94714 -0.49965 

18th DOF -0.02252 -0.10519 0.02186 -0.21814 -0.29388 0.27840 0.10940 -0.18921 -0.16008 

 

Mode 10th 

Mode 
11th 

Mode 
12th 

Mode 
13th 

Mode 
14th 

Mode 
15th 

Mode 
16th 

Mode 
17th 

Mode 
18th 

Mode 

Natural 
Frequency 

(Hz) 
101.01 118.33 131.31 140.54 187.32 194.07 243.10 267.05 284.54 

Mode Shape 

1st DOF 0.03057 0.03182 0.03474 -0.67861 -0.00693 -0.30072 -0.27322 0.15961 -0.35870 

2nd DOF 0.67677 0.11961 0.16442 -0.00837 0.01640 -0.50018 -0.75456 -0.80445 0.53696 

3rd DOF -0.00232 -0.38530 0.37452 -0.14345 0.56552 0.69371 0.43687 -0.10531 0.38597 

4th DOF 0.18272 -0.29946 0.00000 1.46676 0.00590 0.00000 0.14525 0.00000 0.15614 

5th DOF 0.00000 0.00000 -0.22691 0.00000 0.00000 -0.22460 0.00000 0.18651 0.00000 

6th DOF 0.75329 -0.60728 0.00000 -0.19806 0.58876 0.00000 0.10519 0.00000 0.52724 

7th DOF 0.03057 0.03182 -0.03474 -0.67861 -0.00693 0.30072 -0.27322 -0.15961 -0.35871 

8th DOF -0.67677 -0.11961 0.16442 0.00837 -0.01640 -0.50018 0.75456 -0.80445 -0.53696 

9th DOF -0.00232 -0.38530 -0.37452 -0.14345 0.56552 -0.69371 0.43687 0.10531 0.38597 

10th DOF -0.05123 0.05952 1.63098 0.30299 1.28311 -0.25028 -0.55904 0.65413 -1.10109 

11th DOF 0.98983 0.10993 -0.01900 -0.02385 -0.07663 -0.05301 0.82129 1.51725 -1.28722 

12th DOF -0.19181 0.48520 -0.62122 -0.05053 -0.05579 0.91248 0.79733 -0.81503 1.32400 

13th DOF 0.06618 -0.70342 0.00000 -0.06469 -1.09501 0.00000 0.41534 0.00000 0.59337 

14th DOF 0.00000 0.00000 0.26684 0.00000 0.00000 -0.25237 0.00000 0.30368 0.00000 

15th DOF 0.56484 0.95347 0.00000 -0.08131 -0.09041 0.00000 1.03320 0.00000 0.66415 

16th DOF -0.05123 0.05952 -1.63098 0.30299 1.28311 0.25028 -0.55904 -0.65413 -1.10109 

17th DOF -0.98983 -0.10993 -0.01900 0.02385 0.07663 -0.05301 -0.82129 1.51725 1.28722 

18th DOF -0.19181 0.48520 0.62122 -0.05053 -0.05579 -0.91248 0.79733 0.81503 1.32400 
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represented by the reduction of a single stiffness parameter of a structural member 

whereas for the damage cases of the two-parameter member the damage is due to the 

reduction of two stiffness parameters of a structural member. The stiffness parameters 

for the two-parameter members are the axial stiffness (EA) and the bending stiffness 

(EI), respectively, whereas the stiffness parameter for the single-parameter members 

is the axial stiffness (EA). 

As for Chapter 3, we model the measurement data of the structural response by 

using a computer simulation. The modal responses of the baseline structure in Table 

5.2 are used as the noise-free measurement data upon which the mean and the 

covariance matrix of the parameter estimates of the baseline structure are obtained by 

using the optimum sensitivity-based method in conjunction with the ROEE algorithm.  

In the statistical damage assessment process, the probability of the damage m
dP  for 

member m can be computed directly—as a function of the distance of the limit-state 

line to the origin of the reduced variates; that is, the distance mb —by substituting the 

statistical indices from the statistical parameter estimation process into equation 

(2.101). Moreover, to investigate the effect of m
ia ’s in equation (2.101) on the damage 

assessment results, two alternatives of m
ia ’s from equations (2.104) and (2.105) are 

examined.  

 

 

5.3.1 Single-Parameter Member Damage Cases 

For the cases in which the single-parameter members are damaged, we model 

damage of the bracing members 10 and 12 with 10%, 50% and 90% reduction of the 

axial stiffness parameter (EA) and we examine four different levels of noise in the 

measurements: 0.1%, 0.3% 0.5% and 1%. The optimum sensitivity-based method is 

used in conjunction with the ROEE algorithm to estimate the mean and the covariance 

matrix of the stiffness parameters.  

Tables 5.3 and 5.4 summarize the five structural members with the highest 

probability of damage m
dP  for 10%,  50%  and  90%  reduction  of  the  axial  stiffness  
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Table 5.3 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 10 and 12 using noisy 
measurements and m

ia ’s from equation (2.104). 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member 

% noise 
% Reduction 
of Parameter 
Value (EA) 1st 2nd 3rd 4th 5th 

10 0.1 10 
10 

(1.00000) 
7  

(0.826392) 
6  

(0.799546) 
5  

(0.791031) 
8  

(0.640577) 

10 0.1 50 
10 

(1.00000) 
7  

(0.838914) 
6  

(0.833977) 
5  

(0.680823) 
8  

(0.644309) 

10 0.1 90 
10 

(1.00000) 
7  

(0.853142) 
6  

(0.810571) 
8  

(0.644309) 
5  

(0.567495) 

10 0.3 10 
10 

(0.85083) 
7  

(0.823815) 
6  

(0.802338) 
5  

(0.776373) 
8  

(0.629300) 

10 0.3 50 
10 

(1.00000) 
6  

(0.836458) 
7  

(0.828945) 
5  

(0.636831) 
8  

(0.621720) 

10 0.3 90 
10 

(1.00000) 
7  

(0.823815) 
6  

(0.823815) 
8  

(0.598706) 
5  

(0.511966) 

10 0.5 10 7  
(0.818589) 

6  
(0.813268) 

5  
(0.767305) 

8  
(0.617912) 

4  
(0.531881) 

10 0.5 50 
10 

(0.999739) 
6  

(0.848496) 
7  

(0.818589) 
5  

(0.606420) 
8  

(0.602568) 

10 0.5 90 
10 

(1.000000) 
6  

(0.836458) 
7  

(0.799546) 
8  

(0.567495) 
4  

(0.539828) 

10 1.0 10 7  
(0.823815) 

6  
(0.793893) 

5  
(0.782305) 

4  
(0.742154) 

2  
(0.742154) 

10 1.0 50 6  
(0.886861) 

7  
(0.821214) 

4  
(0.776373) 

2  
(0.738914) 

10 
(0.625516) 

10 1.0 90 6  
(0.859930) 

4  
(0.821214) 

7  
(0.807850) 

2  
(0.698469) 

10 
(0.662758) 

12 0.1 10 
12 

(0.999998) 
7  

(0.821214) 
5  

(0.807850) 
6  

(0.779351) 
8  

(0.648028) 

12 0.1 50 
12 

(1.000000) 
5  

(0.826392) 
7  

(0.785237) 
6  

(0.751748) 
8  

(0.651732) 

12 0.1 90 
12 

(1.000000) 
5  

(0.846136) 
6  

(0.666402) 
7  

(0.633072) 
8  

(0.575345) 

12 0.3 10 
12 

(0.866501) 
7  

(0.815941) 
5  

(0.799546) 
6  

(0.776373) 
8  

(0.636831) 

12 0.3 50 
12 

(1.000000) 
5  

(0.805106) 
7  

(0.776373) 
6  

(0.708841) 
8  

(0.640577) 

12 0.3 90 
12 

(1.000000) 
5  

(0.779351) 
1  

(0.644309) 
7  

(0.587064) 
8  

(0.551717) 

12 0.5 10 7  
(0.813268) 

5  
(0.793893) 

6  
(0.779351) 

12 
(0.659097) 

8  
(0.625516) 

12 0.5 50 
12 

(0.999993) 
5  

(0.785237) 
7  

(0.767305) 
6  

(0.662758) 
8  

(0.625516) 

12 0.5 90 
12 

(1.000000) 
1  

(0.751748) 
5  

(0.705402) 
7  

(0.583166) 
8  

(0.547758) 

12 1.0 10 5  
(0.823815) 

7  
(0.815941) 

2  
(0.758037) 

4  
(0.712261) 

1  
(0.698469) 

12 1.0 50 
12 

(0.962462) 
1  

(0.925067) 
2  

(0.857691) 
5  

(0.807850) 
7  

(0.767305) 

12 1.0 90 
12 

(0.997364) 
1  

(0.963273) 
2  

(0.929220) 
3  

(0.785237) 
5  

(0.764238) 
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Table 5.4 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 10 and 12 using noisy 
measurements and m

ia ’s from equation (2.105). 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member 

% noise 
% Reduction 
of Parameter 
Value (EA) 1st 2nd 3rd 4th 5th 

10 0.1 10 
10 

(1.000000) 
7  

(0.826392) 
5  

(0.810571) 
6  

(0.802338) 
8  

(0.640577) 

10 0.1 50 
10 

(1.000000) 
7  

(0.836458) 
6  

(0.831473) 
5  

(0.735653) 
8  

(0.644309) 

10 0.1 90 
10 

(1.000000) 
7  

(0.853142) 
6  

(0.793893) 
8  

(0.644309) 
5  

(0.629300) 

10 0.3 10 
10 

(0.850831) 
7  

(0.823815) 
6  

(0.805106) 
5  

(0.796731) 
8  

(0.629300) 

10 0.3 50 
10 

(1.000000) 
6  

(0.831473) 
7  

(0.826392) 
5  

(0.691463) 
8  

(0.621720) 

10 0.3 90 
10 

(1.000000) 
7  

(0.823815) 
6  

(0.810571) 
8  

(0.594835) 
5  

(0.583166) 

10 0.5 10 7  
(0.818589) 

6  
(0.813268) 

5  
(0.776373) 

8  
(0.617912) 

4  
(0.547758) 

10 0.5 50 
10 

(0.999739) 
6  

(0.833977) 
7  

(0.818589) 
5  

(0.655422) 
8  

(0.602568) 

10 0.5 90 
10 

(1.000000) 
6  

(0.810571) 
7  

(0.799546) 
4  

(0.633072) 
8  

(0.567495) 

10 1.0 10 4  
(0.872857) 

7  
(0.826392) 

6  
(0.785237) 

3  
(0.785237) 

2  
(0.748572) 

10 1.0 50 4  
(0.906583) 

6  
(0.838914) 

7  
(0.821214) 

3  
(0.779351) 

2  
(0.751748) 

10 1.0 90 4  
(0.957284) 

3  
(0.828945) 

7  
(0.807850) 

6  
(0.751748) 

2  
(0.719043) 

12 0.1 10 
12 

(0.999998) 
5  

(0.823815) 
7  

(0.821214) 
6  

(0.785237) 
8  

(0.648028) 

12 0.1 50 
12 

(1.000000) 
5  

(0.836458) 
7  

(0.788145) 
6  

(0.748572) 
8  

(0.651732) 

12 0.1 90 
12 

(1.000000) 
5  

(0.846136) 
7  

(0.644309) 
6   

(0.621720) 
8  

(0.579260) 

12 0.3 10 
12 

(0.866501) 
7  

(0.815941) 
5  

(0.813268) 
6  

(0.782305) 
8  

(0.636831) 

12 0.3 50 
12 

(1.000000) 
5  

(0.805106) 
7  

(0.779351) 
6  

(0.687933) 
8  

(0.640577) 

12 0.3 90 
12 

(1.000000) 
5  

(0.722405) 
1  

(0.629300) 
7  

(0.598706) 
8  

(0.555670) 

12 0.5 10 7  
(0.813268) 

5  
(0.793893) 

6  
(0.779351) 

12 
(0.659097) 

8  
(0.625516) 

12 0.5 50 
12 

(0.999993) 
7  

(0.767305) 
5  

(0.751748) 
8  

(0.625516) 
6  

(0.621720) 

12 0.5 90 
12 

(1.000000) 
1  

(0.748572) 
7  

(0.594835) 
3  

(0.587064) 
5  

(0.579260) 

12 1.0 10 4  
(0.857691) 

7  
(0.815941) 

3  
(0.796731) 

2  
(0.764238) 

5  
(0.742154) 

12 1.0 50 
12 

(0.962462) 
1  

(0.923642) 
3  

(0.868644) 
2  

(0.859930) 
4  

(0.821214) 

12 1.0 90 
12 

(0.997364) 
3  

(0.977250) 
1  

(0.964852) 
2  

(0.929220) 
4  

(0.767305) 
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parameter (EA) of members 10 and 12 using the 0.1%, 0.3%, 0.5% and 1.0% noisy 

measurements. The results in the tables are obtained from using the coefficients m
ia ’s 

in equations (2.104) and (2.105), respectively. Note that even though the coefficient 

1
ma  obtained from both equations (2.104) and (2.105) has the unit value, the 

coefficients m
ia ’s from these equations are still different for other multi-parameter 

members that are examined. Therefore, the rankings in Tables 5.3 and 5.4 are 

different. The unit m
dP  value indicates that the probability that the member under 

consideration is damaged is 100%. Likewise, the zero m
dP  value implies that there is 

no chance that the investigated member is damaged.  

It is seen from the tables that there is no clear distinction between the results 

using m
ia ’s from equations (2.104) and (2.105). This is due to the same unit value of 

1
ma  from the two equations for the actual damaged members. Members 10 and 12 are 

successfully identified with the highest probability of damage at high levels of 

damage and at low levels of noise in the measurements. These members are, however, 

not identified with the highest probability of damage when the level of noise in the 

measurements increases. For 1% noisy measurements, the actual damaged member 10 

is ranked with the fifth highest probability of damage in Table 5.3 for 50% and 90% 

reduction of EA. Similar results are observed in Table 5.4 in which member 12 is not 

ranked within the five highest probability of damage for 1% noisy measurements. In 

other words, there is more chance for the proposed algorithm to successfully identify 

damage for higher level of damage and lower level of noise in the measurements. 

Note that the maximum level of noise permitting a damage assessment is 1%. 

Figure 5.2 summarizes the damage assessment results for the damage cases in 

which the single-parameter bracing members 10 and 12 are damaged with different 

percentages of reduction of the axial stiffness parameter (EA) and levels of noise in 

the measurements. Figures 5.2(a) and 5.2(b) show the results for the cases in which 

members 10 and 12 are damaged, respectively. In these figures, the results from using 

different levels of noise in the measurements are compared with the reference value of 
m

dP  which is obtained by substituting the actual value of m
iH  and the 

m
iHSD  value  for  
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Figure 5.2 Variation of the m
dP  values of the actual damaged members 10 and 12 with 

respect to different percentages of EA reduction for different levels of noise in the 
measurements. 

 

 

0.1% noisy measurements in equation (2.101). In addition, the values of the 

probability of damage m
dP  for the actual damaged members are plotted in the range 0–

1. The unit m
dP  value indicates that the probability of detecting damage is 100%. 

Likewise, the zero m
dP  value implies that there is no chance to detect damage. 

It is seen from the illustration that the m
dP  value increases by approaching to the 

unit value as the percentage of EA reduction increases. Thus, it is concluded that there 

is more chance for the proposed algorithm to successfully identify damage in a more 

severely damaged structural member. Moreover, for the same level of damage the m
dP  

value decreases as the level of noise in the measurements increases. Hence, it is 

evident that the performance of the proposed algorithm to assess damage is limited by 

the level of noise in the measurements. 

 

 

5.3.2 Two-Parameter Member Damage Cases 

For the present case, we model damage in the column member 4 and the beam 

member 6 with 0%, 10%, 50% and 90% reduction of the axial stiffness parameter 
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(EA) and the bending stiffness parameter (EI) using four different levels of noise in 

the measurements: 0.1%, 0.3% 0.5% and 1%. As for the cases with damage in the 

single-parameter members, the optimum sensitivity-based method is used in 

conjunction with the ROEE algorithm to estimate the mean and the covariance matrix 

of the stiffness parameters.  

Tables 5.5-5.8 summarize the five frame members with the highest probability of 

damage for different percentages of reduction of EA and EI using m
ia ’s in equation 

(2.104) for 0.1%, 0.3%, 0.5% and 1.0% noisy measurements, respectively. Tables 5.9-

5.12 summarize the damage assessment results from using the coefficient m
ia ’s in 

equation (2.105) for 0.1%, 0.3%, 0.5% and 1.0% noisy measurements, respectively. 

As for the cases with the single-parameter members, the frame members are ranked in 

the descending order of the value of the probability of damage m
dP . Note that the 

reduction of EA and EI are assumed to be independent in the current study. 

It can be seen that the actual damaged members are successfully identified with the 

highest probability of damage in most cases. However, for the cases in which the level 

of damage is low and the level of noise is high, the actual damaged members are not 

ranked with the highest probability of damage. In addition, for the same levels of 

reduction in EA and EI the m
dP  values associated with the reduction of EA are closer 

to the unit value than those with the reduction of EI. Thus, the damage assessment 

results are more sensitive with the reduction of EA compared with the reduction of EI. 

Moreover, the number of cases in which the actual damaged member is identified 

with the highest probability of damage when the coefficients m
ia ’s from equation 

(2.105) are used is higher than when using m
ia ’s from equation (2.104). Again, the 

maximum level of noise permitting a damage assessment is 1%. 

Figures 5.3 and 5.4 summarize the variation of the m
dP  values for the actual 

damaged member 4 by using m
ia ’s from equations (2.104) and (2.105), respectively. 

The results from using the four different levels of noise in the measurements are again 

compared with the reference value of m
dP . Figures 5.3(a), 5.3(c), 5.3(e) and 5.3(g) on 

the left column show the results in which the percentage of reduction  of  the  bending 
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Table 5.5 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 0.1% 
noisy measurements and m

ia ’s from equation (2.104). 

% noise = 0.1% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 4 
(0.999997) 

7 
(0.882977) 

5 
(0.868644) 

6 
(0.758037) 

8 
(0.610261) 

4 50 0 4 
(1.000000) 

6 
(0.864335) 

7 
(0.857691) 

11 
(0.785237) 

5 
(0.785237) 

4 90 0 4 
(1.000000) 

6 
(0.948450) 

5 
(0.882977) 

11 
(0.862144) 

7 
(0.745374) 

4 0 10 4 
(0.999998) 

5 
(0.896166) 

7 
(0.850831) 

6 
(0.764238) 

8 
(0.614092) 

4 10 10 4 
(1.000000) 

5 
(0.936992) 

7 
(0.899728) 

6 
(0.719043) 

11 
(0.598706) 

4 50 10 4 
(1.000000) 

5 
(0.941793) 

7 
(0.857691) 

11 
(0.841345) 

6 
(0.807850) 

4 90 10 4 
(1.000000) 

6 
(0.938220) 

11 
(0.859930) 

5 
(0.848496) 

7 
(0.764238) 

4 0 50 4 
(1.000000) 

5 
(0.967116) 

6 
(0.886861) 

7 
(0.857691) 

11 
(0.742154) 

4 10 50 4 
(1.000000) 

5 
(0.976148) 

7 
(0.884931) 

6 
(0.841345) 

11 
(0.831473) 

4 50 50 4 
(1.000000) 

5 
(0.948450) 

11 
(0.908241) 

6 
(0.846136) 

7 
(0.828945) 

4 90 50 4 
(1.000000) 

7 
(0.855428) 

11 
(0.805106) 

5 
(0.779351) 

6 
(0.779351) 

4 0 90 4 
(1.000000) 

5 
(0.973197) 

6 
(0.881001) 

7 
(0.862144) 

11 
(0.831473) 

4 10 90 4 
(1.000000) 

5 
(0.977250) 

7 
(0.876976) 

11 
(0.866501) 

6 
(0.853142) 

4 50 90 4 
(1.000000) 

5 
(0.950529) 

11 
(0.923642) 

6 
(0.850831) 

7 
(0.793893) 

4 90 90 4 
(1.000000) 

7 
(0.846136) 

11 
(0.821214) 

6 
(0.779351) 

5 
(0.779351) 

6 10 0 6 
(0.999950) 

7 
(0.823815) 

5 
(0.807850) 

8 
(0.640577) 

4 
(0.405164) 

6 50 0 6 
(1.000000) 

5 
(0.833977) 

7 
(0.799546) 

8 
(0.659097) 

4 
(0.409045) 

6 90 0 6 
(1.000000) 

5 
(0.813268) 

7 
(0.788145) 

8 
(0.633072) 

4 
(0.440382) 

6 0 10 6 
(0.999954) 

7 
(0.826392) 

5 
(0.807850) 

8 
(0.636831) 

4 
(0.409045) 

6 10 10 6 
(1.000000) 

7 
(0.826392) 

5 
(0.813268) 

8 
(0.636831) 

4 
(0.409045) 

6 50 10 6 
(1.000000) 

5 
(0.841345) 

7 
(0.802338) 

8 
(0.655422) 

4 
(0.412935) 

6 90 10 6 
(1.000000) 

5 
(0.826392) 

7 
(0.788145) 

8 
(0.629300) 

4 
(0.444329) 

6 0 50 6 
(1.000000) 

7 
(0.833977) 

5 
(0.833977) 

8 
(0.629300) 

4 
(0.420740) 

6 10 50 6 
(1.000000) 

5 
(0.836458) 

7 
(0.833977) 

8 
(0.629300) 

4 
(0.420740) 

6 50 50 6 
(1.000000) 

5 
(0.848496) 

7 
(0.810571) 

8 
(0.644309) 

4 
(0.432504) 

6 90 50 6 
(1.000000) 

5 
(0.859930) 

7 
(0.793893) 

8 
(0.617912) 

4 
(0.464143) 

6 0 90 6 
(1.000000) 

7 
(0.841345) 

5 
(0.807850) 

8 
(0.621720) 

4 
(0.448283) 

6 10 90 6 
(1.000000) 

7 
(0.841345) 

5 
(0.810571) 

8 
(0.621720) 

4 
(0.452241) 

6 50 90 6 
(1.000000) 

5 
(0.823815) 

7 
(0.818589) 

8 
(0.640577) 

4 
(0.460172) 

6 90 90 6 
(1.000000) 

5 
(0.862144) 

7 
(0.796731) 

8 
(0.610261) 

4 
(0.492021) 
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Table 5.6 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 0.3% 
noisy measurements and m

ia ’s from equation (2.104). 

% noise = 0.3% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 4 
(0.942947) 

7 
(0.882977) 

5 
(0.864335) 

6 
(0.735653) 

8 
(0.590954) 

4 50 0 4 
(1.000000) 

7 
(0.855428) 

6 
(0.815941) 

11 
(0.751748) 

5 
(0.715662) 

4 90 0 4 
(1.000000) 

6 
(0.908241) 

11 
(0.833977) 

5 
(0.807850) 

7 
(0.738914) 

4 0 10 4 
(0.940620) 

5 
(0.892513) 

7 
(0.848496) 

6 
(0.745374) 

8 
(0.602568) 

4 10 10 4 
(0.999698) 

5 
(0.933193) 

7 
(0.899728) 

6 
(0.659097) 

11 
(0.579260) 

4 50 10 4 
(1.000000) 

5 
(0.913086) 

7 
(0.853142) 

11 
(0.815941) 

6 
(0.680823) 

4 90 10 4 
(1.000000) 

6 
(0.890652) 

11 
(0.838914) 

7 
(0.758037) 

5 
(0.754903) 

4 0 50 4 
(1.000000) 

5 
(0.959071) 

7 
(0.853142) 

6 
(0.799546) 

11 
(0.725747) 

4 10 50 4 
(1.000000) 

5 
(0.969258) 

7 
(0.881001) 

11 
(0.831473) 

6 
(0.708841) 

4 50 50 4 
(1.000000) 

5 
(0.917736) 

11 
(0.909878) 

7 
(0.818589) 

6 
(0.691463) 

4 90 50 4 
(1.000000) 

7 
(0.853142) 

11 
(0.810571) 

5 
(0.708841) 

6 
(0.680823) 

4 0 90 4 
(1.000000) 

5 
(0.964852) 

7 
(0.853142) 

11 
(0.841345) 

6 
(0.742154) 

4 10 90 4 
(1.000000) 

5 
(0.969946) 

11 
(0.884931) 

7 
(0.868644) 

6 
(0.691463) 

4 50 90 4 
(1.000000) 

11 
(0.936992) 

5 
(0.923642) 

7 
(0.782305) 

6 
(0.680823) 

4 90 90 4 
(1.000000) 

11 
(0.843753) 

7 
(0.841345) 

5 
(0.715662) 

6 
(0.673645) 

6 10 0 6 
(0.971934) 

7 
(0.821214) 

5 
(0.802338) 

8 
(0.629300) 

4 
(0.460172) 

6 50 0 6 
(1.000000) 

5 
(0.831473) 

7 
(0.796731) 

8 
(0.648028) 

4 
(0.460172) 

6 90 0 6 
(1.000000) 

5 
(0.810571) 

7 
(0.782305) 

8 
(0.614092) 

4 
(0.456204) 

6 0 10 6 
(0.970621) 

7 
(0.823815) 

5 
(0.799546) 

8 
(0.625516) 

4 
(0.464143) 

6 10 10 6 
(0.998777) 

7 
(0.823815) 

5 
(0.805106) 

8 
(0.625516) 

4 
(0.468118) 

6 50 10 6 
(1.000000) 

5 
(0.836458) 

7 
(0.799546) 

8 
(0.644309) 

4 
(0.468118) 

6 90 10 6 
(1.000000) 

5 
(0.821214) 

7 
(0.782305) 

8 
(0.610261) 

4 
(0.460172) 

6 0 50 6 
(1.000000) 

7 
(0.831473) 

5 
(0.815941) 

8 
(0.614092) 

4 
(0.484046) 

6 10 50 6 
(1.000000) 

7 
(0.831473) 

5 
(0.818589) 

8 
(0.614092) 

4 
(0.484046) 

6 50 50 6 
(1.000000) 

5 
(0.833977) 

7 
(0.807850) 

8 
(0.629300) 

4 
(0.492021) 

6 90 50 6 
(1.000000) 

5 
(0.846136) 

7 
(0.788145) 

8 
(0.594835) 

4 
(0.480061) 

6 0 90 6 
(1.000000) 

7 
(0.836458) 

5 
(0.767305) 

8 
(0.606420) 

4 
(0.519939) 

6 10 90 6 
(1.000000) 

7 
(0.836458) 

5 
(0.770351) 

8 
(0.606420) 

4 
(0.519939) 

6 50 90 6 
(1.000000) 

7 
(0.813268) 

5 
(0.785237) 

8 
(0.625516) 

4 
(0.527903) 

6 90 90 6 
(1.000000) 

5 
(0.833977) 

7 
(0.788145) 

8 
(0.583166) 

4 
(0.503989) 
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Table 5.7 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 0.5% 
noisy measurements and m

ia ’s from equation (2.104). 

% noise = 0.5% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 7 
(0.882977) 

4 
(0.879000) 

5 
(0.859930) 

6 
(0.701944) 

8 
(0.575345) 

4 50 0 4 
(1.000000) 

7 
(0.855428) 

6 
(0.751748) 

11 
(0.715662) 

2 
(0.617912) 

4 90 0 4 
(1.000000) 

6 
(0.826392) 

11 
(0.802338) 

7 
(0.738914) 

2 
(0.648028) 

4 0 10 5 
(0.888768) 

4 
(0.876976) 

7 
(0.848496) 

6 
(0.712261) 

8 
(0.590954) 

4 10 10 4 
(0.991106) 

5 
(0.925067) 

7 
(0.899728) 

6 
(0.567495) 

11 
(0.559618) 

4 50 10 4 
(1.000000) 

5 
(0.853142) 

7 
(0.850831) 

11 
(0.776373) 

2 
(0.633072) 

4 90 10 4 
(1.000000) 

6 
(0.810571) 

11 
(0.807850) 

7 
(0.758037) 

2 
(0.659097) 

4 0 50 4 
(1.000000) 

5 
(0.941793) 

7 
(0.850831) 

11 
(0.701944) 

6 
(0.598706) 

4 10 50 4 
(1.000000) 

5 
(0.950529) 

7 
(0.876976) 

11 
(0.815941) 

2 
(0.496010) 

4 50 50 4 
(1.000000) 

11 
(0.892513) 

5 
(0.859930) 

7 
(0.815941) 

2 
(0.644309) 

4 90 50 4 
(1.000000) 

7 
(0.853142) 

11 
(0.802338) 

8 
(0.670032) 

2 
(0.655422) 

4 0 90 4 
(1.000000) 

5 
(0.946301) 

7 
(0.848496) 

11 
(0.841345) 

8 
(0.547758) 

4 10 90 4 
(1.000000) 

5 
(0.952541) 

11 
(0.892513) 

7 
(0.864335) 

8 
(0.507978) 

4 50 90 4 
(1.000000) 

11 
(0.933193) 

5 
(0.879000) 

7 
(0.779351) 

2 
(0.583166) 

4 90 90 4 
(1.000000) 

11 
(0.843753) 

7 
(0.841345) 

8 
(0.680823) 

5 
(0.651732) 

6 10 0 6 
(0.935745) 

7 
(0.818589) 

5 
(0.799546) 

8 
(0.617912) 

4 
(0.531881) 

6 50 0 6 
(0.999993) 

5 
(0.831473) 

7 
(0.793893) 

8 
(0.636831) 

4 
(0.531881) 

6 90 0 6 
(1.000000) 

5 
(0.802338) 

7 
(0.776373) 

8 
(0.598706) 

4 
(0.500000) 

6 0 10 6 
(0.930564) 

7 
(0.821214) 

5 
(0.796731) 

8 
(0.614092) 

4 
(0.535856) 

6 10 10 6 
(0.986447) 

7 
(0.821214) 

5 
(0.799546) 

8 
(0.614092) 

4 
(0.539828) 

6 50 10 6 
(0.999999) 

5 
(0.833977) 

7 
(0.796731) 

8 
(0.633072) 

4 
(0.539828) 

6 90 10 6 
(1.000000) 

5 
(0.813268) 

7 
(0.779351) 

8 
(0.594835) 

4 
(0.507978) 

6 0 50 6 
(0.999988) 

7 
(0.826392) 

5 
(0.802338) 

8 
(0.598706) 

4 
(0.563559) 

6 10 50 6 
(0.999999) 

7 
(0.826392) 

5 
(0.805106) 

8 
(0.598706) 

4 
(0.567495) 

6 50 50 6 
(1.000000) 

5 
(0.818589) 

7 
(0.802338) 

8 
(0.617912) 

4 
(0.571424) 

6 90 50 6 
(1.000000) 

5 
(0.828945) 

7 
(0.782305) 

8 
(0.575345) 

4 
(0.527903) 

6 0 90 6 
(1.000000) 

7 
(0.831473) 

5 
(0.729070) 

4 
(0.606420) 

8 
(0.590954) 

6 10 90 6 
(1.000000) 

7 
(0.831473) 

5 
(0.732372) 

4 
(0.610261) 

8 
(0.587064) 

6 50 90 6 
(1.000000) 

7 
(0.807850) 

5 
(0.745374) 

4 
(0.614092) 

8 
(0.606420) 

6 90 90 6 
(1.000000) 

5 
(0.791031) 

7 
(0.785237) 

8 
(0.559618) 

4 
(0.555670) 
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Table 5.8 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 1.0% 
noisy measurements and m

ia ’s from equation (2.104). 

% noise = 1.0% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 1 
(0.935745) 

2 
(0.892513) 

4 
(0.892513) 

7 
(0.888768) 

5 
(0.886861) 

4 50 0 4 
(0.999834) 

2 
(0.992240) 

1 
(0.987775) 

7 
(0.884931) 

3 
(0.810571) 

4 90 0 4 
(1.000000) 

2 
(0.991106) 

1 
(0.984997) 

11 
(0.848496) 

3 
(0.815941) 

4 0 10 1 
(0.936992) 

5 
(0.911493) 

4 
(0.884931) 

7 
(0.853142) 

2 
(0.841345) 

4 10 10 1 
(0.975002) 

2 
(0.973810) 

4 
(0.968557) 

7 
(0.904903) 

5 
(0.872857) 

4 50 10 4 
(0.999930) 

2 
(0.987126) 

1 
(0.978822) 

7 
(0.886861) 

5 
(0.810571) 

4 90 10 4 
(1.000000) 

2 
(0.990862) 

1 
(0.985738) 

3 
(0.846136) 

11 
(0.838914) 

4 0 50 4 
(0.999982) 

2 
(0.969946) 

1 
(0.925067) 

7 
(0.881001) 

5 
(0.838914) 

4 10 50 4 
(0.999999) 

2 
(0.976148) 

1 
(0.954486) 

7 
(0.903200) 

5 
(0.897958) 

4 50 50 4 
(1.000000) 

2 
(0.987454) 

1 
(0.984997) 

11 
(0.864335) 

7 
(0.857691) 

4 90 50 4 
(1.000000) 

2 
(0.988089) 

1 
(0.983414) 

3 
(0.888768) 

7 
(0.876976) 

4 0 90 4 
(1.000000) 

2 
(0.967843) 

1 
(0.958185) 

5 
(0.901475) 

7 
(0.879000) 

4 10 90 4 
(1.000000) 

2 
(0.971934) 

1 
(0.965621) 

5 
(0.920731) 

7 
(0.888768) 

4 50 90 4 
(1.000000) 

2 
(0.984222) 

1 
(0.982997) 

11 
(0.896166) 

5 
(0.831473) 

4 90 90 4 
(1.000000) 

2 
(0.984997) 

1 
(0.981237) 

3 
(0.892513) 

7 
(0.866501) 

6 10 0 6 
(0.838914) 

5 
(0.826392) 

7 
(0.823815) 

2 
(0.738914) 

4 
(0.735653) 

6 50 0 6 
(0.991344) 

5 
(0.853142) 

7 
(0.796731) 

1 
(0.758037) 

4 
(0.748572) 

6 90 0 6 
(0.999904) 

1 
(0.923642) 

5 
(0.782305) 

7 
(0.776373) 

4 
(0.758037) 

6 0 10 7 
(0.828945) 

5 
(0.826392) 

6 
(0.815941) 

2 
(0.758037) 

4 
(0.738914) 

6 10 10 6 
(0.897958) 

7 
(0.826392) 

5 
(0.826392) 

2 
(0.751748) 

4 
(0.742154) 

6 50 10 6 
(0.995975) 

5 
(0.853142) 

7 
(0.799546) 

1 
(0.770351) 

4 
(0.758037) 

6 90 10 6 
(0.999971) 

1 
(0.931888) 

5 
(0.785237) 

7 
(0.779351) 

4 
(0.767305) 

6 0 50 6 
(0.971284) 

5 
(0.831473) 

7 
(0.831473) 

2 
(0.818589) 

4 
(0.773373) 

6 10 50 6 
(0.988396) 

7 
(0.831473) 

5 
(0.828945) 

2 
(0.813268) 

4 
(0.776373) 

6 50 50 6 
(0.999947) 

5 
(0.828945) 

7 
(0.807850) 

1 
(0.805106) 

4 
(0.799546) 

6 90 50 6 
(1.000000) 

1 
(0.957284) 

4 
(0.807850) 

7 
(0.785237) 

5 
(0.770351) 

6 0 90 6 
(0.999730) 

2 
(0.886861) 

7 
(0.841345) 

4 
(0.826392) 

1 
(0.708841) 

6 10 90 6 
(0.999943) 

2 
(0.888768) 

7 
(0.841345) 

4 
(0.831473) 

1 
(0.732372) 

6 50 90 6 
(1.000000) 

2 
(0.848496) 

4 
(0.848496) 

7 
(0.815941) 

1 
(0.802338) 

6 90 90 6 
(1.000000) 

1 
(0.972571) 

4 
(0.848496) 

7 
(0.791031) 

2 
(0.779351) 
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Table 5.9 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 0.1% 
noisy measurements and m

ia ’s from equation (2.105). 

% noise = 0.1% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 4 
(1.000000) 

5 
(0.888768) 

7 
(0.882977) 

6 
(0.758037) 

8 
(0.610261) 

4 50 0 4 
(1.000000) 

6 
(0.862144) 

7 
(0.859930) 

5 
(0.833977) 

11 
(0.785237) 

4 90 0 4 
(1.000000) 

6 
(0.949498) 

5 
(0.914657) 

11 
(0.862144) 

7 
(0.745374) 

4 0 10 4 
(0.998411) 

5 
(0.908241) 

7 
(0.848496) 

6 
(0.779351) 

8 
(0.614092) 

4 10 10 4 
(1.000000) 

5 
(0.948450) 

7 
(0.899728) 

6 
(0.729070) 

11 
(0.598706) 

4 50 10 4 
(1.000000) 

5 
(0.958185) 

7 
(0.857691) 

11 
(0.841345) 

6 
(0.823815) 

4 90 10 4 
(1.000000) 

6 
(0.939430) 

5 
(0.888768) 

11 
(0.859930) 

7 
(0.764238) 

4 0 50 4 
(1.000000) 

5 
(0.976705) 

6 
(0.896166) 

7 
(0.855428) 

11 
(0.742154) 

4 10 50 4 
(1.000000) 

5 
(0.984222) 

7 
(0.882977) 

6 
(0.848496) 

11 
(0.831473) 

4 50 50 4 
(1.000000) 

5 
(0.965621) 

11 
(0.908241) 

6 
(0.857691) 

7 
(0.828945) 

4 90 50 4 
(1.000000) 

7 
(0.859930) 

5 
(0.831473) 

11 
(0.805106) 

6 
(0.782305) 

4 0 90 4 
(1.000000) 

5 
(0.982571) 

6 
(0.886861) 

7 
(0.857691) 

11 
(0.831473) 

4 10 90 4 
(1.000000) 

5 
(0.985738) 

7 
(0.872857) 

11 
(0.866501) 

6 
(0.857691) 

4 50 90 4 
(1.000000) 

5 
(0.969946) 

11 
(0.923642) 

6 
(0.855428) 

7 
(0.793893) 

4 90 90 4 
(1.000000) 

7 
(0.848496) 

5 
(0.833977) 

11 
(0.821214) 

6 
(0.776373) 

6 10 0 6 
(1.000000) 

5 
(0.828945) 

7 
(0.823815) 

8 
(0.640577) 

11 
(0.401293) 

6 50 0 6 
(1.000000) 

5 
(0.857691) 

7 
(0.799546) 

8 
(0.659097) 

11 
(0.382088) 

6 90 0 6 
(1.000000) 

5 
(0.853142) 

7 
(0.785237) 

8 
(0.633072) 

2 
(0.440382) 

6 0 10 6 
(0.999499) 

7 
(0.826392) 

5 
(0.826392) 

8 
(0.636831) 

11 
(0.401293) 

6 10 10 6 
(1.000000) 

5 
(0.831473) 

7 
(0.826392) 

8 
(0.636831) 

11 
(0.401293) 

6 50 10 6 
(1.000000) 

5 
(0.862144) 

7 
(0.802338) 

8 
(0.655422) 

11 
(0.385907) 

6 90 10 6 
(1.000000) 

5 
(0.864335) 

7 
(0.785237) 

8 
(0.629300) 

2 
(0.436440) 

6 0 50 6 
(1.000000) 

5 
(0.853142) 

7 
(0.833977) 

8 
(0.625516) 

11 
(0.378280) 

6 10 50 6 
(1.000000) 

5 
(0.857691) 

7 
(0.833977) 

8 
(0.625516) 

11 
(0.378280) 

6 50 50 6 
(1.000000) 

5 
(0.868644) 

7 
(0.810571) 

8 
(0.644309) 

11 
(0.389738) 

6 90 50 6 
(1.000000) 

5 
(0.888768) 

7 
(0.791031) 

8 
(0.614092) 

2 
(0.424654) 

6 0 90 6 
(1.000000) 

5 
(0.841345) 

7 
(0.838914) 

8 
(0.621720) 

2 
(0.385907) 

6 10 90 6 
(1.000000) 

5 
(0.846136) 

7 
(0.838914) 

8 
(0.621720) 

11 
(0.385907) 

6 50 90 6 
(1.000000) 

5 
(0.853142) 

7 
(0.815941) 

8 
(0.640577) 

11 
(0.401293) 

6 90 90 6 
(1.000000) 

5 
(0.894351) 

7 
(0.793893) 

8 
(0.606420) 

11 
(0.428576) 
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Table 5.10 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 0.3% 
noisy measurements and m

ia ’s from equation (2.105). 

% noise = 0.3% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 4 
(0.999784) 

7 
(0.882977) 

5 
(0.881001) 

6 
(0.729070) 

8 
(0.594835) 

4 50 0 4 
(1.000000) 

7 
(0.857691) 

6 
(0.773373) 

11 
(0.751748) 

5 
(0.745374) 

4 90 0 4 
(1.000000) 

6 
(0.872857) 

11 
(0.833977) 

5 
(0.823815) 

7 
(0.738914) 

4 0 10 5 
(0.899728) 

7 
(0.848496) 

4 
(0.846136) 

6 
(0.758037) 

8 
(0.602568) 

4 10 10 4 
(0.999999) 

5 
(0.940620) 

7 
(0.899728) 

6 
(0.655422) 

11 
(0.579260) 

4 50 10 4 
(1.000000) 

5 
(0.911493) 

7 
(0.853142) 

11 
(0.815941) 

6 
(0.659097) 

4 90 10 4 
(1.000000) 

6 
(0.848496) 

11 
(0.838914) 

5 
(0.773373) 

7 
(0.758037) 

4 0 50 4 
(1.000000) 

5 
(0.965621) 

7 
(0.850831) 

6 
(0.799546) 

11 
(0.725747) 

4 10 50 4 
(1.000000) 

5 
(0.974412) 

7 
(0.876976) 

11 
(0.831473) 

6 
(0.694975) 

4 50 50 4 
(1.000000) 

5 
(0.917736) 

11 
(0.909878) 

7 
(0.818589) 

6 
(0.655422) 

4 90 50 4 
(1.000000) 

7 
(0.857691) 

11 
(0.810571) 

5 
(0.725747) 

8 
(0.655422) 

4 0 90 4 
(1.000000) 

5 
(0.970621) 

7 
(0.850831) 

11 
(0.841345) 

6 
(0.732372) 

4 10 90 4 
(1.000000) 

5 
(0.975002) 

11 
(0.884931) 

7 
(0.866501) 

6 
(0.677242) 

4 50 90 4 
(1.000000) 

11 
(0.936992) 

5 
(0.930564) 

7 
(0.782305) 

6 
(0.644309) 

4 90 90 4 
(1.000000) 

7 
(0.846136) 

11 
(0.843753) 

5 
(0.745374) 

8 
(0.659097) 

6 10 0 6 
(0.995060) 

7 
(0.821214) 

5 
(0.818589) 

8 
(0.629300) 

4 
(0.405164) 

6 50 0 6 
(1.000000) 

5 
(0.853142) 

7 
(0.796731) 

8 
(0.648028) 

4 
(0.416833) 

6 90 0 6 
(1.000000) 

5 
(0.838914) 

7 
(0.779351) 

8 
(0.614092) 

2 
(0.460172) 

6 0 10 6 
(0.955435) 

7 
(0.823815) 

5 
(0.815941) 

8 
(0.625516) 

4 
(0.412935) 

6 10 10 6 
(0.999758) 

7 
(0.823815) 

5 
(0.821214) 

8 
(0.625516) 

4 
(0.416833) 

6 50 10 6 
(1.000000) 

5 
(0.855428) 

7 
(0.799546) 

8 
(0.644309) 

4 
(0.420740) 

6 90 10 6 
(1.000000) 

5 
(0.848496) 

7 
(0.782305) 

8 
(0.610261) 

2 
(0.456204) 

6 0 50 6 
(1.000000) 

5 
(0.838914) 

7 
(0.828945) 

8 
(0.614092) 

4 
(0.444329) 

6 10 50 6 
(1.000000) 

5 
(0.841345) 

7 
(0.828945) 

8 
(0.614092) 

4 
(0.452241) 

6 50 50 6 
(1.000000) 

5 
(0.853142) 

7 
(0.805106) 

8 
(0.629300) 

4 
(0.448283) 

6 90 50 6 
(1.000000) 

5 
(0.870763) 

7 
(0.785237) 

8 
(0.594835) 

4 
(0.460172) 

6 0 90 6 
(1.000000) 

7 
(0.833977) 

5 
(0.810571) 

8 
(0.602568) 

4 
(0.492021) 

6 10 90 6 
(1.000000) 

7 
(0.833977) 

5 
(0.813268) 

8 
(0.602568) 

4 
(0.492021) 

6 50 90 6 
(1.000000) 

5 
(0.821214) 

7 
(0.810571) 

8 
(0.625516) 

4 
(0.488033) 

6 90 90 6 
(1.000000) 

5 
(0.866501) 

7 
(0.788145) 

8 
(0.583166) 

4 
(0.488033) 
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Table 5.11 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 0.5% 
noisy measurements and m

ia ’s from equation (2.105). 

% noise = 0.5% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 4 
(0.994297) 

7 
(0.882977) 

5 
(0.855428) 

6 
(0.687933) 

8 
(0.579260) 

4 50 0 4 
(1.000000) 

7 
(0.859930) 

11 
(0.715662) 

3 
(0.666402) 

6 
(0.659097) 

4 90 0 4 
(1.000000) 

3 
(0.823815) 

11 
(0.802338) 

7 
(0.738914) 

6 
(0.722405) 

4 0 10 5 
(0.879000) 

4 
(0.853142) 

7 
(0.846136) 

6 
(0.719043) 

8 
(0.590954) 

4 10 10 4 
(0.999863) 

5 
(0.909878) 

7 
(0.899728) 

11 
(0.559618) 

6 
(0.559618) 

4 50 10 4 
(1.000000) 

7 
(0.850831) 

5 
(0.776373) 

11 
(0.776373) 

3 
(0.770351) 

4 90 10 4 
(1.000000) 

3 
(0.843753) 

11 
(0.807850) 

7 
(0.761148) 

6 
(0.698469) 

4 0 50 4 
(1.000000) 

5 
(0.922197) 

7 
(0.846136) 

11 
(0.701944) 

6 
(0.598706) 

4 10 50 4 
(1.000000) 

5 
(0.927855) 

7 
(0.874929) 

11 
(0.815941) 

3 
(0.625516) 

4 50 50 4 
(1.000000) 

11 
(0.892513) 

3 
(0.841345) 

7 
(0.818589) 

5 
(0.782305) 

4 90 50 4 
(1.000000) 

7 
(0.857691) 

3 
(0.836458) 

11 
(0.802338) 

8 
(0.673645) 

4 0 90 4 
(1.000000) 

5 
(0.925067) 

7 
(0.846136) 

11 
(0.841345) 

3 
(0.633072) 

4 10 90 4 
(1.000000) 

5 
(0.930564) 

11 
(0.892513) 

7 
(0.862144) 

3 
(0.666402) 

4 50 90 4 
(1.000000) 

11 
(0.933193) 

3 
(0.855428) 

5 
(0.823815) 

7 
(0.779351) 

4 90 90 4 
(1.000000) 

7 
(0.846136) 

3 
(0.846136) 

11 
(0.843753) 

8 
(0.684387) 

6 10 0 6 
(0.974412) 

7 
(0.818589) 

5 
(0.805106) 

8 
(0.617912) 

4 
(0.543795) 

6 50 0 6 
(1.000000) 

5 
(0.836458) 

7 
(0.793893) 

8 
(0.636831) 

4 
(0.547758) 

6 90 0 6 
(1.000000) 

5 
(0.807850) 

7 
(0.776373) 

8 
(0.598706) 

4 
(0.551717) 

6 0 10 6 
(0.914657) 

7 
(0.821214) 

5 
(0.799546) 

8 
(0.614092) 

4 
(0.551717) 

6 10 10 6 
(0.993790) 

7 
(0.821214) 

5 
(0.805106) 

8 
(0.614092) 

4 
(0.551717) 

6 50 10 6 
(1.000000) 

5 
(0.836458) 

7 
(0.793893) 

8 
(0.633072) 

4 
(0.555670) 

6 90 10 6 
(1.000000) 

5 
(0.815941) 

7 
(0.776373) 

8 
(0.594835) 

4 
(0.559618) 

6 0 50 6 
(0.999749) 

7 
(0.826392) 

5 
(0.813268) 

8 
(0.598706) 

4 
(0.598706) 

6 10 50 6 
(0.999998) 

7 
(0.826392) 

5 
(0.813268) 

4 
(0.606420) 

8 
(0.598706) 

6 50 50 6 
(1.000000) 

5 
(0.823815) 

7 
(0.802338) 

8 
(0.617912) 

4 
(0.606420) 

6 90 50 6 
(1.000000) 

5 
(0.826392) 

7 
(0.779351) 

4 
(0.590954) 

8 
(0.575345) 

6 0 90 6 
(1.000000) 

7 
(0.831473) 

5 
(0.764238) 

4 
(0.659097) 

8 
(0.587064) 

6 10 90 6 
(1.000000) 

7 
(0.831473) 

5 
(0.767305) 

4 
(0.662758) 

8 
(0.587064) 

6 50 90 6 
(1.000000) 

7 
(0.805106) 

5 
(0.770351) 

4 
(0.655422) 

8 
(0.606420) 

6 90 90 6 
(1.000000) 

5 
(0.799546) 

7 
(0.782305) 

4 
(0.629300) 

8 
(0.559618) 
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Table 5.12 Ranking of the identified damaged members by m
dP  value for different 

percentages of reduction of the stiffness parameter of members 4 and 6 using 1.0% 
noisy measurements and m

ia ’s from equation (2.105). 

% noise = 1.0% 

% Reduction of 
Parameter Value 

Ranking of Identified Damaged Members (by m
dP  value) Actual 

Damaged 
Member EA EI 1st 2nd 3rd 4th 5th 

4 10 0 4 
(0.993963) 

1 
(0.933193) 

3 
(0.906583) 

2 
(0.899728) 

7 
(0.888768) 

4 50 0 4 
(1.000000) 

2 
(0.992240) 

3 
(0.990862) 

1 
(0.987126) 

7 
(0.888768) 

4 90 0 4 
(1.000000) 

3 
(0.995975) 

2 
(0.991344) 

1 
(0.985738) 

11 
(0.848496) 

4 0 10 4 
(0.966375) 

1 
(0.935745) 

3 
(0.894351) 

7 
(0.853142) 

2 
(0.848496) 

4 10 10 4 
(0.999359) 

2 
(0.973810) 

1 
(0.973810) 

3 
(0.961637) 

7 
(0.904903) 

4 50 10 4 
(1.000000) 

3 
(0.996319) 

2 
(0.987126) 

1 
(0.979325) 

7 
(0.886861) 

4 90 10 4 
(1.000000) 

3 
(0.997445) 

2 
(0.991106) 

1 
(0.986097) 

11 
(0.838914) 

4 0 50 4 
(0.999999) 

3 
(0.979325) 

2 
(0.971284) 

1 
(0.930564) 

7 
(0.881001) 

4 10 50 4 
(1.000000) 

3 
(0.985371) 

2 
(0.977785) 

1 
(0.957284) 

7 
(0.901475) 

4 50 50 4 
(1.000000) 

3 
(0.998011) 

2 
(0.988089) 

1 
(0.985371) 

11 
(0.864335) 

4 90 50 4 
(1.000000) 

3 
(0.998462) 

2 
(0.988396) 

1 
(0.983823) 

7 
(0.881001) 

4 0 90 4 
(1.000000) 

3 
(0.986097) 

2 
(0.970621) 

1 
(0.959941) 

7 
(0.876976) 

4 10 90 4 
(1.000000) 

3 
(0.988396) 

2 
(0.974412) 

1 
(0.967116) 

7 
(0.888768) 

4 50 90 4 
(1.000000) 

3 
(0.997947) 

2 
(0.985371) 

1 
(0.983823) 

11 
(0.896166) 

4 90 90 4 
(1.000000) 

3 
(0.998693) 

2 
(0.985738) 

1 
(0.981691) 

7 
(0.870763) 

6 10 0 6 
(0.886861) 

4 
(0.866501) 

7 
(0.826392) 

3 
(0.788145) 

5 
(0.754903) 

6 50 0 6 
(0.999869) 

4 
(0.874929) 

7 
(0.796731) 

3 
(0.785237) 

5 
(0.770351) 

6 90 0 6 
(1.000000) 

1 
(0.919244) 

4 
(0.906583) 

3 
(0.815941) 

7 
(0.776373) 

6 0 10 4 
(0.872857) 

7 
(0.828945) 

6 
(0.799546) 

3 
(0.793893) 

2 
(0.767305) 

6 10 10 6 
(0.919244) 

4 
(0.874929) 

7 
(0.826392) 

3 
(0.793893) 

2 
(0.761148) 

6 50 10 6 
(0.999941) 

4 
(0.886861) 

7 
(0.799546) 

3 
(0.796731) 

1 
(0.776373) 

6 90 10 6 
(1.000000) 

1 
(0.926471) 

4 
(0.913086) 

3 
(0.821214) 

7 
(0.779351) 

6 0 50 6 
(0.929220) 

4 
(0.909878) 

7 
(0.831473) 

3 
(0.831473) 

2 
(0.826392) 

6 10 50 6 
(0.978822) 

4 
(0.911493) 

7 
(0.831473) 

3 
(0.831473) 

2 
(0.821214) 

6 50 50 6 
(0.999999) 

4 
(0.920731) 

3 
(0.826392) 

1 
(0.813268) 

7 
(0.807850) 

6 90 50 6 
(1.000000) 

1 
(0.952541) 

4 
(0.938220) 

3 
(0.841345) 

7 
(0.785237) 

6 0 90 6 
(0.993244) 

4 
(0.942947) 

2 
(0.888768) 

3 
(0.848496) 

7 
(0.838914) 

6 10 90 6 
(0.998817) 

4 
(0.947384) 

2 
(0.890652) 

3 
(0.850831) 

7 
(0.838914) 

6 50 90 6 
(1.000000) 

4 
(0.951543) 

2 
(0.853142) 

3 
(0.841345) 

7 
(0.815941) 

6 90 90 6 
(1.000000) 

1 
(0.968557) 

4 
(0.959941) 

3 
(0.843753) 

2 
(0.793893) 
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Figure 5.3 Variation of the m
dP  values using m

ia ’s from equation (2.104) of the actual 
damaged member 4 with respect to different percentages of reduction of axial and 

bending stiffness parameters for different levels of noise in the measurements. 
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Figure 5.4 Variation of the m
dP  values using m

ia ’s from equation (2.105) of the actual 
damaged member 4 with respect to different percentages of reduction of axial and 

bending stiffness parameters for different levels of noise in the measurements. 
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stiffness parameter is fixed at 0%, 10%, 50% and 90%, respectively. On the right 

column, figures 5.3(b), 5.3(d), 5.3(f) and 5.3(h) show the results in which the 

percentage of reduction of the axial stiffness parameter is fixed at 0%, 10%, 50% and 

90%, respectively. Figures 5.4(a), 5.4(c), 5.4(e) and 5.4(g) on the left column and 

figures 5.4(b), 5.4(d), 5.4(f) and 5.4(h) on the right column also show the results in 

the same order.   

Figures 5.5 and 5.6 show the performance of the investigated algorithm by the m
dP  

value for the actual damaged member 6 using m
ia ’s from equations (2.104) and 

(2.105), respectively. The format of the illustrations follows Figures 5.3 and 5.4 in 

which the left and right columns show the results for different percentages of 

reduction of the bending and the axial stiffness parameters, respectively.  

The same sort of results is again seen. For the same level of damage the m
dP  value 

decreases as the level of noise in the measurements increases. Hence, it is evident that 

the performance of the proposed algorithm to assess damage is limited by the level of 

noise in the measurements. The m
dP  value approaches the unit value as the level of 

damage increases. Nevertheless, it is seen from Figures 5.3(a), 5.4(a), 5.5(a) and 

5.6(a) that at low levels of damage the reduction of EA yields m
dP  values closer to the 

unit value compared with the reduction of EI. Moreover, it is also seen from Figures 

5.3(b-f), 5.4(b-f), 5.5(b-f) and 5.6(b-f) that the probability of damage m
dP  is higher 

when EA is fixed at 10%, 50% and 90% reduction compared to when EI is fixed at 

10%, 50% and 90% reduction, respectively. This suggests that the reduction of EA 

may affect the damage assessment results more compared with the reduction of EI, 

which clearly illustrates the inherent sensitivity in assessing damage from the 

reduction of different stiffness parameters. Further, it can be seen from Figures 5.3(a), 

5.4(a), 5.5(a) and 5.6(a) that for the reduction of EA (EI fixed at 0% reduction) the 
m

dP  values from using the coefficients m
ia ’s in equation (2.105) are higher than those 

from using equation (2.104) and vice versa for the reduction of EI (EA fixed at 0% 

reduction). In Figures 5.3(b-f), 5.4(b-f), 5.5(b-f) and 5.6(b-f), it is seen that for the 

reduction of EI (EA fixed at 10%, 50% and 90% reduction) the m
dP  values from  using 
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Figure 5.5 Variation of the m

dP  values using m
ia ’s from equation (2.104) of the actual 

damaged member 6 with respect to different percentages of reduction of axial and 
bending stiffness parameters for different levels of noise in the measurements. 
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Figure 5.6 Variation of the m

dP  values using m
ia ’s from equation (2.105) of the actual 

damaged member 6 with respect to different percentages of reduction of axial and 
bending stiffness parameters for different levels of noise in the measurements. 
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the coefficients m
ia ’s in equation (2.105) are slightly higher than those from using 

equation (2.104) and vice versa for the reduction of EA (EI fixed at 10%, 50% and 

90% reduction). In other words, the m
dP  values from using the coefficients m

ia ’s in 

equation (2.105) are more accurate with the reduction of EA compared to when using 

the coefficients m
ia ’s in equation (2.104). Thus, for the cases where damage manifests 

itself as the reduction of EA, the assessment of damage by using the coefficients m
ia ’s 

in equation (2.105) may be more effective. Still, further investigation is needed to 

support this observation. 

 

 

5.4 Chapter Summary 

The performance of the statistical damage assessment scheme was investigated 

through a simulation study using a two-story braced frame with multi-parameter 

members as the model problem. Various damage cases with different percentages of 

reduction of the axial stiffness parameter EA were examined for the single-parameter 

members. For the two-parameter members, the damage was modeled with different 

percentages of reduction in the axial stiffness parameter EA and the bending stiffness 

parameter EI using different levels of noise in the measurements. The statistics of the 

stiffness parameters of the structure are obtained by using the optimum sensitivity-

based method in conjunction with the ROEE algorithm. The baseline function ( )mg H  

proposed in Chapter 2 was used to identify whether a structural member is in the 

“healthy state” or the “damaged state.” The performance of the damage assessment is 

identified by using the probability of damage m
dP  for each member that approaches 

the unit value when it is certain that the member is damaged. The results from the 

simulation study indicate that the performance of the presented statistical damage 

assessment method for the structure under consideration may be more sensitive with 

the reduction of one stiffness parameter compared with the reduction of the other 

stiffness parameters. It was also observed that the outcome of the damage assessment 

can be improved by taking into account the sensitivity of the parameter estimates 

when assessing damage. In addition, the maximum level of noise permitting a 



 

 

178

 

structural damage assessment is 1% for the two-story braced frame compared to 20% 

for the simple-support truss structure in Chapter 3. This is probably due to the fact 

that the truss structure is more flexible and hence the free-vibration response of the 

truss is not affected much by its damping characteristics compared with the two-story 

rigid frame. However, further investigation is still needed to support this conclusion.  

 



CHAPTER 6 

 

CONCLUSIONS 

 

 

Structural damage assessment based on the parameter estimation algorithm from 

the measured response is a complicated problem. Various difficulties can arise in the 

practical application of structural damage assessment in which field measurements of 

the structural responses are obtained through testing. The focus of the present study is 

on the presence of the measurement noise. The noise in the measurements poses a 

direct effect on the sensitivity of the parameter estimates. We have presented an 

approach to the problem of structural damage assessment based upon the measured 

modal information that is noise-polluted. We have assumed that a structure can be 

characterized with a parameterized finite element model of single or multiple stiffness 

parameters with known topology and geometry. These parameters may be an axial 

stiffness, a bending stiffness, or a shearing stiffness, which correspond to different 

modes of deformation considered (i.e., axial, bending, or shear). Moreover, we have 

assumed that all of the structural vibration modes were measured at all degrees of 

freedom of the structural model and all natural frequencies and mode shapes of the 

structure were available as our measurement information. In addition, damage was 

regarded as a reduction in the element stiffness parameter. Hence, the nonlinearity 

effect of the structural damage was not taken into account.  

The key element of the present damage assessment algorithm is the estimation of 

the system parameters from the measured modal response. The statistical parameter 

estimation methods have been proved effective for the estimation of the system 

parameters from the measured modal response in the presence of the measurement 

noise. We have implemented an output error estimator as the tool for statistical 

parameter estimation in the face of noise-polluted data. We have used the measured 

data perturbation scheme to simulate the noisy measured response of the structures. 

The success of the output error estimator also depends on the behavior of the 

algorithm in the presence of the measurement errors. The regularization technique has 

been adopted to reduce the degree of instabilities of solutions to the statistical 
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parameter estimation problem by adding a regularization function algebraically to the 

initial objective function as a penalty term for the output error estimator (OEE). The 

proposed method has been referred to as the regularized output error estimator 

(ROEE). The statistical parameter estimation methods investigated were the Monte 

Carlo simulation method, the optimum sensitivity method and the sensitivity-based 

method.   

The statistical damage assessment algorithms that compare the statistical 

distributions of the healthy and damaged system parameters have been proved 

effective for the identification of damage in the presence of the measurement noise. 

The statistical distribution of the parameters can be obtained from a Monte Carlo 

sample of the parameter estimates which is generated by repeating the parameter 

estimation algorithms many times using different sets of measured data. Each of the 

measurement data sets can be simulated by adding a random error to the noise-free 

measured data. Hence, the parameter estimates can be treated as random variables. 

Furthermore, the sensitivity-based method and the optimum sensitivity-based method 

have been adopted as alternatives to the Monte Carlo simulation method in the 

statistical parameter estimation process. In these methods, the parameter estimation 

problem is solved only once to find the solution from the mean of the measured 

response. Upon completion of the statistical parameter estimation algorithm, a 

numerical integration scheme is applied to the statistical distribution of the system 

parameters to compute the probability of damage. The computed probability indicates 

the likelihood that a member is damaged. 

We have demonstrated the use of the statistical damage assessment algorithm on 

two example structures: a simple-support truss and a two-story braced frame. 

Numerical simulation studies were employed to examine the capabilities of the 

algorithm in assessing damage. The statistical damage assessment procedure has been 

tested with the single-damaged-member cases and the two-damaged-member cases 

for the simple-support truss structure. Noisy measurements were simulated by adding 

different amplitudes of proportional random errors to the noise-free analytical modal 

response of the structures. Three different methods of statistical parameter estimation 

have been used in conjunction with the two output error estimators to obtain the 
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statistical distribution of the parameter estimates that is used as an input to the 

statistical damage assessment algorithm. Evaluation of the statistical distribution of 

the parameter estimates at the potential damage locations has proved reliable as a 

method for assessing whether damage is detectable above the noise in the 

measurements. It has been shown that the proposed algorithm was able to assess 

damage effectively at low levels of noise in the measurements. For higher levels of 

noise in the measurements, there are always cases where actually damaged elements 

are identified as undamaged or actually undamaged elements are identified as 

damaged. However, the results have been shown to improve dramatically when the 

level of noise in the measurements decreases. In addition to the level of noise in the 

measurements, the severity of the damage in the structural components also limits the 

ability of the proposed algorithm to assess damage in a structural system. 

The performance of the statistical damage assessment is identified by using a 

statistical identification error (SIE) index that approaches zero when the assessment is 

effective. The level of success of the damage detection is indicated by the probability 

of success in detecting damage ( sP ). The performance of damage assessment with 

respect to the level of noise in the measurements is illustrated by the variation of the 

SIE values for all damage cases. The results of the simulation study showed that the 

performance of the proposed statistical damage assessment method can be improved 

by using the regularization method on the parameter estimation problem (ROEE) for 

all of the statistical parameter estimation schemes considered. Furthermore, the ROEE 

algorithm is more effective when using with the optimum sensitivity-based method 

compared to when using with the Monte Carlo simulation method and the sensitivity-

based method. 

The statistical damage assessment of a structure with members consisting of 

multiple stiffness parameters was investigated through a simulation study. A two-

story braced frame was selected as the model problem. Various damage cases of the 

single-parameter bracing members were examined by reducing the members’ axial 

stiffness parameter. For the two-parameter frame members, the damage was modeled 

as the reduction of the axial stiffness parameter and the bending stiffness parameter. 

The effect from using different levels of noise in the measurements was also 
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investigated. The statistics of the structural parameters are obtained by using the 

optimum sensitivity-based method in conjunction with the ROEE algorithm.  

To assess damage for the multi-parameter structural members, a baseline function 

( )mg H  was proposed to identify whether a structural member is in the “healthy state” 

or the “damaged state.” The boundary separating these two states is referred to as the 

“limit state” whose relative distance in the reduced-variate coordinate space can be 

used to quantify damage. The performance of the damage assessment is identified by 

using the probability of damage m
dP  for each member that approaches the unit value 

when it is certain that the member is damaged. The results from the simulation study 

indicate that the performance of the presented statistical damage assessment method 

for the structure under consideration may be more sensitive with the reduction of one 

stiffness parameter compared with the reduction of the other stiffness parameters. It 

was also observed that the outcome of the damage assessment can be improved by 

taking into account the sensitivity of the parameter estimates when assessing damage. 

In addition, the maximum level of noise permitting a structural damage assessment is 

1% for the two-story braced frame compared to 20% for the simple-support truss 

structure in Chapter 3. This is probably due to the fact that the truss structure is more 

flexible and hence the free-vibration response of the truss is not affected much by its 

damping characteristics compared with the two-story rigid frame. However, further 

investigation is still needed to support this conclusion. 

From the simulation studies, it has been found that the computation time in 

assessing damage can increase enormously as the structural model becomes more 

complex. In general, this computational burden depends on the number of degrees of 

freedom, the number of members in the finite element model of the structure and the 

number of parameters in each member of the structure. Possible alternatives should be 

investigated to improve the computation efficiency of the algorithm. One possible 

approach to reduce the computational burden of the current algorithm is to improve 

the solution algorithm for the statistical parameter estimation problem. 

In the current study we have considered only the linear baseline function to assess 

damage in the structural members with multiple stiffness parameters. Aside from its 
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own usefulness, certain aspects of the linear case would be the basis for an 

approximation to nonlinear baseline functions. Future study needs to be carried out to 

investigate other nonlinear baseline functions which may be suitable for different 

types of structures. 
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