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This thesis investigates the statistical damage assessment method for structures with
members consisting of one or more parameters. The parameters under consideration may comprise
of the axial, shear or bending stiffness parameters. The proposed method takes into account the
problem of noise contamination in the measured response of the structures. For the single-
parameter structural members, three distinct statistical methods were introduced: (1) the Monte-
Carlo simulation method; (2) the optimum sensitivity-based method; and (3) the sensitivity-based
method. The underlying principle of these methods is to compare the statistical distribution of the
estimated parameters for the damaged structure with the undamaged structure. A numerical
integration scheme can then be used to compute the probability of damage for each structural

member as a function of the level of damage.

It was found from the current study that the performance of the proposed damage assessment
scheme for the single-parameter structural members depends considerably upon the quality of the
estimated system parameters. In the present study, the regularization technique was adopted to
reduce the degree of instabilities of solutions to the parameter estimation problem in the presence
of the measurement noise. The level of success for the damage assessment is identified by the
statistical identification error index that approaches zero when the assessment is considered
effective.

To identify damage in the multi-parameter structural members, a baseline function was
proposed to identify whether a structural member isin the “healthy state” or the “damaged state.”
The boundary separating these two states is referred to as the “limit state.” The probability of
damage can then be computed as a function of the distance of the limit-state line to the origin of
the reduced-variate space which approaches the unit value when the damage can be assessed
effectively.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Structural parameter estimation from the measured modal response of a structure
can be used as an effective means for assessing the structural damage (Doebling et al.
1996; Shin and Hjelmstad 1996). This method requires a modal test in which a
structure is stimulated by being shaken under the resonance forces at the natural
frequencies of the structure. The moda response of the structure (i.e., natural
frequencies and mode shapes) is obtained from the signals of the displacement
sensors, which areinstalled at certain locations on the structure.

The assessment of damage for structural systems using the measured modal
response is difficult because of the error (or noise) in the measurements (Shin and
Hjelmstad 1994; Law et a. 1998). Generaly, if the measured data are noise-free the
damage of a structural member can be evaluated directly from the difference between
the current and the baseline parameter values. However, with the presence of the
measurement noise, the parameter values of a structural member can differ from the
baseline values even when the member is not damaged. Thus, it is important to
account for the effect of measurement errors in the estimation of the member

parameters.

The structural damage assessment method proposed in the current study compares
the statistical distribution of the system parameters for the current and the baseline
structures to account for the sensitivity of the system parameters to the noise. The
statistical distribution of the parameters can be obtained from a Monte Carlo sample
of the parameter estimates which is generated by repeating the parameter estimation
algorithms many times using different sets of measured data. Each of the
measurement data sets can be simulated by adding a random error to the noise-free
measured data. Hence, the parameter estimates can be treated as random variables.



In the current study we apply the output error estimator (OEE) of Banan and
Hjelmstad (1993) to estimate parameters for the structures under consideration and we
use the measured data perturbation scheme of Shin and Hjelmstad (1997) to simulate
the measured response of the structures. Furthermore, we adopt the sensitivity-based
method and the optimum sensitivity-based method of Araki and Hjelmstad (2001) as
dternatives to the Monte Carlo simulation method in the statistical parameter
estimation process. In these methods, the parameter estimation problem is solved only
once to find the solution from the mean of the measured response. Upon completion
of the statistical parameter estimation algorithm, a numerical integration scheme is
applied to the statistical distribution of the system parameters to compute the
probability of damage. The computed probability indicates the likelihood of a member
being damaged as a function of the level of damage. To reduce the degree of
instabilities of solutions to the statistical parameter estimation problem, a
regularization scheme of Pothisiri and Vatcharatanyakorn (2002) is adopted by adding
a regularization function algebraically as a penalty term to the parameter estimation
objective function for the output error estimator (OEE) of Banan and Hjelmstad
(1993). The proposed method is referred to as the regularized output error estimator
(ROEE).

There are many benefits and drawbacks to the statistical damage assessment
algorithm using the above mentioned statistical parameter estimation methods—the
Monte Carlo simulation method, the sensitivity-based method, and the optimum
sensitivity-based method—in conjunction with the OEE and ROEE agorithms.
Generdly, the performance of a statistical damage assessment method can be
identified by the accuracy of the method in assessing damage. For the current study, a
statistical identification error (SIE) is proposed to examine the variation in the
accuracy of the damage assessment algorithm from using different methods of
statistical parameter estimation.



1.2 Literature Review of Parameter Estimation and Damage Assessment

The modal test of a structure—in which the entire structure is excited by a
resonant forced vibration and the structural response is measured at certain
locations—has shown promise as a tool in global damage detection (Doebling et al.
1996, Shin and Hjelmstad 1996). The measured response of a structural system (i.e.,
natural frequencies and mode shapes), obtained from a modal test, can be used to
estimate the system parameters. The assessment of damage is carried out by
monitoring changes in the values of parameters for the structural systems.

It has been shown that the |least-squares minimization of the error function of the
measured data from a static force test can be used to estimate the stiffness parameters
of areinforced concrete bridge structure (Sanayei and Scampoli 1991). In particular,
the error function, which is nonlinear, is transformed to a linear function by using the
first-order derivatives of the Taylor's series approximation. The linearized error
function is in the form of a Euclidean norm of the difference between the measured
stiffness parameters and the stiffness parameters from finite element models. The

minimization problem is solved iteratively until the error function approaches zero.

The problem of structural parameter estimation from the measured response can
be cast as the least-squares minimization of the equation errors or the mode output
errors (Banan and Hjelmstad 1993). The minimization problem can be solved by
using the recursive quadratic programming (RQP) scheme. In this method, the
nonlinear objective function is approximated by a series of quadratic functions and the
corresponding constraints are approximated with linear functions. A set of a priori
parameter estimates is required to initiate the algorithm, and the parameter values in
the next iterations are computed from the estimated step lengths and search directions
of the previous iterations.

The estimation of the system parameters in the present study uses the measured
modal response of the structure under consideration as input to the parameter
estimation algorithm. These response measurements are unavoidably contaminated
with measurement errors. The measurement error can make the estimated parameters
for the current structure to be different from the baseline values even when there is no
damage, leading to an incorrect assessment of damage for the structure (Shin and



Hjelmstad 1994 and Law et a. 1998). To account for the sensitivity of the parameter
estimates to the measurement error, a statistical method in which the probability
density function of the system parameters for the healthy and the damaged structural
systems can be used to assess damage of the structural members (Papadopoulas and
Garcia 1998).

Yeo et a. (2000) proposed a method for the statistical damage assessment of
members of a structure by comparing between the probability density function of the
healthy and damaged system parameters. A hypothesistest is used to identify whether

to accept or to refuse the existence of damage in members of the structure.

Pothisiri and Hjelmstad (2003) proposed a statistical damage assessment scheme
that compares the statistical distribution of the estimated parameters for members of
the current and the baseline structures. In this method, the output error |east-square
estimator of Banan and Hjelmstad (1993) is used in conjunction with the measured
data perturbation scheme of Shin and Hjelmstad (1997) to generate a Monte Carlo
sample of parameter estimates from a set of noisy measurements. The generated set of
parameter estimates is used to construct the statistical distribution of the system

parameters that is used to assess damage.

The statistical distribution of the parameter estimates which is used as the key
component to the statistical damage assessment methods may be obtained by using
various algorithms. One such algorithm is to estimate the statistical indices of the
parameter estimates and use them as the bases for constructing the required statistical
distribution by assuming certain distribution functions. The statistical indices of the
parameter estimates (i.e., the mean and the covariance matrix) can generally be
obtained by using a statistical parameter estimation algorithm. For the current study
we adopt the sensitivity-based method and the optimum sensitivity-based method
proposed by Araki and Hjelmstad (2001) to perform statistical parameter estimation.

One of the key concerns in solving a parameter estimation problem is the
instabilities of solutions arising from using spatially sparse and noise-polluted
measurement data. To reduce the degree of instabilities of solutions to the parameter
estimation problem investigated in the current study, we adopt the regularization
scheme proposed by Pothisiri and Vatcharatanyakorn (2002). In this technique, a



regularization function is added to the initial objective function as a penalty term that
eradicates the out-of-bound solutions. With the improvement in the accuracy of the
estimated system parameters by using the regularization technique, the performance
of a statistical damage assessment scheme is expected to also improve. The technique
is applied to different methods of the statistical parameter estimation—the Monte
Carlo smulation method, the sensitivity-based method, and the optimum sensitivity-
based method.

1.3 Research Objectives

The main objective of this research is to develop an effective damage assessment
algorithm for structural systems from noise-polluted modal response. The present
study investigates a statistical damage assessment scheme in which the statistics of the
structural parameters are obtained by using three different methods of statistical
parameter estimation—the Monte Carlo simulation method, the sensitivity-based
method, and the optimum sensitivity-based method. These methods are also used in
conjunction with two optimization algorithms—the output error estimator (OEE) and
the regularized output error estimator (ROEE)—to perform statistical parameter
estimations. We characterize a structural system by using a parameterized finite-
element model, and we infer damage from changes in the element parameters in the
finite-element model of the structure. To account for the effect of the measurement
noise on the parameter estimates, the measured data perturbation scheme of Shin and
Hjelmstad (1994) is used to generate a set of noisy measurement data to be used in the
statistical parameter estimation algorithms. The damage is assessed by comparing the
statistical distribution of the member parameters for the damaged and the associated
baseline structure.

The key objectives of this research can be summarized in the following list

1.3.1 To implement three different methods of statistical parameter estimation, i.e.
the Monte Carlo ssimulation method, the optimum sensitivity-based method
and the sengitivity-based method and compare their performance when used in
conjunction with the current statistical damage assessment method.



1.3.2 To evauate the effectiveness of using the regularization method in the
structural parameter estimation algorithm to improve the accuracy of the
statistical damage assessment scheme.

1.3.3 To improve the computation of the statistical distribution of the parameter
estimates by using efficient methods of statistical parameter estimation (the
sensitivity-based method and the optimum sensitivity-based method).

1.3.4 To develop a computer program that can assess damage of structural systems
with various types of structural elements, e.g. trusses, frames, beams, etc.

1.35 To device an algorithm that is capable of assessing damage in structural

members with multiple stiffness parameters.

1.4 Scope of Research

The aim of the current research is to investigate the performance improvement of
the statistical damage assessment method proposed by Pothisiri and Hjelmstad (2003)
by using different methods of statistical parameter estimation and the regularization
technique. For a structure with members consisting of multiple stiffness parameters,
the statistical damage assessment algorithm is applied by using the optimum
sensitivity-based method and the regularization technique in the statistical parameter
estimation. Numerical simulation studies are employed to examine the capabilities of
the investigated algorithms in assessing damage of two model structures; a ssimply-
supported bridge truss and a two-story braced frame. The numerica simulation
procedure is selected over the real case study because our objective is to quantify the
performance of the algorithm rather than to plainly illustrate its use. In the ssimulation
process, the measured data are generated by adding proportional random errors to the
analytical modal response of afinite-element model of the structure. This allows us to
investigate different levels of noise in the measurements by simply varying the

amplitude of the imposed random errors.
The assumptions adopted in the current study are listed as follows:

1.4.1 A refined finite element model of the structure is defined.
1.4.2 The baseline or undamaged properties of the structure are known.



1.4.3 The stiffness parameters, i.e. the axia stiffness (EA), the bending stiffness
(El) and the shear stiffness (GA) decrease from the baseline values as a result

of damage while the mass density ( o) remains constant.

1.4.4 For a structure with members consisting of a single stiffness parameter,
damage is defined as a drop in a member stiffness parameter between two
discrete time points. For a structure with members consisting of multiple
stiffness parameters, damage is modeled by reducing different stiffness
parameters of the structural members.

145 Thestructureislinear elastic.

1.4.6 For the measurement data only the mode shapes are subject to measurement
noise whereas the natural frequencies are noise-free.

1.4.7 The mode shapes for all modes and degrees of freedom of the structure are
used as the measurement data.

1.4.8 The measurement noise is represented by the uniform random variates.

The manuscript consists of six chapters. Chapter 1 is an introduction. A number
of research works in the areas of dtatistical parameter estimation and damage
assessment are briefly summarized in this chapter. Chapter 2 addresses the issue of
the concept, principle and theory of the statistical parameter estimation and damage
assessment. The three algorithms of statistical parameter estimation—i.e., the Monte
Carlo simulation method, the sensitivity-based method and the optimum sensitivity-
based method—using the output error estimator (OEE) of Banan and Hjelmstad
(1993) and the regularized output error estimator (ROEE) proposed by Pothisiri and
Vatcharatanyakorn (2002) are described. Based on the statistical distribution of the
system parameters, a procedure for assessing the severity of damage proposed by
Pothisiri and Hjelmstad (2001) is used to compare the results among the three
methods of statistical parameter estimation that are used in conjunction with the OEE
and ROEE agorithms. In Chapter 3, smulation studies are carried out for a two-
dimensional, simply supported bridge truss. The simulated single component of
damage and the two-damage cases are investigated for different levels of noise in the
measurements. Through simulation studies, the performance of each of the
investigated algorithms in assessing damage is illustrated. In Chapter 4, statistical



simulation studies are carried out for the same structure as in Chapter 3. A statistical
identification error (SIE) is devised to quantify the levels of performance for each
algorithm. One hundred different damage cases of the single-damaged-member cases,
the two-damaged-member cases, and the three-damaged-member cases are
investigated by examining the SIE values for different levels of noise in the
measurements. The performance of each of the investigated algorithms in assessing
damage is evaluated by using the plot of the SIE values and the probability of success
in detecting damage with respect to different levels of noise in the measurements. In
Chapter 5, the statistical damage assessment algorithm described in Chapter 2 is
applied to a two-story braced frame with members consisting of multiple stiffness
parameters. Again, the simulated cases of single component and multiple components
of damage are investigated for different levels of measurement noise. The damage is
modeled by reducing different stiffness parameters of the structural members. Chapter
6 summarizes principal findings obtained from the current study and discusses future

research work.



CHAPTER 2

STRUCTURAL PARAMETER ESTIMATION AND DAMAGE ASSESSMENT

2.1 Introduction

Damage in civil engineering structures is inevitable in the face of many
uncontrollable factors such as fault topographical features of the structural supports,
hazardous surrounding climates, and severe imposed loading conditions. Damage to a
structural system can generally be characterized by the reduction of the overal
stiffness of the structure. The level of the overal structural stiffness reduction is
indicated by the degree of damage to the structural components, i.e. members of the
structural system. By using a straightforward parameterization scheme for the
structural stiffness, damage can be defined as a reduction of the stiffness parameters
of the structural members between two discrete time inferences. The schematic
representation of damageisillustrated in Figure 2.1.

Y,

axial stiffness, x(t)
x(t) A

Figure 2.1 The definition of damage as a drop in element constitutive parameter

value.
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* The structure in Figure 2.1 is a truss structure with each member consisting of a
- single stiffness parameter ' x (i.e., the axial stiffness). A drop in this parameter,
therefore, directly indicates damage of the truss. However, the structures in general
may be modeled with multiple stiffness parameters to characterize the distinct modes
of deformation (i.e., axial, bending, and shear). For these general cases the same -
“definition of damage still holds but the assessment is somewhat more complicated as

will be discussed later.

For the current study we adopt the method of Pothisiri and Hjelmstad (2003) that
compares the probability density distribution of the estimated system parameters for
the baseline and the current structures to assess damage. A key step to the -
implementation of the damage assessment rﬁethod is a statistical parameter estimation
of the structure. We select three methods to carry out the estimation, i.e., the Monte
Carlo simulation, the sensitivity-based method and the optimum sensitivity method.
These methods are used in conjunction with the output error estimator (OEE) of

Banan and Hjelmstad (1993) to estimate the system parameters from sparse and noisy

- data sets. Further, we adopt the regularized output error estimator (ROEE) of Pothisiri

and Vatcharatanyakorn (2002) to reduce the degree of instabilities of solutions to the
parameter estimation problem. The numerical study of the proposed algorithms by
using an 11-degree-of-freedom truss model is presented in Chapter 3 and Chapter 4 to
iliustrate the implefnentation of the process ‘and to investigate the performance of the -

algorithms. -

2.2 .System Parameter Estimation from Modal Response

The algorithm selected for the estimation of the system parameters in the current
study is cast in the form of a constrained least-squares minimization problem (Banan

and Hjelmstad 1993):

N
x€R P

_ \, A )
Minimize JE(X,@)Z%E@Q(X,(P,.)-e,.(x,<1>,.) (2.1)
: i=1

subjectto  ¢) <x<c,



"in which

o

and ¢,

11

is the system parameters;

1s the vector of measurements comprising N, mode shapes which is.

T
X

defined as & = {<f> R N, } where & ; is the measured mode
shape for the ith vibration mode;

is the error function for the ith mode;

is the weight factor for the ith mode;

is the number of modes with the measured data;

is the number of stiffness parameters in the model;

is the lower constraints of x;

is the upper constraints of x.

Pothisiri and Vatcharatanyakormn (2002) have shown that the Tikhonov

regularization technique can be used to alleviate the problem of discontinuities of

so_lu_tidns to the above parametér estimation problem by' adding a regularization

function to the objective function J, (x,d;). The regularized output error estimator

(ROEE) is expressed as

N, . .
Minimize J(x,si>)=l 5,.e,.(x,<f>,.)-e,.(x,£i)+ia2 x—x,| (2.2)
"1k 2 .

xer™?

=1

subjectto ¢} <x<c;,

in which
o
and X, -

is the regularization factor;
is the a priori estimates of the system parameters which are

normally taken as zero.
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The derivation of the error function e, (x,(f)i) in equations (2.1) and (2.2) is based

upon the generalized eigenvalue problem of the free undamped vibrational response
for the ith vibration mode of a structure.

Kx)®, = AM®, (2.3)

inwhich
K(x) is the linear stiffness matrix of the structural model that is
parameterized by the parameters x ;
A is the eigenvalue (the square of the natural frequency) for the ith
vibration mode;

D is the the eigenvector (mode shape) for the ith vibration mode;

and M is the mass matrix which is composed of the material density

properties and is assumed to be constant.

Following the work of Pothisiri and Hjelmstad (2001), the first N, natural

frequencies and natural modes are assumed to be obtained from a modal test. For each
mode, it is assumed that the frequency is measured accurately and that the mode
shape is sampled at certain discrete locations. These measurement locations
correspond with the degrees of freedom of the finite element model of the structure.

In particular, the set of degrees of freedom associated with the measurement |ocations
of the test structure is defined as X and the set of remaini ng degrees of freedom is
defined as N. Moreover, the number of measured and unmeasured degrees of
freedom are denoted, respectively, as Nd and N, . As such, the measured eigenvector

and the structural system matrices can be partitioned based on these two sets. The ith

eigenvector can be reordered and partitioned as

i } (2.4)
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in which
P Is acolumn permutation of the identity matrix;
(i)i is the submatrix of the eigenvector components for the ith vibration
mode associated with the measured degrees of freedom,
and @, is the submatrix of the eigenvector components for the ith vibration

mode associated with the unmeasured degrees of freedom.

The structural matrices can be reordered as

K =PKP"; and M =PMP". (2.5)

The reordered mass matrix can be partitioned as follows

M{l\?ﬂ 1\:412} (2.6)
M, M,
inwhich
M,, is the portion of the mass matrix associated with the measured
degrees of freedom of the structural model;
and M, is the portion of the mass matrix associated with the unmeasured

degrees of freedom of the structural model.

The partitioned mass matrices are defined as

M

{P Mﬁ} and M{Mﬂ} 2.7)
M21 M22 0

With a given definition of the matrix B,(x)=K(x)-AM, a straightforward

manipulation of equation (2.3) yields the equivalent expression
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B,(0®, = LM, (2.8)

The right hand side of the above equation involves only the measured response (f)i
rather than a complete response vector. Also, it should be noted that B,(x) is

symmetric, which is different from the definition of Banan and Hjelmstad (1993).
With these definitions, ameasure of error for the output error estimator can be defined
as

¢ (x,®)=®, - 4QB, (YM®D, (2.9)

in which
Q is the boolean matrix extracting the components of the response

vector associated with measured degrees of freedom from the

complete eigenvector by the relationship of (f)i =Q®, .

2.3 Statistical Parameter Estimation

The dtatistical parameter estimation techniques can be used to account for the
sensitivity of the solution of a parameter estimation problem due to the uncertainty of
the measured data. In these methods one can obtain, for the estimated system
parameters x , the mean X and the covariance matrix R* from the mean @ and the
covariance matrix R® of the measurements @, respectively. The process of a
statistical parameter estimation method isillustrated schematically in Figure 2.2.

®andR® — Statistical Parameter Estimation | —p X and R*

Figure 2.2 The process of statistical parameter estimation.
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The problem of the system parameters estimation from the measured response is
~ generally cast as a least-squares minimization problem. If the error function is a linear
“function of the system parameters, the least-squares minimization is a quadratic -

programming problem, and a closed-form expression of the estimates of the system

- parameters is possible. Furthermore, if the error function is linear with respect to not

only the system parameters but also to the measured data, one can obtain closed-form

expressions for X and R*, respectively, in terms of ® and R* . On the other hand, if
the error function is nonlinear, iterative procedures are generally required to solve fhe
'vn_onlinear optimization problem. Alternatively, we may use the methods providing a
second—ordér or higher-order approximation of the statistical indices of the sYstem
~ parameters which allow us to assess the bias due to the nonlinearities in the error
function. Many parameter estimation problems in the field of structural mechanics fall
into this class of nonlinear optimization problems. We shall classify the statistical
parameter estimation methods frequently used in the literature into thev following three
 categories: the Monte Carlo simulation method, the sensitivity-based method, and the

optimum sensitivity-based method.

, In the current study, we use the output error estimator (OEE) proposed by Banan
" and Hjelmstad (1993) and the regularized output error estimator (ROEE) proposed by

Pothisiri and Vatcharatanyakorn (2002) in conjunction with the selected statistical

 parameter estimation schemes for the performance investigation of the present

damage assessment method. The derivations of these estimators are summarized as

follows.

The output error estimator (OEE) proposed by Banan and Hjelmstad (1993) as
previously shown in equation (2.1) can be rewritten by replacing the dot product of
the error function with a norm quantity. The resulting expression is in the following

+ form

N
xeR"P

Minimize _JE(x)zézT"jain%iw f(x)”z '(2,10)
i=1 .

subjectto e(x)<0
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m which

d is the measurédmode shape for the ith mode;

L

and <l>f(x)' is the equivalent mode shape for the ith mode which is define. as

®¢(x) = 1QB;' (x\)M$ .

For the current study we adopt the recursive quadratic programming (RQP)" 3
technique to solve the above nonlinear least-squares minimization problem. In this
technique, the estimated system parameters in the (k+1)th iteration of the

minimization process can be computed as

X, =X, +08,d, I

in which
B, is the step length for the kth iteration of the minimization algorithm;
v.and d, . 1is the search. direction for the kth iteratton of the minimization

algorithm. -

By using the Taylor’s series expansion of the objective function in equation
(2.10) up to the second-order derivative with respect to the system parameters at the

kth iteration x, , we obtain the following expression

;/

: |
Je(Xp ) =Jp(x, +d) = J(x,)+ VJ, (x,)d, +EdZV2J5(xk b, (2.12)

- Similarly, we can use the first-order Taylor’s series expansion ‘to linearize the

“ constraints

o(x,,,) =¢(x, +d,) ~e(x,)+Ve(x,)'d, (2.13)
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The optimum search direction for the kth iteration of the minimization process d, can -

be obtained from the quadratic subproblem

Minimize %d{szE (x,)d, +VJ.(x,)'d, (2.14)

d;

subjectto  e(x,)+ Ve(x,)'d, <0

The gradient of the objective function with respect to the system parameters x, is

expressed as

N, N,
V()= §Ve(®'e,x)=—) §Se(x) (2.15)
i=1 i=1
in which
S, is the sensitivity matrix of the parameter estimates for the ith

measured mode which is given by S, = Ve, (x).

The Gauss-Newton approximation method can be used to evaluate the Hessian
matrix of the parameter estimates by neglecting the second-order derivative term of
the error function. The resulting expression for the positive-definite Hessian matrix

can be written as

N, N, :
H= Z_;@Vei (X)T Ve (x)+ Z;(S,Vzei x)e,(®)
- .
~ 2 6Ve ) Ve ) (2.16)
' i=
Nm
~ Y 58S,
i=1

Substituting VJ (x) and H from equations (2.15) and (2.16), respectively, into

- equation (2.14) leads to
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Minimize dTHd ZédTS"T ¢ (2.17)

4,

subjectto A, d, <b,

where A, =Vex,)'; b, =—¢(x,); and ef =ef(x,) - (2.18)

and the subscript & denotes the £th iteration of the minimization procedures. -

Equation (2.17) can be expressed in the form of a Lagrangian function as

od,, A, )_ dTH d, Zade" e +AJ(Ad, —b,) (2.19)

i=1

in which
A, is the vector of Lagrange multipliers for the kth iteration of the

minimization process.

The first-order essential conditions for the optimum search direction d, are

v, E(dk,A) 0 — Hd, Zas" e +AA =0 (2.20)
i=1 -
and . Vo ld,A3=0 — Ad, —b =0 221

Note that equation (2.21) is satisfied when the constraints are active at the ith

- iteration. In the matrix form, equations (2.20) and (2.21) can be rewritten as

- H, A’ 58" e*
o Z i © (2.22)
- Ak 0 J Ak : .

bk

Solving equation (2.22) leads to
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N, T
A, :_[AkHZIAZ]_] bk—AkH;lzéiSf.‘ el | (2.23)

and _ {Zésk ’ ] (2%

The regularized output error estimator (ROEE) proposed by Pothisiri and

Vatcharatanyakorn (2002) as shown in equation (2.2) can also be rewritten as

N, _ '
Minipize J(X)==3 6, [, —@:0] + Latfx-x,|f (2.25)
xer™? 2 =1 2 :

subjectto e(x)<0

Again, we can use the Taylor’s series expansion to approximate the objective function
" in the above minimization problem at the (4+1)th iteration from its derivatives with

respect to the estimated parameters at the kth iteration x et

J(X ) =J(x, +dy)

e 1 1 2.26
~J(x,)+VJ(x,) d, +%dZV2JE(Xk)dk T [Edzdk +d, (Xk _XO) ( )

L

To obtain the optimum search direction d,, we use the following quadratic

Subproblem

‘Minimize Ed;VZJE(xk)dk+VJE(xk)‘ d, +o’ %d{dﬁd{ (x,—x,)| (227)

d;

subject o e(x, )+ Ve(x,)'d, <0

- By substituting V.J,(x) and H from equations (2.15) and (2.16), respectively, into

equation (2.27), we obtain the following expression
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N, . C
Minimize %dZdek—ZéidZSf ¢ +a %d;dk_d;(xo-xk) (2.28)

i=1

subjectto A, d, <b,

The Lagrangian function for the above minimization problem can be expressed as

(4, A)=> dTHd ZédTS" %d,fdk—dZ(xo—xk)+AZ(Akdk—bk) (2.29)

1:, .

The first-order essential conditions for the optimum search direction d, are

I g
V, ld,A)=0 — Hd, +o’d,—> 585 ef —o’(x,— X,)+AA, =0 (2.30)

=1

and the expression in equation (2.21).

Equationé (2.30) and (2.21) can be written in the matrix form as

H, +o’l1 A

(d, Zé,s"ehra o= X )| 231)
A, 0 {Ak , - '

bk

Solving equation (2.31} leads to

1]

b 1-1 Ny )
Ak:—[Ak(Hk+a21) 1A“;J {h Ak(H +a ’[Zaske +a 0-—xk)J
\

L i=1

(2.32)

NI’I . T
> 6S; ef +o (x,—x, )~ ALA,

i=]

d,=(H, +o’) (2.33)

The optimal regularization factor « is computed as (Pothisiri and Vatcharatanyakom

2002)
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o= jo> : (234
in which
O is . the - maximum singular value of the sensitivity matrix

s:{sl,sz,...,sNM};

2.3.1 Monte Carlo Simulation

In the Monte Carlo simulation method, synthetic measurements are created from ,
a single measurement data set by using computer-generated random numbers. For the
- current study we adopt the data perturbation scheme proposed by Shin and Hjelmstad

- {1994) to generafe the measurement data which is given by the following expression

¢, = b, (1+En) o (2.35)
in which
(51]. is the simulated noisy mode shape at the jth degree of freedom of
the 7th vibration mode of the structural model; |
<f>,.j is the noise-free mode shape at the jth degree of freedom of the ith
-vibration mode of the structural model; _
ur is a uniform random variate in the range [-1, 1];
and ¢ is the percentage noise amplitude. |

Let us generate N, sets of (f’,(t =1, 2, 3... N,). The specified statistical indices

® and R” can be obtained from the population of synthetic observations. Next, a set

~ of parameter estimates x(<I3,) is obtained by repeating the nonlinear least-squares

' minimization for each artificial observation. Approximated estimates of X and R*
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can be directly extracted from the set of estimated system parameters according to the

standard definition of the mean and the covariance of a finite discrete data set.

¢t f=1

N, N,

t =1 t 1=l f =l

_ 1 & 1T & | 1 1
x:FZx,; and .R_={FZX,®X,}~FZX,®FZX, (2.36)

in which

&
X

RX

denotes the tensor operator;
is the mean of the parameter estimates;
is the covariance matrix of the parameter estimates;

1s the tth sample of parameter estimates;

is the size of the Monte Carlo population.

The statistical distribution of the parameter estimates can_ be obtained directly

from the Monte Carlo sample by creating the probability density function (PDF) of

each parameter as the frequency distribution for a discrete random variable. The basic

concept behind the Monte Carlo simulation is simple and straightforward. The

approximations improve as the number of synthetic measurements increases. The

process of statistical parameter estimation with Monte Carlo simulation is illustrated

schematically in Figure 2.3..

"

—> ¢, —> —» x(®) —»
—>» (f)z —| Parameter |—P X(ff’z) —»
Data N Estimation - Statistical
| Perturbation | ¥ | (oEEROEE) [ ¥®3) ~P| Eyanation
—> (f,r —» —» X((I;p) —» [

'_ v
% R and PDF(X,), i=12,..,N,

Figure 2.3 The process of statistical parameter estimation with the Monte Carlo

simulation method.
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2.3.2 The Sensitivity-Based Method

In the sengtivity-based method, nonlinear least-squares minimization is
performed only once for the mean of the measured response @ . At each iteration in
the nonlinear minimization, the error function is linearized with respect to the system
parameters, and the estimates of the system parameters are updated by solving the
quadratic programming problem (QPP) resulting from this linearization. The error
function is aso linearized with respect to the measured response, from which we can
obtain the statistical indices of the parameter estimates at each iteration. The process
of statistical parameter estimation with the sensitivity-based method is illustrated
schematically in Figure 2.4.

Both the sensitivity-based method and the Monte Carlo simulation method have
their strengths and drawbacks. The sensitivity-based method is comparatively
efficient because nonlinear optimization, which can be computationally intensive, is
performed only once to find x and R*. However, the statistical indices obtained from
the sensitivity-based method may be unreliable when the error function is highly
nonlinear because of the linear approximation of the error function. Moreover, the
sensitivity-based method provides no information on the bias of x due to the

nonlinearities in the error function. On the other hand, the Monte Carlo simulation is

"' X" «—| Convergence? |——» X, R*
No Yes

Quadratic Programming

R® — > Problem (QPP) & X"(@,x" 1)

Sensitivity-Based R¥R®,x"Y)
Statistical Evaluation (SSE)

=l

Figure 2.4 The process of statistical parameter estimation with the sensitivity-based
method.
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robust with respect to these nonlinearities and can provide information on the bias.
The Monte Carlo simulation is, however, often computationally expensive because

. nonlinear optimization is repeated many times.

In the sensitivity-based method, we first derive the formulation necessary for the '
- output error estimator defined iﬁ equation (2.1). Note that we omit the ih¢quality
~ constraints in this section to simplify the discussion although it is straightforward to
incorporate them. As mentioned in the previous paragraph, nonlinear least-squares
minimization is .performed only once for the mean of the observations & . Let a
- superscript 7 (=1, 2, 3...) indicate that the variable is evaluated at the nth iteration in
" the nonlinear optimization process. Let us suppose that all variables are knoWn’ at the

(n-1)th iteration. The subproblem at the n th iteration is, then, to find Ax" =x" -x""

- - that minimizes the objective function defined below. With the first-order Taylor’s

series expansion about x"', the linearized error function for the ith modal case can be -

defined as
e(Ax", @) =¢,(x",® )+ Ve, (x",®,)Ax" (23D
.in which
P, is the mean of the measured mode shapes for the ith modal case;
and V is the gradient with respect to the estimated system parameters x.

- For convenience in the following derivations, we use the differential operators defined

in component form as

_00 212 PO o o0
Vi)= ox, Vu()= Ox,0x,” Vinl )= Ox,0x,0x,

(2.38)

with all the subscripts £,/,m ranging from 1 to N, .

With the linearized error function, we can define the objective function for the OEE
© algorithm as
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Nm p— J—
JE(AX, @) = %Z&,.e}. (AX",®,)-€(AX",®,) (2.39)

i=1

in which

,-__'-e(Ax"Q)e(Ax"q))—e(x"‘cp)e(x“q>)+2e(x“<1>)ve(x"‘<p)Ax"- -
: Ve, (x",®,)AX" - Ve, (x", ®,)AX" '

(2.40)

For the ROEE algorithm defined in equation (2.2), equation (2.39) can be rewritten as

N, T ; %
J(AX", D) = 125,e}(Ax",q>i)-e; (Ax", ®,)
> (2.41)
1 2 { n—1 n n—1 n -
+5a {\x + Ax )—XOH(X +Ax )—xo]

The increment Ax" is obtained, for the OEE method, by solving the simultaneous

linear equation

E
—a]éix P Zé{e(X" L®,) Ve (x", D)+ Ve (x",®,) Ve, (x" @)Ax}
X
=H X", ®)Ax" + o (x", D)
=0
(2.42)
where
Nm . —_— — . .
HE] =36V, 8 ) Ve x"". &) (2.43)
i=1
and <], Z‘Se(X"l‘!’)Ve(X‘}@) Q44)

i=1

For the ROEE method, we obtain Ax” by solving the following equation
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a_JiaAA_}J_’_) Zé{e(x” “.D,)-V,e,(x"" (I))+Vke(x” ! <I>) Ve, (x"",®)Ax" }
X
+a [(x""JrAx )—xo]
—H,x",®)Ax" +C,(x", D)
-0 '
_ (2.45)
i:!_Where
Nm . o
H], =) 6V,e(x"",8) Ve, &)+l (2.46)
i=1
Nm — [oe—
and [C, =D 6e,(x .8 ) Vie(x, 8 )+’ (x" ' ~x,)  (247)

Obser_ve. that equations (2.43) and (2.46) correspond to the Gauss-Newton

approximation of the Hessian of the objective function J,(x) and J(x) of equations
(2.1) and (2.2), respectively.
By using the sensitivity-based method, we linearize the error function e, with

S respect not only to x but also to the measured modal responses ® . Let us define

another linearized error function €’ as

"NyN,, _ R
e2(Ax",AdD,) = ! (AX", D,) + D, (" DIAD, (2.48)
p=l
in which
L AD, =D D, . (2.49)
- L : _ ' n-1 x )
and ei#(xn—l’éi) — M
. ’ 8®# .

Further, let us define a new objective function J, as

@50
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Nm ~ ~
Jz(Ax",A(i))E%Zéief(Ax”,A(D,.)-ef(Ax",A(Di) . (2.51)
| - |

in which, for the OEE method; .

e(Ax A(I))e(Ax” A(I))—e(x"‘(I))e(x"l(l))+2e(x_’(I))Vke(x“(I))Ax” _
+V,e,(x",®)AX" - Ve, (x",®,)Ax"

NyN, = n
+2ei(xrz~l’d—)i>_. Z eisu(xn—l,(bi)A(bu

p=1

: Nde _ n
+2V,e.(x",®,)AX" - Z e, (X, ®)AD,

+Ze,u(x” L@ )AD, - Ze ", AP,

#=1

- (2.52)

We can now obtain Ax" for the OEE method by solving

n 5 N, N B ~ B
%b = 25' [e’.(x"_l i (BI) ' vkei (Xn ! > (D,) i Vkei(xn_l » q’;) ; vze[ (xn_l 7(I)i)AXn
: X =l

+V,e,(x"7,® )e (XD, )A(ID
=H x"",®)Ax" + CEx", @)+ H,(x"", ®)AD
=0 '

- (2.53)

in which [Hf| ~and C7], are defined in equations (2.43) and (2.44), respectively.

For the ROEE method, the above equatioﬁ can be applied by replacing H and C!
.with H, and C; in equations (2.46) and (2.47). The kuth element of H, is defined

" as

N, _
H,], =) 6V.e(x",®)e (X, 8) (2.54)
i=1 .
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The solution AX" can be obtained by solving the following equation.
AX'=-H'C'—HHA® (2.55)

where H|" indicates a generalized inverse of Hf and H,, respectively, for the OEE

and ROEE method.

Noticing that £ [A(i)] =0 and £ [A(i)@)A(i)} =R?*, in which ® indicates the tensor |

product, we obtain the statistical indices of x" as

X' = E[x" +AX"|=%"" —H/C° (2.56)

RY = E[(x" -X")@ ("' —X")|=H/H,R°H] H, (2.57)

When equations (2.56) and (2.57) converge (Ax" — §), we can obtain the mean X

and the covariance matrix R* of the estimated system parameters, respectively.

2. 3 .3 The Optimum Sensitivity-Based Method

_ Based on the concept of the optimum sensuthy-based method proposed by
Arak1 and Hjelmstad (2001), we present a statistical parameter estimation method for
our nonlinear least-squares estimators (OEE and ROEE). Unlike the sensitivity-based
d method, the present method provides a second-order approximation of the statistical
indices of the system parameters and allows us to assess the bias due to the
nonlinearities in the error function. Like the sensitivity-based method, the present
method preserves computational efficiency compared with the Monte Carlo
simulation method. The process of statistical parameter estimation with the optimum

sensitivity-based method is illustrated schematically in Figure 2.5.
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|
v

Parameter Estimation | Optimum Sensitivity-Based
¢ —p - (OEE/ROEE) —» X(®)—»| Statistical Evaluation (OSSE) |—» X, R

Figure 2.5 The process of statistical parameter estimation with

the optimum sensitivity-based method.

The parameter estimates can be found using a standard numerical technique for
- constrained nonlinear optimization. From the OEE algorithm in equation (2.1), we

define the Lagrangian function as
A, 8)=J,(x,8)+A, (¢, -x, )+ A, -(x, —¢,) (2.58)

‘Here, ¢, and x, are the subsets of ¢, and x in equation (2.1), respectively,.
associated with the active set of constraints for the lower bounds, and A, is the
~ vector of the Lagrangian multiph'_ers corresponding to x, . The vectors ¢, , X, and
"A, are defined similarly for the active constraints of the upper bounds. The optimal

solution x and A satisfy the Kuhn-Tucker conditions

Vex)=VJ,(x)—Q,A, +Q,A, =0 (2.59)

x, =¢, X,=¢;,, A, >0, A,>0 (2.60}

where the boolean matrices Q, and Q, are defined as Q, =(Vx,)' and

Q,=(Vx,)'.
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Suppose that we have the solution of the minimization problem (2.1). Then, noticing

thatall x, A, and A, are functions of & , we can obtain the optimum sensitivity by
 direct differentiation of the Kuhn-Tucker condition in equation (2.59). Let ,, denote

the pth component of & , and let the optimum sensitivity derivatives be indicated by

X[ — . (2.61)

Differentiating equations (2.59) and (2.60) with respect to & .» We have

VARX, QAL +QuAy, +C, =0 (2.62)

X, =X, =0 (2.63)

w o SUp

where the coefficient V°J, and the known vector C, are obtained in component as
Nu . A . )
Vil =) 6 (ex®) Viex® )+ V,e(x2) Ve lxd i)) (2.64)
i=l1 '
N, 3 . - 7 R
€] =V, =D 6 (ex.8)- Ve, (8 )+ Ve (x.8 )¢, (x,8))) (265
i=1 ,
in which

Ve, 8)=-AQV,B @M,  Vie(x.®)=-\QV;B, M,

. A A . a (2.66)
e, (x,®)=2, — AQB, ' (x)M® i Vi€ (X, @)= -A\QV,B, '(xM® in

where s A Q, B, '(x) and M are defined in equations (2.8) and (2.9),
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V,B'(®=-B;'(®V,B,(®B; ()

d
" V;B'(x)=—-V,B;'(x)V,B,(®B, ' (x)-B;'(V,B,(x)V,B; ' (x)

(2.67)

By solving equations (2.62) and (2.63) for each index y, we can obtain the first-order _

optimum sensitivity derivatives x ,, A, , and A, . Note that V°J is the same for |

L,

every p and needs to be factored only once.

We can obtain higher-order derivatives by repeated differentiation of the Kuhn-
" Tucker conditions. For instance, differentiation of equations (2.62) and (2.63) with

respect to <‘AP,, yields the equations for the second-order optimum sensiﬁvity

derivatives x ,,, A, , and A, , as

L,pv

VZJEX,/U/ _QLAL,;/,V +QUAU,;W +Cfu/ = 0 (268)

X =X

L,uv U,pv

=0 (2.69)
where the known vector Ciu in equation {2.68) can be expressed as

€L =%, (V) x, +[V5,x, | +[Vix,] + Ve,

E ST

(2.70)

v

where [V3J E]k is the kth second-order tensor of V°J,, and the derivatives of J, are

given by

N, A 4 | k.
[\73JEL =Vime = _0; (ei(x,<1> D) Vi (5,2 )+ V,e,(x, ) V2 e,(x,® ) I
i=1 : .

+V,e,(x,8 ) V2 e(x,8)+V,ex® ) Ve(xd I.))

I N, . . . .
[V = Ve =D 6 (e ) Vie, (.8 )+ V 66,8 ) Ve, (x,8 ) -
i=1 .

-f—V,e,.(x,ff) ‘.)-V,‘ei,#(x,d;i)-l—e,.’u(x,q; ) Vie(x,d i))
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N’” "~ . A ~ ~ .
VkJE,;w = Z1 6; (ei(x’q) ) Vkei,p.u(x7d) D+ Ve x® i)'ei,,w x,®,) 2.73)

| +e,.’#(x,<f> BE Vke,.,u(x,d; )+ ei,y(x,‘f’ ) Vke,.,#(x,d; ,.))

- 1n which

Vin€ (%8 )=-2\QV,, B '®M®,, Ve (x,®)=-)\QV;B '®MP
' x®)=V,e  (x.&)=0

ei,p.u i pv

(2.74)

where

V2, B '(x)=-V2B;'(0)V,B.(xB ' (x)— VB, (x)V,B.(x)V, B (%)

| (2.75)
—-V,B;'(®V,B,x)V,B; ' (x)—-B'(x)V, B,(x)V: B (x) '

The optimum sensitivity derivation is similar for the regularized output error

estimator (ROEE) in equation (2.2). The Lagrangian function is defined as
(A, ) =J(68)+ A, (e, =X, )+ Ay - (X, —€,) (2.76)
" Again, the optimal solution x and A satisfy the Kuhn-Tucker conditions

VI(x)=VJ(x)—Q,A, +Q,A, =0 QI

and the expression in equation (2.60).

Differentiating eQuations (2.77) and (2.60) with respect to & .» we have

Vix, ~QA,,+QA,,+C, =0 (2.78)

and the expression in equation (2.63).
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“where the known vector CL is obtained in component as shown in equation (2.65)

and the coefficient V>.J is obtained in component as

N, . ' A A . _
Vil =3 6 (ex8)- Viex$ )+ V,ex,8 ) Viex,d )+ T (279)

s
‘By solving equations (2.78) and (2.63) for each index p, v;/e can obtain the first-order
optimum sensitivity derivatives x ,, A, , and A, ,. As for the previous case, V>J is
the same for every p and needs to be factored only once.

We can obtain higher-order derivatives by repeating the differentiation of the
- Kuhn-Tucker conditions. The differentiation of equations (2.78) and_(2.63)'with
_reSpect to @V yields the equations for the second-order _optimum seﬁsitivity

A and A as

> S Lo U,pw

) VZJX:I‘V _QLAL,IIV +QUAU,;L1/ +C‘[21y - 0 (2.80)

and the expression in equation (2.69).

It should be noted that if the evaination of higher-order derivatives requires more
 computational time than reoptimization, or the finite difference method, (this might
occur, e.g., when the number of parameter estimates is very large), it may be better to

‘use the finite difference method to obtain the optimum sensitivity derivatives.

Based on the perturbation method, one can derive the formula for the
approximate statistical indices of system parameters. Suppose that we have the mean

and the covariance matrix of measurements defined respectively as

q?zE[q?] o | | (2.81)

R’ EE[(q"» -8 —47)} | e
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where ® 1indicates the tensor. product. And suppose that we have the | optimum
sensitivity derivatives up to the second-order. Our goal is to estimate the mean X and
the covariance matrix R* of system parameters. With a Taylor’s series expansion, we

can express the estimated system parameter vector as

""x(<f>)=x($)+%x,u($)(é“— 3, )+ %IYZ:XW(‘P)( 3,)(8,-3,) @83)

Equation (2.83) is valid unless the active set of the constraint conditions changes.
With these definitions, the statistical indices of system parameters are approximated

as

NdN Nd

X=E[x@)|=x@)+= E Z X, ()R, (2.84)
= E[x@)ox(®)|= SV x, @)ex, @R, (285

p=l v=l

Let. us consider the proportional error given by equation (2.35). Equations (2.84) and
(2.85) lead to the following formula

(o) = x(3) +—2 Z x,, ()b (2.86)
R‘(a):?zjj ix @)ox, (),d, (2.87)

" 2.4 Structural Damage Assessment

The statistical damage assessment algorithm investigated in the current study
compares the statistical distribution of the parameter' estimates between the baseline

and the current structure to assess damage. If the measured data are noise-free, a
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structural member can be viewed as damaged if its estimated parameter is different
from the baseline value. This simple assessment is complicated by the presence of the
measurement noise. The noise in the measurements can cause the estimated parameter
for an element to be different from the baseline Qalue even 1if there 1s no damage at all.
It therefore seems reasonable to incorpbra{e .the sensitivity of the estimated parameter

to noise in evaluating the severity of damage.

Various statistical parameteﬁ estimation methods can be used to obtain the
sensitivity of the estimated system parameters to the measurement noise. For instance,
in the Monte Carlo simulation method the statistical distribution of the system
parameters can be directly extracted from the frequency distribution of the computed .

population of parameter estimates. Approximations to the mean and the covariance -

matrix of the system parameters, X and R*, can be obtained based on the standard
definition of the mean and the covariance matrix of a finite discrete data set. The
concept behind Monte Carlo simulation is fairly simple and straightforward. The
statistical distribution improves as the size of the population of parameter estimates
increases. The idea of using the frequency distribution of the parameter estimates to
assess damage ¢an be illustrated in Figure 2.6(a) where discrete random variables are

used to represent the population of parameter estimates.

In the optimum sensitivity-based method and the sensitivity-based method, we :

.- construct the statistical distribution of the parameter estimates by assuming their

':_ probability density function (PDF) to be normal distribution with the mean X and the

é__ovariahce matrix R* of the parameter estimates from the statistical parameter

estimation process. The normal probability density function is computed as

(% =T ¥

1

. _
fr (x,)=—F——e " L (2.88)
X N S
in which _
X, 1s an estimated parameter for member m of the structure;

X 1s the mean of an estimated parameter for member m;
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and R™ 1s the covariance of an estimated parameter for member m.

“The cumulative distribution function (CDF) of a member parameter X, can be

obtained by integrating equation (2.88) in the interval (—oo, x,, | as follows -

=%, )2
dt (2.89)

X, 1 By 11 (
FXm(xm):ff(t)d{:\/z—T_fe 2R"m
~o0 T RS

The schematic representation of the statistical assessment of damage by assuming

a continuous distribution for the system parameters are shown in Figure 2.6(b).

2.4.1 Damage Assessment of Single-Parameter Structural Members

The single-parameter structural members are those parameterized with a single -
stiffness parameter that can change as a result of damage. As previously discussed,
the mass density parameter of the member is assumed not to be affected by damage

and 1s taken as constant.

e Current
| l: fX’"C (x’nc)

Figure 2.6 Statistical distribution of system parameters for baseline and current

structures: (a) discrete random variables and (b) continuous random variables.
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Following the work of Pothisiri and Hjelmstad (2001), let us assume that the

statistical distribution of the parameter estimates of member m is known for both the
baseline and the current structures. Further, let us denote a random variable X, as
the parameter estimate for member m in the current structure and a random variable
X,, as the parameter estimate for the same member that corresponds toa parameter .
estimation problem of the associated baseline structure. Damage in mémber m of the
current structure can be assessed by comparing the statistical distributions of the
-member parameters in the baseline and the current structure as shown in Figure 2.7

where the random variables X, and X,, are assumed to be continuous. In the
/illustration, f, and F, denote the probability density function and the cumulative
distribution function, respectively, of the random variable X, , and f, = denotes the

probability density function of the random variable X ,. Member m is regarded as
- damaged in the event that X <X ,. This event can be described m terms of
probability .P(X e <X,,) to account for the uncertainty of the parameter estimates.
The pfobability P(X, <X,,) represents a realistic measure of the state of the

structural system. Let us denote x

mc

and x,, as a current estimate and the a priori

known baseline parameter value for member m, respectively. We define the level of

damage as

W |

| > x, .

mb (1

or X .,

Figure 2.7 Assessment of damage based on statistical distribution of system

parameters.
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N i (2.90)

With the above definition, the state of member m of the current structure can be
described by the event that the actual level of damage lies beyond the prescribed

level of damage (i.e., X . < X (1-6.)). Let us assume, for the moment, that X __
and X, are discrete random variables. With a specified level of damage 6, , the

required probability can be formulated as follows:

P(Xn‘c < an(l_ em)) = Z P(ch < me(l_ em) | me = Xn‘b)P(me = Xnt)) (291)

all Xy

It is reasonable to assume that the parameter estimates in the current and the baseline

structure, X and X, , are statistically independent; that is,

P(xmc < xrrh(l_ Hm) | xrrb 7. me) u P(ch < )Q”nb(l_ Hm)) (292)

For continuous X, . and X_, , equation (2.92) becomes

P(Xoe < X0 = [ i (X @=0,) . (X)X (299)

The quantity F, (x,(1-6,)) on the right hand side of the above equation is
illustrated by the shaded area under the curve f, in Figure 2.7 in the range

(=0, X1, (1—6.,)] . The damage statements of single-parameter structural members will

be illustrated later in the simulation study by the relation between
P(X,.<X,,(1-6,)) and 0...
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2.4.2 Damage Assessment of Multi-Parameter Structural Members

For the structural members consisting of multiple stiffness parameters, the
proposed statistical damage assessment algorithm must be modified to account for the
presence of all structural parameters. These parameters may be an axia stiffness, a
bending stiffness, and a shearing stiffness. In this case, damage should be modeled by
reducing the different stiffness parameters of the structural members that correspond
with the physics of the actual damage.

By using a similar concept to the reliability analysis (Ang and Tang, 1990), the
status of the current structure and the baseline structure is computed as illustrated in
Figure 2.8. The status of the structure can be written as a function of the structural
member parameters. In the illustration, the shaded area denotes the event that the
structure is not damaged. The calculation of the probability of the event that the
structure is damaged, or not damaged, requires the knowledge of the distributions

fy Xnd and f, X,> for the current structure and the baseline structure,
respectively, or the joint distribution f, . X, Xy). In practice, this information

is often unavailable or difficult to obtain for reasons of insufficient data. Furthermore,
even when the required distributions can be specified, the exact evaluation of the
probabilities, generally requiring the numerical integration, may be impractical. As a
practical alternative, equivalent normal distributions may be resorted to in the
approximation.

POF 4

Current

>
Structural Parameter X . or X,

Figure 2.8 Identification of the damage statement
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Not infrequently, the available information or data may be sufficient only to
evaluate the first and second moments; namely, the mean values and variances of the
respective random variables. Practical measures of the status of a structure, therefore,
must be limited to functions of these first two moments. Under this condition, the
implementation of damage assessment concepts must necessarily be limited to a
formulation that is based on the first and second moments of the random variables—
that is, restricted to the second-moment formulation (Cornell, 1969; Ang and Cornell,
1974). It may be emphasized that the second-moment approach is consistent also with
the equivalent normal representation of non-normal distributions. With the second-
moment approach, if the appropriate forms of the distributions are prescribed, the
corresponding probability may be evaluated on the basis of equivalent normal

distributions.
Let us consider a structural member m comprising multiple stiffness parameters

X, - {Xrln X2, Xnﬁ'?}. The random variables representing the current and the

baseline parameters are denoted as X, and X, , respectively, and N’ denotes the

number of different stiffness parameters for member m. We introduce a baseline
margin of the member parameters—or the deviation from the baseline parameter
values—of this structural member as

H-X, X (2.94)

Based on this definition, the event that H, < 0 represents the “undamaged or healthy

state” of member m. Likewise, the “damaged state” of member m is described by the

event that H_,> 0. The boundary separating these two states—the so-called “limit
state”—is defined as the event when H,, = 0.
For the current study we propose a linear function of the baseline margin for the

member parameters in order to assess damage. The proposed function will hereafter

be referred to as the “basaline function.” Aside from its own usefulness, certain
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aspects of the linear case would be the basis for an approximation to nonlinear

baseline functions.

A linear baseline function for a structural member m can be written as

N

el)=a"+> a"H" 95
i=1

where a; and a’s are constants. The corresponding limit-state equation, therefore,

“ s

Ny
ay +y a'H =0 (2.96)

i=1

To satisfy equation (2.94), the coefficient a; must be zero. Thus, equation (2.96) can

be rewritten as

N

Y e HrE0 T (2.97)
i=1 '

- In terms of the reduced variates, the limit-state equation becomes

N '
S ar[sp" Ay +Hr|=0 (2.98)

Ci=l

is the reduced variate of the baseline margin H";
H" 1s the mean of the baseline margin of parameter i for member m

which is defined as J m=X" X where X 7 and X are the

mean of the random Variables representing the baseline and the

current estimates of the ith parameter, respectively, for member m;
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and SD" is the standard deviation of the baseline margin of parameter i for

member m which is defined as SD*" :\/(SDX’@ )2+(SDX'M )2

where SD*" and SD*" are the standard deviation of the random
variables representing the baseline and the current estimates of the

ith parameter, respectively, for member m.

Figure 2.9 illustrates an example of a baseline function composing of two reduced

random variates H . and H " in which case equation (2.98) becomes
ar [SDH A + ﬁ;"] ta [SDHZm o g 8y (2.99)

which is a limit-state line in the two-dimensional H"-H}' coordinate space as shown

in the figure.

The distance of the limit-state line in equation (2.99) to the origin of the reduced

variates H, can be computed as
A Hr

Figure 2.9 Healthy and damage states in coordinate of reduced variates.
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m
Ny

D arHy
B, == (2.100)

Ny

Z (a{'.’ SDT(”M )2

i=1

For two uncorrelated normal variates, H" and H)', we can compute the probability
of the damage state P," directly as a function of the distance of the limit-state line to
the origin of the reduced variates; that is, the distance (,. This result can be

generalized for N} member parameters—if the random variables H", H),..., H I'V",,,

are uncorrelated normal variables—in which case the probability of the damage state

becomes

Ny
S a"H? >0

i=l

Pr=p —1-9 (2.101)

Comparing equations (2.100) and (2.101), we see that the argument inside the

brackets of equation (2.101) is the distance (3, . Therefore, the probability P is again
- a function of the distance from the limit-state line g(H, )=0 to the origin of the
| : fe_duced variates. Therefore, in the general case of Nl’,” uncorrelated normal variates,

1 the probability of damage is
Pr=2(g,) (2102

where @(ﬂm) is the normal cumulative distribution function of the distance B, which

is defined as
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@(,B,,,):Tfe‘? dt (2.103)
- |

In the statistical damage assessment of a structure whose members consist of

| fnultiple parameters, -the calculated probability of damage depends upon the

coefficients a;” 'S, which represent many factors such as the type. and the complexity

of ﬂie structure, the location of the investigated structural members, etc. It can be .
observed from equation (2.95) that the weight factor o is obtained from a direct

" differentiation of g(Hm) with respect to ‘the random variate H. Thus, the

fluctuation of H” from the actual value directly affects the approximation of g(Hm ) ,
and consequently the outcome of the damage assessment. One possible measure of the-
fluctuation in the value of H" is the standard deviation of the corresponding baseline
member parameter. In the current study, to investigate the effect of 4" ’s ,.oﬁ the

damage assessment results, two alternatives of a;" ’s are examined.

In the first scheme, we select a single value of a;" ’s for all parameters of member

m as follows

Q' =— (2.104)

The value of a"’s in equation (2.104) represents the case in which all the

- parameters of member m affect the damage assessment with equal weight.

The selection of 4" ’s in the second scheme is based on the idea that the accuracy

in assessing damage depends directly upon the accuracy of the outcome of the
statistical parameter estimation. Generally, for the case of normal approximation the
~.accuracy of the parametér. estimates 1s determined by the value of thé standard
3 deviation. As such, we compute the weight factor for each member pérameter taking

nto account its accuracy with respect to the baseline value as
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/D"

i m

Zp(1/ s}

i=1

(2.105)

n Which

SDX™ is the standard deviation of the baseline parameter i for member m.

Note that the summation of the weight factors g ’s is equal to one in both of the

proposed schemes.

2.5 Chapter Summary

The statistical damage assessment of a structure based on the statistical parameter
estimation algorithm from the measured response is a complicated problein. The noise
in the measurements poses a direct effect on the sensitivity of the parameter estimates. |
The statistical damage assessment algorithms that compare the probability density
functions of the healthy and damaged system parameters have beeﬁ proved effective
for the identification of damage in the presence of the measurement noise. The
performance of these methods, however, depends considerably upon the quality of the
estimated system parameters. The present study adopts the r_egularization technique to
rédﬁce the degree of instabiliﬁes of solutions to the statisﬁcal parameter estimation
problem by adding a regularization function to the initial objective function as a
penalty term. The statistical parameter estimation methods investigafed are the Monte
Carlo_simulaﬁon method, the optimum sensitivity method and the sensitivity-based
method. The performance of the proposed damage assessment scheme is examined in

Chapter 4.



CHAPTER 3

SIMULATION STUDY—A BRIDGE TRUSS

3.1 Introduction

In this chapter, we examine the efficacy of the statistical damage assessment
method presented in Chapter 2 by using a truss structure as the model problem. We
consider two distinct cases of damage: the single-damaged-member case and the two-
damaged-member case. For each of these damage cases, we generate 10 different
damage scenarios by randomly varying the location and the severity of damage. The
performance of the algorithm is assessed in terms of the probability in which the
actual level of damage for a structura member lies beyond the prescribed level of

damage, P(X,.<X,,(d-6,)). This assessment is illustrated through the plot of the

probability distribution P(X,. <X,,(1-6,)) for the range 0-100% of the level of

mc

damage for all members in the structure.

Due to the presence of noise in the measurements, the statistical parameter
estimation methods are used to construct the statistical distribution of the parameter
estimates for the statistical damage assessment. For the current study we examine
three methods of statistical parameter estimation; i.e., the Monte Carlo simulation
method, the sensitivity-based method and the optimum sensitivity-based method. We
use these three methods in conjunction with the output error estimator (OEE) and the
regularized output error estimator (ROEE) to investigate the performance of the
present statistical damage assessment scheme from using different statistica
evaluation schemes and estimators to approximate the distribution of the system
parameters. This investigation is carried out by examining the plot of the probability
distribution P(X, < X,,(1-6,)) for the member parameters with respect to different

levels of damage. The effect of varying the levels of noise in the measurements on the
performance of each algorithm is aso investigated in the current study.
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3.2 Description of the Example Structure

The structure we investigate herein is a simple-support truss structure with the
geometry and topology shown in Figure 3.1. In this figure the numbers in circles
represent the member identification numbers and the numbers in triangles represent
the noda identification numbers. The finite-element model of the truss structure
consists of 11 elements with 11 degrees of freedom. The baseline properties of the
truss members can be characterized by eleven stiffness parameters, each representing
the axial stiffness for each member. The cross-sectiona area, the stiffness, and the
mass associated with each of the truss members are listed in Table 3.1. Note that in
addition to the self weight of the structural members shown in the table, we assume
that the dead load being imposed upon the structure is uniformly distributed along the
length of all 11 members with a value of 0.017 kips-sec?/ft/ft. Moreover, all members
are assumed to have a Y oung’s modulus of 4.176a 10° kips/ft>.

In the current study we assume that all of the 11 structural vibration modes are
measured and all natural frequencies and mode shapes of the structure are available as
our measurement information. In addition, the mode shapes are assumed to be
measured at al 11 degrees of freedom of the structural model as shown in Figure 3.2.
The free-vibration responses obtained from an eigenvalue anaysis of the baseline

structure are shown in Table 3.2, in which the ith mode shape ®, is scaled by using

the mass matrix M such that ® M®, - 1.

3@360in. "
<

Figure 3.1 Geometry and topology of the simple-support truss.
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Table 3.1 Baseline properties of the truss structure.

Member ID Member ~

Nurmber Location Cross-Sectional Area (in?) | StiffnessParameter X, (kips) | Mass (kips-sec’/ft/ft)
1 Diagonal 28.0 8.12a 10° 0.00298
2 Bottom 40.0 1168 10° 0.00425
3 Diagonal 28.0 8.12a 10° 0.00298
4 Top 32.0 9.28a 10° 0.00318
5 Diagonal 28.0 8.12a 10° 0.00298
6 Bottom 40.0 1.16a 10° 0.00425
7 Diagonal 28.0 8.12a 10° 0.00298
8 Top 32.0 9.28a 10° 0.00318
9 Diagonal 28.0 8.12a 10° 0.00298
10 Bottom 40.0 1.16a 10° 0.00425
11 Diagonal 28.0 8.12a 10° 0.00298

3.3 Statistical Damage Assessment

The simulation studies conducted in this section consist of single-damaged-
member cases and two-damaged-member cases. For the single-damaged-member
cases the damage of the structure is represented by a reduction of the stiffness of a
single structural member whereas for the two-damaged-member cases the damage is

due to the stiffness reduction of two structural members.

Figure 3.2 The set of measured degrees of freedom for the truss structure.
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Table 3.2 Noise-free data for the baseline structure.

10(h 1th
1Mode | 2“Mode | 39Mode | 4"Mode | 5"Mode | 6"Mode | 7" Mode | 8" Mode | 9" Mode

Mode Mode
Natural
Frequency 7.52 13.10 23.88 36.70 42.87 47.40 52.54 56.22 67.18 78.99 90.27
(Hz)

Mode Shape

1% DOF -0.24728 | 027596 | -0.09842 | 074436 | -0.16395 | -0.11704 | 0.44056 0.46926 0.66564 -0.47303 | -0.35455

2" DOF 0.28023 -0.02279 0.54413 -0.12041 -0.66300 0.00321 0.96490 0.00484 -0.41867 -0.00360 0.11268

3“DOF -0.08799 0.29399 -0.09137 0.16103 0.37317 0.47314 0.00824 0.22963 -0.68011 -0.40920 0.45338

4" DOF 0.46840 0.16771 0.64623 -0.03952 -0.06496 0.30263 -0.61933 0.32096 0.28618 -0.21368 -0.05079

5" DOF -0.15371 0.41119 0.21543 0.44232 -0.26596 -0.12822 -0.27599 -0.13535 -0.09732 0.83292 0.37072

6" DOF 0.53577 0.20150 0.00152 0.35877 0.78183 -0.13049 0.22752 -0.52007 0.09377 0.11138 -0.16068

7" DOF -0.20394 0.41081 -0.01880 -0.38068 0.04657 0.47008 0.16375 0.04276 0.00479 0.33638 -0.84073

8" DOF 0.45965 0.25904 -0.59230 -0.23919 -0.09411 -0.42503 0.08437 0.63927 -0.17326 0.23701 0.03655

9" DOF -0.05827 0.53964 0.00746 -0.17096 -0.26363 -0.68259 -0.29687 -0.47272 -0.35438 -0.79523 -0.27601

10" DOF 0.26210 0.14110 -0.56737 0.01723 -0.71742 0.72318 -0.09238 -0.53465 0.32129 -0.19434 0.25375

11" DOF -0.25675 0.43094 0.19543 -0.65856 0.37925 -0.10094 0.38681 0.03838 0.82369 0.01781 1.05958

As previously discussed in Chapter 2, statistical parameter estimation is a key
process in the current statistical damage assessment agorithm. In general, the modal
response of a structure can be obtained through moda testing—by shaking the
structure under certain resonance forces at the natural frequencies of the structure. For
the current study, however, we model the measurement data of the structural response

by using a computer simulation. The modal responses of the baseline structure in
Table 3.2 are used as the noise-free measurement data (f)b upon which the mean and
the covariance matrix of the parameter estimates of the baseline structure, X, and R;,

are obtained by using different statistical parameter estimation algorithms. The
statistical parameter estimation process for the baseline structure is illustrated in

Figure 3.3. For the current structure the noise-free measurement data (i)c are
computed from an eigenvalue analysis of the structural model parameterized with the

current stiffness parameters x, which are associated with each of the damage cases

considered. The noise-free data (i)c of the current structure are used to simulate the
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: gb —»| FEM | —p ®, —_p | Statistical Parameter Estimation | —p iz;’ R:

Figure 3.3 Statistical parameter estimation process for the baseline structure.

noisy measurement data &7 to account for the presence of noise in the measurements

by using the data perturbation scheme of equation (2.35). With the simulated noisy.

measurements, the mean and the covariance matrix of the parameter estimates for the
~current structure, X, and R}, can be obtained from the statistical parameter

estimation schemes. The schematic representation of this process is illustrated in

Figure 3.4.

For the Monte Carlo method the statistical distribution of the parameter estimates
_can be obtained directly from the Monte Carlo sample of the parameter estimates. For
the sensitivity-based and the optimum sensitivity-based methods, the statistical
-distribution of the parameter estimates for the baseline structure and the current |
structure 1s constructed by substituting the statistical indices from the statistical
parameter estimation process into the probability density function of equat_io'n (2.88).
By comparing the statistical distribution of the parameter estimates for the baseline
and the current structures, the seveﬁty of damage for each structural member can be

identified. .

I,

FEM | —p &, $ (1+am) | —» &7

X, R* §— | Statistical Parameter Estimation

R

'Figure 3.4 Statistical parameter estimation process for the current structure.
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3.3.1 Single-Damaged-Member Cases

The single-damaged-member cases investigated herein consist of ten different
combinations of the location and the severity of damage that are randomly generated
as summarized in Table 3.3. In this table, the noise levels indicate different levels of
noise amplitude . that are used in equation (2.35) to generate the noisy
measurements. For each of the damage cases considered, three different statistical
parameter estimation methods; i.e, the Monte Carlo simulation method, the
sensitivity-based method, and the optimum sensitivity-based method, are used in
conjunction with the OEE and ROEE algorithms to estimate the mean and the

covariance matrix of parameters.

3.3.1.1 Monte Carlo Simulation with OEE Algorithm

The simulation studies conducted in this section are for the 10 different damage
cases shown in Table 3.3 in which only a single member is damaged. The severity of

damage is expressed in terms of the level of damage 6, , as a percentage of reduction

from the baseline parameters.

Table 3.3 Different damage scenarios with single damaged member

Damage Case | Damaged Member Damage Level Noise Levels
1 3 63.75% 1%, 3%, 5%, 10%, 15% and 20%
2 4 3.55% 1%, 3%, 5%, 10%, 15% and 20%
3 11 51.64% 1%, 3%, 5%, 10%, 15% and 20%
4 6 41.92% 1%, 3%, 5%, 10%, 15% and 20%
5 8 14.97% 1%, 3%, 5%, 10%, 15% and 20%
6 10 30.54% 1%, 3%, 5%, 10%, 15% and 20%
7 5 84.45% 1%, 3%, 5%, 10%, 15% and 20%
8 2 21.61% 1%, 3%, 5%, 10%, 15% and 20%
9 9 96.17% 1%, 3%, 5%, 10%, 15% and 20%
10 1 78.64% 1%, 3%, 5%, 10%, 15% and 20%
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In the Monte Carlo simulation method, synthetic measurements are created from
a single measurement set by using computer-generated random numbers. The
mathematical expression for this process is shown in equation (2.35). The population
of the parameter estimates is obtained by repeating the nonlinear least-squares
minimization of equation (2.10) for each of the artificial measurements. The statistical
distribution of the population of the estimated system parameters can be directly

extracted from the computed Monte Carlo sample, from which the mean and the

covariance matrix of the parameter estimates, x and R*, can be obtained using the
standard definition of the mean and the covariance matrix of afinite discrete data set.
The concept behind Monte Carlo simulation is fairly simple and straightforward.
Generally, the approximations can improve as the number of synthetic measurements

increases.

In our ssimulation of the measurement data, only the mode shapes are taken as
noise-polluted whereas the natural frequencies are noise-free. Moreover, the
measurement information is assumed to be taken for al of the 11 structural vibration

modes at all degrees of freedom of the structural model.

Following the work of Pothisiri and Hjelmstad (2003), we assess damage in a
structural member by using the probability of the event that the value of the estimated
parameter for that member is smaller than the value of the corresponding parameter
estimate for the same member in the associated baseline structure to a certain extent

. <X, .(1-6)). By associating the probability value, P(X,. <X,,(1-6,)),

mc

(e, X

m

with each prescribed level of damage 6, , we can plot the probability distribution for

the range of 0-100% of the level of damage for all members in the structure as shown
in the following illustrations. The plot of the probability distribution for a structural
member can be divided into three parts starting from no damage to 100% damage.
The constant unit probability value at low levels of damage indicates that the actual
value of the member parameter is actually smaller than the parameter values
associated with the damage at these levels. Likewise, the zero probability value at
high levels of damage implies that there is no chance for the actual severity of damage
to fall within these regions. Generally, the actual level of damage liesin the transition

region between the unit probability and zero probability zones that appears as a slope
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in the probability distribution. Note that the sensitivity of a member parameter to the
measurement noise can be drawn from the probability distribution. A sharp drop in
the probability values within the transition region indicates a low sensitivity of the
member parameter to noise. A member parameter that is more sensitive to noise
shows a more gradual decrease in the probability values within the transition zone.
Hence, it might be difficult to identify a precise level of the actual damage from the
probability distribution when the level of noise in the measurements is high. However,
one can always describe the suspected level of damage in terms of probability to
ensure the level of confidence in the results.

As previously discussed, the outcome of statistical parameter estimation by using
the Monte Carlo simulation method can improve as the number of synthetic
measurements, or the sample size for the parameter estimates, increases. This aspect
of the agorithm is investigated by using different sample sizes to determine the
values of the mean and the standard deviation of the parameter estimates. Figures 3.5
and 3.6 show the variation of the mean and the standard deviation of the parameter

estimates for the baseline structural members with respect to different sample sizes for
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Figure a5 Variation of the mean of the parameter estimates for the baseline structural
members with respect to different Monte Carlo sample sizes using 5% noisy
measurements
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Figure 3.6 Variation of the standard deviation of the parameter estimates for the
baseline structural members with respect to different Monte Carlo sample sizes using
5% noisy measurements.

the 5% noisy measurement case. It is seen from the figures that 1,000 samples are
sufficient to ensure the accuracy of the mean and the standard deviation of the
population of the parameter estimates. Therefore, we use 1,000 Monte Carlo samples
to construct the statistical distribution of the parameter estimates for the assessment of

damage in our simulation studies.

The damage assessment results are illustrated in Figure 3.7 for the ten damage
cases with 1% noise in the measurements. It can be seen that the damage in al
damage cases is successfully located and quantified. For example, from the plot of the
probability distribution of damage case 1 (member 3 damaged with 63.75% severity),
the severity of damage is suspected to fall in the range of 62.5-87.5%. The level of
confidence in identifying a suspected level of damage as the actual damage severity is

indicated by the value of the probability P(X, <X, (1-6,)). For example, the
probability value of 0.60 for 75% damage in member 3 indicates that it is 60% likely

that the actual value of the member parameter is smaller than the value of the

estimated parameter for the member with 75% damage. For the undamaged members,
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Figure 3.7 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 1% noisy measurements.
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it is seen that member 9 in damage cases 3 and 10 is also indicated a slight chance of
the member being lightly damaged. Nonetheless, the probability of damage in
member 9 for damage cases 3 and 10 is small compared with that of the actua

damaged members.

The results from the damage cases in which 3%, 5%, 10%, 15% and 20% noisy
measurements are used are shown in Figures 3.8, 3.9, 3.10, 3.11 and 3.12,
respectively. It is seen that the actual damaged members are successfully identified
for 3% and 5% noisy measurements. These members are, however, difficult to
identify as being damaged when the level of noise in the measurements is increased to
10% and are unable to identify as being damaged at all for 15% and 20% noise levels.
This observation leads to a conclusion that the performance of the current damage
assessment algorithm may decrease as the level of noise in the measurements
increases. In addition, it is observed that as the level of noise in the measurements
increases, the decrease in the probability values for a structura member in the
transition region becomes more gradual. Hence, it is more difficult to identify the
actual level of damage in a structural member. Nevertheless, it is seen from the results
of the current simulation that most undamaged members show significantly lower
probability of being damaged compared with the actual damaged member for 3% and
5% noisy measurements. However, there is no constant unit-probability zone in the
distribution of P(X, <.X,,(1-6,)) for these members. Without the existence of this

unit-probability zone for the assessed member, one cannot be absolutely certain that
there is damage in that member. Hence, it is concluded that the deviation of the
parameter estimate for these undamaged members is merely due to the measurement
noise. For 10%, 15% and 20% noisy measurements, there is no clear distinction
between the results for damaged and undamaged members. Hence, it is difficult to
identify whether a member is damaged or undamaged by visual inspection of the

simulation results.

From the results of the current simulation studies, it is evident that the
performance of the proposed algorithm to assess damage in a structural system is
limited by the level of noise in the measurements. However, the performance of the

algorithm may also be affected by the severity of the damage in the structural
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Figure 3.8 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 3% noisy measurements.
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Figure 3.9 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo ssimulation + OEE) using 5% noisy measurements.
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Figure 3.10 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo ssimulation + OEE) using 10% noisy measurements.
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single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 15% noisy measurements.
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Figure 3.12 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 20% noisy measurements.
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components. To examine the effect of the severity of damage in a structural member
on the performance of the proposed algorithm, we compare the distribution of
P(X <X

mc m

,(1—6)) for 10 different levels of damage ranging from 5% to 95% in

member 2 and member 4 with 1%, 3% and 5% noises in the measurements.

The results for different severities of damage in member 4 are illustrated in
Figures 3.13, 3.14 and 3.15, respectively, for 1%, 3% and 5% noisy measurements.
Also, Figures 3.16-3.18 show the results for different damage severities of member 2.
For the cases where member 4 is damaged, the lowest levels of damage severity
which can be detected for 1%, 3% and 5% noisy measurements are 15%, 35% and
65%, respectively. For the cases where member 2 is damaged, the lowest levels of
damage severity which can be detected are 25% and 35% for 1% and 3% noisy
measurements, respectively, whereas the algorithm fails to identify damage at all for
5% noisy measurements. Thus, it is concluded that there is more chance for the
proposed algorithm to successfully identify damage in a more severely damaged

structural member.

3.3.1.2 The Sensitivity-Based Method with OEE Algorithm

In this section, the sensitivity-based method is used in conjunction with the OEE
algorithm to obtain the statistical distribution of the parameter estimates. Again, the
ten different damage cases in Table 3.3 are used to investigate the performance of the
algorithm. The simulation results show that for all damage cases the maximum level
of noise in which damage can be assessed is 10%. For the cases where the level of
noise in the measurements is more than 10%, the statistical parameter estimation
algorithm does not converge and hence the assessment of damage is not possible.
Therefore, only 4 different noise levels—. = 1%, 3%, 5% and 10%—can be used to

examine the performance of the current algorithm.

The results for the ten investigated damage cases with four different levels of
noise in the measurements are shown in Figures 3.19-3.22. For 1% noisy
measurements, asillustrated in Figure 3.19, it can be seen that the actual damage in all

damage cases is successfully located and quantified. Nevertheless, there is no constant
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different severities of damage in member 4 from 1,000 samples of parameter
estimates (Monte Carlo simulation + OEE) using 1% noisy measurements.
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Figure 3.14 Probability distribution with respect to different levels of damage for
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Figure 3.16 Probability distribution with respect to different levels of damage for
different severities of damage in member 2 from 1,000 samples of parameter
estimates (Monte Carlo simulation + OEE) using 1% noisy measurements.
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Figure 3.17 Probability distribution with respect to different levels of damage for
different severities of damage in member 2 from 1,000 samples of parameter
estimates (Monte Carlo simulation + OEE) using 3% noisy measurements.
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Figure 3.18 Probability distribution with respect to different levels of damage for

different severities of damage in member 2 from 1,000 samples of parameter
estimates (Monte Carlo simulation + OEE) using 5% noisy measurements.
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Figure 3.19 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and OEE algorithm
with 1% noisy measurements.



70

Damage of member 3(63.75%) with 3% noise Damage of member 4(3.55%) with 3% noise
- ==~
1
3 208
o™ o™
3 L os
i 04
o v
< Lo
L A 0
0
0’” Member ID Number m Member ID Number
Darnage of member 11(51.64%) with 3% noise Damage of mermber 6(41.92%) with 3% noise
2 08
= [
S T 06
>V<L '>v< 0.4
iﬁ %S‘ 02
0
0
[% [%
m Member ID Number m Member |0 Mumber
Damage of member 8{14.97 %) with 3% noise Damage of member 10(30.54%) with 3% noise
Sos R
= E
T 06 < 0B
s H
3v<: 04 5 04
‘:§ 02 g 0z
0J |
0 0
2 0,
m Member ID Number m Member |0 Mumber
Damage of member 5{84.45%) with 3% noise Damage of member 2(21.61%) with 3% noise
—~ =~
08 =08
= =
i 06 3 06
S04 b5 04
v, 3
X; 0z *>\< 0z
& <
0. 0
u] o
0, 0,
m Mermber ID Nurnber m Mernber D Murmber
Darnage of member 92617 %) with 3% noise Damage of mermber 1(75.64%) with 3% noise
Rl X 08
= =
< 06 < 06
3 3
>\Z 0.4 v 0.4
N H
%o 02 02
0. . 0.,
0 0
[% 0,
m Member ID Nurnber m Mernber D Murmber

Figure 3.20 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and OEE algorithm
with 3% noisy measurements.
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Figure 3.21 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and OEE algorithm
with 5% noisy measurements.
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Figure 3.22 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and OEE algorithm
with 10% noisy measurements.



73

unit-probability zone in the distribution of P(X, <JX,,(1-6,)) for undamaged

members in any of the damage cases considered. Hence, damage cannot be identified
in these members. It is also noted that the performance of the damage assessment
algorithm in this case is better compared to using the Monte Carlo simulation method
and the OEE algorithm. For the same level of noise in the measurements, the results
from the sensitivity-based method provide steeper slopes of the probability
distribution within the transition zone for the damaged and undamaged members

compared with the results from the Monte Carlo simulation method.

The results of the algorithm when the level of noise in the measurements is
increased to 3%, 5%, and 10% are shown in Figures 3.20, 3.21, and 3.22,
respectively. The actual damaged members are successfully identified for 3% and 5%
noisy measurements. However, it is difficult to identify the actua damaged members

from the probability distribution for 10% noisy measurements.

3.3.1.3 The Optimum Sensitivity-Based Method with OEE Algorithm

For the current section we examine the performance of the statistical damage
assessment algorithm by using the optimum sensitivity-based method and the OEE
algorithm to estimate the mean and the covariance matrix of the parameter estimates.
The mean and the covariance matrix of the parameter estimates are used to construct
the statistical distribution of the system parameters from which the damage is
assessed. The results from the assessment of damage for all the damage cases of Table
3.3 show that the maximum level of noise permitting a damage assessment is 10%. As
for the case of the sensitivity-based method, when the level of noise in the
measurements is more than 10%, the statistical parameter estimation algorithm does
not converge, making it impossible to assess damage. Hence, only the results from
using four levels of measurement noise—i.e, « = 1%, 3%, 5% and 10%—are
illustrated in the present section.

The results for the ten damage cases considered using four different levels of
noise in the measurements are shown in Figures 3.23-3.26. For 1% noisy

measurements, it can be seen that the actual damage in all damage cases is
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Figure 3.23 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and OEE
algorithm with 1% noisy measurements.
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Figure 3.25 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and OEE
algorithm with 5% noisy measurements.
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Figure 3.26 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and OEE
agorithm with 10% noisy measurements.
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successfully located and quantified. Again, it is observed that there is no constant

unit-probability zone in the distribution of P(X, <X,,(1-6,)) for undamaged

mc m

members in any of the damage cases considered. Hence, damage cannot be identified
in these members. It is also noted that the performance of the damage assessment
algorithm in this case is better compared to using the Monte Carlo simulation method
and the OEE agorithm.

The simulation studies of the current damage assessment algorithm for different
damage cases with 3%, 5% and 10% noise in the measurements show similar trends
to those of the sensitivity-based method with OEE. Hence, it is aso concluded that the
damage assessment results improve as the level of the measurement noise decreases.
In addition, it is seen that the results using high levels of noise in the measurements
exhibit higher variation in the parameter estimates compared with the results using
lower levels of noise in the measurements as evident from a more gradual decrease in
the probability distribution. Thus, it can be concluded that the sensitivity of the

member parameters to noise increases with the noise level.

3.3.1.4 Monte Carlo Simulation with ROEE Algorithm

As previously discussed, the ROEE algorithm is improved from the OEE
algorithm by adding a regularization function as the penaty term to the objective
function to reduce the instabilities of the solutions in the parameter estimation
process. The solutions of the ROEE agorithm are expected to be more clustered than
those of the OEE algorithm. As before, we assume for our simulation studies that the
natural frequency measurements are noise-free while the mode shape measurements
are noise-polluted. We investigate six different levels of noise—. = 1%, 3%, 5%,
10%, 15% and 20%—in the measurements. Again, we use the ten damage cases in
Table 3.3 as the model problems for examining the performance of the proposed
algorithm.

The results of the algorithm when the levels of noise in the measurements are 1%,
3%, 5%, 10%, 15% and 20% are shown in Figures 3.27, 3.28, 3.29, 3.30, 3.31 and
3.32, respectively. From the results of the ssimulation study, itis seen that the actual
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Figure 3.27 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 1% noisy measurements.
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Figure 3.28 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 3% noisy measurements.
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Figure 3.29 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 5% noisy measurements.
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Figure 3.30 Probability distribution with respect to different levels of damage for the

single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 10% noisy measurements.
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Figure 3.31 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 15% noisy measurements.
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Figure 3.32 Probability distribution with respect to different levels of damage for the
single-damaged-member cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 20% noisy measurements.
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damaged members are successfully located and quantified for all of the smulated
damage cases with 1%, 3% and 5% noise in the measurements. For 10% and 15%
noisy measurements, only the damaged members with high severity of damage can be
successfully identified. Furthermore, the damage assessment algorithm fails to
identify any damage at all for 20% noisy measurements. Therefore, it is evident from
the current example that the performance of the proposed algorithm to assess damage
in a structural system decreases as the level of noise in the measurements increases.
Further, it is seen for al of the investigated damage cases that the maximum level of
the measurement noise in which damage can be assessed is 20%, which is the same as
when the Monte Carlo simulation method is used in conjunction with the OEE
algorithm. It is also seen that the results of using Monte Carlo simulation with ROEE
exhibit higher accuracy in assessing damage compared with those using Monte Carlo
simulation with OEE, as observed from a more evident constant unit-probability zone
in the probability distribution for damaged members. Hence, it may be concluded that
the performance of the proposed algorithm in assessing damage can improve by using

the regularization scheme.

3.3.1.5 The Sensitivity-Based Method with ROEE Algorithm

In this section, we investigate the performance of the dstatistical damage
assessment algorithm by using the sensitivity-based method with OEE to evaluate the
statistical distribution of the parameter estimates. As with the previous sections, we
use the ten smulated damage cases of Table 3.3 as our model problems. The results
show that for all of the damage cases considered the maximum level of noise
permitting a damage assessment is 15%. This alows us to investigate five levels of
noise (i.e., ¢ = 1%, 3%, 5%, 10% and 15%) in the simulated measurement data.

Figures 3.33-3.37 show the probability distribution, P(X, <X,,(1-6,)), for

m

each level of damage €, in the structural members using different sets of smulated

noisy measurements. It is seen that the results of the current algorithm are generally
similar to those of the sensitivity-based method with OEE. Nevertheless, there are
some differences in that the performance of the current algorithm to assess damage is
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Figure 3.33 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and ROEE
algorithm with 1% noisy measurements.
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Figure 3.34 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and ROEE
algorithm with 3% noisy measurements.
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Figure 3.35 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the sensitivity-based method and ROEE
algorithm with 5% noisy measurements.
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Figure 3.36 Probability distribution with respect to different levels of damage for the

single-damaged-member cases using the sensitivity-based method and ROEE
algorithm with 10% noisy measurements.
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Figure 3.37 Probability distribution with respect to different levels of damage for the
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algorithm with 15% noisy measurements.
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improved as observed from a more evident constant unit-probability zone in the
probability distribution for damaged members. In addition, for all of the investigated
damage cases the maximum level of noise in which damage can be assessed is 15%,
compared with 10% for the sensitivity-based method with OEE. Hence, it is
concluded that the performance of the proposed method of assessing damage

improves by using the ROEE al gorithm.

3.3.1.6 The Optimum Sensitivity-Based Method with ROEE Algorithm

The ten damage cases in Table 3.3 are, again, used for evaluating the
performance of the statistical damage assessment algorithm. For the simulation
studies conducted in this section we use the ROEE method in conjunction with the
optimum sensitivity-based scheme to obtain the statistical distribution of the
parameter estimates. The results from the simulation studies show that for all damage
cases the maximum level of noise permitting a damage assessment is 20%, and hence
all of the six levels of the measurement noise in Table 3.3—. = 1%, 3%, 5%, 10%,
15% and 20%—are investigated in the present case.

Figures 3.38-3.43 show the probability distribution, P(X, <X,,(1-6,)), for
each level of damage 6, in the structural members using different levels of noisy

incarnations in the simulated measurements. It is seen that the results of the current
algorithm are generaly similar to those obtained from using the optimum sensitivity-
based method with OEE. However, we notice a better performance of the current
algorithm to assess damage in the structural system, as observed from a more evident
constant unit-probability zone in the probability distribution for damaged members.
The maximum level of noise in which damage can be assessed is 20%, compared with
10% for the optimum sensitivity-based method with OEE. Hence, it is evident that the
performance of the proposed damage assessment agorithm improves by

implementing the ROEE algorithm in the statistical parameter estimation process.
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Figure 3.39 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and
ROEE & gorithm with 3% noisy measurements.
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Figure 3.40 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and
ROEE & gorithm with 5% noisy measurements.
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Figure 3.41 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and
ROEE algorithm with 10% noisy measurements.
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Figure 3.42 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and
ROEE al gorithm with 15% noisy measurements.
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Figure 3.43 Probability distribution with respect to different levels of damage for the
single-damaged-member cases using the optimum sensitivity-based method and
ROEE algorithm with 20% noisy measurements.



3.3.2 Two-Damaged-Member Cases
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The two-damaged-member cases investigated herein consist of ten randomly

generated combinations of the location and the severity of damage as summarized in
Table 3.4. In this table, the noise levels indicate different levels of noise that are used

to investigate the performance of the current damage assessment algorithm from using

different statistical parameter estimation schemes. As for the single-damaged-member

cases, three different statistical parameter estimation schemes—i.e., the Monte Carlo

simulation method, the sensitivity-based method and the optimum sensitivity-based
method—are used in conjunction with the OEE and ROEE algorithms to estimate the

mean and the covariance matrix of the parameter estimates for the construction of the

statistical distribution of the system parameters.

Table 3.4 Different damage scenarios with two damaged members.

Damage Case | Damaged Members | Damage Levels (%) Noise Levels (%)

3 55.15

1 1%, 3%, 5%, 10%, 15% and 20%
8 78.98
4 37.18

2 1%, 3%, 5%, 10%, 15% and 20%
8 48.51
2 90.31

3 1%, 3%, 5%, 10%, 15% and 20%
11 51.64
6 41.92

4 1%, 3%, 5%, 10%, 15% and 20%
8 14.97
9 48.12

5 1%, 3%, 5%, 10%, 15% and 20%
5 84.45
6 54.81

6 1%, 3%, 5%, 10%, 15% and 20%
2 21.61
7 19.65

7 1%, 3%, 5%, 10%, 15% and 20%
10 48.95
6 5.93

8 1%, 3%, 5%, 10%, 15% and 20%
10 17.26
9 96.17

9 1%, 3%, 5%, 10%, 15% and 20%
3 63.75
1 78.64

10 1%, 3%, 5%, 10%, 15% and 20%
4 64.18
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The results of the ten ssimulated damage cases are shown, respectively, in Figures
3.44-3.49 for the Monte Carlo simulation method with OEE, Figures 3.50-3.53 for the
sensitivity-based method with OEE, Figures 3.54-3.57 for the optimum sensitivity-
based method with OEE, Figures 3.58-3.63 for the Monte Carlo simulation method
with ROEE, Figures 3.64-3.68 for the sensitivity-based method with ROEE and
Figures 3.69-3.74 for the optimum sensitivity-based method with ROEE.

The results of the current ssmulation studies are similar to those of the single-
damaged-member cases. It is seen that the damage assessment results can become less
accurate as the level of noise in the measurements increases. Also, it is observed that
as the level of noise in the measurements increases, the decrease in the probability
values for a structural member in the transition region becomes more gradual.
Therefore, we reach the same conclusion that the performance of the proposed
algorithm to assess damage in a structural system is limited by the level of noise in

the measurements.

It is noted from the results of the damage assessment algorithm by using the
ROEE algorithm comparing to using the OEE algorithm in the parameter estimation
process that the maximum level of noise permitting a damage assessment is increased
from 10% to 15% for the sensitivity-based method and from 10% to 20% for the
optimum sensitivity-based method, while remaining unchanged for the Monte Carlo
simulation method. This observation suggests that the ROEE algorithm is somewhat
more effective when using in conjunction with the optimum sensitivity-based method
compared to when using with the sensitivity-based and the Monte Carlo simulation
methods.
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Figure 3.44 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 1% noisy measurements.
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Figure 3.45 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 3% noisy measurements.
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Figure 3.46 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 5% noisy measurements.
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Figure 3.47 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 10% noisy measurements.
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Figure 3.48 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + OEE) using 15% noisy measurements.
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Figure 3.49 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte

Carlo simulation + OEE) using 20% noisy measurements.
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Figure 3.50 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and OEE algorithm
with 1% noisy measurements.
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Figure 3.51 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and OEE algorithm
with 3% noisy measurements.
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Figure 3.52 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and OEE algorithm

with 5% noisy measurements.
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Figure 3.53 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and OEE algorithm
with 10% noisy measurements.
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Figure 3.54 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and OEE
algorithm with 1% noisy measurements.
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Figure 3.55 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and OEE
algorithm with 3% noisy measurements.
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Figure 3.56 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and OEE
algorithm with 5% noisy measurements.
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Figure 3.57 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and OEE
algorithm with 10% noisy measurements.
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Figure 3.58 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo simulation + ROEE) using 1% noisy measurements.
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Figure 3.59 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte

Carlo simulation + ROEE) using 3% noisy measurements.
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Figure 3.60 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte

Carlo simulation + ROEE) using 5% noisy measurements.



117

Damage of member 3(55.15%) and 8(78.98%) with 10% noise Damage of member 4(37.18%) and 8(48.51%) with 10% noise

- ==

m Member ID Number m Member ID Number

Darnage of member 2(20.31%) and 11(51.64%) with 10% noise Darnage of member 6471.92%) and 8{14.87 %) with 10% noise

=
=
<
H
i)
\/“
I3
A
0, 0,
m Member D Number i Member ID Number
Damage of member 9(48.12%) and 5(84.45%) with 10% noise Darmage of member B{(54.51%) and 2(21.61%) with 10% noise
2
Q’{ !
5
V\/
XG k
A
m Member ID Nurmnber " Member |0 Mumber

Damage of member 7{15.65%) and 10{48.95%) with 10% noise Darmage of member B{5.83%) and 10{17.26%) with 10% noise

o Mermber ID Nurnber m Mernber D Murmber

Damage of member 9(96.17%) and 3(63.75%) with 10% noise Darnage of member 1(78.64%) and 4(54.18%) with 10% noise

2

m Member ID Nurnber m Mernber D Murmber

Figure 3.61 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo ssimulation + ROEE) using 10% noisy measurements.
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Figure 3.62 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo ssimulation + ROEE) using 15% noisy measurements.
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Figure 3.63 Probability distribution with respect to different levels of damage for the
two-damaged-members cases from 1,000 samples of parameter estimates (Monte
Carlo ssimulation + ROEE) using 20% noisy measurements.
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Figure 3.64 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and ROEE a gorithm
with 1% noisy measurements.
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Figure 3.65 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and ROEE a gorithm
with 3% noisy measurements.
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Figure 3.66 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and ROEE a gorithm
with 5% noisy measurements.
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Figure 3.67 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the sensitivity-based method and ROEE a gorithm
with 10% noisy measurements.
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two-damaged-members cases using the optimum sensitivity-based method and ROEE
algorithm with 1% noisy measurements.
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Figure 3.70 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and ROEE
algorithm with 3% noisy measurements.
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Figure 3.71 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and ROEE
algorithm with 5% noisy measurements.
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Figure 3.72 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and ROEE
algorithm with 10% noisy measurements.
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Figure 3.73 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and ROEE
algorithm with 15% noisy measurements.
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Figure 3.74 Probability distribution with respect to different levels of damage for the
two-damaged-members cases using the optimum sensitivity-based method and ROEE
algorithm with 20% noisy measurements.
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3.4 Chapter Summary

The damage assessment procedure developed in the previous chapter has been
tested with the single-damaged-member cases and the two-damaged-member cases of
10 different ssmulated damage cases for a ssmply supported truss structure. Through
simulation studies, the procedure of assessing damage in the presence of the
measurement noise was illustrated. To account for the sensitivity of the parameter
estimates to the measurement noise, we adopt the technique of statistical parameter
estimation. In particular, we use three different methods of statistical parameter
estimation—the Monte Carlo simulation method, the sensitivity-based method and the
optimum sensitivity-based method—to obtain the statistical distribution of the
parameter estimates that is used as an input to the statistical damage assessment
algorithm. Evaluation of the statistical distribution of the parameter estimates at the
potential damage locations has proved reliable as a method for assessing whether
damage is detectable above the noise in the measurements. From the simulation
results, it is concluded that the proposed algorithm can assess damage effectively at
low levels of noise in the measurements. For higher levels of noise in the
measurements, there are always cases where actually damaged elements are identified
as undamaged or actually undamaged elements are identified as damaged. However,
the results have been shown to improve dramatically when the level of noise in the
measurements decreases. In addition to the level of noise in the measurements, the
severity of the damage in the structural components aso limits the ability of the

proposed algorithm to assess damage in a structural system.

From the simulation results, it can be concluded that the performance of the
proposed statistical damage assessment method is improved by using the
regularization method on the parameter estimation problem (ROEE) for al of the
statistical parameter estimation schemes considered. Furthermore, the ROEE
algorithm is more effective when using with the optimum sensitivity-based method
compared to when using with the Monte Carlo simulation method and the sensitivity-
based method.



CHAPTER 4

STATISTICAL SIMULATION STUDY—A BRIDGE TRUSS

4.1 Introduction

In the previous chapter, we have used different statistical parameter estimation
algorithms in conjunction with the proposed damage assessment scheme to quantify
damage in a ssmple-support bridge truss by using 10 simulated damage scenarios. In
this chapter, we use the same truss structure in our simulation studies, but a larger
number of damage cases is considered to obtain a clearer picture of the performance
of the proposed algorithm in the statistical sense. A statistical identification error
(SIE) isdevised to quantify the level of accuracy of the damage assessment agorithm.
We consider three distinct cases of damage: the single-damaged-member cases, the
two-damaged-member cases, and the three-damaged-member cases. For each of these
damage cases, we generate 100 different damage scenarios by randomly varying the

location and the severity of damage.

As for the previous chapter, we examine three methods of statistical parameter
estimation; i.e., the Monte Carlo simulation method, the sensitivity-based method, and
the optimum sensitivity-based method. We use these methods in conjunction with the
output error estimator (OEE) and the regularized output error estimator (ROEE) to
investigate the performance of the present statistical damage assessment scheme from
using different statistical evaluation schemes and estimators by using the statistical

identification error (SIE) of the damaged member parameters.

Through statistical simulation studies, the procedures of each of the investigated
algorithms in assessing damage by using the plot of the SIE value of the damage
member parameters and the probability of successfully detecting damage with respect

to different levels of noise in the measurements are illustrated.
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4.2 Statistical Identification Error

The perfermance of the investigated algorithms is evaluated by using a statistical
identification error (SIE) index. For the single-damaged-member cases, the SIE index

for the darriaged member m is defined as

fcmb 'imc' (‘imb % 'imc) J ‘i.mb mb
(4.1)
i which
X, is the actual value of the baseline parameter for member m;
X, is the actual value of the current parameter for member m; -
X, is the mean of the baseline parameter estimates for member m;
X, is the mean of the current parameter estimates for member m;
o, is the standard deviation of the baseline parameter estimates for
member m;
o, is the standard deviation of the current parameter estimates for
member m;
and o is the standard deviation of the changes of the value of the current

(Kup =X )
 parameter estimate from the baseline parameter estimate for

‘member m.

The level of success of the damage assessment is identified by the SIE value of
. the démaged memi)ers. Note that equation (4.1) consists of six terms: (1) deviation of
the baseline pararheter estimate from the actual value; (2) deﬁaﬁon of the currentv
parameter estlmate from the acthal value; (3) deviation of the estimated change of the
parameter values from the actual change; (4) the scatter of (1) (5) the scatter of (2);

and (6) the scatter of (3). The assessment of damage 18 con51dered effective when the -

SIE value approaches Zero. For the current study we use the plot of SIE mdex with
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respect to the levels of noise in the measurements to illustrate the performance of each

of the algorithms under consideration.

For the two-damaged-member cases and three-damaged-member cases, the SIE

values are computed, respectively, as

- (SE + SEm)_

SE + SE _+ SE
5 ,andSIE3:(E' . n)

3

SE, (4.2)

whereas the subscripts |, m, and n represent the quantity being associated with

damaged members|, m, and n, respectively.

4.3 Simulation Studies

In our smulation studies, we investigate the performance of each of the
investigated algorithms in assessing damage by plotting the SIE value with respect to
different levels of noise in the measurements. The key objective of the present study
is to examine the efficacy of using the regularization scheme to improve the
performance of the statistical damage assessment scheme. Again, we use synthetic
measurements that are generated in accord with equation (2.35). Three statistical
parameter estimation methods, i.e. the Monte Carlo simulation method, the optimum
sensitivity-based method and the sensitivity-based method are used in conjunction
with the OEE and ROEE algorithms to obtain the required statistics of parameter
estimates for the damage assessment algorithm. The same truss structure of Chapter 3

isused as our model problem.

The simulation studies conducted in this section consist of single-damaged-
member cases, two-damaged-member cases and three-damaged-member cases. Asin
Chapter 3, for the single-damaged-member cases the damage of the structure is
represented by a reduction of the stiffness of a single structural member. For the two-
damaged-member and three-damaged-member cases, the damage is due to the

stiffness reduction of two and three structural members, respectively. For each of the
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damage cases considered, we generate 100 different damage scenarios by randomly -

varying the location and the severity of damage.

4.3.1 Single-Damaged-Member Cases

The single-damaged-member cases investigated herein consist of 100 different
combinations of the location and the severity of damage that are randomly generated.
As mentioned previously, we use the Monte-Carlo simulation method, the optimum
sensitivity-based method and the sensitivity-based method in conjunction with the
OEE and the ROEE algorithms for the statistical parameter estimation from noisy
responses. The perfornianée of each algorithm in the statistical damage assessment
scheme is investigated by examining the SIE values. The level of success in the

. detection of damage is indicated by the probability of success in detecting damage P,

which is defined as
100
Y B
T 7R
i=1 ’
in which
: NiS is the number of the successfully detected damages for damage case
I
and  N/” is the number of the actual damages for démage case .

The accuracy of the statistical evaluation of the performance of the vprop.osed
damage assessment algorithm can improve as the number of damage cases, or the
sample size, increases. This aspect of the algorithm is investigated by examining the '
_ -{faxiation of the avérage SIE values associated with the successfully-detected damaged
members for all damage scenarios which are obtained from using different numbers of

simulated damage cases. Figﬁfe 4.1 shows the results from using the Monte-Carlo
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Figure 4.1 Variation of the average SIE values associated with the successfully-
detected damaged members with respect to different levels of noisein the
measurements using the Monte Carlo simulation method in conjunction with the
ROEE agorithm for different numbers of damage cases.

simulation method in conjunction with ROEE with respect to different levels of noise
in the measurements for different numbers of damage cases. It is seen from the figure
that 100 samples are sufficient to carry out the performance assessment in the range of
noise levels considered. Therefore, we use 100 damage cases in order to evaluate the

performance of the statistical damage assessment in our simulation studies.

Figure 4.2 summarizes the performance of the investigated algorithms with the
increasing level of noise for the single-damaged-member cases. Figures 4.2(a), 4.2(c)
and 4.2(e) on the left column show the results from using the OEE algorithm in
conjunction with the Monte-Carlo simulation method, the optimum sensitivity-based
method and the sensitivity-based method, respectively. On the right column, figures
4.2(b), 4.2(d) and 4.2(f) show the results from using the ROEE algorithm in
conjunction with different statistical parameter estimation methods in the same order.
Note that each of these plots show the average SIE values for the successfully-

detected damaged membersin all of the damage cases considered.
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Figure 4.2 Variation of the average SIE values associated with the successfully-
detected damaged members with respect to different levels of noisein the
measurements for 100 single-damaged-member cases using different methods of
statistical parameter estimation with the OEE and ROEE algorithms.
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It is seen from the illustration that the average SIE value increases as the level of
noise in the measurements increases. The results from using the three statistical
parameter estimation methods with the OEE algorithm show that the maximum level
of noise permitting a damage assessment is 10% for the optimum sensitivity-based
method and the sensitivity-based method, and 20% for the Monte Carlo simulation
method. With the ROEE method, the maximum level of noise is increased to 20% for
the Monte Carlo simulation and the optimum sensitivity-based methods. For the
sensitivity-based method, the maximum level of noise isincreased to 15%. Moreover,
the performance of the proposed damage assessment method is somewhat stabilized
by the regularization effect when using the Monte Carlo simulation method as evident

from the lower, and less fluctuated, SIE values.

Figure 4.3 summarizes the probability of success in detecting damage with
respect to different levels of noise in the measurements for the single-damaged-
member cases. The format of the illustration follows Figure 4.2 in which the left and
right columns show the results from using the OEE and the ROEE algorithms,

respectively, in conjunction with different statistical parameter estimation schemes.

The results from using all three statistical parameter estimation methods with the
OEE and the ROEE agorithms show that the probability of success in detecting
damage decreases as the level of noise in the measurements increases. The decrease in
the probability of success in detecting damage is more gradual for the results using the
ROEE agorithm. The probability of failing to detect damage increases as the level of
noise in the measurements increases. Again, we observe a more gradual increase in

the probability values for the results from using the ROEE algorithm.

Figure 4.4 is the plot of the distribution of the SIE values which success in
detecting damage with respect to different levels of noise in the measurements for
each of the single-damaged-member cases. In the illustration, the left and right
columns show the results from using the OEE and the ROEE algorithms, respectively,
in conjunction with different statistical parameter estimation schemes.

It is seen from the illustration that the variation of the SIE values at each noise
level is small when the level of noise in the measurements is low due to high success

in detecting damage. The variation of the SIE valuesis large when the level of noise
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Figure 4.3 Probability of successin detecting damage with respect to different levels
of noise in the measurements for 100 single-damaged-member cases using different
methods of statistical parameter estimation with the OEE and ROEE algorithms.
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Figure 4.4 Variation of the SIE values for each of the successfully-detected damaged
members with respect to different levels of noise in the measurements from 100
single-damaged-member cases using different methods of statistical parameter

estimation with the OEE and ROEE algorithms.



141

is high due to low success in detecting damage. Moreover, the fluctuation in the
performance of the proposed damage assessment method is somewhat stabilized by
the regularization effect as evident from the smaller variation of the SIE values.

4.3.2 Two-Damaged-Member Cases

The two-damaged-member cases investigated herein consist of 100 different
combinations of the location and the severity of damage that are randomly generated.
As for the single-damaged-member cases, three statistical parameter estimation
methods, i.e. the Monte-Carlo simulation method, the optimum sensitivity-based
method and the sensitivity-based method, are used in conjunction with the OEE and
the ROEE algorithms to investigate the performance of the proposed damage
assessment scheme. The SIE index, as computed from equation (4.2), is used to
quantify this performance. The level of success of the damage detection is indicated

by the value of P,, which is the ratio of the number of damages detected to the
number of actual damages in the structure. We plot the average SIE values, the P,

values, and the distribution of the SIE values for the 100 damage cases under
consideration with respect to different levels of noise in the measurements for each of
the investigated algorithms.

Figure 4.5 illustrates the overall performance of the presented algorithms with
respect to the level of the measurement noise for the two-damaged-member cases.
The format of the illustration follows Figure 4.2 in which the left and right columns
show the results from using the OEE and the ROEE agorithms, respectively, in
conjunction with different statistical parameter estimation schemes. Note that the SIE
valuesin Figure 4.5 are plotted as the average SIE values for the successfully-detected
damaged members for the cases in which one and two damaged members are detected

aswell asfor al of the 100 damage cases.

The same sort of results as for the single-damaged-member cases are again seen
for the two-damage-member cases. The SIE value increases as the level of noise in
the measurements increases. For al of the investigated damage cases, the ROEE
method out-performs the OEE method in the assessment of damage using all the
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Figure 4.5 Variation of the average SIE values for the successfully-detected damaged
members with respect to different levels of noise in the measurements for the casesin
which one and two damaged members are detected, and for all 100 damage cases
using different methods of statistical parameter estimation with the OEE and ROEE
algorithms.
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statistical parameter estimation schemes considered with higher levels of

measurement noise permitting a damage assessment.

Figure 4.6 summarizes the probability of success in detecting damage with
respect to different levels of noise in the measurements for the two-damaged-member
cases. The results from using all three statistical parameter estimation methods with
the OEE and the ROEE algorithms show that the probability of success in detecting
both damaged members decreases as the level of noise in the measurements increases.
However, the probability distribution for the cases using the ROEE agorithm shows a
more gradual decrease. Moreover, the probability of detecting only a single damaged
member as well as the probability of detecting no damage at all increases with the
level of noise in the measurements. Again, amore gradual increase is observed for the
results from the ROEE algorithm.

Figures 4.7 and 4.8 show the distribution of the SIE values for the cases in which
one damaged member and two damaged members are successfully detected,
respectively, with respect to the level of noisein the measurements. It is seen from the
illustration for al three statistical parameter estimation methods with the OEE
algorithm that the variation of the SIE values is small at low levels of noise. Thisis
due to the comparatively high success in detecting damage. However, the variation of
the SIE values becomes quite large at higher levels of noise. The performance of the
proposed damage assessment method is somewhat improved when the ROEE
algorithm is used as evident from the smaller variation of the SIE values at all noise

levels.

4.3.3 Three-Damaged-Member Cases

In this section, we investigate 100 damage cases in which three truss members are
damaged. We randomly select the locations and the severities of damage for the truss.
As for the previous cases, we examine three statistical parameter estimation methods,
i.e. the Monte-Carlo ssmulation method, the optimum sensitivity-based method and
the sensitivity-based method, in conjunction with the OEE and the ROEE agorithms
for the proposed damage assessment scheme.
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Figure 4.6 Probability of successin detecting damage with respect to different levels
of noise in the measurements for 100 two-damaged-member cases using different
methods of statistical parameter estimation with the OEE and ROEE algorithms.
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Figure 4.7 Variation of the SIE values with respect to different levels of noise for the
two-damaged-member cases in which only one member is successfully detected as
damaged using different methods of statistical parameter estimation with the OEE and
ROEE algorithms.
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Figure 4.8 Variation of the SIE values with respect to different levels of noise for the
two-damaged-member cases in which both damaged members are successfully
detected using different methods of statistical parameter estimation with the OEE and
ROEE agorithms.
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Figure 4.9 shows the performance of the algorithms under consideration with
respect to different levels of noise in the measurements. The SIE values in this figure
are plotted as the average of the SIE values for the members whose damage can be
detected for the cases in which one, two, and three damaged members are detected

and for all of the investigated damage cases.

It is seen from the illustration that the SIE value increases as the level of noise in
the measurements increases. For all of the investigated damage cases, the ROEE
method out-performs the OEE method in the assessment of damage using all the
statistical parameter estimation schemes considered with higher levels of noise
permitting a damage assessment.

Figure 4.10 shows the probability of success in detecting damage with respect to
different levels of noise in the measurements for the three-damaged-member cases.
The results from using all three statistical parameter estimation methods with the OEE
and the ROEE algorithms show that the probability of successfully detecting al
damaged members as damaged decreases as the level of noise in the measurements
increases, with a more gradual decrease when the ROEE agorithm is used. In
addition, the probability of detecting two members, one member and no member as
damaged increases with the level of noise in the measurements. Again, the increase in
the probability values for the results obtained from using the ROEE algorithm is more
gradual.

Figures 4.11, 4.12 and 4.13 summarize the variation of the SIE values for the
cases in which one, two and three damaged members are successfully detected,
respectively. The same sort of results as for the previous damage cases are again seen
for the three-damaged-member cases. For al three statistical parameter estimation
methods with the OEE and the ROEE algorithms, the variation of the SIE values is
small for low levels of noise. The variation of the SIE values becomes larger for
higher levels of noise. At the same level of noise, the variation of the SIE values is
smaller when the ROEE agorithm is used, which confirms the improvement of the
assessment of damage by using the regularization method on the statistical parameter

estimation schemes considered.
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Figure 4.9 Variation of the average SIE values for the successfully-detected damaged
members with respect to different levels of noise in the measurements for the casesin
which one, two, and three damaged members are detected and for all 100 damage
cases using different methods of statistical parameter estimation with the OEE and

ROEE algorithms.
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Figure 4.10 Probability of success in detecting damage with respect to different levels
of noise in the measurements for 100 three-damaged-member cases using different
methods of statistical parameter estimation with the OEE and ROEE algorithms.
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Figure 4.11 Variation of the SIE values with respect to different levels of noise for the
three-damaged-member cases in which only one member is successfully detected as
damaged using different methods of statistical parameter estimation with the OEE and
ROEE agorithms.
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Figure 4.12 Variation of the SIE values with respect to different levels of noise for the
three-damaged-member cases in which two members are successfully detected as
damaged using different methods of statistical parameter estimation with the OEE and
ROEE agorithms.
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Figure 4.13 Variation of the SIE values with respect to different levels of noise for the
three-damaged-member casesin which all of the three damaged members are
successfully detected using different methods of statistical parameter estimation with
the OEE and ROEE algorithms.
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4.4 Chapter Summary

The performance of the statistical damage assessment scheme was investigated
through a simulation study using a truss structure as the model problem. Various
damage cases with different locations and severities of damage of the truss were
randomly selected for the single-damaged-member cases, the two-damaged-member
cases and the three-damaged-member cases, respectively. The dtatistics of the
structural parameters are obtained by using three methods of statistical parameter
estimation, i.e. the Monte-Carlo simulation method, the optimum sensitivity-based
method and the sensitivity-based method. The performance of the damage assessment
isidentified by using a statistical identification error (SIE) index that approaches zero
when the assessment is effective. The level of success of the damage detection is

indicated by the probability of success in detecting damage ( P,). The performance of

damage assessment with respect to the level of noise in the measurements is
illustrated by the variation of the SIE values for all damage cases. The results of the
simulation study showed that the performance of the present statistical damage
assessment method can be improved by using the regularization method on the
parameter estimation scheme for all of the damage cases considered.



CHAPTER 5

SIMULATION STUDY—A BRACED FRAME WITH MULTI-PARAMETER
MEMBERS

5.1 Introduction

It has been shown in Chapter 3 and Chapter 4 that the proposed statistical damage
assessment scheme in conjunction with the OEE and the ROEE algorithms can be
used to assess damage in a simple-support bridge truss effectively even when the
measured data are noise-polluted. In this chapter, the optimum sensitivity-based
method are used in conjunction with the ROEE algorithm in the simulation study of a
two-story braced frame with members consisting of multiple stiffness parameters. The
method of damage assessment for multi-parameter structural members proposed in

Chapter 2 is used in the current study.

A two-story braced frame is used as our model problem. We consider two distinct
cases of damage: the damage of the single-parameter frame members and the damage

of the multiple-parameter frame members. The performance of the proposed
algorithm is assessed in terms of the probability of the damage P;" for member m The
performance of the algorithm is illustrated through the variation of the probability of
the damage P;" with respect to different levels of damage in percentage of reduction
of the corresponding stiffness parameters, coupled with the effect of noise in the
measurements. In addition, the values of the probability of the damage P;" associated

with the identified damaged members are also ranked in order to identify the accuracy

of the outcome of the damage assessment scheme.

5.2 Description of the Example Structure

The structure we investigate herein is atwo-story braced frame. The geometry and

the topology of the frame are shown in Figure 5.1. In the figure the numbersin circles
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120in.

120in.

Figure 5.1 Geometry and topology of the two-story braced frame.

represent the member identification numbers and the numbers in triangles represent
the nodal identification numbers. The finite-element model of the braced frame
consists of 12 elements and 8 nodes with 18 degrees of freedom. The braced-frame
members can be categorized into two types: (1) the two-parameter members (column
members 1 — 4 and beam members 5 — 8); and (2) the single-parameter members
(bracing members 9 — 12). The stiffness parameters for the two-parameter members
are the axia stiffness (EA) and the bending stiffness (El). The stiffness parameter for
the single-parameter members is the axial stiffness (EA). The baseline properties for
each of the braced frame members are listed in Table 5.1. Note that the self-weight of
the structural members is calculated based on the unit weight w = 0.145 kips/ft®. In
addition to the self-weight of the structural members shown in the table, we assume
that the dead load being imposed upon the structure is uniformly distributed along the
length of all 12 members with a value of 0.017 kips-sec’/ft/ft. Moreover, all members
are assumed to have a modulus of elasticity of E = 582,768 kips/ft>.
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Table 5.1 Baseline properties of the two-story braced frame.

Cross Cross-
. - Sectional 4 EA El Self Weight Total Weight
Member Location (isr‘fff'i?]”) Area A | M) 1 wips) | (kipsf?) | (kips-seciuf) | (kips-secdifutt)
an. @in?)

5_

1 1 Cﬁ&%f“ 24.x24 576 | 1.33333 | 2321573 | 773858 0.01801 0.03501
” .

2 1 -;?L);;;]ght 24.x24 576 1.33333 | 2321573 | 773858 0.01801 0.03501
nd_

3 2 Czﬁ%%r']eft 22x22 484 | 094142 | 1950766 | 546395 0.01514 0.03214
2"-story right

4 el 22.x22 484 | 094142 | 1950766 | 546395 0.01514 0.03214
st

5 1 'ﬁ%'eﬁ 10.x18 180 | 0.23438 | 725492 | 136030 0.00563 0.02263
S .

6 1 i‘g’n:'ght 10.x18 180 | 0.23438 | 725492 | 136030 0.00563 0.02263
nd

7 2 'ﬁ%'eﬂ 10.x18 180 | 0.23438 | 725492 | 136030 0.00563 0.02263
nd ;

8 2 'stt)‘;)r’nr'gm 10.x18 180 | 023438 | 725492 | 136030 0.00563 0.02263
g .

9 17-story bracing 576 A 232157 3 0.00180 0.01880
member
- .

10 1"-story bracing 576 L 232157 ; 0.00180 0.01880
member
nd 7

1 2%-story bracing 484 2 195077 ; 0.00151 0.01851
member
nd ;

12 | 27slory bracing 484 = 195077 - 0.00151 0.01851
member

In the current study we assume that the natural frequencies and mode shapes of
the structure for all of the 18 vibration modes are available as our measurement
information. Each of the mode shapes are assumed to be measured at all 18 degrees of
freedom of the structural model as shown in Figure 5.1. The free-vibration responses
obtained from an eigenvalue analysis of the baseline structure are shown in Table 5.2,

in which the ith mode shape ®, is scaled by using the mass matrix M such that

O M®D, - 1.

5.3 Statistical Damage Assessment of Multi-Parameter Structural Members

The simulation studies conducted in this section consist of the damage cases of the
single-parameter members and the damage cases of the two-parameter members. For
the damage cases of the single-parameter members the damage of the structure is




Table 5.2 Noise-free data for the baseline structure.
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Mode 1% Mode | 2 Mode | 39Mode | 4"Mode | 5"Mode | 6"Mode | 7"Mode | 8"Mode | 9"Mode
Natural
Frequency 12.76 30.84 37.26 37.98 61.50 66.25 68.49 90.30 93.82
(Hz)
Mode Shape
1% DOF 044850 | 0.18191 | -0.02103 | -0.71037 | 0.19426 | -0.78431 | -0.06250 | -0.32238 | -0.66131
2YDOF | 0.01225 | 0.07540 | 0.02934 | 0.03990 | -0.18820 | 0.10030 | -0.25800 | 0.60586 | -0.34312
3YDOF | -0.05712 | -0.2763 | 0.04427 | 0.01449 | 0.09431 | 0.15383 | -0.19249 | -0.12324 | -0.26246
4" DOF 0.40961 | 0.00000 | 0.00000 | -0.74302 | 0.26993 | 0.00000 | -0.09867 | 0.00000 | 0.00000
5" DOF 0.00000 | -0.02763 | 1.67188 | 0.00000 | 0.00000 | -0.18882 | 0.00000 | -0.06293 | 0.25037
6" DOF 0.02844 | 0.00000 | 0.00000 | -0.02402 | -0.06015 | 0.00000 1.13441 0.00000 | 0.00000
7" DOF 0.44850 | -0.18191 | 0.02103 | -0.71037 | 0.19426 | 0.78431 | -0.06250 | 0.32238 | 0.66131
8"DOF | -0.01225 | 0.07540 | 0.02934 | -0.03990 | 0.18820 | 0.10030 0.25800 | 0.60586 | -0.34312
9"DOF | -0.05712 | 0.02763 | -0.04427 | 0.01449 | 0.09431 | -0.15383 | -0.19249 | 0.12324 | 0.26246
10"DOF | 0.85216 | -0.00417 | -0.01992 | 0.75068 | -0.03422 | -0.38479 | -0.05179 | 0.34389 | 0.69799
11" DOF 0.01266 0.09901 0.03203 0.03249 | -0.35167 | 0.12121 -0.32390 0.94714 -0.49965
12"DOF | -0.02252 | 0.10519 | -0.02186 | -0.21814 | -0.29388 | -0.27840 0.10940 0.18921 0.16008
13" DOF 0.83334 0.00000 0.00000 0.70794 | -0.02480 | 0.00000 -0.13857 0.00000 0.00000
14" DOF 0.00000 1.57599 0.03666 0.00000 | 0.00000 0.41602 0.00000 -0.57257 0.25085
15" DOF 0.00994 0.00000 0.00000 0.17913 | 0.97308 0.00000 0.04095 0.00000 0.00000
16"DOF | 0.85216 | 0.00417 | 0.01992 | 0.75068 | -0.03422 | 0.38479 | -0.05179 | -0.34389 | -0.69799
17"DOF | -0.01266 | 0.09901 | 0.03203 | -0.03249 | 0.35167 | 0.12121 0.32390 | 094714 | -0.49965
18"DOF | -0.02252 | -0.10519 | 0.02186 | -0.21814 | -0.29388 | 0.27840 0.10940 | -0.18921 | -0.16008
10" 11" 12" 133 14" 15" 16" ™ 18"
Mode Mode Mode Mode Mode Mode Mode Mode Mode Mode
Natural
Frequency 101.01 118.33 131.31 140.54 187.32 194.07 243.10 267.05 284.54
(H2)
Mode Shape
1 DOF 0.03057 | 0.03182 | 0.03474 | -0.67861 | -0.00693 | -0.30072 | -0.27322 | 0.15961 | -0.35870
2YDOF | 067677 | 011961 | 0.16442 | -0.00837 | 0.01640 | -0.50018 | -0.75456 | -0.80445 | 0.53696
3YDOF | -0.00232 | -0.38530 | 0.37452 | -0.14345 | 0.56552 | 0.69371 0.43687 | -0.10531 | 0.38597
4"DOF 0.18272 | -0.29946 | 0.00000 | 1.46676 | 0.00590 | 0.00000 0.14525 | 0.00000 | 0.15614
5" DOF 0.00000 | 0.00000 | -0.22691 | 0.00000 | 0.00000 | -0.22460 | 0.00000 | 0.18651 | 0.00000
6" DOF 0.75329 | -0.60728 | 0.00000 | -0.19806 | 0.58876 | 0.00000 0.10519 0.00000 | 0.52724
7" DOF 0.03057 | 0.03182 | -0.03474 | -0.67861 | -0.00693 | 0.30072 | -0.27322 | -0.15961 | -0.35871
8"DOF | -0.67677 | -0.11961 | 0.16442 | 0.00837 | -0.01640 | -0.50018 | 0.75456 | -0.80445 | -0.53696
9"DOF | -0.00232 | -0.38530 | -0.37452 | -0.14345 | 0.56552 | -0.69371 | 0.43687 0.10531 | 0.38597
10"DOF | -0.05123 | 0.05952 | 1.63098 | 0.30299 | 1.28311 | -0.25028 | -0.55904 | 0.65413 | -1.10109
11" DOF 0.98983 0.10993 | -0.01900 | -0.02385 | -0.07663 | -0.05301 0.82129 151725 -1.28722
12"DOF | -0.19181 | 0.48520 | -0.62122 | -0.05053 | -0.05579 | 0.91248 0.79733 -0.81503 1.32400
13" DOF 0.06618 | -0.70342 | 0.00000 | -0.06469 | -1.09501 | 0.00000 0.41534 0.00000 0.59337
14" DOF 0.00000 0.00000 0.26684 | 0.00000 | 0.00000 | -0.25237 0.00000 0.30368 0.00000
15" DOF 0.56484 0.95347 0.00000 | -0.08131 | -0.09041 | 0.00000 1.03320 0.00000 0.66415
16" DOF | -0.05123 | 0.05952 | -1.63098 | 0.30299 | 1.28311 | 0.25028 | -0.55904 | -0.65413 | -1.10109
17"DOF | -0.98983 | -0.10993 | -0.01900 | 0.02385 | 0.07663 | -0.05301 | -0.82129 | 151725 | 1.28722
18"DOF | -0.19181 | 048520 | 0.62122 | -0.05053 | -0.05579 | -0.91248 | 0.79733 | 0.81503 | 1.32400
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represented by the reduction of a single stiffness parameter of a structural member
whereas for the damage cases of the two-parameter member the damage is due to the
reduction of two stiffness parameters of a structural member. The stiffness parameters
for the two-parameter members are the axial stiffness (EA) and the bending stiffness
(El), respectively, whereas the stiffness parameter for the single-parameter members
isthe axial stiffness (EA).

As for Chapter 3, we model the measurement data of the structural response by
using a computer simulation. The modal responses of the baseline structure in Table
5.2 are used as the noise-free measurement data upon which the mean and the
covariance matrix of the parameter estimates of the baseline structure are obtained by

using the optimum sensitivity-based method in conjunction with the ROEE algorithm.

In the statistical damage assessment process, the probability of the damage P;" for
member m can be computed directly—as a function of the distance of the limit-state
line to the origin of the reduced variates; that is, the distance » ,—by substituting the
statistical indices from the statistical parameter estimation process into equation
(2.101). Moreover, to investigate the effect of a"’sin equation (2.101) on the damage

assessment results, two alternatives of a"’s from equations (2.104) and (2.105) are

examined.

5.3.1 Single-Parameter Member Damage Cases

For the cases in which the single-parameter members are damaged, we model
damage of the bracing members 10 and 12 with 10%, 50% and 90% reduction of the
axial stiffness parameter (EA) and we examine four different levels of noise in the
measurements: 0.1%, 0.3% 0.5% and 1%. The optimum sensitivity-based method is
used in conjunction with the ROEE agorithm to estimate the mean and the covariance
matrix of the stiffness parameters.

Tables 5.3 and 5.4 summarize the five structural members with the highest
probability of damage P;" for 10%, 50% and 90% reduction of the axia stiffness
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Table 5.3 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 10 and 12 using noisy
measurements and a™ ' s from equation (2.104).

Actual _ % Reduction Ranking of Identified Damaged Members (by P, value)
Damaged | % noise | of Parameter

M ernber Va| ue (EA) 13 2I’1d 3rd 4th 5th

10 01 10 . Y 6 5 8
: (100000) | (0.826302) | (0.799546) | (0.791031) | (0.640577)

10 0.1 50 5 { 6 > 8
: (100000) | (0.838914) | (0.833977) | (0.680823) | (0.644309)

10 01 %0 o g 6 8 5
' (100000) | (0853142) | (0.810571) | (0.644309) | (0.567495)

10 03 10 10 b 6 5 8
: (085083 | (0.823815) | (0.802338) | (0.776373) | (0.629300)

10 03 50 /3 8 Y > 8
: (100000) | (0.836458) | (0.828945) | (0.636831) | (0.621720)

10 03 90 o L 6 8 5
: (100000) | (0.823815) | (0.823815) | (0.598706) | (0.511966)

10 05 10 i 8 5 8 4
: (0.818589) | (0.813268) | (0.767305) | (0617912) | (0.531881)

10 05 50 9 P 4 5 8
: (0999739) | (0.848496) | (0.818589) | (0.606420) | (0.602568)

10 05 ) oy 5 Y 8 4
: (1.000000) | (0.836458) | (0.799546) | (0.567495) | (0.539828)

10 10 10 A 6 5 4 2
: (0.823815) | (0.793893) | (0.782305) | (0.742154) | (0.742154)

10 10 50 2 u 4 2 10
: (0.886861) | (0.821214) | (0.776373) | (0.738914) | (0.625516)

10 10 ) 9 ¢ ’ 2 10
: (0.850930) | (0.821214) | (0.807850) | (0.698469) | (0.662758)

12 0.1 10 12 i 2 6 8
: (0.999098) | (0.821214) | (0.807850) | (0.79351) | (0.648028)

12 01 50 12 2 i 6 8
: (1.000000) | (0.826392) | (0.785237) | (0.751748) | (0.651732)

12 01 ) 12 5 6 ! 8
: (1.000000) | (0.846136) | (0.666402) | (0.633072) | (0.575345)

12 03 10 42 ’ 5 6 8
' (0.866501) | (0.815941) | (0.799546) | (0.776373) | (0.636831)

12 03 50 Y 5 7 6 8
: (1.000000) | (0.805106) | (0.776373) | (0.708841) | (0.640577)

12 03 90 12 5 1 7 8
: (1.000000) | (0.79351) | (0.644309) | (0.587064) | (0.551717)

12 05 10 % 5 B 2 8
: (0.813268) | (0.793893) | (0.779351) | (0.650097) | (0.625516)

12 05 50 12 5 ’ 6 8
: (0999093) | (0.785237) | (0.767305) | (0.662758) | (0.625516)

12 05 90 12 1 5 ! 8
: (1000000) | (0.751748) | (0.705402) | (0.583166) | (0.547758)

12 10 10 5 7 2 4 1
: (0.823815) | (0.815941) | (0.758037) | (0.712261) | (0.698469)

12 10 50 12 1 2 5 ’
: (0.962462) | (0.925067) | (0.857691) | (0.807850) | (0.767305)

12 10 %0 12 1 2 3 5
: (0997364) | (0.963273) | (0929220) | (0.785237) | (0.764238)
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Table 5.4 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 10 and 12 using noisy
measurements and a™'s from equation (2.105).

Actual | % Reduction Ranking of Identified Damaged Members (by PJ" value)
Damaged | % noise | of Parameter

M ernber Val ue (EA) 13 2nd 3rd 4th 5th

10 01 10 . Y 5 6 8
: (1.000000) | (0.826392) | (0.810571) | (0.802338) | (0.640577)

10 01 50 9 { 6 > 8
' (1.000000) | (0.836458) | (0.831473) | (0.735653) | (0.644309)

10 01 9 o g 6 8 5
: (1000000) | (0.853142) | (0.793893) | (0.644309) | (0.629300)

10 03 10 10 % 6 5 8
: (0.850831) | (0.823815) | (0.805106) | (0.796731) | (0.629300)

10 03 50 'y e Y 5 8
: (1.000000) | (0.831473) | (0.826302) | (0.691463) | (0.621720)

10 03 9 o L 6 8 5
: (1.000000) | (0.823815) | (0.810571) | (0.594835) | (0.583166)

10 05 10 i 8 5 8 4
: (0.818589) | (0.813268) | (0.776373) | (0617912) | (0.547758)

10 05 50 9 9 4 > 8
: (0999739) | (0.833977) | (0.818589) | (0.655422) | (0.602568)

10 05 90 oy 5 Y 4 8
: (1.000000) | (0810571) | (0.799546) | (0.633072) | (0.567495)

10 10 10 A Y 6 3 2
: (0872857) | (0.826392) | (0.785237) | (0.785237) | (0.748572)

10 10 50 & 5 ’ 3 2
: (0.006583) | (0.838914) | (0.821214) | (0.779351) | (0.751748)

10 10 90 3 3 ’ 6 2
: (0957284) | (0.828945) | (0.807850) | (0.751748) | (0.719043)

12 01 10 12 2 0 6 8
: (0.999008) | (0.823815) | (0.821214) | (0.785237) | (0.648028)

12 01 50 12 S % 6 8
: (1000000) | (0836458) | (0.788145) | (0.748572) | (0.651732)

12 01 90 12 5 ’ 6 8
: (1.000000) | (0.846136) | (0.644309) | (0.621720) | (0.579260)

12 03 10 12 7 5 6 8
: (0.866501) | (0.815941) | (0.813268) | (0.782305) | (0.636831)

12 03 50 X 5 ’ 6 8
' (1000000) | (0805106) | (0.779351) | (0.687933) | (0.640577)

12 03 90 12 5 1 “ 8
: (1.000000) | (0.722405) | (0.629300) | (0.598706) | (0.555670)

12 05 10 v 5 6 . 8
: (0.813268) | (0.793893) | (0.779351) | (0.650007) | (0.625516)

12 05 50 12 U S 8 6
: (0999993) | (0.767305) | (0.751748) | (0.625516) | (0.621720)

12 05 90 12 1 Y 3 5
' (1.000000) | (0.748572) | (0594835) | (0.587064) | (0.579260)

12 10 10 4 ! 3 2 5
: (0.857691) | (0.815941) | (0.796731) | (0.764238) | (0.742154)

12 10 50 12 1 3 2 4
: (0962462) | (0923642) | (0.868644) | (0.850930) | (0.821214)

12 10 9 12 8 1 2 4
: (0997364) | (0977250) | (0.964852) | (0.929220) | (0.767305)
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parameter (EA) of members 10 and 12 using the 0.1%, 0.3%, 0.5% and 1.0% noisy
measurements. The results in the tables are obtained from using the coefficients a"'s
in equations (2.104) and (2.105), respectively. Note that even though the coefficient
a" obtained from both equations (2.104) and (2.105) has the unit value, the

coefficients a"’'s from these equations are still different for other multi-parameter
members that are examined. Therefore, the rankings in Tables 5.3 and 5.4 are

different. The unit P value indicates that the probability that the member under

consideration is damaged is 100%. Likewise, the zero P value implies that there is

no chance that the investigated member is damaged.

It is seen from the tables that there is no clear distinction between the results

using a"’'s from equations (2.104) and (2.105). This is due to the same unit value of

a" from the two equations for the actual damaged members. Members 10 and 12 are

successfully identified with the highest probability of damage at high levels of
damage and at low levels of noise in the measurements. These members are, however,
not identified with the highest probability of damage when the level of noise in the
measurements increases. For 1% noisy measurements, the actual damaged member 10
is ranked with the fifth highest probability of damage in Table 5.3 for 50% and 90%
reduction of EA. Similar results are observed in Table 5.4 in which member 12 is not
ranked within the five highest probability of damage for 1% noisy measurements. In
other words, there is more chance for the proposed algorithm to successfully identify
damage for higher level of damage and lower level of noise in the measurements.

Note that the maximum level of noise permitting a damage assessment is 1%.

Figure 5.2 summarizes the damage assessment results for the damage cases in
which the single-parameter bracing members 10 and 12 are damaged with different
percentages of reduction of the axial stiffness parameter (EA) and levels of noise in
the measurements. Figures 5.2(a) and 5.2(b) show the results for the cases in which
members 10 and 12 are damaged, respectively. In these figures, the results from using

different levels of noise in the measurements are compared with the reference value of

P which is obtained by substituting the actual value of H™ and the SD"" value for
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Figure 5.2 Variation of the P" values of the actual damaged members 10 and 12 with

respect to different percentages of EA reduction for different levels of noisein the
measurements.

0.1% noisy measurements in equation (2.101). In addition, the values of the
probability of damage P;" for the actual damaged members are plotted in the range O

1. The unit P vaue indicates that the probability of detecting damage is 100%.

Likewise, the zero P;" valueimpliesthat thereis no chance to detect damage.

It is seen from the illustration that the P value increases by approaching to the

unit value as the percentage of EA reduction increases. Thus, it is concluded that there
is more chance for the proposed algorithm to successfully identify damage in a more
severely damaged structural member. Moreover, for the same level of damage the P
value decreases as the level of noise in the measurements increases. Hence, it is
evident that the performance of the proposed algorithm to assess damage is limited by

the level of noise in the measurements.

5.3.2 Two-Parameter Member Damage Cases

For the present case, we model damage in the column member 4 and the beam
member 6 with 0%, 10%, 50% and 90% reduction of the axial stiffness parameter
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(EA) and the bending stiffness parameter (El) using four different levels of noise in
the measurements: 0.1%, 0.3% 0.5% and 1%. As for the cases with damage in the
single-parameter members, the optimum sensitivity-based method is used in
conjunction with the ROEE algorithm to estimate the mean and the covariance matrix

of the stiffness parameters.

Tables 5.5-5.8 summarize the five frame members with the highest probability of
damage for different percentages of reduction of EA and El using &"’s in eguation
(2.104) for 0.1%, 0.3%, 0.5% and 1.0% noisy measurements, respectively. Tables 5.9-
5.12 summarize the damage assessment results from using the coefficient a™’s in

equation (2.105) for 0.1%, 0.3%, 0.5% and 1.0% noisy measurements, respectively.
As for the cases with the single-parameter members, the frame members are ranked in

the descending order of the value of the probability of damage P;". Note that the
reduction of EA and El are assumed to be independent in the current study.

It can be seen that the actual damaged members are successfully identified with the
highest probability of damage in most cases. However, for the cases in which the level

of damage is low and the level of noise is high, the actual damaged members are not

ranked with the highest probability of damage. In addition, for the same levels of
reduction in EA and EI the P;" values associated with the reduction of EA are closer

to the unit value than those with the reduction of El. Thus, the damage assessment
results are more sensitive with the reduction of EA compared with the reduction of El.

Moreover, the number of cases in which the actual damaged member is identified
with the highest probability of damage when the coefficients a™’s from equation
(2.105) are used is higher than when using a™’s from equation (2.104). Again, the

maximum level of noise permitting a damage assessment is 1%.

Figures 5.3 and 5.4 summarize the variation of the P values for the actua

damaged member 4 by using a"’s from equations (2.104) and (2.105), respectively.
The results from using the four different levels of noise in the measurements are again
compared with the reference value of P;". Figures 5.3(a), 5.3(c), 5.3(e) and 5.3(g) on

the left column show the results in which the percentage of reduction of the bending



164

Table 5.5 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 0.1%
noisy measurements and a™’s from equation (2.104).

% noise = 0.1%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o Z 7 5 6 8
(0.999997) (0.882977) (0.868644) (0.758037) (0.610261)

. o o 2 6 7 [ 5
(1.000000) (0.864335) (0.857691) (0.785237) (0.785237)

. % 5 2 6 5 [ 7
(1.000000) (0.948450) (0.882977) (0.862144) (0.745374)

. 5 " Z 5 7 6 8
(0.999998) (0.896166) (0.850831) (0.764238) (0.614092)

P o - 2 5 7 6 ]
(1.000000) (0.936992) (0.899728) (0.719043) (0.598706)

P % = 4 5 7 11 6
(1.000000) (0.941793) (0.857691) (0.841345) (0.807850)

P % » 4 6 11 5 7
(1.000000) (0.938220) (0.859930) (0.848496) (0.764238)

. o - 4 5 6 7 ()
(1.000000) (0.967116) (0.836861) (0.857691) (0.742154)

. o o 4 5 7 6 1
(1.000000) (0.976148) (0.834931) (0.841345) (0.831473)

. o o 4 5 1 6 7
(1.000000) (0.948450) (0.908241) (0.846136) (0.828945)

. % . 2 7 1 5 6
(1.000000) (0.855428) (0.805106) (0.779351) (0.779351)

. 5 " 2 5 6 7 (]
(1.000000) (0.973197) (0.881001) (0.862144) (0.831473)

. o % Z 5 7 11 6
(1.000000) (0.977250) (0.876976) (0.866501) (0.853142)

. o % Z 5 T 6 7
(1.000000) (0.950529) (0.923642) (0.850831) (0.793893)

P % % 4 7 11 6 5
(1.000000) (0.846136) (0.821214) (0.779351) (0.779351)

. " o 6 7 5 8 4
(0.999950) (0.823815) (0.807850) (0.640577) (0.405164)

. % o 6 5 7 8 4
(1.000000) (0.833977) (0.799546) (0.659097) (0.409045)

. % = 6 5 7 8 4
(1.000000) (0.813268) (0.788145) (0.633072) (0.440382)

. o o 6 7 5 8 4
(0.999954) (0.826392) (0.807850) (0.636831) (0.409045)

6 10 10 6 ! 5 8 4
(1.000000) (0.826392) (0.813268) (0.636831) (0.409045)

6 50 10 6 5 L 8 4
(1.000000) (0.841345) (0.802338) (0.655422) (0.412935)

. & " 6 5 7 8 a
(1.000000) (0.826392) (0.788145) (0.629300) (0.444329)

. 0 o 6 7 5 8 4
(1.000000) (0.833977) (0.833977) (0.629300) (0.420740)

6 10 50 O 2 ¥ 4 4
(1.000000) (0.836458) (0.833977) (0.629300) (0.420740)

. % % 6 5 7 8 4
(1.000000) (0.848496) (0.810571) (0.644309) (0.432504)

. % % 6 5 7 8 4
(1.000000) (0.859930) (0.793893) (0.617912) (0.464143)

. o % 6 7 5 8 4
(1.000000) (0.841345) (0.807850) (0.621720) (0.448283)

6 10 % 6 ! > 8 4
(1.000000) (0.841345) (0.810571) (0.621720) (0.452241)

6 50 9% 6 5 ’ 8 4
(1.000000) (0.823815) (0.818589) (0.640577) (0.460172)

6 9% 9% 6 5 ’ 8 4
(1.000000) (0.862144) (0.796731) (0.610261) (0.492021)
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Table 5.6 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 0.3%
noisy measurements and a™’s from equation (2.104).

% noise = 0.3%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o Z 7 5 6 8
(0.942947) (0.882977) (0.864335) (0.735653) (0.590954)

. o o 4 7 6 [ 5
(1.000000) (0.855428) (0.815941) (0.751748) (0.715662)

. % 5 2 6 1 5 7
(1.000000) (0.908241) (0.833977) (0.807850) (0.738914)

. 5 " Z 5 7 6 8
(0.940620) (0.892513) (0.848496) (0.745374) (0.602568)

P o - 2 5 7 6 1
(0.999698) (0.933193) (0.899728) (0.659097) (0.579260)

P % = 4 5 7 11 6
(1.000000) (0.913086) (0.853142) (0.815941) (0.680823)

P % » 4 6 11 7 5
(1.000000) (0.890652) (0.838914) (0.758037) (0.754903)

. o - 4 5 7 6 (]
(1.000000) (0.959071) (0.853142) (0.799546) (0.725747)

. o o 4 5 7 11 6
(1.000000) (0.969258) (0.881001) (0.831473) (0.708841)

. o o 4 5 1 7 6
(1.000000) (0.917736) (0.909878) (0.818589) (0.691463)

. % . 2 7 1 5 6
(1.000000) (0.853142) (0.810571) (0.708841) (0.680823)

. 5 " 2 5 7 [ 6
(1.000000) (0.964852) (0.853142) (0.841345) (0.742154)

. o % Z 5 T 7 6
(1.000000) (0.969946) (0.834931) (0.868644) (0.691463)

. o % Z [ 5 7 6
(1.000000) (0.936992) (0.923642) (0.782305) (0.680823)

P % % 4 11 7 5 6
(1.000000) (0.843753) (0.841345) (0.715662) (0.673645)

. " o 6 7 5 8 4
(0.971934) (0.821214) (0.802338) (0.629300) (0.460172)

. % o 6 5 7 8 4
(1.000000) (0.831473) (0.796731) (0.648028) (0.460172)

. % = 6 5 7 8 4
(1.000000) (0.810571) (0.782305) (0.614092) (0.456204)

. o o 6 7 5 8 4
(0.970621) (0.823815) (0.799546) (0.625516) (0.464143)

6 10 10 6 ! 5 8 4
(0.998777) (0.823815) (0.805106) (0.625516) (0.468118)

6 50 10 6 5 L 8 4
(1.000000) (0.836458) (0.799546) (0.644309) (0.468118)

. & " 6 5 7 8 4
(1.000000) (0.821214) (0.782305) (0.610261) (0.460172)

. 0 o 6 7 5 8 4
(1.000000) (0.831473) (0.815941) (0.614092) (0.484046)

6 10 50 O d > 4 4
(1.000000) (0.831473) (0.818589) (0.614092) (0.484046)

. % % 6 5 7 8 4
(1.000000) (0.833977) (0.807850) (0.629300) (0.492021)

. % % 6 5 7 8 4
(1.000000) (0.846136) (0.788145) (0.594835) (0.480061)

. o % 6 7 5 8 4
(1.000000) (0.836458) (0.767305) (0.606420) (0.519939)

6 10 % 6 Y 5 8 4
(1.000000) (0.836458) (0.770351) (0.606420) (0519939)

6 50 9% 6 ’ 5 8 4
(1.000000) (0.813268) (0.785237) (0.625516) (0527903)

6 9% 9% 6 5 7 8 4
(1.000000) (0.833977) (0.788145) (0.583166) (0.502989)
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Table 5.7 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 0.5%
noisy measurements and a™’s from equation (2.104).

% noise = 0.5%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o 7 7 5 6 8
(0.882977) (0.879000) (0.859930) (0.701944) (0.575345)

. o o Z 7 6 [ 2
(1.000000) (0.855428) (0.751748) (0.715662) (0617912)

. % 5 2 6 T 7 2
(1.000000) (0.826392) (0.802338) (0.738914) (0.648028)

. 5 " 5 4 7 6 8
(0.888768) (0.876976) (0.848496) (0.712261) (0.590954)

P o - 2 5 7 6 (]
(0.991106) (0.925067) (0.899728) (0.567495) (0.559618)

P % = 4 5 7 11 2
(1.000000) (0.853142) (0.850831) (0.776373) (0.633072)

P % » 4 6 1 7 2
(1.000000) (0.810571) (0.807850) (0.758037) (0.659097)

. o - 4 5 7 1 6
(1.000000) (0.941793) (0.850831) (0.701944) (0.598706)

. o o 4 5 7 1 2
(1.000000) (0.950529) (0.876976) (0.815941) (0.496010)

. o o 4 11 5 7 2
(1.000000) (0.892513) (0.859930) (0.815941) (0.644309)

. % . 2 7 1 8 2
(1.000000) (0.853142) (0.802338) (0.670032) (0.655422)

. 5 " 2 5 7 ] 8
(1.000000) (0.946301) (0.848496) (0.841345) (0547758)

. o % Z 5 T 7 8
(1.000000) (0.952541) (0.892513) (0.864335) (0.507978)

. o % Z [ 5 7 2
(1.000000) (0.933193) (0.879000) (0.779351) (0.583166)

P % % 4 1 7 8 5
(1.000000) (0.843753) (0.841345) (0.680823) (0.651732)

. " o 6 7 5 8 4
(0.935745) (0.818589) (0.799546) (0.617912) (0531881)

. % o 6 5 7 8 4
(0.999993) (0.831473) (0.793893) (0.636831) (0531881)

. % = 6 5 7 8 4
(1.000000) (0.802338) (0.776373) (0.598706) (0.500000)

. o o 6 7 5 8 4
(0.930564) (0.821214) (0.796731) (0.614092) (0.535856)

6 10 10 6 7 5 8 4
(0.986447) (0.821214) (0.799546) (0.614092) (0.539828)

6 50 10 6 5 L 8 4
(0.999999) (0.833977) (0.796731) (0.633072) (0.539828)

. & " 6 5 7 8 2
(1.000000) (0.813268) (0.779351) (0.594835) (0.507978)

. 0 o 6 7 5 8 4
(0.999988) (0.826392) (0.802338) (0.598706) (0.563559)

6 10 50 O g > 4 4
(0.999999) (0.826392) (0.805106) (0.598706) (0.567495)

. % % 6 5 7 8 4
(1.000000) (0.818589) (0.802338) (0.617912) (0571424)

. % % 6 5 7 8 4
(1.000000) (0.828945) (0.782305) (0.575345) (0527903)

. o % 6 7 5 4 8
(1.000000) (0.831473) (0.729070) (0.606420) (0.590954)

6 10 % 6 Y > 4 8
(1.000000) (0.831473) (0.732372) (0.610261) (0.587064)

6 50 9% 6 U 5 4 8
(1.000000) (0.807850) (0.745374) (0.614092) (0.606420)

6 9% 9% 6 5 ’ 8 4
(1.000000) (0.791031) (0.785237) (0.559618) (0.555670)
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Table 5.8 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 1.0%
noisy measurements and a™’s from equation (2.104).

% noise = 1.0%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o 1 2 Z 7 5
(0.935745) (0.892513) (0.892513) (0.838768) (0.836861)

. o o 2 2 1 7 3
(0.999834) (0.992240) (0.987775) (0.834931) (0.810571)

. % 5 4 2 1 1 3
(1.000000) (0.991106) (0.984997) (0.848496) (0.815941)

. 5 " 1 5 2 7 2
(0.936992) (0.911493) (0.834931) (0.853142) (0.841345)

4 10 10 = z & Y 5
(0.975002) (0.973810) (0.968557) (0.904903) (0.872857)

4 50 10 i e . Y 5
(0.999930) (0.987126) (0.978822) (0.836861) (0.810571)

P % » 4 2 1 3 11
(1.000000) (0.990862) (0.985738) (0.846136) (0.838914)

. o - 4 2 1 7 5
(0.999982) (0.969946) (0.925067) (0.831001) (0.838914)

4 10 50 & 2 il Y 5
(0.999999) (0.976148) (0.954486) (0.903200) (0.897958)

. o o 4 2 1 11 7
(1.000000) (0.987454) (0.984997) (0.864335) (0.857691)

4 9% 50 i 2 1 3 7
(1.000000) (0.988089) (0.983414) (0.838768) (0.876976)

. 5 " 2 2 1 5 7
(1.000000) (0.967843) (0.958185) (0.901475) (0.879000)

4 10 90 y: z 1 5 7
(1.000000) (0.971934) (0.965621) (0.920731) (0.838768)

. o % Z 2 1 11 5
(1.000000) (0.984222) (0.982997) (0.896166) (0.831473)

P % % 4 2 1 3 7
(1.000000) (0.984997) (0.981237) (0.892513) (0.866501)

. " o 6 5 7 2 4
(0.838914) (0.826392) (0.823815) (0.738914) (0.735653)

. % o 6 5 7 1 4
(0.991344) (0.853142) (0.796731) (0.758037) (0.748572)

. % = 6 1 5 7 4
(0.999904) (0.923642) (0.782305) (0.776373) (0.758037)

. o o 7 5 6 2 4
(0.828945) (0.826392) (0.815941) (0.758037) (0.738914)

6 10 10 6 ! 5 2 4
(0.897958) (0.826392) (0.826392) (0.751748) (0.742154)

6 50 10 6 5 L 1 4
(0.995975) (0.853142) (0.799546) (0.770351) (0.758037)

6 90 10 9 1 3 7 4
(0.999971) (0.931888) (0.785237) (0.779351) (0.767305)

. 0 o 6 5 7 2 7
(0.971284) (0.831473) (0.831473) (0.818589) (0.773373)

6 10 50 O d > < 4
(0.988396) (0.831473) (0.828945) (0.813268) (0.776373)

. % % 6 5 7 1 4
(0.999947) (0.828945) (0.807850) (0.805106) (0.799546)

. % % 6 1 Z 7 5
(1.000000) (0.957284) (0.807850) (0.785237) (0.770351)

. o % 6 2 7 4 1
(0.999730) (0.836861) (0.841345) (0.826392) (0.708841)

6 10 % 6 2 ’ 4 1
(0.999943) (0.838768) (0.841345) (0.831473) (0.732372)

6 50 9% 6 2 4 ’ 1
(1.000000) (0.848496) (0.848496) (0.815941) (0.802338)

6 9% 9% 6 1 4 Y 2
(1.000000) (0.972571) (0.848496) (0.791031) (0.779351)
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Table 5.9 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 0.1%
noisy measurements and a™’s from equation (2.105).

% noise = 0.1%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

4 10 0 4 5 7 6 8
(1.000000) (0.888768) (0.882977) (0.758037) (0.610261)

4 0 0 4 6 7 5 1
(1.000000) (0.862144) (0.859930) (0.833977) (0.785237)

4 % 0 4 6 5 11 7
(1.000000) (0.949498) (0.914657) (0.862144) (0.745374)

4 0 10 4 5 7 6 8
(0.998411) (0.908241) (0.848496) (0.779351) (0.614092)

4 10 0 4 5 7 6 1
(1.000000) (0.948450) (0.899728) (0.729070) (0.598706)

4 50 10 4 5 7 11 6
(1.000000) (0.958185) (0.857691) (0.841345) (0.823815)

4 % 10 4 6 5 11 7
(1.000000) (0.939430) (0.888768) (0.859930) (0.764238)

4 0 50 4 5 6 7 1
(1.000000) (0.976705) (0.896166) (0.855428) (0.742154)

4 10 50 4 5 7 6 1
(1.000000) (0.984222) (0.882977) (0.848496) (0.831473)

4 50 50 4 5 1 6 7
(1.000000) (0.965621) (0.908241) (0.857691) (0.828945)

4 % 50 4 7 5 11 6
(1.000000) (0.859930) (0.831473) (0.805106) (0.782305)

4 0 % 4 5 6 7 1
(1.000000) (0.982571) (0.886861) (0.857691) (0.831473)

4 10 % 4 5 7 11 6
(1.000000) (0.985738) (0.872857) (0.866501) (0.857691)

4 0 % 4 5 1 6 7
(1.000000) (0.969946) (0.923642) (0.855428) (0.793893)

4 %0 % 4 7 5 11 6
(1.000000) (0.848496) (0.833977) (0.821214) (0.776373)

6 10 0 6 5 7 8 11
(1.000000) (0.828945) (0.823815) (0.640577) (0.401293)

6 50 0 6 5 7 8 11
(1.000000) (0.857691) (0.799546) (0.659097) (0.382088)

6 % 0 6 5 7 8 2
(1.000000) (0.853142) (0.785237) (0.633072) (0.440382)

6 0 10 6 7 5 8 1
(0.999499) (0.826392) (0.826392) (0.636831) (0.401293)

6 10 10 6 5 7 8 1
(1.000000) (0.831473) (0.826392) (0.636831) (0.401293)

6 0 10 6 5 7 8 1
(1.000000) (0.862144) (0.802338) (0.655422) (0.385907)

6 90 10 o 5 1 8 2
(1.000000) (0.864335) (0.785237) (0.629300) (0.436440)

6 o =0 6 5 7 8 1
(1.000000) (0.853142) (0.833977) (0.625516) (0.378280)

S 10 50 6 5 7 8 1
(1.000000) (0.857691) (0.833977) (0.625516) (0.378280)

6 50 50 6 5 7 8 11
(1.000000) (0.868644) (0.810571) (0.644309) (0.389738)

6 %0 50 6 5 7 8 2
(1.000000) (0.888768) (0.791031) (0.614092) (0.424654)

6 0 % 6 5 7 8 2
(1.000000) (0.841345) (0.838914) (0.621720) (0.385907)

6 10 % 6 5 7 8 1
(1.000000) (0.846136) (0.838914) (0.621720) (0.385907)

6 0 % 6 5 7 8 1
(1.000000) (0.853142) (0.815941) (0.640577) (0.401293)

6 % % 6 5 7 8 1
(1.000000) (0.894351) (0.793893) (0.606420) (0.428576)
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Table 5.10 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 0.3%
noisy measurements and a™’s from equation (2.105).

% noise = 0.3%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o Z 7 5 6 8
(0.999784) (0.882977) (0.831001) (0.729070) (0.594835)

. o o 2 7 6 11 5
(1.000000) (0.857691) (0.773373) (0.751748) (0.745374)

. % 5 2 6 1 5 7
(1.000000) (0.872857) (0.833977) (0.823815) (0.738914)

. 5 " 5 7 2 6 8
(0.899728) (0.848496) (0.846136) (0.758037) (0.602568)

P o - 2 5 7 6 1
(0.999999) (0.940620) (0.899728) (0.655422) (0.579260)

P % = 4 5 7 11 6
(1.000000) (0.911493) (0.853142) (0.815941) (0.659097)

P % » 4 6 11 5 7
(1.000000) (0.848496) (0.838914) (0.773373) (0.758037)

. o - 4 5 7 6 11
(1.000000) (0.965621) (0.850831) (0.799546) (0.725747)

. o o 4 5 7 11 6
(1.000000) (0.974412) (0.876976) (0.831473) (0.694975)

. o o 4 5 11 7 6
(1.000000) (0.917736) (0.909878) (0.818589) (0.655422)

. % . 2 7 1 5 8
(1.000000) (0.857691) (0.810571) (0.725747) (0.655422)

. 5 " 2 5 7 1 6
(1.000000) (0.970621) (0.850831) (0.841345) (0.732372)

. o % Z 5 1 7 6
(1.000000) (0.975002) (0.834931) (0.866501) (0.677242)

. o % Z 1 5 7 6
(1.000000) (0.936992) (0.930564) (0.782305) (0.644309)

P % % 4 7 11 5 8
(1.000000) (0.846136) (0.843753) (0.745374) (0.659097)

. " o 6 7 5 8 4
(0.995060) (0.821214) (0.818589) (0.629300) (0.405164)

. % o 6 5 7 8 4
(1.000000) (0.853142) (0.796731) (0.648028) (0.416833)

. % = 6 5 7 8 2
(1.000000) (0.838914) (0.779351) (0.614092) (0.460172)

. o o 6 7 5 8 4
(0.955435) (0.823815) (0.815941) (0.625516) (0.412935)

6 10 10 6 ! 5 8 4
(0.999758) (0.823815) (0.821214) (0.625516) (0.416833)

6 50 10 6 5 L 8 4
(1.000000) (0.855428) (0.799546) (0.644309) (0.420740)

6 90 10 9 5 1 8 2
(1.000000) (0.848496) (0.782305) (0.610261) (0.456204)

. 0 o 6 5 7 8 2
(1.000000) (0.838914) (0.828945) (0.614092) (0.444329)

6 10 50 O 2 ¥ 4 4
(1.000000) (0.841345) (0.828945) (0.614092) (0.452241)

. % % 6 5 7 8 4
(1.000000) (0.853142) (0.805106) (0.629300) (0.448283)

. % % 6 5 7 8 4
(1.000000) (0.870763) (0.785237) (0.594835) (0.460172)

. o % 6 7 5 8 4
(1.000000) (0.833977) (0.810571) (0.602568) (0.492021)

6 10 % 6 Y > 8 4
(1.000000) (0.833977) (0.813268) (0.602568) (0.492021)

6 50 9% 6 5 ’ 8 4
(1.000000) (0.821214) (0.810571) (0.625516) (0.488033)

6 9% 9% 6 5 7 8 4
(1.000000) (0.866501) (0.788145) (0.583166) (0.488033)
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Table 5.11 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 0.5%
noisy measurements and a™’s from equation (2.105).

% noise = 0.5%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o Z 7 5 6 8
(0.994297) (0.882977) (0.855428) (0.687933) (0.579260)

. o o 2 7 1 3 6
(1.000000) (0.859930) (0.715662) (0.666402) (0.659097)

. % 5 2 3 1 7 6
(1.000000) (0.823815) (0.802338) (0.738914) (0.722405)

. 5 " 5 4 7 6 8
(0.879000) (0.853142) (0.846136) (0.719043) (0.590954)

. o 0 2 5 7 11 6
(0.999863) (0.909878) (0.899728) (0.559618) (0.559618)

P % = 4 7 5 11 3
(1.000000) (0.850831) (0.776373) (0.776373) (0.770351)

P % » 4 3 11 7 6
(1.000000) (0.843753) (0.807850) (0.761148) (0.698469)

. o - 4 5 7 ) 6
(1.000000) (0.922197) (0.846136) (0.701944) (0.598706)

. o o 4 5 7 1 3
(1.000000) (0.927855) (0.874929) (0.815941) (0.625516)

. o o 4 11 3 7 5
(1.000000) (0.892513) (0.841345) (0.818589) (0.782305)

. % . 2 7 3 [ 8
(1.000000) (0.857691) (0.836458) (0.802338) (0.673645)

. 5 " 2 5 7 [ 3
(1.000000) (0.925067) (0.846136) (0.841345) (0.633072)

. o % Z 5 T 7 3
(1.000000) (0.930564) (0.892513) (0.862144) (0.666402)

. o % Z 1 3 5 7
(1.000000) (0.933193) (0.855428) (0.823815) (0.779351)

P % % 4 7 3 11 8
(1.000000) (0.846136) (0.846136) (0.843753) (0.684387)

. " o 6 7 5 8 4
(0.974412) (0.818589) (0.805106) (0.617912) (0.543795)

. % o 6 5 7 8 4
(1.000000) (0.836458) (0.793893) (0.636831) (0547758)

. % = 6 5 7 8 4
(1.000000) (0.807850) (0.776373) (0.598706) (0551717)

. o o 6 7 5 8 4
(0.914657) (0.821214) (0.799546) (0.614092) (0551717)

6 10 10 6 7 5 8 4
(0.993790) (0.821214) (0.805106) (0.614092) (0551717)

6 50 10 6 5 L 8 4
(1.000000) (0.836458) (0.793893) (0.633072) (0.555670)

. & " 6 5 7 8 2
(1.000000) (0.815941) (0.776373) (0.594835) (0.559618)

. 0 o 6 7 5 8 4
(0.999749) (0.826392) (0.813268) (0.598706) (0.598706)

6 10 50 O g > d 8
(0.999998) (0.826392) (0.813268) (0.606420) (0.598706)

. % % 6 5 7 8 4
(1.000000) (0.823815) (0.802338) (0.617912) (0.606420)

. % % 6 5 7 4 8
(1.000000) (0.826392) (0.779351) (0.590954) (0.575345)

. o % 6 7 5 4 8
(1.000000) (0.831473) (0.764238) (0.659097) (0.587064)

6 10 % 6 Y > 4 8
(1.000000) (0.831473) (0.767305) (0.662758) (0.587064)

6 50 9% 6 7 5 4 8
(1.000000) (0.805106) (0.770351) (0.655422) (0.606420)

6 9% 9% 6 5 ’ 4 8
(1.000000) (0.799546) (0.782305) (0.629300) (0.559618)
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Table 5.12 Ranking of the identified damaged membersby P value for different
percentages of reduction of the stiffness parameter of members 4 and 6 using 1.0%
noisy measurements and a™’s from equation (2.105).

% noise = 1.0%

Ranking of Identified Damaged Members (by P;" value)

Actual % Reduction of
Damaged | Parameter Value

Member EA El 1 ond 3d 4th gt

. o o Z 1 3 2 7
(0.993963) (0.933193) (0.906583) (0.899728) (0.838768)

. o o 2 2 3 1 7
(1.000000) (0.992240) (0.990862) (0.987126) (0.838768)

. % 5 2 3 2 1 (]
(1.000000) (0.995975) (0.991344) (0.985738) (0.848496)

. 5 " Z 1 3 7 2
(0.966375) (0.935745) (0.894351) (0.853142) (0.848496)

4 10 10 4 z 2 3 Y
(0.999359) (0.973810) (0.973810) (0.961637) (0.904903)

4 50 10 & : g 1 Y
(1.000000) (0.996319) (0.987126) (0.979325) (0.886861)

P % » 4 3 2 1 11
(1.000000) (0.997445) (0.991106) (0.986097) (0.838914)

. o - 4 3 2 1 7
(0.999999) (0.979325) (0.971284) (0.930564) (0.881001)

4 10 50 & 3 % 1 !
(1.000000) (0.985371) (0.977785) (0.957284) (0.901475)

. o o 4 3 2 1 11
(1.000000) (0.998011) (0.988089) (0.985371) (0.864335)

4 9% 50 i 3 2 1 Y
(1.000000) (0.998462) (0.988396) (0.983823) (0.831001)

. 5 " 2 3 2 1 7
(1.000000) (0.986097) (0.970621) (0.959941) (0.876976)

4 10 90 y: g 2 1 7
(1.000000) (0.988396) (0.974412) (0.967116) (0.838768)

. o % Z 3 2 1 ]
(1.000000) (0.997947) (0.985371) (0.983823) (0.896166)

P % % 4 3 2 1 7
(1.000000) (0.998693) (0.985738) (0.981691) (0.870763)

. " o 6 4 7 3 5
(0.886861) (0.866501) (0.826392) (0.788145) (0.754903)

. % o 6 4 7 3 5
(0.999869) (0.874929) (0.796731) (0.785237) (0.770351)

. % = 6 1 2 3 7
(1.000000) (0.919244) (0.906583) (0.815941) (0.776373)

. o o 4 7 6 3 2
(0.872857) (0.828945) (0.799546) (0.793893) (0.767305)

6 10 10 6 4 7 3 2
(0.919244) (0.874929) (0.826392) (0.793893) (0.761148)

6 50 10 6 4 L 3 1
(0.999941) (0.836861) (0.799546) (0.796731) (0.776373)

6 90 10 9 1 4 3 7
(1.000000) (0.926471) (0.913086) (0.821214) (0.779351)

. 5 o 6 4 7 3 2
(0.929220) (0.909878) (0.831473) (0.831473) (0.826392)

6 10 50 o 4 ¥ s 2
(0.978822) (0.911493) (0.831473) (0.831473) (0.821214)

. % % 6 4 3 1 7
(0.999999) (0.920731) (0.826392) (0.813268) (0.807850)

. % % 6 1 2 3 7
(1.000000) (0.952541) (0.938220) (0.841345) (0.785237)

. o % 6 4 2 3 7
(0.993244) (0.942947) (0.838768) (0.848496) (0.838914)

6 10 % 6 4 2 3 Y
(0.998817) (0.947384) (0.890652) (0.850831) (0.838914)

6 50 9% 6 4 2 3 ’
(1.000000) (0.951543) (0.853142) (0.841345) (0.815941)

6 9% 9% 6 1 4 3 2
(1.000000) (0.968557) (0.959941) (0.843753) (0.793893)
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Figure 5.3 Variation of the P" valuesusing a™’'s from eguation (2.104) of the actual
damaged member 4 with respect to different percentages of reduction of axial and

bending stiffness parameters for different levels of noise in the measurements.
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Figure 5.4 Variation of the P" valuesusing a™’'s from eguation (2.105) of the actual
damaged member 4 with respect to different percentages of reduction of axial and

bending stiffness parameters for different levels of noise in the measurements.
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stiffness parameter is fixed at 0%, 10%, 50% and 90%, respectively. On the right
column, figures 5.3(b), 5.3(d), 5.3(f) and 5.3(h) show the results in which the
percentage of reduction of the axia stiffness parameter is fixed at 0%, 10%, 50% and
90%, respectively. Figures 5.4(a), 5.4(c), 5.4(e) and 5.4(g) on the left column and
figures 5.4(b), 5.4(d), 5.4(f) and 5.4(h) on the right column also show the results in

the same order.

Figures 5.5 and 5.6 show the performance of the investigated algorithm by the P

value for the actual damaged member 6 using a™’s from eguations (2.104) and

(2.105), respectively. The format of the illustrations follows Figures 5.3 and 5.4 in
which the left and right columns show the results for different percentages of
reduction of the bending and the axia stiffness parameters, respectively.

The same sort of results is again seen. For the same level of damage the P;" value
decreases as the level of noise in the measurements increases. Hence, it is evident that
the performance of the proposed algorithm to assess damage is limited by the level of
noise in the measurements. The P;" value approaches the unit value as the level of
damage increases. Nevertheless, it is seen from Figures 5.3(a), 5.4(a), 5.5(a) and
5.6(a) that at low levels of damage the reduction of EA yields P;" values closer to the
unit value compared with the reduction of El. Moreover, it is also seen from Figures
5.3(b-f), 5.4(b-f), 5.5(b-f) and 5.6(b-f) that the probability of damage P" is higher
when EA is fixed at 10%, 50% and 90% reduction compared to when El is fixed at
10%, 50% and 90% reduction, respectively. This suggests that the reduction of EA
may affect the damage assessment results more compared with the reduction of El,
which clearly illustrates the inherent sengitivity in assessing damage from the

reduction of different stiffness parameters. Further, it can be seen from Figures 5.3(a),
5.4(a), 5.5(a) and 5.6(a) that for the reduction of EA (EI fixed at 0% reduction) the

P" values from using the coefficients a™ s in equation (2.105) are higher than those

from using equation (2.104) and vice versa for the reduction of El (EA fixed at 0%
reduction). In Figures 5.3(b-f), 5.4(b-f), 5.5(b-f) and 5.6(b-f), it is seen that for the
reduction of El (EA fixed at 10%, 50% and 90% reduction) the P;" values from using
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Figure 5.5 Variation of the P" valuesusing a™’s from eguation (2.104) of the actual
damaged member 6 with respect to different percentages of reduction of axial and

bending stiffness parameters for different levels of noise in the measurements.
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the coefficients a™’s in equation (2.105) are slightly higher than those from using
eguation (2.104) and vice versa for the reduction of EA (El fixed at 10%, 50% and
90% reduction). In other words, the P;" values from using the coefficients a™’s in
eguation (2.105) are more accurate with the reduction of EA compared to when using

the coefficients a™’sin equation (2.104). Thus, for the cases where damage manifests

itself as the reduction of EA, the assessment of damage by using the coefficients a"’'s

in equation (2.105) may be more effective. Still, further investigation is needed to
support this observation.

5.4 Chapter Summary

The performance of the statistical damage assessment scheme was investigated
through a simulation study using a two-story braced frame with multi-parameter
members as the model problem. Various damage cases with different percentages of
reduction of the axial stiffness parameter EA were examined for the single-parameter
members. For the two-parameter members, the damage was modeled with different
percentages of reduction in the axial stiffness parameter EA and the bending stiffness
parameter El using different levels of noise in the measurements. The statistics of the

stiffness parameters of the structure are obtained by using the optimum sensitivity-

based method in conjunction with the ROEE algorithm. The baseline function gcH >

proposed in Chapter 2 was used to identify whether a structural member is in the
“healthy state” or the “damaged state.” The performance of the damage assessment is

identified by using the probability of damage P;" for each member that approaches

the unit value when it is certain that the member is damaged. The results from the
simulation study indicate that the performance of the presented statistical damage
assessment method for the structure under consideration may be more sensitive with
the reduction of one stiffness parameter compared with the reduction of the other
stiffness parameters. It was also observed that the outcome of the damage assessment
can be improved by taking into account the sensitivity of the parameter estimates
when assessing damage. In addition, the maximum level of noise permitting a
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structural damage assessment is 1% for the two-story braced frame compared to 20%
for the smple-support truss structure in Chapter 3. This is probably due to the fact
that the truss structure is more flexible and hence the free-vibration response of the
truss is not affected much by its damping characteristics compared with the two-story
rigid frame. However, further investigation is still needed to support this conclusion.



CHAPTER 6

CONCLUSIONS

Structural damage assessment based on the parameter estimation algorithm from
the measured response is a complicated problem. Various difficulties can arise in the
practical application of structural damage assessment in which field measurements of
the structural responses are obtained through testing. The focus of the present study is
on the presence of the measurement noise. The noise in the measurements poses a
direct effect on the sensitivity of the parameter estimates. We have presented an
approach to the problem of structural damage assessment based upon the measured
modal information that is noise-polluted. We have assumed that a structure can be
characterized with a parameterized finite element model of single or multiple stiffness
parameters with known topology and geometry. These parameters may be an axial
stiffness, a bending stiffness, or a shearing stiffness, which correspond to different
modes of deformation considered (i.e., axial, bending, or shear). Moreover, we have
assumed that all of the structural vibration modes were measured at all degrees of
freedom of the structural model and all natural frequencies and mode shapes of the
structure were available as our measurement information. In addition, damage was
regarded as a reduction in the element stiffness parameter. Hence, the nonlinearity

effect of the structural damage was not taken into account.

The key element of the present damage assessment algorithm is the estimation of
the system parameters from the measured modal response. The statistical parameter
estimation methods have been proved effective for the estimation of the system
parameters from the measured modal response in the presence of the measurement
noise. We have implemented an output error estimator as the tool for statistical
parameter estimation in the face of noise-polluted data. We have used the measured
data perturbation scheme to simulate the noisy measured response of the structures.
The success of the output error estimator also depends on the behavior of the
algorithm in the presence of the measurement errors. The regularization technique has
been adopted to reduce the degree of instabilities of solutions to the statistical
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parameter estimation problem by adding a regularization function algebraically to the
initial objective function as a penalty term for the output error estimator (OEE). The
proposed method has been referred to as the regularized output error estimator
(ROEE). The statistical parameter estimation methods investigated were the Monte
Carlo ssmulation method, the optimum sensitivity method and the sensitivity-based
method.

The statistical damage assessment algorithms that compare the statistical
distributions of the healthy and damaged system parameters have been proved
effective for the identification of damage in the presence of the measurement noise.
The statistical distribution of the parameters can be obtained from a Monte Carlo
sample of the parameter estimates which is generated by repeating the parameter
estimation algorithms many times using different sets of measured data. Each of the
measurement data sets can be simulated by adding a random error to the noise-free
measured data. Hence, the parameter estimates can be treated as random variables.
Furthermore, the sensitivity-based method and the optimum sensitivity-based method
have been adopted as alternatives to the Monte Carlo simulation method in the
statistical parameter estimation process. In these methods, the parameter estimation
problem is solved only once to find the solution from the mean of the measured
response. Upon completion of the statistical parameter estimation algorithm, a
numerical integration scheme is applied to the statistical distribution of the system
parameters to compute the probability of damage. The computed probability indicates
the likelihood that a member is damaged.

We have demonstrated the use of the statistical damage assessment algorithm on
two example structures. a simple-support truss and a two-story braced frame.
Numerical simulation studies were employed to examine the capabilities of the
algorithm in assessing damage. The statistical damage assessment procedure has been
tested with the single-damaged-member cases and the two-damaged-member cases
for the simple-support truss structure. Noisy measurements were simulated by adding
different amplitudes of proportional random errors to the noise-free analytical modal
response of the structures. Three different methods of statistical parameter estimation
have been used in conjunction with the two output error estimators to obtain the
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statistical distribution of the parameter estimates that is used as an input to the
statistical damage assessment algorithm. Evaluation of the statistical distribution of
the parameter estimates at the potential damage locations has proved reliable as a
method for assessing whether damage is detectable above the noise in the
measurements. It has been shown that the proposed algorithm was able to assess
damage effectively at low levels of noise in the measurements. For higher levels of
noise in the measurements, there are always cases where actually damaged elements
are identified as undamaged or actually undamaged elements are identified as
damaged. However, the results have been shown to improve dramatically when the
level of noise in the measurements decreases. In addition to the level of noise in the
measurements, the severity of the damage in the structural components also limits the

ability of the proposed algorithm to assess damage in a structural system.

The performance of the statistical damage assessment is identified by using a
statistical identification error (SIE) index that approaches zero when the assessment is
effective. The level of success of the damage detection is indicated by the probability

of success in detecting damage (P,). The performance of damage assessment with

respect to the level of noise in the measurements is illustrated by the variation of the
SIE values for al damage cases. The results of the simulation study showed that the
performance of the proposed statistical damage assessment method can be improved
by using the regularization method on the parameter estimation problem (ROEE) for
al of the statistical parameter estimation schemes considered. Furthermore, the ROEE
algorithm is more effective when using with the optimum sensitivity-based method
compared to when using with the Monte Carlo simulation method and the sensitivity-
based method.

The statistical damage assessment of a structure with members consisting of
multiple stiffness parameters was investigated through a ssimulation study. A two-
story braced frame was selected as the model problem. Various damage cases of the
single-parameter bracing members were examined by reducing the members axial
stiffness parameter. For the two-parameter frame members, the damage was modeled
as the reduction of the axia stiffness parameter and the bending stiffness parameter.

The effect from using different levels of noise in the measurements was also
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investigated. The statistics of the structural parameters are obtained by using the
optimum sensitivity-based method in conjunction with the ROEE algorithm.

To assess damage for the multi-parameter structural members, a baseline function

gH > was proposed to identify whether a structural member isin the “ healthy state”

or the “damaged state.” The boundary separating these two states is referred to as the
“limit state” whose relative distance in the reduced-variate coordinate space can be
used to quantify damage. The performance of the damage assessment is identified by

using the probability of damage P;" for each member that approaches the unit value

when it is certain that the member is damaged. The results from the simulation study
indicate that the performance of the presented statistical damage assessment method
for the structure under consideration may be more sensitive with the reduction of one
stiffness parameter compared with the reduction of the other stiffness parameters. It
was also observed that the outcome of the damage assessment can be improved by
taking into account the sensitivity of the parameter estimates when assessing damage.
In addition, the maximum level of noise permitting a structural damage assessment is
1% for the two-story braced frame compared to 20% for the simple-support truss
structure in Chapter 3. Thisis probably due to the fact that the truss structure is more
flexible and hence the free-vibration response of the trussis not affected much by its
damping characteristics compared with the two-story rigid frame. However, further

investigation is still needed to support this conclusion.

From the simulation studies, it has been found that the computation time in
assessing damage can increase enormously as the structural model becomes more
complex. In general, this computational burden depends on the number of degrees of
freedom, the number of members in the finite element model of the structure and the
number of parameters in each member of the structure. Possible alternatives should be
investigated to improve the computation efficiency of the algorithm. One possible
approach to reduce the computational burden of the current algorithm is to improve
the solution algorithm for the statistical parameter estimation problem.

In the current study we have considered only the linear baseline function to assess

damage in the structural members with multiple stiffness parameters. Aside from its
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own usefulness, certain aspects of the linear case would be the basis for an
approximation to nonlinear baseline functions. Future study needs to be carried out to
investigate other nonlinear baseline functions which may be suitable for different

types of structures.
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