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INTRODUCTION

Let X be a partially ordered set and OT (X) the semigroup, under composition,

of all order-preserving transformations α : X → X.

It is known from [3, page 203] that OT (X) is a regular semigroup if X is a finite

chain. Kemprasit and Changphas [5] extended this result to any chain which is

order-isomorphic to a chain X where X ⊆ Z, the set of integers with their natural

order. Equivalently, OT (X) is regular for every nonempty subset of Z with the

usual order. Note that if the partially ordered sets X and Y are order-isomorphic,

then the semigroups OT (X) and OT (Y ) are isomorphic. It is also proved in [5]

that for an interval X in R, the set of real numbers with usual order, OT (X) is

a regular semigroup if and only if X is closed and bounded. Rungrattrakoon and

Kemprasit [9] extended this fact by showing that for a nontrivial interval X in

a subfield F of R, OT (X) is regular if and only if F = R and X is closed and

bounded. Then it follows as a consequence that for a nontrivial interval X in Q,

the set of rational number, OT (X) is not a regular semigroup. In fact, the above

result in [9] is a consequence of the main theorem in [7].

The regularity of semigroups of order-preserving partial transformations have

been also studied. See [1], [2] and [5] for examples.

A standard isomorphism is provided in [8, page 222-223] as follows : For

partially ordered sets X and Y , OT (X) ∼= OT (Y ) if and only if X and Y are

order-isomorphic or anti-order-isomorphic. In [6], the authors generalized full

order-preserving transformation semigroups by using sandwich multiplication and

investigated their regularity and also provided some isomorphism theorems.

For a chain X, let ≤d denote the dictionary partial order on X × X.

In this research, we extend the above results in [5] and [9]. The regular elements
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of OT (X) are characterized when X is any chain. Then it is applied to prove those

results and to determine the regularity of OT (X × X,≤d) when X is one of the

following chains : chains of integers, intervals in R and intervals in a subfield of

R.

Chapter I provides basic definitions and known results which will be used in

this research. Also, see [3] and [4] for more details.

In Chapter II, the regular elements of OT (X) are characterized when X is any

chain. Then this characterization is applied to prove the above known results of

the regularity of OT (X) where X is a nonempty subset of Z, an interval in R or

an interval in a subfield of R.

In Chapter III, the regularity of OT (X × X,≤d) is characterized by using

the main result in Chapter II, when X is one of the following chains : chains of

integers, intervals in R and intervals in a subfield of R.



CHAPTER I

PRELIMINARIES

For a set X, let |X| denote the cardinality of X. The identity mapping on a

nonempty set A is denoted by 1A. The set of positive integers, the set of integers,

the set of rational numbers and the set of real numbers are denoted by N, Z, Q

and R, respectively. Note that they are chains with the natural order.

The following property of real numbers will be used. If X is an interval in R

and A,B are nonempty subsets of R such that

X = A ∪̇B and a < b for all a ∈ A and b ∈ B,

then sup(A) = inf(B).

An element a of a semigroup S is called regular if a = aba for some b ∈ S,

and S is called a regular semigroup if every element of S is regular. The set of all

regular elements of a semigroup S will be denoted by Reg S, that is,

Reg S = {a ∈ S | a = aba for some b ∈ S}.

The domain and the range of any mapping α will be denoted by dom α and

ran α, respectively. For an element x in the domain of a mapping α, the image of

α at x is written by xα.

Denote by T (X) the full transformation semigroup on a nonempty set X, that

is, the semigroup, under composition, of all mappings α : X → X. It is well-

known that T (X) is a regular semigroup ([3], page 4 or [4], page 63).

Let X and Y be partially ordered sets. A mapping ϕ from X into Y is said

to be order-preserving if

for any x, x
′

∈ X, x ≤ x
′

in X ⇒ xϕ ≤ x
′

ϕ in Y .
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A bijection ϕ : X → Y is called an order-isomorphism if ϕ and ϕ−1 are order-

preserving. It is clear that if both X and Y are chains and ϕ : X → Y is an

order-preserving bijection, then ϕ is an order-isomorphism from X onto Y . We

say that X and Y are order-isomorphic if there is an order-isomorphism from X

onto Y .

For a partially ordered set X, let

OT (X) = { α ∈ T (X) | α is order-preserving }.

It is clear that OT (X) is a subsemigroup of T (X) containing 1X and all constant

mappings. The semigroup OT (X) is called the full order-preserving transforma-

tion semigroup on X.

Proposition 1.1. Let X and Y be partially ordered sets. If ϕ : X → Y is an

order-isomorphism, then

(i) ϕ−1(OT (X))ϕ ⊆ OT (Y ) and ϕ(OT (Y ))ϕ−1 ⊆ OT (X).

(ii) OT (X) ∼= OT (Y ) through the mapping α 7→ ϕ−1αϕ.

Proof. (i) is clearly obtained since ϕ : X → Y and ϕ−1 : Y → X are order-

preserving.

(ii) Define θ : OT (X) → OT (Y ) by

αθ = ϕ−1αϕ for all α ∈ OT (X).

If α, β ∈ OT (X), then

(αβ)θ = ϕ−1(αβ)ϕ = (ϕ−1αϕ)(ϕ−1βϕ) = (αθ)(βθ).

Hence θ is a homomorphism. If α, β ∈ OT (X) are such that αθ = βθ, then

α = ϕ(ϕ−1αϕ)ϕ−1 = ϕ(αθ)ϕ−1 = ϕ(βθ)ϕ−1 = ϕ(ϕ−1βϕ)ϕ−1 = β.

Thus θ is 1-1. If λ ∈ OT (Y ), then by (i), ϕλϕ−1 ∈ OT (X) and thus

(ϕλϕ−1)θ = ϕ−1(ϕλϕ−1)ϕ = λ.

This proves that θ is an isomorphism from OT (X) onto OT (Y ).
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The following result is a direct consequence of Proposition 1.1.

Corollary 1.2. Let X and Y be partially ordered sets. If X and Y are order-

isomorphic, then OT (X) is regular if and only if OT (Y ) is regular.

Intervals in a chain are defined naturally as follows : A nonempty subset Y of

a chain X is called an interval in X if for a, b, x ∈ X, a, b ∈ Y and a ≤ x ≤ b

imply that x ∈ Y . We say that an interval Y in X is a nontrivial interval if Y

contains more than one element. Since every subfield F of R contains Q, it follows

that every nontrivial interval X of F is infinite.

The following results about the semigroup OT (X) are known.

Theorem 1.3 ([5]). For any nonempty subset X of Z, OT (X) is a regular

semigroup.

Theorem 1.4 ([5]). For an interval X in R, OT (X) is a regular semigroup if

and only if X is closed and bounded.

Theorem 1.5 ([9]). If X is a nontrivial interval in a subfield F of R, then

OT (X) is regular if and only if F = R and X is closed and bounded.

Corollary 1.6. For every nontrivial interval X in Q, OT (X) is not regular.

For a chain X, the dictionary partially ordered set of X is defined to be the

chain (X × X,≤d) where ≤d is defined on X × X by

(a1, b1) ≤d (a2, b2) ⇔ (i) a1 < a2 or

(ii) a1 = a2 and b1 ≤ b2.



CHAPTER II

REGULAR ELEMENTS OF ORDER-PRESERVING

TRANSFORMATION SEMIGROUPS ON CHAINS

The regular elements of OT (X) are characterized in this chapter where X is

any chain. Then by this characterization, necessary and sufficient conditions are

given for certain chains X so that OT (X) is a regular semigroup.

2.1 Regular Elements

We recall the following result from [5].

Lemma 2.1.1 ([5]). Let X be a chain. If α ∈ OT (X) and a, b ∈ ran α with

a < b, then x < y for all x ∈ aα−1 and y ∈ bα−1.

Also, the following lemma is needed.

Lemma 2.1.2. If X is a nonempty set and α, β ∈ T (X) are such that α = αβα,

then Xβα = (ran α)βα and xβα = x for all x ∈ ran α.

Proof. If x ∈ X, then xα = xαβα = (xα)βα. This implies that xβα = x for all

x ∈ ran α. Since ran α = Xα = (Xα)βα = (ran α)βα ⊆ Xβα ⊆ Xα = ran α, we

have that Xβα = (ran α)βα.

To obtain the main theorem, some necessary conditions for the regular ele-

ments of OT (X), where X is any chain, are given as its lemmas.

Lemma 2.1.3. Let X be a chain and α ∈ OT (X). If α is a regular element of

OT (X) and ran α has an upper bound in X, then max(ranα) exists.
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Proof. Let β ∈ OT (X) be such that α = αβα, and let u ∈ X be an upper bound

of ran α. Suppose that ran α has no maximum element in X. Then

x < u for all x ∈ ran α. (1)

From Lemma 2.1.2,

Xβα = (ranα)βα, (2)

xβα = x for all x ∈ ran α. (3)

From (2), there exists an element a ∈ ran α such that uβα = aβα. By (3),

aβα = a. Hence a < u by (1) and uβα = a. Since a ∈ ran α and max(ranα)

does not exist, there exists an element b ∈ ran α such that a < b < u . Then

bβα = b by (3). Hence a = aβα ≤ bβα = b ≤ uβα = a which implies that a = b,

a contradiction. This proves that max(ranα) exists.

The dual of Lemma 2.1.3 is the following lemma.

Lemma 2.1.4. Let X be a chain and α ∈ OT (X). If α is regular in OT (X) and

ran α has a lower bound in X, then min(ran α) exists.

Lemma 2.1.5. Let X be a chain and α ∈ OT (X). If α is regular in OT (X) and

a ∈ X r ran α is neither an upper bound nor a lower bound of ran α, then

max({x ∈ ran α | x < a}) or min({x ∈ ran α | a < x}) exists.

Proof. Let β ∈ OT (X) be such that α = αβα. It follows from the assumption

that

{x ∈ ran α | x < a} 6= ∅, {x ∈ ran α | a < x} 6= ∅,

ran α = {x ∈ ran α | x < a} ∪̇ {x ∈ ran α | a < x}. (1)

By Lemma 2.1.2 ,

Xβα = (ranα)βα, (2)

xβα = x for all x ∈ ran α. (3)
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By (2), aβα = eβα for some e ∈ ran α, and hence aβα = eβα = e by (3). From

(1), either e < a or a < e. Suppose that neither max({x ∈ ran α | x < a}) nor

min({x ∈ ran α | a < x}) exists.

Case 1 : e < a. Since max({x ∈ ran α | x < a}) does not exist, e < p < a for

some p ∈ ran α. By (3), pαβ = p. Then e = eβα ≤ pβα = p ≤ aβα = e, so e = p,

a contradiction.

Case 2 : a < e. Since min({x ∈ ran α | a < x}) does not exist, there is an

element q ∈ ran α such that a < q < e. Then we have qβα = q by (3) and thus

e = aβα ≤ qβα = q ≤ eβα = e. Hence e = q, a contradiction.

Hence the lemma is proved.

Theorem 2.1.6. Let X be a chain and α ∈ OT (X). Then α is regular in OT (X)

if and only if the following three conditions hold.

(i) If ran α has an upper bound in X, then max(ran α) exists.

(ii) If ran α has a lower bound in X, then min(ran α) exists.

(iii) If a ∈ X r ran α is neither an upper bound nor a lower bound of ran α, then

max({x ∈ ran α | x < a}) or min({x ∈ ran α | a < x}) exists.

Proof. If α is regular in OT (X), then (i), (ii) and (iii) hold by Lemma 2.1.3,

Lemma 2.1.4 and Lemma 2.1.5, respectively.

For the converse, assume that (i), (ii) and (iii) hold. If ranα has an upper

bound, let u = max(ran α). If ran α has a lower bound, let l = min(ran α). If

x ∈ X r ran α is neither an upper bound nor a lower bound of ran α, let

mx =















max({t ∈ ran α | t < x}) if max({t ∈ ran α | t < x}) exists,

min({t ∈ ran α | x < t}) otherwise.
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that is,

mx =



























max({t ∈ ran α | t < x}) if max({t ∈ ran α | t < x}) exists,

min({t ∈ ran α | x < t}) if max({t ∈ ran α | t < x}) does not exists

and min({t ∈ ran α | x < t}) exists.

For each x ∈ ran α, choose an element x
′

∈ xα−1. Then x
′

α = x for all x ∈ ran α.

Thus (xα)
′

α = xα for all x ∈ X. Define β : X → X by

xβ =























































x
′

if x ∈ ran α,

u
′

if x ∈ X r ran α and x is an upper bound of ran α,

l
′

if x ∈ X r ran α and x is a lower bound of ranα,

mx
′

if x ∈ X r ran α and x is neither an upper bound nor

a lower bound of ranα.

for every x ∈ X. Then β ∈ T (X) and for x ∈ X, xα ∈ ran α and thus

xαβα = (xα)βα = (xα)
′

α = xα.

Hence α = αβα. It remains to show that β is order-preserving. Let x, y ∈ X be

such that x < y.

Case 1 : x, y ∈ ran α. By Lemma 2.1.1, s < t for all s ∈ xα−1 and t ∈ yα−1. But

x
′

∈ xα−1 and y
′

∈ yα−1, so x
′

< y
′

. Hence xβ = x
′

< y
′

= yβ.

Case 2 : x ∈ ran α, y ∈ X r ran α and y is an upper bound of ran α. Since x ≤ u,

by Lemma 2.1.1, x
′

≤ u
′

, so xβ ≤ yβ.

Case 3 : x ∈ X r ran α, x is a lower bound of ran α and y ∈ ran α. Then l ≤ y,

so by Lemma 2.1.1, l
′

≤ y
′

. Hence xβ ≤ yβ.

Case 4 : x, y ∈ X r ran α and x and y are upper bounds of ran α. Then
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xβ = u
′

= yβ.

Case 5 : x, y ∈ X r ran α and x and y are lower bounds of ranα. Then xβ =

l
′

= yβ.

Case 6 : x, y ∈ X r ran α, x is a lower bound of ran α and y is an upper bound

of ran α. Since l ≤ u, by Lemma 2.1.1, l
′

≤ u
′

, so xβ ≤ yβ.

Case 7 : x ∈ ran α, y ∈ X r ran α and y is not an upper bound of ran α. Then

y ∈ X r ran α and y is neither an upper bound nor a lower bound of ran α.

Subcase 7.1 : max({t ∈ ran α | t < y}) exists. Then

my = max({t ∈ ran α | t < y}).

But x ∈ ran α and x < y, so x ≤ my. Hence x
′

≤ my
′

by Lemma 2.1.1. Thus

xβ ≤ yβ.

Subcase 7.2 : max({t ∈ ran α | t < y}) does not exist. Then

my = min({t ∈ ran α | y < t}).

Thus x < y < my. Hence xβ = x
′

< my
′

= yβ, as before.

Case 8 : x ∈ X r ran α, x is not a lower bound of ranα and y ∈ ran α. Then

x ∈ X r ran α and x is neither an upper bound nor a lower bound of ran α.

Subcase 8.1 : max({t ∈ ran α | t < x}) exists. Then mx < x < y, so

xβ = mx
′

< y
′

= yβ.

Subcase 8.2 : max({t ∈ ran α | t < x}) does not exist. Then mx =

min({t ∈ ran α | x < t}). Since y ∈ ran α and x < y, it follows that mx ≤ y.

Hence xβ = mx
′

≤ y
′

= yβ, as before.

Case 9 : x, y ∈ X r ran α, x is a lower bound of ranα and y is neither an upper
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bound nor a lower bound of ranα.

Subcase 9.1 : max({t ∈ ran α | t < y}) exists. Then l ≤ my, so

xβ = l
′

≤ my
′

= yβ.

Subcase 9.2 : max({t ∈ ran α | t < y}) does not exist. Then my =

min({t ∈ ran α | y < t}), so l < y < my. Hence xβ = l
′

< my
′

= yβ.

Case 10 : x, y ∈ X r ran α, x is neither an upper bound nor a lower bound of

ran α and y is an upper bound of ran α.

Subcase 10.1 : max({t ∈ ran α | t < x}) exists. Then mx < x < u, so

xβ = mx
′

< u
′

= yβ.

Subcase 10.2 : max({t ∈ ran α | t < x}) does not exist. Then

mx = min({t ∈ ran α | x < t}), so mx ≤ u. Hence xβ = mx
′

≤ u
′

= yβ.

Case 11 : x, y ∈ X r ran α and x and y are neither upper bounds nor lower

bounds of ran α.

Subcase 11.1 : max({t ∈ ran α | t < x}) and max({t ∈ ran α | t < y})

exist. Then

mx = max({t ∈ ran α | t < x}) and my = max({t ∈ ran α | t < y}).

Since x < y, it follows that {t ∈ ran α | t < x} ⊆ {t ∈ ran α | t < y} which implies

that mx ≤ my. Hence xβ = mx
′

≤ my
′

= yβ.

Subcase 11.2 : max({t ∈ ran α | t < x}) exists and max({t ∈ ran α |

t < y}) does not exist. Then

mx = max({t ∈ ran α | t < x}) and my = min({t ∈ ran α | y < t}).

Then mx < x < y < my, so xβ = mx
′

< my
′

= yβ.

Subcase 11.3 : max({t ∈ ran α | t < x}) does not exist and max({t ∈

ran α | t < y}) exists. Then
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mx = min({t ∈ ran α | x < t}) and my = max({t ∈ ran α | t < y}).

If {t ∈ ran α | x < t < y} = ∅, then {t ∈ ran α | t < y} = {t ∈ ran α | t < x}

which is impossible since max({t ∈ ran α | t < x}) does not exist but max({t ∈

ran α | t < y}) exists. Then there exists an element c ∈ ran α such that x < c < y.

Consequently, mx ≤ c ≤ my which implies that xβ = mx
′

≤ my
′

= yβ.

Subcase 11.4 : max({t ∈ ran α | t < x}) and max({t ∈ ran α | t < y})

do not exist. Then

mx = min({t ∈ ran α | x < t}) and my = min({t ∈ ran α | y < t}).

Since x < y, {t ∈ ran α | x < t} ⊇ {t ∈ ran α | y < t}. Then mx ≤ my, so

xβ = mx
′

≤ my
′

= yβ.

Hence β ∈ OT (X), and the proof is complete.

The following lemma shows that if X is an interval in R, then every α ∈ OT (X)

satisfies (iii) of Theorem 2.1.6.

Lemma 2.1.7. Let X be an interval in R and α ∈ OT (X). If a ∈ X r ran α is

neither an upper bound nor a lower bound of ran α, then either max({x ∈ ran α |

x < a}) or min({x ∈ ran α | a < x}) exists.

Proof. By assumption, we have that

{x ∈ ran α | x < a} 6= ∅, {x ∈ ran α | a < x} 6= ∅,

ran α = {x ∈ ran α | x < a} ∪̇ {x ∈ ran α | a < x}.

It follows that

{x ∈ ran α | x < a}α−1 6= ∅, {x ∈ ran α | a < x}α−1 6= ∅, (1)

X = {x ∈ ran α | x < a}α−1 ∪̇ {x ∈ ran α | a < x}α−1. (2)

By Lemma 2.1.1,

for all s ∈ {x ∈ ran α | x < a}α−1 and t ∈ {x ∈ ran α | a < x}α−1, s < t. (3)



13

Since X is an interval in R, (1), (2) and (3) yield the fact that

sup
(

{x ∈ ran α | x < a}α−1
)

= inf
(

{x ∈ ran α | a < x}α−1
)

, say e.

Then either e = max ({x ∈ ran α | x < a}α−1) or e = min ({x ∈ ran α | a < x}α−1).

Since α is order-preserving, we have

e = max
(

{x ∈ ran α | x < a}α−1
)

⇒ eα = max ({x ∈ ran α | x < a}) ,

e = min
(

{x ∈ ran α | a < x}α−1
)

⇒ eα = min ({x ∈ ran α | a < x}) .

Hence the lemma is proved.

The following corollary is obtained directly from Theorem 2.1.6 and Lemma

2.1.7.

Corollary 2.1.8. Let X be an interval in R and α ∈ OT (X). Then α is a regular

element of OT (X) if and only if the following two conditions hold.

(i) If ran α has an upper bound in X, then max(ran α) exists.

(ii) If ran α has a lower bound in X, then min(ran α) exists.

2.2 Regular Semigroups

Throughout this section, the partial order on a nonempty subset of real numbers

always means the natural order.

We shall apply Theorem 2.1.6 to prove Theorem 1.3 and Theorem 1.4 given

in [5]. In addition, the regularity of OT (X) for some other chains X in R are

determined.

Theorem 2.2.1. If X is a nonempty subset of Z, then OT (X) is a regular semi-

group.

Proof. Let A be a nonempty subset of X. By the property of subsets of Z, we

have that if A is bounded above in X, then max(A) exists. Also, if A is bounded

below in X, then min(A) exists.
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If c ∈ X r A is neither an upper bound nor a lower bound of A, then

{x ∈ A | x < c} 6= ∅ and {x ∈ A | c < x} 6= ∅, so both max({x ∈ A | x < c})

and min({x ∈ A | c < x}) exist.

This shows that for every α ∈ OT (X), ran α satisfies (i), (ii) and (iii) of

Theorem 2.1.6. By Theorem 2.1.6, every α ∈ OT (X) is regular in OT (X). Hence

OT (X) is a regular semigroup.

Lemma 2.2.2. If X is R, [a,∞) or (a,∞) where a ∈ R, then OT (X) is not a

regular semigroup.

Proof. Let c ∈ X and define α : X → R by

xα =











c +
x − c

x − c + 1
if x ≥ c,

c if x < c.

Then xα = c for all x ∈ X with x ≤ c, α is continuous on X and the derivative

of α at x > c is
1

(x − c + 1)2
> 0. These imply that α is a nondecreasing function

on X. Also, ranα = [c, c + 1) ⊆ X, so α ∈ OT (X). Since ran α is bounded in X

and max(ranα) does not exist, by Theorem 2.1.6, α is not a regular element of

OT (X). Hence OT (X) is not a regular semigroup.

Lemma 2.2.3. If X is (−∞, a] or (−∞, a), then OT (X) is not a regular semi-

group.

Proof. Let c ∈ X and define α : X → R by

xα =











c −
x − c

x − c + 1
if x ≤ c,

c if x > c.

Then xα = c for all x ≥ c, α is continuous on X and the derivative of α at x < c

is
1

(x − c + 1)2
> 0. Hence α is a nondecreasing function on X. We also have that
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ran α = (c − 1, c] ⊆ X. Then α ∈ OT (X), ran α is bounded in X and min(ran α)

does not exist. By Theorem 2.1.6, α is not a regular element of OT (X), hence

OT (X) is not a regular semigroup.

Lemma 2.2.4. If X is [a, b), (a, b] or (a, b) where a, b ∈ R and a < b, then the

semigroup OT (X) is not regular.

Proof. Define α : X → R by

xα =
1

4
(x − a) +

a + b

2
for all x ∈ X.

Then the derivative of α at x ∈ X is
1

4
. Hence α is a nondecreasing function.

Also,

ran α = Xα =



































[
a + b

2
,
a + 3b

4
) if X = [a, b),

(
a + b

2
,
a + 3b

4
] if X = (a, b],

(
a + b

2
,
a + 3b

4
) if X = (a, b),

a <
a + b

2
<

a + 3b

4
< b.

Then we deduce that α ∈ OT (X). Since ran α is both bounded above and bounded

below in X, max(ran α) does not exist if X = [a, b) or X = (a, b) and min(ran α)

does not exist if X = (a, b) or X = (a, b], it follows from Theorem 2.1.6, α is not

a regular element of OT (X). Hence OT (X) is not a regular semigroup.

Lemma 2.2.5. For a, b ∈ R with a ≤ b, OT ([a, b]) is a regular semigroup.

Proof. To show that every element of OT ([a, b]) is regular, let α ∈ OT ([a, b]).

Since α is order-preserving on [a, b], we have that aα = min(ran α) and bα =

max(ran α). By Corollary 2.1.8, α is a regular element of OT ([a, b]).

From Lemma 2.2.2, Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5, the following

theorem is obtained.



16

Theorem 2.2.6. For an interval X in R, OT (X) is a regular semigroup if and

only if X is closed and bounded.

Note that if X is a trivial interval, that is, |X| = 1, then |OT (X)| = 1, so

OT (X) is a regular semigroup.

Theorem 2.2.7. If X is a nontrivial interval of a proper subfield F of R, then

OT (X) is not a regular semigroup.

Proof. We first note that Q ⊆ F ( R. Then there is an irrational number

c ∈ RrF . Let a, b ∈ X be such that a < b. Thus a−c < b−c, so a−c < d < b−c

for some d ∈ Q. Hence a < c + d < b. Since c ∈ R r F and d ∈ Q ⊆ F , it follows

that c+d ∈ RrF and c+d is an irrational number. Let e = c+d. Consequently,

X =
(

(−∞, a) ∩ X
)

∪
(

[a, e) ∩ X
)

∪
(

(e,∞) ∩ X
)

. (1)

Define µ : R → F by

xµ =



























x if x ∈ (−∞, a),

a + x

2
if x ∈ [a, e),

x if x ∈ (e,∞).

(2)

Then aµ = a < e, α is continuous on (−∞, e) and the derivative of µ at x ∈ (a, e)

is
1

2
. Consequently, µ is an order-preserving function on R. Let α = µ|X : X → F .

Then α is order-preserving. We claim that

([a, e) ∩ X) α = [a,
a + e

2
) ∩ X. (3)

Let x ∈ [a, e) ∩ X. Then a ≤ x < e < b and x ∈ X ⊆ F , so

a ≤
a + x

2
= xα <

a + e

2
<

a + b

2
< b and

a + x

2
∈ F.

This implies that xα ∈ [a,
a + e

2
) ∩ X since X is an interval in F and a, b ∈ X

with a < b. For the reverse inclusion, let y ∈ [a,
a + e

2
) ∩X. Then a ≤ y <

a + e

2
and y ∈ X ⊆ F . Hence

a ≤ 2y − a < e < b and 2y − a ∈ F.
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Then 2y−a ∈ [a, e)∩X since a, b ∈ X and X is an interval in F and (2y−a)α =

a + (2y − a)

2
= y. Therefore (3) holds. From (1), (2) and (3), we have

ran α = Xα =
(

(−∞, a) ∩ X
)

∪
(

[a,
a + e

2
) ∩ X

)

∪
(

(e,∞) ∩ X
)

(4)
=

(

(−∞,
a + e

2
) ∩ X

)

∪
(

(e,∞) ∩ X
)

⊆ X.

Hence α ∈ OT (X). Let q ∈ Q be such that
a + e

2
< q < e. But

a <
a + e

2
< q < e < b,

q ∈ Q ⊆ F, a, b ∈ X and X is an interval in F , thus by (4), q ∈ X r ran α,

{x ∈ ran α | x < q} = (−∞,
a + e

2
) ∩ X and {x ∈ ran α | q < x} = (e,∞) ∩ X. If

max
(

(−∞,
a + e

2
) ∩ X

)

exists, say m, then

a ≤ m <
a + e

2
< b and m ∈ X.

Let p ∈ Q be such that m < p <
a + e

2
. Then p ∈ F and a < p < b which imply

that m < p ∈ (−∞,
a + e

2
) ∩ X, a contradiction. Then max

(

(−∞,
a + e

2
) ∩ X

)

does not exist. We can show similarly that min
(

(e,∞) ∩ X
)

does not exist. By

Theorem 2.1.6, α is not a regular element of OT (X). This proves that OT (X) is

not a regular semigroup, as desired.

The following corollary is a direct consequence of Theorem 2.2.7.

Corollary 2.2.8. If X is a nontrivial interval in Q, then OT (X) is not a regular

semigroup.

Example 2.2.9. Under the usual order, X = {1,
1

2
,
1

3
, . . .} is order-isomorphic to

{−1,−2,−3, . . .} through
1

n
7→ −n for n ∈ N. Then OT (X) ∼= OT ({−1,−2,−3, . . .})

by Proposition 1.1. Since OT ({−1,−2,−3, . . .}) is a regular semigroup by Theo-

rem 2.2.1, it follows that OT (X) is a regular semigroup.

It is natural to ask that whether OT (X ∪ {0}) is a regular semigroup. Note

that 1 and 0 are the maximum element and the minimum element of X ∪ {0},
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respectively. Since an infinite subset of Z cannot have both a maximum element

and a minimum element, it follows that X ∪ {0} is not order-isomorphic to any

chain of integers. However, we can show by Theorem 2.1.6 that OT (X ∪{0}) is a

regular semigroup. To prove this, let α ∈ OT (X ∪ {0}). Then 1α = max(ran α)

and 0α = min(ran α). Let m ∈ N r {1} be such that
1

m
/∈ ran α, {x ∈ ran α | x <

1

m
} 6= ∅ and {x ∈ ran α |

1

m
< x} 6= ∅. Since

∅ 6= {x ∈ ran α | x <
1

m
} ⊆ {

1

m + 1
,

1

m + 2
, . . . } ∪ {0},

∅ 6= {x ∈ ran α |
1

m
< x} ⊆ {1,

1

2
, . . . ,

1

m − 1
},

it follows clearly both max({x ∈ ran α | x <
1

m
}) and min({x ∈ ran α |

1

m
< x})

exist. Hence by Theorem 2.1.6, α is a regular element of OT (X ∪ {0}).

Example 2.2.10. Let X = [0, 1) ∪ (2, 3] with the natural order. Then OT (X)

is not regular. To prove this, define α ∈ OT ([0, 1)) be as in Lemma 2.2.4. Then

ran α = [
0 + 1

2
,
0 + 3

4
) = [

1

2
,
3

4
). Define ᾱ : X → R by

xᾱ =











xα if x ∈ [0, 1),

x if x ∈ (2, 3].

Thus, ᾱ ∈ OT (X) and ran ᾱ = ran α∪(2, 3] = [
1

2
,
3

4
)∪(2, 3]. Since

4

5
∈ X rran ᾱ,

{x ∈ ran ᾱ | x <
4

5
} = [

1

2
,
3

4
)

and

{x ∈ ran ᾱ |
4

5
< x} = (2, 3],

it follows that neither max({x ∈ ran ᾱ | x <
4

5
}) nor min({x ∈ ran ᾱ |

4

5
< x})

exists. By Theorem 2.1.6, ᾱ is not a regular element of OT (X).

A natural question arises. If X = [0, 1) ∪ [2, 3] or [0, 1] ∪ (2, 3], is OT (X)

a regular semigroup? The following theorem gives a general result. This result

indicates that this semigroup OT (X) is a regular semigroup.
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Theorem 2.2.11. Let X = I1 ∪ I2 ∪ . . . ∪ In where n > 1,

Ii is an interval in R for all i ∈ {1, 2, . . . , n},

for i ∈ {1, 2, · · · , n−1}, x < y for all x ∈ Ii and y ∈ Ii+1, (1)

Ii ∪ Ii+1 is not an interval in R,

then OT (X) is regular if and only if the following three conditions hold.

(i) min(I1) exists.

(ii) max(In) exists.

(iii) For each i ∈ {1, 2, . . . , n − 1}, max(Ii) or min(Ii+1) exists.

Proof. We shall show by contrapositive that if OT (X) is regular, then (i), (ii) and

(iii) hold. Assume that at least one of (i), (ii) and (iii) is not true.

Case 1 : min(I1) does not exist. By the proofs of Lemma 2.2.3 and Lemma 2.2.4,

there exists an element α ∈ OT (I1) such that

ran α has a lower bound in I1 and min(ran α) does not exist. (2)

Define α : X → X by

xα =











xα if x ∈ I1,

x if x ∈ I2 ∪ . . . ∪ In.

Since α ∈ OT (I1), by (1), α ∈ OT (X). Also, ranα = ran α ∪ I2 ∪ . . . ∪ In. By

(1) and (2), ranα has a lower bound and min(ranα) does not exist. By Theorem

2.1.6, α is not regular in OT (X).

Case 2 : max(In) does not exist. By the proofs of Lemma 2.2.2 and Lemma

2.2.4, there is an element β ∈ OT (In) such that

ran β has an upper bound in In and max(ranβ) does not exist. (3)

Define β : X → X by

xβ =











x if x ∈ I1 ∪ . . . ∪ In−1,

xβ if x ∈ In.
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Since β ∈ OT (In), by (1), β ∈ OT (X). We also have ranβ = I1∪ . . .∪In−1∪ran β.

It follows from (1) and (3) that ranβ has an upper bound and max(ran β) does

not exist. By Theorem 2.1.6, β is not regular in OT (X).

Case 3 : min(I1) exists, max(In) exists and there exists j ∈ {1, 2, . . . , n−1} such

that neither max(Ij) nor min(Ij+1) exists. By the proof of Lemma 2.3.4, there are

elements γ1 ∈ OT (Ij) and γ2 ∈ OT (Ij+1) such that

ran γ1 has an upper bound in Ij and max(ran γ1) does not exist. (4)

and

ran γ2 has a lower bound in Ij+1 and min(ran γ2) does not exist. (5)

Define γ : X → X by

xγ =



























xγ1 if x ∈ Ij,

xγ2 if x ∈ Ij+1

x if x ∈ X r (Ij ∪ Ij+1).

Since γ1 ∈ OT (Ij) and γ2 ∈ OT (Ij+1), it follows from (1) that γ ∈ OT (X).

Moreover,

ran γ = I1 ∪ . . . Ij−1 ∪ ran γ1 ∪ ran γ2 ∪ Ij+2 ∪ . . . ∪ In.

Let a ∈ Ij be an upper bound of ran γ1. By (4), a ∈ I1rran γ1. Then a ∈ Xrran γ,

ran γ = {x ∈ ran γ | x < a} ∪̇ {x ∈ ran γ | a < x},

{x ∈ ran γ | x < a} = I1 ∪ . . . Ij−1 ∪ ran γ1, (6)

{x ∈ ran γ | a < x} = ran γ2 ∪ Ij+2 ∪ . . . In. (7)

By (1), (4) and (6), max{x ∈ ran γ | x < a} does not exist. Also, by (1), (5) and

(7), min{x ∈ ran γ | a < x} does not exist. Hence by Theorem 2.1.6, γ is not

regular in OT (X).

For the converse, assume that (i), (ii) and (iii) hold. Note that by (1),
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min(X) = min(I1) and max(X) = max(In). Let α ∈ OT (X). Since α is

order-preserving, min(ran α) = (min(X))α and max(ranα) = (max(X))α. Let

c ∈ X r ran α be such that {x ∈ ran α | x < c} 6= ∅ and {x ∈ ran α | c < x} 6= ∅.

Then

X = {x ∈ ran α | x < c}α−1 ∪̇ {x ∈ ran α | c < x}α−1, (8)

and by Lemma 2.2.1,

for all s ∈ {x ∈ ran α | x < c}α−1 and t ∈ {x ∈ ran α | c < x}α−1, s < t. (9)

From (9) and (10), we have that

either {x ∈ ran α | x < c}α−1 = I1 ∪ I2 . . . ∪ Ik and

{x ∈ ran α | c < x}α−1 = Ik+1 ∪ . . . ∪ In for some k ∈ {1, 2, . . . , n − 1}

or there exists k ∈ {1, 2, . . . , n} such that Ik = A∪̇B,A and B are nonempty

interval , a < b for all a ∈ A and b ∈ B,

{x ∈ ran α | x < c}α−1 = I1 ∪ I2 . . . ∪ Ik−1 ∪ A and

{x ∈ ran α | c < x}α−1 = B ∪ Ik+1 ∪ . . . ∪ In.

By this fact, the assumption and the property of interval in R, either max({x ∈

ran α | x < c}α−1) or min({x ∈ ran α | c < x}α−1) exists. Since {x ∈ ran α | x <

c} = ({x ∈ ran α | x < c}α−1)α and {x ∈ ran α | c < x} = ({x ∈ ran α | c <

x}α−1)α and α is order-preserving, it follows that either max({x ∈ ran α | x < c})

or min({x ∈ ran α | c < x}) exists.

From obove Theorem, we can determine the regularity of OT (X) for various

kinds of X ⊆ R, for examples, OT ([0, 1) ∪ [2, 3) ∪ [4, 5]) is a regular semigroup

and OT ((0, 1) ∪ [2, 3) ∪ [4, 5]) is not a regular semigroup.



CHAPTER III

REGULAR ORDER-PRESERVING TRANSFORMATION

SEMIGROUPS ON DICTIONARIES PARTIALLY

ORDERED SETS OF CHAINS

In this chapter, we characterize the regularity of OT (X × X,≤d) when X is

one of the following chains : chains of integers, intervals in R and intervals in a

subfield of R. Theorem 2.1.6 is a main tool for these characterizations.

3.1 Chains of integers

The following lemma gives an important necessary condition for OT (X×X,≤d)

to be regular when X is any chain.

Lemma 3.1.1. Let X be a chain. If OT (X ×X,≤d) is a regular semigroup, then

X has a maximum and a minimum.

Proof. Suppose that OT (X×X,≤d) is regular. If |X| = 1, then we are done. Next,

assume that |X| > 1. Let u, v ∈ X be such that u < v. Define α : X×X → X×X

by

(x, y)α = (u, x) for all x, y ∈ X. (1)

Then

({x} × X)α = {(u, x)} for all x ∈ X

and so

ran α = {u} × X. (2)

We have that for x, y ∈ X,

x ≤ y ⇒ (u, x) ≤d (u, y). (3)
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Then (1) and (3) give the fact that α is order-preserving on (X × X,≤d). Hence

α ∈ OT (X × X,≤d). Since OT (X × X,≤d) is regular, we have that α = αβα

for some β ∈ OT (X ×X,≤d). By Lemma 2.1.2, (βα)| ran α is the identity map on

ran α which implies from (2) that

(u, x)βα = (u, x) for all x ∈ X. (4)

Since u < v, it follows that

(u, x) <d (v, v) for all x ∈ X.

Thus (u, x)βα ≤d (v, v)βα for all x ∈ X. This implies by (4) that

(u, x) ≤d (v, v)βα for all x ∈ X. (5)

Since (v, v)βα ∈ ran α, by (2), (v, v)βα = (u, f) for some f ∈ X. Hence from (5),

(u, x) ≤d (u, f) for all x ∈ X

which implies that x ≤ f for all x ∈ X. This shows that f is the maximum of X.

To show that X also has a minimum, let γ : X × X → X × X be defined by

(x, y)γ = (v, x) for all x, y ∈ X. (6)

Then

({x} × X)γ = {(v, x)} for all x ∈ X

and thus

ran γ = {v} × X. (7)

Since for x, y ∈ X,

x < y ⇒ (v, x) <d (v, y), (8)

we deduce from (6) and (8) that γ ∈ OT (X × X,≤d). Since OT (X × X,≤d) is

regular, we have that γ = γλγ for some λ ∈ OT (X × X,≤d). By Lemma 2.1.2,

(λγ)| ran γ = 1|ran γ, so by (7), we have

(v, x)λγ = (v, x) for all x ∈ X. (9)
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Since u < v, it follows that

(u, u) <d (v, x) for all x ∈ X,

and so (u, u)λγ ≤d (v, x)λγ for all x ∈ X. This implies by (9) that

(u, u)λγ ≤d (v, x) for all x ∈ X. (10)

But (u, u)λγ ∈ ran γ, so (u, u)λγ = (v, e) for some e ∈ X by (7). Hence from

(10),

(v, e) ≤d (v, x) for all x ∈ X

which implies that e ≤ x for all x ∈ X. Hence e is the minimum of X.

Hence X has a maximum and a minimum, and the proof is complete.

Theorem 3.1.2. For ∅ 6= X ⊆ Z, OT (X ×X,≤d) is a regular semigroup if and

only if X is finite.

Proof. If OT (X × X,≤d) is regular, then by Lemma 3.1.1, max(X) and min(X)

exist. But X is a nonempty subset of Z, so we have that X must be finite.

Conversely, if X is a finite set, then (X × X,≤d) is a finite chain. It follows

that (X × X,≤d) is order-isomorphic to a (finite) chain of integers. Hence by

Theorem 2.2.1, OT (X × X,≤d) is regular.

Remark 3.1.3. By Theorem 2.2.1 and Theorem 3.1.2, OT (Z) is regular and

OT (Z × Z,≤d) is not regular, respectively. In addition, OT (Z × Z,≤d) contains

an infinitely many nonregular element. To see this, let c ∈ Z and define αc :

Z × Z → Z × Z by

(x, y)αc = (c, x) for all x, y ∈ Z.

From the proof of Lemma 3.1.1, αc ∈ OT (Z×Z,≤d) and ran(αc) = {c}×Z. Since

(c, x) <d (c + 1, 0) for all x ∈ Z,

we deduce that (c + 1, 0) is an upper bound of ran(αc). But {c} × Z has no

maximum, so by Theorem 2.1.6, αc is not a regular element of OT (Z × Z,≤d).
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Hence

{αc | c ∈ Z} ⊆ OT (Z × Z,≤d) r Reg(OT (Z × Z,≤d)).

If c1 6= c2 in Z, then ran(αc1) = {c1} × Z 6= {c2} × Z = ran(αc2) which implies

that αc1 6= αc2 . Hence {αc | c ∈ Z} is an infinite subset of OT (Z × Z,≤d)

r Reg(OT (Z × Z,≤d)). Therefore, we deduce that OT (Z × Z,≤d) contains an

infinitely many nonregular elements. Since every constant map in OT (Z×Z,≤d)

is a regular element, it follows that OT (Z×Z,≤d) also contains an infinitely many

regular elements.

From the above proof, we can show similarly by Theorem 2.1.6 that if X is an

infinite subset of Z, then OT (X × X,≤d) contains an infinitely many nonregular

elements and an infinitely many regular elements.

3.2 Intervals in R

We shall show that for an interval X in R, OT (X × X,≤d) is regular if and

only if X is closed and bounded.

Lemma 3.2.1. Let a, b ∈ R be such that a < b. If A and B are nonempty subsets

of [a, b] × [a, b] such that

[a, b] × [a, b] = A ∪̇ B (1)

and

for all (x, y) ∈ A and (x
′

, y
′

) ∈ B, (x, y) <d (x
′

, y
′

), (2)

then sup(A) = inf(B), hence either sup(A) = max(A) or inf(B) = min(B).

Proof. Since (a, a) = min([a, b]× [a, b],≤d) and (b, b) = max([a, b]× [a, b],≤d), we

have (a, a) ∈ A and (b, b) ∈ B. Let

A1 = {x ∈ [a, b] | (x, a) ∈ A},
(3)

B1 = {x ∈ [a, b] | (x, a) ∈ B}.
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By (1),

[a, b] × {a} = (A ∪̇ B) ∩ ([a, b] × {a})

=
(

A ∩ ([a, b] × {a})
)

∪̇
(

B ∩ ([a, b] × {a})
)

.

It follows that

[a, b] = A1 ∪̇B1. (4)

If x ∈ A1 and y ∈ B1, then by (3), (x, a) ∈ A and (y, a) ∈ B. Hence (x, a) <d (y, a)

by (2) which implies that x < y. Therefore we have that

for all x ∈ A1 and y ∈ B1, x < y. (5)

Since (a, a) ∈ A, we have by (3) that a ∈ A1.

Case 1 : B1 = ∅. By (3), (b, a) /∈ B. Then (b, a) ∈ A by (1). By the definition

of ≤d, we have

for all (x, y) ∈ [a, b) × [a, b], (x, y) <d (b, a) /∈ B.

This fact, (1) and (2) imply that B ⊆ {b} × (a, b]. Let

A2 = {y ∈ [a, b] | (b, y) ∈ A} and B2 = {y ∈ [a, b] | (b, y) ∈ B}.

Then a ∈ A2 and b ∈ B2 since (b, a) ∈ A and (b, b) ∈ A. From (1) and (2), we

respectively have

[a, b] = A2 ∪̇B2

and

for all x ∈ A2 and y ∈ B2, x < y.

These imply that sup(A2) = inf(B2), say c. Since B ⊆ {b}× (a, b], it follows from

(2) that either B = {b}× (c, b] or B = {b}× [c, b]. Then we deduce from (1) that

B = {b} × (c, d] ⇒ A = ([a, b) × [a, b]) ∪ ({b} × [a, c]),

B = {b} × [c, d] ⇒ A = ([a, b) × [a, b]) ∪ ({b} × [a, c)).
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Consequently, max(A) = (b, c) = inf(B).

Case 2 : B1 6= ∅. Then b ∈ B1 by (4) and (5). It follows that sup(A1) = inf(B1),

say e. Let

A3 = {y ∈ [a, b] | (e, y) ∈ A} and B3 = {y ∈ [a, b] | (e, y) ∈ B}. (6)

By (1) and (2), we have respectively that

[a, b] = A3 ∪̇B3 (7)

and

for all x ∈ A3 and y ∈ B3, x < y. (8)

Subcase 2.1 : A3 = ∅. By (6) and (7), we have (e, a) /∈ A and (e, a) ∈ B.

Since (a, a) ∈ A, we have a < e. By the definition of ≤d, (1) and (2), we have

A = [a, e) × [a, b] and B = [e, b] × [a, b],

and thus min(B) = (e, a) which is an upper bound of A. If (u, v) <d (e, a), then

u < e. But u < e implies that (u, v) <d (
u + e

2
, v) and both belong to [a, e)× [a, b],

so (u, v) is not an upper bound of A. This shows that sup(A) = (e, a). Hence

sup(A) = (e, a) = inf(B).

Subcase 2.2 : B3 = ∅. Then by (6) and (7), (e, b) /∈ B and (e, b) ∈ A.

Thus by (1) and (2),

A = [a, e] × [a, b] and B = (e, b] × [a, b].

Hence max(A) = (e, b) and we can show similarly that inf(B) = (e, b).

Subcase 2.3 : A3 6= ∅ and B3 6= ∅. From (7) and (8), we have sup(A3) =

inf(B3), say f .

If f ∈ A3, then (e, f) ∈ A and (e, f) /∈ B by (6) and (7), so from (1) and

(2), we have

A = ([a, e) × [a, b]) ∪ ({e} × [a, f ]),

B = ((e, b] × [a, b]) ∪ ({e} × (f, b])
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which implies that max(A) = (e, f). We can see that (e, f) is a lower bound of

B. If (u, v) >d (e, f), then u > e or u = e and v > f . Hence

u > e ⇒ (u, v), (
u + e

2
, v) ∈ (e, b] × [a, b] ⊆ B

and (
u + e

2
, v) <d (u, v),

u = e and v > f ⇒ (u, v), (u,
v + f

2
) ∈ {e} × (f, b] ⊆ B

and (u,
v + f

2
) <d (u, v).

Consequently, inf(B) = (e, f). Hence sup(A) = (e, f) = inf(B).

If f ∈ B3, then (e, f) ∈ B and (e, f) /∈ A, by (6) and (7), so

A = ([a, e) × [a, b]) ∪ ({e} × [a, f)),

B = ([e, b] × [a, b]) ∪ ({e} × [f, b])

by (1) and (2). Thus min(B) = (e, f). We can show similarly that sup(A) = (e, f).

Hence sup(A) = (e, f) = inf(B).

Therefore the proof is complete.

Theorem 3.2.2. For an interval X in R, OT (X ×X,≤d) is a regular semigroup

if and only if X is closed and bounded.

Proof. Assume that the semigroup OT (X × X,≤d) is regular. By Lemma 3.1.1,

X has a maximum and a minimum, say a and b, respectively. Hence X = [a, b].

For the converse, assume that X = [a, b] where a, b ∈ R and a < b. We shall

prove that OT (X × X,≤d) is a regular semigroup by Theorem 2.1.6 and Lemma

3.2.1. Let α ∈ OT (X × X,≤d). Since α is order-preserving, (a, a) = min(X ×

X,≤d) and (b, b) = max(X × X,≤d), it following that (a, a)α = min(ran α) and

(b, b)α = max(ranα). Next, let (e, f) ∈ (X × X) r ran α be such that

A = {(x, y) ∈ ran α | (x, y) <d (e, f)} 6= ∅

and

B = {(x, y) ∈ ran α | (e, f) <d (x, y)} 6= ∅.
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This implies that

Aα−1 6= ∅, Bα−1 6= ∅,

[a, b] × [a, b] = Aα−1 ∪̇Bα−1,

and by Lemma 2.1.1,

for all x ∈ Aα−1 and y ∈ Bα−1, x < y.

From these facts and Lemma 3.2.1, sup(Aα−1) = inf(Bα−1). If sup(Aα−1) =

max(Aα−1), then
(

max(Aα−1)
)

α = max(A) since α is order-preserving. Also, if

inf(Bα−1) = min(Bα−1) , then
(

min(Bα−1)
)

α = min(B). Hence by Theorem

2.1.6, α is a regular element of OT (X × X,≤d), as desired.

As a direct consequence of Theorem 2.2.6 and Theorem 3.2.2, we have

Corollary 3.2.3. Let X be an interval in R. Then the following statements are

equivalent.

(i) OT (X × X,≤d) is a regular semigroup.

(ii) OT (X) is a regular semigroup.

(iii) X is closed and bounded.

Remark 3.2.4. We define ≤d on [a, b]×{1, 2, ..., n}, where a < b in R and n ∈ N,

as before, that is,

(x, k) ≤d (y, l) ⇔ either (i) x < y or

(ii) x = y and k ≤ l.

Then ([a, b] × {1, 2, ..., n},≤d) is a chain. It can be easily seen that

([a, b] × {1, 2, ..., n},≤d) and (
n−1
⋃

i=0

[a, b] + 2i(b − a),≤)

are order-isomorphic through the map (x, k) 7→ x+2(k− 1)(b−a) where ≤ is the

natural order of real numbers. For an example,

([1, 2] × {1, 2, 3, 4},≤d) ∼= ([1, 2] ∪ [3, 4] ∪ [5, 6] ∪ [7, 8],≤).
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By Theorem 2.2.6, OT (
n−1
⋃

i=0

[a, b] + 2i(b − a),≤) is regular. Hence OT ([a, b] ×

{1, 2, ..., n},≤d) is a regular semigroup.

3.3 Intervals in Subfields of R

We shall show in this section that if X is a nontrivial interval in a subfield F

of R, then OT (X × X,≤d) is regular only the case that F = R and X is closed

and bounded.

Lemma 3.3.1. If X is a nontrivial interval in a proper subfield F of R, then

OT (X × X,≤d) is not a regular semigroup.

Proof. Let a, b ∈ X be such that a < b. Then there is an irrational number

e ∈ R r F such that a < e < b (see the proof of Theorem 2.2.7). Thus

X =
(

(−∞, a) ∩ X
)

∪
(

[a, e) ∩ X
)

∪
(

(e,∞) ∩ X
)

.

Hence

X × X =
(

((−∞, a) ∩ X) × X
)

∪
(

([a, e) ∩ X) × X
)

∪
(

((e,∞) ∩ X) × X
)

.

Define α : X × X → X × X by

(x, y)α =



























(x, a) if x ∈ (−∞, a) ∩ X and y ∈ X,

(
a + x

2
, a) if x ∈ [a, e) ∩ X and y ∈ X,

(x, a) if x ∈ (e,∞) ∩ X and y ∈ X.

We can see from the proof of Theorem 2.2.7 that α ∈ OT (X × X,≤d) and

ran α =
(

((−∞,
a + e

2
) ∩ X) ∪̇ ((e,∞) ∩ X)

)

× {a}.

Let q ∈ (
a + e

2
, e) ∩ X. Then (q, a) ∈ (X × X) r ran α. We also have from the

definition of α that

{(x, y) ∈ ran α | (x, y) <d (q, a)} =
(

(−∞,
a + e

2
) ∩ X

)

× {a}
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and

{(x, y) ∈ ran α | (q, a) <d (x, y)} =
(

(e,∞) ∩ X
)

× {a}

It can be seen from the proof of Theorem 2.2.7 that none of max
(

((−∞,
a + e

2
) ∩

X) × {a}
)

and min
(

((e,∞) ∩ X) × {a}
)

exists. By Theorem 2.1.6, α is not a

regular element of OT (X × X,≤d).

As a direct consequence of Lemma 3.3.1, we have

Corollary 3.3.2. It X is a nontrivial interval in Q, then OT (X × X,≤d) is not

a regular semigroup.

Remark 3.3.3. Notice that the converse of Lemma 3.1.1 is true under the as-

sumption that ∅ 6= X ⊆ Z or X is an interval in R. This follows from Theorem

3.1.2 and Theorem 3.2.2. However, the converse of Lemma 3.1.1 is not generally

true. To see this, let a, b ∈ Q be such that a < b. Then [a, b] ∩ Q is a nontrivial

interval in Q. By Corollary 3.3.2, OT
(

([a, b] ∩ Q) × ([a, b] ∩ Q),≤d

)

is not a

regular semigroup. However, b = max([a, b] ∩ Q) and a = min([a, b] ∩ Q).

Theorem 3.3.4. Let X be a nontrivial interval in a subfield F of R. Then

OT (X × X,≤d) is a regular semigroup if and only if F = R and X is closed and

bounded.

Proof. If F 6= R, then by Lemma 3.3.1, OT (X ×X,≤d) is not regular. Therefore

if OT (X × X,≤d) is regular, then F = R, and hence by Theorem 3.2.2, X is

closed and bounded.

The converse holds by Theorem 3.2.2.

The following corollary is obtained from Theorem 2.2.7 and Theorem 3.3.4.

Corollary 3.3.5. Let X be a nontrivial interval in a subfield F of R. Then the

following statements are equivalent.

(i) OT (X × X,≤d) is a regular semigroup.

(ii) OT (X) is a regular semigroup.

(iii) F = R and X is closed and bounded.
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