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INTRODUCTION

Let X be a partially ordered set and OT'(X) the semigroup, under composition,
of all order-preserving transformations e : X — X.

It is known from [3, page 203] that OT'(X) is a regular semigroup if X is a finite
chain. Kemprasit and Changphas [5] extended this result to any chain which is
order-isomorphic to a chain X where X C Z, the set of integers with their natural
order. Equivalently, OT'(X) is regular for every nonempty subset of Z with the
usual order. Note that if the partially ordered sets X and Y are order-isomorphic,
then the semigroups OT(X) and OT(Y') are isomorphic. It is also proved in [5]
that for an interval X in R, the set of real numbers with usual order, OT'(X) is
a regular semigroup if and only if X is closed and bounded. Rungrattrakoon and
Kemprasit [9] extended this fact by showing that for a nontrivial interval X in
a subfield F' of R, OT(X) is regular if and only if /= R and X is closed and
bounded. Then it follows as a consequence that for a nontrivial interval X in Q,
the set of rational number, OT'(X) is not a regular semigroup. In fact, the above
result in [9] is a consequence of the main theorem in [7].

The regularity-of semigroups-of order-preserving partial transformations have
been also studied. See [1}; [2] and [5] for examples.

A standard isomorphism-is-provided in -8, -page. 222-223]-as -follows : For
partially ordered sets X and ¥, OT(X) = OT(Y) if and only if X and Y are
order-isomorphic or anti-order-isomorphic. In [6], the authors generalized full
order-preserving transformation semigroups by using sandwich multiplication and
investigated their regularity and also provided some isomorphism theorems.

For a chain X, let <; denote the dictionary partial order on X x X.

In this research, we extend the above results in [5] and [9]. The regular elements



of OT'(X) are characterized when X is any chain. Then it is applied to prove those
results and to determine the regularity of OT(X x X, <;) when X is one of the
following chains : chains of integers, intervals in R and intervals in a subfield of
R.

Chapter I provides basic definitions and known results which will be used in
this research. Also, see [3] and [4] for more details.

In Chapter II, the regular elements of O7'(X) are characterized when X is any
chain. Then this characterization is applied to prove the above known results of
the regularity of OT(X) where X is a nonempty subset of Z, an interval in R or
an interval in a subfield of R.

In Chapter III, the regularity of OT(X x X, <,) is characterized by using
the main result in Chapter II, when X is one of the following chains : chains of

integers, intervals in R and intervals in a subfield of R.



CHAPTER I
PRELIMINARIES

For a set X, let | X| denote the cardinality of X. The identity mapping on a
nonempty set A is denoted by 1,4. The set of positive integers, the set of integers,
the set of rational numbers and the set of real numbers are denoted by N, Z, Q
and R, respectively. Note that they are chains with the natural order.

The following property of real numbers will be used. If X is an interval in R

and A, B are nonempty subsets of R such that
X=AUB and a<b forall ac€ A and b € B,

then sup(A) = inf(B).
An element a of a semigroup S is called reqular if @ = aba for some b € S,
and S is called a reqular semigroup if every element of S is regular. The set of all

regular elements of a semigroup S will be denoted by Reg .S, that is,
Reg S ={a € S| a = aba for some b € S}.

The domain and the range of any mapping « will be denoted by dom o and
ran «, respectively. For an element # in the domain of a mapping «, the image of
a at x is written by za.

Denote by T'(X) the full transformation semigroup on a nonempty set X, that
is, the semigroup, under composition, of all mappings o : X — X. It is well-
known that 7'(X) is a regular semigroup ([3], page 4 or [4], page 63).

Let X and Y be partially ordered sets. A mapping ¢ from X into Y is said

to be order-preserving if

forany 2,2 € X, <2 inX = zp<z'¢inY.



A bijection ¢ : X — Y is called an order-isomorphism if ¢ and ¢~! are order-
preserving. It is clear that if both X and Y are chains and ¢ : X — Y is an
order-preserving bijection, then ¢ is an order-isomorphism from X onto Y. We
say that X and Y are order-isomorphic if there is an order-isomorphism from X
onto Y.

For a partially ordered set X, let
OT(X) ={ a € T(X) | ais order-preserving }.

It is clear that OT'(X) is a subsemigroup of 7°(X') containing 1x and all constant
mappings. The semigroup OT'(X) is called the full order-preserving transforma-

tion semigroup on X.

Proposition 1.1. Let X and Y be partially ordered sets. If p : X — Y is an
order-isomorphism, then

() ¢ '(OT(X))p C OT(Y) and (OT(¥))g ' C OT(X).

(ii) OT(X) = OT(Y) through the mapping o — o ‘.

Proof. (i) is clearly obtained since ¢ : X — Y and ¢! : Y — X are order-
preserving.

(i) Define 6 : OT(X) — OT(Y) by
af = ¢ tap forall ac OT(X).
If o, B € OT(X), then
(aB) = ¢~ (aB)p = (¢~ ap) (v By) = (ad)(B9).
Hence 6 is'a homomorphism. If a; 3 € OT'(X) are such that a6 = 36, then
a= (e~ ap)p™ = p(ad)p™ = p(B0)p™" = (™ Bp)p™ =B
Thus 6 is 1-1. If A € OT(Y), then by (i), pAp~! € OT(X) and thus
(A )0 = o™ (Ao = A,

This proves that 6 is an isomorphism from OT'(X) onto OT(Y). O



The following result is a direct consequence of Proposition 1.1.

Corollary 1.2. Let X and Y be partially ordered sets. If X and Y are order-
isomorphic, then OT(X) is reqular if and only if OT(Y") is regular.

Intervals in a chain are defined naturally as follows : A nonempty subset Y of
a chain X is called an interval in X if for a,b,x € X, a,b € Y anda <z <D
imply that x € Y. We say that an interval ¥ in X is a nontrivial interval if Y
contains more than one element. Since every subfield F' of R contains Q, it follows

that every nontrivial interval X of F is infinite.
The following results about the semigroup OT'(X) are known.

Theorem 1.3 ([5]). For any nonempty subset X of Z, OT(X) is a regular

SEMIGroup.

Theorem 1.4 ([5]). For an interval X in R, OT(X) is a regular semigroup if

and only if X is closed and bounded.

Theorem 1.5 ([9]). If X is a nontrivial interval in a subfield F of R, then
OT(X) is regular-if and only if F =R and X is closed and bounded.

Corollary 1.6. For every nontrivial interval X in Q, OT(X) is not regular.

For a chain X, the dictionary partially ordered set of X is defined to be the
chain (X x X, <;) where <j is defined on X x X by

(al,bl) <4 (&2,[)2) <~ (1) a;-< Qg Or

(ii) ‘a1 ='ag-and by < bs.



CHAPTER II

REGULAR ELEMENTS OF ORDER-PRESERVING
TRANSFORMATION SEMIGROUPS ON CHAINS

The regular elements of OT(X) are characterized in this chapter where X is
any chain. Then by this characterization, necessary and sufficient conditions are

given for certain chains X so that OT'(X) is a regular semigroup.

2.1 Regular Elements

We recall the following result from [5].

Lemma 2.1.1 ([5]). Let X be a chain. If « € OT(X) and a,b € rana with

a <b, thenx <y for all x € ac= and y € ba™'.
Also, the following lemma is needed.

Lemma 2.1.2. If X is a nonempty set and o, B € T(X) are such that o = afa,

then X fa = (rana)fa and xfa = x for all x € ran a.

Proof. If x € X, then za = zafa = (xa)Ba. This implies that zfa = z for all
x € rana. Since rana = Xa = (Xa)fa = (rana)fa € Xfa € Xa =rana, we

have that X fa = (ran a)pa. O

To obtain the main theorem, some necessary conditions for the regular ele-

ments of OT'(X), where X is any chain, are given as its lemmas.

Lemma 2.1.3. Let X be a chain and o € OT(X). If o is a regular element of

OT(X) and ran« has an upper bound in X, then max(ran«) ezists.



Proof. Let 8 € OT(X) be such that a = afa, and let u € X be an upper bound

of ran a.. Suppose that ran a has no maximum element in X. Then

r<u forall x€rana. (1)

From Lemma 2.1.2,
Xpa = (rana)fa, (2)
zBa = z forall z €ranc. (3)

From (2), there exists an element ¢ € rana such that ufa = afa. By (3),
afa = a. Hence a < uw by (1) and ufa = a. Since a € rana and max(ran o)
does not exist, there exists an element b € rana such that a < b < u . Then
bGa = b by (3). Hence a = afa < bfa = b < uffa = a which implies that a = b,

a contradiction. This proves that max(ran «) exists. O
The dual of Lemma 2.1.3 is the following lemma.

Lemma 2.1.4. Let X be a chain and o € OT(X). If o is regular in OT(X) and

ran o has a lower bound in X, then min(rana) exists.

Lemma 2.1.5. Let X be a chain and o € OT(X). If o is regular in OT(X) and
a € X \rana is neither an upper bound nor a lower bound of ran«, then

max({z €rana | r < a}) or min({z € rana | a < x}) exists.

Proof. Let 3-€ OT(X) be'such that a ="afa. It follows from the assumption
that

{zerana |z <al# 9, {x crana | a <z} #,

rana = {x €Erana |z < a} U {z €Erana | a < z}. (1)
By Lemma 2.1.2 |

Xpa = (rana)pfa, (2)

zfa = x forall x € rana. (3)



By (2), afa = efa for some e € ran «, and hence afa = efa = e by (3). From
(1), either e < a or a < e. Suppose that neither max({z € ran« | * < a}) nor

min({z € rana | a < z}) exists.

Case 1: e < a. Since max({z € rana | x < a}) does not exist, e < p < a for
some p € rana. By (3), paff = p. Then e = efa < pfa =p < afa =e, so e = p,

a contradiction.

Case 2 : a < e. Since min({z € rana | a < z}) does not exist, there is an
element ¢ € ran« such that @ < ¢ < e. Then we have ¢Ba = ¢ by (3) and thus

e =afa < gfa = g < efa=e. Hence e = ¢, a contradiction.

Hence the lemma is proved. O

Theorem 2.1.6. Let X be a chain and a € OT(X). Then « is reqular in OT (X)
if and only if the following three conditions hold.

(i) If rana has an upper bound in X, then max(ran ) exists.

(i) If rana has a lower bound in X, then min(ran o) exists.

(iii) If a € X \ran« is neither an upper bound nor a lower bound of ran «, then

max({z €rana |z < a}) or min({z €rana | a < x}) exists.

Proof. If « is regular in OT'(X), then (i), (ii) and (iii) hold by Lemma 2.1.3,
Lemma 2.1.4 and Lemma 2.1.5, respectively.

For the converse, assume that (i), (i) and (iii) hold. If ran« has an upper
bound, let v = max(rana). If rana has a lower bound, let [ = min(ran «). If

x € X N ran« is neither an upper -bound nor a‘lower bound of ran «, let

max({t erana |t <z}) if max({t €rana |t < x}) exists,
m, =
min({t €rana | x <t}) otherwise.



that is,
)
max({t erana |t <z}) if max({t €rana |t < z}) exists,
My =4 min({t €rana |z <t}) if max({t €rana |t < z}) does not exists
andmin({t € rana | z < t}) exists.
\

/ _ ’
For each x € ran «, choose an element # € aa~!. Then x a = x for all z € ran .

Thus (za) o = za for all # € X. Define : X — X by

T if z€rana,
’ . .
U if xe X ~rana and x is an upper bound of rana,
/ . .
B=4q 1 if € X <rana and z is a lower bound of rana,

m, if x € X rana and x is neither an upper bound nor

a lower bound of ran a.

for every x € X. Then € T(X) and for € X, za € ran« and thus
zafo = (za)fa = (za) a = va.

Hence a = afa. Tt remains to show that g is order-preserving. Let z,y € X be

such that © < y.

Case 1 : z,y € rana. By Lemma 2.1.1, s < t for all s € za ! and t € ya~!. But

r €exatandy €yat, soz <y'. Hence zf =12 <y =yp.

Case 2 : v € rana,y € X ~rana and y is an upper bound of ran o Since z < u,

by Lemma 2.1.1, ' <, so 23 < y0.

Case 3 : v € X \rana, x is a lower bound of rana and y € rana. Then [ < y,

so by Lemma 2.1.1, I' < y'". Hence 26 < yg.

Case 4 : 7,y € X ~rana and z and y are upper bounds of rana. Then
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B =u =yp.

Case 5 : r,y € X ~rana and x and y are lower bounds of rana. Then z3 =

I =yp.

Case 6 : 7,y € X \ranq, z is a lower bound of ran a and y is an upper bound

of ran av. Since [ < u, by Lemma 2.1.1, I < v, so 28 < yf3.

Case 7 : x € rana,y € X ~rana and y is not an upper bound of rana. Then

y € X N rana and y is neither an upper bound nor a lower bound of ran a.

Subcase 7.1 : max({f € rana | t < y}) exists. Then
m, =max({t c rana |t < y}).

But « € rana and @ < y, so x < m,. Hence z < my/ by Lemma 2.1.1. Thus

x3 < yp.
Subcase 7.2 : max({t € rana |t < y}) does not exist. Then
my, =min({t €erana |y < t}).

Thus <y < m,. Hence 28 = T < my/ = yf3, as before.

Case 8 : z € X \ranayz is not a lower bound of rana and y € rana. Then

r € X N rana and x is neither an upper bound nor a lower bound of ran a.

Subcase 8.1 : max({t-€ rano | t < x}) exists.. Then.m, < z < y, so

wf=m, <y =yp.

Subcase 8.2 : max({t € rana | t < z}) does not exist. Then m, =
min({t € rana | x < t}). Since y € rana and = < y, it follows that m, < y.

Hence 28 = m, <y =yf, as before.

Case 9 : x,y € X \ranq, x is a lower bound of ran « and y is neither an upper
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bound nor a lower bound of ran «.

Subcase 9.1 : max({t € rana | t < y}) exists. Then I < m,, so
f=1< my/ =y0.
Subcase 9.2 : max({t € rana | ¢ < y}) does not exist. Then m, =

min({t € rana |y < t}), so | <y < my,. Hence 28 =1 <m, = yp.

Case 10 : z,y € X \rana, x is neither an upper bound nor a lower bound of

ran « and y is an upper bound of ran a.

Subcase 10.1 : max({t € rana | t < z}) exists. Then m, < z < u, so

B=m, <u =yp
Subcase 10.2 : max({t € rana | t < x}) does not exist. Then

me = min({t € rana | x < t}), so m, < u. Hence 28 = m, <u = yp.

Case 11 : z,y € X \rana and = and y are neither upper bounds nor lower

bounds of ran «.

Subcase 11.1 : max({t € rana | ¢ < z}) and max({t € rana | t < y})

exist. Then
m, = max({t € rana | t < z}) and m, = max({t € rana | t < y}).

Since x < vy, it follows that {t € rana | t <z} C {t € ran« | t < y} which implies

that m, < m,. Hence 23 = m, < my' = y[.

Subcase 11.2 : max({t € rana | t < z}) exists and max({t € ran«

t < y}) does not exist. Then
m, = max({t € rana |t < z}) and m, = min({t € rana | y < t}).
Then m, <z <y <m,y, so x8 =m, <my/:yﬁ.

Subcase 11.3 : max({t € rana | t < 2}) does not exist and max({t €

rana |t < y}) exists. Then
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m, =min({t € rana | x < t}) and m, = max({t € rana | t < y}).

If {t crana |z <t <y} =0, then {t crana |t <y} = {t €Erana |t < z}
which is impossible since max({t € rana | t < z}) does not exist but max({t €
rana | t < y}) exists. Then there exists an element ¢ € ran « such that < ¢ < y.

Consequently, m, < ¢ < m, which implies that 23 = m, < my/ =y0.

Subcase 11.4 : max({t € rana | ¢ < z}) and max({t € rana | t < y})

do not exist. Then

m, =min({t erana |z < t}) and m, =min({t € rana | y < t}).
Since < y, {t € rtana | @ < ¢t} 2 {t € rana | y < t}. Then m, < m,, so
B =m, < my/ =90.

Hence g € OT(X), and the proof is complete. O

The following lemma shows that if X is an interval in R, then every a € OT'(X)
satisfies (iii) of Theorem 2.1.6.

Lemma 2.1.7. Let X be an interval in R and o € OT(X). If a € X \rana is
neither an upper bound nor a lower bound of ran o, then either max({z € ran«a

x <a}) ormin({r € rana | a < x}) exists.

Proof. By assumption, we have that

{z-erana | <a}#2, {v Erana| e <} # T,

rana = {r €Erana | xr <a}U{r €rana | a < x}.
It follows that

{r €rana | <ala ' # @, {r €rana | a < z}a ! # 2, (1)

X={recrana|r<ala™ U {r€rana|a<z}a' (2)

By Lemma 2.1.1,

1

forall s€ {r €rana|r <a}a' and t € {xr €rana|a<z}a™t, s <t. (3)
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Since X is an interval in R, (1), (2) and (3) yield the fact that
sup ({z €rana |z <a}a™) =inf ({z €rana |a <z}a™'), saye.

Then either e = max ({z € rana | z < a}a ') ore = min ({z Erana | a < z}a™).

Since « is order-preserving, we have

e =max ({z €rana |z < a}a ') = ea =max ({z €rana |z < a}),

e =min ({z €rana|a < z}a”') = ca=min({z €rana | a < z}).
Hence the lemma is proved. O

The following corollary is obtained directly from Theorem 2.1.6 and Lemma

2.1.7.

Corollary 2.1.8. Let X be an interval in R and o € OT(X). Then « is a reqular
element of OT(X) if and only if the following two conditions hold.
(i) If rana has an upper bound in X, then max(ran ) exists.

(i) If rana has a lower bound in X, then min(ran«) exists.

2.2 Regular Semigroups

Throughout this section, the partial order on a nonempty subset of real numbers
always means the natural order.

We shall apply Theorem 2.1.6 to prove Theorem 1.3 and Theorem 1.4 given
in [5]. In addition, the regularity of OT(X) for some other chains X in R are

determined.

Theorem 2.2.1. If X is a nonempty subset of Z, then OT(X) is a reqular semi-
group.
Proof. Let A be a nonempty subset of X. By the property of subsets of Z, we

have that if A is bounded above in X, then max(A) exists. Also, if A is bounded

below in X, then min(A) exists.
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If c € X \ A is neither an upper bound nor a lower bound of A, then
{reAjlr<c}#Tand {xr € A|c<a}#,soboth max({x € A |z < c})
and min({x € A | ¢ < x}) exist.

This shows that for every a € OT(X), ran « satisfies (i), (ii) and (iii) of
Theorem 2.1.6. By Theorem 2.1.6, every a € OT'(X) is regular in OT'(X). Hence
OT(X) is a regular semigroup. O

Lemma 2.2.2. If X is R, [a,00) or (a,00) where a € R, then OT(X) is not a

reqular semigroup.

Proof. Let ¢ € X and define a : X — R by

T —c .
c+— if x>c¢,
ry. r—c+1

c if = <e.

Then xa = ¢ for all x € X with & < ¢, a is continuous on X and the derivative

of vat x > cis ﬁ > 0. These imply that « is a nondecreasing function
r—c+
on X. Also, rana = [¢,e+ 1) € X, so @ € OT(X). Since ran« is bounded in X

and max(ran «) does not exist; by Theorem 2.1.6, « is not a regular element of

OT(X). Hence OT(X) is not a regular semigroup. O

Lemma 2.2.3. If X is (—00,a] or (—o0,a), then OT(X) is not a reqular semi-

group.

Proof. Let ¢ € X and define o : X*— R by

T —c .
c—— if x<eg,
TO = r—c+1

c if z>c

Then xa = ¢ for all x > ¢, « is continuous on X and the derivative of o at = < ¢

1
is ——————— > 0. Hence « is a nondecreasing function on X. We also have that

(x—c+1)
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rana = (¢ —1,¢) € X. Then o € OT(X), ran « is bounded in X and min(ran «)
does not exist. By Theorem 2.1.6, « is not a regular element of OT'(X), hence

OT(X) is not a regular semigroup. O

Lemma 2.2.4. If X is [a,b), (a,b] or (a,b) where a,b € R and a < b, then the

semigroup OT(X) is not regular.

Proof. Define o : X — R by
1 b
xa—z(x—a)—l—% for all z € X.

1
Then the derivative of @ at z € X is A\ Hence a is a nondecreasing function.

Also,

(" a+b at+3b, .
[ 2 ) 4 ) lf X—[G,b),
rana = Xa = <a+b7a+3b] it X = (a,b],
2 4
a+b a+3b, .
: ( %55 ) if X =(a,b),
<a+b<a+3b<b
a 5 7 )

Then we deduce that & € OT'(X). Since ran e is both bounded above and bounded
below in X, max(ran «) does not exist if X = [a,b) or X = (a,b) and min(ran «)
does not exist if X = (ayb) or X = (a,b], it follows from Theorem 2.1.6, « is not

a regular element of OT'(X). Hence OT'(X) is not a regular semigroup. O
Lemma 2.2.5. For a,b € R with a <b, OT([a,b]) is a reqular semigroup.

Proof.- To show that every element of OT([a,b]) is regular, let a € OT([a,]).
Since « is order-preserving on [a,b], we have that ac = min(ran«) and ba =

max(ran «). By Corollary 2.1.8, « is a regular element of OT([a, b]). O

From Lemma 2.2.2, Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5, the following

theorem is obtained.
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Theorem 2.2.6. For an interval X in R, OT(X) is a reqular semigroup if and
only if X is closed and bounded.

Note that if X is a trivial interval, that is, |X| = 1, then |OT(X)| = 1, so

OT(X) is a regular semigroup.

Theorem 2.2.7. If X is a nontrivial interval of a proper subfield F' of R, then

OT(X) is not a regular semigroup.

Proof. We first note that @ € F C R. Then there is an irrational number
ce R\F. Let a,b € X be such that a < b. Thusa—c < b—c,s0a—c<d<b—c
for some d € Q. Henece a < c+d < b. Since c € RN F and d € Q C F, it follows

that c+d € R\ F and ¢+ d is an irrational number. Let e = ¢+ d. Consequently,
X =((-00,a) 0 X) U ([a,e) N X) U ((e,00) N X). (1)

Define y4 : R — F' by

(
r it z € (—00,a),
T = e if r€la,e), (2)
z if z € (e,00):
\

Then ap = a < e, a is continuous on (—o0, €) and the derivative of p at x € (a,e)
1

is 7 Consequently, p is an order-preserving function on R. Let o = p|x : X — F.

Then « is order-preserving. We claim that

([a,e)ﬂX)az[a,CH_e

)N X. (3)

Let z-€ {aje)n X. Thena <z < e <band z.€ X CF,so

a+x at+e  a4+bd a—+x
< = b d
a < 5 To < 5 < 5 <b an 5

a+e

e L.

) N X since X is an interval in F' and a,b € X

a+€)ﬂX. Then a <y < ate

This implies that za € [a,

with a < b. For the reverse inclusion, let y € [a,

and y € X C F. Hence

a<2y—a<e<b and 2y —a € F.



17

Then 2y —a € [a,e)N X since a,b € X and X is an interval in F' and (2y —a)a =
a+ 2y —a)

5 = y. Therefore (3) holds. From (1), (2) and (3), we have

rana = Xa = ((—o00,a) N X) U ([a,a+€)ﬂX) U ((e,00) N X)

a+e (4)
)NX) U ((e,00)NX) C X.

= ((=o0,

a-+e

Hence a € OT'(X). Let ¢ € Q be such that < g <e. But

a—+e

a < <g<e<hb,

g€ QC F,a,b € X and X is an interval in F, thus by (4), ¢ € X \ranq,
aFF £

{r €rana |z < ¢} = (—o0, )N X and {z erana | ¢ <z} = (e,00) N X. If
a+e

2

max ((—oo, )N X) exists, say m, then

a+e
a§m<T<bandm€X.

Let p € Q be such that m < p < aT—i—e‘ Then p € F' and a < p < b which imply
ate at+e

that m < p € (—o0, ) N X, a contradiction. Then max ((—oo, )N X)

does not exist. We can show similarly that min ((e, o00) N X ) does not exist. By
Theorem 2.1.6, «v is not a regular element of O7'(X). This proves that OT'(X) is

not a regular semigroup, as desired. O
The following corollary is a direct consequence of Theorem 2.2.7.

Corollary 2.2.8. If X is a nontrivial interval in Q, then OT(X) is not a reqular

SEMIGTOUP.

11
Example 2.2.9. Under the usual order, X = {1, 3

3 .} is order-isomorphic to

1
{-1,-2,-3,...} through — +— —nforn € N. Then OT'(X) = OT({-1,-2,-3,...
n

by Proposition 1.1. Since OT'({—1,—2,—3,...}) is a regular semigroup by Theo-
rem 2.2.1, it follows that OT'(X) is a regular semigroup.
It is natural to ask that whether OT'(X U {0}) is a regular semigroup. Note

that 1 and 0 are the maximum element and the minimum element of X U {0},
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respectively. Since an infinite subset of Z cannot have both a maximum element
and a minimum element, it follows that X U {0} is not order-isomorphic to any
chain of integers. However, we can show by Theorem 2.1.6 that OT' (X U{0}) is a
regular semigroup. To prove this, let « € OT(X U {0}). Then law = max(ran «)

1
and 0o = min(ran «). Let m € N X {1} be such that — ¢ rana, {z € rana | x <
m

1 1
—} # @ and {x €rana | — < x} # @. Since
m m

1 1 1
#{zx €rana |z m}“{m+1’m+2’ yu {0},
g #{xr € |—1< }C{ll 71 }
T € rana x =
m AR 1

1 1
it follows clearly both max({z € rana | # < —}) and min({z € rana | — < z})
m m

exist. Hence by Theorem 2.1.6, « is a regular element of OT'(X U {0}).

Example 2.2.10. Let X = [0,1) U (2,3] with the natural order. Then OT(X)

is not regular. To prove this, define aw € OT'([0, 1)) be as in Lemma 2.2.4. Then

0+1 0+3 1 3 : /
T7T)_ [571) Define @ : X — R by

rana = |

za if z€]0,1),

z if z€(23].

13

4
Thus, @ € OT(X) and rana@ = ranaU(2, 3] = [5, Z)U(Z,S]. Since € X \rana,
Y 4 1-3
{$€rana|:x<g}—[§,z)

and 4
{r €erana | E- z} = (2,3],
. . _ 4 . 4
it follows that neither max({z € rana | z < 5}) nor min({z € rana | s < x})

exists. By Theorem 2.1.6, & is not a regular element of OT'(X).
A natural question arises. If X = [0,1) U [2,3] or [0,1] U (2,3], is OT(X)
a regular semigroup? The following theorem gives a general result. This result

indicates that this semigroup OT'(X) is a regular semigroup.
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Theorem 2.2.11. Let X = UL, U...UI, wheren > 1,
I; is an interval in R for all i € {1,2,...,n},
fori e {1,2,--- n—1}, z <y forallx € I; andy € I;41, (1)
I; U 1; 1 is not an interval in R,

then OT(X) s regular if and only if the following three conditions hold.

(i) min(/y) exists.

(i) max(I,) exists.

(iii) For eachi € {1,2,...,n— 1}, max(l;) or min(l;,,) ezists.

Proof. We shall show by contrapositive that if OT'(X) is regular, then (i), (ii) and

(iii) hold. Assume that at least one of (i), (ii) and (iii) is not true.

Case 1 : min(/;) does not exist. By the proofs of Lemma 2.2.3 and Lemma 2.2.4,
there exists an element o € OT (1) such that

ran o has a lower bound in /; and min(ran «) does not exist. (2)

Define @ : X — X by

za if xely,
r ifrxelbU...Ul,.
Since aw € OT(I1), by (1), @ € OT(X). Also, ran@ = rana U L U ... U I,. By

(1) and (2), ran@ has a lower bound and min(ran @) does not exist. By Theorem

2.1.6, @ is not regular in O7(X).

Case 2 : max([,) does not exist:* By the proofs of Lemma 2.2.2 and Lemma

2.2.4; there is an element 3 € OT(I,) such that
ran (3 has an upper bound in [, and max(ran () does not exist. (3)

Define 5 : X — X by

_ T ifl'EIlu...U[n_l,
xf =
xf if xel,.
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Since 3 € OT(1,), by (1), 3 € OT(X). We also have ran 3 = I, U...UI,_;Uran 3.
It follows from (1) and (3) that ran 3 has an upper bound and max(ran 3) does
not exist. By Theorem 2.1.6, 3 is not regular in OT'(X).

Case 3 : min(/;) exists, max(/,) exists and there exists j € {1,2,...,n—1} such
that neither max(/;) nor min(/;1,) exists. By the proof of Lemma 2.3.4, there are

elements v, € OT(I;) and v, € OT'(Ij11) such that

rany; has an upper bound in /; and max(ran ;) does not exist. (4)
and

ran 7y, has alower bound in I, ; and min(ran ) does not exist. (5)

Define 57 : X — X by

TY1 ifix e ]j7
1'7 3 T2 if ze€ [j+1

2 if .’EGX\(IJ'UIJ'_H).

\

Since v, € OT(I;) and v € OT(l;11), it follows from (1) that 7 € OT(X).

Moreover,
rany = [ U... [,y Urany, Urany, U o U... U L,.
Let a € I; be an upper bound of rany,. By (4), @ € I;~ran~y;. Thena € X~\ran%,

rany = {z €rany |z < a} U {z €ran7y | a < x},
{r €rany |z <a} = L1 U...I;_yUrany, (6)

{r €erany |a <z} = ranyp Ul o U...I,. (7)

By (1), (4) and (6), max{z € ran7 | x < a} does not exist. Also, by (1), (5) and
(7), min{x € ran7¥ | a < 2} does not exist. Hence by Theorem 2.1.6, 7 is not
regular in OT'(X).

For the converse, assume that (i), (ii) and (iii) hold. Note that by (1),
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min(X) = min(/;) and max(X) = max([,). Let « € OT(X). Since « is
order-preserving, min(rana) = (min(X))a and max(rana) = (max(X))a. Let
c € X ~rana be such that {z € rana |z <c¢} # @ and {xr €crana | c < 2} # 2.
Then

X={rcrana|r<cla U {rcrana|c<zla?, (8)
and by Lemma 2.2.1,

1

forall s € {r €rana|w<cla™ and te{r €rana|c<zla, s<t. (9)

From (9) and (10), we have that
either {z€rana|z<cja' =L UIL.. .Ul and
{z €rana |c< z}a ' =1 U...UI, for some k € {1,2,...,n—1}
or there exists k € {1,2,...,n} such that [, = AUB, A and B are nonempty
interval , a < b for all a € A and b € B,
{z €rana |z <cla =L UL ...UIl;_1UA and
{rerana|c<zlat=BULiU.. UL,
By this fact, the assumption and the property of interval in R, either max({z €
rana | x < c}a™t) or min({z € rana | ¢ < x}a ') exists. Since {z Erana | z <
¢} = ({zr €rana |z < cla Haand {z €Erana | ¢ < z} = {z Erana | ¢ <
r}a Y and « is order-preserving, it follows that either max({z € rana | x < ¢})

or min({x € rana | ¢ < x}) exists. O

From obove Theorem, we can determine the regularity of OT(X) for various
kinds of X C R, for examples, OT([0,1) U [2,3) U [4,5]) is a regular semigroup
and OT'((0,1) U[2,3) U4, 5]) is not a regular semigroup.



CHAPTER III

REGULAR ORDER-PRESERVING TRANSFORMATION
SEMIGROUPS ON DICTIONARIES PARTIALLY
ORDERED SETS OF CHAINS

In this chapter, we characterize the regularity of OT (X x X, <;) when X is
one of the following chains : chains of integers, intervals in R and intervals in a

subfield of R. Theorem 2.1.6 is a main tool for these characterizations.

3.1 Chains of integers

The following lemma gives an important necessary condition for OT'(X x X, <;)

to be regular when X is any chain.

Lemma 3.1.1. Let X be a chain. If OT(X x X, <) is a reqular semigroup, then

X has a mazimum and a minimum.

Proof. Suppose that OT'(X x X, <;) isregular. If | X| = 1, then we are done. Next,
assume that | X| > 1. Let u,v € X be such that u < v. Define v : X x X — X x X
by

(x,y)a = (u,x) forall z,y € X. (1)
Then

({z} x X)a = {(u,z)} forall z € X
and so
rana = {u} x X. (2)

We have that for z,y € X,

r<y = (u,2)<q(u,y). (3)
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Then (1) and (3) give the fact that « is order-preserving on (X x X, <;). Hence
a € OT(X x X,<y). Since OT(X x X, <) is regular, we have that a = af«
for some € OT(X x X, <;). By Lemma 2.1.2, (8| ana is the identity map on

ran o which implies from (2) that
(u,z)Ba = (u,z) for all x € X. (4)
Since u < v, it follows that
(u,x) <q (v,v) forall z € X.
Thus (u, z)fa <4 (v,v)Pafor all € X. This implies by (4) that
(u, ) <g (v,v)Ba for all z € X. (5)
Since (v, v)Ba € rana, by (2), (v,v)Ba = (u, f) for some f € X. Hence from (5),
(w,2) <4 (u, f) forall z e X

which implies that x < f for all # € X. This shows that f is the maximum of X.
To show that X also has a minimum, let v : X x X — X x X be defined by

(z,9)y = (v,z) forall z,y e X. (6)
Then
({2} x X)y={(v,2)} forall z € X
and thus
rany = {v} x X. (7)
Since for =,y € X,
r<y = (v2)<a(v,y), (8)

we deduce from (6) and (8) that v € OT(X x X, <4). Since OT(X x X, <) is
regular, we have that v = Ay for some A € OT(X x X, <;). By Lemma 2.1.2,
(AY)|rany = lsan~, s0 by (7), we have

(v,2)\y = (v,z) forall z € X. 9)
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Since u < v, it follows that
(u,u) <4 (v,z) forall z € X,
and so (u,u)A\y <4 (v,x)\y for all x € X. This implies by (9) that
(u, u)A\y <q4 (v,z) forall z € X. (10)

But (u,u)\y € ranvy, so (u,u)\y = (v,e) for some e € X by (7). Hence from
(10),

(v,e) <4 (v,2) for all z € X

which implies that e < & for all # € X. Hence e is the minimum of X.

Hence X has a maximum and a minimum, and the proof is complete. O

Theorem 3.1.2. For @ # X C Z, OT(X x X, <,) is a reqular semigroup if and
only if X 1is finite.

Proof. It OT(X x X, <,) is regular, then by Lemma 3.1.1, max(X) and min(X)
exist. But X is a nonempty subset of Z, so we have that X must be finite.
Conversely, if X is a finite set, then (X x X, <;) is a finite chain. It follows
that (X x X, <y)-is order-isomorphic to a (finite) chain of integers. Hence by
Theorem 2.2.1, OT(X x X, <;) is regular. O

Remark 3.1.3. By Theorem 2.2.1 and Theorem 3.1.2, OT(Z) is regular and
OT(Z x Z,<y) is not. regular; respectively: In addition; OT(Z x Z, <) contains
an infinitely many nonregular element. To see this, let ¢ € Z and define a, :
1 X o— Lo <L by

(z,y)a. = (c,;x) forall z,y € Z.

From the proof of Lemma 3.1.1, a. € OT(Z % Z, <4) and ran(a,.) = {c} X Z. Since
(¢,x) <q (c+1,0) forall x €Z,

we deduce that (¢ + 1,0) is an upper bound of ran(a.). But {c} x Z has no

maximum, so by Theorem 2.1.6, a, is not a regular element of OT(Z x Z,<,).
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Hence

{a.| c € Z} COT(Z x Z,<4) ~ Reg(OT(Z x 7, <y)).

If ¢, # ¢o in Z, then ran(a.,) = {a1} X Z # {c2} X Z = ran(a,,) which implies
that a,, # .. Hence {a. | ¢ € Z} is an infinite subset of OT(Z x Z,<,)
N Reg(OT(Z x Z,<,4)). Therefore, we deduce that OT(Z x Z,<,) contains an
infinitely many nonregular elements. Since every constant map in OT(Z X Z, <)
is a regular element, it follows that OT'(Z x7Z, <,) also contains an infinitely many
regular elements.

From the above proof, we can show similarly by Theorem 2.1.6 that if X is an
infinite subset of Z, then OT'(X x X, <;) contains an infinitely many nonregular

elements and an infinitely many regular elements.

3.2 Intervals in R

We shall show that for an interval X in R, OT(X x X, <;) is regular if and

only if X is closed and bounded.

Lemma 3.2.1. Let a,b € R be such that a < b. If A and B are nonempty subsets
of [a,b] X [a,b] such that
[a,b] X [a,b] = AUB (1)

and

for all (x,y)€ A and (x/,y/) € B, (x,y) <q (m/,y/), (2)

then sup(A) = inf(B), hence either sup(A) = max(A) or inf(B) = min(B).

Proof._Since (a,a) = min([a,b] X [a, b], <) and (b, b) = max([a,b] X [a, b], <4), we
have (a,a) € A and (b,b) € B. Let

Ay ={z €la,b] | (z,a) € A},

By ={x € [a,b] | (z,a) € B}.
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[a,0] x {a} = (AU B) N ([a,b] x {a})
= (AN ([a,0] x {a})) U (B N ([a,b] x {a})).

It follows that
[a,0] = Ay U B,. (4)

Ifz € Ay andy € By, then by (3), (z,a) € Aand (y,a) € B. Hence (z,a) <4 (y,a)
by (2) which implies that < y. Therefore we have that

forall z € Ajandy € By, < y. (5)
Since (a,a) € A, we have by (3) that a € A;.

Case 1: By =g. By (3), (b,a) ¢ B. Then (b,a) € A by (1). By the definition

of <;4, we have
for all (z,y) € [a,b) x [a,b], (z,y) <q (b,a) ¢ B.
This fact, (1) and (2) imply that B C {b} x (a,b]. Let
Ay ={y € la,b] | (b,y) € A} and By ={y € [a,b] | (b,y) € B}.

Then a € A; and b € B, since (b,a) € A and (b,b) € A. From (1) and (2), we
respectively have

[a,b] = AQUBQ

and

forall x € Ay and y € By, = <.

These imply that sup(As) = inf(By), say ¢. Since B C {b} x (a,b], it follows from
(2) that either B = {b} x (¢, b] or B = {b} X [¢,b]. Then we deduce from (1) that

B = {b} x (¢,d] = A= ([a,b) x [a,b]) U ({b} X [a,]),
B ={b} x[c,d] = A= ([a,b) x [a,b]) U ({b} X [a,c)).
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Consequently, max(A) = (b, ¢) = inf(B).
Case 2: B; # @. Then b € By by (4) and (5). It follows that sup(A4;) = inf(By),
say e. Let
Az ={y € a,b] | (e;y) € A} and By = {y € [a,0] | (e,y) € B}. (6)
By (1) and (2), we have respectively that
0.5] ZA508; ™)
and
forall z € A3 and y € Bs, z < y. (8)
Subcase 2.1 : A3 = @. By (6) and (7), we have (e,a) ¢ A and (e,a) € B.
Since (a,a) € A, we have a < e. By the definition of <,, (1) and (2), we have
A =la,e) x {a,b] and B = [e, b] x [a, b],

and thus min(B) = (e, a) which is an upper bound of A. If (u,v) <4 (e,a), then

u < e. But u < e implies that (u,v) <4 (u e/ e,v) and both belong to [a, e) X [a, b],

so (u,v) is not an upper bound of A. This shows that sup(4) = (e,a). Hence
sup(A) = (e, a) = inf(B).

Subcase 2.2 : By = @. Then by (6) and (7), (e,b) ¢ B and (e,b) € A.
Thus by (1) and (2),
A = [aye] x{ayb] and (B =(e, b} x-[a;b].
Hence max(A) = (e, b) and we can show similarly that inf(B) = (e, b).
Subcase 2.3 : A3 # @ and B3 # @. From (7) and (8), we have sup(Asz) =
inf(Bs), say f.
If f € A, then (e, f) € A and (e, f) ¢ B by (6) and (7), so from (1) and

(2), we have

A= (la,e) x[a,b]) U ({e} x [a, f]),

((e, 0] x [a,b]) U ({e} x (f,b])

B
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which implies that max(A) = (e, f). We can see that (e, f) is a lower bound of

B. If (u,v) >4 (e, f), then u > e or u = e and v > f. Hence

use = (u,v),(“T“,v)e(e,b]x[a,b]gB
and (Y7 0) <4 (u,0),

u=ecand v>f = (u,v),(u,#)é{e}x(f,b]gB
e (A, (1 ).

2
Consequently, inf(B) = (e, f). Hence sup(A) = (e, f) = inf(B).
If f € Bs, then (e, f) € B and (e, f) ¢ A, by (6) and (7), so

A= (la; ¢) x [a, b)) U ({e} x'[a, f)),
B= (le; b] > [a;0]) U ({e} < [f,0])

by (1) and (2). Thus min(B) = (e, f). We can show similarly that sup(A4) = (e, f).
Hence sup(A) = (e, f) = inf(B).
Therefore the proof is complete. O

Theorem 3.2.2. For an interval X in R, OT(X x X, <,) is a regular semigroup
if and only if X is closed and bounded.

Proof. Assume that the semigroup OT(X x X, <;) is regular. By Lemma 3.1.1,
X has a maximum and a minimum, say a and b, respectively. Hence X = [a, b].

For the converse, assume that X = [a,b] where a,b € R and a < b. We shall
prove that OT (X x X, <) is a regular semigroup by Theorem 2.1.6 and Lemma
3.2.1. Let o € OT(X x X, <y). Since ‘a is order-preserving, (a,a) = min(X x
X, <g)and (b,b) = max(X x X, <), it following that (a,a)o = min(ran«) and
(b,b)a = max(ran o). Next, let (e, f) € (X x X) ~\ rana be such that

A:{(xay) crana | (Q’I,y) <d (evf)} #* O

and

B ={(x,y) € rana | (e, f) <a (x.9)} # 2.
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This implies that

Aot # @, Ba™! # @,

[a,b] x [a,b] = Ao~ ' UBa™,

and by Lemma 2.1.1,

1

forall z € Aa™! and y € Ba™!, z <.

From these facts and Lemma 3.2.1, sup(da™) = inf(Ba™!). If sup(Aa™?) =
max(Aa~"), then (max(Aa~'))a = max(A) since a is order-preserving. Also, if
inf(Ba™!) = min(Ba~") , then (min(Ba ")) = min(B). Hence by Theorem
2.1.6, « is a regular element, of OT'(X x X, <;), as desired. O

As a direct consequence of Theorem 2.2.6 and Theorem 3.2.2, we have

Corollary 3.2.3. Let X be an interval in R. Then the following statements are
equivalent.

(i) OT(X x X,<y) is a reqular semigroup.

(ii) OT(X) is a regular semigroup.

(i) X is closed and bounded.

Remark 3.2.4. We define <; on [a,b] x {1,2,...,n}, where a < bin Rand n € N,

as before, that is,

(@3 k) <y (y;l) <= ceithen (i) | @<y ~or

(ii) =y and k </I.

Then (Ja, b] x {1,2, ..., n}, <4) is a chain. 1t can be easily seen that

n—1

([a,0] x {1,2,..,n},<q) and (| ] [a,b] +2i(b - a), <)

i=0
are order-isomorphic through the map (x, k) — x+2(k —1)(b—a) where < is the

natural order of real numbers. For an example,

([1,2] x {1,2,3,4},<4) = ([1,2] U [3,4] U [5,6] U [7,8], <).
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n—1

By Theorem 2.2.6, OT(U la,b] + 2i(b — a), <) is regular. Hence OT([a,b] x
i=0
{1,2,...,n},<y) is a regular semigroup.

3.3 Intervals in Subfields of R

We shall show in this section that if X is a nontrivial interval in a subfield F
of R, then OT(X x X, <) is regular only the case that 7/ = R and X is closed
and bounded.

Lemma 3.3.1. If X is a nontrivial interval in a proper subfield F of R, then

OT (X x X, <) is not a reqular semigroup.

Proof. Let a,b € X be such that a < b. Then there is an irrational number
e € R~ F such that @ < e < b (see the proof of Theorem 2.2.7). Thus

X = ((=00,a) N X) U (Ja,e) N X) U ((e,00) N X).
Hence
X xX=(((-00,0) N X) X X) U (([a,e) N X) x X) U (((e,00) N X) x X).

Define a: X x X — X x X by

)
(x,a) if x€(—o0,a)NX and y € X,

a+x
2

(x,a) if ze€(e,o0)NX and y € X.

(@5 gy =9 qa) cif z ejaye)nNX andy € X,

\

We can see from the proof of Theorem 2.2.7 that o € OT(X x X,<,) and

rana = (((—oo, a;e) A X) U((e, 00) N X)) x {a}.
a+te
Let ¢ € (——,e) N X. Then (q,a) € (X x X) N rana. We also have from the

definition of « that

a-+e

5 ) N X) x {a}

{(z,y) €rana | (z,y) <a (¢,0)} = ((—o0,
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and

{(z,y) erana | (¢,a) <4 (z,y)} = ((e,00) N X) x {a}
a+te

It can be seen from the proof of Theorem 2.2.7 that none of max (((—oo, 5 )N
X) x {a}) and min (((e,00) N X) x {a}) exists. By Theorem 2.1.6, « is not a
regular element of OT'(X x X, <;). O

As a direct consequence of Lemma 3.3.1, we have

Corollary 3.3.2. It X is a nontrivial interval in Q, then OT(X x X, <) is not

a reqular semigroup.

Remark 3.3.3. Notice that the converse of Lemma 3.1.1 is true under the as-
sumption that @ # X C Z or X is an interval in R. This follows from Theorem
3.1.2 and Theorem 3.2.2. However, the converse of Lemma 3.1.1 is not generally
true. To see this, let a,b € @ be such that a < b. Then [a,b] N Q is a nontrivial
interval in Q. By Corollary 3:3.2, OT(([a,b] N Q) x ([a,b] N Q), <4 ) is not a

regular semigroup. However, b = max([a,b] N Q) and a = min([a,b] N Q).

Theorem 3.3.4. Let X be a nontrivial interval in a subfield F of R. Then
OT(X x X, <4) is a reqular semigroup if and only if F-= R and X is closed and
bounded.

Proof. It F # R, then by Lemma 3.3.1, OT(X x X, <,) is not regular. Therefore
if OT(X x X,<,) is regular, then F' = R, and hence by Theorem 3.2.2, X is
closed and bounded.

The converse holds by Theorem 3.2.2. (]

The following corollary is obtained from Theorem 2.2.7 and Theorem 3.3.4.

Corollary 3.3.5. Let X be a nontrivial interval in a subfield F' of R. Then the
following statements are equivalent.

(i) OT(X x X, <) is a reqular semigroup.

(i) OT(X) is a regular semigroup.

(iii) F =R and X is closed and bounded.
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