

ซอฟตเซ็นเซอรสําหรับการประมาณคาคุณภาพของผลิตภัณฑในหนวยไซโคลเฮกซะโนน

นายประพนธ เขมะจันตร ี

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี
คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย

ปการศึกษา 2549
ISBN 974-14-2094-3

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

SOFT SENSOR FOR QUALITY ESTIMATION OF PRODUCT IN

CYCLOHEXANONE UNIT

Mr. Praphon Kemachuntree

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Chemical Engineering

Department of Chemical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2006

ISBN 974-14-2094-3

Copyright of Chulalongkorn University

vi

ACKNOWLEDGEMENTS

I would like to thanks and expresses my profound gratitude to my advisor,

Asst.Prof.Dr. Montree Wongsri for his continuous guidances, suggestions and

supports throughout the thesis study.

I would like to thank my parent who encourage and help during the thesis

study.

I gratefully appreciate to Thai Caprolactam Public Co., Ltd. for support-

ing the important case study.

Finally, I would like to thank all of the members of the Control and Systems

Engineering Center in Chulalongkorn University. It has been meaningful to be

here and work with them.

CONTENTS

 Page

ABSTRACT (IN THAI) iv

ABSTRACT (IN ENGLISH) v

ACKNOWLEDGEMENTS vi

CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER

 I. INTRODUCTION 1

 1.1 Importance and Reason for Research 1

 1.2 Research Objectives 3

 1.3 Scopes of Research 3

 1.4 Contributions of Research 4

 1.5 Activity Plans 4

 II. LITERATURE REVIEWS 6

 2.1 Advantages of soft sensors 7

 2.2 Applications of soft sensors 7

 2.2.1 Soft sensors based on

Partial Least Squares (PLS) Regression Methods 7

 2.2.2 Soft sensors based on

 Artificial Neural Networks (ANNs) 9

 III. THEORIES AND PRINCIPLES 11

 3.1 Models building for soft sensors 12

 3.1.1 Data Transformation or preprocessing step 12

 3.1.2 Procedures of models building 13

 3.2 Principal Component Analysis (PCA) 14

 3.2.1 Procedures for a principal components analysis 15

viii

 Page

 3.3 Partial Least Squares Regression (PLS) 20

 3.3.1 Linear PLS identification 20

 3.3.2 NNPLS identification 24

 3.3.3 Prediction step 27

 3.3.4 Cross-validation 27

 3.4 Artificial Neural Networks fundamentals 28

 3.4.1 Human brain and Artificial Neural Networks 29

 3.4.2 Basic artificial neural networks 30

 3.4.3 Architectures of neural networks 32

 3.4.4 The Multilayer Feedforward Networks (MLFF) 33

 3.4.5 Learning Function 34

 3.4.6 Learning procedures 35

 3.4.7 Backpropagation neural networks 36

 3.4.8 The backpropagation procedures 36

 3.4.9 Training Function 40

 3.4.10 Underfitting and Overfitting 42

 3.4.11 Neural Networks Performance Improvement 43

 3.4.12 Criteria for choosing the number of hidden nodes 44

 IV. SOFT SENSORS FOR CASE STUDY 45

 4.1 The description of the plant 45

 4.2 The work description 45

 4.2.1 Cyclohexanone/Cyclohexanol Distillation Section 46

 4.2.2 The position of the soft sensor 47

 4.2.3 Short coming of using pure real plant data 49

 4.3 Building an empirical soft sensor 50

 4.3.1 Model building 50

 4.3.2 The performance index of model predictions 51

ix

 Page

 4.4 Work processing 51

 4.4.1 Simulation for the distillation 55

 4.5 Soft sensor models 57

 4.5.1 The constructed soft sensor by using only pure plant data 58

 4.5.2 Pre-construct neural network soft sensors 59

 4.5.3 Modified partial least squares soft sensors 63

 4.5.4 Performances of soft sensors 69

 V. CONCLUSIONS AND RECOMMENDATIONS 72

 5.1 Introduction 72

 5.2 Conclusions 72

 5.3 Recommendations 73

REFERENCES 74

APPENDICES 77

 APPENDIX A 78

 APPENDIX B 84

 APPENDIX C 86

 APPEXDIX D 92

 APPEXDIX E 103

VITA 111

LIST OF TABLES

 Table Page

 3.1 The relationship between biological neuron and artificial neuron 29

 4.1 The used hardware sensors for building soft sensors 49

 4.2 The list of components in case study 52

 4.3 Base case simulation results 55

 4.4 The number of data 57

 4.5 The observations of two subsets 58

 4.6 RMSE of test sets for various structures 62

 4.7 RMSE between u and û 66

 4.8 PRESS of liner PLS and NNPLS 68

 4.8 Performance criteria of each soft sensors 71

 B.1 The scaled up parameter of the neural network soft sensors 84

 B.2 The scaled up parameter of the partial least squares soft sensors 85

 C.1 Weights from input layer to first hidden layer 87

 C.2 Weights from first hidden layer to second hidden layer 87

 C.3 Weights from second hidden layer to output layer and all its biases 87

 C.4 Weights and biases of each factor inner model 91

 E.1 Samples of simulated data sets (100 samples from 1331 samples) 103

 E.2 Samples of real plant data sets (100 samples from 451 samples) 107

LIST OF FIGURES

Figure Page

 2.1 The structure of soft sensor 6

 3.1 Data preprocessing. The data for each variable are represented by variance

bar and its center. (A) Most raw data look like this. (B) The result after

zero-mean only. (C) The result after unit-variance only. (D) The result

after zero-mean and unit-variance 13

 3.2 A general data matrix; its rows as observations (m), and its columns as

variables (n) 15

 3.3 A principal component in the case of two variables. (A) loading are the

angle cosines of the direction vector; (B) scores are the projections of the

sample on the principal component directions (the data are mean-

centering) 18

 3.4 A schematics of the linear PLS model: each inner model (bh relation) is

performed by a linear regression 22

 3.5 A schematics of the NNPLS model: the data are transformed to latent

scores, then neural networks are used to learn the scores 23

 3.6 Number of components vs PRESS values 28

 3.7 Signal interaction from n neurons and threshold signal 30

 3.8 Nonlinear model of artificial neuron 30

 3.9 Linear transfer function 31

 3.10 Sigmoid transfer function 32

 3.11 Basis structure of the neural network weighted connection 33

 3.12 A general structure of multilayer feedforward 34

 3.13 The backpropagation method 35

 3.14 Three-Layer Network 36

 3.15 Effect of hidden nodes on network generalization 43

 3.16 Criteria for termination of training and selection of suitable network

architecture 44

xii

Figure Page

 4.1 Schematic representation of cyclohexanone/cyclohexanol section 46

 4.2 The locations of hardware sensors in the column D 48

 4.3 The column C and column D with each component stream in real

operation 53

 4.4 The column D with streams condition 54

 4.5 Random step changes of three inputs for generating simulated data: each

middle dash line represented its base case value 56

 4.6 Prediction of soft sensor based on linear PLS using only real plant data for

model calibration 58

 4.7 The selected structure (4-5-3-1) 61

 4.8 PLS structure 63

 4.9 Performance of the linear inner models for the four factors extracted 65

 4.10 Performance of the neural network inner models for the four factors

extracted 67

 4.11 Prediction of soft sensor based on linear PLS 69

 4.12 Prediction of soft sensor based on NNPLS 70

 4.13 Prediction of soft sensor based on NN 70

 C.1 The selected architecture of the neural network soft sensor 86

 C.2 Linear PLS structure soft sensor with three factors 88

 C.3 NNPLS structure soft sensor with three factors 90

CHAPTER I

INTRODUCTION

This chapter is an introduction of this research. It consists of importance

and reason for research, research objectives, scopes of research, contributions of

research, activity plans and the research contents.

1.1 Importance and reason for research

It is a fact that the developed chemical processes of industrial plants must

comprise special focus on quality standard production and pollution phenomena

in social environments in order to acquire high product quality with the lowest en-

vironmental issues. The industrial standards enforce hard constraints of product

specification and pollution. According to these limits, increasingly high perfor-

mance control strategies are therefore required. For increasing efficient control

systems, the developments of monitoring, predicting, and primary fault detec-

tion are regarded. The reliable measurements of quality variables are one of the

main points in these requirements because there can achieve successful real-time

monitoring and high control performance in chemical processes operation. Unfor-

tunately, reliable hardware sensors or analyzers have been obstructed by very high

investigation with maintenance costs of on-line measurement devices and long time

delays, which cause problems to install equipment in processes. Owing to these

limitations, many works have been devoted to the development of techniques for

reducing the cost of on-line measurements and for designing reliable sensors via

suitable algorithms in order to emulate the behavior of particular chemical process

for producing real-time reliable estimation of indirectly measurable variables on

the basis of available operational data. Such algorithms are usually known as soft

sensors.

2

A soft sensor (inferential model) is mathematical algorithm estimating the

qualities of interested variables by using their correlation with available data, such

as temperature, pressure, flow rate, and other variables. In the field of soft sensors,

the methods for building soft sensors can be grouped into two categories that are

a first principal model-based and an empirical model-based. It is unfortunate

that if the soft sensors with first principal model-based are enough accurate to

represent real chemical systems, the models of first principal must be complicated

formulas that result in very difficult calculation to find final solutions. Sometimes,

the models cannot provide final solutions or they may take a long time to compute

the final solutions. On account of these problems, the soft sensors with empirical

model based are wildly used for building soft sensors because they use particular

the data which are input data (available data) and output data (estimated data).

The key of empirical models are algorithm which finds the relationship between

input and output of chemical systems without consideration about inside their

systems or they can be called black box models, which certainly find the final

solutions.

It is various alternatives for empirical models that the two approaches are

the most popular of empirical models being Partial Least Squares (PLS) Regres-

sion fields and Multilayer Feedforward with Backpropagation (MLFF with BP)

for Artificial Neural Networks (ANNs). For the first method, PLS is a regression

method that can handle collinearity problem or highly correlated input data (sim-

ilar to a soft sensor problem) because this method transforms original data to new

data that can represent old data by lower dimension (Geladi & Kowalski, 1986).

In another advantage, the PLS can reduce uncertainty or noise of measurement

by decreasing the number of input variables. Thus it is important to keep the

number of variables as low as possible. In that sense, PLS will give the minimum

number of variables that is necessary (Höskuldsson, 1988). The PLS algorithms

have been applied to many problems in chemical engineering fields. For instances,

Zamprogna, Barolo & Seborg (2005) used the PLS regression method for building

one of the soft sensors to estimate compositions in batch distillation. For the

second method, MLFF with BP is one of the widespread architecture in ANNs

field since this method can tackle high nonlinearity problems by increasing the

3

number of neurons and/or hidden layers via suitable neural structure for their

problems. Moreover, MLFF with BP have many alternatives to improve perfor-

mance of neural architectures such as activated function, learning function, and

so on. The MLFF have also been wildly applied in various fields. For example

in chemical engineering field, Fortuna, Graziani & Xibilia (2005) desired neural

structures for monitoring quality of product in the debutanizer column. For other

interesting works and their applications, PLS methods and ANNs were provided

in the CHAPTER II.

In summary, this research built the soft sensors which used mathematical

algorithm with PLS methods and MLFF with BP produced reliable estimation

models of product quality by using their correlation with available sets of data.

1.2 Research objectives

The objective of our research is to apply the using of soft sensor in order to

estimate the product quality for cyclohexanone/cyclohexanol distillation section

at cyclohexanone unit in Thai Caprolactam Public Company Limited.

1.3 Scopes of research

1. Description and data of cyclohexanone unit are obtained from the Thai

Caprolactam Public Company Limited.

2. Partial least squares (PLS) or linear Partial Least Squares (linear PLS),

Neural Network Partial Least Squares (NNPLS), and Multilayer Feedfor-

ward with Backpropagation (MLFF with BP) for Artificial Neural Networks

(ANNs) are used to build the soft sensor.

3. Program MATLAB and commercial process simulator-HYSYS are used in

this work.

4

1.4 Contributions of Research

The contribution of this work utilizes the selected algorithms for soft sen-

sors in order to apply in the estimation of product quality of production in cy-

clohexanone/cyclohexanol distillation section. The algorithms are capable of im-

proving accuracy of prediction.

1.5 Activity Plans

1. The first plan, various literatures related to soft sensor building and its

applications were studied.

2. We investigated model building techniques which were Partial Least Squares

(PLS), Neural Network Partial Least Squares (NNPLS), and Multilayer

Feedforward with Backpropagation (MLFF with BP) for building soft sen-

sors.

3. We obtained the important data being input data (measurable variable) and

output data (product quality) from the Thai Caprolactam Public Company

Limited.

4. We applied the soft sensors based on Partial Least Squares (PLS), Neural

Network Partial Least Squares (NNPLS), and Multilayer Feedforward with

Backpropagation (MLFF with BP) to cyclohexanone/cyclohexanol distilla-

tion section.

5. The results between soft sensors based on Partial Least Squares (PLS), Neu-

ral Network Partial Least Squares (NNPLS), and Multilayer Feedforward

with Backpropagation (MLFF with BP) were compared.

6. We analyzed and concluded our research.

5

This thesis is divided into five chapters. Moreover, information of each

chapter is shown as a following.

A CHAPTER I is an introduction of this research. This chapter consists

of research objective, scope of research, contribution of research, and activity plan.

A CHAPTER II reviews the introduction of soft sensors, the advantage

of soft sensors, and applications of soft sensors based on Partial Least Squares

(PLS) & Artificial Neural Networks (ANNs) field.

A CHAPTER III covers some background information of soft sensor and

theory concerning with statistical method such as Principal Component Analy-

sis (PCA), Partial Least Squares (PLS), Neural Networks Partial Least Square

(NNPLS), and fundamentals of Artificial Neural Network (ANNs).

A CHAPTER IV describes about the profile of Thai Caprolactam Public

Company Limited, the work description, and the design of soft sensors based

on PLS, NNPLS & MLFF with BP. The simulation results and discussion are

included in this chapter.

A CHAPTER V presents the conclusions and recommendations of this

research.

This is follow by:

REFERENCES

• APPENDIX A: CORRESPONDING MATHEMATICS

• APPENDIX B: NORMALIZATION METHODS

• APPENDIX C: PARAMETER VALUES OF SOFT SENSORS

• APPENDIX D: EXAMPLES FOR SOFT SENSOR CALCULATIONS

• APPENDIX E: SAMPLES OF DATA SETS

VITA

CHAPTER II

LITERATURE REVIEWS

This chapter presents the literature reviews of various case studies for soft

sensor applications. We present the interesting methods that are Partial Least

Squares (PLS) methods and Multilayer Feedforward with backpropagation (MLFF

with BP) for Artificial Neural networks (ANNs).

Soft sensors have been interested as mentioned in previous chapter. For

these reasons, people who work in this field have studied many applications, espe-

cially empirical models. The general procedure of soft sensors is shown in figure

2.1.

Figure 2.1: The structure of soft sensor.

Form figure 2.1, soft sensors (inferential models) are tools that provide the

relationship between available variables and target variables. Available variables

are variables that are measured (data from chemical hardware sensors) such as

temperature, pressure, flow rate, and so on. Moreover, target variables (unmea-

sured variables) are key variables or essential variables of quality control which

were not directly measured. Then, if we can exactly predict the key variables at

real time with some fault occurred, it is important to prevent some malfunction

of chemical operation. Advantages of soft sensors were presented as next section.

7

2.1 Advantages of soft sensors

Some main advantages are presented as following:

• Soft sensors offer low cost alternative,

• Soft sensors can work in parallel with other chemical tools,

• Soft sensors can estimate target variables with real time operation, and

• Soft sensors can overcome the long time delays.

2.2 Applications of soft sensors

2.2.1 Soft sensors based on Partial Least Squares (PLS)

Regression Methods

Principal Component Analysis (PCA) and Partial Least Squares (PLS) re-

gression have attracted wide interests as robust methods for constructing empirical

models, particularly when there are high dimensionality and collinearities in data.

Especially, PLS and its variations have been applied to many practical regres-

sion problems in chemical engineering. Thor Mejdell & Sigurd Skogestad (1991a)

used PLS method to estimate distillation compositions form multiple temperature

measurements. The distillation columns were binary mixture and multicomponent

mixture. Moreover, data were generated by model base. Finally, the results in-

dicate that the estimator perform well in wide range of application. In the next

paper, Thor Mejdell & Sigurd Skogestad (1991b) used PLS regression to estimate

product for compositions on a high-purity pilot-plant distillation column. The re-

sult found that an estimators based on experimental data gave well performance

over a wide range of operating points. Eliana Zamprogna, Massimiliano Barolo

& Dale E. Seborg (2004) used this method to estimating product composition

in batch distillation process using available temperature measurements. The re-

sult prove that the PLS estimators can provide accurate composition estimations

for a batch distillation process. The computational requirements are very low,

8

which makes the estimators attractive for on-line use. In the next year, Eliana

Zamprogna, Massimiliano Barolo & Dale E. Seborg (2005) used PCA to select

the most suitable secondary process variables to be used as soft sensor inputs and

they are used as input variables for the development of a regression model suitable

for on-line implementation in batch distillation. H. Kamohara, A. Takinami, M.

Takade, M. Kano, S. Hasebe & I. Hashimoto (2004) used developed soft sensor

based on PLS to estimate impurity concentration in the industrial ethylene plant

but it did not function well when the process is operated under conditions that

have never been observed before. Jong Ku Lee & Chonghun Han (1999) used

multivariate statistical methods to monitor and diagnose the operation of two in-

dustrial polymerization processes: a) a batch PVC process and b) a continuous

slurry HDPE process. Multiway PCA has been used to develop a monitoring

system for the batch PVC process. Another monitoring system for the HDPE

process has been developed based on PLS techniques. The developed systems will

be used to achieve their ultimate goal: to supply their customers with high quality

product of minimum variations.

Although multivariate statistical methods based on linear projection, such

as PCA and PLS can handle high dimensionality and collinearity, their major

restriction is that only linear information is extracted from the data. Since

many chemical processes are nonlinear in nature, it is desirable to have a robust

method which can model any nonlinearity. At present, there are many nonlinear

method available. For example, nonlinear partial least squares, artificial neural

networks (ANNs) are well-known nonlinear regression methods. Sungyong Park &

Chonghun Han (2000) propose a new nonlinear method that is conceptually sim-

ple and quite easy to use. This method has been motivated by locally weighted

regression (LWR or loess) that estimates a regression surface through multivariate

smoothing. They used this method to build a soft sensor for an industrial split-

ter column and an industrial crude column. Moreover they have shown that the

proposed method gives a better or equal performances over other methods such

as PLS, nonlinear PLS and artificial neural network.

9

2.2.2 Soft sensors based on Artificial Neural Networks (ANNs)

Artificial neural network which is one of the empirical methods has been

wildly used in soft sensor field. V.R. Radhakrishnan & A.R. Mohamed (2000)

studied the operation and control of blast furnaces because this work is difficult

to measuring and controlling. The measurement of hot metal compositions re-

quire spectrographic techniques that is performed by off-line. Then, they used

soft sensor to handle this problem. They used Artificial Neural Networks (ANNs)

to estimate the outputs that are quality of the hot metal (& slug) and their

composition. The soft sensor has been able to predict the variables with an er-

ror less than 3%. Adilson Jose’ de Assis & Rubens Maciel Filho (2000) used

this method to built model of soft sensor which provide on-line estimate of un-

measurable process variables from available sensors in bioprocess monitoring and

control. Their performances depend on the measurement quality by hardware

sensor and the estimation algorithm. The estimation techniques have been devel-

oped by four methods , namely, (1) estimation through elemental balances; (2)

adaptive observer; (3) filtering techniques (Kalman filter, extended Kalman fil-

ter); and (4) artificial neural network. In last section, they studied about hybrid

modeling using coupled first principles approach and ANN, and genetic program-

ming. L. Fortuna, A. Rizzo, M. sulfur & M.G. Xibilia (2003) designed and used

soft sensor for a Sulfur Recovery Unit (SRU) in a refinery. Four strategies for

the soft sensor have been implemented and compared: Multi-Layer Perceptrons

(MLP), Radial Basis Function neural network, Neuro-Fuzzy networks, and non-

linear Least-Squares (LSQ) fitting. The best performance is given by MLP and

LSQ. L. Fortuna, S.Graziani & M.G. Xibilia (2005) deal with the design of neural

based soft sensors to improve product quality monitoring and control in refinery

by estimating the stabilized gasoline concentration (C5) in the top flow and the

butane (C4) in the bottom flow of a debutanizer column. They studied three-step

predictive dynamic neural models to evaluate in real time the top and the bottom

product concentrations in column. Increasingly efficient control policies require a

large set of data acquired the plants to be processed. The sensors are currently

implemented in the plant and are used to monitor the production process, avoid-

10

ing the long delay introduced by the gas chromatographs. The availability of the

gas chromatographs gave us the opportunity to check the quality of soft sensor es-

timation that is satisfactory by experts. In the same year, Pascal Dufour, Sharad

Bhartiya, Prasad S. Dhurjati & Francis J. Doyle III (2005) study about a neural

network-based strategy for detection of feedstock variations in a continuous pulp

digester. Training and validation data sets are generated using a rigorous first

principles model. Moreover, soft sensor can be applied to quality control in chem-

ical process. Masahiro Ohshima & Masataka Tanigaki (2000) used soft sensor

for polymer production plant, which integrates optimal control with on-line sens-

ing. They used neural network in attempt to relating the instantaneous polymer

properties with process variables.

CHAPTER III

THEORIES AND PRINCIPLES

This chapter presents the fundamentals of Principal Component Analysis

(PCA), Partial Least Squares Regression (PLS), Neural Network Partial Least

Squares (NNPLS), and Artificial Neural Networks (ANNs). All of the fundamen-

tals are important and used to build soft sensors.

The main goal of a soft sensor is to provide accurate and reliable measure-

ments of a process variable or parameter that are used for monitoring or control

purpose in chemical processes (Albertos, P. and Goodwin, G.C. 2002). This goal

can indicate that it should

• achieve a (near) relationship between involved input and output,

• reduce the measurement time and eliminate time delays,

• obtain the required accuracy,

• detect malfunction of chemical units, and

• minimize maintenance costs.

Soft sensors are the association of sensors (hardware) which allow on-

line measurements of some process variables with an estimation algorithm (soft-

ware) in order to provide reliable on-line estimation of the unmeasurable variables,

model parameters with overcoming time delays of measurements. Three estima-

tion techniques have been proposed in this work, namely Partial Least Squares

(PLS) regression, Neural Networks Partial Least Squares (NNPLS), and Multi-

layer Feedforward with Backpropagation (MLFF with BP) for Artificial Neural

Networks (ANNs). For the fundamentals of basic statistics and the basic matrix

algebra corresponding to this work, they are provided in APPENDIX A.

12

3.1 Models building for soft sensors

3.1.1 Data Transformation or preprocessing step

Variables tend to have ranges that vary greatly from each other. Such

differences in the ranges will lead to a tendency for the variable with greater

range to have undue influence on the results.

Therefore, numerical variables should be normalized, to standardize the

scale of effect each variable has in the results. There are several techniques for

normalization. Let X refer to our original field value and X∗ refer to the normal-

ized value.

• Min-Max Normalization

Min-max normalization works by seeing how much greater the field value

is than the minimum value Xmin and scaling this difference by the range

(Xmax represents the maximum value of X). That is,

X∗ =
X −Xmin

Xmax −Xmin

(3.1)

• Z-score Standardization

Z-score standardization, which is very widespread in the world of statistical

analysis, works by taking the difference between the field values and the

field mean value (zero-mean) and scaling (unit-variance) this difference by

the standard deviation (std) of the field values. That is,

X∗ =
X −Xmean

Xstd

(3.2)

In this work, these transformations method were used for preprocessing

step. Graphically, an illustration of unit-variance and zero-mean is given in figure

3.1.

13

Figure 3.1: Data preprocessing. The data for each variable are represented by

a variance bar and its center. (A) Most raw data look like this. (B) The result

after zero-mean only. (C) The result after unit-variance only. (D) The result after

zero-mean and unit-variance.

3.1.2 Procedures of models building

Before the model is built, it is convenient to tailor the data by preprocessing

step. In general case, a procedure for building model consists of two steps.

1. The calibration or training step: This step attempt to make a model for a re-

lationship between two groups of variables, often called dependent variables

Y and independent variables X. The data set used for this step is called

a calibration or training set. The model parameters are called regression

coefficients or sensitivities. The model between Y and X can present as a

following:

Y = f(X) (3.3)

2. The prediction or test step: This step use sensitivities in calibration step

and prediction set to predict values for the dependent variables. The data

which are used in prediction step are different from data in calibration step.

14

In this work, the data in PLS, NNPLS, and ANNs are divided to two main

set for using in building soft sensors and the data (X and Y) that are used for

building are also normalized by scaling methods in section 3.1.1.

3.2 Principal Component Analysis (PCA)

In the some problems, the dimension of the input set is large, but the

components of the vectors are highly correlated (redundant). It is useful in this

situation to reduce the dimension of the input set. An effective procedure for

performing this operation is principal component analysis (PCA). The PCA is

one of the multivariate methods of analysis and has been used widely with large

multidimensional data sets. The use of PCA allows the number of variables in a

multivariate data set to be reduced, whilst retaining as much as possible of the

variation present in the data set. This reduction is achieved by taking a vari-

ables x1, x2, · · ·, xm and finding the combinations of these to produce principal

components (PCs) PC1, PC2, · · ·, PCa, which are uncorrelated. These PCs are

also termed eigenvectors. The lack of correlation is a useful property as it means

that the PCs are measuring different dimensions in the data. Nevertheless, PCs

are ordered so that PC1 exhibits the greatest amount of the variation, PC2 ex-

hibits the second greatest amount of the variation, PC3 exhibits the third greatest

amount of the variation, and so on. That is var(PC1) ≥ var(PC2) ≥ var(PC3)

≥ · · · ≥ var(PCa), where var (PCh) expresses the variance of PCi in the data

set being considered. Var(PCh) is also called the eigenvalue of PCh. When using

PCA, it is hoped that the eigenvalues of most of the PCs will be so low as to

be virtually negligible. Where this is the case, the variation in the data set can

be adequately described by means of a few PCs where the eigenvalues are not

negligible. Accordingly, some degree of economy is accomplished as the variation

in the original number of variables (X variables) can be described using a smaller

number of new variables (PCs).

15

In summary, the PCA technique has three important actions: first, it makes

the orthogonal components of the input vectors (so that they are uncorrelated with

each other). Second, it orders the resulting orthogonal components (principal

components) so that those with the largest variation come first and, third, it

eliminates those components that contribute the least to the variation in the data

set. In general case, because each variable usually has different unit, the data for

implementation must be scaled by following method.

3.2.1 Procedures for a principal components analysis

The analysis is performed on a data set of n variables (x1, x2, · · ·, xn) for

n individuals (X is scaled by Z-score standardization), as indicated in figure 3.2.

X =



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn



Figure 3.2: A general data matrix; its rows as observations (m), and its columns

as variables (n).

From this data set, a corresponding squared covariance or correlation ma-

trix can be calculated. For the covariance matrix, the equation is shown in ap-

pendix A.

The covariance matrix then has the following form.

C =



S2
11 S2

12 S3
13 · · · S2

1n

S2
21 S2

22 S3
23 · · · S2

2n

...
...

...
...

...

S2
1n S2

2n S3
2n · · · S2

nn


(3.4)

where S is the covariance matrix, Sjk is the covariance of variables xj and xk when

j 6= k and the diagonal element Sjj is the variance of variable xj when j = k. The

covariance matrix is used when the variables are measured on comparable scales.

16

PCA is thus concerned with finding the variances and coefficients of the

data set, in other words, finding the eigenvalues and eigenvectors of the sample

correlation matrix or the covariance matrix. Eigenvectors (PCs) and their asso-

ciated eigenvalues can be calculated from the correlation matrix. The matrix C

(correlation matrix) is reduced to a diagonal matrix λ by multiplying by particular

orthonormal matrix P as following this equation.

P ′CP = λ (3.5)

The diagonal elements of λ1, λ2, · · ·, λa are called the characteristic roots,

latent roots, or eigenvalues of C. The columns of P are called characteristic

vectors, loading vector, or eigenvectors of C. The eigenvalues may be obtained

from the following determinant equation called the characteristic equation (I is a

identity matrix).

|C − λI| = 0 (3.6)

For the procedure of calculation a matrix P and matrix λ , reader can read

additional detail in the book of Jackson, J. E. (1991) and Kreyszig, E. (1999).

Other important properties of eigenvectors or PCs are:

1. Eigenvectors can only be found for squared matrices.

2. Not all squared matrices have eigenvectors; however a correlation (or covari-

ance) matrix will always have eigenvectors (the same number as there are

variables).

3. Length does not affect whether a vector is a particular eigenvector, direction

does.

4. Eigenvectors and eigenvalues always come in pairs.

17

Form previous sentences, assume we obtained.

X =



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn


(3.7)

And each of the columns of P represented the eigenvector of C (C is covariance

matrix of X)

P =



p11 p12 · · · p1a

p21 p22 · · · p2a

...
...

...
...

pn1 pn2 · · · pna


(3.8)

A principal component axis transformation will transform a correlated vari-

ables x1, x2, · · ·, xa into a new uncorrelated variables t1, t2, · · ·, ta, the coordinate

axes of these new variables being described by the each column of P (eigenvector)

which make up the matrix P of direction cosines used in the following general

transformation:

T = XP (3.9)

or

T =



t11 t12 · · · t1a

t21 t22 · · · t2a

...
...

...
...

tm1 tm2 · · · tma


(3.10)

X = TP ′; (P ′P = I) (3.11)

where the matrix T is called score matrix and P is called loading matrix.

All of the PCs are orthogonal, which can illustrate in geometrical inter-

pretation of components in figure 3.3 (An example for two variables, in the two

dimensional plane).

18

Figure 3.3: A principal component in the case of two variables. (A) loading are

the angle cosines of the direction vector; (B) scores are the projections of the

sample on the principal component directions (the data are mean-centering).

19

Another method for calculating a score matrix and a loading matrix is

Nonlinear Iterative Partial Least Squares (NIPALS). These technique doses not

calculate all the principal components at once. It calculates t1 and p′1 (th and ph

represent column vector (h) of matrix T and matrix P, respectively) from the X

matrix. Then the outer product, t1p
′
1 is subtracted from X and the residual E1 is

calculated. This residual can be used to calculate t2 and p′2:

E1 = X − t1p
′
1, E2 = E1 − t2p

′
2, · · · , Eh = Eh−1 − thp

′
h (3.12)

The NIPALS algorithm is as follows:

1. take a vector xj from X and call it th: th = xj (some columns of X)

2. calculate p′: p′h =
t′hX

t′
h
th

3. normalize p′h to length 1: p′h(new) =
p′

h(old)

‖p′
h(old)

‖

4. calculate th: th = Xph

p′
h
ph

5. compare the th used in step 2 with that obtained in step 4. If they are the

same, stop (the iteration has converged). If they still differ, go to step 2.

After the first component is calculated, X in steps 2 and 4 have to be

replaced by its residual. The iterations can continue until number of PCs is equal

to number of variables in X.

The principal components of input and output set (scores and loading) are

used in partial least squares (PLS) method to build the PLS model. For modeling,

PLS approach is proposed in next section. Reader can find more details about

principal component analysis and its applications in J. E. Jackson 1991.

20

3.3 Partial Least Squares Regression (PLS)

The PLS is an acronym for partial least squares projection to latent struc-

tures. PLS is a method of modeling relationships between one or more Y variables

and one-to-many explanatory variables. PLS is gaining importance in many fields

of chemistry, analytical, physical, clinical chemistry and industrial process control

can be benefited from the use of this method. Partial least squares (PLS) models

are based on principal components of both the independent data X and the de-

pendent data Y . The central idea is to calculate the principal component scores

of the X and the Y data matrix and to set up a regression model between the

scores (and not the original data).

This work used linear PLS and NNPLS as methods to build soft sensors

model. For these methodology, the basics of linear PLS and NNPLS have been

proposed as follow:

3.3.1 Linear PLS identification

The PLS method is basically a particular multivariable regression algo-

rithm which can handle correlated inputs and limited data. The detail of linear

PLS algorithm are referred to the literature in P. Geladi and B.R. Kowalski 1986,

A. Höskuldsson 1988.

Assume output has l variables, yj (j = 1, 2, · · ·, l) and input has n variables,

xi (i = 1, 2, · · ·, n). Also assume d samples of data are observed, Then two matrices

(Output and Input matrix) can be proposed as a following.

Y =



y11 y12 · · · y1l

y21 y22 · · · y2l

...
...

...
...

ym1 ym2 · · · yml


(3.13)

21

X =



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn


(3.14)

The matrices X and Y are decomposed into linear models similar to prin-

cipal components. The linear PLS decomposes matrices X and Y into products

plus residual matrices (outer relation):

X = t1p
′
1 + t2p

′
2 + · · ·+ tap

′
a + Ea (3.15)

Y = u1q
′
1 + u2q

′
2 + · · ·+ uaq

′
a + Fa (3.16)

where t and u are score vectors of principal components, p and q are loading vectors

corresponding to corresponding components, a the number of factors extracted in

the principal component space. Ea and Fa are residuals for X and Y matrices,

respectively after a factors have been extracted. The outer relationship is defined

as the relationship between Eh and Fh, (h = 1, 2, · · ·, a) where initially E0 = X

and F0 = Y . Generally, Eq. 3.15 and Eq. 3.16 can be written as:

X = TP ′ + E (3.17)

Y = UQ′ + F (3.18)

Thus the matrix X is decomposed into a matrix T (the score matrix)

and a matrix P ′ (the loadings matrix) plus an error matrix E. The matrix Y

is decomposed into U and Q and the error term F . The above two equations

formulate a PLS outer model. After the outer relation has been calculated, the

score vectors are related by inner model (inner relation).

If here a linear relation exists between latent variable matrices U and T , i.e.

U = TB, where matrix B is a diagonal matrix containing the regression coefficient

for each PLS component along with its diagonal, it is called a linear PLS model.

Moreover, X and Y must be pre-processed by Z-score Standardization (zero mean

and unit variance). The approach can be described in the following sentences.

22

For each factor h

1. Use one column in Y as a starting vector for uh, uh = Yj.

2. w′
h = u′

hX/u′
huh, norm wh: ‖wh‖ = 1.

3. th = Xwh/w
′
hwh, q

′
h = t′hY/t′hth, norm qh: ‖qh‖ = 1.

4. uh = Y qh/q
′
hqh

5. Check convergence on th or uh, e.g. ‖th − thold‖/‖t‖ < e, if no convergence

and if the number of iterations < maxiter, return to step 1.

6. bh = u′
hth/t

′
hth, p′h = t′hX/t′hth.

7. Residuals: use Eh as X and Fh as Y in the next model dimension calcula-

tions. For block Y , û is calculated by bt:

Eh = X − thp
′
h (3.19)

Fh = Y − ûq′h. (3.20)

Figure 3.4: A schematic of the linear PLS model: each inner model (bh relation)

is performed by a linear regression.

23

Figure 3.4 shows a schematic of the PLS model. It shows that the input

X is projected into the latent space by the input-loading matrix P obtaining the

input scores T . Similarly, the output Y is projected into the latent space by the

output-loading matrix Q obtaining the output scores U . A linear model captures

the relationship between the input and output latent scores for each factor.

When the chemical process exhibits non-linear behavior, it is necessary

to extend the PLS model structure to capture non-linearity. According to this

problem, the extended PLS model for modeling static data using a quadratic

relationship between the uh and th as inner relation (S. Wold, N. Kettaneh-wold

and B. Skagerberg 1989) and spline function for non-linear inner relation (S. Wold

1992). The Neural network partial least squares (S. J. Qin and T. J. MacAvoy

1992, 1996) called NNPLS has been developed. The NNPLS uses neural networks

to model the inner relationship.

The NNPLS has been used to build a soft sensor. The static NNPLS

combines the robust properties of the PLS and the nonlinear modeling of neural

networks. For NNPLS procedures, they have been demonstrated as following.

Figure 3.5: A schematic of the NNPLS model: the data are transformed to latent

scores, then neural networks are used to learn the scores.

24

3.3.2 NNPLS identification

The NNPLS algorithm can be constructed based on the NNPLS framework

shown in figure 3.5. The NNPLS is composed of linear PLS in outer transform

and neural net in inner transform. The algorithm can be proposed as a following:

The algorithm is implemented after the data have been pre-processed; scal-

ing around zero mean and unit variance (Z-score Standardization). Proper scaling

prevents the latent variables from being biased towards variables with larger mag-

nitude.

For each factor h

Step 1: Initialization

Set: uh = yj, told
h = xi, where i and j are any column of the input matrix

X and output matrix Y , respectively, used just for the initialization. These are

often taken as the first column.

In the X block:

Step 2:

Define wh as:

w′
h =

u′
hX

u′
huh

(3.21)

Step 3:

Normalize wh to norm of one:

wh =
wh

‖w‖
(3.22)

Step 4:

Calculate the X matrix scores:

th =
Xwh

w′
hwh

(3.23)

In the Y block:

Step 5:

Calculate Y matrix loadings:

q′h =
t′hY

t′hth
(3.24)

25

Step 6:

Normalize he loadings to norm of one:

qh =
qh

‖qh‖
(3.25)

Step 7:

Calculate the Y matrix scores:

uh =
Y qh

q′hqh

(3.26)

Step 8:

Check for convergence:

|th − told
h |

told
h

≤ ε (3.27)

where ε is a stopping criterion.

If condition Eq. 3.27 is satisfied, continue to step 9 otherwise repeat from

step 2 with told
h = th

Calculate the X loadings and rescale the scores and weights accordingly:

Step 9:

Calculate the X matrix loadings:

p′h =
t′hX

t′hth
(3.28)

Step 10:

Re-scale the X matrix scores accordingly:

th = th · ‖p′h‖ (3.29)

Step 11:

Normalize the loadings to norm of one:

ph =
ph

‖ph‖
(3.30)

26

Step 12:

Re-scale wh accordingly:

wh = wh · ‖ph‖ (3.31)

ph, qh and wh are saved for prediction purposes.

Step 13:

Inner model training using neural networks (section 3.3.2.1)

uh is modeled using the neural network Eq. 3.33. The training is carried

out such that ‖ûh − uh‖ is minimized and the weights are saved for prediction

purposes.

Step 14: Calculation of residuals

For each factor h, Eq. 3.19 gives the general outer relation for the X block

with E0 and h is the current factor. For the Y block,

Fh = Fh−1 − θ(th)q
′
h (3.32)

where F0 = Y and the inner neural network model has been used in calculating

the residual of the output block from Eq. 3.32.

Step 15:

The procedure is repeated recursively with each factor with X and Y re-

placed by the corresponding residuals Eh and Fh in the algorithm.

3.3.2.1 Inner relationships for NNs

The inner relationships are modeled by the nonlinear model being neural

network. This function can write as below equation.

ûh = θ(th) (3.33)

where the function θ(.) represents the neural network model function. In this

work, the network models present output score using the input scores used by

multilayer feedforward with Levenberg-Marquandt optimization routine in back-

propagation method used to train the network. The details about these method

are proposed in section 3.4.8 and 3.4.9 (Artificial Neural Network topic).

27

3.3.3 Prediction step

This section is important for estimating output variables from input vari-

ables. For this purpose, the vectors (ph, qh, and wh) and PLS coefficients from

previous section in every PLS factor are used as a following:

Step 1:

Scale input and output sets to zero mean and unit variance by using the

scaling parameters used in previous section.

Step 2:

For the X block, t is estimated by multiplying X by w as in the calibration

part.

th = Eh−1wh (3.34)

Eh = Eh−1 − thp
′
h (3.35)

For the Y block, û is calculated by t and PLS coefficients.

Y = Fa =
a∑

h=1

ûhq
′
h (3.36)

The summation is over h for all the factors (a) one wants to include and X = E0,

Y = Fa.

3.3.4 Cross-validation

The important point when setting up a PLS model is to make a decision

for the optimum number a of principal components involved in the PLS model.

PLS the optimum number of components has to be determined empirically by

cross validation method. This method can be explained that, in over all data,

some data are kept out (validation set or test set), the coefficients are calculated

from the remaining data (calibration or train set), and finally the yPred are pre-

dicted from the corresponding x-vectors and the model. The squared differences

between predicted and actual y-values are added to the PRedictive Error Sum

of Squares (PRESS). The PRESS value can be used to find the optimum number

28

of components by a stepwise variable selection procedure. The best model con-

sists of as possible and shows the smallest (or almost the smallest) PRESS value.

In the figure 3.6, this show example resulting in the best model of five predictor

variables. PRESS value can be calculated as:

PRESS =

∑m
i=1(yi,obs − yi,pred)

2

m− 1
(3.37)

Figure 3.6: Number of components vs PRESS values.

3.4 Artificial Neural Networks fundamentals

An Artificial Neural Networks (ANNs) is information processing paradigm

that is inspired by the way of biological nervous systems, such as the brain, pro-

cess information. The key element of this paradigm is the novel structure of the

information processing system. It is composed of a large number of highly in-

terconnected processing elements (neurons) working in unison to solve specific

problems. ANNs like human brains which learn by many examples. An ANN

is configured for a specific application, such as pattern recognition or data clas-

sification, through a learning process. Learning in biological systems involves

adjustments to the synaptic connections that exist between the neurons.

29

Table 3.1: The relationship between biological neuron and artificial neuron.

No. Biological neuron Artificial neuron

1. Dendrites Input variables

2. Axon Output variable

3. Synapse Weight

4. Threshold Bias

3.4.1 Human brain and Artificial Neural Networks

Because the biological neuron is the basic building block of the nervous

system, its operation will be briefly discussed for understanding artificial neuron

operation and the analogy between ANN and human brain.

In the human brain, a typical neuron collects signals from others through

a host of fine structures called dendrites. The neuron sends out spikes of electrical

activity through a long, thin stand known as an axon, which splits into thousands

of branches. At the end of each branch, a structure called a synapse converts the

activity from the axon into electrical effects that inhibit or excite activity from the

axon into electrical effect that inhibit or excite activity in the connected neurons.

When a neuron receives excitatory input that is sufficiently large compared with

its inhibitory input, it sends a spike of electrical activity down its axon. Learning

occurs by changing the effectiveness of the synapses so that the influence of one

neuron on another will change.

The crude analogy between artificial neuron and biological neuron is that

the connections between nodes represent the axons and dendrites, the connection

weights represent the synapses, and the threshold approximates the activity in the

soma. Figure 3.7 illustrates n biological neurons with various signals of intensity

x and synaptic strength w feeding into a neuron with a threshold of b, and the

equivalent artificial neurons system. The relationship between biological neuron

and artificial neuron is shown in table 3.1.

30

Figure 3.7: Signal interaction from n neurons and threshold signal.

3.4.2 Basic artificial neural networks

Artificial neural networks consist of many interconnected processing ele-

ments (artificial neurons or nodes). That a neuron is an information processing

unit that roughly resembles its biological counterpart. Figure 3.8 shows a model

of an artificial neural. Basic components of neural model are showed as below:

Figure 3.8: Nonlinear model of artificial neuron.

31

1. There is a set of synapses with associated synaptic or connection weights.

As shown in figure 3.8, the continuous-valued input to synapses is a vector signal,

with the individual vector components given as xj for j = 1, 2, · · ·, n, Each

vector component xj is input to the synapses and connected to neuron through a

synaptic weight w; that is, each of these inputs (X) are multiplied by weight (W)

and pulsed by their bias term (b) as shown in below equation.

η =
n∑

j=1

wjxj + b (3.38)

2. Transfer function or activation function, the result of the summation

function, almost always the weighted sum, is transformed to a working output

through an algorithmic process known as the transfer function. In the transfer

function the summation total can be compared with some threshold to determine

the neural output. If the sum is greater than the threshold value, the processing

element generates a signal. If the sum of the input and weight products is less than

the threshold, no signal (or some inhibitory signal) is generated. Both types of

response are significant. In this research, the linear and sigmoid transfer functions

are utilized.

The linear transfer function is shown in figure 3.9:

Figure 3.9: Linear transfer function.

The linear transfer functions are utilized in the output layer for outputs

expansion purpose, the calculation can be expressed as follows:

a = η (3.39)

According to the expression above, the output values are the same as the

corresponding input values but the expansions can be obtained from the adjustable

weights (w).

32

The sigmoid transfer function is shown in figure 3.10:

Figure 3.10: Sigmoid transfer function.

The sigmoid transfer functions are utilized in the hidden layers for the

nonlinear behavior representation purpose, the calculation can be expressed as

follows:

a =
1

1 + e−η
(3.40)

According to the expression above, the transfer function takes the input

and squashes the output into the limited range of 0 to 1; this is the reason why the

linear transfer functions are required in the output layer for the outputs expansion

purpose.

3.4.3 Architectures of neural networks

Generally, neural networks structure can be divided into 4 types:

1. Feedforward Connections : For all the neural models, data from neurons

of a lower layer are propagated forward to neurons of an upper layer via

feedforward connections networks.

2. Feedback Connections : Feedback networks bring data from neurons of an

upper layer back to neurons of a lower layer.

3. Lateral Connections : n the feature map example, by allowing neurons to

interact via the lateral network, a certain topological ordering relationship

can be preserved. Another example is the lateral orthogonalization network

which forces the network to extract orthogonal components.

33

4. Time-delayed Connections : Delay elements may be incorporated into the

connections to yield temporal dynamics models. They are more suitable for

temporal pattern recognitions.

Figure 3.11: Basis structure of the neural network weighted connection.

3.4.4 The Multilayer Feedforward Networks (MLFF)

This architectures is one of the most popular ANN architectures, the mul-

tilayer feedforward (MLFF) networks with backpropagation (BP) learning. This

type of network is also sometimes called the Multilayer Perceptron because of its

similarity to perceptron networks with more than one layer. A general MLFF

network is illustrated in figure 3.12 This is a feedforward, fully connected hierar-

chical network consisting of an input layer, one or more middle or hidden layers

and an output layer. The internal layers are called hidden because they only

receive internal inputs (inputs from other processing units) and produce internal

outputs (outputs to other processing units). Consequently, they are hidden from

the outside world.

34

Figure 3.12: A general structure of multilayer feedforward.

3.4.5 Learning Function

The purpose of the learning function is to modify the variable connection

weights on the inputs of each processing element according to some neural based

algorithm. This process of changing the weights of the input connections to achieve

some desired result can also be called the adaptation function, as well as the

learning mode. There are two types of learning: supervised and unsupervised.

Supervised learning requires a teacher. The teacher may be a training set of data

or an observer who grades the performance of the network results. Either way,

having a teacher is learning by reinforcement. When there is no external teacher,

the system must organize itself by some internal criteria designed into the network.

This is learning by doing.

35

3.4.6 Learning procedures

Learning or training procedures define how exactly the network weights

should be adjusted (updated) between successive training cycles (epochs). The

error-correction learning (ECL) rule used in this work is used in supervised learn-

ing in which the arithmetic difference (error) between the ANN solution at any

stage (cycle) during training and the corresponding correct answer is used to

modify the connection weights so as to gradually reduce the overall network error.

This section will introduce a training procedure called backpropagation, which is

based on error gradient descent, and then, the several more efficient algorithms

including the Levenberg-Marquardt algorithm which is used in this research will

be introduced. All of these algorithms require the error between network output

and desired output to adjust the weights and biases as shown in Figure 3.13.

Figure 3.13: The backpropagation method.

36

3.4.7 Backpropagation neural networks

Backpropagation is the most widely used learning process in neural net-

works. In this method, the network predicted output is compared with the actual

output (target), and the weights are changed in the negative direction of error

to minimize the prediction error. This type of learning is known as supervised

learning. The algorithm of this network is shown in next section.

3.4.8 The backpropagation procedures

The three-layer network that is case study for description of the back-

propagation is shown in figure 3.14. For multilayer networks, the output of one

layer becomes the input to the following layer. The equations the describe this

operation are

am+1 = fm+1(Wm+1am + bm+1); m = 0, 1, ...,M − 1 (3.41)

where M is the number of layers in the network. The outputs of the neurons in

the first layer receive external input:

a0 = p (3.42)

The outputs of the neurons in the last layer are considered the network outputs:

a = aM (3.43)

Figure 3.14: Three-Layer Network.

37

3.8.4.1 Performance Index

The backpropagation algorithm use performance index: mean square error.

The algorithm is provided with a set of examples of proper network behavior:

(p1, t1), (p2, t2), · · · , (pQ, tQ) (3.44)

where pq is an input to the network, and tq is the corresponding target output.

As each input is applied to the network, the network output is compared to the

target. The algorithm should adjust the network parameters in order to minimize

the mean square error:

F (x) = E[e2] = E[(t− a)2] (3.45)

where x is the vector of network weights and biases. If the network has multiple

outputs this generalizes to

F (x) = E[e′e] = E[(t− a)′(t− a)] (3.46)

F̂ (x) = (t(k)− a(k))′(t(k)− a(k)) = e′(k)e(k) (3.47)

where the expectation of the squared error has been replaced by the squared error

at iteration k.

The steepest descent algorithm for the approximate mean square error is

wm
i,j(k + 1) = wm

i,j(k)− α
∂F̂

∂wm
i,j

(3.48)

bm
i (k + 1) = bm

i (k)− α
∂F̂

∂bm
i

(3.49)

where α is the learning rate. The wi,j and bi are defined for the weights from node

j in layer m−1 to node i in layer m and the bias of node i in layer m, respectively.

For the multilayer network the error is not an explicit function of the

weight in the hidden layers, the chain rule of calculus is used to calculate the

derivatives. The chain rule is used to find the derivative in Eq. 3.48 and Eq. 3.49:

∂F̂

∂wm
i,j

=
∂F̂

∂nm
i

× ∂nm
i

∂wm
i,j

(3.50)

38

∂F̂

∂bm
i

=
∂F̂

∂nm
i

× ∂nm
i

∂bm
i

(3.51)

The second term in each of these equations can be easily computed, since

the net input to layer m is an explicit function of the weights and bias in that

layer:

nm
i =

Sm−1∑
j=1

wm
i,ja

m−1
j + bm

i (3.52)

Therefore
∂nm

i

∂wm, i, j
= am−1

i ,
∂nm

i

∂bm, i
= 1 (3.53)

Define

sm
i =

∂F̂

∂nm
i

(3.54)

(the sensitivity of F̂ to changes in the ith element of the net input at layer m),

then Eq. 3.50 and Eq. 3.51 can be simplified to

∂F̂

∂wm
i,j

= sm
i am−1

j (3.55)

∂F̂

∂bm
i

= sm
i (3.56)

The approximate steepest descent algorithm is expressed as

wm
i,j(k + 1) = wm

i,j(k)− αsm
i am−1

j (3.57)

bm
i (k + 1) = bm

i (k)− αsm
i (3.58)

In matrix form this becomes:

Wm(k + 1) = Wm(k)− αsm(am−1)′ (3.59)

bm
i (k + 1) = bm

i (k)− αsm
i (3.60)

3.4.8.2 Backpropagating the Sensitivities

It now remains for us to compute the sensitivities sm, which requires an-

other application of the chain rule. It is this process that gives us the term back-

propagation, because it describes a recurrence relationship in which the sensitivity

at layer m is computed from the sensitivity at layer m + 1.

sM = −2ḞM(nM)(t− a) (3.61)

39

sm = ḞM(nm)(Wm+1)′sm+1; m = M − 1, ·, 2, 1 (3.62)

where

Ḟm(nm) =



ḟm(nm
1) 0 · · · 0

0 ḟm(nm
2) · · · 0

...
...

...
...

0 0 · · · ḟm(nm
3)


(3.63)

The details of calculation about sensitivities were expressed in the book of

M. Hagan & H. Demuth (1996)

3.4.8.3 Summary

Let’s summarize the backpropagation algorithm. The first step is to prop-

agate the input forward through the network:

a0 = p (3.64)

am+1 = fm+1(Wm+1am + bm+1); m = 0, 1, ...,M − 1 (3.65)

a = aM (3.66)

The next step is to propagate the sensitivities backward through the net-

work:

sM = −2ḞM(nM)(t− a) (3.67)

sm = ḞM(nm)(Wm+1)′sm+1; m = M − 1, ·, 2, 1 (3.68)

Finally, the weights and biases are updated by using the approximate steep-

est descent rule:

Wm(k + 1) = Wm(k)− αsm(am−1)′ (3.69)

bm
i (k + 1) = bm

i (k)− αsm
i (3.70)

40

3.4.9 Training Function

3.4.9.1 Conjugate Gradient Method

The basic backpropagation Method adjusts the weights in the steepest

descent direction (negative of the gradient). This is the direction in which the

performance function is decreasing most rapidly. It turns out that, although the

function decreases most rapidly along the negative of the gradient, this does not

necessarily produce the fastest convergence. In the conjugate gradient algorithms

a search is performed along the conjugate directions, which produces generally

faster convergence than steepest descent directions.

All of the conjugate gradient algorithms start out by searching in the steep-

est descent direction (negative of the gradient) on the first iteration.

s0 = −∇f(x0) (3.71)

A line search is then performed to determine the optimal distance along the current

search direction:

x1 = x0 + α0s0 (3.72)

Then the next search direction is determined so that it is conjugate to various

search directions. The general procedure for determining the new search direc-

tion is to combine the new steepest descent direction with the previous search

directions:

s1 = −∇f(x1) + s0∇′f(x1)∇f(x1)

∇′f(x0)∇f(x0)
(3.73)

For the kth iteration the relation is

sk+1 = −∇f(x)k+1 + sk∇′f(xk+1)∇f(xk+1)

∇′f(xk)∇f(xk)
(3.74)

41

3.4.9.2 Newton’s Method

Newton’s method is an alternative to the conjugate gradient methods for

fast optimization. The basic step of Newton’s method is

xk+1 − xk = −[H(xk)]−1∇f(xk) (3.75)

where H(xk), is the Hessian matrix (second derivatives) of the performance index

at the current values of the weights and biases. Newton’s method often con-

verge faster than conjugate gradient methods. Unfortunately, it is complex and

expensive to compute the Hessian matrix for feedforward neural networks.

3.4.9.3 Levenberge-Marquardt

The Levenberge-Marquardt algorithm was designed to approach second

order training speed without having to compute the Hessian matrix. When the

performance function has the form of a sum of squares (as is typical in training

feedforward networks), then the Hessian matrix can be approximated as

H = J′J (3.76)

and the gradient can be computed as

∇f = J′e (3.77)

where J is the Jacobian matrix, which contain first derivatives of the network

errors with respect to the weights and biases, and e is a vector of network er-

rors. The Jacobian matrix can be computed through a standard backpropagation

technique that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hes-

sian matrix in the following Newton like update:

xk+1 = xk − [J′J + µI]−1J′e (3.78)

When the scalar µ is zero, this is just Newton’s method, using the approx-

imate Hessian matrix. When is large, this becomes gradient descent with a small

42

step size. Newton ’s method is faster and more accurate near an error minimum,

so the aim is to shift towards Newton ’s method as quickly as possible. Thus, µ

is decreased after each successful step (reduction in performance function) and is

increased only when a tentative step would increase the performance function. In

this way, the performance function will always be reduced at each iteration of the

algorithm.

The more details of these training algorithms can find in Edgar T. F. and

Himmelblau D. M. 2001.

3.4.10 Underfitting and Overfitting

One of the problems occurred when training the neural network is called

overfitting. The error on the training set is driven to a very small value, but when

the new data set is presented to the network, the error is large. The network has

memorized the training examples, but it has not learned to generalize to the new

situations.

The training algorithms such as Backpropagation, Backpropagation with

Adaptive Learning Rate and Backpropagation with Levenberg-Marquardt Ap-

proximation are sensitive to the number of neurons in hidden layers. While, in

general, the more neurons in hidden layers, the better data the network can fit,

if far too many neurons are used, overfitting can occur. And as general, if too

few neurons are examined, underfitting can occur. These problems have been

demonstrated in figure 3.15.

43

Figure 3.15: Effect of hidden nodes on network generalization.

3.4.11 Neural Networks Performance Improvement

A method used in this research for the network improvement is call early

stopping. In this technique, there are three sets of data used for building models.

The first data set is the training set, used for initially computing the gradient based

on the training data set and updating the network weights and biases which are

randomly initialized. After the initial training, the trained weights and biases are

obtained. If the training is successful, these weights and biases would make the

network fit well with the training data set and these become the initial weights and

biases for the validation. The trick is in the validation, during the normal training

based on the validation data set, the performance of network on the training data

set is monitored. During the validation, the error based on the validation data

set will come down from the beginning through the end. When the overfitting

begins, the error based on the training data set will begin to rise and this is an

additional criterion for stopping the validation, this is the reason why it is called

early stopping. This technique can improve the network by generalizing for two

different data sets, not too fit for the only one set which makes the performance

go worse for the generalization.

44

3.4.12 Criteria for choosing the number of hidden nodes

In this work, the criteria to find suitable a number of hidden nodes have

been explained as later sentences. The most commonly used stopping criterion in

neural network training is the mean of squared errors (MSE) calculated for the

training or test subsets. Generally, the error on training data decreases indefinitely

with increasing number of hidden nodes or training cycles, as shown in Figure

3.16. The initial large drop in error is due to learning, but the subsequent slow

reduction in error may be attributed to (i) network memorization resulting from

the excessively large number of training cycles used, and/or (ii) overfitting due

to the use of a large number of hidden nodes. During ANN training, the error

on test subsets is monitored which generally shows an initial reduction and a

subsequent increase due to memorization and overtraining of the trained ANN.

The final (optimal) neural network architecture is obtained at the onset of the

increase in test data error.

Figure 3.16: Criteria for termination of training and selection of suitable network

architecture.

More details about the artificial neural network can be found in Lippman,

R.P. 1987; Patterson, D.W. 1996; Hagan M., Demuth H. and Beale M. 1996;

Basheer, I.A. and Hajmeer, M. 2000.

CHAPTER IV

SOFT SENSORS FOR CASE STUDY

This chapter presented large scale about the cyclohexanone unit, the in-

volved procedures of this work, and simulation results of soft sensors for cyclo-

hexanone unit.

4.1 The description of the plant

Thai Caprolactam Public Co., Ltd. (TCL), in Rayong (Thailand) is the

first producer and distributor of caprolactam and ammonium sulphate in Thai-

land and Southeast Asian region. Caprolactam is an important raw material in

the production of Nylon 6 which is used in various industries, given its special

characteristics. It is very durable and can withstand high temperature well, yet

still maintains excellent flexibility. Moreover, Caprolactam (C6H11NO) is created

by a complex polymerisation process using three major raw materials; sulfur, am-

monia and cyclohexane. In and intermediate step sulfur is modified to sulfuric acid

liquid, ammonia is processed into hydroxylamine and cyclohexane is altered into

cylcohexanone. These three chemicals combine to create two products, the first

being caprolactam. The second, ammonium sulfate, is a co-product representing

three quarters of the output of polymerisation and is one of the key fertilisers

used in Thailand. The Company’s production capacity for caprolactam and am-

monium sulfate is 70,000 metric tonnes and 280,000 metric tonnes, respectively.

Reader can find the more informations about the Thai Caprolactam Public Co.,

Ltd. (TCL) at http://www.caprolactam.net.

4.2 The work description

This plant comprises many parts of chemical processes. All of the parts

are important to efficient production of caprolactam. In this work, soft sensors

46

have been built for cyclohexanone/cyclohexanol distillation section because this

section is highly significant for producing the caprolactam. The details of the

section has been shown in next topic.

4.2.1 Cyclohexanone/Cyclohexanol Distillation Section

In this section, it is required to separate high purity cyclohexanone and

clycohexanol from the mixture. The cyclohexanone is one of the reactant used to

produce caprolactam. The process flowchart of this section has been demonstrated

in figure 4.1.

Figure 4.1: Schematic representation of cyclohexanone/cyclohexanol section.

From figure 4.1, this section has five distillation columns. Moreover, these

labels of each stream roughly represent the chemical component of this section

shown as following. First, LB represented low boiling point components that

come from other section in the plant. Second, ON represented cyclohexanone.

Third, OL represented cyclohexanol. Forth, HB also represented high boiling

point components. The rank of boiling point for each component in the mixture

47

is presented below.

LB < ON (cyclohexanone) < OL (cyclohexanol) < HB

Other relevant components and component details of LB and HB group are

described in section 4.4. For more understanding, work approximate information

of each distillation is required as below sentences.

The column C is used to separate LB components from B-Anone, crude

Anone and G-Anone (recycle from column G). Most of the top products are ON

+ LB and bottom products are ON + LO + HB. Distillate is fed to the column

G for separating ON, and the bottoms are moved to the column D.

The column D is used for separating ON which come from bottom stream

of the column C. Top product (pure ON) is fed to refined ON for producing

caprolactam in latter stage while bottom stream is OL + HB fed to the column

E.

The column E is used to separate OL from bottom stream of column D.

Top product (refined OL) is OL and ON being remaining ON from the column D.

In another stream, bottom stream consisting of OL + HB is fed to the column F.

The column F is used to separate HB from OL + HB stream. Top product

is OL + HB (small fraction) and bottom product composed of mainly of HB +

OL is moved to another unit. The top stream is fed to condenser to condense into

liquid phase being reflux at bottom of the column F.

The column G is used for separating LB from ON that move from the

top stream of the column C. The distillate stream is pure LB for using in latter

section while the bottom stream called G-Anone is mainly ON for back feeding

to separate in the column C.

4.2.2 The position of the soft sensor

From previous sentences, the column that are interested for building soft

sensors is the column D since the top product of this column is mainly cyclo-

hexanone used as primary component for producing caprolactam (as mentioned

48

previously). The purity of cyclohexanone (ON) is meaningful for the final pro-

duction so soft sensors for estimating quality of top stream of the column D have

been applied for this situation. The key variable estimated by soft sensors is

concentration of cyclohexanol (OL) in the top output stream of the column D

because concentration of cyclohexanol (OL) combining with cyclohexanone (ON)

can represent the impurity of product in distillate stream. In order to build soft

sensors, it is necessary to use the available hardware sensors and laboratory anal-

ysis for estimating the concentration of cyclohexanol in this column. The sensors

installed on the column D to monitor the distillation measured their process vari-

ables every one minute. In another data source, laboratory technicians tap the

sample of distillate stream of the column D for estimating OL every eight hours.

The column D with its hardware sensors have been illustrated in figure. 4.2.

Figure 4.2: The locations of hardware sensors in the column D.

From figure 4.2, These sensors are four input variables for building soft

sensors to predict output (OL concentration). The set of sensors relevant to

construct soft sensors are listed in table 4.1, together with the corresponding

description and observations ranges.

49

Table 4.1: The used hardware sensors for building soft sensors

Tag Description Range Units

1. Top Temperature of Column D 57.40 - 57.87 oC

2. High Middle Temperature of Column D 66.26 - 67.85 oC

3. Low Middle Temperature of Column D 77.42 - 79.64 oC

4. Bottom Temperature of Column D 91.66 - 93.62 oC

4.2.3 Short coming of using pure real plant data

In real plant operations, generally, the data collected from historical database

have normally smooth response or small ranges of operation. Therefore, if we used

only real plant data for constructing soft sensors, it is limitation to implement in

wide ranges operation of processes. When the operating point shifted or external

conditions changed from original condition, the model soft sensor cannot accu-

rately implement for estimating performance. For extending the operation ranges,

it was necessary to find another source of data that can represent wide range oper-

ations of system. By this reason, this work had to construct the rigorous model by

fitting with real plant operation and simulated other possible conditions occurring

in real plant for generating different data sets. For the rigorous model, the steady

state of the multicomponent distillation model of the column D was defined. this

work used the commercial simulator-HYSYS program to build the model for gen-

erating wide range data. Finally, the simulated data were used to combine with

plant data in order to build soft sensors model. The steps for generating the data

were demonstrated in section 4.4.1.

50

4.3 Building an empirical soft sensor

In model building, the inputs and output of soft sensor were listed as

follows:

1. x1 is top temperature of Column D,

2. x2 is high middle temperature of Column D,

3. x3 is low middle temperature of Column D,

4. x4 is bottom temperature of Column D, and

5. y is concentration of cyclohexanol.

As a design approach, the model in the form:

y(k) = f(x1(k), x2(k), x3(k), x4(k)) (4.1)

where y(k) is the output at time k and xj with j = 1, 2, . . ., 4 are input variables.

The unknown function f(. . .) are implemented by MLFF, linear PLS, and NNPLS

(the theory introduced previously in CHAPTER III).

4.3.1 Model building

General procedures for building soft sensors can be mainly divided into

two steps in both methods.

Step 1 (model determination): In this work, the data were normalized

by Z-score Standardization or Min-Max Normalization in preprocessing step. For

later step, the model structure, the most important procedure, is determined

based on the calibration or training data set.

Step 2 (model testing): After determining a model, its accuracy is

usually validated using a new test set.

Since soft sensors were built from two approaches, it was necessary to has

the performance criteria for comparing these methods. The performances of soft

sensors were calculated by indexes in section 4.3.2.

51

4.3.2 The performance index of model predictions

In order to demonstrate the efficiency of the model, the estimating perfor-

mance of the soft sensors being the prediction accuracy and capability to track the

process trend is evaluated. The criterion is used in terms the root mean squared

error of prediction (RMSE), which is calculated as follows:

RMSE =

√∑n
i=1(yi,Obs − yi,Pred)2

n
(4.2)

where n is number of data test set, yObs is output from observation, and yPred is

the corresponding estimate from the soft sensors.

4.4 Work processing

Since we interested top stream of the column D, we need to consider the

other related unit operations consisting of the column C ,and D. The components

in cyclohexanone/cyclohexanol section were demonstrated as the following:

• Cyclohexanone (ON),

• Cyclohexanol (OL),

• Low boiling point components (LB),

– Cyclohexene

– 2-pentanone

– n-pentanal

– 1-butanol

– Mesityloxide

• High boiling point components (HB),

– 2-cyclohexylcyclohexanone

• A component (n-pentylcyclohexane),

52

• B component (cyclohexylbutylether),

• Water.

For these components, their formulas, NB (normal boiling point), and MW

(molecular weight) have been shown in table 4.2.

Table 4.2: The list of components in case study

Component Formula NB(oC) MW.

Cyclohexanone (ON) C6H10O 155.65 98.14

Cyclohexanol (OL) C6H12O 161.15 100.16

Cyclohexene (1st LB) C6H10 82.95 82.14

2-pentanone (2nd LB) C5H10O 102.00 86.13

n-pentanal (3rd LB) C5H10O 102.85 86.13

1-butanol (4th LB) C4H6O 117.75 120.85

Mesityloxide (5th LB) C6H10O 129.80 98.14

2-cyclohexylcyclohexanone (HB) (2CyHxCC6one) C12H20O 264.00 180.29

n-pentylcyclohexane (A component) C11H22 203.75 154.30

cyclohexylbutylether (B component) C10H20O 175.63 156.27

Water H2O 100.00 18.02

The components in table 4.2 were separated by the column C and columns

D. The flows of each component in both distillations were performed in figure 4.3.

Furthermore, the details of condition in the column D for using in steady state

rigorous model of HYSYS simulator were shown in figure 4.4.

53

Figure 4.3: The column C and column D with each component stream in real

operation.

54

Figure 4.4: The column D with streams condition.

55

4.4.1 Simulations for the distillation

We simulated stead state model of the column D by the HYSYS simulator

with its assumptions. Table 4.3 compared the base case simulation results and

the actual plant data. From this table, it could be seen that the simulation results

fitted very well against the original plant data collected during the plant operation.

The following assumptions were used in this work:

• feed D was 26,600 kg/hr,

• pressure of feed D was 458 mmHg-g,

• temperature of feed D was 140 oC,

• test run plant data was the base case, and

• current operating at that time was constraints.

Table 4.3: Base case simulation results

Description Unit Simulation Actual % Diff

OL mass fraction in feed D - 0.361 0.362 -0.013

ON mass fraction in feed D - 0.545 0.545 -0.013

OL mass fraction in Dist D - 4.539×10−4 4.540×10−4 -0.013

ON mass fraction in Dist D - 0.999 0.999 -0.003

Top Temperature of Column D oC 57.378 57.573 -0.338

High Middle Temperature of Column D oC 66.670 66.857 -0.280

Low Middle Temperature of Column D oC 78.417 78.608 -0.243

Bottom Temperature of Column D oC 92.466 92.832 -0.395

Top Pressure of Column D mmHg 19.000 18.986 0.074

Remark: each actual value in table 4.3 was its average value of plant data that

was observed in this work.

56

Figure 4.5: Random step changes of three inputs for generating simulated data :

each middle dash line represented its base case value.

57

For generating other conditions, we varied mass flow rate of feed D, feed

D temperature and major component (ON and OL) in feed D of base case steady

state model. When simulated data was generated, two distillation parameter

being reflux ratio and duty of reboiler were fixed at constant or these parameter

values were equal to base case condition. The varied variables were be changed

from base case to ± 10 % of base case condition. These step changes have been

shown in figure 4.5.

Finally, in soft sensor models building, we obtained all of the data for

preparing to use in section 4.5. The number of data could be performed in table

4.4.

Table 4.4: The number of data

Kind of data Observations

Plant data 451

Simulated data 11×11×11 = 1331

Total data 1782

4.5 Soft sensor models

In this section, empirical soft sensors for estimating OL were generated by

using plant data and simulation data. Two methods have been utilized for building

the soft sensors. There were artificial neural networks and partial least squares

regression. Both methods used the same data set for calibration (train), and

prediction (test) step. We selected randomly data as two sets being calibration

sets and prediction sets. The prediction sets consisted of 10 % of plant data,

and 10 % of simulated data, approximately and remaining data were used in the

calibration sets. In summary, the number of data that were classified have been

shown in table 4.5.

58

Table 4.5: The observations of two subsets

Data set Observations

Calibration (training) sets 406 (Plant data) + 1197 (Simulated data) = 1603

Prediction (test) sets 45 (Plant data) + 134 (Simulated data) = 179

4.5.1 The constructed soft sensor by using only pure plant

data

This issue showed the performance of the soft sensor that was built from

only real plant data for the calibration step when other operating condition gener-

ated by the HYSYS simulator and partial real plant data were used as prediction

sets (as provided in table 4.5) in oder to test the performance of this soft sensor.

Figure 4.6: Prediction of soft sensor based on linear PLS using only real plant

data for model calibration.

59

The method for building this soft sensor was linear partial least squares

and procedures for the building were similar to section 4.5.3. Form figure 4.6, the

result illustrated that the soft sensor using only real plant data for the calibration

step gave failure to predict mass fraction of cyclohexanol (OL) when operating

condition changed or shifted from available normal condition of real plant.

To handle this problem, we could improve the performance of soft sensors

by conducting wide range simulated data to the calibration step for extending

working ranges of soft sensors. This purpose were utilized for building soft sensors

based on NNs, linear PLS, and NNPLS. Consequently, Three soft sensors have

been proposed in below section.

4.5.2 Pre-construct neural network soft sensors

A soft sensor model was created using feedforward (MLFF) neural net-

work. Neural network is a universal function approximator that is useful method

to find relationships between variables when the data of these variables are avail-

able. A network takes in a set of input data, sums them together, takes some

function of them, and passes the output through a weighted connection to an-

other neuron. The neuron is thus just a estimated variable, or a function of a

nonlinear combination of estimated variables. The connection weights serve as

adjustable parameters which are set by a training method. In this work, trans-

fer functions of hidden layer(s) were sigmoid functions and the transfer function

of output layer was linear function. The neural models were trained with the

Levenberg-Marquardt Backpropagation algorithm by using the training set. The

number of hidden neurons was chosen by trial and error with minimizing the Root

Mean Squared Error (RMSE) between the model prediction and the test data sets.

The purpose of pre-construct neural network soft sensor is to construct

the backbone or skeleton of neural network soft sensor by using the wide range

simulated data and we used the real plant data to refine the structure again. The

wide range simulated data make the neural soft sensor more robustness or greater

robustness. In summary, we used wide range simulated data by generating data

in table 4.5 for finding suitable neural structures to support all conditions that

60

could possibly exist or finding initial weights and bias of each connection. The

next step, we trained these structures again by using data plant in order to refine

the soft sensor models. This step was to ensure agreement between simulated

data analysis laboratory analysis results.

In finding suitable model, the available data in calibration sets was divided

into two subsets. The first subset was the training set which was used for com-

puting the gradient and updating the network initial parameter values of weights

and biases of neural structures. The second subset was was the validation set.

The error on the validation set was monitored during the training process. The

validation error will normally decrease during the initial phase of training, as does

the training set error. However, when the network begins to overfitting the data,

the error on the validation set will typically begin to rise. When the validation

error increases for a specified number of iterations, the training is stopped, and

the weights and biases at the minimum of the validation error are returned. This

algorithm is called early stopping method. The test sets were prediction sets. They

were used to test performance of models by RMES value.

The procedures for obtaining pre-construct soft sensor based on neural

network models were summarized and listed as a following.

Calibration step

• Both input data and output data were normalize by Min-Max normalization

(as proposed in APPENDIX B).

• Find suitable structure of network by increasing number of hidden nodes

and number of hidden layers.

• Each of the structures in previous step was trained by early stopping method.

• Selected structures were pretrained for finding initial neural network param-

eter (weights and biases) by using simulated data sets of calibration sets (as

proposed in table 4.5).

• The parameter of these structures were refined or retrained again by using

plant data sets of calibration sets (as proposed in table 4.5).

61

Prediction step

• Normalize test sets (both inputs and outputs) using the scaling parameters

used during the model training.

• All generated structures were tested by these test sets.

The RMSE values of test sets (original data) for various neural network

models were demonstrated in table 4.6. The minimum RMSE index was regarded

for choosing neural network structures. It indicated that the NN soft sensor

which consisted of five nodes for first hidden layer and three nodes for second

hidden layer of was suitable structure (4-5-3-1) because this structure gave the

least RMSE of other structures varied and selected structure was not quite com-

plex structure that resulted in small computing time for implementing in the real

problem. Graphically, the selected neural network structure was shown in figure

4.7.

Figure 4.7: The selected structure (4-5-3-1).

62

Table 4.6: RMSE of test sets for various structures

Layers RMSE of test sets

1st layer 2nd layer ×10−5

0 4.31096

3 2.66435

3 5 1.74723

7 1.68899

9 1.85622

0 2.02520

3 1.10988

5 5 1.80394

7 1.67053

9 1.78454

0 1.99014

3 1.88068

7 5 1.92180

7 1.62779

9 1.83200

0 1.99066

3 1.27807

9 5 1.53762

7 1.92659

9 1.79166

63

4.5.3 Modified partial least squares soft sensors

Partial least squares (PLS) is a linear system identification method that

projects the input/output data down into a latent space, extracting a number

of principal factors with an orthogonal structure, while capturing most of the

variance in the original data. When the process exhibits non-linear behavior,

it is desirable to extend the PLS model structure to capture non-linearities. In

this work, NNPLS, neural network partial least squares (nonlinear PLS), were

used to build soft sensors. In summary, we utilized linear PLS and NNPLS for

constructing soft sensors by using the same data of calibration set and prediction

sets as soft sensor based on ANNs.

Figure 4.8: PLS structure.

Form figure 4.8, The procedures for obtaining soft sensor based on partial

least squares were summarized and listed as a following.

Calibration step

• Both input data and output data were normalize by Z-score Standardization

(zero-mean and unit-variance) as proposed in APPENDIX B.

• Find outer relationship of PLS (as provided in CHAPTER III).

64

• Find both inner relationship of linear PLS and NNPLS.

• For linear PLS, the inner functions of PLS model were found by using mixed

data between simulated data and plant data of calibration sets in table 4.5

or these functions were defined at one time.

• For NNPLS, the inner functions of NNPLS model were found by using the

similar way of calibration step in section 4.5.2 or, in another word, these

functions were defined by two steps. First step, the parameters of inner

function were pretrained by simulated data sets. Second step, these param-

eters were refined again by plant data sets.

• Find number of factors (components) used in PLS model by PRESS value.

• P , Q, and W are saved for prediction purposes.

Prediction step

• Normalize test sets (both inputs and outputs) to zero mean and unit variance

using the scaling parameters used during the model calibration.

• PLS structure from calibration step was tested by these test sets.

For Linear PLS, Since input variables had four inputs, four factors were

extracted by PLS decomposition. The linear functions of inner relationships be-

tween t and u of each factor were calculated and graphical representation of inner

relation of only random 100 data points have been shown in figure 4.9.

For NNPLS, NNPLS could also decompose as four factors. The inner re-

lationships were estimated by MLFF neural network and inner neural structures

were selected from the structures showing small RMSE values between u and û (es-

timated by neural models). RMSE values of four factors have been demonstrated

in table 4.7. The inner neural models of each factor was consisted of three layers

(input layer, one hidden layer, and output layer). Furthermore, transfer functions

of hidden layer were sigmoid functions and the transfer function of output layer

was linear function.

65

Figure 4.9: Performance of the linear inner models for the four factors extracted.

66

Table 4.7: RMSE between u and û

Factor Neurons in 1nd layer RMSE ×10−2

2 5.33294

1 3 5.17525

4 5.16767

5 5.15841

2 3.67116

2 3 3.48376

4 3.48008

5 3.47776

2 3.22133

3 3 2.91504

4 2.89216

5 2.86117

2 2.75119

4 3 2.72233

4 2.75223

5 2.74997

67

Figure 4.10: Performance of the neural network inner models for the four factors

extracted.

68

Form table 4.7, the number of neurons in hidden layer structures for each

factor have been chosen and performed as a following:

• three neuron for first factor (1-3-1),

• four neuron for second factor (1-4-1),

• four neuron for third factor (1-4-1), and

• three neuron for fourth factor (1-3-1).

Figure 4.10 showed the performance of the selected neural network models

of inner relation in the latent space on the testing data. Only 100 data points

were shown in the figure. As the figure, the neural network models were able to

predict the latent scores for each factor.

For linear PLS, the number of factors for building PLS soft sensor model

were three factors. From table 4.8, PRESS value of third factor was enough for

prediction step since this value was comparatively small with other factors. Thus,

we used three factor for prediction step of linear PLS model. For NNPLS, three

factors were sufficient for extracting the relevant information between the input

and output variables. The PRESS value between the model and the test data,

given by factor in table 4.8, also indicated that three factors were efficient; hence

the model for prediction purposes used only three factors.

Table 4.8: PRESS of liner PLS and NNPLS

No. of factors PRESS (linear PLS) PRESS (NNPLS)

×10−6 ×10−7

1 175.75453 18.84320

2 27.75638 9.49016

3 9.78411 6.55450

4 9.75710 5.80730

69

4.5.4 Performances of soft sensors

The models was used to predict unseen data, which was generated using

different random signals as inputs of soft sensor models. These data are the

testing data set in table 4.5. Figure 4.11, figure 4.12, and figure 4.13 showed

the soft sensor performances results of the linear PLS with three factors, NNPLS

model with four factors, and the neural network model (4-5-3-1), respectively, in

predicting the mass fraction of cyclohexanol between test sets and predicting sets.

For parameters of soft sensor models, we also showed corresponding param-

eters which were constructed and used for predicting the output variable in this

research for the selected structure of neural network model (4-5-2-1), the linear

PLS model, and the NNPLS model. The parameters contained weights, biases,

and matrices in the prediction purposes for partial least squares methods. These

values have been demonstrated in APPENDIX C.

Figure 4.11: Prediction of soft sensor based on linear PLS.

70

Figure 4.12: Prediction of soft sensor based on NNPLS.

Figure 4.13: Prediction of soft sensor based on NN.

71

Table 4.8: Performance criteria of each soft sensor

Soft sensors RMSE

Linear PLS 3.11921× 10−3

NNPLS 8.07334× 10−4

NN 1.10988× 10−5

Table 4.8, showed the root mean squared error of prediction (RMSE) of the

linear-PLS model, the NNPLS model and the neural network model for the soft

sensors. Comparatively, Linear-PLS gave the worst performance for predicting

and NN gave the best performance for predicting. Fortunately, NNPLS models

predicted adequately for prediction. Three factors were extracted by the NNPLS

model for prediction. This meant that the dimension of the MIMO (Multiple

Inputs and Multiple Outputs) problem in the original space has been reduced

from a four-input by one-output to three series of SISO (Single Input and Single

Output) problems in the latent space. Therefore, by using the NNPLS soft sensor

model, the training time for neural training step in building model and computing

time for prediction step were reduced from original NN model approach and the

NNPLS also performed as good as a neural network soft sensor model.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

For successful monitoring and control of chemical plants, the measurement

of important variable is essential. An increasing number of expensive measuring

devices need to be installed. Therefore, an effective solution to this drawback is

represented by the availability of powerful low cost data processing systems. This

makes it possible to utilize soft sensors as mentioned in this thesis.

5.2 Conclusions

The approaches for estimation of target variable have been proposed at

the column D in cyclohexanone unit. The proposed approaches being soft sensors

based on multilayer Feedforward with backpropagation (MLFF with BP) of arti-

ficial neural networks (ANNs), partial least squares (PLS) regression, and neural

networks artificial partial least squares (NNPLS) were used to predict the con-

centration of cyclohexanol for top product of the column D at Thai Caprolactam

Public Co., Ltd. Generally, real plant data have small variations or smooth re-

sponses. Therefore, if we used only real plant data for constructing soft sensors,

they have the limitation to implement in wide ranges operation of processes. Con-

sequently, when the operating point shifted or external conditions changed from

normal condition, the model soft sensor cannot accurately implement for estimat-

ing performance. According to these problems, this work used another wide ranges

data source from simulated data that were simulated by HYSYS simulator. These

two data sources were mixed together to calculate parameters of the soft sensor

model based on linear PLS model. For MLFF and NNPLS model, the wide range

simulated data were used to pre-train or pre-calibrate parameters of soft sensor

73

models and used the real plant data for find-tuning the parameters again. In case

study, the results for soft sensors which have four inputs as temperature of the

column D indicated that the three the soft sensors showed satisfactory estimat-

ing performances and soft sensor based on MLFF method gave better estimating

performance over the NNPLS and linear PLS method.

5.3 Recommendations

To develop the efficiency of soft sensors in order to estimate target variable,

the data which are reliable are very important to building soft sensor. Since

received data may have certainly error, they have effect on accuracy for prediction.

Therefore, it is excellent to build soft sensors if available data are highly reliable.

Form these results, although, the soft sensor based on ANNs preformed

high performance for prediction, the soft sensor based on NNPLS also showed as

good prediction as neural network model. In advantages of NNPLS, in this work,

the number of parameters or dimension of the problem were reduced from MIMO

in original space to three SISO in latent space. According to these features, they

resulted in reduction of calibration and calculation time for operations. In another

good thing, the NNPLS model is more suitable for control proposes since almost

model base controllers have complex formulations. Then, it is necessary to reduce

the dimensionality of the problem for improving performance resulting form less

complex formulations. In another word, PLS converts the MIMO regression prob-

lem into a SISO regression problem for decreasing the complexities and combines

piece the results of the SISO regression problems together to arrive at the result

for the MIMO problem.

REFERENCES

Albertos, P. and Goodwin, G.C. Virtual sensors for control applications. Annual

Reviews in Control 26 (2002): 101-112.

Assis, A. J. and Filho, R. M. Soft sensors development for on-line bioreactor state

estimation.Computers and Chemical Engineering 24 (2000): 1099-1103.

Basheer, I.A. and Hajmeer, M. Artificial neural networks: fundamentals, compu-

ting, design, and application. Journal of Microbiological Methods 43 (2000):

3-31.

Dufour, P., Bhartiya, S., Dhurjati, P. S. and Doyle III, F. J. Neural network-based

software sensor: training set design and application to a continuous pulp

digester. Control Engineering Practice 13 (2005): 135-143.

Edgar, T.F., Himmelblau, D.M. and Lasdon, L.S. Optimization of chemical proce-

sses. 2 nd ed. Singapore: McGraw-Hill, 2001.

Fortuna, L., Graziani, S. and Xibilia, M.G. Soft sensors for product quality mon-

itoring in debutanizer distillation columns. Control Engineering Practice

13 (2005): 499-508.

Fortuna, L., Rizzo, A., Sinatra, M. and Xibilia, M.G. Soft analyzers for a sulfur

recovery unit. Control Engineering Practice 11 (2003): 1491-1500.

Geladi, P. and Kowalski, B. R. Partial least-squares regression: a tutorial. Analytica

Chimica Acta 185 (1986): 1-17.

Hagan M.,Demuth H. and Beale M. Neural Network Design. Boston: PWS, 1996.

Höskuldsson A. PLS regression methods. Journal of chemometrics 2 (1988): 211-

228.

Jackson, J. E. A User’s Guide to Principal Components. New York: John Wiley

& Sons, INC., 1991.

75

Kamohara, H., Takinami, A., Takeda, M., Kano, M., Hasebe, S. and Hashimoto,

I. Product quality estimation and operating condition monitoring for indus-

trial ethylene fractionator. Journal of Chemical Engineering of Japan 37

(2004): 422-428.

Kreyszig, E. Advanced Engineering Mathematics. New York: John Wiley & Sons,

1999.

Lee, J. K., and Han, C. Industrial application of multivariate statistical approaches

to polymerization processes. The APCChE Congress 8 (1999): 16-19.

Lippman, R.P. An introduction to computing with neural nets. IEEE ASSP Maga-

zine April (1987): 4-22.

Mejdell, T. and Skogestad, S. Estimation of distillation composition from multiple

temperature measurements using partial-least-squares regression. Industrial

& Engineering Chemistry Research 30 (1991a): 2543-2555.

Mejdell, T. and Skogestad, S. Composition estimator in a pilot-plant distillation

column using multiple temperatures. Industrial & Engineering Chemistry

Research 30 (1991b): 2555-2564.

Ohshima, M. and Tanigaki, M. Quality control of polymer production processes.

Ohshima, M. and Tanigaki, M. Quality control of polymer production pro-

cesses. Journal of Process Control 10 (2000): 135-148.

Park, S. and Han, C. A nonlinear soft sensor based on multivariate smoothing

procedure for quality estimation in distillation columns. Computers and

Chemical Engineering 24 (2000): 871-877.

Patterson, D. W. Artificial Neural Networks: Theory and Application, Singap-

ore: Prentice-Hall, 1996.

Qin, S. J., and McAvoy, T. J. Nonlinear PLS modeling using neural networks.

Computers and Chemical Engineering 16 (1992): 379-391.

76

Qin, S. J., and McAvoy, T. J. Nonlinear FIR modeling via a neural net PLS

approach. Computers and Chemical Engineering 20 (1996): 147-159.

Radhakrishnan, V.R. and Mohamed, A.R. Neural networks for the identification

and control of blast furnace hot metal quality. Journal of Process Control

10 (2000): 509-524.

Tang, K. and Li, T. Comparison of different partial least-squares methods in

quantitative structure-activity relationships. Analytica Chimica Acta

476 (2003): 85-92.

Wold, S., Kettaneh-Wold, N., and Skagerberg, B. Non-linear PLS modelling.

Chemometrics and Intelligent Laboratory Systems 7 (1989): 53-65.

Wold, S. Nonlinear partial least squares modeling. II. Spline inner relation.

Chemometrics and Intelligent Laboratory Systems 14 (1992): 71-84.

Zamprogna, E., Barolo, M. and Seborg, D. E. Estimating product composition

profiles in batch distillation via partial least squares regression. Control

Engineering Practice 12 (2004): 917-929.

Zamprogna, E., Barolo, M. and Seborg, D. E. Optimal selection of soft sensor

inputs for batch distillation columns using principal component anal-

ysis. Journal of Process Control 15 (2005): 39-52.

APPENDICES

APPENDIX A

CORRESPONDING MATHEMATICS

This section will attempt to provide some elementary background mathe-

matical skills that will be required to understand procedure corresponding to this

work.

A.1 Matrix algebra

A.1.1 Definitions of Matrices

A matrix is defined as an orderly array of numbers. Examples of matrices

are the following:  1 2

5 9

 (A.1)

 8 1 0

7 3 6

 (A.2)

In particular, the r × c matrix A denotes an array of numbers consisting

of r rows and c columns.

A =



a11 a12 · · · a1c

a21 a22 · · · a2c

...
...

...
...

ar1 ar2 · · · arc


(A.3)

If r = c, the numbers of rows and columns are the same and the matrix is

said to be a square matrix.

79

A.1.2 Matrix Transpose

If, for any matrix A, a new matrix B is formed by interchanging the rows

and columns. The resultant matrix is said to be the transpose of the original

matrix and is denoted by A′. For instance, if

A =

 2 7 −5 1

8 3 0 9



A′ =



2 8

7 3

−5 0

1 9


(A.4)

A.1.3 Diagonal Matrices

A square matrix whose only nonzero elements are on the diagonal is called

a diagonal matrix.

D =


1 0 0

0 2 0

0 0 8

 (A.5)

In particular, a square matrix that has ones on the diagonal and zeros

elsewhere is denoted by I and is called a unit or identity matrix.

I =


1 0 0

0 1 0

0 0 1

 (A.6)

A.1.4 Vectors

A matrix that has only a single row is called a row vector and a matrix

that has only a single column is called a column vector. The transpose of a row

vector is a column vector and vice versa. A matrix with only a single row and

column is a scalar.

80

A.1.5 Orthonormal and Orthogonal Matrices

An orthonormal matrix is a square matrix with the following properties:

1. | A | = ± 1, where | A | is the determinant of A.

2. The sum of squares of any row or column is equal to unity.

p∑
i=1

a2
ij =

p∑
j=1

a2
ij = 1 (A.7)

for i,j.

3. The sum of crossproducts of any two columns is equal to zero and implies

that the coordinate axes, which these two columns represent, intersect at an

angle of 90o.
p∑

i=1

aijaik = 0 (A.8)

for all j 6= k.

This implies that AA′ = I. If A is orthonormal, A−1 = A′ where A−1 is the

inverse of A, to be defined in section A.1.6. A matrix that satisfies Condition 3

but not Conditions 1 and 2 is said to be orthogonal.

A.1.6 Inversion

The matrix A must be a square nonsingular matrix so that A has its inverse

matrix A−1. A−1 is defined as that matrix which when multiplied by the matrix

A will yield the identity matrix I:

AA−1 = I = A−1A (A.9)

81

A.2 Statistics

A.2.1 Standard Deviation

A standard deviation is the positive square root of the variance. It is

defined as following:

S =

√∑n
i=1(xi − x̄)

n− 1
(A.10)

with the summation running from 1 to n. x are variables and x̄ is average

value of x variables. The standard deviation can show that a Set of variable that

has a much larger standard deviation indicates that the data much more spread

out from the mean.

A.2.2 Variance

A variance is another measure of the spread of data in a data set. In fact

it is almost identical to the standard deviation. The formula is this:

S2 =

∑n
i=1(xi − x̄)

n− 1
(A.11)

Both these measurements are measures of the spread of the data. Standard

deviation is the most common measure, but variance is also used.

A.2.3 Covariance

A standard deviation and a variance can operate on 1 dimension. In fact

many kinds of problem have more than one dimension, so we have to find the

relationship between one dimension and other dimensions.

A covariance is such a measure of association between two dimensions

obtained as the expected value of the product of two variables around their means.

If we calculate the covariance between one dimension and itself, we obtain the

variance. The formula is this:

Cov(x1, x2) =

∑n
i=1(xi1 − x̄1)(xi2 − x̄2)

n− 1
(A.12)

82

A.2.4 Covariance Matrix

A covariance Matrix is a square matrix that contains the variances and

covariances among a set of variables, x1, x1, · · ·, xn. The main diagonal elements

of the matrix are the variances of the variables and the off diagonal elements are

the covariances between xi and xj. Also called the variance-covariance matrix.

For 3 dimensions (x,y,z)

Cov(x, y, z) =


Cov(x, x) Cov(x, y) Cov(x, z)

Cov(y, x) Cov(y, y) Cov(y, z)

Cov(z, x) Cov(z, y) Cov(z, z)

 (A.13)

Main diagonal can find that the covariance value is between one of the

dimensions and itself. These values are the variances for it dimension. Another

point is that as Cov(A, B) = Cov(B, A) so, the matrix is symmetrical about the

main diagonal.

A.2.5 Eigenvectors and Eigenvalues

From the standpoint of engineering applications, eigenvalue problems are

among the most important problems in connection with matrices. The basic

concepts are as follows.

Let A be n × n matrix and consider the vector equation

Ax = λx (A.14)

where λ is a constant value. It is clear that the zero vector x = 0 is a

solution of this equation for any value of λ. A value of λ for the equation has

a solution x 6= 0 is called an eigenvalue or characteristic value of the matrix

A. The corresponding solutions x 6= 0 of the equation are called eigenvectors

or characteristic vectors of A corresponding to that eigenvalue λ. Properties of

eigenvectors.

83

Properties of eigenvectors.

• Eigenvectors can only be found for square matrices and not every square

matrix has eigenvectors.

• If A is an n × n matrix, then there will be n eigenvalues and n corresponding

eigen vectors.

• All the eigenvectors of a matrix are perpendicular or orthogonal. In general

case, eigenvectors will be normalized to length that equal to one.

APPENDIX B

NORMALIZATION METHODS

This section performed the calculation procedures of scaling or normalizing

input and output data sets for using in the calibration step.

B.1 Scaling data for NN soft sensors

For the calibration step, raw or original data were scaled by Min-Max

normalization (as proposed in section 3.1.1) using the following equations:

Inputscaled =
Inputactual − (Inputmin − 1)

(Inputmax + 1)− (Inputmin − 1)
(B.1)

Outputscaled =
Outputactual −Outputmin

Outputmax −Outputmin

(B.2)

The scaled up parameters which are the min and max of each variable are

showed in table B.1.

Table B.1: The scaled up parameter of the neural network soft sensors

No. Variables min max

Input: 1 TTop 57.367 59.991

Input: 2 THighMid 66.110 75.296

Input: 3 TLowMid 73.217 81.525

Input: 4 TBot 89.124 94.248

Output OL 0.000 1.000

For the prediction step, the neural network soft sensor output value which

being the mass fraction of cyclohexanol was rescaled to find the value in the

original units as described in Eq. B.3.

Outputactual = Outputscaled × (Outputmax −Outputmin) + Outputmin (B.3)

85

B.2 Scaling data for PLS soft sensors

For the calibration step, raw or original data of linear PLS and NNPLS were

scaled by Z-score Standardization (as proposed in section 3.1.1) as the following

equations:

Inputscaled =
Inputactual − Inputmean

Inputstd
(B.4)

Outputscaled =
Outputactual −Outputmean

Outputstd
(B.5)

The scaled up parameters which are the mean and standard deviation of

each variable are showed in table B.2.

Table B.2: The scaled up parameter of the partial least squares soft sensors

No. Variables mean standard deviation (std.)

Input: 1 TTop 57.775 0.564

Input: 2 THighMid 69.737 3.723

Input: 3 TLowMid 77.152 3.447

Input: 4 TBot 92.158 1.153

Output OL 0.0200 0.028

For the prediction step, the partial least squares soft sensor output value

which being the mass fraction of cyclohexanol was rescaled to find the value in

the original units as described in Eq. B.6.

Outputactual = Outputscaled ×Outputstd + Outputmean (B.6)

APPENDIX C

PARAMETER VALUES OF SOFT SENSORS

This section presented the parameters of soft sensor models for neural

model, linear PLS, and NNPLS which were suitable selected structures as shown

in CHAPTER IV.

C.1 Soft sensor based on neural model

For understanding, we proposed the selected structure of neural networks

model (4-5-3-1) in graphically information as below figure. Furthermore, The wm
i,j

and bm
i are defined for the weights from node j in layer m−1 to node i in layer m

and the bias of node i in layer m, respectively. In this work, transfer functions of

hidden layer(s) were sigmoid functions and the transfer function of output layer

was linear function (as shown in section 3.4.2).

Figure C.1: The selected architecture of the neural network soft sensor.

87

Table C.1: Weights from input layer to first hidden layer

w1
1,1 = 2.687 w1

1,2 = 1.373 w1
1,3 = 4.698 w1

1,4 = 0.338

w1
2,1 = 5.159 w1

2,2 = 1.662 w1
2,3 = 5.692 w1

2,4 = 0.203

w1
3,1 = 5.304 w1

3,2 = -8.794 w1
3,3 = -13.613 w1

3,4 = -0.319

w1
4,1 = 19.389 w1

4,2 = -0.963 w1
4,3 = 9.228 w1

4,4 = 0.137

w1
5,1 = 3.615 w1

5,2 = 3.583 w1
5,3 = -9.904 w1

5,4 = -0.347

Table C.2: Weights from first hidden layer to second hidden layer

w2
1,1 = 1.826 w2

1,2 = 3.799 w2
1,3 = -2.646 w2

1,4 = -1.392 w2
1,5 = 12.244

w2
2,1 = -1.182 w2

2,2 = 2.197 w2
2,3 = -9.820 w2

2,4 = -17.876 w2
2,5 = -3.822

w2
3,1 = 1.069 w2

3,2 = 2.335 w2
3,3 = -13.881 w2

3,4 = 0.429 w2
3,5 = 2.806

Table C.3: Weights from second hidden layer to output layer and all its biases

w3
1,1 = -0.0007 b1

1 = -7.615 b2
1 = -9.225 b3

1 = 0.0004

w3
1,2 = 1.835 b1

2 = -6.872 b2
2 = 2.519

w3
1,3 = 2.459 b1

3 = 9.261 b2
3 = -8.702

b1
4 = -11.125

b1
5 = 5.298

88

C.2 Soft sensor based on linear PLS

For linear PLS structure, we showed the the structure (with three factors)

in graphically information as shown figure C.2.

C.2.1 Calibration step

Figure C.2: Linear PLS structure soft sensor with three factors.

C.2.2 Prediction step

This step was done by decomposing the X block and building up the Y

block. For this purpose, p′ ,q′ , w′ and b from the calibration part were saved

for every PLS factor (as mentioned in section 3.3). The independent blocks are

decomposed and the dependent block is built up. For the X block, t is estimated

by multiplying X by w as in the model building part. For this work, a was equal

to 3.

t̂h = Eh−1wh (C.1)

Eh = Eh−1 − t̂hp
′
h (C.2)

For the Y block:

Y = Fh =
a∑

i=1

(bht̂hq
′
h) (C.3)

89

where the summation is over h for all the factors (a) one wants to include and X

= E0, Y = Fa.

The corresponding matrices can be listed as a following:

P =



0.49925 0.40848 0.47749

0.54455 0.30443 −0.62735

0.48865 −0.52551 −0.29926

0.46415 −0.68141 0.53748


(C.4)

W =



0.63426 0.52926 0.48094

0.60792 0.18257 −0.63206

0.38082 −0.61118 −0.29281

0.35813 −0.59737 0.5325


(C.5)

Q =
[

1 1 1

]
(C.6)

B = diag
[

b1 = 0.50617, b2 = 0.59185, b3 = 0.32375

]
(C.7)

C.3 Soft sensor based on NNPLS

For NNPLS structure, we also illustrated the the structure (with three

factors) in graphically information as shown figure B.3. In the same way, when

the NNPLS model was created, we saved ph, qh and wh for prediction proposes.

For inner model, the neural structure of the first factor was 1-3-1, the neural

structure of the second factor was 1-4-1 and the neural structure of the third

factor was 1-4-1. All weights and biases of each factor have been demonstrated in

table C.4. Besides, transfer functions of hidden layer were sigmoid functions and

the transfer function of output layer was linear function. For this work, a was

equal to 3.

90

C.3.1 Calibration step

Figure C.3: NNPLS structure soft sensor with three factors.

C.3.2 Prediction step

For the X block, t is estimated by multiplying X by w as in the calibration

part.

th = Eh−1wh (C.8)

Eh = Eh−1 − thp
′
h (C.9)

For the Y block, u is calculated by t and PLS coefficients.

Y = Fa =
a∑

h=1

θ(th)q
′
h (C.10)

where the summation is over h for all the factors (a) one wants to include, X =

E0, Y = Fa, and θ(th) = û for each factor (component) h.

The corresponding matrices can be also listed as a following:

P =



0.50219 0.17476 −0.66995

0.5444 0.48807 0.17666

0.48738 −0.33442 0.7052

0.46249 −0.78702 0.1505


(C.11)

91

W =



0.63426 −0.09603 −0.61667

0.60621 0.65074 0.10779

0.37832 −0.0711 0.78693

0.35691 −0.85817 0.08555


(C.12)

Q =
[

1 1 1

]
(C.13)

B =
[

θ1, θ2, θ3

]
(C.14)

where θa = inner neural model of a factor.

Table C.4: Weights and biases of each factor inner model

First factor

w1
1,1 = -1.475 w2

1,1 = -37.149 b1
1 = -2.060 b2

1 = 44.883

w1
2,1 = -0.060 w2

1,2 = -83.949 b1
2 = 0.222

w1
3,1 = -1.3971 w2

1,3 = 42.679 b1
3 = -1.953

Second factor

w1
1,1 = 24.776 w2

1,1 = -0.100 b1
1 = -13.113 b2

1 = 0.101

w1
2,1 = -4.435 w2

1,2 = -0.282 b1
2 = -0.385

w1
3,1 = -11.200 w2

1,3 = 0.158 b1
3 = -3.409

w1
4,1 = -9.070 w2

1,4 = -0.019 b1
4 = -8.824

Third factor

w1
1,1 = -37.866 w2

1,1 = -0.060 b1
1 = 32.209 b2

1 = 0.030

w1
2,1 = -27.240 w2

1,2 = 5.189 b1
2 = -5.941

w1
3,1 = -26.708 w2

1,3 = -5.177 b1
3 = -5.799

w1
4,1 = 5.998 w2

1,4 = 0.027 b1
4 = 6.267

Form these parameters, the example for calculation procedures of soft sen-

sors based on NN, linear PLS, and NNPLS have been proposed in appendix D.

APPENDIX D

EXAMPLES FOR SOFT SENSOR CALCULATIONS

This section illustrated calculation examples of soft sensor models for se-

lected structures of neural model, linear PLS, and NNPLS which were used to

estimate mass fraction of cyclohexanol (OL).

D.1 Soft sensor based on neural model

We selected No.8 data set in table E.1 that inputs and output values could

be shown as follow:

• OL = 0.0515 (y),

• Top temp. = 58.416 (x1),

• High middle temp. = 74.210 (x2),

• Low middle temp. = 80.658 (x3), and

• Bottom temp. = 93.050 (x4).

Inputs were normalized by Eq. B.1 and inputscaled could be shown as a

following:

• x1scaled = 0.4431,

• x2scaled = 0.8136,

• x3scaled = 0.8189, and

• x4scaled = 0.6914.

93

Input layer to first hidden layer

Node 1st at first hidden layer

η1
1 =

4∑
j=1

w1
1,jxj + b1

1

= 0.4431× 2.687 + 0.8136× 1.373 + 0.8189× 4.698 + 0.6914× 0.338

+− (7.615)

= −1.2267

x1
1 =

1

1 + e−η

=
1

1 + e−(−1.2267)

= 0.2268

where ηk
i = summation of each input multiplied by its weight with bias and xk

i =

output of η from transfer function at node i in layer k.

Node 2nd at first hidden layer

η1
2 =

4∑
j=1

w1
2,jxj + b1

2

= 0.4431× 5.159 + 0.8136× 1.662 + 0.8189× 5.692 + 0.6914× 0.203

+(−6.872)

= 1.5674

x1
2 =

1

1 + e−η

=
1

1 + e−1.5674

= 0.8274

Node 3rd at first hidden layer

η1
3 =

4∑
j=1

w1
3,jxj + b1

3

= 0.4431× 5.304 + 0.8136× (−8.794) + 0.8189× (−13.613) + 0.6914× (−0.319)

+9.261

= −6.9110

94

x1
3 =

1

1 + e−η

=
1

1 + e−(−6.9110)

= 0.001

Node 4th at first hidden layer

η1
4 =

4∑
j=1

w1
4,jxj + b1

4

= 0.4431× 19.389 + 0.8136× (−0.963) + 0.8189× 9.228 + 0.6914× 0.137

+(−11.125)

= 4.3336

x1
4 =

1

1 + e−η

=
1

1 + e−4.3336

= 0.9871

Node 5th at first hidden layer

η1
5 =

4∑
j=1

w1
5,jxj + b1

5

= 0.4431× 3.165 + 0.8136× 3.583 + 0.8189× (−9.904) + 0.6914× (−0.347)

+5.298

= 1.4654

x1
5 =

1

1 + e−η

=
1

1 + e−1.4654

= 0.8124

First hidden layer to second hidden layer

Node 1st at second hidden layer

η2
1 =

5∑
j=1

w2
1,jx

1
j + b2

1

= 0.2268× 1.826 + 0.8274× 3.799 + 0.001× (−2.646) + 0.9871× (−1.392)

0.8124× 12.244 + (−9.225)

= 2.9020

95

x2
1 =

1

1 + e−η

=
1

1 + e−2.9020

= 0.9480

Node 2nd at second hidden layer

η2
2 =

5∑
j=1

w2
2,jx

1
j + b2

2

= 0.2268× (−1.182) + 0.8274× 2.197 + 0.001× (−9.820) + 0.9871× (−17.876)

0.8124× (−3.822) + 2.519

= −16.6900

x2
2 =

1

1 + e−η

=
1

1 + e−(−16.6900)

= 0

Node 3nd at second hidden layer

η2
3 =

5∑
j=1

w2
3,jx

1
j + b2

3

= 0.2268× 1.069 + 0.8274× 2.335 + 0.001× (−13.881) + 0.9871× 0.4289

0.8124× 2.806 + (−8.702)

= −3.8384

x2
3 =

1

1 + e−η

=
1

1 + e−(−3.8384)

= 0.0211

96

Second hidden layer to output layer

Node 1st at output layer

η3
1 =

3∑
j=1

w3
1,jx

2
j + b3

1

= 0.9480×−0.0007 + 0× 1.836 + 0.0211× 2.459 + 0.0004

= 0.05149

x3
1 = 0.05149

= yscaled

The yscaled was rescaled to find the value in the original units as described

in Eq. B.3.

y(OL) = 0.05149

The error between yactual and ycal was 0.00001 (0.0515 - 0.05149).

D.2 Soft sensor based on linear PLS

We selected No.8 data set in table E.1 that inputs and output values could

be shown as follow:

• OL = 0.0515 (y),

• Top temp. = 58.416 (x1),

• High middle temp. = 74.210 (x2),

• Low middle temp. = 80.658 (x3), and

• Bottom temp. = 93.050 (x4).

Inputs were normalized by Eq. B.4 and inputscaled could be shown as a

following:

• x1scaled = 1.1362,

97

• x2scaled = 1.2015,

• x3scaled = 1.0170, and

• x4scaled = 0.7733.

First factor

For X block:

E0 = XScaled =
[

1.1362 1.2015 1.0170 0.7733

]

w1 =



0.63426

0.60792

0.38082

0.35813



t̂1 = E0w1

= 2.1153

p′1 =
[

0.49925 0.54455 0.48865 0.46415

]

E1 = E0 − t̂1p
′
1

=
[

0.0802 0.0496 −0.0166 −0.2085

]

For Y block:

q1 =
[

1

]
b1 = 0.50617

F1 = b1t̂1q
′
1

= 1.0707

98

Second factor

For X block:

E1 =
[

0.0802 0.0496 −0.0166 −0.2085

]

w2 =



0.52926

0.18257

−0.61118

−0.59737



t̂2 = E1w2

= 0.1862

p′2 =
[

0.40848 0.30443 −0.52551 −0.68141

]

E2 = E1 − t̂2p
′
2

=
[

0.0041 −0.0071 0.0812 −0.0816

]

For Y block:

q2 =
[

1

]
b2 = 0.59185

F2 = b1t̂1q
′
1 + b2t̂2q

′
2

= 1.1809

Third factor

For X block:

E2 =
[

0.0041 −0.0071 0.0812 −0.0816

]

w3 =



0.48094

−0.63206

−0.29281

0.5325



99

t̂3 = E2w3

= −0.0608

p′3 =
[

0.47749 −0.62735 −0.29926 0.53748

]

E3 = E2 − t̂3p
′
3

=
[

0.0331 −0.0452 0.0630 −0.0489

]

For Y block:

q3 =
[

1

]
b3 = 0.32375

F3 = b1t̂1q
′
1 + b2t̂2q

′
2 + b3t̂3q

′
3

= 1.1612

= yscaled

The yscaled was rescaled to find the value in the original units as described

in Eq. B.6.

y(OL) = 0.0525

The error between yactual and ycal was -0.001 (0.0515 - 0.0525).

D.3 Soft sensor based on NNPLS

We selected No.8 data set in table E.1 that inputs and output values could

be shown as follow:

• OL = 0.0515 (y),

• Top temp. = 58.416 (x1),

• High middle temp. = 74.210 (x2),

• Low middle temp. = 80.658 (x3), and

100

• Bottom temp. = 93.050 (x4).

Inputs were normalized by Eq. B.4 and inputscaled could be shown as a

following:

• x1scaled = 1.1362,

• x2scaled = 1.2015,

• x3scaled = 1.0170, and

• x4scaled = 0.7733.

First factor

For X block:

E0 = XScaled =
[

1.1362 1.2015 1.0170 0.7733

]

w1 =



0.63826

0.60621

0.37832

0.35691


t̂1 = E0w1

= 2.1143

p′1 =
[

0.50219 0.54440 0.48738 0.46249

]

E1 = E0 − t̂1p
′
1

=
[

0.0744 0.0505 −0.0135 −0.2046

]

For Y block:

q1 =
[

1

]

F1 = θ1(t1)q
′
1

= 1.0417

where θa = inner neural model of a factor.

101

Second factor

For X block:

E1 =
[

0.0744 0.0505 −0.0135 −0.2046

]

w2 =



−0.09603

0.65074

−0.071097

−0.85817



t̂2 = E1w2

= 0.2022

p′2 =
[

0.17476 0.48807 −0.33442 −0.78702

]

E2 = E1 − t̂2p
′
2

=
[

0.0391 −0.0482 0.0542 −0.0454

]

For Y block:

q2 =
[

1

]

F2 = θ1(t1)q
′
1 + θ2(t2)q

′
2

= 1.0824

Third factor

For X block:

E2 =
[

0.0391 −0.0482 0.0542 −0.0454

]

w3 =



−0.61667

0.10779

0.78693

0.08555



102

t̂3 = E2w3

= 0.0094

p′3 =
[
−0.66995 0.17666 0.7052 0.1505

]

E3 = E2 − t̂3p
′
3

=
[

0.0454 −0.0499 0.0475 −0.0468

]

For Y block:

q3 =
[

1

]

F3 = θ1(t1)q
′
1 + θ2(t2)q

′
2 + θ3(t3)q

′
3

= 1.0785

= yscaled

The yscaled was rescaled to find the value in the original units as described

in Eq. B.6.

y(OL) = 0.0502

The error between yactual and ycal was 0.0013 (0.0515 - 0.0502).

APPENDIX E

SAMPLES OF DATA SETS

This section showed samples of both simulated data sets and real plant

data sets which were used in this work.

Table E.1: Samples of simulated data sets (100 samples from 1331 samples)

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

1 5.85E-06 57.36777 66.11334 73.29539 90.15116

2 1.58E-05 57.36949 66.12693 73.64279 92.32539

3 3.00E-05 57.36877 66.14506 74.08925 91.83358

4 2.32E-05 57.36868 66.13616 73.88014 91.89798

5 4.90E-06 57.36886 66.11250 73.26111 90.55725

6 9.18E-03 57.55761 71.46389 80.08286 92.81331

7 4.83E-06 57.36776 66.11201 73.25827 89.78712

8 5.15E-02 58.41580 74.21035 80.65775 93.04961

9 1.34E-05 57.36823 66.12328 73.55976 91.31212

10 4.73E-06 57.36856 66.11216 73.25464 90.19817

11 2.36E-03 57.41739 68.48486 79.76305 92.77546

12 2.75E-02 57.93201 73.45165 80.35938 93.31935

13 7.93E-06 57.36809 66.11616 73.37027 90.82313

14 3.87E-06 57.36771 66.11074 73.22275 89.40206

15 1.99E-05 57.36918 66.13216 73.77807 92.08469

16 8.76E-02 59.13205 74.79194 81.06607 93.74957

17 1.71E-04 57.37091 66.32482 76.71009 91.95862

18 3.18E-02 58.01860 73.64619 80.41517 92.57845

19 9.07E-02 59.19290 74.83204 81.10006 93.71080

20 4.99E-03 57.47126 70.06048 79.96663 92.53632

104

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

21 8.64E-02 59.10900 74.77628 81.05463 93.84386

22 2.61E-05 57.36885 66.14006 73.97209 92.06125

23 2.09E-05 57.36835 66.13308 73.80777 91.71068

24 2.46E-03 57.41932 68.56637 79.78121 92.49626

25 5.37E-03 57.47936 70.22787 79.98110 92.72977

26 9.93E-06 57.36842 66.11888 73.44084 91.19929

27 9.49E-05 57.37036 66.22891 75.60705 92.23262

28 1.29E-02 57.63397 72.18958 80.15098 92.53332

29 4.79E-02 58.34425 74.13052 80.61487 93.43903

30 5.10E-06 57.36880 66.11273 73.26825 90.49552

31 3.72E-05 57.36899 66.15446 74.30110 92.15857

32 5.24E-02 58.43384 74.22907 80.66779 93.30218

33 3.84E-02 58.15140 73.87724 80.49775 92.72275

34 1.11E-05 57.36826 66.12041 73.48339 91.37779

35 3.37E-02 58.05661 73.71845 80.43882 92.77672

36 2.07E-05 57.36854 66.13295 73.80269 91.76290

37 2.77E-02 57.93384 73.46010 80.36097 92.60182

38 1.28E-05 57.36778 66.12240 73.54049 91.20704

39 7.02E-06 57.36769 66.11483 73.33748 90.42721

40 3.69E-02 58.12079 73.82910 80.47871 92.74769

41 4.23E-02 58.22969 73.98921 80.54565 92.79577

42 2.49E-05 57.36939 66.13868 73.93453 92.29966

43 2.00E-05 57.36863 66.13204 73.77933 91.90808

44 5.63E-06 57.36784 66.11309 73.28753 90.20779

45 1.03E-02 57.58110 71.72513 80.10595 92.57360

46 4.61E-06 57.36842 66.11196 73.25022 90.04045

47 2.86E-04 57.37413 66.46882 77.66105 92.18893

48 1.87E-02 57.75183 72.86896 80.23907 92.35352

49 7.85E-06 57.36800 66.11602 73.36719 90.72741

50 4.30E-02 58.24499 74.00875 80.55526 93.03910

105

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

51 9.37E-06 57.36841 66.11815 73.42129 91.18510

52 5.45E-05 57.37043 66.17730 74.76020 92.71553

53 8.95E-06 57.36841 66.11761 73.40660 91.18629

54 2.66E-02 57.91434 73.40746 80.34778 93.26173

55 4.80E-02 58.34487 74.13185 80.61509 93.13526

56 1.24E-02 57.62251 72.09780 80.14146 92.70268

57 3.34E-02 58.04972 73.70573 80.43475 92.66298

58 1.35E-05 57.36931 66.12389 73.56553 92.05534

59 8.42E-06 57.36929 66.11724 73.38810 91.66388

60 1.59E-05 57.36846 66.12660 73.64366 91.54910

61 5.58E-06 57.36826 66.11317 73.28571 90.25722

62 6.24E-06 57.36873 66.11420 73.30990 90.80659

63 2.40E-02 57.85898 73.25757 80.31179 92.52512

64 7.52E-06 57.36870 66.11585 73.35570 91.16891

65 7.09E-06 57.36936 66.11554 73.34067 91.34449

66 3.51E-02 58.08572 73.76911 80.45712 93.03637

67 4.78E-06 57.36851 66.11221 73.25647 90.14689

68 4.43E-06 57.36743 66.11137 73.24345 89.52721

69 6.95E-06 57.36938 66.11536 73.33554 91.38545

70 1.44E-03 57.39759 67.71044 79.53807 92.07584

71 3.96E-02 58.17474 73.91157 80.51254 92.73215

72 7.05E-06 57.36821 66.11506 73.33889 90.58107

73 2.50E-02 57.88028 73.31867 80.32587 92.69634

74 1.28E-02 57.63198 72.17490 80.14966 92.41703

75 5.25E-02 58.43563 74.23102 80.66925 93.18552

106

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

76 6.06E-02 58.59785 74.38731 80.76441 93.06705

77 3.41E-03 57.43890 69.21408 79.87772 92.57761

78 6.65E-03 57.50573 70.72851 80.02317 92.64626

79 1.44E-02 57.66265 72.39283 80.17382 92.29428

80 2.41E-05 57.36940 66.13768 73.91145 92.35520

81 9.10E-02 59.20028 74.83637 81.10475 93.89758

82 2.91E-02 57.96293 73.52931 80.37955 92.48253

83 1.24E-05 57.36925 66.12244 73.52798 91.96985

84 3.88E-06 57.36762 66.11072 73.22322 89.33564

85 5.69E-06 57.36898 66.11358 73.29008 90.74221

86 5.61E-02 58.50838 74.30360 80.71206 93.43829

87 7.44E-02 58.87256 74.61027 80.92176 93.37129

88 6.18E-06 57.36815 66.11391 73.30753 90.51550

89 5.39E-02 58.46306 74.25887 80.68565 93.31452

90 3.96E-05 57.36978 66.15787 74.36835 92.48134

91 3.62E-05 57.36898 66.15318 74.26895 92.17190

92 5.13E-06 57.36894 66.11283 73.26948 90.68106

93 4.41E-06 57.36752 66.11137 73.24269 89.58917

94 4.65E-02 58.31479 74.09728 80.59749 92.77095

95 3.73E-02 58.12978 73.84135 80.48477 93.34874

96 6.10E-06 57.36788 66.11371 73.30454 90.25288

97 1.63E-02 57.70412 72.63127 80.20408 92.97686

98 1.35E-05 57.36922 66.12379 73.56398 91.88444

99 7.60E-06 57.36902 66.11607 73.35884 91.21564

100 5.71E-06 57.36866 66.11348 73.29037 90.71493

Remark: OL represented the mass fraction of cyclohexanol.

107

Table E.2: Samples of real plant data sets (100 samples from 451 samples)

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

1 2.37E-04 57.77376 67.85109 78.60389 92.50938

2 2.60E-04 57.68524 67.71702 78.74191 92.62955

3 2.94E-04 57.68524 67.57255 78.91922 92.72490

4 3.07E-04 57.66616 67.28355 78.61263 92.49154

5 3.72E-04 57.52208 66.88672 78.54277 92.43651

6 2.77E-04 57.50127 66.86496 78.56720 92.56674

7 3.10E-04 57.50474 66.57689 78.32095 92.20082

8 3.99E-04 57.46656 66.66566 78.48686 92.37913

9 3.09E-04 57.56895 66.90587 78.54102 92.60396

10 3.21E-04 57.52208 66.73875 78.35411 92.27912

11 3.31E-04 57.60887 66.88322 78.65977 92.65978

12 3.84E-04 57.50301 66.68480 78.66501 92.49464

13 5.44E-04 57.51861 66.86234 78.92358 92.74352

14 2.76E-04 57.50474 66.76311 78.48686 92.51247

15 3.43E-04 57.46656 66.58038 78.52530 92.38068

16 4.36E-04 57.58718 66.81709 78.87903 92.44813

17 3.33E-04 57.66790 66.91109 78.93755 92.79933

18 3.54E-04 57.48393 66.65349 78.74541 92.46906

19 3.26E-04 57.52729 66.73875 78.63184 92.49232

20 3.34E-04 57.61927 66.69527 78.72616 92.57372

21 3.59E-04 57.64185 66.78227 78.82924 92.55511

22 3.39E-04 57.57068 66.77181 78.76463 92.43495

23 3.25E-04 57.63924 66.84492 78.78121 92.60396

24 3.31E-04 57.50474 66.70396 78.78296 92.43884

25 5.90E-05 57.66963 66.74847 78.82570 92.58706

108

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

26 4.29E-04 57.66963 66.75569 78.83778 92.63208

27 3.18E-04 57.66963 66.76291 78.84986 92.67709

28 3.72E-04 57.66963 66.77013 78.86194 92.72211

29 3.00E-04 57.66963 66.77735 78.87402 92.76714

30 3.55E-04 57.66963 66.78457 78.88609 92.81216

31 3.44E-04 57.66963 66.79179 78.89817 92.85718

32 4.32E-04 57.66963 66.79900 78.91025 92.90220

33 3.97E-04 57.50648 66.64653 78.81526 92.77141

34 4.13E-04 57.62794 67.08860 79.23102 92.94120

35 3.81E-04 57.58805 66.70309 78.92358 92.77141

36 3.72E-04 57.56200 66.72307 78.79604 92.82491

37 3.82E-04 57.52729 66.62563 78.76113 92.66133

38 4.09E-04 57.52555 66.73265 78.81439 92.93422

39 4.49E-04 57.50474 66.69788 78.79779 92.82491

40 4.66E-04 57.52208 66.53860 78.63010 92.72025

41 4.31E-04 57.50474 66.59953 78.83273 92.85282

42 4.19E-04 57.66616 66.98243 79.32714 93.19936

43 4.33E-04 57.57938 66.66219 78.75589 92.77606

44 4.45E-04 57.52035 66.59779 78.89912 92.82724

45 4.04E-04 57.52035 66.48817 79.02838 92.74118

46 3.42E-04 57.73384 67.00854 79.45468 92.94817

47 3.58E-04 57.62794 66.90238 79.30268 92.77141

48 3.51E-04 57.68871 66.88670 79.19608 92.77141

49 4.13E-04 57.48393 66.66566 79.33762 92.72025

50 4.34E-04 57.52295 66.63435 79.22927 92.74118

109

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

51 4.17E-04 57.50301 66.60824 79.28345 92.78381

52 4.34E-04 57.50127 66.63522 79.32365 92.80863

53 2.90E-04 57.52555 66.60127 79.08953 92.76289

54 3.49E-04 57.48393 66.70744 79.29045 92.93732

55 1.91E-04 57.52208 66.32802 78.67025 92.06747

56 2.95E-04 57.57068 66.50035 77.87470 92.86755

57 3.46E-04 57.62448 66.57689 77.86859 93.02725

58 4.02E-04 57.52208 66.61868 78.05547 92.92104

59 2.87E-04 57.52555 66.46901 77.53507 93.08772

60 2.68E-04 57.52729 66.47075 77.42419 93.14355

61 3.61E-04 57.52208 66.47249 77.74635 92.96678

62 3.29E-04 57.46656 66.43245 77.57697 92.98616

63 2.88E-04 57.50387 66.53860 77.59619 93.14355

64 3.30E-04 57.48046 66.45161 77.68174 92.97608

65 3.17E-04 57.48046 66.45770 77.72539 93.06602

66 3.50E-04 57.46829 66.34718 77.68698 92.97608

67 3.83E-04 57.52555 66.45509 77.86859 93.16216

68 3.82E-04 57.52382 66.26714 77.72364 92.93732

69 3.88E-04 57.59931 66.30540 77.78912 93.03191

70 3.69E-04 57.51428 66.45074 77.90353 93.25519

71 4.93E-04 57.51861 66.48643 78.28775 93.11331

72 4.02E-04 57.48044 66.34370 77.93146 93.03423

73 4.07E-04 57.48046 66.25670 77.86859 92.91872

74 3.92E-04 57.52382 66.30540 77.86334 92.92027

75 2.87E-04 57.46482 66.43245 77.78476 93.00167

110

No. OL Top High middle Low middle Bottom

temp. (oC) temp. (oC) temp. (oC) temp. (oC)

76 3.18E-04 57.48219 66.45509 77.85287 93.03191

77 4.20E-04 57.53946 66.57341 78.17947 93.03191

78 4.17E-04 57.52035 66.46988 78.14105 93.08927

79 2.46E-04 57.48219 66.35616 77.73106 92.63279

80 3.24E-04 57.48219 66.41837 77.82468 92.83598

81 5.57E-04 57.40319 66.47250 78.27115 93.05749

82 4.24E-04 57.48391 66.28978 78.15852 93.03191

83 4.43E-04 57.51861 66.48643 78.23187 93.14355

84 4.88E-04 57.43880 66.42375 78.15678 93.13425

85 4.53E-04 57.50214 66.52815 78.43448 93.25053

86 4.39E-04 57.46309 66.43071 78.21440 93.03191

87 4.53E-04 57.50127 66.48817 78.24758 93.06214

88 4.80E-04 57.52295 66.47075 78.37333 93.14433

89 4.55E-04 57.44401 66.32628 78.18297 93.02725

90 5.53E-04 57.50474 66.63435 78.54452 93.19936

91 5.35E-04 57.50127 66.36458 78.51831 92.80941

92 4.23E-04 57.46135 66.42375 78.28950 92.97608

93 4.20E-04 57.49347 66.43245 78.27115 93.02725

94 4.25E-04 57.56200 66.61171 78.51831 93.02958

95 4.00E-04 57.48044 66.51076 78.39779 92.97608

96 5.00E-04 57.50474 66.47510 78.50433 92.92492

97 4.29E-04 57.51861 66.36284 78.30086 92.92027

98 4.55E-04 57.46482 66.47771 78.38905 93.00632

99 5.21E-04 57.50127 66.47249 78.56720 93.03191

100 4.32E-04 57.44574 66.29932 78.23537 92.64583

Remark: OL represented the mass fraction of cyclohexanol.

111

VITA

Mr.Praphon Kemachuntree was born in Bangkok, Thailand, on November

11, 1981. He received a Bachelor Degree of Science in Department of Chemical

Technology from Chulalongkorn University, Bangkok in 2004. In the same year, he

studied for Master Degree of engineering in Chemical Engineering, Chulalongkorn

University in May 2004.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Chapter I Introduction
	1.1 Importance and reason for research
	1.2 Research objectives
	1.3 Scopes of research
	1.4 Contributions of Research
	1.5 Activity Plans

	Chapter II Literature Reviews
	2.1 Advantages of soft sensors
	2.2 Applications of soft sensors

	Chapter III Theories and Principles
	3.1 Models building for soft sensors
	3.2 Principal Component Analysis (PCA)
	3.3 Partial Least Squares Regression (PLS)
	3.4 Artificial Neural Networks fundamentals

	Chapter IV Soft Sensors for Case Study
	4.1 The description of the plant
	4.2 The work description
	4.3 Building an empirical soft sensor
	4.4 Work processing
	4.5 Soft sensor models

	Chapter V Conclusions and Recommendations
	5.1 Introduction
	5.2 Conclusions
	5.3 Recommendations

	Rreferences
	Appendix

	Vita

