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CHAPTER I 

INTRODUCTION 

1.1 Introduction and Problem Review 

In order to understand evolution, we would Iike to know how all spccics on carth are re- 

lated to  each other. This problem has becn studied for several centuries, using techniques 

likc morphology, anatomy, physiology and paleontology. With the advent sf techniques 

to study the genomc of a spccics, these investigations have entered a ncw era. Suddenly, 

there is no shostagc of material to study, rather an abundance. 

Comparative genomics is the art of extracting rclablc gcnomic data and quantifying 

it into evolutionary relations. To achicvc this, we may usc any gcnomic data available 

to us. In this dissertation, wc will concentrate on gene order data, i .e. data regarding 

the position of thc gcnes in the genome. In a species, there are a large number of genes 

and the ordering of the genes is hugely important. Since wc arc intercstcd in thc order 

of genes, we label each gene a unique number. This numbcr can bc unsigned. If a label 

of a genc is signed, for instance -5, it means that this gene is the reverse of another gcnc, 

which is labeled as 5. 

When comparing genomes in different species, a piece of chromosome in one species 

can be moved or copied to a different location in another species. Basically to compare 

two genomes, we often find that thcsc two gcnomes contain the same set of genes. But 

the order of the genes is different in different genomes. 



For example, it was found that both human X chromosome and mouse X chromosome 

contain cight genes which are identical. They are labeled as 1,2, . . . ,8. 

In human, the genes are ordered as 

4 , 6 > 1 , 7 , 2 , 3 , 5 , 8  

and in mouse, they arc ordercd as 

1,2,3,4,5,6,7,8.  

Similarly, it was found that a set of gcncs are in cabbage as 

1, -5 ,4 ,  -3,2 

and in turnip, they are ordered as 

1,2,3,4,5.  

Therefore, we talk about genome rearrangement. 

The comparison of two genomes is significant because it provides us some insight as to 

how far away genetically thcsc species are. If two genomes are similar to each other, 

they are genetically closc; otherwise they are not. The question is how we measure 

thc similarity of two genomes. Essentially, we measure the similarity of two genomes 

by measuring how easy it is to transform onc genomc to  another by some operations. 

Here's the ulitmate goal of gcnomc rearrangement studies. Thereforc discovering what 

rearrangerncnt cvcnts have occurred, and what was thcir ordcr of occurrance, there is a 

chance to get a better understanding of thc cvolutionary process. 

The genome rearrangement approaches have been widely studied in the last decade 

11, 2, 3, 4, 5, 6, 7, 8, 91. The major focus has bccn to infer thc most economical 

scenario of elementary operations transforming one linear order of genes into another. 

In this context, a reversal operation has been the most studies rearrangement event, 

followed by transpositio.n and the transversal (inverted transposition) operations. In a 

reversal, a scgmcnt of genes is taken out of the genomc and put back in reversed order. 

In a transposition, a segment of genes is taken out and put back at another pPace in 



thc gcnome, and a transversal is a segment of gcnc taken out and put back reversed 

a t  anothcr place. More formal and precise definitions are given in Chapter 11. Three 

examples describing ehrcc operations arc as the following figure, 

A reversal : Genome X : 3  1 2  4 -> Genome Y: 3 -2 -5 -1 4 

A transposition : Genome X : 3 U 2 C--> Genome Y : 3 2 1 5 4 

A transversal : Genome X : 3 -1 2 2 -> Genome Y : 3 2 5 1 4 

Figurc 1.1: The example of thrce rearrangement events (reversal, transpostion, and 

transversal). 

All thcsc studies bascd on thc assumption that the compared genomes have the same 

genes, each one appearing exactly once in each genome. Howcvcr, this hypothesis may 

bc appropriate for small gcnomes, e.g. viruses and organelles, it is clcarly unsuitable 

for divergent species containing several copies of highly paralogous ' and orthologous 

gcncs , scattcrcd across the genomc. In this case, it is important to introduce the 

possibility of having different copies of the same gene, e.g. gene duplication (also callcd 

multi-gene families). These copics may be identical, or found to have a high similarity 

with BLAST-likc search. They may be adjacent on the single chromosome, or dispcrsed 

throughtout the gcnome. As an examplc, Table 1.1 lists the estimate numbers of du- 

plicated gcnes in completely or nearly completely sequence gcnomes of representative 

bacteria, archaebacteria and eukaryotes. One finds that, in all three domains of lifc, 

largc proportions of genes wcre generated by gene duplication [lo]. 

Since WE are transforming a scquence of numbers into anothcr scquence, without los- 

ing generdi ty, we may always assume that the target sequcnce is 1,2, . . . , n. The similar- 

'Paralogs are gcncs that wcre duplicated from a single gcnc on thc same genamc. 
20rthologs are genes in different species that evolved from the same gene in the last common ancestor 

of thc species. 



Table 1.1: Prevalence of gene duplication in all thrcc domains of life. 

Total Number of duplicate 

numbcr gcncs (% of 

of genes duplicate genes) 

Bacteria 

Mycoplasma pneumoniae 677 298 (44) 

Helico bacfor pylori 1590 266 (17) 

Haemophilus influenxae 1709 284 (17) 

Archaea 

A whaeoglobus fulgidus 2436 719 (30) 

Eukarya 

Saccharomyces cerevisiae 6241 1858 (30) 

Caenorhabditis elegans 18424 8971 (49) 

Drosophila melanogaster 13601 5536 (41) 

Arabidopsis thaliana 25498 16574 (65)  

Homo sapiens 40580 15343 (38) 

ity between two sequences will be measured by the minimum number of rearrangement 

operations to  transform a sequence into another. Because the target sequence is always 

1, 2, . . . , n, wc may view the problem as a sorting problcm. But this is not a usual 

sorting problcm which we are familiar with. This sorting problem is to sort a sequence in 

such a way that thc number of operation is minimized. In other words, we are interested 

in finding algorithm which always sort a sequence with minimum number of operations 

including with gcne duplication. 



Thcrcfere, the significant contribution of genome rearrangement problem discussed in 

this dissertation is What is the shortest distance between two g e n o m e s  b y  mutation events 

e.g. reversal, transposition, and transversal with multi-gene families?. This problem is 

the NP-hard problem [ll]. The mutations that we consider in this thesis are primarily 

reversaIs, but also transpositions and transversal. The background on genome 

rearrangement (non-duplicated genes) can be found in [12, 13, 141. The new hueristic 

algorithm for computing the nearest edit distances with muti-gene families is proposed in 

Chaptcr 111. Chapter IV shows the experimental results and thc conclusion is explained 

in the Chapter V. 

1 2  Research Objectives 

1. To propose a new rearrangement modcl uscd to transform one genome into another 

for each mutation event c.g. reversal, transposition and transversal. 

2. To find the nearest edit distance (reversal, transposition, a n d  transversal) between 

two genomes with multi-gene families. 

1,3 Scopes ofthe Study 

1. The genomes are uni-chrornosomc (single-chromosome) including gene duplication. 

2. Thc inputs can be positive, negative integers, characters, or symbols. 

3. Thc gcnomc rearrangcmcnt cvents for uni-chromosome, seperately tested, are re- 

versal, transposition and transversal. 

4. Thc input gcnomes do not sct thc probabilitics for cach three cvcnts that might 

be occur in the rcal life. 



1.4 Research Plans 

1. Study the various algorithms in the genome rearrangement. 

2. Study the original theorem that estimated the reversal, transposition and transver- 

sal distance. 

3. Apply the original theorem to design the new modcl and to cope with thc rnultigene 

family problem. 

4. Estimatc the edit distances from this new model. 

5. Conclude thc experimental results by comparing thc results with those from othcr 

methods. 

1.5 Research Advantages 

It is expected that the new approach and prototype are 

1. applicable for gcnomes that have multi-gene families. 

2. used for estimating the evolutionary distance betwcen two any uni-chromosome 

genomc by three mutation cvents e.g. reversal, transposition and transversal. 



CHAPTER I1 

THEORIES AND LITERATURE REVIEWS 

In this chapter, the basic conccpts of biology, the formal representation of the genome 

(synteny, order and polarity, linearity and circularity, and multi-gene families), opera, 

tions and distances (alignment traces, breakpoint distance and edit distances), and some 

literature reviews for genc duplication are briefly revised. 

2.1 Introductory Biology 

This dissertation dcals primarily with mathematical aspects of comparative genomics, 

but it is also important to  know how realistic our models are drawn from. Wc will, thcrc- 

fore, give a short account of the most basic evolutionary biology. Anyonc who already 

knows of gcncs and genomes should move on. Thc discovery of the genetic material in 

living organisms started some 130 years ago and an interesting review of thc recent and 

past development in this arca has been given by Aldridge [15]. Less than fifty years ago, 

Watson and Crick discovered how nature cxtraxts information from thc gcnctic mate 

rial. Thc genome consists of one or morc (46 chromosomes for humans) chrornosomcs, 

tach one consisting of two sequences of nucleotides, paircd together to form a doublc 

helix. This is what we call DNA, which is short for Deoxyribonuclcic acid. Thcrc are 

four nucleotidcs: adeninc (A), cytosine ( C ) ,  guanine ( G )  and thymine (T). These are 

always paired, A with T and C with G; this means that both sequences contain thc same 

information. An cxample of DNA [16] is shown in thc Fig. 2.1 
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Figure 2.1: The example of DNA : the molecule of life, 

The function of the information in these sequences is, as far as we how,  mostly 

as bl~~eprint for proteins. JWh triple of nucleotides codes for some amino acid, which 

proteins are built of. A segment that codes for a protein is called a gene. Each gene 

shordd be read either from the left or from the right, depending on which of the two 

nucleotide sequencw the gene is positioned at. A gene is defined to be a sequence of DNA 

or bases that code for ca spec& Eunction/protein. However, a gene can have more thm 

one form or version. So, while there may be s gene for, say, producing hair of a certain 

colour, that gene will have different alleles, such as producing brown k or blonde 

hair. A gene is like a variable that can take Merent values, to use a computational 

metaphore. It is not known for sure how many genes are capable of having different 

alldic values or how mmy different allelic values exist for those genB that can vary. A 

genome is defined to be the complete set of chromosomes inherited from one parent. 

By identifying genes that are very similar and code far similar proteins, one finds 



that man and mice, for instance, sharc about 99% of their genes. Thus, on the gene 

level, Ithe major difference between man and mice is the way these genes are arranged 

and not the kind of genes that they contain. 

The problem of genome rearrangement is a central problem in computational biol- 

ogy. When trying to detcrminc evolutionary distance between two organisms using the 

genomic data, one wishes to reconstruct the sequence of cvoltuonary events, which have 

occured, transforming one genome into the other. One of most promising ways to  tracc 

the evolutionary cvents is to compare the order of appearance of identical (or ortholo- 

gous) genes in two different genomes. The study of genome rearrangement began in late 

1980's. 

2.2 The Formal Representation of The Genome 

In contrast to prokaryetcs that tend to have single chromosome, often, circula chromo- 

some, the gene in plants, animals, yeasts, and other eukaryotcs are partitioned among 

scvcral chromosomes, 

The genome rearrangement approach to  cornparativc gcnomics focuses on the general 

structure of a chromosome, rather than on the internal nucleic structurc of each gene. 

This approach assumes that thc problcms of determining the identity of each gcnc, and 

its homologs among a set of genomes, have bccn solvcd, so that a gcnc is simply labclcd 

by a symbol indicating the class of homologs to which it belongs. 

Three levels of chromosomal structures have been studied in the literature. The 

syntenic structure just indicates the content of gcnes among the set of chromosomes of a 

genome. Two genes located on thc sarnc chromosome are said to bc syntenic (as shown 

in thc Fig. 2.2). The gcnome rearrangement approach based on the syntenic structurc 

infers divergence history in terms of inter-chromosome rnovcments such as fusion and 



fission. Zntra-chromosome rnovcments can be detccted only if the order of genes in 

chromosomes is known. In that case, a chromosome is reprcscnted as a linear sequencc 

of gcncs. In the most realistic version of the rearrangement problcm, a sign (+ or -) is 

associated with cach gcnc rcprcsenting its transcriptional orientation. This orientation 

indicates on which of thc two complementary DNA strands the gene is located. The 

distance problems in which this levcl of structure is known and taken into account are 

called signed, in contrast to this situation where no directional information are used, the 

unsigned casc. 

Chrol: {a  b c d )  a b c  d +a +b -c -d 

Chro2: { a  b c )  b a b c d e  -b +a -b tc +d 

Chro3 : { a  c d b a) c a b d c a  t c  -a +b +d -c 

Sydeny sets Ordered, unsigned case Ordered, signed case 

Figure 2.2: The different levels of chromosome structures considered in the genome 

rearrangcmcnt literature. 

2.2.1 Synteny 

The genes in plants, animals, yeasts and other eukaryotes are partitioned among a 

nurnbcr of chromosomes, generally between 10 and 100 in number, though it can be as 

low as 2 or 3 [17j, or much higher than 100. Two genes located on the same chromosome 

in a genome are said to bc syntenic in that gcnomc. 

Some genome rearrangements involve parts of onc chromosornc being relocated to 

another chromosome. Syntenic structure is generally different between different species 

and usually identical among all the membcrs of a single species. A few species toler- 

ate population "he'cerogcneity" involving small differences in syntenic structure, where 



heterokaryo'cypic individuals are not only viable, but fcrtile [18]. 

In prokaryotic genomcs, comprising both eubacteria and archaebacteria, thc genomc 

typically resides on a singlcchromosome. Organelles, such as the mitochondria found 

in most eukaryotes and the chloroplasts in plants and algae, also have relatively small 

single-chromosome genomcs, containing less than 100 (mitochondria) or 250 (chloro- 

plasts) gcncs, and are bclievcd to  be the highly seduced descendants of prokaryotic 

cndosymbionts. 

2.2.2 Order and Polarity 

Syntenic structure suffices to initiate the study of genome rearrangements. Two addi- 

tional lcvcls of chromosomal structure, when thcy are available, add valuable information 

about rearrangement. The first is gene order. The gencs on each chromosome have a 

linear order that is characteristic of each gcnomc. Note that although our discussion in 

this dissertation is phrased in terms of the order of genes along a chromosome, the key 

aspect for mathematical purposes is the order and not the fact that the entities in the 

order are genes. Thcy could as wcll be blocks of genes contiguous in the two (or N) 

species being compared, conserved chromosomal scgmcnts in comparative genetic maps 

or, indeed, the results of any dccornposition of the chromosome into disjoint ordered 

fragments, c x h  identifiable in the two (or in all N) genornes. 

The next Ievcl of structurc is the transcription direction associated with each gene. 

In thc double-stranded DNA of a genome, typically some gcnes are found on one strand 

and are read in the direction associated with that strand, whilc other genes arc on thc 

complementary strand which is read in the opposite direction. To capturc this distinction 

in thc rnathcmatical notation for a genome, thc genes on one strand are designated as of 

"positive" polarity and those on thc other as "negative." The latter are written with a 



minus sign preceding the gene label, and genomes and genome distance problems wherc 

this level of structure is known and taken into account are called "signed" in contrast 

to thc situation where no directional information is used, thc "unsigned" case. 

2.2.3 Linearity versus Circularity 

In eukaryotcs such as yeast, amoeba, or humans, the genes on a chromosome are ordered 

linearly. There is no natural lcft-to-right order, i.c., thcrc is no structural asymmetry 

or polarity between one end of a chromosome and thc other. In prokaryotes and in 

organelles, the singlc chromosome is generally circular. This leads to terminological and 

notational adjustments, the arbitrariness of left-to-right ordcr becomes the arbitrariness 

of clockwisc versus counterclockwise ordering, and thc notion of one gene appearing 

in the order somewhere beforc anothcr is no longer meaningful. Most computational 

problems in genome comparison are no more difficult for circular genomes than linear 

ones. 

2.2.4 Mult i-Gene Families 

Implicit in thc rearrangement literature is that both gcnornes being compared contain 

an identical set of genes and thc one-to-one homologies (ortho1ogi;ies) between all pairs 

of corrcsponding genes in the two genomcs have previously been established. Whilc this 

hypothesis of unique genes may be appropriate for sornc small genomcs, c.g, viruses and 

mitochondria, it is clearly unwarranted for divergent species where several copies of the 

same gene, or several homologous (paralogous) genes may bc scattered across a genome. 



2.3 Operations and Distances 

There are many ways of comparing two linear (or circular) ordcrs on a set of objccts. In 

Subsection 2.3.1, we first discuss one which is not based on any biologically-motivated 

model. In Subsection 2.3.2 and 2.3.3, we introduce a distance which is motivated by 

general characteristics of gcnomc rcarrangemcnts. In thc remainder of this section, we 

revicw thc many edit distances which arc bascd on particular types of rearrangement. 

2.3.1 Alignment Traces 

One of the earliest suggcstions for comparing gcnomcs was to adapt concepts of alignment 

in sequence comparison, in particular thc notion of thc trace of an alignment. In its 

graphic version, this requires displaying the n genm in each of the two genomes, ordered 

from left to right, one genome above thc other, and connecting each of the n pairs of 

homologous genes with a line. The number of intersections bctween pairs of lincs is a 

measure of how much one gcnome is scrambled with respect to  the other [19]. For lincar 

ordcrs, this mcasurc is casily calculated and analytical tests arc available for detecting 

non-random similarities in order; the circular case is much more difficult. The problem 

has to  do with the optimal alignment of the two genornes, where one circular genome 

is superimposed on thc other and rotated in such a way as to minimize the number of 

intcrscctions bctwccn trace lines connecting genes in the two gcnomes [20]. 

2.3.2 Breakpoints 

Since genome rearrangements generally involve incorrectly repaired breaks between ad- 

jacent gcnes, it seems appropriate to focus on adjacencies when comparing reasranged 

genomes. For two genomes G and H , wc dcfine b(G, H) to be the number of pairs of 

gcnes that are adjacent in gcnomc G but not in H. The easily calculated mcasurc b 



is and was first dcfincd in thc contcxt of gcnomc rearrangements by Watterson et al. 

[21], but was already implicit much carlicr in cytogcnetic assessments of chromosomal 

evolution. For signed genomes, the notion of adjacency requires that thc configuration 

of transcription directions be conserved, so that if genome G contains two genes ordered 

as x y, then these two genes are adjacent in H only if they occur as x y or as - y - x. 

Exarnplc : G = (-2,-3,+1,+6,-5,-4) and H = (+1,+2,+3,+4,+5,+6). The 

breakpoints of G with respect to H arc : (-2, -31, (-3, +I), (1-1, +6), (f6, - 5 ) ,  

(-4, +7). Notc that (-5, -4) is not a breakpoint since (4,5) appear in H. 

Why breakpoint arc important? Intuitively, if (z, y) is a breakpoint, then in order to 

transform G to H, some reversal must scperate bctwecn s and y. Therefore, the number 

of breakpoints is an indication to how many reversals arc required. 

The Breakpoint Distance : the first lower bound 

Thc sirnplcst distance widely used is the breakpoint distancc b(G, If). In essence we 

count the number of adjacent genes in one of the genomcs that are not adjacent in the 

other. It is not hard to see that b(G, H) is a metric on the spacc of gcnomes. We 

usc thc notation b(G) for the number of breakpoints between G and the identity. Thc 

breakpoint distancc is widely used by the community. It  is c a y  to compute and we do 

not have to make any specific assumptions about the underlying modcl. In fact, it is a 

decent approximation for many of the other distances we shall look at, although morc 

refined analyses demand more sophisticated distancw . 

It has been argued by Sankoff and others, see for instance [22], that the success and 

applicability of the breakpoint metric comes from its being model indcpcndent. We 

would likc to offer some words of caution regarding this view. First, it is of course not 

sufficient for a distancc to be model independent. If we let the distance betwccn G and 

H bc zero if G = H and one otherwise we definiteIy get a model independent distancc, 



but it will not be of any usc to us. Second, the breakpoint distance is; by no means 

model indcpcndcnt. It  works about equally well for thc common scts of operations, i.c. 

reversals and transpositions, since these operations change the number of breakpoints 

by at most two or three, respectively, but if our model would includc operations that 

change the number of breakpoints by far more, the breakpoint distance would not g i v ~  

such good results. 

2.4 Edit Distances 

One of the most fundamental computational problems in comparative gcnomics, which 

must bc solved before many highcr lcvel problems can be attacked, is to  compute the 

distance between two genomes. The idea is to come up with a measure, based on gcne 

order and gene content, that reflects as closely a s  possible the evolutionary distance 

of the givcn organisms. The challenge is to find a measurement that is biologically 

meaningful yet efficiently computable. 

To be realistic, a measurement should reflect several known mechanisms of genomic 

rearrangcment. In the casc of single-chromosome genomes (such as those of prokary- 

otes, chloroplasts, and mitchondria) , these mechanisms includc the following: 

Reversal: A section of a chromosome is excised, reversed in orientation, and 

re-inserted -Section 2.6. 

Transposition: A section of a chromosome is excised and inserted a t  new position 

in the chromosome, without changing orientation -Section 2.7. 

a Transversal (Inverted Transposition): Exactly like transposition, except that 

the transposed segment changes orientation -Section 2.8. 



gene dnpIication: A section of a chromosome is duplicated, so that multiplc 

copies exist of every gene in that section. 

2.5 Breakpoint Graph : Notations and Definitions 

Let T and C$ be signed permutations of size n, such that T = (&nl, f rz, . . . , and 

I I  

# = fdz,  . . ., f4,). Lct unsigned permutation 7 ~ '  = (q,, x ~ ,  .. . , min,  T ; ~ + ~ )  

bc defined such that T; = 0, = 2n + 1, and for all, i, 1 5 i 5 n, irki = 2q, 

mii-l = 2q - 1 (if ri > 0) or T;, = 2174 - 1, 7 ~ i ~ - ~  = 217ril (if ri < 0). Let the vnsigncd 

permutation 4' = (#;, #;, . . . , $kn, bc dcfincd cxactly thc same way with respect 

to 4. We say two clcmcnts .rri and T ~ + ~  are adjacent in T ,  and we say thc corresponding 

elements T;, and nii,, arc adjacent in n'; similary for 4 and 4'. Bafna and Pcvzner [23j 

introduce thc notion of the breakpoint graph of a permutaion. 

Thc breakpoint graph B of T with respect to 4 be defined as follows: 

3 contains a sequence of 2n + 2 vertices labelcd with the elemcnt of T' . 

Every two of these vertices that rcflcct an adjacent in T' are connccted with black 

cdgc), and every two that reflect an adjacancy in 4' are connected with gray edge. 

Let the overlap graph 0 = (V, E) for B be defincd such that there exists a distinct 

v, E V for evcry gray edge e in B, and two vertices v, and vet are connected by an cdgc 

({[u., % I )  E E)  iff gray edges e and 4 overlap in B. Thc example for breakpoint graph 

and overlap gray are shown in the Fig. 2.3. 

A cycle in B is a sequence of connected vcrticw (vo, vl, . . . , Uai ,  vzi+l, . - . , vzn, vzra+l, 

vo) where n 2 0 and for all i ,O  5 i 5 n, and vz,+l arc connected with black edge, and 

vzi+l and mr+z (or vai+l and vo, if i = n) arc connected with a gray edge. A connected 

component in 0 has the usual meaning, and sometimes cd l  simply a component. 
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Figure 2.3: Breakpoint graph B and overlap graph 0 for the permutation T = (+5, 

f l ,  1-3, +2, +4, +6, +11, +7, +9, +8, +lo, +12, -13, +14) with rcspect to thc 

idcntity permutation of size n = 14. Connected component e is oriented, a, b, c and d 

are unoriented, and f is trivial Unoricntcd cornponcnts B and d arc hurdles and also 

superhurdles, but unoriented component a and c are nonhurdles because they seperate 

b and d. 

Evcry gray cdgc is said to  bc oriented if it spans an odd nurnbcr of vertices in B, 

and unoriented otherwise. In the other words, a gray edge is oriented if it  links two 

left vertices of two black edges, or tm right vcrtices of two black edges, otherwise it is 

called unoriented. A cyclc in B and a connected component in 0 are each said to be 

oriented if they contain at least one oriented gray edge. We call cycle and component 

unoriented if they are not oriented, except when they are trivial. A trivial cycle consists 

of a singlc gray cdgc and a singlc black cdgc, and corrcspond to an adjacency sharcd in 

permutations n and 4. A trivial cycle will always create a trivial conncctcd component 



-that is, a compoent consisting of a single, isolated in 0- and a trivial component can 

only arise from a trivial cycle. Note that the gray edgcs of cycles always belong to the 

same conncctcd component, so we can say that thc cyclc belongs to thc component. 

Evcry unoriented component can be classified as cithcr a hurdle or a nonhurdle. A 

hurdle is an unoricnted component that does not scperatc othcr unoricnted component, 

and a nonhurdle is one that does. A component b is said to seperate two other compo- 

nents c and d if, in a traversal of thc vcrticcs of B, it is impossible to  pass from a vertex 

belonging to c to a vertex belonging t o  d without encountering a vertex belonging to u. 

A hurdlc is called a superhurdle if, were it eliminated, a nonhurdle would emerge as a 

hurdlc; otherwise it is called a simple hurdle. 

2,6 Minimal Reversal Distance 

The reversal has. gcncrally bccn censidcrcd the most important of thc three operations 

that wc usually consider. Somc claim that this is because rcvcrsals have been morc 

frequcntly obscrved [7]. This may bc thc case, but it seems rcasonablc to think that 

their popularity is in part boosted by our ability to treat them mathematically. While 

transpositions and transvcrsal havc bccn hard to analysc, the following problem has 

actually bcen solvcd. The qucstion is What is the minimal number of reversals A,, 

needed to transform a genome rr into the identity genome? 

A reversal p k ( i ,  j), for any k and 1.5 i , j  < n, of 7r = ( T ~ , T ~ , .  .. ,rn) transforms T 

into p k ( i ,  j )  = T ( T ~ ,  . . . , - ~ j ,  - ~ j - ~ ,  . . . , -ri, . . . , rn). A reversal distance is the numbcr 

of rcvcrsals p l ( i l ,  jl) b ( i 2 ,  j2), . . . , pt (it, jt) of minimal length t rcquircd to transform 

.T to 4. The full solution (for signed genomes) was given in 1995 by Hannenhalli and 

Pevzner [24], prcccded by a fairly good approximation in 1996 by Bafna and Pcvzncr 

P31. 



For the following examplc, lct lct T = (-2, - 1, +4, +3, +5) and 4 = (3-1, +2, +3, +4, 

+5) be the permutations. Thc rcsults arc shown the procedure of an optimal sorting of 

a permutation by reversals and thc signed reversal distance d ( ~ ,  #) = 4. ' 

Next, the following example show the steps, for each pt, 1 5 t 5 4, that solved the 

problcrn of sorting by reversals by using concept of the breakpoint graph. 

A reversal can remove at most two brcakpoints in a permutation. Therefore, a simple 

(the first) lower bound on thc rcvcrsal distance is 

where b ( ~ )  is the number of breakpoint in the permutation T. 

The Hannenhalli and Pevzner Theory 

Hannenhalli and Pevzner 1241 investigate the breakpoint graph, as shown in Fig. 2.3. 

They givc an optimal formula for computing the reversal distance of a permutation 

(based on parameters of the breakpoint graph) and providc a polynomail algorithm for 

sorting by signcd revcrsals. 

' ~ o t c  that thc problcrns of mve~sal distance and of sorting by mersab we nibtAly different.; it turns 
out onc can computc reversal distancc without actually finding a sequence of sorting reversals. 



Figurc 2.4: The example of sorting by reversals of the permutation T' = (0, 4, 3, 2, 1, 

7, 8, 5, 6, 9, 10, 11) 

Let T and q5 be two genomes defined on the same set of genes, wherc each gene 

appears exactly once in each genome. The problem is to find the minimal number of 

reversal operations neccwsary to transform .rr to 4. We use d,,, to dcnotc the minimal 

number of reversal distance between T and 4. The minimal reversal distancc necessary 

to transform T to 4 of permutation size n is given by this formula : 



whcre b(n ,  4 )  is the numbcr of black edges, 

c ( r ,  4 )  is the number of cyclcs in G, 

h(n, 4) its number of hurdles, 

f (T ,  4 )  is equal to 1 if fortresses cxist in G and zero otherwise. 

From Fig. 2.4, the permutation T has 6 black cdgcs, 3 cyclcs, 1 hurdlcs, and non- 

fortress. By using the Equation 2.2, the reversal distancc of the permutation is 6 - 3 + 
1 + 0 = 4 .  

It follows from Caprara [4] that genomm containing hurdlcs (gcnomcs n with h(r, 4) 

+ f ( r ,  q5) > 0 )  are vcry rarc. The probability for a given component t o  be good (oriented 

component) is greater than its probability to  be bad (unariented component), the number 

of hurdles is near t o  0. For instancc, for genomes of length 8, less than one percent 

of these contain hurdles, and for genomes of length 100, only onc in 105 contains a 

hurdlc. Thcrcfore, thc numbcr of cycles is the dominant parameter in the Hannenhalli 

and Pevzner formula for d ( ~ ,  4)) if b ( ~ ,  4 )  is considcrcd as a constant. Noticc that more 

cycles mean less reversals. 

Many pcoplc have looked at thc computational aspccts of calculating the reversal 

distance. In the paper by Hannenhalli and Pevzner, both finding this distance and com- 

puting a minimal sequence of reversals was done in O(n4) time, for a genome of length 

n. This has subsequently bcen improved by, among others, Berman and Hannenhdli 

1251, who computed the distance in 0 (na(n)) time and a minimal sequence in 0 (n2a(n)) 

tirnc, where the function a(n) is the inverse of Ackermans function [26]. Next, Kaplan, 

Shamir and Tarjan [27] gave a minimal sequence in O(na(n) + d,,,(.rr)n) time, whcrc 



&,,(T) < n is the reversal distance, and Bader, Moret and Yan [8] reduced finding 

thc distance to linear time. Recently, Bergeron [3] and Bergeron, Heber and Stoye [5] 

have simplified thc algorithms, yielding an algorithm for computing the rcvcrsal dis- 

tancc without using thc breakpoint graph. Finally, Siepcl [28] has given an algorithm 

for finding all optimal sequences of rcversals that sort a genome. 

For unsigned genomes, calculating thc scvcrsal distancc is NP-hard, as was shown by 

Caprara [2]. Thc proof consists of a scrics of transformations. For unsigned genomes, 

thc vertices 2k - 1 and 2k in the breakpoint graph are identified for a11 k E n. It  then 

bccornes a problem to compute the maximum number of alternating cycles. Caprara is 

able to  seduce this problem to the reversal distancc problem. He then proceeds to show 

that the alternating cycle problem is NP-hard, which implies that the reversal distance 

is NP-hard. Thcrc exists polynomial timc approximations of thc rcversal distancc for 

unsigned gcnomcs: Christie has given a 3/2-approximation [6] and Berman, Hannenhalli 

and Karpinski [29] havc rcduced this to 1118. 

2.7 Minimal Transposition Distance 

The question is What is the minimal number of transpositions dt,, needed to transform 

a genome T into the identity genome? 

A tramposition q ( i ,  j, k) , for any I and 1 I i < j < k 5 n + 1, of ' l ~  = ( r l ,  ~ 2 ,  . . . , rn}. 

cuts the segment [i, j - 11 and pasting it before the kt" position as follows. 

A transposition distance is the number of transposition operations wl( i l ,  j l ,  kl), 

w2(i2,  j2, k2), . . . , ul(il, j I ,  k l )  of minimal length I require to transform .rr to 4. Note 

that this is a problem on unsigned genomes, since a transposition docs not changc the 

sign of any gene. 



For the following example, let let .rr = (2 ,1 ,4 ,3 ,5 )  and # = (1,2,3,4,  5 )  bc thc 

permutations. Thc rcsults shows the procedure of an optimal sorting of a permutation 

by transpositions and thc transposition distance d,,(~, 4) = 2. An example is shown in 

Fig. 2.5. 

- - , ,: -7-,-+ . 

.. . , , w , ,  
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Figure 2.5: The example of sorting by transpositions of the permutation .rr' = (0, 3, 4, 

1 , 2 , 7 , 8 , 5 , 6 , 9 , 1 0 , 1 1 )  

Nobody has found a closed formula for this distance. It is easy to give some trivial 

bounds. For instance, a transposition cannot change the number of breakpoints by more 

than three. Furthermore, one can aIways find a transposition reducing the number of 



breakpoints by one. Thus, thc first lower and upper bound are 

for all unsigned genomes T .  

Research by among others Bafna and Pcvzner [30] and Christie [7] introduced the 

notion of a breakpoint graph of a permutation, and used thc breakpoint graph to obtain 

an improved Iower bound as shown in thc Eq. 2.4. 

holds for all unsigned genomes length n and c ( ~ )  is the number of cydcs in the breakpoint 

graph. 

2.8 Minimal Transversal Distance 

The question is What is the mznimal number of framversals dt,, needed to transform a 

genome .n into the identity genome? 

A transversal al(i, j ,  k ) ,  for any 1 and 1 I i < j < k 5 n + 1, of .rr = (.rrl,rz,. . . ,.rr,>. 

cuts the segment [i, j - 11, pasting and inverting it beforc thc kt"osition as follows. 

A transversal distance is the number of transversal operations al (il, jl, k l ) ,  a2(iZ, jZ, k 2 ) ,  

. . . , al(il> jl> kt) of minimal lcngth 1 require to transform T to 4. There does not seem 

to be any similar work done on thc transversal distance. However, it seems likely that 

inequalities similar to  those in the transposition case also hold for transversal. 



Research by among others Q.Gu and S.Peng [31] and Christie [J] introduced the 

notion of a breakpoint graph of a permutation, and used thc breakpoint graph to obtain 

lower bound for transversal distance. The equation is shown as follows. 

For the following example, let n = (-4, -3 ,1 ,2 ,5)  and 4 = (1 ,2 ,3 ,4 ,  5) be the 

permutations. The results show the proccdure of an optimal sorting of a permutation 

by transversals and the transversal distance (computed from Eq.2.5) to be dkpl (T, 4 )  = 

5fi-4 = 1, An cxample is shown in Fig. 2.6. 

Figure 2.6: The example of sorting by transversals of the permutation .rrl = (0, 8, 7, 6, 

5 , 1 , 2 , 3 , 4 , 9 , 1 0 , 1 1 )  

2.9 Literature Reviews on Gene Duplication 

There are many efficient methods to find the shortest distance. However, all of them 

are appficable tp genornes that do not contain gene duplications. In this section, we 

introduce some approaches that have bccn devclopd to account for gene duplicates in 

the genome rearrangement. 



2.9.1 Exemplar Distance 

Sankoff [32] has formulated a generalized version of the genome rearrangement problem 

where each gcnomc may bc present in many copies. The idea is to dclctc, from each 

gene family, all copies except each of thc compared genomes G and H. This preserved 

copy, callcd thc exemplar, represent in the common anccstor of all copies in G and H. 

The criteria for deleting gene copies is to form two permutations having the minimal 

distance. Ssnkoff considers two distance measura: thc breakpoint distance and the 

rcvcrsal dist ancc. 

Thc underlying cvolutionary mode1 is that the most rcccnt common ancestor F of 

genomes G and H has singlc gene copy (Figure 2.7). After divcrgcnce, the gene a in F 

can bc duplicated many times in two lincagcs leading to G and H, and appear allywhcrc 

in the genomes. Each gcnomc is then subject to rearrangmcnt events. The key idea is 

that, after rearrangements, the true exemplar, that is the dircct descendent of a in G and 

H, will havc been displaced less frcqucntly than the other gene copy- The true exemplar 

string can thus be identified as those that have been less rearranged with respect to each 

other than any other pair of reduced gcnomcs. 

F 
a b c d  

Figure 2.7: Thc cvolutionary model considered in the exemplar analysis. Using thc 

breakpoint distance as a criterion, the chosen exemplar are the undclined ones. 

Even though finding the exemplar has bcen shown NP-hard [33], [32] developcd 

a branch and bound algorithm that has bcen shorn practical enough for simulated 



data. Thc strategy is to  begin with empty strings, and t o  insert successively one pair 

of homologous genes from each genc families, one after the other. At each step, the 

choscn pair of exemplars arc thc onc whith the least distance increases when inserted 

into the partial exemplar string alrcady constructed. The gene families are proceeded 

in increasing order of thcir sizcs: singletons first, then families of size three, four, and 

SO on. 

Sankoff considers a branch and bound strategy. At cach stcp, (for cach next gcne 

family), all pairs in the family are tested to scc how much thcy incrcasc thc distance when 

the two rnembcrs are inserted into the partial exemplar strings. The chosen exemplar 

pair is thc onc which the lcast incr~ases distance. A backtracking step from the family 

currently bcing considered occurs whenevr all its remaining unused pairs have too large 

test values, that is test values that would increase the distance beyound the current best 

valuc. 

A natural application of the exemplar approach is to identify orthologics bctwccn 

two gnomes containing families of paralogous gcnes. Unfortunately, as far as wc know, 

the algorithm has only been tested on simulated data. 

In [35, 401, a straightforward approach by enumerating all the possible assignments 

of orthologs betwccn two genomes has been considered. However, this approach is a p  

plicablc only to gcnamcs with a very small numbcr of duplicated genes, as the number 

of possible assignments grows cxponcntailly with thc numbcr of paralogs. Vcry recently, 

X.Chen Ill] introduced a new approach to ortholog assignments that considered both 

sequcnce similarity and genome rearrangement (Section 2.9.2). 



Z9.2 The Assignment of Orthologous Genes via Genome Re- 

arrangement 

The assignment of orthologous genes between a pair of genomes is a fundamental and 

chalenging problcm in comparative genomics. Existing methods that assign ort hologs 

based on the similarity between DNA or protien sequences may make erroneous assign- 

ments when sequence similarity docs not clearly delineate the evolutionary rclationsip 

among gcncs of the same families. 

X. Chen and et a]. Ell] propose a new approach for assigning orthologs by taking into 

account both local mutations and genomc rearrangment cvcnts. Their mcthod starts by 

idcntifying sets of paralogs (gene families) on each genomes and the family corrcspon- 

dcnces between two genornes by using the homology scarch, i.c., BLAST. Thc paralogs 

are then treated as copics of the same genes, and ortholog assignment is formulated 

as a natural optimization problem of rearranging one genome consisting of a sequence 

of (possibly duplicated) genes to the othcr with the smallest number of rearrangcment 

cvcnts. This most parsimonious rearrangement process should suggest pairs of orthol* 

gous germ in a straightforward way. To simplify the discussion (and as a first attempt), 

they first consider only inversion events in genome rearrangement. The above optimiza- 

tion problcm thus bccomes a problem of computing thc signcd reversal distance with 

duplicates (SRDD) between two genomes. SRDD is a simple extension of the well-known 

problem of sorting by reversals [24]. Although the problem of sorting by reversals has 

bccn intensively studied in thc past decade, SRDD has basically bccn untouched. they 

give an efficient and effective heuristic algorithm for solving SHDD, using the techniques 

of minimum common partition of two givcn gcnomes (thc MCP is solved by thc tcch- 

niquc of vertex cover.) and maximum cycle decomposition on a completc graph (the 

MCD is solved by thc technique of greedy algorithm to find the shortest path among 



the paths in thc complete graph). Thc heuristic algorithm for SRDD has bccn tested 

on both simulated and rcal genomic sequence data (from human, mouse, and rat X 

chromosomes), and compared with the existing algorithm the excmplar algorithm [32] 

(actually, an iterative version of it). The test results demonstrate that the SRDD in 

general performs better than the iteratcd exemplar algorithm in t e r m  of computing thc 

revcrsal distancc and assigning correct orthologs. 



CHAPTER I11 

PROPOSED METHOD 

Three edit distances (reversal, transposition, and transversal) can use the notion of 

breakpoint graph to  compute the distances or gencratc thc stcps of sorting. Howcvcr, 

the breakpoint graph is uscd for thc gcnomcs that do not havc gcnc duplication. The 

breakpoint graph does not work for muti-gene families problem. In this chapter, we 

proposcd a ncw hcuristic algorithm to  find a canonical permutation of gene duplicates. 

We extend the concept of the breakpoint graph to copc with genc duplicates. The kcy idca 

of our method is to generate an incomplete breakpoint gmph which allows for exploring 

gcnc-gene relationships across thc two gcnomes by maximizing the numbcr of graph 

cycles. The optimization technique Binary Integer Programming (BIP) is applicd to 

find thc sct of gray cdgcs (cdges that play central role in the breakpoint graph) that 

minimize the edit distances. 

Oncc our algorithm is completed, the incompleted breakpoint gmph will bc transform 

to complctc brcakpoint graph. Thc Hanncnhalli and Pevzner theorem (Eq.2.2) is applied 

to  compute the reversal distance bctwccn two rclabcllcd genomes. Then, Eqs. 2.4 and 

2.5 arc also applied to compute the transposition and transversal distanccs, rcspectively. 



3.1 Heuristic Algorithm to Computing the Nearest Minimal 

Edit Distances for Multi-gene Families via Binary Integer 

Programming (EDMF) 

In case of duplicated genes, let A = {gl, gz, . . . , g k )  be a set of genes (a uni-chromosarne 

permutation) relating to  7r of length n in the following way. Each gi is represented by 

either a symbol, a character, or a number. For each gene gi ( 1  5 i 5 k), let K(gi) be the 

number of occurrences of gi having either + or - sign1 in .rr and # such that K(g,) 2 1. 

A gene is eallcd a single if it is the only member of a gcnc family in that genome, 

K(gi) = 1. Otherwise the gene is referred to as a member of a multi-gene family. Since 

thc breakpoint graph does not recognisc multi-gene families, cach multi-gene member 

clement, q, must be systematically renamed for thc graph to be used to determine the 

minimum rcvcrsal distance. 

Tablc 3.1: An example of two copies of an element 2 and three copies of a element 3. 

Table 3.2: An example of thc renaming results, me, and $,, by temporary names X I ,  

'a sign + or - is associated with each genc representing its transcription orientation, i.c., on which 
of the two comp~cmcntary DNA strands thc gcnc is lacatcd. 



Consider the example shown in Tablc 3.1 of the permutation T = ( +4, + 1, +2, +2, +5, 

+6, +7, +3, +3, +3, -8, -9 ). Elements r3 and 7r4 contain the samc gene represented by 

number 2 and r8, rg, and .rrlo contain the same gene represented by number 3. These 

two gene families are rearsangcd and rclocated a t  new positions in 4. To uniquely re- 

name each element, first, all elements in a are renamed according to their positions 

with respect t o  #. Symbols XI, 22 arc introduced as temporary names for all duplicated 

elements, 7r3 = 7r4 = 2, and symbols 31, y2 and y3 are introduced as temporary names 

for all duplicated elements, .rr8 = ng = nlo = 3. The renaming results for both rn, and 

$,, (identity) arc shown in Table 3.2. 

The elements XI  and x2 in T can be assigned two possible labels (2 or 3) and, similarly, 

the elements yl, yz, and y3 in .rr can be assigned three possible labels (7, 8 or 9). Hence, 

for this cxamplc, thcre arc 2! x 31 possible namc assignments as the following - d l 2 ) .  



Each assignment may result in a different genomic distance. The minimal one can 

be found by generating and testing all msignments. However, the processing time grows 

rapidly with the numbcr of duplications. Therefore, we turn to an efficient heuristic 

method for assigning a final namc for cach temporary namc. Thc approach can be 

described in thrcc steps. 

1. Creating the incomplete breakpoint graph. 

Thc incomplete brcakpoint graph, IG,  is a graph that has the same structure and 

propcrtics as thc brcakpoint graph. However, it is not complete in the sense that 

thc final names of some ~i are known. Consider the exampIe shown in Table 3.2. 

A signed pcrmutation rn,, = (+5, +1, XI, xz, f 4 ,  +6, +11, y1, y2, y3, +lo, +12) 

becomes an unsigned pcrmutation T;, = (0, 9, 10, 1, 2, XU,  xlz, 2 2 1 ,  ~ 2 2 ~ 7 ,  8, 11, 

12, 21, 22, Y l l )  yl2, 321, y22, 331, Y 3 2 ~  19) 20, 23, 243 25), where xl, x2 arc replaced 

by th.c variables, (m, m ) ,  (221 ,  ~ 2 2 ) ~  and yl, y2 and 33 arc rcplaccd by ( y ~ ,  312)) 

(y21, yZ2) and ( ~ ~ 1 ,  y32), respectively. The final names of xi, for 1 5 i 5 2 and 

yj, for 1 5 j 5 3 arc so far unknown. The exampIe of the incomplete brcakpoint 

graph of T' is shown in Fig. 3.1. 

- - - Deterministic gray edge 

0 9 10 1 2 x11 x l Z x 2 1 x 2 2  7 8 I I 12 21 22 y l l  y12 y2l yW y31 y32 19 20 23 24 25 

Figurc 3.1: An cxample of an incomplete breakpoint graph IG for T' 

With all variables in place, all black edges can be identificd. These black edges 

are {(0,9), (10,1), (2, XU), ( ~ 1 2 , ~ 2 1 ) ,  ( ~ 2 2 , 7 ) ,  (8, 11)7 (12,21), (22, ylr), (~12, Y~I), 

(yzz, y3?), ( Y ~ ~ ,  19), (20) 23), (24,25)). Howcvcr, only the gray edges not coinciding 



with variables can be identified in the first instance. The remaining gray edges are 

identified during the resolution of the actual names of the variables, specifically 

511) 5121  Z Z ~ ,  2 2 2 )  Y l l )  Y121 2/217 Y221 Y311 Y32. All gray edges are clssified into 

two groups, deterministic and non-deterministic edges, according to the following 

characteristics. 

(a)  Deteminis t ic  gray edge: the pair (T;, T ; )  in IG,  1 5 i < j 5 2n + 2, is 

connected by a deterministic gray edge if 7 ~ :  and T; arc not variables, and 

= T; + 1 or T: = 7~; - 1. For example, the deterministic gray edges in Fig. 

3.1 are {(0, 11, (8,9), (10,11), (20,21), (22,231, (24,25)}. 

(b) Non-deterministic gray edge: an edge connecting a pair IT:, T;) such that 

either .rri or nj is a variablc or both of thcm are variables. For example, edgcs 

(2, zlr) and (2, x ~ ~ )  are non-deterministic gray edges. Only one gray edge, 

cithcr (2, xI1) or (2, x ~ ~ ) ,  can bc incident with vertex 2. Thc cxistencc of this 

gray edgc dcpcnds upon the correct assignment of vertex 3 to either xll or 

221.  

Thc namcs of XI, x2 can be either +2 : (3,4) or 43 : (5,6) and the namcs of yl, 

yz and y3 can be either f 7 : (13,14), +8 : (15,161 or f 9 : (17,18). Hence, the 

names of xil must be 3 or 5, for 1 5 i 5 2 and the names of x jz  must bc 4 or 6 , 

for 1 5 j 5 2. In the same way, the namc of yml, for 1 5 m 5 3, must bc 13, 15, 

or 17 and the name of Yk2, for 1 5 k 5 3, must be 14, 16, or 18. 

2. Generating all possible solutions for all non-deterministic gray edges. 

Let Ea be the set of non-deteminist ic  gray edges for the corresponding actual 

vertex pair (GI, G ~ )  in T;,. However, thc actual namc of either or a,a may 



Table 3.3: The seven possible edge groups (El - E7) and the 24 non-deteminhtic gray 

edges (el - ez4) of the incomplete breakpoint graph ( IG).  

Sl 

exist or may not cxist in &,,. For example, both vertices 2 and 3 in .rr;,, must 

bc cenncctcd by a gray edge, but vertex 3 does not exist in T&,. The possible 

vertices that can be assigned vertex 3 are xll and xzl. Thus, all nun-deteministic 

gray edges in this case arc ((2, xI1) , (2, xzl)). Obviously, only onc gray edge is 

selectcd from this set. For cach Ei, all non-deterministic gray edges are subject to 

the following steps and the example is shown in Tablc 3.3. 

Lct T = {TI ,  T2, . . . , T,} be the set of temporary namcs for the samc du- 

plicated gene, Vk be thc set of variables for temporary name Tk, and Bk bc 

the sct of final names for tempomry name Tk, 1 5 k 5 q. For example, TI = 

{51,x2), VI = {(~11,~12) ,  (~21,~22)), B1 = (13,4), (5,611. 

e Vk is split into two sets, i.e. Vlk and hA: such that Vlk contains all the first 

clcmcnts for cach order pair of set Vk, and Vzk contains all the second elements 

for each order pair of sct Vk. Similarly, thc Bk is also split into two sets i.e Blk 

and BTk. Note that the set Vlk corresponds to Blk and the set V2, corresponds 



m For a vertex pair (azz, a;?), thc variables ail and aia arc chcckcd to gcncratc 

possible non-deterministic gray cdgcs i.e el - e24 in Tablc 3.3. There are 

three possiblc cascs as follows: 

1. Variable ail exists in T:,, but aiz does not. 

This implics that the namc of is known, aiz is assigncd to a variablc 

name in set Vlk if its actual name is in set Blk. Otherwise, it is assigned to 

a variable name in set Vzk. For example, the vertex pair (2,3) in El shown 

in Table 3.3 has two non-deterministic gray edges, {(2, zl1), (2, z ~ ~ ) ) .  

This is because vertex 2 exists but vertex 3 does not currently exist. All 

possiblc solutions of this case are max(lVIkl, [&I). 

2. Variable ail does not exist in TI,, but ~2 does. 

ail is assigned to a variablc namc in set Vlk if its actual name is in set 

B l k .  Otherwise, it is assigned to a variable in set of hk. For cxamplc, the 

vertex pair (18,19) in E7 (shown in Tablc 3.3) has three non-deterministic 

gray edges, {(y12, 191, (yZ2, 19), (pS2, 19)). All possible solutions of this 

are max(lKkl, I h k l ) .  

3. Both ail and ~2 do not exist in T;,,. 

ail is assigncd to a variable in set Vlk if its actual namc is in sct in 

Blk.  Otherwise, it is assigned to a variable in sct VPk. ai2 is assigned to  a 

variable in the other set different from the assignment of 4 1 .  For example, 

consider the vertex pair (14,151. Both vcrtices 14 and 15 do not exist 

in T;,,. Vcrtcx 14 must be assigned to a variablc in {ylz, y22, y32) and 

vertex 15 must bc assigned to  a variable in {yll, yzl, ysl). Thcreforc, all 



possible: gray edges are ((~12, NI),  (~12, ~ 2 1 1 ,  (ylz, y31)j ( ~ 2 2 ,  ~ 1 1 ) )  (322, ~ 2 1 1 ,  

( ~ 2 2 ,  ~ 3 1 )  1 ( ~ 3 2  1 ~ 1 1 )  1 ( ~ 3 2 )  ~ 2 1 1 1  (~32 ,~31))  + However) some gray dges) e-g- 

(y12, Yl1), (~22, ~ 2 1 ) ~  ( ~ ~ 2 ,  $!31), arc incorrect because they are generated 

from the same tempomy name. Edges (ylz, yll), ( ~ 2 2 ,  ~ 2 1 1 ,  and (~32 ,5131)  

arc generated from y,, yz, and y3, respectively. These incorrect gray 

cdges are discarded during the construction of the incomplete breakpoint 

graph. All possible solutions in this case are ]Vlk[ x lVZEl - ]tl, where t 

is thc set of order pairs that generated from the samc tempomy namc. 

All possiblc and correct gray edges, labelled by el -e24, are shown in Table 

3.3. Each gray cdgc is denoted by a variable e k .  This variablc is uscd in 

thc integer pmgmmming procedure (described in thc following scction) as 

a decision variable. Thc value is set to 1 if its corrcsponding gray edgc is 

sclectcd, otherwise it is set to 0. The numbcr of all possible solutions - 

typically very Iargc - dcpends on the number of duplicatcd genes. As the time 

efficiency of integer programming introduces a major bottleneck, we rely on 

the following observation: Each temporary name T~ is dccomposcd into two 

variables T ; ~  and ~ 5 ,  in T;,, and some non-deteministic gray edges must bc 

connected to these variables. This indicates that each tempomy namc can 

gcncratc a set of non-deteministic gray edges for connecting only all of its 

corrcsponding variables in n;,, and the others variables. Bascd on thc fact 

above, somc Ei's rclated to the same temporarg names can be grouped. For 

example, El, E2, and E3 in Tablc 3.3 can be in the samc group since they 

arc related to the temporay namcs X I  and x2. From Table 3.3, d l  Ei are 

grouped and named as follows: Sl = {El, &, E3) and S2 = ( E d ,  ES, E6, 

E7) - 



3. Formulating the Binary Integer Programming. 

For any incomplete breakpoint graph, since a black edge must be directly connected 

with a gray edge and vicc versa, a path can be formed by alternatively traversing 

thcsc cdgcs. This path can bc classified into two typcs. 

(a} Type A: the path of this type forms a cyclc and this cycle is named a complete 

cyclc. 

(b) Type B: any path not in type A belongs to this type. A path of this type can 

form a cycle with itsclf or with other paths of type B only after the variable 

names of some mi in T' are assigned the final namcs and some gray edges are 

connected. The cycle is named an incomplete cyclc, and the vcrtcx that is 

not connected by any gray edge is named a non-linking vertex. 

al, a t  : romplctc cycle 

h1,1~2.1~3.h1,1~5,1~66h7 : incntirl~lutc rvclf 

0 9 10 1 2 ~ 1 1 x 1 2 ~ 2 1  x22 7 8 11 I2 21 22 ylil y12g21 y22 y f l  y32 19 20 23 W 25 

Figure 3.2: Cycles in I G  named a1 and a2 are type A and b l ,  b2, b3, b4, b5, b6, b7 are 

type B. 

An example of both typcs is shown in Fig. 3.2. There are two complete cycles or 

type A paths. 

u lSt complete cycle (al): {(9,O), (0, I), (1,10), (10,11), (11,8), (8,911. 

2"5omple te  cycle (a2): ((24,251, (25,24)). 

For typc B path, there are seven incomplete cycles. 



lst incomplete cyclc (b l ) :  ((2, xll)). 

a Znd incomplete cycle (b2): {(xI2, x ~ ~ ) ) .  

3'd incomplete cycle (b3): E(x22,T)). 

dth incomplete cycle (b4): {(12,21), (21,203, (20,23), (23,221, (22, yll)). 

. 5th zncomplete . cycle (b5): {(y~z, 921)). 

6Eh incomplete cyclc (b6): ( ( ~ 2 2 ~ ~ 3 1 ) ) .  

7th incomplete cycle (b7): ( ( ~ 3 2 , l g ) ) .  

While completing the breakpoint graph, thc sct of gray edges needs to satisfy 

the following properties: (1) cvcry non-linking vcrtex is incident to exactly one 

gray cdgc, and (2) only one gray edge from each edge group (E,) is selcctcd. 

Eq. 2.2 provides the essential cluc to achieve thc minimum number of reversals 

by minimizing b ( n )  - ~(71). Thc sclcctcd gray edges should create the maximum 

number of cycles. Because all paths of type A arc complete cycles, there is no 

need to consider these complete cycles. Only the number of these complete cycles 

is used to estimate thc minimum three edit distances. Thc focus is on finding the 

maximum number of cycles formcd by thc paths of type B . To find the maximum 

number of cycles from type B paths, the weight w, for each edge ei is defined 

according to thc following heuristic rules. Fig. 3.3 illustrates the meaning of each 

case. 

case 1: wi = 1 if .q forms the complete cycle size 1. 

case 2:  w, = 2 if ei joins two vertices in the same incomplete cycle. 

case 3: w; = 3 if ei joins two vertices in different incomplete cycles. 

Thc following notations arc used for describing thc application of binary integer 

programming. 



case 1 : w 
v l  v2 - -2 \ 

deterministic gray edge 
/ 

----. s/ 
* - - . ;  ' . . . . ' ,  

. ,  
case 2: ';t. c 

v l  v2 v3 v4 v l  v2 v3  v4 

Figure 3.3: An cxarnple of threc cases for connecting edge G. The detemninisfic gray 

edgc is denoted by a dashed line while the non-deterministic gray edges are denoted by 

dotted lines, vi is a vertex in the incomplete graph. 

lik : equals to 1 if edge ek  belongs to an incomplete cycle b;, otherwise 0, 

NB : the number of incomplete cycles type B. 

Ngi : the number of variables for cycle i of type 3. 

N, : the number of possible gray edges. 

G : the number of possible gray edge groups. 

G, : thc numbcr of possible gray edges for group p. 

Objective Function: 

Minimize ui ei 



Constraints: 

ei - ej = 0 ; every pairs Ek and Ek+l; 

for i=l t o  G, (p=k), 

and for j=1 to G, (p=k+l) ,  

and implies ej .  

The objective function 3.2 minimizes the wcight of candidatc cdgcs (thc minimal 

wcight forms the maximum cycles). The constraint 3.2 ensures that the number 

of selecting edges ek docs not exceed total numbcr of variables for each cyclc Bi, 

constraint 3.3 ensures that only one possible gray edge is selcctcd for each group, 

and constraint 3.4 ensurcs that two selected edges arc correctly transform from 

the same temporary name. Once this algorithm is completed, all variables are 

assigned final values. Finally, Eqs. 2.2, 2.4, and 2.5 can be applied to  computc 

the minimal reversal, transposition, and transversal distances bctwccn the two rc- 

labelled gcnomes, respectively. The outline. for the EDMF algorithm is shown in 

thc following section and thc cxamplcs of valuc sctting are shown in Tablc 3.4. 



Algorithm EDMF 

Input: (1.) Permutation n and 4 of length n. 

( 2 - )  Set of gcnc family g = {{gl), {g2), - .  . I {gk)). 

Output : The selected gray edges are compIctcd thc incomplete breakpoint graph. 

Begin 

I. Renamc cach family gi ,  K(g,) = I, of .rr with respect to 4, 

and rcplace cach family gi, K(gi) > 2, of T with respect to 4 by temporary narncs, 

gill giz, . . . , g i ~ ( ~ , )  and keep the mapping position. 

2. Transform the signed permutation .rr to unsigned permutation T' by rcplacing 

each actual value .rri by (27rz - 1,27rz) if .ni is positive and (2 1 T, [,2 / 7ri 1 - 1 ) 

if n; is negative. For name gzjI transforms to variables gijl and g i j z .  

3. Construct an incomplete brcakpoint graph ( IG)  for T'. 

4. Identify all black edges and deterministic gray edges in IG.  

5. Identify possible gray edge groups (E) and nun-deterministic gray egdes ( e )  

and the weight setting for each non-deterministic gray edge. 

6. Formulate the binary integer programming (BIP) from equations 3.1-3.5. 

7. Solve thc equations 3.1-3.5. 

End 

3.2 Observation 

The outcome from the EDMF algorithm is discussed in this section, which will concern 

estimation of the number of cycles in incomplete breakpoint graph and the edit distances 

of thc EDMF algorithm. A fcw thcorctical group work are establish to formalize some 

framework for the propose appraoch. 



Lemma 1. Given a n  incomplete breakpoint graph IG, the number of possible cycles of 

type B in ease 3, Nf), is 

n is the total number of black edges in IG. bA is  the number of black edges for cycles of 

tgpe A. bl and bz are the number of black edges for cycles of type B in cases 1 and 2, 

respectively. 

Proof. The number of black cdges far cycles of types A and B in cascs 1 and 2 arc 

obviously fixed. Then, the cyclm of type B in case 3 must be formed from the remaining 

black edges not in cases 1 and 2. Note that each cycle of type B in case 3 must use at 

least two black cdges to complete the cycle. Therefore, the number of cycles for type B 

n-b -Ir1-!!?2 incasc3isL A ,  1. 

Theorem 1. Given a n  incomplete breakpoint gruph IG, the number of cycles in the 

incomplete graph, C, has the following upper bound 

NA is the  total number of cycles of type A. N:' is the number of cycles of type B in 

case i, I 5 i 5 3. 

Proof. Evcry cycle of type A is completed by itself without involving any cycle of type 

B. Similarly, evcry cycle of type B needs no cycle of typc A as a part of itself. In 

addition, each case of type B is indcpcndcnt from the other cases of type 3. Therefore, 

counting thc  total number of cycles of type A and all cascs of type 3 can be considered 

scparatcly. Without loss of generality, a given incomplete graph has cycles of both types. 

Therefore, the upper bound for the number of cycles is stated as above. 



Theorem 2. Given two genomes a and $, the EDMF has the reversal distance with 

muti-gene families 

d,, > n - C 

when the number of hardles is 0 and the fortress factor i s  also 0. n is the number of 

black edges. 

Proof. Sincc thc valuc of C has the maximum value as proved in Theorem 1 and the 

numbcr of black edges for the given incomplete graph is a constant, the minimum reversal 

distance, d,,,, is bounded by n - C. 

Theorem 3. Given two genomes T and #, the EDMF has the transposition and transver- 

sal d.istance with muti-gene families 

when n is the number of black edges. 

Pmof. Sincc the valuc of C has the maximum value as provcd in Theorem 1 the minimum 

transposition and transvcrsal distance with rnuti-gene families, dt,, is bounded by v. 



Table 3.4: An cxamplc of setting valuc for lik and wk for 24 5 k 5 1 and 7 5 i 5 1. 



CHAPTER IV 

EXPEMMENTAL RESULTS 

We implemented the EDMF aIgorithm in MATLAB version 7.0 and tested it for correct- 

ness and pcrformancc. All tests were performed on Sony laptop with 1.6 MHz Pentium 

IV processor and 1 GB of RAM, running on Microsoft Windows XP. The optimization 

toolbox for MATLAB version 7.0 was used for irnplcmcnting Binary Integer Progrm- 

ming (module bintprog). Test data fell into two categories: synthetic and real biological 

data. Oncc thc EDMF algorithm is completed, all variables are assigncd final valucs 

l ie .  transformed incomplete breakpoint graph into complete: breakpoint graph). The 

Eqs. 2.2, 2.4, 2.5 can be applied to compute the reversal, transposition and transversal 

distance between the two relabelled genomes, respectively. The experimental results 

arc shown in the following sections. 

4.1 Minimum Reversal Distance with Multi-Gene Families 

4.1.1 Synthetic data 

The synthetic data set for computing the reversal distancc with multi-gene families is 

gencratcd as follows: 

1. Start from .rr with m distinct symbols whose signs are also generated randomly. 

2. Randomly gcncrate f families, where each family has random size 2 5 K ( f i )  5 4, 

recursively combining single gene until the size equals to K (fi). 



To obtain the genome 4, we performed t reversals on the genome T.  The boundaria 

of thme rmdom me ~lniformly distributed within the size of genome. 

The accuracy of olu method w~ compared to that achieved by the SRDD algorithm. 

The executable prosam is provided from the authors 1111 . A l t h g h  SRDD was not 

originally proposed to compute the reversal distance, but its objective WM closely related 

to this problem. We ran the EDMF and SFLTID on 10 random instances. We compared 

the calculated reversal distance, from the q e t i o n  2.2, with the exact minimal reversal 

distance obtained by the authoritative program GRAPPA v;ersion 2.9 [a], moduIe of 

imdiqt,  to compute the reversal distance for all poasibilitia and found the best one that 

has the minimal reversal distance. 

Fig. 4.1 and 4.2 show the average performance of both algorithm over 10 instan- 

in terms of reversal distance, in camparison with the exact minimal reversal di~tance as 

determined by GRAPPA (inwdist). 
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Figure 4.1: The revmal distance of both SRDD and EDMF comparing with the exact 

revensal distance &om GRAPPA (invdist) for genome length 100 and 10 gene families. 
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Figure 4.2: The reversal distance of both SFlDD and EDMF comparing with the exad 

reversal distance from GRAPPA (invdi~t) for genome length 100 and 20 gene families. 

On the average, each run of both EDMF and SRDD algorithm taka 1- than 10 

fiecan&. Our heuristic algorithm consistently produces a closer estimate of the exact 

minimal reversal distance compared to SRDD, for each t > 35. Hawever, both algorithms 

underestimate the actual reverad distance ( t ) ,  for each t > 35. The last line from both 

Fig. 4.1 and Fig. 4.2 show the reyerad distances that are estimated from theorem 2 

(Chapter 111). However, dl distmcm are undemtimate from EDMF and =act distance, 

because the assumption to h d  the number of cycle in type B case 3 from lemma I is 

the cycle of type B zn m e  8 that must we at 1m.d two black edges to complete the cycle. 

Therefore, the estimated cycles from theorem 1 are greater than the exact cycles. That 

m a ,  the estimated reversal distances from theorem 2 might be less than the exact 

reversal distances. These stat istics indicate that our algorithm is quite reliable in finding 

the nearest minimal reversal distance with multi-gene families. 



4.1.2 Real biological data 

We downloaded the X chromosome of human, (Homo Sapien, NCBI build 34, July 2003 

UCSC hg 16) mouse CMus musc~llus, NCBI build 32, October 2903; UCSC mm4) and 

rat (Rattus nomgim,  Baylor HGSC v.31, June 2003; UCSC m3) from the SOAR web 

page (h~://w~.~~.uw.edu/dnchen/s~~,r.h~l). There are 922 genes from human X 

chromosome, 1030 genm from mouse and 899 gens from rat, respectively. We also 

used information about gene familiea from this site. There are 355 families of size one 

between human-mow, 321 between human-rat, and 348 between mauserat. The size 

distribution af gene families with more than two members are shown in Fig, 4.4. 
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Figure 4.3: The size distributation of gene familhi constructed for each pair of genomes. 

The number of gene families of size one am not shown in the figure for clarity (they are 

355, 321, and 348, respectively). 



By using the SRDD, the reversal distance and breakpoint distance between human- 

mousc are 124 and 143, between human-rat the distances are 119 and 135, between 

mousc-rat they are 155 and 188, respectively. We ran EDMF for all genome combina- 

tions. The comparative results for all three pairs of genomes are summarized in TabIc 

4.1. 

I I 1 I / Distance 1 (minute) 

Table 4.1: Rxsults of reversal distance from EDMF comparing with SRDD. 

X chromosome 

of 

The results show that SRDD and EDMF determine similar distances for human- 

mouse and human-rat. We believe that thc inconclusive result is due to  the low estimated 

rcvcrsal distancc bctwccn human-mouse and human-rat (34 and 35% of the number of 

single genes, respectively). According to thc synthctic data, both SFDD and EDMF 

obtain similar minimal distances when t 5 35. However, the EDMF improves slightly on 

SRDD for thc mouserat comparison, both in terms of brcakpoint and reversal distance. 

Noteworthy, the estimated rcvcrsal distance bctween mouse and rat is 45% of thc number 

of single genes. 

human-mousc 

human-rat 

rat-mouse 155 154 188 184 136 

Reversal Distance 

143 

135 

20 

SRDD 

124 

119 

EDMF 

Breakpoint Distancc 

119 

108 

Lowcr bound 

Rcversal SRDD 

18 

15 

124 

119 

Computing 

time EDMF EDMF 

143 

135 



4.2 Minimum Transposit ion Distance with Multi-Gene 

Families 

4.2.1 Synthetic data 

The synthetic data sct for computing the transposition distance with multi-gene families 

is generated as follows: 

1. Start from 7~ with m distinct symbols whose signs are plus (+) because the problem 

of transposition distanc is unsigned. 

2. Randomly generate f families, whcre each family has random size 2 5 K( fi) 5 4, 

i.e recursively combining single gene until the size equals to K(f*) .  

To obtain the genome 4, we pcrformed t transpositions on the genome T .  The 

boundaries of these random are uniformly distributed within the sizc of gcnomc. 

Unfortunatdy, therc is no real bioinformatics tool to calculate the transposition dis- 

tance or sorting by transposition. Therefore, we took an indirect approach to computing 

the transposition distancc by using the rnodulte invdist of GRAPPA to find thc number 

of cycles for all possibities. Wc havc also used thc Eq. 2.4 to calculate the transpo- 

sition distancc and sclcctcd onc that had the minimal distance (becausc the dominant 

parameter of Eq. 2.4 is the number of cycle from the breakpoint graph.). 

In order to rigorously test for thc correctncss of our method, we ran the EDMF 

on 10 random instances. Fig. 4.4 and 4.5 show the average performance of EDMF 

algorithm over 10 instances in terms of transposition distance, in comparison with the 

cxact minimal transposition distance as determined by GRAPPA. 



Figure 4.4: The transposition d i ~ t m c e  of EDMF comparing with the exact transposition 

distance from GMPPA for genome length 100 and 10 gene k i l i e s .  
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On the average, each run of EDMF takes l a  than 10 seconds. However, the rea- 

son why we do not show the comparisons with other dgorithms is bemuse there is no 

rewmch on transposition distance with multi-gene fmilies. The results only show the 

calculated transpositon that are estimated from EDMF algorithm compare with the ex- 

act transposition distance that computed from the GRAPPA program. The last line is 

the estimated transposition distance from Theorem 3. 
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4.3.1 Synthetic data 

  he synthetic data set for cumputing the tranmmaI distance with multi- gene families 

is generated as follows: 



Figure 4.5: The tramposition distance of EDMF comparing with the exact transposition 

distance from GRAPPA for genome length 100 and 20 gene families. 
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2. Randomly generate f families, where each family has random size 2 5 K ( fp) 5 4, 

recursively combining single gene until the aize equals to K(  f*). 
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To obtain the genome 4, we performed t tramwr6al on the genome K .  The boundaries 

of these random are uniformly distributed within the size of genome. 

Unfortunately, there is no real bioinformatics tool to calculate the trap$pArsd & 

tmce or sorting by transversal. Therefore, we took an indirect appro&, CLS same as 
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the tm~posi ton ,  to computing the trmsverml distance by using the module inwdbt of 

GRAPPA to find the number of cycles for all possibitim. We have also used the Eq. 

2.5 to calmdate the trmwersal distance and selected one Chat has the minirnd distance 

(because the dominant parameter of Eq. 2.5 is the number of cycle b m  the breakpoint 

m p h ) .  



In order to rigorously test for the correctness of our method, we ran the EDMF on 

10 random instances. Fig. 4.6 shows the average performance of EDMF algorithm ovcr 

10 instances in terms of transversal distance, in comparison with the c x x t  minimal 

transversal distancc as determined by GRAPPA. 
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Figure 4.6: The transversal distance of EDMF comparing with the exact tramversa1 



CHAPTER V 

CONCLUSION 

The main problem of genomc rcarrangcmcnt conccrns the approach to computing the 

distances (reversal, transposition and transversal) or transforming one genome to anot hcr 

by a minimum number of the operations. Thcre arc many efficient methods to find the 

shortcst distancc. However, all of them are used for genomcs that have not contain gene 

duplications. In this dissertation, we try to solve the problem of gene duplications. A 

new heuristic algorithm to transform the duplication genes problcm to  non-duplication 

problcm and to find the nearest minimal thrce cdit distances (reversal, transposition, 

and tmnsversal) between gcnomcs with multi-gene families is proposed. 

We show how to extend thc Hannenhalli and Pevzner thcorcm and concept of the 

brcakpoint graph to genomes with multi-gcnc families. The approach uses the notion of 

a brcakpoint graph, but readily provides means for exploring possible combinations of 

duplicate genes across genomcs. The exploration is done using binary integer program- 

ming optimization based on pr~dctcrmincd penalties for properties of an incomplete 

vcrsion of thc brcakpoint graph. 

We seperately show the experimental results for each edit distance as follows: 

1. For the reversal distance with multi-gene families, we have tested on synthetic 

and rcal data sets (from human, rnousc and rat X chromasomc) and comparing 

our results with thc cxisting algorithm, SRDD. The rcsults demonstrate that our 

approach (EDMF) generally outperforms the SRDD algorithm in term of accuracy 



of determining thc minimal revcrsal distance. Moreover, wc havc compared our 

results with the exact rcvcrsal distancc (thc distancc that finds from all possibites 

permutation, using thc GRAPPA, and pick one that obtain thc minimal distance). 

The results show that our rcvcrsal distanccs are closcd to the cxact distancc. 

2. For the transposition distance with multi-gene families, we have tested on synthetic 

data sets and compared the results with the exact transposition distance (the 

distance that finds from all possibities permutation, using the GRAPPA, and pick 

onc that yield the minimal distancc). The results show that our transposition 

distances are closed to the cxact transposition distancc. 

3. For the transvcrsal distancc with multi-gene familics, we have also tested on syn- 

thetic data sets and compared the results with the exact transvcrsal distance (thc 

distance that finds from all possibities permutation, using thc GRAPPA, and 

pick one that yields thc minimal travsversal distance). The results show that 

our transvcrsal distanccs are closed to the exact distance. 

From the experimental results, we can conclude that the heuristic algorithm to  com- 

puting thc ncarcst minimal edit distance for muti-gcnc families via binary integer pro- 

gramming is quitc reliable in finding the nearest three edit distances with muti-gene 

families. The genome rearrangcrncnt with multi-gene families problcm may havc thc 

following furthcr studics: 



1. To apply with multi-chromosome problem. 

2. To apply with the other mutation cvcnts such as insertion, deletion, fussion, and 

fission. 

3. To apply with unequal number of gene families bctwccn two genomes. 

4. To apply with unequal lcngth of two genomes, 
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