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CHAPTER 1

INTRODUCTION

1/

| //

1.1 Introduction and Problem Review
2 '

In order to understand evolutiot, we would like to kriow how all species on earth are re-

lated to cach other, n has been studied for several centuries, using techniques

‘/-‘

gy and paleontology. With the advent of techniques

to study the genomeof a gpeeies Phesc 1ga.tmn3 have entered a new era. Suddenly,

' 17243 4
5 18 t.Im a,rt_uf @}cmng reliable genomic data and quantifying

Add°

it into evolutionary relatio su’a'Ih?ﬁchmw‘W;,(m may use any genomic data available

to us. In this dissertation, we ?ﬁII cmme%gp gene order data, i.e. data regarding

the position of thgﬁeu& in the genome. In a species, theé}re a large number of genes
and the ordering n‘{/_the genes is hugely important. ﬁhm‘?vc are interested in the order

of genes, we label eil‘.‘il gene a unique number. This nu_lh’f:-cr can be unsigned. If a label
of a gene is signed, for insﬁu‘ice -5, it means that this gene is the reverse of another gene,
which is labeled as 5.

When comparing gpnnmm,.m,mﬁérmt- species, a-piece of chramoesome in one species
can be moved or m‘p:ed to a different location hl'a.nﬁther“spetim; Eﬂsitaﬂy to compare
two genomes, we often find that these two genomes contain the same set of genes. But

the order of the genes is different in different genomes.



For example, it was found that both human X chromosome and mouse X chromosome
contain eight genes which are identical. They are labeled as 1,2,.. ., 8.
In human, the genes are ordered as

4,6,1,7,2,3,5,8

and in mouse, they are ordered as

1,2,3,4,5,6,7,8. 0
Similarly, it was found that %@A hagc as

1,-5,4,-3,2
‘—_"' ‘
and in turnip, they M Ar \\
1,2,3,4,5. /l \

the similarity of two gena *‘--‘-- re the similarity of two genomes
by measuring how easy it is M}Q}&h}%ome to another by some operations.

Here’s the ulitmate goal of genome rea t studse ~Therefore discovering what

_.\NJi _
ﬁ er of occurrance, there is a
!

understanding of the evolutionar ‘pmcms.
The geno crfiént a es have been widely studied in the last decade
SV 110010 01120 i SN
ﬁa to another.
In tmﬁmm mmﬂmcm event,

followed by transposition and the fransversal (inverted transposition) operations. In a

chance to get a bett

reversal, a segment of genes is taken out of the genome and put back in reversed order.

In a transposition, a segment of genes is taken out and put back at another place in



the genome, and a transversal is a segment of gene taken out and put back reversed
at another place. More formal and precise definitions are given in Chapter II. Three

examples describing three operations are as the following figure,

A reversal : Genome X ;3 1.5 2 4 —> GenomeY:3 -2 -5 -1 4
A transposition : Gepome X :3 L. 5.2 4 ——> GepomeY:3 2 | 5 4

A transversal Gﬂmmx*ﬁ‘l_lw—bﬁmmc‘f 32514

Figure 1.1: The cxamp'li?ﬁf"thrée angmﬁﬁﬁt’ﬁtnts (reversal, transpostion, and

metjon that the compared genomes have the same
y dffﬂﬂ— mdh genome. However, this hypothesis may
ﬂa,..l:.g ‘ﬁruses and organelles, it is clearly unsuitable
é é:z;‘eralléﬁlé of highly paralogous ' and orthologous

JAJ -/A

he, genome. _In this case, it is important to introduce the

_— - o‘

for divergent species

2 | scattered across

genes
possibility of having diﬂ'erent’cﬂ,plm of m@e_;gene. e.g. gene duplication (also called
multi-gene fam:ii@i, These copies m&y be idenﬁml, afémd to have a high similarity

with BLAST-like se'lgph. They may be ad,iamntvmthe ﬁi’rglc chromosome, or dispersed

throughtout the gcm)m{: As an example, Table 1.1 hé'lé the estimate numbers of du-
plicated gnnu in complct:ﬁl‘y or nearly complcteljrvfscqucnm genomes of representative
bacteria, archﬂbectcrm and m}.amhs One. ﬂn-:ﬁ that in all three domains of life,
la.rgﬂ prnpnnwns n;t' genes were gﬂuerated by, gene dilphcatmu [10].

Sm’cc e are tﬁhafﬁrmmg & sequienice of mmmbers‘into aﬁuthwsequmﬁe without los-

ing generality, we may always assume that the target sequence is 1,2, ..., n. The similar-

'Paralogs are genes that were duplicated from a single gene on the same genome.
?Orthologs are genes in different species that evalved from the same gene in the last common ancestor
of the species.



Table 1.1: Prevalence of gene duplication in all three domains of life.

Total Number of duplicate
number  genes (% of
of genes  duplicate genes)

Mycoplasma p oniae 208 (44)
N 266 (17)
284 (17)

719 (30)

1858 (30)
8071 (49)
5536 (41)
Arabidopsis thaliana— 16574 (65)
0 343 (38)

y the min@um number of rearrangement
operations to transform asequence into another. Because the target sequence is always

1,9,y B aﬂ?}m&wmﬂ@ Bt b 6 6k & wistial

sorting problem which we are familiar-with. This sorting problem is $o%ort a sequence in

s e oo b s b bl e s

in ﬁndﬁ]g algorithm which always sort a sequence with minimum number of operations
including with gene duplication.



Therefore, the significant contribution of genome rearrangement problem discussed in
this dissertation is What is the shortest distance between two genomes by mutation events
e.g. teversal, transposition, and transversal with multi-gene families?. This problem is
the NP-hard problem [11]. The mutations that we consider in this thesis are primarily
reversals, but also transpositions and transversal. The background on genome
rearrangement (non-duplicated gen ;

algorithm for computing the nea : \gt &
Chapter II1. Chapter IV @ e@ and the conclusion is explained

in the Chapter V. / )

1.2 Research

1. To propose a new téarcangement model used N}urrﬂ one genome into another
9%
’ 4

be found in [12, 13, 14]. The new hueristic

with muti-gene families is proposed in

n and transversal

1. The genomes are uni- chrnmusome {single—nhrommfne] including gene duplication.

2 Tl msdm%%‘shﬂ% o

4. The input genomes do not set the probabilities for each three events that might

be oceur in the real life.



1.4 Research Plans
1. Study the various algorithms in the genome rearrangement.

2. Study the original theorem that estimated the reversal, transposition and transver-

sal distance.
3. Apply the original theorem new model and to cope with the multigene
family problem. /
.‘

4. Estimate the cdit distances from this ne wodel.
5. Conclude the experumental res -‘M{ results with those from other
methods.
1.5 Research 2

P TS, A e
.“.f\‘;é‘ﬁ.f:". ¥

1. applicable for :—‘,,_x.‘-- mul
- -

2. used for ..y ing-the-evolutionacy-distance.boty .‘ two any uni-chromosome
genome by th:ﬂ mutal i ﬂ position and transversal.

A OUUINBUINT )
RN TN INENAY



CHAPTER II

THEORIES AND LITERATURE REVIEWS

.f’ /

'/
In this chapter, the basic concepts of bioléggj{g‘tﬁg,ﬁonnal representation of the genome
(synteny, order and pcianty linearity and ecirenlarity, and multi-gene families), opera-

tions and distances (ali W

: Jreakpomt distance and edit distances), and some
literature reviews for duplication y;u briefly revised.

2.1 Introductory Biology 3'44
9|

This dissertation deals ily m1:h mﬂﬁemal:mal aspects of comparative genomics,

but it is also important to know Eé@v mﬂ&é‘:ﬁm maodels are drawn from. We will, there-
:z‘ (J

JJ asadn p llrl
fore, give a short account of thc mmt bmlutmnary biology. Anyone who already
"‘// - \1\4 ‘l--

knows of genes and_\genumas shuuld move on. The dmco'ﬁ? of the genetic material in

living organisms W some 130 years ago and anintﬂ_eﬁﬁng review of the recent and
past development in this area has been given by Aldridge [15]. Less than fifty years ago,
Watson and Crick discovered how nature extracts.information from the genetic mate-
rial. The genbme consists of one or more (46 chromosomes for humans) chromosomes,
cach one consisting of two sequences of nucleotides; paired together'to form a double
helix. \This'is what we call DNA, which. is short for Deoxyribonmeleic agid. There are
four nucleotides: adenine (A), eytosine (C), guanine (G) and thymine (T). These are
always paired, A with T and C with G; this means that both sequences contain the same

information. An example of DNA [16] is shown in the Fig. 2.1



DN A the Molecule of Life f! '

[

\
@ .

il L
chromosomes

Figure 2.1: The example of DNA : the molecule of life,

The function of the information in these sequences is, as far as we know, mostly
as blueprint for proteins. Each triple of nueleotides codes for some amino acid, which
proteins are built of. A segment that codes for a protein is called a gene. Each gene
should be read eithér from-the left-or-from the right, depending on which of the two
mucleotide sequences the gene is positioned at. A gene is defined to be a sequence of DNA
or bases that code for a specific function/protein. However, a gene can have more than
one form or vergion: 8oy while thereamay he a geneforg say, producing hair of a certain
colour, that gene will have different alleles, such as producing brown hair or blonde
hair. A gene s like a vanable that can take different values, to use a computational
metaphore. It is not known for sure how many genes are capable of having different
allelic values or how many different allelic values exist for those genes that can vary. A
genome is defined to be the complete set of chromosomes inherited from one parent.

By identifying genes that are very similar and code for similar proteins, one finds



that man and mice, for instance, share about 99% of their genes. Thus, on the gene
level, the major difference between man and mice is the way these genes are arranged
and not the kind of genes that they contain.

The problem of genome rearrangement is a central problem in computational biol-
ogy. When trying to determine evolutionary distance between two organisms using the
genomic data, one wishes to reconstruet th? sequence of evoltuonary events, which have
occured, transforming one genome into ﬂm{hh@a One of most promising ways to trace
the evolutionary events is fo compare the ord&l;“ﬁgpeamnce of identical (or ortholo-

gous) genes in two d1ﬁ¢m ’Ithe study of geneme rearrangement began in late

1980's. / _ \

2.2 The Form

v

R;B:gon of The Genome

N

Y R \/J . ' 1 .
In contrast to prokaryotes tend to hgﬁ,s;?g]e chromosome, often, circular chromo-

some, the gene in plan

g _ .
pimals, yeasts, and other eukaryotes are partitioned among

BN =
several chromosomes, =

The genome rca;‘rangement’appmach tﬂhm}iﬁaﬂm g?mmlcs focuses on the general
A

4

structure of a chw nOSOme 5]-31(: structure of each gene.

This approach assumm that the problems ﬂfdetiermmlng the identity of each gene, and

its homologs among a snt of genomes, have been solved, so that a gene is simply labeled
by a symbol indicating the ¢lass of hamolegs to which:it belongs.

Three levels of chromosomal structures have been studied in the literature. The
synteni¢ structurejust indicates the content of genés among the set of chramosomes of a
genome. Two genes located on the same chromosome are said to be syntenic (as shown
in the Fig. 2.2). The genome rearrangement approach based on the syntenic structure

infers divergence history in terms of inter-chromosome movements such as fusion and



10

fission. Intra-chromosome movements can be detected only if the order of genes in
chromosomes is known. In that case, a chromosome is represented as a linear sequence
of genes. In the most realistic version of the rearrangement problem, a sign (+ or -) is
associated with each gene representing its transcriptional orientation. This orientation
indicates on which of the two complementary DNA strands the gene is located. The
distance problems in which this level pf; :’t;uct,urc is known and taken into account are

called signed, in contrast to this situation wjég::m directional information are used, the

unsigned case. - 2 ——
Chral : |a E’e’ar, ~abed 41 +b -c -d
Chro? : [a/", /b abecde b +a -b +¢ +d
Chro3: (8¢ cabdca % -2 +b +d =
Synte _ Ckmmﬂg!mgnedcase Ordered, signed case
“d i e
B p. . v
Y ey
4 4;41; 7/‘40 4j g . .
Figure 2.2: The differ Is of chromesome struetures considered in the genome

Add- ~Ndla
: T, = )
rearrangement literature. I Pl
P RTOT N
a )
\,-) - .4[' 7
4 4
2.2.1 Synteny X )
v_/; N

|

The genes in p]ants‘,)lanimals, yeasts and other euka::ﬁteﬁ are partitioned among a
number of chromosomes, generally between 10 and.100 in number, though it can be as
lowas 2 or 3 [17}, or Vmuﬂi' higﬁt;r than 100.- Two gengshmud dn the same chromosome
in a genome are said to be syntenic i’ that genome=

S&thie S ehixarigamadté, ibvolve | pBits of orle khiafbsoms Being relocated to
another chromosome. Syntenic structure is generally different between different species
and usually identical among all the members of a single species. A few species toler-

ate population “heterogencity” involving small differences in syntenic structure, where
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heterokaryotypic individuals are not only viable, but fertile [18].

In prokaryotic genomes, comprising both eubacteria and archaebacteria, the genome
typically resides on a single-chromosome. Organelles, such as the mitochondria found
in most eukaryotes and the chloroplasts in plants and algae, also have relatively small
single-chromosome genomes, containing less than 100 (mitochondria) or 250 (chloro-
plasts) genes, and are believed to be tl:_;efhighly reduced descendants of prokaryotic

endosymbionts. //

2

2.2.2 Order and Polarity ;

Syntenic structure suffi

ﬁyt;a];e the study of geneme rearrangements. Two addi-

tional levels of chromoso, }Me, when they arc available, add valuable information
- - ,

about rearrangement. § gene, Sﬁigﬁ The genes on each chromosome have a

ighic qfféachi@unmm Note that although our discussion in

4 i 7 4
AR /ij‘ ‘i

linear order that is

v,

this dissertation is phr tca:‘n_{i of th{mdcr of genes along a chromosome, the key

aspect for mathematical pt m@g_-"m the m&&f&d not the fact that the entities in the

order are genes. They cuuld«'ﬁ#gﬁ::ll be b@ﬁ{ genes contiguous in the two (or N)

species being compared, conserved chromosomal segmen: , comparative genetic maps
or, indeed, the re;ujifsl of any decomposition of the ”ﬂnl'a\ﬁosnmc into disjoint ordered
fragments, each ideu?:"ijﬁable in the two (or in all N) gensﬁcs.

The next level of structure is the transcription direction associated with each gene.
In the double-stranded DNA of & gﬁnumtt,'typibaﬂy some genes are found on one strand
and are read i the direction<assaciated with tlvat strand) while other genes are on the
complementary strand which is read in the opposite direction. To capture this distinction
in the mathematical notation for a genome, the genes on one strand are designated as of

“positive” polarity and those on the other as “negative.” The latter are written with a
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minus sign preceding the gene label, and genomes and genome distance problems where
this level of structure is known and taken into account are called “signed” in contrast

to the situation where no directional information is used, the “unsigned” case.

2.2.3 Linearity versus Circularity

In eukaryotes such as yeast, amocba, or hﬁ7a s, the genes on a chromosome are ordered
linearly. There is no naturai_la&rtn-right n&’[ ., there is no structural asymmetry
or polarity between one end of a chromosome and the other. In prokaryotes and in

organelles, the single chrom is generally mrm.ﬂa.t ‘This leads to terminological and

notational adjustments, :ni".j';ln“ of left-to-right order becomes the arbitrariness

5 ,m@eﬁn& and the notion of one gene appearing

’ utT]e:'§ no longer meaningful. Most computational
N h,

150N are no iﬁ_),m difficult for circular genomes than linear

- 7 e
A vllj‘ J{

of clockwise versus cou
in the order somew

problems in genome

’ €
OHEs: A-\‘J(vﬁ A;'.//‘
O F T - !
‘,4_3‘:‘;- ‘:’,‘fy:fj
2.2.4 Multi-Gene Families
R ; -
o s
¥ dgl & = - - - e — i :
Implicit in the rearvangeme rature-is-that-both-genonies being compared contain
- | PR N

an identical set of gimlps and the M&W'-hmﬁ?ﬂgimimthalngies] between all pairs
of corresponding genes in the two genomes have previously been established. While this
hypothesis of fiqtie, £nés rady be appropriatefor same smallgenomes, c.g. viruses and
mitochondria, it is clearly unmrranm;l» for divergent species where several copies of the

sam¢ g, o sovérdl tdrifologond (pardlogos) genés idy be seattered atrbss a genome.
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2.3 Operations and Distances

There are many ways of comparing two linear (or circular) orders on a set of objects. In
Subsection 2.3.1, we first discuss one which is not based on any biologically-motivated
model. In Subsection 2.3.2 and 2.3.3, we introduce a distance which is motivated by
general characteristics of genome rearrangements. In the remainder of this section, we

review the many edit distances which are b%d on particular types of rearrangement.

2.3.1 Alignment Traces

One of the earliest suypﬁf}/ ‘ ‘pomparing genomes was to adapt concepts of alignment

in sequence comparis p&r&mﬂlar lmtmn of the trace of an alignment. In its

graphic version, this r¢ cﬁ;’la}ﬂng @c n genes in each of the two genomes, ordered

above thét}t‘hﬁl". and connecting each of the n pairs of

from left to right, one

homologous genes with a ling T]m\mumher of intcrsections between pairs of lines is a

measure of how much one g m:/bmﬂﬁ s:r:raa:i.l((ﬁ}.l-r11:11c respect to the other [19]. For linear
s J/\ :. o
orders, this measure is casily cd&fﬂ&tﬁd Ma]ytlcal tests are available for detecting

_,/ / \ ‘--

non-random s1m1lmltmﬁ in urder, the r:u'culur case is muc},r more difficult. The problem

has to do with thb )pt:mal alignment of the two genum@,} where one circular genome
is superimposed on jc other and rotated in such a way as to minimize the number of

intersections between trace lines connecting genes in the two genomes [20].

2.3.2 Breakpoints

Since genome rearrangements @enerally ivolve incotreetly repairedibréaks between ad-
jacent genes, it seems appropriate to focus on adjacencies when comparing rearranged
genomes. For two genomes G and H |, we define b(G, H) to be the number of pairs of

genes that are adjacent in genome G but not in H. The easily calculated measure b
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is and was first defined in the context of genome rearrangements by Watterson et al.
[21], but was already implicit much earlier in cytogenetic assessments of chromosomal
evolution. For signed genomes, the notion of adjacency requires that the configuration
of transcription directions be conserved, so that if genome (& contains two genes ordered
as r y, then these two genes are adjacent in H only if they oceur as z y or as —y —z.

Example : G = (-2,-3,+1, 46, —54—4} and H = (+1,+2,+3,+4,+5,+6). The
breakpoints of G with respect to H awes //(,e —3), (~3,+1), (+1,+6), (+6,~5),
(—4,+7). Note that (-5, —4) is not abrcakpmrﬁ’ﬁf&e (4,5) appear in H.

Why breakpoint areimpox »

transform G to H, some revel

ut? Intuitively, if (z, ) is a breakpoint, then in order to

of breakpoints is an indi

: thﬂ ﬁrslb er bound

The Breakpoint Dis

‘ usea ,{s thé} , akpmnt. distance b(G, H). In essence we

A-\J 2 La

nt, genes in Uﬁﬂ;ﬂ genomes that are not adjacent in the

The simplest distance
count the number of adj
other. It is not hard to sec that: b{G Hm&umntrm on the space of genomes. We

use the notation &{é] for the number of breakpoints bﬁtégm G and the identity. The
breakpoint dlstanm{ﬁ widely used by the community

Iﬁis ecasy to compute and we do

not have to make a.ﬁ'f specific assumptions about the unﬂerlymg model. In fact, it is a
decent approximation for n'ia.ny of the other distanees we shall look at, although more
refined analyses demand more soplisticated distances.

It has, been-argued by Sankoff.and others, see. for instance [22], that the success and
applicability of the breakpoirt metric comes from its being model independent. We
would like to offer some words of caution regarding this view. First, it is of course not
sufficient for a distance to be model independent. If we let the distance between G and

H be zevo if G = H and one otherwise we definitely get a model independent distance,
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but it will not be of any use to us. Second, the breakpoint distance is by no means
model independent. It works about equally well for the common sets of operations, i.c.
reversals and transpositions, since these operations change the number of breakpoints
by at most two or three, respectively, but if our model would include operations that
change the number of breakpoints by far more, the breakpoint distance would not give

such good results.

2.4 Edit Distances 2

One of the most fund?ﬂmmpm ional problems in comparative genomics, which

must be solved before higher le el problems can be attacked, is to compute the

distance between two lﬂ’-ﬁ,& 'I‘l‘ie Ldea fﬁ to come up with a measure, based on gene

feﬂects as&cl&ely as possible the evolutionary distance

order and gene content, tha
of the given organisms. The chai,ha_nge ;g;;o‘;ﬁm:l a measurement that is biologically
AT . Tt
. i
'}gﬁlpuim E' A

To be realistic, a mcasuremﬁni:shculd several known mechanisms of genomic

meaningful yet efficient

rearrangement. In t.hc case of angle—c!worhm gcnu?ms (such as those of prokary-

otes, ch]urnp]asts,L re-'-u--esr—!sree--e-—-!i:—:*:—-ue':-wuu»:-e@:+: yde the following;

e Reversal: A section of a chromosome is excised; reversed in orientation, and

re-inserted ~Section 26.

e Transposition: A section of a chromosomie is excised and inserted at new position

i1 the chremiosanie; withouf ehanging oriéntation ‘Seetioh 2.7,

e Transversal (Inverted Transposition): Exactly like transposition, except that

the transposed segment changes orientation —Section 2.8.
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s gene duplication: A section of a chromosome is duplicated, so that multiple

copies exist of every gene in that section.

2.5 Breakpoint Graph : Notations and Definitions

Let m and ¢ be signed permutations of size n, such that # = (£m, £ma, ..., £m,) and
¢ = (£dy, £, ..., £¢,). Leb umii;mécy utation #’ = (g, Ty, -+.; Mans Monsr)
be defined such that m; =0, w;ﬂ_,_l = 2ﬁ=-ii-"1’:aﬁd foralli, 1 €< i € n, 7y = 2m,
Mooy = 2m; — 1 (if m; > ﬂ} OF Top= 2|7 — 1ydiaiy —‘Ejml (if m; < 0). Let the unsigned

permutation ¢ = (¢ M !

G -%,, ,) be defined Qxactly the same way with respect

-are adjacent in 7, and we say the corresponding

clements y; and 7y, ‘t"in -:n-.*éimﬂary for ¢ and ¢'. Bafna and Pevzner (23]
- -

: 'r# ‘of a permutaion,
il
™ w’;t];_l respyg,t to @ be defined as follows:

'

~€
: - A jj‘
| uf %F:FE vm }ahe]gd with the element of 7.

introduce the notion of the &

The breakpoint graph B

e [ contains a seque

e Every two of these wrﬁéﬁ&fﬁ&t I‘EﬂB'cféBNﬁdJamut in f.rrr are connected with black

4 £
edge), and cve L djacency.in ¢ -aie connected with gray edge.

Let the overlap ggﬁph O = (V, B) for B be defined @_p:h that there exists a distinet

v, € V for every gray edge e in B, and two vertices v, and v, are connected by an edge
({ve, v} € B) _iEfgj-fa}r edgdsfe n.ud Fw.w overlap in B. The u:;az”r_:fxlc for breakpoint graph
and overlap gray are shown in the Fig. 2.3.

AVeyele'in B is 4 sequence of connected vértices (vp, ¥iy <. Vai, Waiits <+ 5 Vany Vans1y
vp) where n > 0 and for all i,0 < i € n, vs; and va4y are connected with black edge, and
ais1 and vpise (O vaiyy and vy, if i = n) are connected with a gray edge. A connected

component in O has the usual meaning, and sometimes call simply a component.
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"""" desire edge / pray edge
= cality edge / black edpe
& oo -1
p s W e
I b R L". 5 d To, o e f
".-":i' ,-"__‘."‘-"r’"-:‘n ‘-. ' _-"“;-’.:' _.-".".'-"*T."- " "-. -“.r‘." % u

0 9 101 2 56 3 4 78 111222213 141718 151619 2023 242625 271 8 20
+5 +l +3 42 +4 +#H o+l +

7 +9 +#  +10 +12 =13  +l4

'anél o\srlmp graph O for the permutation 7 = (+5,
T, ,-1";9, +ﬁ;;$,+lﬂ +12, -13, +14) with respect to the

identity permutation of size n = - 14 Cﬂﬁnﬁted component e is oriented, a,b, ¢ and d

are unoriented, and f is tnmaﬁiﬁﬁuncntﬁﬁa&nponenta b and d are hurdles and also

superhurdles, but unoriented mmﬁﬂnﬁnt ﬂimd'c are nonhurdles because they seperate
.X

biand d ,/ ij

Every gray edge j said to be oriented if it spans an odd number of vertices in B,
and unoriented otherwiseq, In the other words, a gray edge is oriented if it links two
left vertices of two black edges, or twa right vertices of two black edges, otherwise it is
called unoriented. A cycle in B anda connected eomponent in O ‘@ré each said to be
oriented if they contain at least one oriented gray edge. We call cyele and component
unoriented if they are not oriented, except when they are trivial. A trivial cycle consists
of a single gray edge and a single black edge, and correspond to an adjacency shared in

permutations 7 and ¢. A trivial cycle will always create a trivial connected component
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~that is, a compoent consisting of a single, isolated in O- and a trivial component can
only arise from a trivial cycle. Note that the gray edges of cycles always belong to the
same connected component, so we can say that the cycle belongs to the component.

Every unoriented component can be classified as either a hurdle or a nonhurdle. A
hurdle is an unoriented component that does not seperate other unoriented component,
and a nonhurdle is one that does. A am;poncnt b is said to seperate two other compo-
nents ¢ and d if, in a traversal of the \rertmﬁé/ ,a( it is impossible to pass from a vertex
belonging to c to a vcrtpicwbg_lgngmg tod mthpq’g_ﬁ@guntcnng a vertex belonging to u.
A hurdle is called a superhur H—hjf, wn_ it eliminated, a nonhurdle would emerge as a
siple hurdie

| 1%3—3:3

cgrp;: erga ;l;e most important of the three operations

hurdle; otherwise it i§ ¢:

2.6 Minimal

The reversal has generall

that we usually consid me, ﬂmm Mdthls la because reversals have been more

JJ\~*

frequently observed [7]. This ‘mﬁf_bc thé;gﬁ( but it seems reasonable to think that
their popularity is 1&1 part h—oﬂsﬁt}by ﬂm‘dﬁﬁfy‘ﬁa treat f.hem mathematically. While

transpositions anE ransv s Jthe following problem has

actually been snlvocl_ | The question is What is the mﬁ:ma! number of reversals d,.,
needed to Lmnsfann a genome 7 into the identity yename‘?

A reversal py(4,3); ot ang K a:md 156§ < acof = (rivfr2, ..., ™) transforms
into pe(i,7) = 7(m,..., =5y =M1y =z =iy es .,ﬂ“j. A reversal distance is the number
of reveesals, pi (#,91) w2, j2)i)- - 1 pe(i, 5i) of minimal length ¢ required to transform
7 to ¢4 The full solution (for signed genomes) was given in 1995 by Hannenhalli and
Pevzner [24], preceded by a fairly good approximation in 1996 by Bafna and Pevzner
[23].
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For the following example, let let # = (-2, -1, +4, +3, +5) and ¢ = (+1,+2, +3, +4,
+5) be the permutations. The results are shown the procedure of an optimal sorting of
a permutation by reversals and the signed reversal distance d(m, ¢) = 4. !

T =(-2, -1, +4, +3, +5)

m(1,2) =(=2, =1, +4, +3, +5)

Next, the foll , 1<t <4, that solved the

problem of sorting eakpoint graph.

A reversal can rem breakpoints. ermutation. Thercfore, a simple

v : —_ 1 (2.1)

where b(w) is themumher of reakpoiut in the perm&tian .

e SOAUHIAUINTT
I, SOV P ) LS e

q
(based on parameters of the breakpoint graph) and provide a polynomail algorithm for
sorting by signed reversals.

!Note that the problems of reversal distance and of sorting by reversals are subtly different; it turns
out one can compute reversal distance without actually finding a sequence of sorting reversals.
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[
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Figure 2.4: The e.zfﬁ]p]g '_ g by fo Bk the p?utatiun r =(0,4,321,
7,8,5,6,9, 10, 11) =

Letnandaﬁhamogenﬁmm mtemﬂtnfgenm,whmmchgme
appears exactly once in edch genome. The problem is to find the minimal number of

rvea operp ARSI VL) LI F VNS o dencts the minima

number of ﬁumul distance between o and ¢. Theninimal reversaldistance necessary

o traior = o pertaio sz i et b s ol

q
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drev = b(m, §) — e(m, @) + h(m, d) + f(7, ) (2.2)

where b(w, ¢) is the number of black edges,
e(m, ¢) is the number of cycles in G,

him, @) its number of hurdles,
f(7. @) is equal to 1 if fort

From Fig. 2.4, th

=

ersal distance of the permutation is 6 — 3 +
nta ninghmd]es (genomes m with h(w, ¢)
a;;@ampaneﬂt to be good (oriented

fortress. By using t
1+0=4.
It follows from

+ f(7,¢) > 0) are

4]
FESGSS T
of these contain hurdles, and,,,{g;ggﬁ mes of le

A
L b v/ 3

Many people have looked at the computational-aspects of calculating the reversal

distance. In tmamglwwﬁﬂhﬁ this distance and com-
puting a mini sequence of reversals done i 4) time, for nome of length
H el NV ) e

[25], who computed the distance in O(na(n)) time and a minimal sequence in O(n*a(n))

time, where the function a(n) is the inverse of Ackermans function [26]. Next, Kaplan,

Shamir and Tarjan [27] gave a minimal sequence in O(na(n) + d,.(m)n) time, where
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dreu(m) < n is the reversal distance, and Bader, Moret and Yan [8] reduced finding
the distance to linear time. Recently, Bergeron [3| and Bergeron, Heber and Stoye [5]
have simplified the algorithms, yielding an algorithm for computing the reversal dis-
tance without using the breakpoint graph. Finally, Siepel [28] has given an algorithm
for finding all optimal sequences of reversals that sort a genome.

For unsigned genomes, ca.lcu]amng“wth?mv{:rsal distance is NP-hard, as was shown by
Caprara [2]. The proof consists of a mnﬁ/@msfurm&tmm For unsigned genomes,
the vertices 2k — 1 and 2K in the brealgmmt-'

1 are identified for all k € n. It then

maximum number of alternating cycles. Caprara is

becomes a problem ?’u ;
able to reduce this problem to the rev

distance problem. He then proceeds to show

that the alternating eycl is hF—hg.Nl, which implies that the reversal distance
is NP-hard. There exists mial o ‘a:pprmcimations of the reversal distance for
’ ) v

et
|

a genome 7 into maﬁmﬁm genome?

<4
A transposition wi(i, j,k), forany land 1 <i<j<k <n+1,0f 7 = (m,m,...,m).

cuts the segmgiit {#;5=1} and pasting it biefore ﬁiﬁ*‘ position as follows.
W{I, j,kl = ﬂ';‘{'ﬂ'l ey ?Tg;h ?'[‘J;: I ?ﬂ"ﬁ—f{#ﬁ‘ ‘e 'ﬂj_h Mhy v .,'i‘Tn)
A {transposition distance is the number of transposition operations wi(iy, j1, k1),
waliz, ja, k2)y .., wiliy, Ji, ki) of minimal length ! require to transform m to ¢. Note

that this is a problem on unsigned genomes, since a transposition does not change the

sign of any gene.
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For the following example, let let 7 = (2,1,4,3,5) and ¢ = (1,2,3,4, 5) be the
permutations. The results shows the procedure of an optimal sorting of a permutation
by transpositions and the transposition distance dy,,(7, ¢) = 2. An example is shown in
Fig. 2.5.

0 12 34 56 78 9 101U

rere1s. DAL WAL v - 5.
“ERIRIN IUNINERE

Nobody has found a closed formula for this distance. It is easy to give some trivial

bounds. For instance, a transposition cannot change the number of breakpoints by more
than three. Furthermore, one can always find a transposition reducing the number of
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breakpoints by one. Thus, the first lower and upper bound are

““) < dy(m) < b(m) (2.3)

for all unsigned genomes 7.

ersals dy, needed to transform a

A transversal m[t, ¥, for any | <k <+ 1, of 1 = (m,ma,..., M)

cuts the segment [:, j—1], pﬁstmg and inverting lt hefﬁre the k™ position as follows.

RSN ST
f(ﬁ RGOV T IV eI TR e

,J1, ki) of minimal length [ require to transform = to ¢. There does not seem
to be any similar work done on the transversal distance. However, it seems likely that

inequalities similar to those in the transposition case also hold for transversal.
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Research by among others Q.Gu and S.Peng [31] and Christie [7] introduced the
notion of a breakpoint graph of a permutation, and used the breakpoint graph to obtain
lower bound for transversal distance. The equation is shown as follows.

n+1—e(m)

= < dy(m) <0+ 1—cfm) (2.5)

-%wg/f25]md¢-—(1234 5) be the

ﬁptlmal sorting of a permutation

For the following examp

permutations. The results sh

by transversals and t al di e (computed from Eq.2.5) to be diry (7, ¢) =

5,1,2,3,4,09, zﬁ% | ﬂ
o TS

There are many efficient methods toofind the shortest distance. However, all of them

- @%m ehonich thad do bot eonin shne kdplcationd. (4 (i setion, we

mtmduoe some approaches that have been developed to account for gene duplicates in

the genome rearrangement.
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2.9.1 Exemplar Distance

Sankoff [32] has formulated a generalized version of the genome rearrangement problem
where each genome may be present in many copies. The idea is to delete, from each
gene family, all copies except each of the compared genomes G and H. This preserved
copy, called the eremplar, represent in the common ancestor of all copies in G and H.
The criteria for deleting gene copies htﬁa ﬁ) ‘two permutations having the minimal
distance. Sankoff considers two distance m;éfmm the breakpoint distance and the

. I
reversal distance. —_ < —

el is that :thumnﬁht recent common ancestor F' of
genomes G and H has si ecopy (Figure 2.7). After divergence, the gene a in F
can be duplicated many i two lineages leading to.G and H, and appear anywhere

- — .
in the genomes. E is then su3j0¢ to rearrangment events. The key idea is

N
‘zf‘mr:rn‘;ﬁﬁr. that is the direct descendent of a in G and
IR * .

Eﬂﬂhﬂﬂl&% the other gene copy. The true exemplar

Y T % 4
string can thus be identified as those thatm%cn less rearranged with respect to each

that, after rearrange

H, will have been displ

other than any other pair of reduced g@ﬁﬁﬁ{;}l

v -:[j

JI

WO RS S
Figure, 2.7/\ Theé mluhmary model considered in the fexemplar anblysis. Using the
breakpoint distance as a criterion, the chosen exemplar are the undelined ones.

Even though finding the exemplar has been shown NP-hard [33], [32] developed

a branch and bound algorithm that has been shown practical enough for simulated
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data. The strategy is to begin with empty strings, and to insert successively one pair
of homologous genes from each gene families, one after the other. At each step, the
chosen pair of exemplars are the one whith the least distance increases when inserted
into the partial exemplar string already constructed. The gene families are proceeded

in increasing order of their sizes: singletons first, then families of size three, four, and

SO on. !
Sankoff considers a hranch@\nd&l /&y At each step, (for each next gene

ch they increase the distance when

r strings. The chosen exemplar

pair is the one which’

currently being considere S W , nevr al lﬁsrmﬁ& unused pairs have too large

test values, that is test values that wonl rease the distance beyound the current best
value. o i, | '--,;\

A natural applicatic 3 A ' to identify orthologies between
two genomes containing fa lll,jgf%jé @n s. Unfortunately, as far as we know
the algorithm has only been tea‘ﬁ'jn g mulated da

In [35, 40], a Il the possible assignments

of orthologs be , this approach is ap-

| !
plicable only to gen mt.h a very small number of duplicated genes, as the number

of possible ments &ﬂ expéiientailly with theé number of paralogs. Very recently,

X.Chen [11] i MMHMHUﬁQ;lﬁ; that considered both
““*&;]“W"Tﬁ“ﬁﬁ’ﬁ?ﬁ?ﬂﬁﬁ%‘?ﬂ Nel
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2.9.2 The Assignment of Orthologous Genes via Genome Re-

arrangement

The assignment of orthologous genes between a pair of genomes is a fundamental and
chalenging problem in comparative genomics. Existing methods that assign orthologs
based on the similarity between DNA or protien sequences may make erroneous assign-
ments when sequence similarity does i:mt‘. giyr”/}y)delineate the evolutionary relationsip
among genes of the same families. -~

X. Chen and et al. [l}hm a m:jT{ approach for assigning orthologs by taking into
account both local mli?d genome rearrangment events. Their method starts by

identifying sets of par

£ 1) CAg
dences between two gﬂ-)z" w using th‘ifwmﬁlogy search, i.e., BLAST. The paralogs

e famili ) on each genomes and the family correspon-

are then treated as co

e 'same %n&m and ortholog assignment is formulated
44

as a natural optimization pre lem of re@gﬁng-nn& genome consisting of a sequence

¥ _‘/
' tughg ath‘e{i_ﬁ;h the smallest number of rearrangement

events. This most pmsimnninuéiﬁééfr&ng@mm should suggest pairs of ortholo-
7 X v;J‘ &

IS

it /’1‘:-’ « \;;:-
gous genes in a stra:i%htfurward’ way. To sim‘l’ﬁ'ify the'discu?mn (and as a first attempt),
- ‘.r - er

-
they first consider only

arratigement. The above optimiza-
tion problem thus bl;x’lc'%mas a problem of computing thg:signnd reversal distance with
duplicates (SRDD) between two genomes. SRDD is a simple extension of the well-known
problem of snrﬁngjby reversals 7{2-’1}5 Although' thé pmﬁlem of sorting by reversals has
been intensively studied in the past decade, SRDD has basically beenuntouched. they
give ati gfﬁciﬂnt md:eﬁﬁcfive lluuﬁstﬁﬁ-‘algmiﬂ‘lm for solving 3RDD, u_stl;_ng the techniques
of minimum common partition of two given genomes (the MCP is solved by the tech-

nique of vertex cover.) and mazimum cycle decomposition on a complete graph (the

MCD is solved by the technique of greedy algorithm to find the shortest path among
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the paths in the complete graph). The heuristic algorithm for SRDD has been tested
on both simulated and real genomic sequence data (from human, mouse, and rat X
chromosomes), and compared with the existing algorithm the exemplar algorithm [32]
(actually, an iterative version of it). The test results demonstrate that the SRDD in
general performs better than the iterated exemplar algorithm in terms of computing the

ROUUINBUINT )
RN ITNINENAY



CHAPTER III

PROPOSED METHOD

Three edit distances (reversal, ransp | transversal) can use the notion of
breakpoint graph to miﬂtﬂm or generate the steps of sorting. However
the breakpoint graph / do not have gene duplication. The
breakpoint graph does unilies problem. In this chapter,

proposed a new heuristigialg "Va;.‘ge:mutatwn of gene duplicates
We extend the concept of th 0 cope ';&me duplicates. The key idea

gene-gene relationships ‘across Wi 3 - by maximizing the number of graph
cycles, The optimization technie i eger Programming (BIP) is applied to
find the set of gra.x edges (e@é’i[iﬁt l role in the breakpoint graph) that

minimize the m:hr.

Once our algorithm is cc

to compute

2.5 are also appli mmpute t positi ersdl dlstan{:es respectively.

QW’]@ﬁﬂiﬂLﬁJ‘ViTﬁ‘W (R
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3.1 Heuristic Algorithm to Computing the Nearest Minimal
Edit Distances for Multi-gene Families via Binary Integer

Programming (EDMF)

In case of duplicated genes, let A = {g1,92,...,0x} be a set of genes (a uni-chromosome
permutation) relating to w of length n m,the following way. Each g; is represented by
either a symbol, a character, or a number. F&é@fb gene g; (1 <1 < k), let K(g;) be the
number of occurrences of 9 having mth‘g‘ + Of — aign‘ in 7 and ¢ such that K(g;) > 1.

A gene is called a single if” it m the 0%11}' member of & gene family in that genome,
K(g:) = 1. Dthermse( qz_,_,iﬁ_,{iaferr to as a member of a multi-gene family. Since

the breakpoint grap af mmgmsa. rgulti-gene families, each multi-gene member
'l T

element, m;, must be ; ally rem:gcd for the graph to be used to determine the
o | 5

minimum reversal distance.

a4
s

- e +

'd 147 //5 J

4

Table 3.1: An example of l;@ﬁiﬁé of an:ﬁgm@nt. 2 and three copies of an element 3.

FE SO £ EZ A

position | 1 2 3 4 1516 H‘ 8 9 | 10 | 11 |12

]

s e
m | +4| 40 42| 42| 45| 46 Jl’r
¢ +1 | 42 +2 | +5 [+ | +6|+3 | +3 |-

|
~/ A

+3| -8 | -9

I
—

t
+
|

-8 | 47|-9

4

iz

Table 3.2: An example of the renaming results, m,gp and ¢,,.,, by temporary names z;,

T, Ty and yy, Ya.

position | 1 | 2 | 3| 4|5 6| 7 | 849 10| w12

Moo |45 | N %1 | 22 § $4 460 +10 | 4 4 wg | (vs |4410 [=+12

Prew | +1|+2|4+3|+4|+5|+6| +7 | +8 | +9 | +10 | +11 | +12

'a sign + or — is associated with each gene representing its transcription orientation, i.c., on which
of the two complementary DNA strands the gene is located.
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Consider the example shown in Table 3.1 of the permutation 7 = ( 44, +1, +2, +2, +5,
+6, +7,+3,+3,+3, —8, -9 ). Elements 3 and 74 contain the same gene represented by
number 2 and 7y, 7, and mp contain the same gene represented by number 3. These
two gene families are rearranged and relocated at new positions in ¢. To uniquely re-
name each element, first, all elements in 7 are renamed according to their positions

with respect to ¢. Symbols z;, z, uced as temporary names for all duplicated

clements, 73 = my = 2, and are introduced as temporary names

for all duplicated elemeu?ﬁ; Fo = aming results for both 7., and
@new (identity) are she i

The elements z; ar labels (2 or 3) and, similarly,
the clements y,, ys, an ble labels (7, 8 or 9). Hence,

for this example, the gn &s as the following 7 — z(12),

) = +8 +9 +10 +12
@ = +8 49 +10 +12
8 = +9 +8 +10 +12
0 +9 +8 410 +12
8 = +7 +9 +10 +12
7® = +5f | +3 42 44 - ﬁ +7 49 +10 +12
() +5 +1 +2 +3 +4 +6 +11 +8 +7 +10 +12

- ST AT o o
Wmﬂﬁlﬂ‘ﬁmﬂﬁﬂ‘tﬁﬂ”}ﬂﬂ” =

+5 41 2 48 +4 +6 +11 +9 +8 47 +10 +12
:rriul = 45 41 +3 42 +4 +6 11 +9 +8 +7T +10 +12
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Each assignment may result in a different genomic distance. The minimal one can

be found by generating and testing all assignments. However, the processing time grows

rapidly with the number of duplications. Therefore, we turn to an efficient heuristic

method for assigning a final name for each temporary name. The approach can be

deseribed in three steps.

1. Creating the incompleie b‘r&aki}(/nnt graph.

The incomplete breakpoint graph, /G4 *@Eh that has the same structure and
- —

properties as the l‘)_r%pmnt graph. However, it is not complete in the sense that

the final names )ofm{ A

are known. Consider the example shown in Table 3.2.

atlﬁﬂfycw—{ﬂ 0, 10,1, 2, z11, T12; To1, Loz, T, 8, 11,

%fgb, yggs 15 20, 23, 24, 25), where z;, T, are replaced

ad

le (?Iél -'Fﬁg“lﬁ h, ¥z Rﬂd ys are replaced by (y11,¥12),
(y21, ¥22) and (yai, yaz), rewlmlrfiﬂhn ﬁm;d names of z;, for 1 <i < 2 and

by the variables, (4

e (4
yj, for 1 < j < 3 are so ﬁm—ﬁﬂknew & example of the incomplete breakpoint

":lj-\“r:-..
graph of 7' t&ihown in Fig.’ﬂ.l. VA 1 \
: £
~ = Wy gray edge o
e -k
¥y . ST
f#:f\f”‘. e f,,". . o

HHHHH-—‘.HHHHHHH
94T MpGuatimiar, @ N 0 102 ABEATRTAED 20 23 4 2
Bigate 3| AR aipleiol an inddléia bredkppif grapb 1G28ér '

With all variables in place, all black edges can be identified. These black edges

are {(0,9], {lﬂ! 1]1 {2,:&“11], {$12+32]]1. {xﬁ!?]l {Sl 11): (12:21}: (22} yll}! (ylﬂl !ﬂl]-

(Y22, ¥a1), (ya2, 19), (20,23), (24,25)}. However, only the gray edges not coinciding
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with variables can be identified in the first instance. The remaining gray edges are
identified during the resolution of the actual names of the variables, specifically
Ti1, Tiz, T21, T2z, Yun, Yiz, Ynm, o2, Va1, Va2 All gray edges are classified into
two groups, deterministic and non-deterministic edges, according to the following

characteristics,

inlIG,1<i<j<2m+2is

m; and j are not variables, and
S —

(24,25)}.

a pair (m;, ;) such that

names of z;; must be 3 or 5, for 1 < i < 2 and the names of z;; must be 4 or 6 ,

:flz‘ﬁmtmmﬁm gresmmimis
AN ﬂimum’m ma d

2. Cgeneratmg all possible solutions for all non-deterministic gray edges.
Let E; be the set of non-deterministic gray edges for the corresponding actual

vertex pair (a;1,a;2) in 7. However, the actual name of either a; or a;; may
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Table 3.3: The seven possible edge groups (B — E7) and the 24 non-deterministic gray
edges (e, — eaq) of the incomplete breakpoint graph (IG).

31 Sﬂ

Fi(2,3)  E(4,5)  Es(6,7) | B(12,13) Es(14,15)  Es(16,17)  E(18,19)

ey : 2-xTyy €3 Ty2-Tyy €5: Tia-T | €r: 12-yn €0 Yiz-Yn €16 YizYn €22 1 Yi2-19

€2: 2-Toy €4 Teo-Ty Eg rw?w y 1 €11 Wi2-Ya1 €17 YisUs €3 Yae-19
. * €18 © Yoo-Wi1 €24 : Ys2-19
3 __’

€19 * Yol

YY1 €20 ¢ Yar-ln

€21 - Yaz-lin1

'xemnes 2 and 3 in w},,, must

t exist in m,,,. The possible

Al fion-deterministic gray cdges are subject to
the following steps and the example

T g
v L OGN
v
B ; 3
b vk
——

d
L L'et T = ﬁ!ﬁ?_ - __i ':-
plicated gene, Vi be the set of variables for temporary name Ty, and By be

ST
O i g e, ko A 38 e €5 o il e

9 clements for each order pair of set Vi, and Vo, contains all the second elements

mﬁ‘m‘y names for the same du-

for each order pair of set V. Similarly, the By is also split into two sets i.e By,

and By;. Note that the set V. corresponds to By and the set Vo, corresponds
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to Bai. For example, Vi1 = {z1, 221}, Vo1 = {221,222}, B = {3,5}, and
B, = {4,6}.

s For a vertex pair (a;;,a;2), the variables a;; and a;; are checked to generate
possible non-deterministic gray edges i.e e; — ey in Table 3.3. There are
three possible cases as follows:

1. Variable a;; ex:la&{ 'ff/ ;o does not.
Y .

This 1mpl: own. a;» is assigned to a variable
w t mﬁ Otherwise, it i ed to

name in LS ac ' 1k- wise, it is assign

a variabl it set V ;

or example, the vertex pair (2,3) in Ey shown

53" edges, {{2 zn), (2, 1’-‘21]}

. but a;, does.

ot Vg if its actual name is in set

3. Both a; @9 a;; da do not exist m *eo

R S ] 41 o e

By. Otherwise, it is assigned to a variable in set Var0ag is assigned to a

R VT o s o G P cxmpe

consider the vertex pair (14,15). Both vertices 14 and 15 do not exist
in wl,,. Vertex 14 must be assigned to a variable in {12, o2, ya2} and

vertex 15 must be assigned to a variable in {y11, 21, ys1}. Therefore, all
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possible gray edges are {(y12, 411), (312, ¥21), (412, ¥s1), (Y22, y11), (22, ),
(a2, ¥m ), (a2, ¥11), (yazo y21), (ys2, ys1)}. However, some gray edges, e.g.
(2, ¥11)y (22, ¥21), (a2, y31), are incorrect because they are generated
from the same temporary name. Edges (112, y11), (Y22, y21), and (yaz, ys1)
are generated from y,, y2, and ys, respectively. These incorrect gray

edges are discarded d construction of the incomplete breakpoint

is case are |Vig| x |Vax| — |t|, where ¢

Emm the same temporary name.

aBer of all possible solutions —

r of duplicated genes. As the time

N
cach temporary name can

generate a set uf non-deterministic gray edges for connecting only all of its

ﬂ.@mﬂmm ANTPI10
AN INITIT mﬁ’%ﬂﬂ%mﬂ’* ——

q are related to the temporary names z; and z, om Table 3.3, all E; are
grouped and named as follows: S, = {E, By, Es} and S; = {E;, Es, E,
E;}.
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3. Formulating the Binary Integer Programming.
For any incomplete breakpoint graph, since a black edge must be directly connected
with a gray edge and vice versa, a path can be formed by alternatively traversing
these edges. This path can be classified into two types.

(a) Type A: the path of this type forms a cycle and this cycle is named a complete

Figure 3.2: Cycles 12,/ named al and a2 , 86, b7 are
type B. “ ‘
WV A PN
An e:&ﬁl;ﬂ Wﬁ%&lqﬂ ﬁﬂﬂ%ﬂ two complete cycles or
type A pat

QW’JM&HMW\’JJ’] AL

o 2" complete cycle (a2): {(24,25), (25,24)}.

For type B path, there are seven incomplete cycles.
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. 1 incomplete cycle (hl): {(2,511]}.
o 2" incomplete cycle (b2): {(z12,221)}.
o 3" incomplete cycle (b3): {(z22,7)}.

o 4" incomplete cycle (b4): {(12,21), (21,20), (20,23), (23,22), (22,y11)}.

o 5 incomplete cycle [bEJ 2,y21) }-
. Em lﬂmm}}t&t& o : ‘,-. i-_-_; - l | /
o Tih immp@

number of c@ from mh@w for each edge e; is defined
according to the fﬂlwrmg lgmstlc rules. Fg 3.3 illustrates the meaning of each

- §OTUUINEUINT
auch RS iR

c&se 3: w; = 3 if ¢ joins two vertices in different incomplete cycles.

The following notations are used for describing the application of binary integer
programming.



G, : the lber of possible gray edges for group p.

omsRRLULANEUTNNT
AINTaiEmENRE @
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Constraints:
Ny
D lu=Np, ; fori=1to Np (3.2)
k=1
r
Y e=1;forp=1toN, (3.3)
i=1
e; — ej = 0 ; every pairs By, and Eyyy; (3.4)

(3.5)

\ \ candidate edges (the minimal
weight forms g - 3.2 ensures that the number
of selecting edges e, \- = ber of variables for each cycle B;,
constraint 3.3 ensures t Yy sossible gray edge is selected for each group,
and constraint 3.4 cnsurés that two selected edges are correctly transform from
the same temporary name. ' hin is_completed, all variables are
assigned ﬁ’l os—Finally, Eqs:—2:2,-2:4,-and ‘J an be applied to compute

the minimal :,l-' : : &ﬂdjzu.lmm between the two re-

labelled genomes, respmtwely The outline iur the EDMF algorithm is shown in

" fwﬁwwmmﬁwmw
QW’]RQ NIUARINEIRE
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Algorithm EDMF

Input: (1.) Permutation = and ¢ of length n.
(2.) Set of gene family g = {{g}, {g2}, ..., {gx}}.

Output : The selected gray edges are completed the incomplete breakpoint graph.
Begin

End

3.2 omﬁﬂﬁ‘l_luﬁ‘l/l EJ‘lﬁﬂ'ﬁ
e BN B4 S o

estimation of the number of cycles in incomplete breakpoint graph and the edit distances
of the EDMF algorithm. A few theoretical group work are establish to formalize some
framework for the propose appraoch.
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Lemma 1. Given an incomplete breakpoint graph IG, the number of possible cycles of
type B in case 3, Nj, is

n—by—b—b

Ny B |2

n is the total number of black edges in IG. by is the number of black edges for cycles of

type A. by and by are the number of bl es for cycles of type B in cases I and 2,
respectively. \\ /
E \\
_‘&}' //_,
Proof. The number Gw fatﬁyclwﬂ and B in cases 1 and 2 are

obviously fixed. Then, the eyeles / pe B in ca t be formed from the remaining

¢ of type B in case 3 must use at
least two black edges tocompleto -.-;-. There: ?q?ig_,g‘he number of cycles for type B
; N\

Theorem 1. Given an

incomplete graph, C, has

Q
Ny is the total nadh

mi.:c_:::gs.ﬂ ' Jﬂ

U/
Proof. Every cyele of is com i %ﬁ:li?lving any cycle of type
B. Similarly,ﬁﬁcy : ¢ f as a part of itself. In

o

o’ o
N RN e e e
counting the total n of of type A an cases of type B can be considered

separately. Without loss of generality, a given incomplete graph has cycles of both types.

Therefore, the upper bound for the number of cycles is stated as above. O
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Theorem 2. Given two genomes 7 and ¢, the EDMF has the reversal distance with
muti-gene families
dreu 2 ﬂ_c

when the number of hurdles is 0 and the fortress factor is also 0. n is the number of
black edges.

Proof. Since the value of C alue as proved in Theorem 1 and the

number of black edges for the given ph is a constant, the minimum reversal

distance, d.,, is bounded by O
S

Theorem 3. Given fwo geaomes s and \'k’-. &*l\{ the transposition and transver-

Proof. Since the value of €' has b maximum valte as proved in Theorem 1 the minimum
transposition and transvers “ nce wit! : | e families, d;,, is bounded by ﬂi&'—'g

e y—————————/—/—/—/—/—/—————eeeeea,

_‘\ O

i

AOUUINBUINT )
RN ITNINENAY
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Table 3.4: An example of setting value for [ and we for 24 <k <land 7<i < 1.

gray edge/incomplete cycle | bl [ b2 | b3 | b4 | b5 | b6 | b7 | w
el 1/olofjofofo|o]1
e2 oj1/o|lo|o|o|o]s
e3 oj1lololo|o]o]1
o4 o/1/o/lo|0o]|o]s3
S |67 olofofo]|s
— 0 ojojo|o]1

0o(0lof1|o|o|o]2
Hololo 1|ofofs3
“~Folololo|ol1]o]3
o I\ 4
0 ) 11001
e SuaClaid hoY0|[1]1(0]|3
s 1{of1]o]s
a3 —tof0|o|ofo|1]o0]1
‘:‘;’A/% Y e
() eld 0]0 "0 |0 |1(3
Ej ol5 0 321 o013
cl6 " 00 M 1lo0]o0]|1
el .~ |o0|ofalo|l1|1]0]3
1 3
SRR ENANENAE
lolol®o|lol1¥b|1
q f\l\ ﬂ I'\ f V¥ N o BN | -
VIV TR BT [ol ME AT
e21 olojoflo|1]o0 I 13
= —
022 ololo|o|1]0]|o0]3
c23 olo|lo|lo|1]|0]3
€24 o I I L T B




CHAPTER IV
EXPERIMENTAL RESULTS

/, y
We implemented the EDMF algorithm in mm.ﬂymmmn 7.0 and tested it for correct-

ness and performance. All tests were petformed on Sony laptop with 1.6 MHz Pentium
IV processor and 1 GB/EEVB&&L; €Ak O MiEresoit Windows XP. The optimization

toolbox for MATLAB version 7.0 was used for implementing Binary Integer Program-

ming (module bintpfﬁg], d,a.ta fell mi‘.d*tm categories: synthetic and real biological

data. Once the ED tl;m is mng)laged, all variables are assigned final values
(i.e. transformed in ﬁjreakpumt ﬁaph into complete breakpoint graph). The
g

Egs. 2.2, 2.4, 2.5 can be'ap md to mmpufyjthc reversal, transposition and transversal

distance between the two re-l&b&lled geua;‘;_ﬁ-,:fcspmtwnly The experimental results

are shown in the following aectmﬁa;. YO
b £
N o - j
- . Lj - - 2 - I\-. L] - -
4.1 Minimum Reversal Distance with Multi-Gene Families
</ 4y

4.1.1 Synthetic data

The synthetic data set for computing the veversal distance with multi-gene families is

generated as follows:
1. Start from 7 with m distinct symbols whose signs are also generated randomly.

2. Randomly generate f families, where each family has random size 2 < K(f;) < 4,

recursively combining single gene until the size equals to K(f;).
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To obtain the genome ¢, we performed ¢ reversals on the genome 7. The boundaries
of these random are uniformly distributed within the size of genome.

The accuracy of our method was compared to that achieved by the SRDD algorithm.
The executable program is provided from the anthors [11]. Although SRDD was not
originally proposed to compute the reversal distance, but its objective was closely related
to this problem. We ran the EDMF and QH;HD on 10 random instances. We compared
the calculated reversal distance, from the @'uh&if@ﬂ.a with the exact minimal reversal
distance obtained hy thﬂ-«autimrﬁ_:ativef'pmmm GRAPPA version 2.0 [8], module of
invdist, to compute the renfa'sﬁl.dlstmmal for all possibilities and found the best one that
has the minimal revem;,dﬁ\tmce 3

Fig. 4.1 and 4.2 bhe "thmwragé peﬁﬁn“&nance of both algorithms over 10 instances

in terms of reversal diﬁtau!?e in mmpm‘rmc?l with the exact minimal reversal distance as

determined by GRAPF& gﬁwqﬁsf} “
/J‘ 44
4 mﬂmf TEM-G«M ﬁmlw
80 rF ~
e
ol |- —EOME— 5 o
. nwmmﬂ b Sl = 30 b
) o
80} - e ,.g“u '
(= = . 3—"":;;‘-41
“lf - N
B &0 - . ..”:}-:z.:i "":
a ;..t L3 |
- # - —
= R
40 2
0 ;{;
19| ‘
»
- §
¢ - 1919 i 10 1N
20 30, . 40 50 60 70 80
Mumber of reversals performad

Figure 4.1: The reversal distance of both SRDD and EDMF comparing with the exact
reversal distance from GRAPPA (invdist) for genome length 100 and 10 gene families.
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100 genes [ 20 Mulli-Gene Families

m.
+ SRDD
| - B — EDMF &
70 * GRAPPA (invdist) e
4  Theorem 2 :,-' -
&0 +, S
+ n oy ®
I’l—.
. "n ¥
€ =0 A e
] « =@
k-1 —}:
w " .q', .-\
A7
- o
30 g R ™
e 9
Fa »
zu.- ‘. " s I

Figure 4.2: The revers diﬂﬁmﬁfu?]ﬁ'nt‘é‘dgﬂﬂl}and EDMF comparing with the exact
reversal distance fmm?{l\ PA {mvﬂmt.tfn‘r genome length 100 and 20 gene families.
i biiasidd

f ———
AL AL &

On the average, Euc%lpnfih;:th ED.;P%"‘ and SRDD algorithm takes less than 10
seconds. Our heuristic a@ritﬁ'@nsis@@ndﬁw a closer estimate of the exact
minimal reversal distance mmp;nredfu:- Sﬁ.ﬁ‘@m{:}l t > 35. However, both algorithms
underestimate tlm_a\aﬁtua.!r reversal distance {¢), for each éﬂéﬁ The last line from both

\

\7 . X J
Fig. 4.1 and Fig. ’4:2 show the reversal distances that are estimated from theorem 2

(Chapter I11). However, all distances are underestimate from EDMF and exact distance,
because the assumption to find the number of cycle'in type B case 3 from lemma 1 is
the eycle of type Boin case .3 that imiist use at least tio black edges to complete the eycle.
Therefare, theestimated cycles from theorem 1 are greater than-the-exaet cycles. That
means, the estimated reversal distances from theorem 2 might be less than the exact
reversal distances. These statistics indicate that our algorithm is quite reliable in finding

the nearest minimal reversal distance with multi-gene families.



4.1.2 Real biological data

We downloaded the X chromosome of human, (Homo Sapien, NCBI build 34, July 2003
UCSC hg 16) mouse (Mus musculus, NCBI build 32, October 2003; UCSC mmd) and
rat (Rattus norvegicus, Baylor HGSC v.31, June 2003; UCSC rn3) from the SOAR web
page (http://www.cs ucr.edu/rinchen/soar.html). There are 922 genes from human X
chromosome, 1030 genes from mouse and 599 genes from rat, respectively. We also
used information about gene families from thissite, There are 355 families of size one
between human-mouse, 321 between human-rat, and 348 between mouse-rat. The size

distribution of gene families with maore than two membess are shown in Fig. 4.4.

Tha size distribution of gene families with more than two members

T a2 IF F T T T T T
; 3 B human/mouse
3 u £ 4 : [ human/rat
? I mouse/rat

8 8 8 5 8

fuv]
=]

The number of gene families
& &

The gena familias size

Figure 4.3: The size distributation of gene families constructed for each pair of genomes.
The number of gene families of size one are not shown in the figure for clarity (they are

355, 321, and 348, respectively).
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By using the SRDD, the reversal distance and breakpoint distance between human-
mouse are 124 and 143, between human-rat the distances are 119 and 135, between
mouse-rat they are 155 and 188, respectively. We ran EDMF for all genome combina-

tions. The comparative results for all three pairs of genomes are summarized in Table
4.1.

Table 4.1: Results of reversal
X chromosome | Reversal D «’h’, oint Distance | Lower bound | Computing

_
:
:
Z
=
=
8
B
5=
B,
B
=
;;.
=
e
S

of SRDD | EDMF Reversal | time EDMF
7 Distance (minute)
human-mouse 119 18
human-rat 119 108 15
rat-mouse 136 20

The results show tha

—_— et

mouse and human-rat. We eh'g’@ﬁaﬁt e

FIE

A/

reversal distance 't:etwmn hygi/%aus}w nd huma Iﬂt (34 and 35% of the number of

single genes, respectively). According to the syntheti ata, both SRDD and EDMF
I ol X

obtain similar minimal distances when ¢ < er, the EDMF improves slightly on

— ]M o :
both in terms of point and reversal distance.
Noteworthy, t imated réversa-distance betweétmouse and rat is 45% of the number

asngegmd 61 TULAVIEUSTITS
ﬂW’]@ﬁﬂﬁﬂiﬁJ‘ViTﬁW el 1N e
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4.2 Minimum Transposition Distance with Multi-Gene

Families
4.2.1 Synthetic data

The synthetic data set for computing the transposition distance with multi-gene families

/
1. Start from = with m distinct symbols whcne%(;gns are plus (+) because the problem
of transposition distane is unsigne

is generated as follows: ’

2. Randomly generate ffamnilics, where each family has random size 2 < K(f)) < 4,

i.e recursively combini sing]e gé;:mjuntﬂ the size equals to K(f;).

' ‘pctl’m‘éedat transpositions on the genome w. The
Y {dd

'puiicirml};i;isqibi;ted within the size of genome.

mal;hlmnfuﬁlﬁncs toel to calculate the transposition dis-

To obtain the geno

boundaries of these rand

Unfortunately, there is

tance or sorting by transpns:trﬁn.ihcmfc@‘took an indirect approach to computing
the transposition d;sta.nce by ﬁlﬂg’ the mddiﬂe“ﬁudtst of ?RAPPA to find the number

\.'

of cycles for all possibiti 'jf__ =Y 24 to calculate the transpo-

sition distance and mlt:cted one that had the minimal distance (because the dominant
parameter of Eq. 2.4 is the number of cycle from the breakpnmt graph.).

In order t6 rigorously tésé for thé Cofrcetness~of Our metliod, we ran the EDMF
on 10 random instances. Fig. 4.4 and 4.5 show the average performance of EDMF
algorithim over 10-instances in terms of transposition distance, in comparison with the

exact minimal transposition distance as determined by GRAPPA.
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100 genes [ 10 Multi-Gene Families

55.
— @ — EDMF
50~ * GRAPPA
4  Theomem 3
I
= _ -m— -a
g -..r ,‘-__.-l——l i
'ESE ol R, ol Tl i et
8 w00 .
# e * * »
T AN /
. y
25} F‘-’t - L~
P
20 Woag J s
d : |
15 o ST A . g i
20" 80 40 50 60 70 80
_Mmbaroff;lanapmmns-panumd

Figure 4.4: The tmnqpngaﬁuuf!maﬁne of EDMF comparing with the exact transposition
distance from GRAPPA for g"éuﬁ-me'leng?z 100 and 10 gene families.

id

On the average, ea.cht run of EDMF 'Iﬂ;&vless than 10 seconds. However, the rea-

son why we do not show thE mmparmnsé‘jsh other algorithms is because there is no
research on transposition dmtance with mﬂhrgme families. The results only show the

\..-

calenlated trmmptmwn that are estimated from EDMF ulgnnthm compare with the ex-
fﬁ&@ﬁ]’]’ﬂ program. The last line is

act transposition dlsﬁnﬁe ‘that computed fron

the estimated transl_]qaitinn distanee from Thecrem 3.

4.3  Minimum Transversal Distance with Multi-Gene Families

4.3.1, -Synthetic data

The synthetic data set for computing the transversal distance with multi-gene families

is generated as follows:
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100 genes / 20 Mulli-Gene Families
m.
- & - EDMF
50 * GRAPPA
4  Theorem 3
H-.
a0+ m hr
Ll S ” :
35 e . * *
- 1y *
m=-0" 0 4 ».
30 - aAn ey, »
#:;" V17 f':('l
25 f’ . K Sl LA
- a
20 el i 4
15" ‘

& wm W w w
_Number uf&-nrmﬂhns performed

q&sﬁlﬂ' nce oi-E‘i)MF comparing with the exact transposition
[ — —

e _lﬁng\Sh 100 and 20 gene families.

A

signs are also generated randomly.

2. Randomly generate f fam@n; Whﬂ@ﬁmily has random size 2 < K(f;) < 4,

recursively mﬁhiniu - single gene nntil the size sjtn K(f;).
\
vj_\ N

To obtain the gerﬁme @, we performed ¢ transversal -‘.}@]‘IE genome 7. The boundaries
of these random are uniformly distributed within the size of genome.

Unfortunately; there G né redl biginformatics taol to caltnlate the transversal dis-
tance or sorting by transversal. Therefore, we took an indirect approach, as same as
the transpositon, to computing the transversal distance by using tle module invdist of
GRAPPA to find the number of cyeles for all possibities. We have also used the Eq.
2.5 to calculate the transversal distance and selected one that has the minimal distance
(becanse the dominant parameter of Eq. 2.5 is the number of cyele from the breakpoint

graph).
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In order to rigorously test for the correctness of our method, we ran the EDMF on
10 random instances. Fig. 4.6 shows the average performance of EDMF algorithm over
10 instances in terms of transversal distance, in comparison with the exact minimal
transversal distance as determined by GRAPPA.

FONUUINYUINNS )
ANRINITUNINE AL
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100 genas / 10 Multi-Gena Families
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Figure 4.6: The transversal distance of EDMF comparing with the exact transversal
distance from GRAPPA for genome length 100 and 10 and 20 gene families.




CHAPTER V

CONCLUSION
J

The main problem of genome rearrmlgcumﬂ( ns the approach to computing the

distances (reversal, transposition and tfﬁsmrsal’} or t‘rﬂmt’ormmg one genome to another
a— y

by a minimum numbvy[,bh(

shortest distance. Ho

' r%v There are man}r efficient methods to find the
ﬂ‘f tliern are used for genomes that have not contain gene

duplications. In this disse 4 ﬁr&tryfb solve the problem of gene duplications. A

m'm thﬂbdlmhuatiun genes problem to non-duplication

st p;mun&l—;%brgﬂ edit distances (reversal, transposition,
nomes with m gcne fmmhes is proposed.

new heuristic algorithm
problem and to find

and transversal) bet

/4 7

We show how to extend tﬁe‘_ﬁa.un da d Pevzner theorem and concept of the
breakpoint graph tg‘\genm w’tfﬁ'muih-gm\ﬁmlhee. Thf approach uses the notion of
a brcﬂ.kpﬂlnt E['E..]:m ?'!'-":‘:'!!"-'P'!"‘:!!:—.'—!-,gz-r:-!-,!:—:n;,.-_g:,

#g possible combinations of
duplicate genes acmg}gcnnmeﬁ. Thuexplmaﬁunm écm‘;t‘,lsmg binary integer program-
ming optimization based on pre-determined penalties f:r properties of an incomplete
version of the Ureakpoint graph.

We seperately show the experimental results for each edit &;ista:;ce, as follows:

1. For'the reversal distancé with mitlti-gene fandilies,’ we have ‘tested on synthetic
and real data sets (from human, mouse and rat X chromosome) and comparing
our results with the existing algorithm, SRDD. The results demonstrate that our

approach (EDMF) generally outperforms the SRDD algorithm in term of accuracy
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of determining the minimal reversal distance. Moreover, we have compared our
results with the exact reversal distance (the distance that finds from all possibites
permutation, using the GRAPPA, and pick one that obtain the minimal distance).
The results show that our reversal distances are closed to the exact distance.

2. For the transposition distance with multi-gene families, we have tested on synthetic

thetic data sets.a:

distance that finds
pick one that yields the mix ravsvers “distance). The results show that

our transversal dista the cxa t distance,

From the expe;‘igzcmalmﬂ‘ﬂﬁf‘%q E: e that the heuristic algorithm to com-
\ e e B -
puting the neares

gramming is quite ﬂia'h e in

families. The genome rearrangement with multi-gene families problem may have the

tosns gt o YN RIUS NS )
RN INENAE



1. To apply with multi-chromosome problem.

2. To apply with the other mutation events such as insertion, deletion, fussion, and
fission.

3. To apply with unequal number of gene families between two genomes.

4. Tﬂ'npply wj't'h “‘n'm;.“ﬂ ;'“"_" ) i ) NOIMEeS.

FONUUINYUINNS )
ANRINITUNINE AL
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