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CHAPTER I

INTRODUCTION

In this chapter some issues are discussed regarding the control problem of inverted pendu-

lums. The philosophy and technical difficulties as well as the control problem associated

with a rotary double inverted pendulum (RDIP) are illustrated in section 1.1. Section 1.2

covers literature review on the control of general inverted pendulums. The objectives of this

thesis are addressed in section 1.3 and its scope is also outlined in section 1.4. Finally, the

distribution of the thesis are stated briefly in section 1.5.

1.1 Motivation

An inverted pendulum is a popular experiment for control research and education. The sys-

tem not only intrigues students by performing an exciting balancing act, but also captures

some of the more challenging characteristics inherent in many real-world systems: nonlin-

earity, open loop instability, non minimum-phase behavior, model uncertainty, etc. Because

of the relative simplicity of the system and its practical relevance, the inverted pendulum has

also been used extensively as an experimental test to demonstrate a new control algorithm.

In addition, dynamic model of the pendulum is nonlinear, hence it is now used to illustrate

many of the ideas emerging in the field of nonlinear control. Especially, the RDIP consists of

the two inverted pendulums, hence it is very highly nonlinear. It will not be able to stabilize

the system when the two pendulums have the same length and material. In addition to the

difficulty of the naturally nonlinear characteristic of the system , we also need to deal with

some sets of uncertainties and the minimization of a given function. The uncertainties here

are the parameter uncertainties and disturbances.

1.2 Literature Review

In this section, the main aim is to review the literature on control schemes for the some kinds

of the inverted pendulum. The basic model is an inverted pendulum mounted on the cart. It is

also a trivial control problem of the inverted pendulum. This kind of inverted pendulum has

several types such as single pendulum and double pendulums as well as triple pendulums in

which the control problem can be sorted into two problems which are stabilizing and swing-

up. Firstly, we get to know to the single pendulum. In this model, the inverted pendulum is
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mounted on the cart. There were two controllers introduced by Mori [1] The first one is a

feedforward controller that is to swing-up the pendulum from its pending position to upright

position. The second one is linear feedback controller with a full state feedback observer

based on LQR to keep the inverted pendulum at the upright position. Besides the two types

of the above controllers, Ishida [2] had succeed in applying neural network control with the

back propagation algorithm. The neural network controller provides the appropriate force

to balance the inverted pendulum. In their method, there are two neural network controllers

in order to deal simultaneously with identification and controlling the inverted pendulum.

Renou and Saydy [3] used approximate linearization controller for the inverted pendulum.

In this algorithm, a linear transformation and a state feedback control law are found by

solving a quadratic linearlization problem. We now consider the double inverted pendulum

which are consists of two pendulum. This system had been study in Henmi [4] for the

swing-up control of the pendulum. The control of the swing up and stabilizing was designed

in three steps: (1) to swing-up the first pendulum using energy control method, (2) to swing-

up the second pendulum using energy control method while stabilizing the first pendulum

using slide mode control method, (3) stabilizing the both pendulums at upright position

using sliding mode control. Another self-tuning controller for stabilizing the double inverted

pendulum was proposed in Fujinaka [5] by using combination of two controllers together

which are PID and neural networks controller. The gain of PID controller is adjusted by the

neural networks controller. In addition, many approaches for swinging and catching of an

inverted pendulum have been proposed in the literature; from Furuta et al. [6] with minimum

time controller, which is unfortunately not very robust, to Astrom and Furuta [7] with energy

control strategy, which controls of energy of the inverted pendulum toward a value equal to

the steady-state upright position, and Yi et al. [8] with a fuzzy controller based on single

input rule modules. There have been several fuzzy-model-based approaches concerning the

stability of such nonlinear systems. Yurkovich and Widjaja [9] fully analyzed the control-

engineering design procedures for an implementation of fuzzy-system concepts, and extend

the linear quadratic fuzzy-based controller design to adapt to the changing system parameters

in balancing control for the rotational inverted pendulum. Wang et al. [10] also presented a

design methodology for stabilization of a class of nonlinear systems based on Takagi-Sugeno

fuzzy model and PDC control design, where stability analysis and control-design problems

are reduced to linear matrix inequality problems. Both solutions have been successfully

applied in simulations on a cart inverted pendulum model.

While controlling a real inverted pendulum, we are coped with several limitations and

constrains that were not considered in those approaches. Instead of rolling the disc velocity

(acceleration) directly, in particular case, the disc velocity is driven over dc-motor voltage,

so we must consider the disc velocity limitations instead of the disc-acceleration limitations.
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In the literature, there are several solutions for swing up and stabilization of an inverted

pendulum with a restricted travel. Wei et al. [11] presented a nonlinear control strategy by

decomposing the control law into a sequence of steps. Chung and Hauser [12] proposed a

nonlinear state controller that controls the position and the swinging energy of the pendulum

at the same time. Zhao and Spong [13] applied a hybrid-control strategy, which globally

asymptotically stabilizes the system for all initial conditions.

Finally, we will mention to a rotary double inverted pendulum consisting of an inverted

pendulum mounted on a rotating disc. This system has been developed by K. Furuta from

Tokyo Institute of Technology, therefore it has been known as Furuta pendulum. There are

some control algorithms proposed for swing-up and stabilizing control problem. Grossimon

and Barbieri [14] proposed a sliding mode control to stabilize the system. For this method,

the position of the tip of the rotating disc and the inclination of the angle pendulum are

formulated by a function of the angle of the rotating disc. The simulation was done for two

cases of the inclination angle of the pendulum:45◦ and0◦. The first case is not stable but the

latter one. Sugie [15] and Nair [16] proposed a nonlinear controller to solve stabilization of

the Furuta pendulum at the upright unstable position. This method is based on approximate

linearization by transforming the nonlinear system into Brunowsky canonical form. The

feedback gain matrix of the linearized system is then computed by solving LQR.

In this research, a robustH∞ state feedback and a robustH∞ output feedback con-

troller are proposed. The controllers with minimum cost are designed via LMIs. The advan-

tage of LMIs is that the design of control systems can be cast or recast as convex problems

that involve LMIs such as an LMI minimization problem and a robust stability test of the

closed-loop system. The problem of design controller is to stabilize the pendulum at the up-

per steady-state position regardless of some parametric uncertainties and input disturbances.

For this purpose, exact mathematical model of the real inverted pendulum has been derived

and linearized at the upright steady-state position. All experiments have been done in simu-

lations on the nonlinear model of the inverted pendulum.

1.3 Objectives

The primary objective of this thesis is to design a robust controller for a rotary double in-

verted pendulum (RDIP) using linear matrix inequalities (LMIs) regardless of some para-

metric uncertainties and input disturbances. In addition, the minimization of value of a given

criterion function must be considered. The advantage of LMIs is that the design problem can

be cast as convex problems such as an LMI minimization problem and a robust stability test

of the closed-loop system. A state feedbackH∞ and an output feedbackH∞ controller will

be proposed to solve the problem.
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1.4 Scope of Thesis

1. This thesis deals with the AUN/SEED-Net benchmark problem rendered at the field

wise seminar in Bangkok, Thailand 2006. .

2. The design problem is the stabilization of a rotary double inverted pendulum regardless

of some uncertain parameters and disturbance inputs.

3. In addition to the stabilization problem, a given performance index is minimized.

4. Some comparisons between the proposed controllers and LQR, LPV controllers.

1.5 Methodology

1. The computational tool used in this thesis is the YALMIP package with SeDuMi

solver.

2. The design problem is formulated into a convex optimization problem involving linear

matrix inequalities (LMIs).

3. A polytopic approach is used to find the controllers.

4. A regional pole constraint is considered to solve the problem.

1.6 Contributions

The expected contributions from this thesis are:

1. Design two robust controllers for a rotary double inverted pendulum

2. The method can be applied to a certain inverted pendulum.

3. A useful algorithm for designing controllers for uncertain systems.



CHAPTER II

BASIC KNOWLEDGE

In this chapter basic knowledge on control systems are briefly reviewed. The section 2.1

gives introduction to linear matrix inequalities (LMIs). It turns out that LMIs is a very

powerful tool in control systems. Model of uncertain systems are studied in section 2.2.

Finally, nominal stabilities and nominal performances are also reviewed in section 2.3.

2.1 Introduction to linear matrix inequalities

In this section, we will briefly discuss about LMIs in control system. As we will see, many

problems in control systems can be formulated (or reformulated) using LMIs. LMIs entail

a sign definiteness constraint on a matrix that depends linearly on its variable space. LMI is

an expression of the form

F (x) , F0 +
n∑

i=1

xiFi < 0 (2.1)

where

• x = (x1, ..., xn) is a vector ofn real numbers called the decision variables.

• F0, ..., Fn are real symmetric matrices, i.e.,Fi = F T
i , for i = 0, ..., n.

Requiring the matrixF (x) to be positive definite is a convex constraint on the variable space

x. In the most control applications, LMIs arise as functions of matrix variables rather than

scalar valued decision variables. This means that in the inequalities of the form (2.1) where

X = Rn1×n2 is the set of real matrices of dimensionn1 × n2.

Remark A non-strict LMI is a linear matrix inequality where(<) in (2.1) is replaced by

(≤). In this case, the non-strict LMI includes an implicit equality constraint, and allows the

matrix F (x) to be singular. Thereby, infeasibility of the strict LMI may incorrectly suggest

that the non-strict LMI is infeasible.

A system of LMIs is a finite set of LMIs

F1(x) < 0, ..., Fk(x) < 0. (2.2)
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The setx satisfying (2.2) can be found using a block diagonal LMI whose diagonal blocks

are the individual LMIs

F (x) :=


F1(x)

F2(x)
...

Fk(x)

 < 0.

Hence, multiple LMIs constraints can always be considered as a single LMI constraint.

Nonlinear matrix inequalities in Schur complement form define convex constraints on the

variablex and can be converted to LMI. In particular, the set of nonlinear inequalities

R(x) > 0, Q(x)− S(x)T R(x)−1S(x) > 0, (2.3)

whereQ(x) andR(x) are symmetric, i.e.,Q(x) = Q(x)T , R(x) = R(x)T , andS(x) depend

affinely onx, are equivalent to the LMI[
Q(x) S(x)T

S(x) R(x)

]
> 0 (2.4)

In some cases, we have constraint of the form

Tr[S(x)T P (x)−1S(x)] < 1, P (x) > 0, (2.5)

whereP (x) is a symmetric matrix, i.e.,P (x) = P (x)T , andS(x) depend affinely onx. A

slack variable,X = XT , is introduced to solve such problem. The constraint of Eqn. (2.5)

can be rewritten as:

TrX < 1,

[
X S(x)T

S(x) P (x)

]
> 0 (2.6)

2.1.1 Some simple applications of linear matrix inequalities

a Stability

Consider the linear autonomous system

ẋ = Ax (2.7)

The exponential stability of the system (2.7) is equivalent to the feasibility of the LMI[
−X 0
0 AT X + XA

]
< 0

b µ-analysis

Determine a diagonal matrix such that‖DMD−1‖ < 1 where M is a given matrix.
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‖DMD−1‖ < 1 ⇐⇒ D−T MT DT DMD−1 < I

⇐⇒ MT DT DM < DT D

⇐⇒ MT XM −X < 0

c Singular value minimization

Let F : X → S be an affine function and consider the problem to minimizef(x) :=

σ(F (x)) overx. It can be clearly seen that

f(x) < γ ⇐⇒ λmax(F
T (x)F (x)) < γ2 ⇐⇒ 1

γ
F T (x)F (x)− γI < 0

⇐⇒
[

γI F (x)
F T (x) γI

]
> 0

d Evaluation of quadratic cost

Consider the linear autonomous system (2.7) with initial value of state variablex(0) =

x0 and a criterion functionJ :=
∫∞

0
xT (t)Qx(t)dt whereQ = QT ≥ 0. Assume that

the system is asymptotically stable. For any matrixX = XT which is solution of LMI:

AT X + XA + Q ≤ 0, we can differentiatexT (t)Xx(t) along solution of Eqn (2.7) to yield

d

dt
[xT (t)Xx(t)] = xT (t)[AT X + XA]x(t) ≤ −xT (t)Qx(t)

Integrating the latter inequalities fromt = 0 till ∞ yields the upper bound

J =

∫ ∞

0

xT (t)Qx(t)dt ≤ xT
0 Xx0

Minimizing the functionf(X) := xT
0 Xx0 over allX = XT satisfyingX > 0 andAT X +

XA+Q ≤ 0 leads to the smallest upper bound ofJ . Clearly, this is an optimization problem

with an LMI constraint.

2.2 Models of uncertain systems

In control systems, systems are often analyzed using models that are approximated from the

actual system dynamics. The difference between a real-life system and its model is due to un-

certainty in the identification of the system parameters. Small parameter variations may have

a major effect on the dynamics of a system, and these uncertainties make worse performance

or cause system unstable. Hence, it is very important to analyze parametric uncertainties

of dynamical system. Robust control design strives to guarantee stability and performance

for such uncertain systems. We now consider robust stability and robust performance of an

uncertain system.
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2.2.1 Parametric uncertainties

Let δ = (δ1, ..., δp) be a vector of uncertain parameters in a given dynamical system. Then,

there are two cases of parametric uncertainties

• time-invariant parametric uncertainties: the vectorδ is fixed but element of an

uncertainty set∆ ⊆ Rp is unknown.

• time-varying parametric uncertainties: the vectorδ is an unknown time varying

functionδ : R → Rk whose valuesδ(t) belong to an uncertainty set∆ ⊆ Rp.

In the fist case, the physical parameters of the system are fixed but approximately known up

to some level of accuracy. In the second case, parametric uncertainties, coefficients, or other

physical quantities are time-dependent.

a Affine parameter dependent systems

Consider a uncertain system[
ẋ
z

]
=

[
A(δ) B(δ)
C(δ) D(δ)

] [
x
w

]
(2.8)

These matricesA(δ), B(δ), C(δ) andD(δ) can be expressed as

A(δ) = A0 + δ1A1 + ... + δpAp

B(δ) = B0 + δ1B1 + ... + δpBp

C(δ) = C0 + δ1C1 + ... + δpCp

D(δ) = D0 + δ1D1 + ... + δpDp

These above matrices are rewritten as

S(δ) = S0 + δ1S1 + ... + δpSp

where

S(δ) =

[
A(δ) B(δ)
C(δ) D(δ)

]
We now consider control system models of the form

d

dt
x(t) = f(x, w, u, t), z(t) = g(x, w, u, t), y(t) = h(x, w, u, t) (2.9)

wherex(t) ∈ Rn×n,w(t) ∈ Rr, u(t) ∈ Rm, y(t) ∈ Rq andz(t) ∈ Rp. The functionx is

called the “state” of the system, whilew andu are “inputs”,z andy are “outputs”.w consists

of exogenous inputs, i.e., inputs that we have no control over, such as noises. Reference input

u consists of control inputs. We may setu(t) to any value we wish. The outputz is of interest:

this may consist, for instant, of components ofx of even those ofu. y consists of outputs that
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can be measured. In order to accommodate uncertainties, it is assumed thatf, g andh are not

known exactly, but only known to satisfy some certain properties. Robust control analysis

problems consist of the study of the solutions of equations (2.8). Robust design problems

contain designing control lawsu(t) = K(y, t), so that with the control law in place desired

answers are obtained of the analysis questions.

b Linear fractional representation of uncertain systems

We now focus on a special instance of system, consisting of an interconnection of a

linear time-invariant system and an “uncertainty” or “perturbation” in the feedback loop. The

model is described by

d

dt
x(t) = Ax(t)+Bxpp(t)+Bxuu(t)+Bxww(t), q(t) = Cqx(t)+Dqpp(t)+Dquu(t)+Dqww(t),

y(t) = Cyx(t)+Dypp(t)+Dyuu(t)+Dyww(t), z(t) = Czx(t)+Dzpp(t)+Dzuu(t)+Dzww(t),

p(t) = ∆(q, t),

wherep ∈ Rm, q ∈ Rm, A,Bxp, Bxu, Bxw, Cq, Cy, Cz, Dyp, Dyu, Dqp, Dqu, Dqw, Dzp, Dzu

andDzw are real matrices of appropriate size.∆ : Lm
2 [0,∞) → Lm

2 [0,∞) is in general a

nonlinear operation representing the “uncertainty” in modeling, often∆ contains the origin,

i.e., ∆=0. The linear time-invariant system in this case is called the “nominal model”. The

above model is also known as the “Linear Fractional Representation” of the uncertain system.

c Polytopic systems

Polytopic systems form a special class ofLFR systems. For these systems, there exists

an extensive body of work on analysis and synthesis using quadratic Lyapunov functions.

These systems are described by

d

dt
x(t) = Ax(t) + Buu(t) + Bww(t), y(t) = Cyx(t) + Dyuu(t) + Dyww(t),

z(t) = Czx(t) + Dzuu(t) + Dzww(t), Σ(t) =

 A(t) Bu(t) Bw(t)
Cy(t) Dyu(t) Dyw(t)
Cz(t) Dzu(t) Dzw(t)

 ∈ Ξ (2.10)

where

Ξ = Co

{ A1 Bu,1 Bw,1

Cy,1 Dyu,1 Dyw,1

Cz,1 Dzu,1 Dzw,1

 , ...,

 AL Bu,L Bw,L

Cy,L Dyu,L Dyw,L

Cz,L Dzu,L Dzw,L

}
(2.11)

whereCo denotes the convex hull. (The matrices

 Ai Bu,i Bw,i

Cy,i Dyu,i Dyw,i

Cz,i Dzu,i Dzw,i

 , i= 1,..., L are

given.)
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2.3 Nominal stability and nominal performance

The study of Lyapunov stability concerns the asymptotic behavior of the state of the dy-

namical system around an equilibrium. The main contributions of Lyapunov are the concept

of stability, asymptotic stability, and method of verification of these concepts in terms of

the existence of functions, called Lyapunov functions. Fortunately, the problem of finding

Lyapunov functions can be solved by testing a feasibility of LMIs.

2.3.1 Nominal stability of linear system

Consider the linear autonomous system

ẋ = Ax (2.12)

whereA : Rn → Rn is a linear map obtained as the linearization off : X → X around an

equilibrium pointx∗ ∈ X of the following system.

ẋ(t) = f(x(t), t) (2.13)

Clearly, forx∗ ∈ X , we can write

f(x) = f(x∗) +
n∑

j=1

∂f

∂xj

(x∗)[x− x∗] + ...

f is assumed to be differentiable at least once. The linearization off aroundx∗ is defied by

the system (2.12) withA defined by the realn× n matrix.

All elements in ker A are equilibrium points, but we consider the stability of (2.13) at the

equilibrium pointx∗ = 0. Then, the following positive definite functionV : X → R defined

by

V (x) = xT Xx

severs as a quadratic Lyapunov function.

Theorem 2.1. Let the system (2.12) be a linearizaion of (2.13) at the equilibrium pointx∗.

The following statements are equivalent

(a) The origin is an asymptotically stable equilibrium for (2.12).

(b) The origin is a globally asymptotically stable equilibrium for (2.12).

(c) All eigenvaluesλ(A) of A have stricly negative real part.

(d) The linear matrix inequalities

AT X + XA < 0, X > 0

are feasible.
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2.3.2 Nominal performance and LMIs

In this section, we will examine some performance criteria for dynamical systems. Consider

the system
ẋ(t) = Ax(t) + Bw(t)
z(t) = Cx(t) + Dw(t)

(2.14)

wherex(t) ∈ X = Rn×n is the state,w(t) ∈ W = Rm the input andz(t) ∈ Z = Rp

the output. LetT (s) = C(Is − A)−1B + D denote the corresponding transfer function.

The system is assumed to be asymptotically stable. The inputw is considered as an input

variable (a ‘disturbance’) whose effect on the outputz should be minimized. This effect can

be depicted by some ways. For instant, with a given inputw, the quotient‖z‖2/‖w‖2 shows

the relationship between the inputw and the outputz. The wort case gain of the system is

usually considered

‖T‖∞ := sup
0<‖w‖<∞

‖z‖2

‖w‖2

TheH∞ of the transfer functionT (s) is also defined as by

‖T‖∞ = sup
ω
|T (jω)|

TheH∞ norm can be interpreted as the maximal power ofy, y = T (s)u, given a power ofu

of 1 Watt, or, alternatively, as the maximal energy ofy, for all possible signalsu having the

energy 1 Joule.

2.4 Conclusions

In this chapter we have reviewed basic knowledge that is very helpful for solving control

problems. It can be seen that many problem in control systems can be cast or recast into

LMIs formulation such as stability problem,µ analysis, so on. It has been a very powerful

tool in the field of control systems. In order to design controller of an actual system, it is

required to approximate the system to get its mathematical model. For an uncertain system,

we need to describe it in terms of a certain dynamical system such as LFR or polytopic

sytems.



CHAPTER III

ROTARY DOUBLE INVERTED PENDULUM

In this chapter some issues pertaining to the rotary double inverted pendulum (RDIP) are

introduced. Section 3.1 describes the physical structure of the RDIP. The statements of the

control problem of the RDIP are stated in section 3.2. In order to deal with controller design

next chapter, the nonlinear model of the RDIP is analyzed in the section 3.3. The nonlinear

model is then linearized at an upright unstable position . The linearized model will be used

to design controller in next chapter.

3.1 Introduction

The (RDIP) shown in Fig 3.1 consists of two rigid pendulums. They are mounted on per-

pendicularly rotating disc which is connected to a DC motor. The two pendulum can only

move on the vertical plane and the rotating disc can only move on the horizontal plane. The

pendulums are controlled to be at the inverted position by rotating the disc. In fact, it is im-

possible to control the two pendulums when they have the same length and material as well

as homogeneity. The result obtained in this section is cited from [17]. The dynamic models

are based on Euler-Lagrange equations derived by specifying a Lagrangian, difference be-

tween kinetic and potential energy of the RDIP. The nonlinear dynamic is linearized around

a point of operation which is position of both pendulums up.

The schematic of the RDIP is dawn in Fig 3.2. The system variables and their nominal

values are described in Table 3.1.

τ : The external torque applied to the disc (N.m)

α: The angular displacement of the rotating disc (rad)

β1: The1st pendulum angle with respect to the vertical axis (rad)

β2: The2nd pendulum angle with respect to the vertical axis (rad)
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Figure 3.1: Physical System.

Figure 3.2: Rotary Double Inverted Pendulum.
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Notation Value Unit Remark

J0 0.06 kg −m2 Inertia of the rotating disc

J1 0.008 kg −m2 Inertia of the1st pendulum

J2 0.002 kg −m2 Inertia of the2nd pendulum

c0 0.004 N −m.s Viscous coef. of rotating disc

c1 0.003 N −m.s Viscous coef. of the1st pendulum

c2 0.009 N −m.s Viscous coef. of the2nd pendulum

m1 0.25 kg Mass of the1st pendulum

m2 0.13 kg Mass of the2nd pendulum

l1 0.24 m The displacement from the joint to the c.m of the1st pendulum

l2 0.13 m The displacement from the joint to the c.m of the2nd pendulum

L 0.172 m The radius of the rotating disc

g 9.8 m/s The gravity constant

Km 0.374 N.m/A Torque constant

Kb 0.374 V olt/rad Back emf. constant

R 8.26 Ω Resistant in motor circuit

Table 3.1: System parameters.

3.2 Statement of the benchmark problem

The aim of the design controller is robust stabilization of the RDIP. The RDIP to be con-

trolled is an uncertain plant. There are three uncertain parameters in the plant as follows

1. Length of the long pendulum,

2. Length of the short pendulum,

3. Inertia of the rotational arm.

Other parameters are fixed as nominal values. In addition to the stabilization problem, we are

interested in minimizing performance measure when the RDIP is injected by disturbances.

The system is set to upright position. The disturbance inputs,w1(t) andw2(t), injected to

two passive joints of long and short pendula are defined as

w1(t) = a1(t) sin(ω11t + φ11) + b1(t) sin(ω12t + φ12)

w2(t) = a2(t) sin(ω21t + φ21) + b2(t) sin(ω22t + φ22)

where

a1, a2, b1 andb2 are in the set[0.0, 10−3][Nm]



15

Figure 3.3: Unit vectors in the cartesian and polar coordinate.

ω11, ω12, ω21 andω22 are in the set[0.5, 10.0] [Hz]

φ11, φ12, φ21 andφ22 are in the set[0.0, π] [rad]

The performance index is calculated as:

J =
‖Qx‖2

‖w‖2

, Q = diag(10, 10, 10, 1, 1, 1) (3.1)

wherex stands for the state of the system.

The time duration of the calculation is defined from 0 to 10 (sec).

3.3 Nonlinear Dynamic Model

We now compute kinetic energy, potential energy, and loss energy for the system.

Kinetic Energy

The kinetic energy of the system is calculated as

K =
1

2
(J0α̇

2 + J1β̇2
1 + J2β̇2

2 + m1v
2
1 + m2v

2
2) (3.2)

wherev1, v2 are the velocities of the center mass of the1st pendulum and the2nd pendulum,

respectively. The cartesian coordinate is required to compute each velocity of the center

mass of the pendulum. As shown in Fig 3.3,{ex, ey, ez} denotes the set of unit vectors of

cartesian coordinate and{ep, eq, ez} denotes the set of unit vectors of cartesian coordinate in

angle of the rotating disc and pendulum, respectively.



16

The unit vector of which direction along the line connecting the two pendulums is

calculated

eq = ex cos α + ey sin α (3.3)

The unit vectorep is similarly calculated

ep = −ex sin α + ey cos α (3.4)

In the coordinate{ep, ez} for the pendulum, an unit vectoren along direction of pendulum is

computed

en = −ez cos βi − ep sin βi (3.5)

The vector of the center mass of the pendulum is then found in coordinatepqz

vCM = lien + eqL (3.6)

= ezli cos βi − epli sin βi + Leq (3.7)

We substitute (3.3) and (3.4) into (3.7). It is easy to find

vCM = (li sin βi sin α + L cos α)ex + (L sin α− li sin βi cos α)ey + (li cos βi)ez (3.8)

The velocity of each pendulum is computed in the coordinatexyz. For more details, see [17].

vx
i = li sin βi cos αα̇ + sin α(li cos βiβ̇i − Lα̇)

vy
i = li sin βi sin αα̇− cos α(li cos βiβ̇i − Lα̇)

vz
i = −li sin βi sin αα̇

Substituting the velocities calculated above into (3.2) yields

K =
1

2
(J0α̇

2 + J1β̇
2
1 + J2β̇

2
2 + m1(l1 sin β1α̇)2 + m1(Lα̇)2 + m1(l1β̇1)

2

+ m2(l2 sin β2α̇)2 + m2(Lα̇)2 + m2(l2β̇2)
2) (3.9)

− m1l1L cos β1β̇1α̇−m2l2L cos β2β̇2α̇

Potential Energy

The potential energy of the system is

P = m1gl1 cos β1 + m2gl2 cos β2 (3.10)

Loss energy

The loss energy of the system resulting from the frictional force is

W =
1

2
(c0)α̇

2 + c1β̇
2
1 + c2β̇

2
2 (3.11)
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Lagrangian

From the kinetic energy and potential energy, the Lagrangian is given by

L = K − P (3.12)

From (3.9) and (3.10), we get

L =
1

2
(J0α̇

2 + J1β̇
2
1 + J2β̇

2
2 + m1(l1 sin β1α̇)2 + m1(Lα̇)2 + m1(l1β̇1)

2

+ m2(l2 sin β2α̇)2 + m2(Lα̇)2 + m2(l2β̇2)
2)−m1l1L cos β1β̇1α̇ (3.13)

− m2l2L cos β2β̇2α̇−m1gl1 cos β1 −m2gl2 cos β2

State equations can be generated using Lagrange’s Equation

d

dt

L

∂q̇i

− L

∂qi

+
W

∂q̇i

= Fi (3.14)

whereFi, qi are the generalized forces, the generalized coordinates, respectively. Here,qi ∈
{α, β1, β2}

The dynamic equation of the system is computed as follows:A11 A12 A13

A21 A22 A23

A31 A32 A33

 α̈

β̈1

β̈2

 +

a1

a2

a3

 =

[
τ
0

]
(3.15)

It is trivial to verify that

A11 = J0 + m1l
2
1 sin2 β1 + m1L

2 + m2l
2
2 sin2 β2 + m2L

2

A12 = −m1l1L cos β1

A13 = −m2l2L cos β2

A21 = −m1l1L cos β1

A22 = J1 + m1l
2
1

A23 = 0

A31 = −m2l2L cos β2

A32 = 0

A33 = J2 + m2l
2
2

a1 = m1l
2
1β̇1α̇ sin(2β1) + m1l1Lβ̇2

1 sin β1 + c0α̇ + m2l
2
2β̇2α̇ sin(2β2) + m2l2Lβ̇2

2 sin β2

a2 = −m1l
2
1α̇

2 sin β1 cos β1 −m1gl1 sin β1 + c1β̇1

a3 = −m2l
2
2α̇

2 sin β2 cos β2 −m2gl2 sin β2 + c2β̇2

whereτ is the torque applied to the rotating disc. In fact, the control input of the system is

the voltage of DC motor, therefore, the torque is expressed in terms of control input. The
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inductor in the motor circuit is assumed to be zero. As a results, theτ is

τ =
KmV

R
− KmKbα̇

R

3.4 Linearized Dynamic Model

The system is linearized at the equilibrium pointβ∗1 = β∗2 = 0◦. It can be seen that the if the

valuex is very small thensin x = x andsin2 x = 0.

Let x = [α β1 β2 α̇ β̇1 β̇2]
T be a state variable, andu = V be an input. The

equation (3.15) can be explicitly rewritten as

(J0 + m1L
2 + m2L

2)α̈−m1l1Lβ̈1 −m2l2Lβ̈2 = −(c0 +
KmKb

R
)α̇

−m1l1Lα̈ + (J1 + m1l
2
1)β̈1 = m1gl1β1 − c1β̇1 +

Km

R
u

−m2l2Lα̈ + (J2 + m2l
2
2)β̈2 = m2gl2β2 − c2β̇2

It is easy to obtain the state space equation of the RDIP as

Eẋ = Fx + Gu

ẋ = E−1Fx + E−1Gu

=: Ax + Bu

where

E =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 J0 + m1L

2 + m2L
2 −m1l1L −m2l2L

0 0 0 −m1l1L J1 + m1l
2
1 0

0 0 0 −m2l2L 0 J2 + m2l
2
2



F =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −(c0 + KmKb

R
) 0 0

0 m1gl1 0 0 −c1 0
0 0 m2gl2 0 0 −c2



G =
[
0 0 0 Km

R
0 0

]T
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3.5 Summary and Discussion

3.5.1 Summary

In this chapter, we have stated formulation problem for RDIP. The system is an uncertain sys-

tem having three uncertain parameters which are the length of the long and short pendulum

as well as the inertia of the rotating disc. In addition to its uncertain parameters, the system

is consider under two disturbance inputs injected to the passive joint of long and short pen-

dulum. We also constructed a nonlinear dynamic model of the system based on Lagrangian

equation. The system is then linearized at the upright unstable equilibrium position.

3.5.2 Discussion

By looking at the state equation of the RDIP, it turns out that our system is sixth order

and is very highly nonlinear model. The RDIP was only linearized at the operating point

which is the upright position, because the controller design problem is the stabilization of

the pendulums at that point. We can linearize the nonlinear model at another operating

point which isβ∗1 = β∗2 = 180◦. In this case, the state variables, x, should be changed to

x = [α β1 − π β2 − pi α̇ β̇1 β̇2]
T . For more details, see [17].



CHAPTER IV

CONTROLLER DESIGN

This chapter presents the method of the controller design for the RDIP. Section 4.1 discusses

about a robust state feedback controller using LMIs. A regional pole constraints is consid-

ered in order to improve the performance of the system. It is noted that the regional pole

constraints are also cast in terms of some formulations of LMIs. A robust output feedback

controller is mentioned in section 4.2. In this section, we will design an output controller of

the6 order.

4.1 H∞ control

The LQR, Kalman filter and LQG problems can be posed as 2-norm optimization problems.

However, these problems can be alternatively posed using the systemH∞-norm as a cost

function. It is clear thatH∞-norm is the worst case gain of the system, hence, it provides a

good match to engineering specifications.

It is very important to understand that the termsH∞-norm andH∞ are not terms which

can impart a lot of engineering specifications. When one mentions aboutH∞, that means a

design method which is used to minimize the peak of a certain transfer function. TheH∞

norm of a stable scalar transfer functionF (s) is the peak value of|F (jω)| as a function of

frequency

‖F (s)‖∞ , sup
ω
|F (jω)|

The symbol∞ comes from the fact that the maximum magnitude over frequency might be

rewritten as

sup
ω
|F (jω)| = lim

p→∞

(∫ ∞

−∞
|F (jω)|p

)1/p

H∞ is the set of transfer functions with bounded∞ norm. In other words, it is the set of

stable and proper transfer functions.

An H∞ controller minimized the worst case gain of the system. The problem can be thought

of as an interesting matter: the designer will seek a controller that minimizes the gain in case

of worst case input that maximizes the gain.
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Figure 4.1: Block diagram.

4.2 LMI-based H∞ controller design

In this section, we will designH∞ state feedback controller with regional pole constraints.

The advantage of this controller design is that the transient response of the closed-loop sys-

tem can be improved. It can locate the closed-loop system poles into a suitable subregion

of the left half plane. One way of simultaneously tuning theH∞ performance and transient

behavior is to combine theH∞ and pole placement objectives. The disturbance inputs,w1(t)

andw2(t), are injected to two passive joints of long and short pendulums. Our goal is to

design a robust controller to achieve closed-loop stability and to attenuate to the effect of the

disturbances on the peak value of the regulated signalz. On the other hand, the performance

index

J =
‖Qx‖2

‖ω‖2

=

√∫∞
0

(xT QT Qx)dt√∫∞
0

(wT w)dt
(4.1)

must be minimized.

The state space of the nominal plant is described as follows :

ẋ = Ax + Bww + Bu,

z = Czx, (4.2)

y = Cx.

wherex ∈ R6×6 is the state,u ∈ R is the control input, andy ∈ R3×3 is the measured output.

w ∈ R2×2 is the disturbance input,z ∈ R6×6 is the output to be regulated. The matrixA, B

of which elements were defined in chapter 3. According to the control problem, the RDIP

has three outputs which are the angle of the two pendulums and the angle of the rotating disc.
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The output matrix is then defined as

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


The effect of disturbance inputs on the system needs to be attenuated. That meansH∞ of the

transfer function from disturbance inputsw1 andw2 to the outputz must be minimized.

‖Hwz‖∞ = sup
0<‖w‖<∞

‖z‖2

‖w‖2

= sup
0<‖w‖<∞

‖Czx‖2

‖ω‖2

By comparison with (4.1), the matrixCz is defined by

Cz = Q

The signalw is considered as an additional input injected to the short and long pendulums.

As a results,Bw is computed as

Bw = E−1

[
0 0 0 0 1 0
0 0 0 0 0 1

]T

4.2.1 LMI formulation of pole-placement objectives

A concept of an LMI region as a convenient LMI-based representation of general of general

stability regions. We now recall how the seeking of pole clustering in specific regions of the

left-half complex plane is characterized as a formulation of LMIs. For instance, consider a

second-order system with polesλ = −ζωn ± jωd. It is clear that the step response of this

system is characterized in terms of the undamped natural frequencyωn = |λ|, the damping

ratio ζ, and the damped natural frequencyω − d. Some regions such asα- stability regions

Re(s) ≤ −α, vertical strips, disks, conic sectors, etc. are very interesting. One combination

of these regions isS(α, r, θ) of complex numbersx + jy is

x < −α < 0, |x + jy| < r, tan θx < −|y|

If the closed-poles of a certain system lie on this region then it can be ensured a minimum

decay rateα, a minimum damping ratioζ = cos θ, and a maximum undamped natural fre-

quencyωd = r sin θ. In other words, the maximum overshoot, the frequency of oscillatory

modes, the delay time, the rise time, and the settling time can be improved as well. We now

look at Lyapunov-based characterizations of pole constraints in stability subregions of the

complex plane.
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Lyapunov Conditions for regional pole constraints

Let D be a subregion of the left-half of the complex plane. A systemẋ = Ax is calledD
stable if its poles lie in the regionD, the matrixA is then calledD stable. For example when

the regionD is the left-half plane, the Lyapunov condition is stated as:A is stable if and only

if there exists a symmetric matrixX satisfying

AX + XAT < 0, X > 0

Based on this knowledge, we consider an alternative LMI-based representation ofD stability

regions.

Definition 4.1 LMI stability region

For a symmetric matrixP ∈ Rm×m and a matrixQ ∈ Rm×m, the set of complex numbers

D = {z ∈ C : fD(z) < 0}

where

fD(z) = P + Qz + QT z

is called LMI region.

On the other hand, an LMI region is a subset of the complex plane that is represented by an

LMI in z andz. Therefore, LMI regions are convex and symmetric with respect to the real

axis for anyz ∈ D, fD(z) = fD(z) < 0. Below are a few examples of LMI regions:

• Half-planeRe(z) < −α : fD(z) = z + z + 2α < 0

• Disk centered at(−q, 0) with radiusr:

The matricesP, Q ∈ R2×2 exist as

P =

[
−r q
q −r

]

Q =

[
0 1
0 0

]
Therefore, the characteristic functionfD(z) takes

fD(z) =

[
−r q + z

q + z −r

]
< 0

• Conic sector with apex at the origin and inner angle2θ:

The matricesP, Q ∈ R2×2 exist as

P =

[
0 0
0 0

]
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Figure 4.2: RegionS(α, r, θ).

Q =

[
sin θ cos θ
− cos θ sin θ

]
Hence

fD(z) =

[
sin(θ)(z + z) cos(θ)(z − z)
cos(θ)(z − z) sin(θ)(z + z)

]
< 0

Consider a state feedback controlleru = Kx, the closed-loop system becomes

ẋ = (A + BK)x + Bww

z = Czx (4.3)

y = Cx

TheH∞ norm of the system admits an interpretation in terms of LMI known as bounded real

lemma.

Lemma 4.1 (Bounded Real Lemma). Suppose that the system described by (4.3) is con-

trollable and has transfer function T, letγ > 0. Then the following statements are equivalent

(a) ‖T‖∞ < γ,

(b) For all w there holds that

sup
0<‖w‖<∞

‖z‖2

‖w‖2

< γ

subject to initial conditionx(0) = 0,

(c)There exists a solutionP = P T to the LMI

(A + BK)T P + P (A + BK) + CT
z Cz +

1

γ2
PBwBT

wP < 0
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Suppose that there exists a quadratic functionV (ξ) = ξT Pξ, P > 0, andγ ≥ 0 such that

for all t,
d

dt
V (x) + zT z − γ2wT w < 0 (4.4)

thenH∞ of the system is less thanγ. We now integrate (4.4) from 0 toT , with the condition

x(0) = 0 to obtain

V (x) +

∫ T

0

(zT z − γ2wT w)dt < 0

The inequality (4.4) is equivalent to

((A + BK)x + Bww)T Px + xT P ((A + BK)x + Bww) + xT CT
z Czx− γ2wT w

= xT (A+BK)T Px+wT BT
wPx+xT PBww+xT P (A+BK)x+xT CT

z Czx−γ2wT w < 0

or [
x
w

] [
(A + BK)T P + P (A + BK) + CT

z Cz PBw

BT
wP −γ2I

] [
x
w

]T

< 0 (4.5)

By using Schur complement, we have

(A + BK)T P + P (A + BK) + CT
z Cz +

1

γ2
PBwBT

wP < 0 (4.6)

Let 1
γ2 Y

−1 = P , the above LMI becomes

(A + BK)Y + Y (A + BK)T +
1

γ2
Y CT

z CzY + BwBT
w < 0

Let L = KY , we get[
AY + Y AT + BL + LT BT + BwBT

w Y CT
z

CzY −γ2I

]
< 0

The closed-loop poles of(A + BK) is constrained to lie on the regionS(α, r, θ). The LMI

formulations are as the following LMIs: if there exist a symmetric matrixY > 0 and a scalar

γ such that

(A + BK)Y + Y (A + BK)T + 2αY < 0[
−rY (A + BK)Y

Y (A + BK)T −rY

]
< 0

and[
sin(θ)((A + BK)Y + Y (A + BK)T ) cos(θ)((A + BK)Y − Y (A + BK)T )
cos(θ)(Y (A + BK)T − (A + BK)Y ) sin(θ)((A + BK)Y − Y (A + BK)T )

]
< 0

In order to design a robust state feedback controller, we will take into account the system

described by a polytope of linear affine systems. In general, a polytope description of un-

certainties results in a less conservative controller design than other characterization of un-

certainty. Note that, with the increasing of uncertain parameters, the number of vertices

increases exponentially and the design time increases exponentially as well.
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Let the system be represented by the state realization with uncertainties

ẋ = A(θ)x + Bww + B(θ)u

z = Czx (4.7)

y = Cx

where
A(θ) = A0 + A1θ1 + ... + Apθp

B(θ) = B0 + B1θ1 + ... + Bpθp
(4.8)

The system represented by (4.7) is a polytope of linear systems. The system is described by

a list of its vertices as follows

{(Av1, Bv1), ..., (AvN , BvN)} (4.9)

whereN = 8, is the number of vertices.

Consider the polytope of the system, and withL = KY , the above LMIs are equivalent

to [
AviY + Y AT

vi + BviL + LT BT
vi + BwBT

w Y CT
z

CzY −γ2I

]
< 0 (4.10)

AviY + Y AT
vi + BviL + (BviL)T + 2αY < 0 (4.11)[

−rY AviY + BviL
Y AT

vi + (BviL)T −rY

]
< 0 (4.12)[

sin(θ)(AviY + BviL + Y AT
vi + (BviL)T ) cos(θ)(AviY + BviL− Y AT

vi − (BviL)T )
cos(θ)(Y AT

vi + (BviL)T − AviY −BviL) sin(θ)(AviY + BviL + Y AT
vi + (BviL)T )

]
< 0

(4.13)

Algorithm 4.1. Consider the system described by (4.7). The robustH∞ control with regional

pole constraints can be characterized as follows

min
L,Y

γ

s.t LMIs (4.10)-(4.13)

The state feedback gain matrix can be computed asK = LY −1 which leads to‖Tzw‖2
∞ 6 γ2.
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4.3 Robust output feedbackH∞ controller

In this section, we will design a robustH∞ output feedback controller. It was shown in

[18] that the existence ofH∞ is equivalent to the feasibility of a system of three LMIs

whose unknownX, Y are two symmetric matrices of size equal to the plant order. The

explicit characterizations of solutions to the Bounded Real Lemma were also derived in [19]

[20]. In comparison, the formulas given here are simpler and suitable for numerically stable

implementations.

We assume that only partial state information is available through the outputy. Our

output feedback law is generated by a strictly proper full order linear controller.

ẋc = Acxc + Bcuc (4.14)

yc = Ccxc + Dcuc

wherexc ∈ R6×6 is the controller state,uc ∈ R is the controller input,yc ∈ R3×1 is the

controller output. The method of controller design is first derived in the nominal case and

then extended to uncertain systems described by a polytope of models. A convenient way to

proceed is to find a realization of the closed-loop transfer function fromw to z: T (G, C) =

Dcl + Ccl(sI − Acl)
−1Bcl where

Acl =

[
A + BDcC BCc

BcC Ac

]
, Bcl =

[
Bw

0

]
,

Ccl =
(
Cz 0

)
, Dcl = 0. (4.15)

Consider the LMI (4.6), we also get

AT
clP + PAcl + CT

clCcl +
1

γ2
PBclB

T
clP < 0 (4.16)

and letγXcl = P , we get

XclAcl + AT
clXcl +

1

γ
CT

clCcl +
1

γ
XclBclB

T
clXcl < 0 (4.17)

Applying Schur complement yieldsAT
cliXcl + XclAcli XclBcl CT

cl

BT
clXcl −γI 0
Ccl 0 −γI

 < 0 (4.18)

for some symmetric matricesXcl > 0 of dimension(6× 6). The unknown matrices areXcl

and the controller parameters insideAcl, Bcl, Ccl, Dcl. Internal stability and theH∞-norm

constraint are equivalent to above feasibility of the matrix inequality. It is noted that (4.18) is
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not an LMI. This is Bilinear matrix inequality (BMI) because it consists of some products of

two variables. It is impossible to solve BMI by any solver. Therefore, we need to transform

an BMI into a certain LMI.

Let Xcl be partitioned as follows

Xcl =

[
Y N
NT ∗

]
, X−1

cl =

[
X M

MT ∗

]
(4.19)

with X, Y, M, N ∈ R6×6.

Let N12 andN21 denote orthonormal bases of the null spaces of(BT , 0) and(C, 0),

respectively. Substituting the matrixXcl into the LMI (4.17) and consider each term of this

LMI

N T
21A

T
clXclN21 = N T

21

[
AT + CT DT

c BT )Y + CT BT
c NT ∗

CT
c BT Y + AT

c NT ∗

]
N21 (4.20)

= N T
21

[
AT Y 0

0 0

]
N21 (4.21)

N21C
T
clCclN21 = N T

21

[
CT

z Cz 0
0 0

]
N21 (4.22)

The other terms are also reduced, and the LMI (4.17) becomes

N T
21

[
AT Y + Y A + 1

γ
CT

z Cz + 1
γ
Y BwBT

wY 0

0 0

]
N21 < 0 (4.23)

It is trivial to get

N T
12

[
AX + XAT + 1

γ
BwBT

w + 1
γ
XCT

z CwX 0

0 0

]
N12 < 0 (4.24)

Hence, the controller parameters will be thrown out (4.18) to achieve an LMI associated with

X andY only.

We now extend to uncertain systems described by a polytopic state-space model. Such

polytopic models may result from convex interpolation of a set of model(Ai, Bi) identified

in different operating points.

Algorithm 4.2. Consider the system described by (4.2), the LMIs (4.23) and (4.24). The

optimal H∞ problem is solvable if and only if there exist two symmetric matricesX, Y ∈
R6×6 satisfying the following system of LMIs

min
X,Y

γ

[
N12i 0

0 I

]T
AiX + XAT

i XCT
z Bw

CzX −γI 0

BT
w 0 −γI

[
N12i 0

0 I

]
< 0 (4.25)
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[
N21 0

0 I

]T
AT

i Y + Y Ai Y Bw CT
z

BT
wY −γI 0

Cz 0 −γI

[
N21 0

0 I

]
< 0 (4.26)

[
X I

I Y

]
≥ 0 (4.27)

whereN12i denotes orthonormal bases of the null spaces of(BT
i , 0). The last LMI is to make

sure that the matrixXcl > 0. The pairs (X, Y ) are called feasible for the LMI systems (4.25)-

(4.27) and computing feasible pairs is a convex optimization problem. Letk := Rank(I −
XY ) and compute via SVD two full column rank matricesM, N ∈ R6×k such that

MNT = I −XY (4.28)

The matrixXcl can be computed as an unique solution of the linear equation

Xcl

[
X I

MT 0

]
=

[
I Y
0 NT

]
(4.29)

OnceXcl is determined, (4.18) becomes an LMI with respect to the controller parameters

Ac, Bc, Cc, Dc only. Therefore, the controller parameters could be computed by solving the

LMI (4.18). Generally, this option is appropriate for most cases, however it can procedure a

numerical problem. A particular solution can be computed more efficiently using elementary

linear algebra. In order to construct controllers parameter, we will rewrite the LMI (4.18).

By using a Schur complement argument, the LMI (4.18) is equivalent to the two LMIs

∆cl =

[
γI −DT

cl

−Dcl γI

]
> 0 (4.30)

AT
cliXcl + XclAcli +

[
BT

clXcl

Ccl

]T

∆−1
cl

[
BT

clXcl

Ccl

]
< 0 (4.31)

We set up two new variablesR,S such thatXclR = S where

R =

[
X I

MT 0

]
, S =

[
I Y
0 NT

]
(4.32)

Thus,Xcl = SR−1. Substituting this term into (4.31), and multiplying both side of the LMI

(4.31) with the matrixRT , R yield

RT AT
cliS + ST AcliR +

[
BT

clS
CclR

]T

∆−1
cl

[
BT

clS
CclR

]
< 0 (4.33)

For simplicity, some shorthands are introduced

Ai = Ai + BiDcC,



30

KB = BT
c NT + DT

c BT
i Y, KC = CcM

T + DcCX. (4.34)

We have

ST AcliR =

[
I 0
Y N

] [
Ai + BiDcC BiCc

BcC Ac

] [
X I

MT 0

]
(4.35)

=

[
AiX + BiKC Ai

NAcM
T + YAiX + Y BiCcM

T + NBcCX Y Ai + KT
BC

]
(4.36)

RT AT
cliS =

[
XAT

i + KT
CBT

i AT
i

MAT
c N + XAT

i Y + MCT
c BT

i Y + XCT BT
c Y AT

i Y + CT KB

]
(4.37)

and [
BT

clS
CclR

]T

∆−1
cl

[
BT

clS
CclR

]
=

[
. . .

]T
∆−1

cl

[
BT

w CzX
BT

wY CT
z

]
(4.38)

The BMI (4.33) becomes [
∆Xi ∆T

21i

∆21i ∆Y i

]
< 0 (4.39)

where

∆Xi = AiX + XAT
i + BiKC + KT

CBT
i +

[
. . .

]T
∆−1

cl

[
BT

w

CzX

]
(4.40)

∆Y i = AT
i Y + Y Ai + CT KB + KT

BC +
[
. . .

]T
∆−1

cl

[
BT

wY
CT

z

]
(4.41)

∆21i = NAcM
T +AT

i + YAiX + Y BiCcM
T + Y NBcCX +

[
Y Bw CT

z

]
∆−1

cl

[
BT

w

CzX

]
(4.42)

It can be seen that the products of variableXcl and state matrices of the closed-loop system

are pulled out the BMI (4.31). We have transform the BMI (4.31) into the LMI (4.39). The

controller parameters can be computed by solving the LMI (4.39).

4.4 Summary and Discussion

4.4.1 Summary

In this chapter, we have presented a robust state feedbackH∞ controller and a robust output

feedbackH∞ controller. In order to design the controllers, an LMI regional pole constrains

has been used to improved the transient response of the system and to make the uncertain

system more stable. As given in Algorithm 4.1, the robust state feedbackH∞ controller was

found by solving four LMIs system over the two variableL andY . In case of the robust

output feedbackH∞ controller, we also need to solve a minimization problem as shown in

Algorithm 4.2. Unlike state feed back controller, in this case after solving three LMIs system

we need to reconstruct the controller. It is noted that in both cases a polytopic system of eight

vertices was considered. For the first case, we need to solve a system of thirty-two LMIs. In

next chapter, we will show the results of the controller designs.
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4.4.2 Discussion

The computation of adequateX, Y and the controller reconstruction reduce to solving LMIs,

and hence to convex optimization programs. However, its solutions parameterize the set of

H∞ controllers and bear important connections with the controller order.H∞ control is a

natural for applications where the specifications are given in terms of frequency dependent

bounds on the output. Requiring the input to output gain to remain below prescribed levels

is typical of engineering design specifications. The existence conditions for a optimalH∞

controller are useful when performing trade-offs between competing control objectives. In

addition,H∞ control can be used as an alternative to LQG optimal problem. Both approaches

are reasonable for a wide range of problems.



CHAPTER V

SIMULATION RESULTS

This chapter presents the result of the controller design for the DRIP. In section 5.1, the result

of the robust state feedback controller design based on a regional pole constraints is shown.

Specifically, we will inject the two disturbance inputs and seek the worst-case gain while

varying the uncertain parameters of the system. Section 5.2 shows the result of the robust

output feedback controller design. With the same steps in previous case, the responses of the

system corresponding to the disturbance inputs are displayed. Some comparison between

the two controllers are then shown.

5.1 Robust state feedbackH∞ controller

The feasibility problem was solved for(Y, L) and the state feedback matrix was obtained as

K = LY −1. In order to find the state feedback, the minimization problem in Algorithm 4.2

was solved using YALMIP package with solver SeDuMi. The problem was solved with re-

gional pole constraints in the region ofS(0.5, 10000, 1.04). For the state feedback controller

with regional pole constraints, the state feedback gain is found

K = [−84 43971 −38633 −130 8633 −6285]

The poles of the closed-loop system are

−343.1307 −3.5960± j2.0394 −2.3478 −1.5377± j1.4401

It is clear that the poles of the closed-loop system are satisfied the regionS(0.5, 10000, 1.04).

TheH∞ performance of the resulting closed loop systems is foundγ = 72.4.

We now show the simulation results of pendulum angle near the operating pointβ∗1 = 0

andβ∗2 = 0. Firstly, the two long and The system is set to the upright position to calcu-

late the performance when the disturbances are injected to passive joints of long and short

pendulums. We will consider the effects of uncertainties and two sets of the disturbances

specified above on the system. The simulation is also tested by using a virtual plant. The

worst value of performance index can be found by varying a set of three uncertain param-

eters and two disturbances. This step can be done more efficiently by using an interface

control panel in Figure 5.1. It is noted that the cost function must be calculated from 0 to

10 (sec). Therefore, the value obtained by simulation is less than theH∞-norm obtained
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Figure 5.1: The control panel

Figure 5.2: The virtual plant
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Figure 5.3: The performance index with uncertaintiesl1, l2.

by solving Algorithm 4.1. In the first step, we examine the performance index when the

uncertain parameters which are length of the short and the short pendulums are being var-

ied. By observing Fig 5.3, it is transparent that the worst value of performance index occurs

whenl1 andl2 are minimum. In the second step, we fix the length of the short pendulum at

the minimum values. The inertia of rotating disc and the length of the long pendulum are

changed25 percent around their nominal values. The performance index corresponding to

the uncertain parametersJ0, l1 is shown in Fig 5.4. The worst-case value occurs when the

inertia of rotating disc is maximum, and the length of the long pendulum is minimum. The

greater the value ofJ0 is the slower the position of the rotating disc changes. As a results,

the stabilization of two pendulums will be more affected by the disturbance inputs.

In this third step, we fix the length of the long pendulum at the minimum values and vary

the length of the short pendulum20 percent around its nominal value. It turns out that, the

maximum value occurs when the length of the short pendulum is at the minimum value and

the inertia of the rotating disc is maximum.
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Figure 5.4: The performance index with uncertaintiesJ0, l1.

Figure 5.5: The performance index with uncertaintiesJ0, l2.
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Figure 5.6: The performance index with disturbancesω1, ω2.

We now will take into account the effect of disturbance inputs on the system. The length of

each pendulum is fixed at the minimum value and the inertia of the rotating disc is fixed at

the maximum value. From Fig 5.6, the worst-case inputs is found

w1(t) = 0.001 sin(20πt + π/2) + 0.001 sin(20πt + π/2)

w2(t) = 0.001 sin(πt + π/2) + 0.001 sin(πt + π/2)

Consequently, the worst value of the performance index is14.2. The response of the system

corresponding to the disturbance inputs is shown in Fig 5.7. We observe that the ampli-

tude of the pendulums is very small,0.03 [deg]. Therefore, the system is stable while the

disturbances are working on it.

Consider the initial valuesβ1 = 6(deg) andβ2 = 6(deg). The closed-system is stable as

shown in Fig 5.8∼5.10.
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Figure 5.7: The angle of discα.

Figure 5.8: The angle of discα.
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Figure 5.9: The angle of the long pendulumβ1.

Figure 5.10: The angle of the short pendulumβ2.
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5.2 Output feedbackH∞ controller

We consider effect of the disturbances on the system. The initial angles are also setβ1(0) =

0◦ (deg) andβ2(0) = 0◦ (deg). The output feedback controller is found

Ac =


−4.3039 −1.1172 −2.7539 −0.3162 36.1764 −494.6792
−2.8702 −19.5836 −0.4055 −3.4490 −18.2823 112.3659
3.2645 0.7971 −3.9003 −3 −17 88
1.5346 4.3969 0.1010 −2.5191 −65.6825 752.9302
43.8694 −56.1111 139.5282 25.4766 −111.8484 149.2250
−3512.9 68565 −1520.4 −1852.6 19544 −748.6134



Bc =


1.4811 2.8340 0.4968
−10.3463 1.9112 −303.8622
11.0831 63.0928 15.2727
6.5628 482472 49.7058
−5066 −40916 −10058
25100 −138200 1593100


Cc =

[
−3.6169 −1.1411 −2.4524 −0.4004 35.9913 −491.3821

]
; Dc =

[
0 0 0

]
The output feedback controller can also be written as

K = diag(K1(s), K2(s), K3(s))

where

K1(s) =
−12371458.8283(s− 371.7)(s + 73.3)(s + 4.96)(s + 0.4135)(s− 0.1236)

(s + 490.4)(s + 64.25)(s + 15.21)(s + 3.249)(s2 + 1329s + 8.437e005)

K2(s) =
67767121.7747(s + 623.9)(s + 77.81)(s + 5.283)(s2 + 0.5575s + 0.986)

(s + 490.4)(s + 64.25)(s + 15.21)(s + 3.249)(s2 + 1329s + 8.437e005)

K3(s) =
−782847598.0097(s + 6.28)(s2 + 0.5415s + 0.9182)(s2 + 96.37s + 2624)

(s + 490.4)(s + 64.25)(s + 15.21)(s + 3.249)(s2 + 1329s + 8.437e005)

The poles of the closed-loop system are

−548.66 −101.02± j30.78 −39.31± j28.66 −49.96

−0.66 −1.46± j2.35 −2.22 −0.27± j0.93

The Fig 5.11∼ 5.13 show the performance index. The worst value of performance index in

case of consideration of the disturbances calculated from 0 [sec] to 10 [sec] isJ = 27.5.

This worst value is greater than the wort value obtained in the previous case.
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Figure 5.11: The performance index with uncertaintiesl1, l2.

Figure 5.12: The performance index with uncertaintiesJ0, l1.
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Figure 5.13: The performance index with uncertaintiesJ0, l2.

Figure 5.14: The performance index with disturbancesω1, ω2.
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We set the initial values asβ1(0) = 0◦ andβ2(0) = 0◦, that means the two pendulum are set

at the upright unstable position. Responses of the outputs of the nominal plant with respect

to the disturbances are shown Fig 5.15 and 5.16. Because of the sinusoidal inputs, hence,

the system will oscillate with a small amplitude.

In comparison with the state feedback controller, it is transparent that the amplitude of

the outputs in this case is greater. The system is now examined when the initial positions

are not at the upright unstable position. As shown in Fig 5.17, the angle of the short and the

long pendulums areβ1(0) = 6◦ andβ2(0) = 6◦. The peak value of the angle of the short

pendulum is11.5◦ and greater than that in case of robust state feedback controller. The same

remark is stated for the long pendulum.

In short, the robustH∞ state feedback controller gives the better results than the robust

H∞ output feedback controller does. It is reasonable because in the state feedback controller

we know all information of the system. For the output feedback controller, only the angles

of pendulum and disc are known.

Figure 5.15: The angle of long pendulumβ1.
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Figure 5.16: The angle of short pendulumβ2.

Figure 5.17: The angle of long pendulum and short pendulum.
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Some comparisons between the proposed controllers and LQR controller are shown

in Fig 5.18∼ 5.21. Firstly, we consider the nominal plant and set the initial angle of the

pendulums at6◦. In this case, the LQR controller gives a result as good as the proposed

controller. The LQR controller causes a higher peak value in comparison with the proposed

controllers but it is acceptable. Therefore, the LQR controller gives a result as good as the

proposed controller.

We investigate the stability of the system when the uncertain parameters change15

percent around their nominal value. From Fig 5.20 and 5.21, it can be seen that the LQR

controller presents a bad response. The both pendulums oscillate with a large amplitude. If

we change20 percent of the uncertain parameters then the LQR controller can not stabilize

the system.

Figure 5.18: The angle of long pendulumβ1.
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Figure 5.19: The angle of short pendulumβ1.

Figure 5.20: The angle of long pendulum with 15 percent uncertain parameter.
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Figure 5.21: The angle of short pendulum with 15 percent uncertain parameter.

Figure 5.22: The angle of long pendulum with respect to disturbance inputs for LQR con-

troller.
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Figure 5.23: The angle of short pendulum with respect to disturbance inputs for LQR con-

troller.

Figure 5.24: The angle of pendulum for LPV controller.
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The response of the system with respect to the disturbance inputs for the LQR controller is

shown in Fig 5.22 and 5.23. The amplitude of the angle is greater than that in the proposed

controllers. We continue comparing the proposed controllers and an LPV controller. This

Figure 5.25: The angle of pendulum with initial3◦.

LPV controller was presented by Aribowo and Nazaruddin [21]. The results show that the

proposed controller are quite good in comparison with the LPV controller.
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Figure 5.26: The angle of pendulum for LPV controller.

Figure 5.27: The angle of pendulum with initial1◦.
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5.3 Summary

In this chapter,the results of the controller designs for the RDIP are shown. The system

is stable when the disturbance inputs are injected to the passive joint of the long and short

pendulum. The disturbance inputs are always sinusoid therefore the long and short pendulum

still oscillate but the magnitude is very small. In addition, we also consider when the initial

angle of the long and short pendulum are both6◦. The Fig. 32 shows that the system is stable

despite of applied disturbance inputs.

In comparison, it is clear that the performance index in case of the state feedback

controller is less than that in case of the output feedback controller. This result can be

explained by the angle of long and short pendulum corresponding the disturbance inputs. In

short, the state feedback controller gives a better result than the output feedback controller.



CHAPTER VI

CONCLUSIONS

6.1 Summary of Results

This thesis has dealt with a robust controller design problem for a rotary double inverted pen-

dulum. The two controllers which are robustH∞ state feedback controller robustH∞ output

feedback controller have been designed. The controller design problem were formulated into

some standard forms towards the numerical computation of controllers using LMIs. The ap-

proach to robust controllers that we have studied is polytopic. With the poly approach, the

problem might blow up and the number of solutions increase and consequently LMIs to be

solved for becomes2n. In other words, that means the increase of the number of uncertain

parameter leads to the increase the number of LMIs. The polytopic approach is suited to un-

certain systems of which the number of uncertain parameter are not many, otherwise it will

cause a computational burden which can ultimately decide the feasibility of the problem.

The RDIP has three uncertain parameter which are length of long and short pendulum and

inertia of rotating disc. In the process of designing controllers, we have found that the RDIP

becomes hard to control when the length of long pendulum is equal to the length of short

pendulum. Let us now look at a detailed summary of the results obtained in this thesis.

Chapter 2 is the introduction about a basic knowledge of which some fundamental

concepts such as model of uncertain systems were reviewed. Especially, some underlying

applications of LMIs were also highlighted. It turns out that LMIs is a very useful tool in the

field of control systems. Many problems in control systems can be formulated into the form

of a system of LMIs which is able to be solved efficiently using the package YALMIP.

In chapter 3, the nonlinear system RDIP has been modeled and linearized appropriately

depending on the control method to be applied. This chapter also stated the controller design

problems which are the robustness and the minimization problems.

Chapter 4, which contains the main contents of the thesis, mentioned about the method

used to design the two controllers above. In case of the robustH∞ state feedback controller,

we have use a stability region not only to improve the transient responses of the system but

also to guarantee the robustness of the system. Thereafter, the state feedback gain were ob-

tained by solving the32 LMIs constraints. About the robustH∞ output feedback controller,

the problem of design the controller is a minimization problem involving a system of17

LMIs. The controller parameters are not easy to get after solving the LMI system like the
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previous case. In order to reconstruct the controller parameters we had also to solve some

LMIs more, but it is not a minimization problem, just a mere LMIs problem.

Finally, the simulation results were shown in chapter 5. We have examined the effect of

disturbance inputs on the system. In order to calculate the worst value of performance index,

the two pendulums are set at the upright unstable position and the uncertain parameters of

the system are varied. It can be seen that the robustH∞ state feedback controller is better

than the robustH∞ output feedback controller. We also compared the proposed controllers

with LQR and LPV controllers. The LPV controller seem to be better than the proposed

controller whereas the LQR is the worst controller.

6.2 Recommendations

In this research, we have used the polytopic approach to deal with the uncertain system.

Increasing of the number of uncertain parameters leads to the increasing the number of LMIs.

In addition, this approach seem to be less conservative. That is a drawback of the polytopic

approach.

6.2.1 Possible Extensions

A possible extension is LFT approaches. The LFT approach on the other hand tends to be

conservative. For instance, the LFT approach is able to cope with a lot more uncertainties. If

the number of uncertainties entering the system isn, then LFT deals with2n uncertainties.

The LFT approach helps less computational burden which can ultimately decide the feasi-

bility of the problem. It the problem is extended to the complex one with huge number of

uncertainties and where the uncertain parameter varies arbitrarily fast, we would recommend

the LFT approach. The design of a gain-scheduled controller for the a nonlinear plant can be

described as a four-step procedure

1. Compute a linear parameter-varying model the plant. An approach is well know as

quasi-LPV scheduling. Some nonlinearities of the plant dynamic are replaced with

time-varying parameters used as scheduling variables.

2. This step deals with linear design controller techniques for the LPV plant model. The

LPV model will be reduced to LFT form.

3. Design a robust controller such that its coefficients are varied(scheduled) according to

the current value of the scheduling variables.

4. Evaluate the controller in order to meet given certain specifications.
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Figure 6.1: The LPV control structure.

LFT approach to gain scheduling using LMIs

LFT description can represent any polynomial or rational matrix function of a scalar variable.

The LMIs are able to seek the existence of gain-scheduled controllers. The plant can be

represented by using an upper LFT interconnection(
z
y

)
= Fu(P (s), Θ)

(
w
u

)
whereP (s) is a known LTI plant andΘ is some block diagonal time-varying operator. The

blockΘ can be defined by

Θ=blockdiag(θ1Ir1, . . . θkIrk)

We can use a concept of parameter-dependentH∞ controllers to solve the problem. The

controllers depend on the varying parametersθ(t) can be presented by

ẋc(t) = Ac(θ(t))xc(t) + Bc(θ(t))y(t)

u(t) = Cc(θ(t))xc(t) + Dc(θ(t))y(t)

whereAc, Bc, Cc, Dc are linear fractional functions ofθ. It is noted that in order to apply

this approach, the value ofθ(t) must be measured at each timet. As previously presented

in Chapter 4, theH∞ control problem can be considered as finding an internally stabilizing

LTI controller K(s) such that

‖F (P, K)‖∞ < γ
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We can attenuate the effect of disturbance inputs by minimizing the valueγ. Therefore, the

objective is to to minimize closed loop performanceγ > 0 from w to z for all admissible

parameter trajectoriesθ. The minimal realization of the LTI plantP (s) is

P (s) =

Dθθ Dθp Dθu

Dpθ Dpp Dpu

Duθ Dup Duu

 +

Cθ

Cp

Cu

 (sI − A)−1(Bθ Bp Bu)

The LFT of open loop plant can be written as

ẋ = Ax + Bθwθ + Bpwθ + Buwu

zθ = Cθx + Dθθwθ + Dθpwp + Dθuu

zp = Cpx + Dpθwθ + Dppwp + Dpuu

y = Cyx + Dyθwθ + Dypwp, wθ = Θzθ

An optimalH∞ controller can be designed if there exists pairs of symmetric matrices(X, Y )

and(R, S) such that

min
X,Y,R,S

γ

N T
X


AX + XAT RĈT

p B̂p

(
S 0
0 I

)
ĈpX −γ

(
S 0
0 I

)
D̂pp

(
S 0
0 I

)
(

S 0
0 I

)
B̂T

p

(
S 0
0 I

)
D̂T

pp −γ

(
S 0
0 I

)

NX < 0 (6.1)

N T
Y


AT Y + Y A Y B̂p ĈT

p

(
R 0
0 I

)
B̂T

p Y −γ

(
R 0
0 I

)
D̂T

p

(
R 0
0 I

)
(

R 0
0 I

)
Ĉp

(
R 0
0 I

)
D̂pp −γ

(
R 0
0 I

)

NY < 0

(
X 0
0 Y

)
≥ 0(

R 0
0 S

)
≥ 0

where

B̂p = (Bθ, Bp), Ĉp =

(
Cθ

Cp

)
, D̂pp =

(
Dθθ Dθp

Dpθ Dpp

)
Moreover, there exists an optimalH∞ controller of orderk < 6 if the extra rank constraint

is satisfied

rank(I −XY ) ≤ k
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6.2.2 Future works

In this research, some difficulties have been encountered, hence, these can be considered as

avenues for future works:

1. The LFT approach being able to cope with a lot more uncertain parameters gives a

conservative result. Future work could consider complex uncertainties and other types

of disturbances.

2. Making a real rotary double inverted pendulum will be an interesting work in order to

test controllers.
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Appendix

Matlab Source Code for Simulations of Controller Design

1 Program for robust H∞ state feedback controller

%==========================================================================================

% S t a t e f e e d b a c k .m

% S i m u l a t i o n o f a r o t a r y doub le i n v e r t e d pendulum

% Author : Hoang Ha

% 30 J u l y 2007

%==========================================================================================

%==========================================================================================

% V a r i a b l e i n i t i a l i z a t i o n

%==========================================================================================

c l o s e a l l ; c l e a r a l l ;

J0= 0 . 0 6 ; % I n e r t i a o f t h e r o t a t i n g d i s c

J1 =0 .0 08 ; % I n e r t i a o f t h e long pendulum

J2 =0 .0 02 ; % I n e r t i a o f t h e s h o r t pendulum

c0 = 0 . 00 4 ; % Vicous c o e f . o f t h e r o t a t i n g d i s c

c1 = 0 . 00 3 ; % Vicous c o e f . o f t h e long pendulum

c2 = 0 . 00 9 ; % Vicous c o e f . o f t h e s h o r t pendulum

m1= 0 . 2 5 ; % Mas s o f t h e long pendulum

m2= 0 . 1 3 ; % Mas s o f t h e s h o r t pendulum

l 1 = 0 . 2 4 ; % The d i sp l a c ement from t h e j o i n t t o t h e c .m o f t h e long pendulum ( nomina l v a l u e )

l 2 = 0 . 1 3 ; % The d i sp l a c ement from t h e j o i n t t o t h e c .m o f t h e s h o r t pendulum ( nomina l v a l u e )

L= 0 . 17 2 ; % The r a d i u s o f t h e r o t a t i n g d i s c

g = 9 . 8 ; % The g r a v i t y c o n s t a n t

Km=0 .3 74 ; % Torque c o n s t a n t

Kb=0 .3 74 ; % Back emf . c o n s t a n t

R= 8 . 2 6 ; % R e s i s t a n t i n motor c i r c u i t

%==========================================================================================

% Def ine t h e maximum and minimum v a l u e o f t h e u n c e r t a i n pa ramete rs

%==========================================================================================

der min = 0 . 8 ; % V a r i a t i o n o f t h e u n c e r t a i n pa ramete rs

der max = 1 . 2 ; % V a r i a t i o n o f t h e u n c e r t a i n pa ramete rs

l 1 m in = l 1∗der min ; l1 max= l 1∗der max ; % Length o f t h e long pendulum

l 2 m in = l 2∗der min ; l2 max= l 2∗der max ; % Length o f t h e s h o r t pendulum

J0 min=J0∗der min ; J0 max=J0∗der max ; % I n e r t i a o f t h e r o t a t i n g d i s c

%==========================================================================================

% L i n e a r i z e t h e n o n l i n e a r p l a n t a t t h e u p r i g h t p o s i t i o n

%==========================================================================================

%−−−−−−−−−− The nomina l p lan t−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J00+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l 10 ˆ 2 ; Y3= J2+m2∗ l 20 ˆ 2 ;

X1 = m1∗ l 10∗L ; X2= m2∗ l 20∗L ;

X3 = m1∗g∗ l 10 ; X4 = m2∗g∗ l 20 ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 X1 X2 ; X1 Y2 0 ; X2 0 Y3 ] ; F21=diag ( [ 0 −X3 −X4 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

% E22= [ Y1 −X1 X2 ; −X1 Y2 0; X2 0 Y3 ] ; F21=d iag ( [ 0 X3−X4 ] ) ;
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E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

G = [0 0 0 Km/R 0 0 ] ’ ;

A = i nv (E)∗F ;

B = i nv (E)∗G;

%−−−−−−−Find l i n e a r i z e d model f o r each v e r t e x−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 min+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l 1 m in ˆ 2 ; Y3= J2+m2∗ l 2 m in ˆ 2 ;

X1 = m1∗ l 1 m in∗L ; X2= m2∗ l 2 m in∗L ;

X3 = m1∗g∗ l 1 m in ; X4 = m2∗g∗ l 2 m in ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 X1 X2 ; X1 Y2 0 ; X2 0 Y3 ] ; F21=diag ( [ 0 −X3 −X4 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

% E22= [ Y1 −X1 X2 ; −X1 Y2 0; X2 0 Y3 ] ; F21=d iag ( [ 0 X3−X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A1 = i nv (E)∗F ;

B1 = i nv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 min+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l 1 m in ˆ 2 ; Y3= J2+m2∗ l2 max ˆ 2 ;

X1 = m1∗ l 1 m in∗L ; X2= m2∗ l2 max∗L ;

X3 = m1∗g∗ l 1 m in ; X4 = m2∗g∗ l2 max ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A2 = i nv (E)∗F ;

B2 = i nv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 min+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l1 max ˆ 2 ; Y3= J2+m2∗ l 2 m in ˆ 2 ;

X1 = m1∗ l1 max∗L ; X2= m2∗ l 2 m in∗L ;

X3 = m1∗g∗ l1 max ; X4 = m2∗g∗ l 2 m in ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A3 = i nv (E)∗F ;

B3 = i nv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 min+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l1 max ˆ 2 ; Y3= J2+m2∗ l2 max ˆ 2 ;

X1 = m1∗ l1 max∗L ; X2= m2∗ l2 max∗L ;

X3 = m1∗g∗ l1 max ; X4 = m2∗g∗ l2 max ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A4 = i nv (E)∗F ;

B4 = i nv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 max+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l 1 m in ˆ 2 ; Y3= J2+m2∗ l 2 m in ˆ 2 ;

X1 = m1∗ l 1 m in∗L ; X2= m2∗ l 2 m in∗L ;

X3 = m1∗g∗ l 1 m in ; X4 = m2∗g∗ l 2 m in ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A5 = inv (E)∗F ;

B5 = inv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Y1 = J0 max+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l 1 m in ˆ 2 ; Y3= J2+m2∗ l2 max ˆ 2 ;

X1 = m1∗ l 1 m in∗L ; X2= m2∗ l2 max∗L ;

X3 = m1∗g∗ l 1 m in ; X4 = m2∗g∗ l2 max ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A6 = i nv (E)∗F ;

B6 = i nv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 max+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l1 max ˆ 2 ; Y3= J2+m2∗ l 2 m in ˆ 2 ;

X1 = m1∗ l1 max∗L ; X2= m2∗ l 2 m in∗L ;

X3 = m1∗g∗ l1 max ; X4 = m2∗g∗ l 2 m in ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A7 = i nv (E)∗F ;

B7 = i nv (E)∗G;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y1 = J0 max+m1∗Lˆ2+m2∗Lˆ2 ; Y2 = J1+m1∗ l1 max ˆ 2 ; Y3= J2+m2∗ l2 max ˆ 2 ;

X1 = m1∗ l1 max∗L ; X2= m2∗ l2 max∗L ;

X3 = m1∗g∗ l1 max ; X4 = m2∗g∗ l2 max ;

F22=−diag ( [ c0+Km∗Kb /R c1 c2 ] ) ;

E22= [Y1 −X1 −X2 ; −X1 Y2 0 ; −X2 0 Y3 ] ; F21=diag ( [ 0 X3 X4 ] ) ;

E= [ eye( 3 ) ze ros( 3 , 3 ) ; ze ros( 3 , 3 ) E22 ] ;

F = [ ze ros( 3 , 3 ) eye( 3 ) ; F21 F22 ] ;

A8 = i nv (E)∗F ;

B8 = i nv (E)∗G;

%−−−−−−−−−−Def ine o t h e r m a t r i c e s f o r t h e open−l oop sys tem−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C2 = [1 0 0 0 0 0 ;0 1 0 0 0 0 ; 0 0 1 0 0 0 ] ;

D = [0 0 0 ] ’ ;

Q = diag ( [ 1 0 10 10 1 1 1 ] ) ; % The m a t r i x comes from t h e benchmark problem

Bw=[0 0 ;0 0 ; 0 0 ;0 0 ;1 0 ;0 1 ] ;

Bw= i nv (E)∗B1w; % The d i s t u r b a n c e i n p u t m a t r i x

Cz=Q; % Def ine t h e per fo rmance o u t p u t m a t r i x

%==========================================================================================

% Formula te t h e problem i n te rms o f LMIs f o r m u l a t i o n

%==========================================================================================

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Declare v a r i a b l e s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y= sdpva r ( 6 ) ; % A symmet r i c m a t r i x

W= sdpva r ( 6 ) ; % A symmet r i c m a t r i x

L= sdpva r ( 1 , 6 ) ; % A m a t r i x w i t h t h e d imens ion o f ( 1 , 6 )

gamma2= sdpva r ( 1 ) ;% s q r t ( gamma2 ) i s t h e Hi n f i n i t y norm o f t h e sys tem

%−−−−−−−−−−−−−−−−−−The paramete rs f o r LMI s t a b i l i t y r e g i o n S ( alpha , t h e t a , r)−−−−−−−−−−−−−
t h e t a = p i / 3 ;

r =100000;

a l p h a =0 .00005 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−LMIs c o n s t r a i n t−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
H=[A1∗Y+Y∗A1’+B1∗L+L’ ∗B1’+B1w∗B1w’ Y∗Cz ’

Cz −gamma2∗eye( 6 ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
con12 =[A1∗Y+Y∗A1’+B1∗L+(B1∗L) ’+2 ∗ a l p h a∗Y] ;

con13=[− r ∗Y A1∗Y+B1∗L

Y∗A1 ’ + ( B1∗L) ’ −r ∗Y ] ;

con14 =[s i n ( t h e t a )∗ ( A1∗Y+B1∗L+Y∗A1 ’ + ( B1∗L ) ’ ) cos( t h e t a )∗ ( A1∗Y+B1∗L−Y∗A1’−(B1∗L ) ’ )

cos( t h e t a )∗ (Y∗A1 ’ + ( B1∗L) ’ −A1∗Y−B1∗L) s i n ( t h e t a )∗ ( A1∗Y+B1∗L+Y∗A1 ’ + ( B1∗L ) ’ ) ] ;
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
con22 =[A2∗Y+Y∗A2’+B2∗L+(B2∗L) ’+2 ∗ a l p h a∗Y] ;

con23=[− r ∗Y A2∗Y+B2∗L

Y∗A2 ’ + ( B2∗L) ’ −r ∗Y ] ;

con24 =[s i n ( t h e t a )∗ ( A2∗Y+B2∗L+Y∗A2 ’ + ( B2∗L ) ’ ) cos( t h e t a )∗ ( A2∗Y+B2∗L−Y∗A2’−(B2∗L ) ’ )

cos( t h e t a )∗ (Y∗A2 ’ + ( B2∗L) ’ −A2∗Y−B2∗L) s i n ( t h e t a )∗ ( A2∗Y+B2∗L+Y∗A2 ’ + ( B2∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
con32 =[A3∗Y+Y∗A3’+B3∗L+(B3∗L) ’+2 ∗ a l p h a∗Y] ;

con33=[− r ∗Y A3∗Y+B3∗L

Y∗A3 ’ + ( B3∗L) ’ −r ∗Y ] ;

con34 =[s i n ( t h e t a )∗ ( A3∗Y+B3∗L+Y∗A3 ’ + ( B3∗L ) ’ ) cos( t h e t a )∗ ( A3∗Y+B3∗L−Y∗A3’−(B3∗L ) ’ )

cos( t h e t a )∗ (Y∗A3 ’ + ( B3∗L) ’ −A3∗Y−B3∗L) s i n ( t h e t a )∗ ( A3∗Y+B3∗L+Y∗A3 ’ + ( B3∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
con42 =[A4∗Y+Y∗A4’+B4∗L+(B4∗L) ’+2 ∗ a l p h a∗Y] ;

con43=[− r ∗Y A4∗Y+B4∗L

Y∗A4 ’ + ( B4∗L) ’ −r ∗Y ] ;

con44 =[s i n ( t h e t a )∗ ( A4∗Y+B4∗L+Y∗A4 ’ + ( B4∗L ) ’ ) cos( t h e t a )∗ ( A4∗Y+B4∗L−Y∗A4’−(B4∗L ) ’ )

cos( t h e t a )∗ (Y∗A4 ’ + ( B4∗L) ’ −A4∗Y−B4∗L) s i n ( t h e t a )∗ ( A4∗Y+B4∗L+Y∗A4 ’ + ( B4∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
con52 =[A5∗Y+Y∗A5’+B5∗L+(B5∗L) ’+2 ∗ a l p h a∗Y] ;

con53=[− r ∗Y A5∗Y+B5∗L

Y∗A5 ’ + ( B5∗L) ’ −r ∗Y ] ;

con54 =[s i n ( t h e t a )∗ ( A5∗Y+B5∗L+Y∗A5 ’ + ( B5∗L ) ’ ) cos( t h e t a )∗ ( A5∗Y+B5∗L−Y∗A5’−(B5∗L ) ’ )

cos( t h e t a )∗ (Y∗A5 ’ + ( B5∗L) ’ −A5∗Y−B5∗L) s i n ( t h e t a )∗ ( A5∗Y+B5∗L+Y∗A5 ’ + ( B5∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
con62 =[A6∗Y+Y∗A6’+B6∗L+(B6∗L) ’+2 ∗ a l p h a∗Y] ;

con63=[− r ∗Y A6∗Y+B6∗L

Y∗A6 ’ + ( B6∗L) ’ −r ∗Y ] ;

con64 =[s i n ( t h e t a )∗ ( A6∗Y+B6∗L+Y∗A6 ’ + ( B6∗L ) ’ ) cos( t h e t a )∗ ( A6∗Y+B6∗L−Y∗A6’−(B6∗L ) ’ )

cos( t h e t a )∗ (Y∗A6 ’ + ( B6∗L) ’ −A6∗Y−B6∗L) s i n ( t h e t a )∗ ( A6∗Y+B6∗L+Y∗A6 ’ + ( B6∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

con72 =[A7∗Y+Y∗A7’+B7∗L+(B7∗L) ’+2 ∗ a l p h a∗Y] ;

con73=[− r ∗Y A7∗Y+B7∗L

Y∗A7 ’ + ( B7∗L) ’ −r ∗Y ] ;

con74 =[s i n ( t h e t a )∗ ( A7∗Y+B7∗L+Y∗A7 ’ + ( B7∗L ) ’ ) cos( t h e t a )∗ ( A7∗Y+B7∗L−Y∗A7’−(B7∗L ) ’ )

cos( t h e t a )∗ (Y∗A7 ’ + ( B7∗L) ’ −A7∗Y−B7∗L) s i n ( t h e t a )∗ ( A7∗Y+B7∗L+Y∗A7 ’ + ( B7∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

con82 =[A8∗Y+Y∗A8’+B8∗L+(B8∗L) ’+2 ∗ a l p h a∗Y] ;

con83=[− r ∗Y A8∗Y+B8∗L

Y∗A8 ’ + ( B8∗L) ’ −r ∗Y ] ;

con84 =[s i n ( t h e t a )∗ ( A8∗Y+B8∗L+Y∗A8 ’ + ( B8∗L ) ’ ) cos( t h e t a )∗ ( A8∗Y+B8∗L−Y∗A8’−(B8∗L ) ’ )

cos( t h e t a )∗ (Y∗A8 ’ + ( B8∗L) ’ −A8∗Y−B8∗L) s i n ( t h e t a )∗ ( A8∗Y+B8∗L+Y∗A8 ’ + ( B8∗L ) ’ ) ] ;

%−−−−−−−−−−−−−−−−−−−S o l v e t h e LMIs c o n s t r a i n t s u s i n g Sedumi s o l v e r−−−−−−−−−−−−−−−−−−−−−−
lm i= s e t (H>0)+s e t ( con12<0)+s e t ( con13<0)+s e t ( con14<0);

lmi= lmi+ s e t ( con22<0)+s e t ( con23<0)+s e t ( con24<0);

lmi= lmi+ s e t ( con32<0)+s e t ( con33<0)+s e t ( con34<0);

lmi= lmi+ s e t ( con42<0)+s e t ( con43<0)+s e t ( con44<0);

lmi= lmi+ s e t ( con52<0)+s e t ( con53<0)+s e t ( con54<0);

lmi= lmi+ s e t ( con62<0)+s e t ( con63<0)+s e t ( con64<0);

lmi= lmi+ s e t ( con72<0)+s e t ( con73<0)+s e t ( con74<0);

lmi= lmi+ s e t ( con82<0)+s e t ( con83<0)+s e t ( con84<0);

o p t s = s d p s e t t i n g s ;

o p t s . s o l v e r = ’ sedumi ’ ;

e r r = s o l v e s d p ( lmi , gamma2 ) ;

gamma=sq r t ( gamma2 ) ;
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%−−−−−−−−−−−−−−−−−Get t h e v a l u e o f t h e m a t r i c e s L , Y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Lso l = doub le (L ) ;

Ysol= doub le (Y ) ;

Ksval= Lso l∗ i nv ( Ysol ) ;% t h e s t a t e f eed ba ck c o n t r o l l e r i s found

%==========================================================================================

% End program f o r r o b u s t s t a t e fe edb ac k c o n t r o l l e r

%==========================================================================================

2 Program for robust H∞ output feedback controller

%==========================================================================================

% Output f eedback .m

% S i m u l a t i o n o f a r o t a r y doub le i n v e r t e d pendulum

% Author : Hoang Ha

% 30 J u l y 2007

%==========================================================================================

Dzu=ze ros( 6 , 1 ) ; Dyw=ze ros( 3 , 2 ) ; Dcl=ze ros( 6 , 2 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C Dyw=[C2 Dyw ] ;

C 2 n u l l = n u l l (C Dyw ) ; % Compute n u l l space o f t h e m a t r i x [C2 Dyw]

CD=[ C 2 n u l l ze ros( 8 , 6 )

ze ros( 6 , 5 ) eye( 6 , 6 ) ] ;

B D12 =[B’ Dzu ’ ] ;

B n u l l = n u l l ( B D12 ) ; % Compute n u l l space o f t h e m a t r i x [B ’ Dzu ]

BD=[ B n u l l ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ; % ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B1 D12 =[B1 ’ Dzu ’ ] ; B 1 n u l l = n u l l ( B1 D12 ) ; BD1=[ B 1 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B2 D12 =[B2 ’ Dzu ’ ] ; B 2 n u l l = n u l l ( B2 D12 ) ; BD2=[ B 2 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B3 D12 =[B3 ’ Dzu ’ ] ; B 3 n u l l = n u l l ( B3 D12 ) ; BD3=[ B 3 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B4 D12 =[B4 ’ Dzu ’ ] ; B 4 n u l l = n u l l ( B4 D12 ) ; BD4=[ B 4 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B5 D12 =[B5 ’ Dzu ’ ] ; B 5 n u l l = n u l l ( B5 D12 ) ; BD5=[ B 5 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B6 D12 =[B6 ’ Dzu ’ ] ; B 6 n u l l = n u l l ( B5 D12 ) ; BD6=[ B 6 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B7 D12 =[B7 ’ Dzu ’ ] ; B 7 n u l l = n u l l ( B7 D12 ) ; BD7=[ B 7 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B8 D12 =[B8 ’ Dzu ’ ] ; B 8 n u l l = n u l l ( B8 D12 ) ; BD8=[ B 8 n u l l

ze ros( 1 2 , 2 )

ze ros( 2 , 1 1 ) eye( 2 , 2 ) ] ;% ( 1 4 , 1 3 )
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Declare two v a r i a b l e s X , Y

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
X= sdpva r ( 6 ) ; % A symmet r i c m a t r i x

Y= sdpva r ( 6 ) ; % A symmet r i c m a t r i x

gamma= sdpva r ( 1 ) ; XY=[ X eye( 6 )

eye( 6 ) Y ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Formula te t h e H i n f i n i t y c o n t r o l problem i n te rms o f LMIs f o r m u l a t i o n

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 =[A∗X+X∗A’ X ∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 =[A’∗Y+Y∗A Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11=BD’∗F11∗BD; con12=CD’∗F12∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 =[A1∗X+X∗A1’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 =[A1’∗Y+Y∗A1 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 1=BD1’∗F11∗BD1 ; con12 1=CD’∗F12∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 2 =[A2∗X+X∗A2’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 2 =[A2’ ∗Y+Y∗A2 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 2=BD2’∗ F11 2∗BD2 ; con12 2=CD’∗ F12 2∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 3 =[A3∗X+X∗A3’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 3 =[A3’ ∗Y+Y∗A3 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 3=BD3’∗ F11 3∗BD3 ; con12 3=CD’∗ F12 3∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 4 =[A4∗X+X∗A4’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 4 =[A4’ ∗Y+Y∗A4 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 4=BD4’∗ F11 4∗BD4 ; con12 4=CD’∗ F12 4∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 5 =[A5∗X+X∗A5’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 5 =[A5’ ∗Y+Y∗A5 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 5=BD5’∗ F11 5∗BD5 ; con12 5=CD’∗ F12 5∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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F11 6 =[A6∗X+X∗A6’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 6 =[A6’ ∗Y+Y∗A6 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 6=BD6’∗ F11 6∗BD6 ; con12 6=CD’∗ F12 6∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 7 =[A7∗X+X∗A7’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 7 =[A7’ ∗Y+Y∗A7 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 7=BD7’∗ F11 7∗BD7 ; con12 7=CD’∗ F12 7∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F11 8 =[A8∗X+X∗A8’ X∗C1w’ B1w

C1w∗X −gamma∗eye( 6 ) ze ros( 6 , 2 )

B1w’ ze ros( 2 , 6 ) −gamma∗eye( 2 ) ] ; %( 1 4 , 1 4 )

F12 8 =[A8’ ∗Y+Y∗A8 Y∗B1w C1w’

B1w’ ∗Y −gamma∗eye( 2 ) ze ros( 2 , 6 )

C1w ze ros( 6 , 2 ) −gamma∗eye( 6 ) ] ;%( 1 4 , 1 4 )

con11 8=BD8’∗ F11 8∗BD8 ; con12 8=CD’∗ F12 8∗CD;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i neq =s e t ( con11<0)+s e t ( con12<0);

i neq = ineq +s e t ( con11 1 <0)+s e t ( con12 1 <0);

i neq = ineq +s e t ( con11 2 <0)+s e t ( con12 2 <0);

i neq = ineq +s e t ( con11 3 <0)+s e t ( con12 3 <0);

i neq = ineq +s e t ( con11 4 <0)+s e t ( con12 4 <0);

i neq = ineq +s e t ( con11 5 <0)+s e t ( con12 5 <0);

i neq = ineq +s e t ( con11 6 <0)+s e t ( con12 6 <0);

i neq = ineq +s e t ( con11 7 <0)+s e t ( con12 7 <0);

i neq = ineq +s e t ( con11 8 <0)+s e t ( con12 8 <0); i neq = ineq +s e t (XY>0);

o p t s = s d p s e t t i n g s ;

o p t s . s o l v e r = ’ sedumi ’ ;% use t h e s o l v e r sedumi

e r r = s o l v e s d p ( ineq , gamma ) ;% min im ize gamma by s o l v i n g a sys tem o f LMIs

Xsol= doub le (X ) ; % g e t t h e v a l u e o f v a r i a b l e X

Ysol= doub le (Y ) ; % g e t t h e v a l u e o f v a r i a b l e Y

gamma value= doub le ( gamma ) ;% g e t t h e v a l u e o f v a r i a b l e gamma

MN= eye(6)−Xsol∗Ysol ; [ s , u , v ]=svd (MN) ; M=( s∗ sq r t ( u ) ’ ) ;

N=( v∗ sq r t ( u ) ) ;% compute two m a t r i c e s M and N such t h a t M∗N’= I −X∗Y

%−−−−−−−−−−−−−−−−−−compute m a t r i x Xc l−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bigX =[ eye( 6 ) Ysol ; ze ros( 6 ) ( v∗ sq r t ( u ) ) ’ ] ∗ inv ( [ Xsol

eye( 6 ) ; ( s∗ sq r t ( u ) ’ ) ’ ze ros ( 6 ) ] ) ;

%==========================================================================================

% R e c o n s t r u c t c o n t r o l l e r pa ramete rs

%==========================================================================================

%−−−−−−−−−−−−−−−Declare t h e c o n t r o l l e r pa ramete rs as v a r i a b l e s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ak= sdpva r ( 6 ) ;

Bk= sdpva r ( 6 , 3 ) ;

Ck= sdpva r ( 1 , 6 ) ;

Dk= sdpva r ( 1 , 3 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC1= d e l t a t h e t a C 1 +B1∗p i12∗phiC+phiC ’∗ p i12∗B1 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC2= d e l t a t h e t a C 2 +B2∗p i12∗phiC+phiC ’∗ p i12∗B2 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC3= d e l t a t h e t a C 3 +B3∗p i12∗phiC+phiC ’∗ p i12∗B3 ’ ;
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC4= d e l t a t h e t a C 4 +B4∗p i12∗phiC+phiC ’∗ p i12∗B4 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC5= d e l t a t h e t a C 5 +B5∗p i12∗phiC+phiC ’∗ p i12∗B5 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC6= d e l t a t h e t a C 6 +B6∗p i12∗phiC+phiC ’∗ p i12∗B6 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC7= d e l t a t h e t a C 7 +B7∗p i12∗phiC+phiC ’∗ p i12∗B7 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lmiC8= d e l t a t h e t a C 8 +B8∗p i12∗phiC+phiC ’∗ p i12∗B8 ’ ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 2 =N∗Ak∗M’+A2’+ Ysol ∗A2∗Xsol+Ysol∗B2∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w’ ; C1w∗Xsol ] ;

d e l t a R 2 =A2∗Xsol+Xsol∗A2’+B2∗ (Ck∗M’+Dk ∗C2∗Xsol ) + ( Ck∗M’+Dk ∗C2∗Xsol ) ’ ∗B2 ’

+[B1w ’ ; C1w∗Xsol ] ’ ∗ i nv ( d e l t a c l )∗ [B1w’ ; C1w∗Xsol ] ;

d e l t a S 2 =A2’∗ Ysol+Ysol∗A2+C2 ’∗ ( Bk ’ ∗N’+Dk’ ∗B2 ’ ∗ Ysol ) + ( Bk ’∗N’+Dk’ ∗B2 ’ ∗ Ysol ) ’ ∗C2

+[B1w’ ∗ Ysol ; C1w] ’∗ inv ( d e l t a c l )∗ [B1w’ ∗ Ysol ; C1w ] ;

l m i d e l t a 2 =[ d e l t a R 2 d e l t a 2 1 2 ’

d e l t a 2 1 2 d e l t a S 2 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 3 =N∗Ak∗M’+A3’+ Ysol ∗A3∗Xsol+Ysol∗B3∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w’ ; C1w∗Xsol ] ;

d e l t a R 3 = d e l t a t h e t a C 3 +B3∗p i12∗KC+KC’ ∗ p i12∗B3 ’ ;

d e l t a S 3 = d e l t a t h e t a B 3 +C2 ’∗ p i21∗KB+KB’ ∗ p i21∗C2 ;

l m i d e l t a 3 =[ d e l t a R 3 d e l t a 2 1 3 ’

d e l t a 2 1 3 d e l t a S 3 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 4 =N∗Ak∗M’+A4’+ Ysol ∗A4∗Xsol+Ysol∗B4∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w ’ ; C1w∗Xsol ] ;

d e l t a R 4 = d e l t a t h e t a C 4 +B4∗p i12∗KC+KC’ ∗ p i12∗B4 ’ ;

d e l t a S 4 = d e l t a t h e t a B 4 +C2 ’∗ p i21∗KB+KB’ ∗ p i21∗C2 ;

l m i d e l t a 4 =[ d e l t a R 4 d e l t a 2 1 4 ’

d e l t a 2 1 4 d e l t a S 4 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 5 =N∗Ak∗M’+A5’+ Ysol ∗A5∗Xsol+Ysol∗B5∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w ’ ; C1w∗Xsol ] ;

d e l t a R 5 = d e l t a t h e t a C 5 +B5∗p i12∗KC+KC’ ∗ p i12∗B5 ’ ;

d e l t a S 5 = d e l t a t h e t a B 5 +C2 ’∗ p i21∗KB+KB’ ∗ p i21∗C2 ;

l m i d e l t a 5 =[ d e l t a R 5 d e l t a 2 1 5 ’

d e l t a 2 1 5 d e l t a S 5 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 6 =N∗Ak∗M’+A6’+ Ysol ∗A6∗Xsol+Ysol∗B6∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w’ ; C1w∗Xsol ] ;

d e l t a R 6 = d e l t a t h e t a C 6 +B6∗p i12∗KC+KC’ ∗ p i12∗B6 ’ ;

d e l t a S 6 = d e l t a t h e t a B 6 +C2 ’∗ p i21∗KB+KB’ ∗ p i21∗C2 ;

l m i d e l t a 6 =[ d e l t a R 6 d e l t a 2 1 6 ’

d e l t a 2 1 6 d e l t a S 6 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 7 =N∗Ak∗M’+A7’+ Ysol ∗A7∗Xsol+Ysol∗B7∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w’ ; C1w∗Xsol ] ;

d e l t a R 7 = d e l t a t h e t a C 7 +B7∗p i12∗KC+KC’ ∗ p i12∗B7 ’ ;

d e l t a S 7 = d e l t a t h e t a B 7 +C2 ’∗ p i21∗KB+KB’ ∗ p i21∗C2 ;

l m i d e l t a 7 =[ d e l t a R 7 d e l t a 2 1 7 ’

d e l t a 2 1 7 d e l t a S 7 ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e l t a 2 1 8 =N∗Ak∗M’+A8’+ Ysol ∗A8∗Xsol+Ysol∗B8∗Ck∗M’+N∗Bk∗C2∗Xsol

+[ Ysol∗B1w C1w]∗ inv ( d e l t a c l )∗ [B1w’ ; C1w∗Xsol ] ;

d e l t a R 8 = d e l t a t h e t a C 8 +B8∗p i12∗KC+KC’ ∗ p i12∗B8 ’ ;
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d e l t a S 8 = d e l t a t h e t a B 8 +C2 ’∗ p i21∗KB+KB’ ∗ p i21∗C2 ;

l m i d e l t a 8 =[ d e l t a R 8 d e l t a 2 1 8 ’

d e l t a 2 1 8 d e l t a S 8 ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% N∗Ak∗M’

i n e q d e l t a =s e t ( l m i d e l t a 2 <0);

% o p t s= s d p s e t t i n g s ;

% o p t s . s o l v e r =’ sedumi ’ ;

e r r d e l t a = s o l v e s d p ( i n e q d e l t a ) ;

%==========================================================================================

% Compute c o n t r o l l e r pa ramete rs

%==========================================================================================

Ak so l = doub le (Ak ) ;

Bk so l = doub le ( Bk ) ;

Ck so l = doub le ( Ck ) ;

Dk so l = doub le (Dk ) ;
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