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CHAPTER |

INTRODUCTION

In this chapter some issues are discussed regarding the control problem of inverted pendu-
lums. The philosophy and technical difficulties as well as the control problem associated
with a rotary double inverted pendulum (RDIP) are illustrated in section 1.1. Section 1.2
covers literature review on the control of general inverted pendulums. The objectives of this
thesis are addressed in section 1.3 and its scope is also outlined in section 1.4. Finally, the
distribution of the thesis are stated briefly in section 1.5.

1.1 Motivation

An inverted pendulum is a popular experiment for control research and education. The sys-
tem not only intrigues students by performing an exciting balancing act, but also captures
some of the more challenging characteristics inherent in many real-world systems: nonlin-
earity, open loop instability, non minimum-phase behavior, model uncertainty, etc. Because
of the relative simplicity of the system and its practical relevance, the inverted pendulum has
also been used extensively as an experimental test to demonstrate a new control algorithm.
In addition, dynamic model of the pendulum is nonlinear, hence it is now used to illustrate
many of the ideas emerging in the field of nonlinear control. Especially, the RDIP consists of
the two inverted pendulums, hence it is very highly nonlinear. It will not be able to stabilize
the system when the two pendulums have the same length and material. In addition to the
difficulty of the naturally nonlinear characteristic of the system , we also need to deal with
some sets of uncertainties and the minimization of a given function. The uncertainties here
are the parameter uncertainties and disturbances.

1.2 Literature Review

In this section, the main aim is to review the literature on control schemes for the some kinds
of the inverted pendulum. The basic model is an inverted pendulum mounted on the cart. Itis
also a trivial control problem of the inverted pendulum. This kind of inverted pendulum has
several types such as single pendulum and double pendulums as well as triple pendulums in
which the control problem can be sorted into two problems which are stabilizing and swing-
up. Firstly, we get to know to the single pendulum. In this model, the inverted pendulum is



mounted on the cart. There were two controllers introduced by Mori [1] The first one is a
feedforward controller that is to swing-up the pendulum from its pending position to upright
position. The second one is linear feedback controller with a full state feedback observer
based on LQR to keep the inverted pendulum at the upright position. Besides the two types
of the above controllers, Ishida [2] had succeed in applying neural network control with the
back propagation algorithm. The neural network controller provides the appropriate force
to balance the inverted pendulum. In their method, there are two neural network controllers
in order to deal simultaneously with identification and controlling the inverted pendulum.
Renou and Saydy [3] used approximate linearization controller for the inverted pendulum.
In this algorithm, a linear transformation and a state feedback control law are found by
solving a quadratic linearlization problem. We now consider the double inverted pendulum
which are consists of two pendulum. This system had been study in Henmi [4] for the
swing-up control of the pendulum. The control of the swing up and stabilizing was designed
in three steps: (1) to swing-up the first pendulum using energy control method, (2) to swing-
up the second pendulum using energy control method while stabilizing the first pendulum
using slide mode control method, (3) stabilizing the both pendulums at upright position
using sliding mode control. Another self-tuning controller for stabilizing the double inverted
pendulum was proposed in Fujinaka [5] by using combination of two controllers together
which are PID and neural networks controller. The gain of PID controller is adjusted by the
neural networks controller. In addition, many approaches for swinging and catching of an
inverted pendulum have been proposed in the literature; from Furuta et al. [6] with minimum
time controller, which is unfortunately not very robust, to Astrom and Furuta [7] with energy
control strategy, which controls of energy of the inverted pendulum toward a value equal to
the steady-state upright position, and Yi et al. [8] with a fuzzy controller based on single
input rule modules. There have been several fuzzy-model-based approaches concerning the
stability of such nonlinear systems. Yurkovich and Widjaja [9] fully analyzed the control-
engineering design procedures for an implementation of fuzzy-system concepts, and extend
the linear quadratic fuzzy-based controller design to adapt to the changing system parameters
in balancing control for the rotational inverted pendulum. Wang et al. [10] also presented a
design methodology for stabilization of a class of nonlinear systems based on Takagi-Sugeno
fuzzy model and PDC control design, where stability analysis and control-design problems
are reduced to linear matrix inequality problems. Both solutions have been successfully
applied in simulations on a cart inverted pendulum model.

While controlling a real inverted pendulum, we are coped with several limitations and
constrains that were not considered in those approaches. Instead of rolling the disc velocity
(acceleration) directly, in particular case, the disc velocity is driven over dc-motor voltage,
so we must consider the disc velocity limitations instead of the disc-acceleration limitations.



In the literature, there are several solutions for swing up and stabilization of an inverted
pendulum with a restricted travel. Wei et al. [11] presented a nonlinear control strategy by
decomposing the control law into a sequence of steps. Chung and Hauser [12] proposed a
nonlinear state controller that controls the position and the swinging energy of the pendulum
at the same time. Zhao and Spong [13] applied a hybrid-control strategy, which globally
asymptotically stabilizes the system for all initial conditions.

Finally, we will mention to a rotary double inverted pendulum consisting of an inverted
pendulum mounted on a rotating disc. This system has been developed by K. Furuta from
Tokyo Institute of Technology, therefore it has been known as Furuta pendulum. There are
some control algorithms proposed for swing-up and stabilizing control problem. Grossimon
and Barbieri [14] proposed a sliding mode control to stabilize the system. For this method,
the position of the tip of the rotating disc and the inclination of the angle pendulum are
formulated by a function of the angle of the rotating disc. The simulation was done for two
cases of the inclination angle of the pendulut®’ and0°. The first case is not stable but the
latter one. Sugie [15] and Nair [16] proposed a nonlinear controller to solve stabilization of
the Furuta pendulum at the upright unstable position. This method is based on approximate
linearization by transforming the nonlinear system into Brunowsky canonical form. The
feedback gain matrix of the linearized system is then computed by solving LQR.

In this research, a robugf,, state feedback and a robust, output feedback con-
troller are proposed. The controllers with minimum cost are designed via LMIs. The advan-
tage of LMIs is that the design of control systems can be cast or recast as convex problems
that involve LMIs such as an LMI minimization problem and a robust stability test of the
closed-loop system. The problem of design controller is to stabilize the pendulum at the up-
per steady-state position regardless of some parametric uncertainties and input disturbances.
For this purpose, exact mathematical model of the real inverted pendulum has been derived
and linearized at the upright steady-state position. All experiments have been done in simu-
lations on the nonlinear model of the inverted pendulum.

1.3 Objectives

The primary objective of this thesis is to design a robust controller for a rotary double in-
verted pendulum (RDIP) using linear matrix inequalities (LMIs) regardless of some para-
metric uncertainties and input disturbances. In addition, the minimization of value of a given
criterion function must be considered. The advantage of LMIs is that the design problem can
be cast as convex problems such as an LMI minimization problem and a robust stability test
of the closed-loop system. A state feedb&tk and an output feedbadi., controller will

be proposed to solve the problem.



1.4

1.

1.5

1.6

Scope of Thesis

This thesis deals with the AUN/SEED-Net benchmark problem rendered at the field
wise seminar in Bangkok, Thailand 2006. .

. The design problem is the stabilization of a rotary double inverted pendulum regardless

of some uncertain parameters and disturbance inputs.

. In addition to the stabilization problem, a given performance index is minimized.

Some comparisons between the proposed controllers and LQR, LPV controllers.

Methodology

. The computational tool used in this thesis is the YALMIP package with SeDuMi

solver.

. The design problem is formulated into a convex optimization problem involving linear

matrix inequalities (LMIs).

. A polytopic approach is used to find the controllers.

. Aregional pole constraint is considered to solve the problem.

Contributions

The expected contributions from this thesis are:

1.

2.

3.

Design two robust controllers for a rotary double inverted pendulum
The method can be applied to a certain inverted pendulum.

A useful algorithm for designing controllers for uncertain systems.



CHAPTER II

BASIC KNOWLEDGE

In this chapter basic knowledge on control systems are briefly reviewed. The section 2.1
gives introduction to linear matrix inequalities (LMIs). It turns out that LMIs is a very
powerful tool in control systems. Model of uncertain systems are studied in section 2.2.
Finally, nominal stabilities and nominal performances are also reviewed in section 2.3.

2.1 Introduction to linear matrix inequalities

In this section, we will briefly discuss about LMIs in control system. As we will see, many
problems in control systems can be formulated (or reformulated) using LMIs. LMIs entail
a sign definiteness constraint on a matrix that depends linearly on its variable space. LMl is
an expression of the form
F(z) & Fy+ ) ;F; <0 (2.1)
=1

where
e x = (x1,...,7,) IS avector ofr real numbers called the decision variables.
o [, ..., F, are real symmetric matrices, i.é}, = F/, fori =0, ..., n.

Requiring the matri¥’(x) to be positive definite is a convex constraint on the variable space
x. In the most control applications, LMIs arise as functions of matrix variables rather than
scalar valued decision variables. This means that in the inequalities of the form (2.1) where
X = R™*"2 js the set of real matrices of dimension x n,.

Remark A non-strict LMI is a linear matrix inequality wherg<) in (2.1) is replaced by
(<). In this case, the non-strict LMI includes an implicit equality constraint, and allows the
matrix F'(x) to be singular. Thereby, infeasibility of the strict LMI may incorrectly suggest
that the non-strict LMI is infeasible.

A system of LMIs is a finite set of LMIs

Fi(x) <0,..., F(z) <0. (2.2)



The setr satisfying (2.2) can be found using a block diagonal LMI whose diagonal blocks
are the individual LMIs

Fl(l‘)
Fz) = Falo) <0.

Hence, multiple LMIs constraints can always be considered as a single LMI constraint.
Nonlinear matrix inequalities in Schur complement form define convex constraints on the
variablexr and can be converted to LMI. In particular, the set of nonlinear inequalities

R(z) >0, Q(x) — S(x)'R(z)'S(z) > 0, (2.3)

whereQ(z) andR(x) are symmetric, i.eQ(x) = Q(z)”, R(z) = R(z)T, andS(z) depend
affinely onx, are equivalent to the LMI

Q) S(e)t
S ] o a0

In some cases, we have constraint of the form
Tr[S(z)' P(z)"'S(x)] <1, P(z) >0, (2.5)

where P(z) is a symmetric matrix, i.e’(z) = P(x)’, andS(z) depend affinely on.. A
slack variable X = X7, is introduced to solve such problem. The constraint of Egn. (2.5)
can be rewritten as:

TrX <1, {s)(i) 523(8)1 >0 (2.6)
2.1.1 Some simple applications of linear matrix inequalities
a Stability
Consider the linear autonomous system
= Ax (2.7)

The exponential stability of the system (2.7) is equivalent to the feasibility of the LMI

-X 0

0 ATX +x4| <Y

b u-analysis
Determine a diagonal matrix such tHdd M D~!|| < 1 where M is a given matrix.



|IDMD™|| <1< D TMTDTDMD ! <1
<~ MTDT"DM < DTD
— MTXM-X <0

c Singular value minimization
Let ' : X — S be an affine function and consider the problem to mininjize) :=
o(F(z)) overz. It can be clearly seen that

f(@) <v = Anaa(FT(2) F(2)) < 7* <= S FT () F(x) =4I <0
v F(x)
— { FT(z) I >0

d Evaluation of quadratic cost

Consider the linear autonomous system (2.7) with initial value of state vaniéhle-
zo and a criterion function/ := [° 27 (t)Qux(t)dt where@Q = QT > 0. Assume that
the system is asymptotically stable. For any maffix= X7 which is solution of LMI:
ATX + XA+ Q <0, we can differentiate” (t) X z(¢) along solution of Egn (2.7) to yield

d

(O Xa()] = 2T (OIATX + X AJa(t) < " ()Qa ()

Integrating the latter inequalities from= 0 till oo yields the upper bound
J = / 2T () Qu(t)dt < xl Xz
0

Minimizing the functionf(X) := =l Xz, over all X = X7 satisfyingX > 0 and A" X +
XA+@Q < 0leads to the smallest upper bound/ofClearly, this is an optimization problem
with an LMI constraint.

2.2 Models of uncertain systems

In control systems, systems are often analyzed using models that are approximated from the
actual system dynamics. The difference between areal-life system and its model is due to un-

certainty in the identification of the system parameters. Small parameter variations may have

a major effect on the dynamics of a system, and these uncertainties make worse performance
or cause system unstable. Hence, it is very important to analyze parametric uncertainties

of dynamical system. Robust control design strives to guarantee stability and performance

for such uncertain systems. We now consider robust stability and robust performance of an

uncertain system.



2.2.1 Parametric uncertainties

Letd = (41, ...,0,) be a vector of uncertain parameters in a given dynamical system. Then,
there are two cases of parametric uncertainties

e time-invariant parametric uncertainties: the vectoré is fixed but element of an
uncertainty sef\ C R? is unknown.

e time-varying parametric uncertainties: the vectord is an unknown time varying
functiond : R — R* whose values(t) belong to an uncertainty sét C R?.

In the fist case, the physical parameters of the system are fixed but approximately known up
to some level of accuracy. In the second case, parametric uncertainties, coefficients, or other
physical quantities are time-dependent.
a Affine parameter dependent systems

Consider a uncertain system

-1 2

A(0) = Ap+ 51A1 + ... + 6,4,
B(6) = By + 6181 + ... + 0, B,

(0) =Co+ 6:C1 + ... +6,C,
D(0) = Do+ 61Dy + ... +6,D,

These above matrices are rewritten as
S(é) = SO + (5181 + .o+ (SpSp

where

[A() B()
S@‘[c(a) D(aﬂ

We now consider control system models of the form

d
EI
wherez(t) € R™™w(t) € R", u(t) € R™, y(t) € R?andz(t) € R?. The functionz is
called the “state” of the system, whileandw are “inputs”,z andy are “outputs”.w consists
of exogenous inputs, i.e., inputs that we have no control over, such as noises. Reference input
u consists of control inputs. We may sét) to any value we wish. The outpuis of interest:
this may consist, for instant, of componentscaf even those of.. y consists of outputs that

(t) = f(x,w,u,t), z(t)=g(z,w,ut), y(t)=h(z,wut) (2.9



can be measured. In order to accommodate uncertainties, it is assumgd ttiadi are not
known exactly, but only known to satisfy some certain properties. Robust control analysis
problems consist of the study of the solutions of equations (2.8). Robust design problems
contain designing control laws(t) = K(y, t), so that with the control law in place desired
answers are obtained of the analysis questions.
b Linear fractional representation of uncertain systems

We now focus on a special instance of system, consisting of an interconnection of a
linear time-invariant system and an “uncertainty” or “perturbation” in the feedback loop. The
model is described by

%x(t) = Ax(t)+Bapp(t)+ Brutu(t)+ Brww(t), q(t) = Cqx(t)+Dgpp(t)+Dguu(t)+Dgw(t),
y(t) = Cyz(t)+Dypp(t)+Dyuu(t) +Dyww(t),  2(t) = Cox(t)+D.pp(t)+Doyu(t)+Daww(t),

p(t) = Alg, 1),

wherep € R™,q € R™, A, B,y,, Byu, Byw, Cy, Cy, Cs, Dyp, Dy, Dy, Dyuy Doy D2, Dy,
andD,,, are real matrices of appropriate siz&.: L3'[0,00) — L3'[0,00) is in general a
nonlinear operation representing the “uncertainty” in modeling, aftezontains the origin,
i.e., A=0. The linear time-invariant system in this case is called the “nominal model”. The
above model is also known as the “Linear Fractional Representation” of the uncertain system.
c Polytopic systems

Polytopic systems form a special clasd@R systems. For these systems, there exists
an extensive body of work on analysis and synthesis using quadratic Lyapunov functions.
These systems are described by

d
Eaz(t) = Ax(t) + Byu(t) + Byw(t), y(t) = Cyz(t) + Dyu(t) + Dyw(t),
At)  Bu(t) Bul(t)
2(t) = Cox(t) + Doyu(t) + Doyyw(t), 3(t) = [Cy(t) Dyu(t) Dy(t)| € 2 (2.10)
C.(t) D.o(t) D.u(t)
where -
Al Bu,l Bw,l AL Bu,L Bw,L
== CO{ Cy71 Dqu Dyw,l ey Cy,L Dyu,L Dwa } (211)
Cz,l Dzu,l Dzw,l CZ,L Dzu,L Dzw,L_
Ai Bu,i Bw,i 1
where Co denotes the convex hull. (The matricgs’,; D,,; Dyl ,i=1,..,L are
Cz,i Dzu,i Dzw,z’_

given.)



10

2.3 Nominal stability and nominal performance

The study of Lyapunov stability concerns the asymptotic behavior of the state of the dy-
namical system around an equilibrium. The main contributions of Lyapunov are the concept
of stability, asymptotic stability, and method of verification of these concepts in terms of

the existence of functions, called Lyapunov functions. Fortunately, the problem of finding

Lyapunov functions can be solved by testing a feasibility of LMIs.

2.3.1 Nominal stability of linear system
Consider the linear autonomous system
T = Ax (2.12)

whereA : R, — R, is a linear map obtained as the linearizatiorfof ¥ — X around an
equilibrium pointz* € X of the following system.

z(t) = f(z(t),t) (2.13)
Clearly, forz* € X, we can write
fo) = 1@+ 30 - 4

f is assumed to be differentiable at least once. The linearizatigraocbundz* is defied by
the system (2.12) witll defined by the real x n matrix.
All elements in ker A are equilibrium points, but we consider the stability of (2.13) at the
equilibrium pointz* = 0. Then, the following positive definite functidn : X — R defined
by
V(z) =2"Xux

severs as a quadratic Lyapunov function.

Theorem 2.1 Let the system (2.12) be a linearizaion of (2.13) at the equilibrium pdint
The following statements are equivalent

(a) The origin is an asymptotically stable equilibrium for (2.12).

(b) The origin is a globally asymptotically stable equilibrium for (2.12).

(c) All eigenvalues\(A) of A have stricly negative real part.

(d) The linear matrix inequalities

ATX + XA <0, X>0

are feasible.
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2.3.2 Nominal performance and LMIs

In this section, we will examine some performance criteria for dynamical systems. Consider
the system

&(t) = Az(t) + Bw(t)

2(t) = Cx(t) + Dw(t)
wherez(t) € X = R™" is the statew(t) € W = R™ the input andz(t) € Z = R?
the output. Letl'(s) = C(Is — A)"'B + D denote the corresponding transfer function.
The system is assumed to be asymptotically stable. The inpsitconsidered as an input
variable (a ‘disturbance’) whose effect on the outpshould be minimized. This effect can
be depicted by some ways. For instant, with a given inputhe quotient|z||2/||w||> shows
the relationship between the inputand the output. The wort case gain of the system is
usually considered

(2.14)

z
[Thei= swp 1202
0<||wl||<oo [|w]]2

The H,,, of the transfer functiofl'(s) is also defined as by
1Tl = sup [T'(je)]

The H,, norm can be interpreted as the maximal powey,of = T'(s)u, given a power of:
of 1 Watt, or, alternatively, as the maximal energyofor all possible signals having the
energy 1 Joule.

2.4 Conclusions

In this chapter we have reviewed basic knowledge that is very helpful for solving control
problems. It can be seen that many problem in control systems can be cast or recast into
LMIs formulation such as stability problem, analysis, so on. It has been a very powerful

tool in the field of control systems. In order to design controller of an actual system, it is
required to approximate the system to get its mathematical model. For an uncertain system,
we need to describe it in terms of a certain dynamical system such as LFR or polytopic
sytems.



CHAPTER Il

ROTARY DOUBLE INVERTED PENDULUM

In this chapter some issues pertaining to the rotary double inverted pendulum (RDIP) are
introduced. Section 3.1 describes the physical structure of the RDIP. The statements of the
control problem of the RDIP are stated in section 3.2. In order to deal with controller design
next chapter, the nonlinear model of the RDIP is analyzed in the section 3.3. The nonlinear
model is then linearized at an upright unstable position . The linearized model will be used
to design controller in next chapter.

3.1 Introduction

The (RDIP) shown in Fig 3.1 consists of two rigid pendulums. They are mounted on per-
pendicularly rotating disc which is connected to a DC motor. The two pendulum can only
move on the vertical plane and the rotating disc can only move on the horizontal plane. The
pendulums are controlled to be at the inverted position by rotating the disc. In fact, it is im-
possible to control the two pendulums when they have the same length and material as well
as homogeneity. The result obtained in this section is cited from [17]. The dynamic models
are based on Euler-Lagrange equations derived by specifying a Lagrangian, difference be-
tween kinetic and potential energy of the RDIP. The nonlinear dynamic is linearized around
a point of operation which is position of both pendulums up.

The schematic of the RDIP is dawn in Fig 3.2. The system variables and their nominal
values are described in Table 3.1.
7: The external torque applied to the disc (N.m)
a: The angular displacement of the rotating disc (rad)
B31: The1® pendulum angle with respect to the vertical axis (rad)
B The 2™ pendulum angle with respect to the vertical axis (rad)



Figure 3.1: Physical System.

Pendulum #1 Pendulum #2

Figure 3.2: Rotary Double Inverted Pendulum.
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Notation | Value Unit Remark

Jo 0.06 | kg —m? Inertia of the rotating disc

A 0.008 | kg —m? Inertia of thel*' pendulum

Jo 0.002| kg —m? Inertia of the2"¢ pendulum

Co 0.004| N —m.s Viscous coef. of rotating disc

c1 0.003| N —m.s Viscous coef. of thé** pendulum

Co 0.009| N —m.s Viscous coef. of the™ pendulum

my 0.25 kg Mass of thel** pendulum

mo 0.13 kg Mass of the2™? pendulum

[ 0.24 m The displacement from the joint to the ¢.m of ttfé pendulum
Iy 0.13 m The displacement from the joint to the c.m of ¢ pendulum
L 0.172 m The radius of the rotating disc

g 9.8 m/s The gravity constant
K, 0.374| N.m/A Torque constant

K, 0.374 | Volt/rad Back emf. constant

R 8.26 Q Resistant in motor circuit

Table 3.1: System parameters.

3.2 Statement of the benchmark problem

The aim of the design controller is robust stabilization of the RDIP. The RDIP to be con-
trolled is an uncertain plant. There are three uncertain parameters in the plant as follows

1. Length of the long pendulum,
2. Length of the short pendulum,
3. Inertia of the rotational arm.

Other parameters are fixed as nominal values. In addition to the stabilization problem, we are
interested in minimizing performance measure when the RDIP is injected by disturbances.
The system is set to upright position. The disturbance input§,) andw.(t), injected to

two passive joints of long and short pendula are defined as

w1 (t) = (t) Sin(u)nt -+ ¢11) + b1 (t) Sin(w12t -+ ¢12)

wa(t) = ag(t) sin(wart + Pa1) + ba(t) sin(wast + Po2)

where
ay,ay, by andb, are in the sef0.0, 1073][N'm)]
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Figure 3.3: Unit vectors in the cartesian and polar coordinate.

W11, W12, Wa1 andw22 are in the Se!I).S, 100} [HZ]
b11, P12, P21 @ndeg, are in the sef).o, 7] [rad]
The performance index is calculated as:

122 Q = diag(10,10,10,1,1,1) (3.1)

wherezx stands for the state of the system.
The time duration of the calculation is defined from 0 to 10 (sec).

3.3 Nonlinear Dynamic Model

We now compute kinetic energy, potential energy, and loss energy for the system.
Kinetic Energy
The kinetic energy of the system is calculated as

1 . .
K = 5(Joéﬂ + J133 + Jo 53 + myvd + mayvd) (3.2)

whereuv,, v, are the velocities of the center mass of tHependulum and the™? pendulum,
respectively. The cartesian coordinate is required to compute each velocity of the center
mass of the pendulum. As shown in Fig 3{3,,¢,, e.} denotes the set of unit vectors of
cartesian coordinate add,, ¢, ¢, } denotes the set of unit vectors of cartesian coordinate in
angle of the rotating disc and pendulum, respectively.
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The unit vector of which direction along the line connecting the two pendulums is
calculated

€q = €5 COS (v + €, sin a (3.3)

The unit vector, is similarly calculated
ep = —ezsina + e, cosa (3.4)

In the coordinatde,, e, } for the pendulum, an unit vectey, along direction of pendulum is
computed
en = —€, cos [3; — e, sin f; (3.5)

The vector of the center mass of the pendulum is then found in coordinate

vem = liey +e4L (3.6)
= e.licosB; — epl;sin fB; + Le, (3.7)

We substitute (3.3) and (3.4) into (3.7). It is easy to find
vem = (isinfBjsina + Lcosa)e, + (Lsina — ;sin §; cos a)e,, + (I; cos B;)e,  (3.8)

The velocity of each pendulum is computed in the coordingte For more details, see [17].

v¥ = I;sin 3 cos adv + sin a(l; cos 3 f; — L)
v/ = I;sinB;sinad — cos a(l; cos Bif; — L)
v, = —l;sinf;sinad

Substituting the velocities calculated above into (3.2) yields

1 . . .
K = §(J0062 + Jlﬁf + J2622 + m1(11 sinﬁld)Q + ml(Loz)2 + ml(llﬂl>2
+ ma(lysin B26)° + ma(Lér)* 4 ma(lafs)°) (3.9)

— mlllL COS ﬁlﬁ'ld — mglgL COS ﬂgﬂ'gd

Potential Energy
The potential energy of the system is

P = mygly cos 81 + magls cos Py (3.10)

Loss energy
The loss energy of the system resulting from the frictional force is

1 . .
W = 5(co)a2 + e+ 3 (3.11)
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Lagrangian
From the kinetic energy and potential energy, the Lagrangian is given by

L=K-P (3.12)
From (3.9) and (3.10), we get

1 . . .
L= S(Joa®+ 21} + S + m(lasin $10)* + ma(Lér)? + ma (h fy)*
+ ma(lasin Bod)? + ma(Lér)® + ma(laf2)?) — maly L cos B frax (3.13)

— mglgL COS 6262(56 — m1g11 COS 61 — mQQZQ COS 62

State equations can be generated using Lagrange’s Equation

d L L w

— - = F, 3.14
05 9 ' 0 (3:14)
whereF;, ¢; are the generalized forces, the generalized coordinates, respectivelygHere,
{Oé, 617 52}
The dynamic equation of the system is computed as follows:
A A Agg 04 ai -
Agr Axp Agz| (G| + |a2 [O} (3.15)

Asp Asy Asg Bz as

It is trivial to verify that

Ay = Jo+malisin® By +myL? 4+ myls sin® By + moL?
Ay = —mylyLcos

A3 = —mpolyLcos Py

Aoy = —mqlyLcos By

Ay = Ji+mil}

Ass = 0

Az1 = —mpolyLcos By

Az, = 0

Ass = Jo+mols
a1 = milBiasin(261) + maly L% sin By + coct 4 mal2fadesin(206s) + mala LA? sin B
ag = —mllféf sin (3 cos B1 — mygly sin 31 + 0161
as = —m2l§a2 sin By cos By — magly sin By + 0252

wherer is the torque applied to the rotating disc. In fact, the control input of the system is
the voltage of DC motor, therefore, the torque is expressed in terms of control input. The
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inductor in the motor circuit is assumed to be zero. As a results; ihe

K,V KKy
R R

T

3.4 Linearized Dynamic Model

The system is linearized at the equilibrium paiijit= 55 = 0°. It can be seen that the if the
valuez is very small thenin z = x andsin® z = 0.
Letz =[o B B & (B ()7 be astate variable, and= V be an input. The
equation (3.15) can be explicitly rewritten as
K, K. .
R

—myly Lé+ (J1 +mil3)Br = mughB — e + v

(Jo +miL? + moL?) & — mil LB — moloLfy = —(co +

—malyLéi 4 (Jy + mal3)fa = maglafa — cafa

It is easy to obtain the state space equation of the RDIP as

EFz = Fx+Gu
&t = FE 'Fx+ E'Gu
=: Az + Bu
where
[1 0 0 0 0 0 i
010 0 0 0
L0001 0 0 0
- 0 0O J() + m1L2 + ’I’)”LQL2 —mlllL —mglgL
0 0 0 —mlllL Jl + mllf 0
_O 0 0 —mzlgL 0 JQ + m2l§_
[0 0 0 1 0 0 ]
0 0 0 0 1 0
s_l0 0 0 0 0 1
o0 0 —(co+%2f) 0 0
0 mlgll 0 0 —C 0
_0 0 mgglg 0 0 _C2_

G=[0 00 E o 0
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3.5 Summary and Discussion

3.5.1 Summary

In this chapter, we have stated formulation problem for RDIP. The system is an uncertain sys-
tem having three uncertain parameters which are the length of the long and short pendulum
as well as the inertia of the rotating disc. In addition to its uncertain parameters, the system
is consider under two disturbance inputs injected to the passive joint of long and short pen-
dulum. We also constructed a nonlinear dynamic model of the system based on Lagrangian
equation. The system is then linearized at the upright unstable equilibrium position.

3.5.2 Discussion

By looking at the state equation of the RDIP, it turns out that our system is sixth order
and is very highly nonlinear model. The RDIP was only linearized at the operating point
which is the upright position, because the controller design problem is the stabilization of
the pendulums at that point. We can linearize the nonlinear model at another operating
point which isg; = 3; = 180°. In this case, the state variables should be changed to
r=la fi—7 Bo—pi & [ B)T. For more details, see [17].



CHAPTER IV

CONTROLLER DESIGN

This chapter presents the method of the controller design for the RDIP. Section 4.1 discusses
about a robust state feedback controller using LMIs. A regional pole constraints is consid-
ered in order to improve the performance of the system. It is noted that the regional pole
constraints are also cast in terms of some formulations of LMIs. A robust output feedback
controller is mentioned in section 4.2. In this section, we will design an output controller of
the6 order.

4.1 H, control

The LQR, Kalman filter and LQG problems can be posed as 2-norm optimization problems.
However, these problems can be alternatively posed using the sys{emorm as a cost
function. It is clear tha#{.-norm is the worst case gain of the system, hence, it provides a
good match to engineering specifications.

Itis very important to understand that the terfig-norm andH . are not terms which
can impart a lot of engineering specifications. When one mentions a&bguthat means a
design method which is used to minimize the peak of a certain transfer functionH The
norm of a stable scalar transfer functiéiis) is the peak value off'(jw)| as a function of
frequency

1F(s) ]l = sup [ F(jw)]

The symbolc comes from the fact that the maximum magnitude over frequency might be
rewritten as

oS 1/p
sup Fio)| = fimn ([ 1FGo)
H, is the set of transfer functions with boundsd norm. In other words, it is the set of
stable and proper transfer functions.
An H, controller minimized the worst case gain of the system. The problem can be thought
of as an interesting matter: the designer will seek a controller that minimizes the gain in case
of worst case input that maximizes the gain.
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—-._K

Figure 4.1: Block diagram.

4.2 LMIl-based H, controller design

In this section, we will desigrii,, state feedback controller with regional pole constraints.
The advantage of this controller design is that the transient response of the closed-loop sys-
tem can be improved. It can locate the closed-loop system poles into a suitable subregion
of the left half plane. One way of simultaneously tuning fiig performance and transient
behavior is to combine th&,, and pole placement objectives. The disturbance inpyts)
andws(t), are injected to two passive joints of long and short pendulums. Our goal is to
design a robust controller to achieve closed-loop stability and to attenuate to the effect of the
disturbances on the peak value of the regulated signah the other hand, the performance
index

oal, VI @TQrQu)d

J = — (4.1)
[[wl|2 2 (wTw)dt
must be minimized.
The state space of the nominal plant is described as follows :
& = Ax+ B,w+ Bu,
z = C,r, (4.2)

y = Cu.

wherexr € R%*¢ is the statey € R is the control input, ang € R3*3 is the measured output.

w € R?*? s the disturbance input, € R%6 is the output to be regulated. The matrixB

of which elements were defined in chapter 3. According to the control problem, the RDIP
has three outputs which are the angle of the two pendulums and the angle of the rotating disc.
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The output matrix is then defined as

100000
C=1010000
0010¢O00O0

The effect of disturbance inputs on the system needs to be attenuated. Thatrmeafithe
transfer function from disturbance inputs andw, to the output: must be minimized.

[l ]l
|Hop:lloe = sup
Welleo o<fwj<oo [[W]|2
|C.z||

0<||w||<oo [|wl]2

By comparison with (4.1), the matriX, is defined by
Cz = Q

The signakw is considered as an additional input injected to the short and long pendulums.
As aresultsB,, is computed as

1 01"

01

4.2.1 LMl formulation of pole-placement objectives

_.afo000
Bu=& {oooo

A concept of an LMI region as a convenient LMI-based representation of general of general
stability regions. We now recall how the seeking of pole clustering in specific regions of the
left-half complex plane is characterized as a formulation of LMIs. For instance, consider a
second-order system with polas= —(w, + jwy. Itis clear that the step response of this
system is characterized in terms of the undamped natural frequgney|\|, the damping

ratio ¢, and the damped natural frequency- d. Some regions such as stability regions
Re(s) < —a, vertical strips, disks, conic sectors, etc. are very interesting. One combination
of these regions iS(«, r, #) of complex numbers + jy is

r<—-a<0, |z4+jyl<r, tanbz < —|y|

If the closed-poles of a certain system lie on this region then it can be ensured a minimum
decay ratev, a minimum damping ratiq = cos#, and a maximum undamped natural fre-
guencyw, = rsiné. In other words, the maximum overshoot, the frequency of oscillatory
modes, the delay time, the rise time, and the settling time can be improved as well. We now
look at Lyapunov-based characterizations of pole constraints in stability subregions of the
complex plane.
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Lyapunov Conditions for regional pole constraints

Let D be a subregion of the left-half of the complex plane. A sysiem Az is calledD
stable if its poles lie in the regioR, the matrixA is then calledD stable. For example when
the regiorD is the left-half plane, the Lyapunov condition is statedAss stable if and only
if there exists a symmetric matriX satisfying

AX +XAT <0, X >0

Based on this knowledge, we consider an alternative LMI-based representafiataidility
regions.

Definition 4.1 LMI stability region

For a symmetric matri¥’ € R™*™ and a matrix) € R™*™, the set of complex numbers

D={ze€C: [fp(z) <0}

where
fo(2)=P+Qz+Q"z

is called LMI region.
On the other hand, an LMI region is a subset of the complex plane that is represented by an
LMl in z andz. Therefore, LMI regions are convex and symmetric with respect to the real

axis for anyz € D, fp(Z) = fp(z) < 0. Below are a few examples of LMI regions:
e Half-planeRe(z) < —a: fp(z) =2+ Z+2a <0

e Disk centered at—q, 0) with radiusr:
The matricesP, () € R?*? exist as

0 1
o=l o
Therefore, the characteristic functigp(z) takes

e =7 1

q+z —r <0

e Conic sector with apex at the origin and inner arfle
The matrices?, ) € R**? exist as
00
0 0

e
I
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Figure 4.2: Regiorb (v, 7, 6).

Q= [ sin 6 COS@]

—cosf siné

Hence in(6)(z +2z) cos(d)(z — z)
fo(z) = {COS(Q)(E—Z/) sin(&)(zﬂt?)} ’

Consider a state feedback controllex Kz, the closed-loop system becomes

t = (A+ BK)z+ Byw
z = Cux (4.3)
y = Cz

The H,, norm of the system admits an interpretation in terms of LMI known as bounded real
lemma.

Lemma 4.1 (Bounded Real Lemma) Suppose that the system described by (4.3) is con-
trollable and has transfer function T, let> 0. Then the following statements are equivalent
@ T loo < 7.

(b) For all w there holds that

I E P

p <7
0<[lwll<co [2]l2
subject to initial condition:(0) = 0,

(c)There exists a solutioR = P* to the LMI

1
(A+ BK)'P+ P(A+ BK)+ C!C.+ —PB,B,P <0
¥
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Suppose that there exists a quadratic functigs) = ¢’ P¢, P > 0, andy > 0 such that
for all ¢,
d

EV(m) + 272 — y*wlw < 0 (4.4)

thenH, of the system is less than We now integrate (4.4) from O t6, with the condition
x(0) = 0 to obtain

T
V(x) +/ (272 — y*ww)dt < 0
0
The inequality (4.4) is equivalent to
((A+ BK)z + Byw)" Pz + 2" P((A+ BK)z + Byw) + 2" C} C,x — v*w"w

=27 (A+BK) Pz +w" BLPr+ 2" PByw+a2" P(A+ BK)z +2"CIC.x — v*w'w < 0

or
2] [(A+ BK)TP+ P(A+ BK)+CTC.  PB,] [« T<0 (4.5
w BLPp —2I | |w )
By using Schur complement, we have
(A+ BK)'P+ P(A+ BK) +CTC, + iZPBngP <0 (4.6)
Y

Let 7%Y‘l = P, the above LMI becomes
1
(A+ BK)Y +Y(A+ BK)" + SYCIC.Y + B,B], <0
Y

Let L = KY, we get

AY +Y AT + BL+ L"B" + B,BI YCT

[ C.Y —72[] =0
The closed-loop poles @A + BK) is constrained to lie on the regidf«, r, 0). The LMI
formulations are as the following LMIs: if there exist a symmetric maitix- 0 and a scalar
~ such that

(A+ BK)Y +Y(A+ BK)" +2aY <0
—rY (A+ BK)Y
[Y(A +BK)T 1Y } <0
and
sin(0)((A+ BK)Y + Y(A+ BK)T) cos(9)((A+ BK)Y —Y(A+ BK)T)

cos(8)(Y (A + BEK)T — (A+ BK)Y) sin(6)((A+ BK)Y — Y(A+ BK)")| <Y
In order to design a robust state feedback controller, we will take into account the system
described by a polytope of linear affine systems. In general, a polytope description of un-
certainties results in a less conservative controller design than other characterization of un-
certainty. Note that, with the increasing of uncertain parameters, the number of vertices
increases exponentially and the design time increases exponentially as well.
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Let the system be represented by the state realization with uncertainties

t = A(@)x+ B,w+ B(O)u
z = Cuo 4.7)
y = Cx

where
A(G) — A0+A191+...+Ap0p

B(G) - BO+Blel+-'-+Bp0p
The system represented by (4.7) is a polytope of linear systems. The system is described by
a list of its vertices as follows

(4.8)

{(Avlanl)a ceey (AvNvaN)} (49)

whereN = 8, is the number of vertices.
Consider the polytope of the system, and with- K'Y, the above LMIs are equivalent

to
AnY +YAL + B, L+ L"BL, + B,BL YCI
[ oy o] < 0 (4.10)
AyY + YAL + ByL + (B, L)T +2aY <0 (4.11)
—rY AmY -+ BML
[YAfi +(BuL)"  —rY } <0 (4.12)

cos(0)(Y AT, + (BuL)T — AyY — BuL) sin(0)(AyY + BuL + YA 4 (B,L)T)| <Y
(4.13)
Algorithm 4.1. Consider the system described by (4.7). The roBustontrol with regional

pole constraints can be characterized as follows

[sin(@)(Am-Y + B, L + YA{Z- + (BML)T) cos(0)(AyY + By L — YAfi — (Bm-L)T)

min
LY v

s.t LMIs (4.10)-(4.13)

The state feedback gain matrix can be computeld as LY ! which leads td| T, |2, < ~*.
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4.3 Robust output feedbackH ,, controller

In this section, we will design a robugf,, output feedback controller. It was shown in
[18] that the existence off., is equivalent to the feasibility of a system of three LMIs
whose unknownX,Y are two symmetric matrices of size equal to the plant order. The
explicit characterizations of solutions to the Bounded Real Lemma were also derived in [19]
[20]. In comparison, the formulas given here are simpler and suitable for numerically stable
implementations.

We assume that only partial state information is available through the outpDur
output feedback law is generated by a strictly proper full order linear controller.

. = A.x.+ B, (4.14)
Ye = chc+Dcuc

wherez, € R%*¢ is the controller statey, € R is the controller inputy. € R3*! is the
controller output. The method of controller design is first derived in the nominal case and
then extended to uncertain systems described by a polytope of models. A convenient way to
proceed is to find a realization of the closed-loop transfer function fraimz: 7 (G,C) =

Dy + Cy(sI — Ay)~t B, where

_ |[A+BD.C BC, _ |Buw
Acl_ BCC Ac:|’ Bcl_|:0:|7
Ca=(C. 0), Dy=0. (4.15)

Consider the LMI (4.6), we also get
AYP + PAy+CiCoy + %PBde;P <0 (4.16)
and lety X, = P, we get
XoAa+ ATX, + %OCTZ Cu+ %XCZBCZBZ,XCZ <0 (4.17)

Applying Schur complement yields

AT X+ XgAai XuBa CF

cl
BL X, —I 0 | <O (4.18)
Ocl 0 —7]
for some symmetric matrices, > 0 of dimension(6 x 6). The unknown matrices ar§,,
and the controller parameters insideg,, B.;, C.;, D.;. Internal stability and thé{.-norm
constraint are equivalent to above feasibility of the matrix inequality. It is noted that (4.18) is
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not an LMI. This is Bilinear matrix inequality (BMI) because it consists of some products of
two variables. It is impossible to solve BMI by any solver. Therefore, we need to transform
an BMl into a certain LMI.
Let X, be partitioned as follows
Y N 4 | X M
Xa = {NT *]’ Xa' = [MT *}
with XY, M, N € R6*¢,
Let V1, and A5, denote orthonormal bases of the null spaceéRf, 0) and (C, 0),
respectively. Substituting the matrix,, into the LMI (4.17) and consider each term of this
LMI

(4.19)

nALXaNy = N3 {AT * Cg%ngileYAﬁﬁiBzNT j Nay (4.20)
= N [A;Y 8 Na (4.21)
NatCHCalNyy = Ny _CZTOCZ 8} Nax (4.22)
The other terms are also reduced, and the I;MI (4.17) becomes
AT [ATY +YA+ %Cgcz +2YB,BLY 8} Ny <0 (4.23)
Itis trivial to get
N [AX + X AT 4 %BB,Bg +2XCTCLX 8] Ny <0 (4.24)

Hence, the controller parameters will be thrown out (4.18) to achieve an LMI associated with
X andY only.
We now extend to uncertain systems described by a polytopic state-space model. Such
polytopic models may result from convex interpolation of a set of modelB;) identified
in different operating points.
Algorithm 4.2. Consider the system described by (4.2), the LMIs (4.23) and (4.24). The
optimal H., problem is solvable if and only if there exist two symmetric matri€e¥ <
R*¢ satisfying the following system of LMIs
o
T |A;X + XA XCcT B,
C,X —I 0

0 I
Bl 0 -1

12i 0
0 I

12 0] <0 (4.25)
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v [ATY +YA; YB, CT

BTY -yl 0
C, 0 —I

21 0
0 I

where\,; denotes orthonormal bases of the null spacé®pt 0). The last LMl is to make
sure that the matrix; > 0. The pairs §, Y) are called feasible for the LMI systems (4.25)-
(4.27) and computing feasible pairs is a convex optimization problemk LetRank 7 —
XY') and compute via SVD two full column rank matricks N € R%* such that

2 01 (4.26)
0 I

X I

>0 4.27
Iy (4.27)

MNT =] - XY (4.28)

The matrixX, can be computed as an unique solution of the linear equation

Xa e o] =0 w7 (4.29)
Once X, is determined, (4.18) becomes an LMI with respect to the controller parameters
A., B, C., D. only. Therefore, the controller parameters could be computed by solving the
LMI (4.18). Generally, this option is appropriate for most cases, however it can procedure a
numerical problem. A particular solution can be computed more efficiently using elementary
linear algebra. In order to construct controllers parameter, we will rewrite the LMI (4.18).
By using a Schur complement argument, the LMI (4.18) is equivalent to the two LMIs

_ | v -Dy
Ad—*LJ%Z 1 >0 (4.30)
T T T
AliXa+ XaAai + BaXa A;I‘deh <0 (4.31)
o Ccl ¢ C'cl
We set up two new variablegs, S such thatX,R = S where
X I Y
e[S 0 s[D 43

Thus, X, = SR™!. Substituting this term into (4.31), and multiplying both side of the LMI
(4.31) with the matrixk”, R yield

BLS|" i [BY
RTAQS—%STAdJ%+[Cigl Adl{Ci§}<:0 (4.33)

For simplicity, some shorthands are introduced

A; = A; + BiD.C,
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Ky =B'N"+DI'BlY, K¢=CM"+ D.CX. (4.34)
We have
vy » _ |1 0][A4+BDC BC|[X I
SAalt =y N B.C A | lMT o (4.35)
T A; X + B;K¢ A; (4.36)
- NA MT+YAX+YBCMT + NB.CX YA +KLC
T _ XAl + KEBF Al
R'AyS = MATN + XATY + MCTBIY + XCTBTY ATY + 07K [*37)
and
BTS1" _[BTS] . v .. [BY C.X
[ o R] Il el I Rl R e (4.38)
The BMI (4.33) becomes
{AXZ‘ Agh} <0 (4.39)
A21i AYz‘ .
where .
Axi = AiX + XAT + BiKe + KEBT + [..]" A { Cf?}v(} (4.40)
T T T T -1 BgY
Ayi=AlY + YA +C"Kp+ KLC+ [...] A o (4.41)
T
Agyy=NAM" + AT +YAX +YBCM"+YNB.CX + [YB, CI|A} CB %
(4.42)

It can be seen that the products of varialilg and state matrices of the closed-loop system
are pulled out the BMI (4.31). We have transform the BMI (4.31) into the LMI (4.39). The
controller parameters can be computed by solving the LMI (4.39).

4.4 Summary and Discussion

441 Summary

In this chapter, we have presented a robust state feedidactontroller and a robust output
feedbackH ., controller. In order to design the controllers, an LMI regional pole constrains
has been used to improved the transient response of the system and to make the uncertain
system more stable. As given in Algorithm 4.1, the robust state feedBackontroller was

found by solving four LMIs system over the two variableandY. In case of the robust

output feedback{ ., controller, we also need to solve a minimization problem as shown in
Algorithm 4.2. Unlike state feed back controller, in this case after solving three LMIs system
we need to reconstruct the controller. It is noted that in both cases a polytopic system of eight
vertices was considered. For the first case, we need to solve a system of thirty-two LMIs. In
next chapter, we will show the results of the controller designs.
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4.4.2 Discussion

The computation of adequate Y and the controller reconstruction reduce to solving LMIs,
and hence to convex optimization programs. However, its solutions parameterize the set of
H, controllers and bear important connections with the controller order. control is a
natural for applications where the specifications are given in terms of frequency dependent
bounds on the output. Requiring the input to output gain to remain below prescribed levels
is typical of engineering design specifications. The existence conditions for a ogfigal
controller are useful when performing trade-offs between competing control objectives. In
addition,H ., control can be used as an alternative to LQG optimal problem. Both approaches
are reasonable for a wide range of problems.



CHAPTER V

SIMULATION RESULTS

This chapter presents the result of the controller design for the DRIP. In section 5.1, the result
of the robust state feedback controller design based on a regional pole constraints is shown.
Specifically, we will inject the two disturbance inputs and seek the worst-case gain while
varying the uncertain parameters of the system. Section 5.2 shows the result of the robust
output feedback controller design. With the same steps in previous case, the responses of the
system corresponding to the disturbance inputs are displayed. Some comparison between
the two controllers are then shown.

5.1 Robust state feedback{ ., controller

The feasibility problem was solved fo¥, L) and the state feedback matrix was obtained as
K = LY~'. In order to find the state feedback, the minimization problem in Algorithm 4.2
was solved using YALMIP package with solver SeDuMi. The problem was solved with re-
gional pole constraints in the region 8t0.5, 10000, 1.04). For the state feedback controller
with regional pole constraints, the state feedback gain is found

K =[-84 43971 —38633 —130 8633 —6285]
The poles of the closed-loop system are
—343.1307 —3.5960 + 52.0394 —2.3478 —1.5377 £ 71.4401

It is clear that the poles of the closed-loop system are satisfied the r€gidn 10000, 1.04).

The H,, performance of the resulting closed loop systems is fourd72.4.

We now show the simulation results of pendulum angle near the operating/fjokat 0

and3; = 0. Firstly, the two long and The system is set to the upright position to calcu-
late the performance when the disturbances are injected to passive joints of long and short
pendulums. We will consider the effects of uncertainties and two sets of the disturbances
specified above on the system. The simulation is also tested by using a virtual plant. The
worst value of performance index can be found by varying a set of three uncertain param-
eters and two disturbances. This step can be done more efficiently by using an interface
control panel in Figure 5.1. It is noted that the cost function must be calculated from 0 to
10 (sec). Therefore, the value obtained by simulation is less tha#/ th@orm obtained
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Figure 5.3: The performance index with uncertainties,.

by solving Algorithm 4.1. In the first step, we examine the performance index when the
uncertain parameters which are length of the short and the short pendulums are being var-
ied. By observing Fig 5.3, it is transparent that the worst value of performance index occurs
whenl; andl, are minimum. In the second step, we fix the length of the short pendulum at
the minimum values. The inertia of rotating disc and the length of the long pendulum are
changed5 percent around their nominal values. The performance index corresponding to
the uncertain parameters, [, is shown in Fig 5.4. The worst-case value occurs when the
inertia of rotating disc is maximum, and the length of the long pendulum is minimum. The
greater the value of, is the slower the position of the rotating disc changes. As a results,
the stabilization of two pendulums will be more affected by the disturbance inputs.

In this third step, we fix the length of the long pendulum at the minimum values and vary
the length of the short pendulud percent around its nominal value. It turns out that, the
maximum value occurs when the length of the short pendulum is at the minimum value and
the inertia of the rotating disc is maximum.
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Figure 5.6: The performance index with disturbanegsvs.

We now will take into account the effect of disturbance inputs on the system. The length of
each pendulum is fixed at the minimum value and the inertia of the rotating disc is fixed at
the maximum value. From Fig 5.6, the worst-case inputs is found

wy () = 0.001 sin(207t + 7/2) + 0.001 sin(207t + 7/2)

wsy(t) = 0.001 sin(7t + 7/2) 4+ 0.001 sin(7t + 7/2)

Consequently, the worst value of the performance indéx.i& The response of the system
corresponding to the disturbance inputs is shown in Fig 5.7. We observe that the ampli-
tude of the pendulums is very smail03 [deg]. Therefore, the system is stable while the
disturbances are working on it.

Consider the initial valueg, = 6(deg) and3, = 6(deg). The closed-system is stable as
shown in Fig 5.8-5.10.
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5.2 Output feedbackH ., controller

We consider effect of the disturbances on the system. The initial angles are als($et
0° (deg) and3»(0) = 0° (deg). The output feedback controller is found

[—4.3039 —1.1172 —2.7539 —0.3162 36.1764  —494.6792]
—2.8702 —19.5836 —0.4055 —3.4490 —18.2823  112.3659
3.2645 0.7971  —3.9003 -3 —17 88
1.5346 4.3969 0.1010 —2.5191 —65.6825  752.9302
43.8694 —56.1111 139.5282 25.4766 —111.8484 149.2250
| —3512.9 68565  —1520.4 —1852.6 19544 —748.6134 |

[ 1.4811 2.8340 0.4968

—10.3463 1.9112 —303.8622
11.0831  63.0928  15.2727
6.5628 482472 49.7058
—5066  —40916  —10058

| 25100  —138200 1593100 |

C.=[-3.6169 —1.1411 —2.4524 —0.4004 359913 —491.3821]; D.=[0 0 0]

The output feedback controller can also be written as

K =diag K(s), Ka(s), K3(s))

where
Ko(s) — TL23TI4588283(s — BTLT)(s + 733)(s + 4.96)(s + 0.4135)(s — 0.1236)
(5 + 490.4)(s + 64.25)(s + 15.21)(s + 3.249)(s2 + 13295 + 8.437¢005)
Ky(s) — OTTOTIZLTTAT(s +623.9)(s +7781)(s + 5.283)(s2 + 0.55755 + 0.986)
(s +490.4)(s + 64.25)(s + 15.21)(s + 3.249)(s? + 1329s + 8.437¢005)
Ky(s) — TSZSATOOS.0097(s + 6.28)(s” + 0.54155 + 0.9182)(s” + 96.375 +2624)

(s +490.4) (s + 64.25)(s + 15.21)(s + 3.249) (52 + 13295 + 8.437¢005)

The poles of the closed-loop system are

—548.66 —101.02 £ 530.78 —39.31 £ j28.66 —49.96
—0.66 —1.46=+72.35 —-2.22 —-0.27=£7;0.93

The Fig 5.11 5.13 show the performance index. The worst value of performance index in
case of consideration of the disturbances calculated from O [sec] to 10 [séckif7.5.
This worst value is greater than the wort value obtained in the previous case.
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We set the initial values g% (0) = 0° and/,(0) = 0°, that means the two pendulum are set

at the upright unstable position. Responses of the outputs of the nominal plant with respect
to the disturbances are shown Fig 5.15 and 5.16. Because of the sinusoidal inputs, hence,
the system will oscillate with a small amplitude.

In comparison with the state feedback controller, it is transparent that the amplitude of
the outputs in this case is greater. The system is now examined when the initial positions
are not at the upright unstable position. As shown in Fig 5.17, the angle of the short and the
long pendulums arg; (0) = 6° and,(0) = 6°. The peak value of the angle of the short
pendulum isl 1.5° and greater than that in case of robust state feedback controller. The same
remark is stated for the long pendulum.

In short, the robusit/, state feedback controller gives the better results than the robust
H, output feedback controller does. It is reasonable because in the state feedback controller
we know all information of the system. For the output feedback controller, only the angles
of pendulum and disc are known.
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Figure 5.15: The angle of long penduluim
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Some comparisons between the proposed controllers and LQR controller are shown
in Fig 5.18- 5.21. Firstly, we consider the nominal plant and set the initial angle of the
pendulums at°. In this case, the LQR controller gives a result as good as the proposed
controller. The LQR controller causes a higher peak value in comparison with the proposed
controllers but it is acceptable. Therefore, the LQR controller gives a result as good as the
proposed controller.

We investigate the stability of the system when the uncertain parameters chiange
percent around their nominal value. From Fig 5.20 and 5.21, it can be seen that the LQR
controller presents a bad response. The both pendulums oscillate with a large amplitude. If
we change0 percent of the uncertain parameters then the LQR controller can not stabilize

the system.

20 T T T T
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"""""" v == LOR controller
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10 + e T
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Figure 5.18: The angle of long penduluin
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Figure 5.22: The angle of long pendulum with respect to disturbance inputs for LQR con-
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The response of the system with respect to the disturbance inputs for the LQR controller is
shown in Fig 5.22 and 5.23. The amplitude of the angle is greater than that in the proposed
controllers. We continue comparing the proposed controllers and an LPV controller. This
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.04 |
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=
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Figure 5.25: The angle of pendulum with inittl.

LPV controller was presented by Aribowo and Nazaruddin [21]. The results show that the
proposed controller are quite good in comparison with the LPV controller.
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5.3 Summary

In this chapter,the results of the controller designs for the RDIP are shown. The system
is stable when the disturbance inputs are injected to the passive joint of the long and short
pendulum. The disturbance inputs are always sinusoid therefore the long and short pendulum
still oscillate but the magnitude is very small. In addition, we also consider when the initial
angle of the long and short pendulum are bgthThe Fig. 32 shows that the system is stable
despite of applied disturbance inputs.

In comparison, it is clear that the performance index in case of the state feedback
controller is less than that in case of the output feedback controller. This result can be
explained by the angle of long and short pendulum corresponding the disturbance inputs. In
short, the state feedback controller gives a better result than the output feedback controller.



CHAPTER VI

CONCLUSIONS

6.1 Summary of Results

This thesis has dealt with a robust controller design problem for a rotary double inverted pen-
dulum. The two controllers which are robugt, state feedback controller robust,, output
feedback controller have been designed. The controller design problem were formulated into
some standard forms towards the numerical computation of controllers using LMIs. The ap-
proach to robust controllers that we have studied is polytopic. With the poly approach, the
problem might blow up and the number of solutions increase and consequently LMIs to be
solved for becomeg”. In other words, that means the increase of the number of uncertain
parameter leads to the increase the number of LMIs. The polytopic approach is suited to un-
certain systems of which the number of uncertain parameter are not many, otherwise it will
cause a computational burden which can ultimately decide the feasibility of the problem.
The RDIP has three uncertain parameter which are length of long and short pendulum and
inertia of rotating disc. In the process of designing controllers, we have found that the RDIP
becomes hard to control when the length of long pendulum is equal to the length of short
pendulum. Let us now look at a detailed summary of the results obtained in this thesis.

Chapter 2 is the introduction about a basic knowledge of which some fundamental
concepts such as model of uncertain systems were reviewed. Especially, some underlying
applications of LMIs were also highlighted. It turns out that LMIs is a very useful tool in the
field of control systems. Many problems in control systems can be formulated into the form
of a system of LMIs which is able to be solved efficiently using the package YALMIP.

In chapter 3, the nonlinear system RDIP has been modeled and linearized appropriately
depending on the control method to be applied. This chapter also stated the controller design
problems which are the robustness and the minimization problems.

Chapter 4, which contains the main contents of the thesis, mentioned about the method
used to design the two controllers above. In case of the rabhysstate feedback controller,
we have use a stability region not only to improve the transient responses of the system but
also to guarantee the robustness of the system. Thereafter, the state feedback gain were ob-
tained by solving th&2 LMIs constraints. About the robugf,, output feedback controller,
the problem of design the controller is a minimization problem involving a systeir7 of
LMIs. The controller parameters are not easy to get after solving the LMI system like the
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previous case. In order to reconstruct the controller parameters we had also to solve some
LMIs more, but it is not a minimization problem, just a mere LMIs problem.

Finally, the simulation results were shown in chapter 5. We have examined the effect of
disturbance inputs on the system. In order to calculate the worst value of performance index,
the two pendulums are set at the upright unstable position and the uncertain parameters of
the system are varied. It can be seen that the robysstate feedback controller is better
than the robust , output feedback controller. We also compared the proposed controllers
with LQR and LPV controllers. The LPV controller seem to be better than the proposed
controller whereas the LQR is the worst controller.

6.2 Recommendations

In this research, we have used the polytopic approach to deal with the uncertain system.
Increasing of the number of uncertain parameters leads to the increasing the number of LMIs.
In addition, this approach seem to be less conservative. That is a drawback of the polytopic
approach.

6.2.1 Possible Extensions

A possible extension is LFT approaches. The LFT approach on the other hand tends to be
conservative. For instance, the LFT approach is able to cope with a lot more uncertainties. If
the number of uncertainties entering the system, ifen LFT deals witl2n uncertainties.

The LFT approach helps less computational burden which can ultimately decide the feasi-
bility of the problem. It the problem is extended to the complex one with huge number of
uncertainties and where the uncertain parameter varies arbitrarily fast, we would recommend
the LFT approach. The design of a gain-scheduled controller for the a nonlinear plant can be
described as a four-step procedure

1. Compute a linear parameter-varying model the plant. An approach is well know as
quasi-LPV scheduling. Some nonlinearities of the plant dynamic are replaced with
time-varying parameters used as scheduling variables.

2. This step deals with linear design controller techniques for the LPV plant model. The
LPV model will be reduced to LFT form.

3. Design a robust controller such that its coefficients are varied(scheduled) according to
the current value of the scheduling variables.

4. Evaluate the controller in order to meet given certain specifications.
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Figure 6.1: The LPV control structure.

LFT approach to gain scheduling using LMIs

LFT description can represent any polynomial or rational matrix function of a scalar variable.
The LMIs are able to seek the existence of gain-scheduled controllers. The plant can be
represented by using an upper LFT interconnection

;) -nire.e (L)

whereP(s) is a known LTI plant and® is some block diagonal time-varying operator. The
block © can be defined by

©=blockdiadt; 1,1, . . . O 1,1)

We can use a concept of parameter-dependgptcontrollers to solve the problem. The
controllers depend on the varying paramett$ can be presented by

Te(t) = Ac(0(8))ze(t) + Be(6(1))y (1)
u(t) = Ce(0(t))xc(t) + De(0(2))y(2)

whereA., B., C,., D, are linear fractional functions df. It is noted that in order to apply
this approach, the value 6ft) must be measured at each timeAs previously presented
in Chapter 4, the{,, control problem can be considered as finding an internally stabilizing
LTI controller K(s) such that

I1F(P, K)o <7
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We can attenuate the effect of disturbance inputs by minimizing the valliaerefore, the
objective is to to minimize closed loop performange> 0 from w to z for all admissible
parameter trajectorigs The minimal realization of the LTI plarf®(s) is

Doy Dop Doy Chy
P(s)= | Dy D, Dy |+ |G, (SI—A)_1(39 B, B,)
Du@ Dup Duu Cu

The LFT of open loop plant can be written as

t = Ax+ Bywg + Bywy + B,w,
zZp = Cgl’ + Dggwg + Dgpwp + Dguu
2y, = Cpr+ Dpwy + Dypw, + Dp,u
Yy = Cny‘ + Dygwg + Dypwp, wy = Oz
An optimal H, controller can be designed if there exists pairs of symmetric matfices )

and(R, S) such that

min
XYRSfy

AX +XAT  RCT

@
N

n
\/

0
N ax ‘g ") D (g ?) Ny <0 6.1)
LA L )
ATY +YA  YB, CF (g ?)
NE| By (RO ﬁg(§ ?) Ny <0
(ﬁf (I)) G, (]0% (}) Dy (ff ?)
3 e

R 0
(o S)ZO

i ~  (Cy ~ ([ Dy Dy,

Bp - (BﬁaBp)a Cp - <Cp) ) Dpp - (DpG Dpp
Moreover, there exists an optimAl,, controller of orderk < 6 if the extra rank constraint
is satisfied

where

rank/ — XY) <k
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6.2.2 Future works

In this research, some difficulties have been encountered, hence, these can be considered as
avenues for future works:

1. The LFT approach being able to cope with a lot more uncertain parameters gives a

conservative result. Future work could consider complex uncertainties and other types
of disturbances.

2. Making a real rotary double inverted pendulum will be an interesting work in order to
test controllers.
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Appendix

Matlab Source Code for Simulations of Controller Design

1 Program for robust H, state feedback controller

%

% Statefeedback.m

% Simulation of a rotary double inverted pendulum
% Author: Hoang Ha

% 30 July 2007

%

%

% Variable initialization

%

close all; clear all;

JO= 0.06;% Inertia of the rotating disc

J1=0.008;% Inertia of the long pendulum

J2=0.002;% Inertia of the short pendulum

c0=0.004;% Vicous coef. of the rotating disc

c1=0.003;% Vicous coef. of the long pendulum

c2=0.009;% Vicous coef. of the short pendulum

m1=0.25; % Mass of the long pendulum

m2=0.13; % Mass of the short pendulum

11=0.24; % The displacement from the joint to the c.m of the long pendulum (nominal value)
12=0.13; % The displacement from the joint to the c.m of the short pendulum (nominal value)
L=0.172; % The radius of the rotating disc

0=9.8; % The gravity constant

Km=0.374; % Torque constant

Kb=0.374; % Back emf. constant

R=8.26; % Resistant in motor circuit
0,

% Define the maximum and minimum value of the uncertain parameters
%
der-min=0.8; % Variation of the uncertain parameters

der_max=1.2;% Variation of the uncertain parameters

I1_min=I1xder-min;Ill_max=Il1lxder-max; % Length of the long pendulum
12_min=I2xder_min;I2_max=I12«xder_max; % Length of the short pendulum
JO_min=J0«der_min;JOmax=J0«der_max; % Inertia of the rotating disc
%
% Linearize the nonlinear plant at the upright position
%

%———— The nominal plant
Y1 = JOO+mkL"2+m2«L"2 ; Y2 = J1+mkI110°2; Y3= J2+mZ|20°2;
X1 = m1lx110xL; X2= m2x120xL;

X3 = mlxg*x110; X4 = m2gx120;

F22=-diag ([cO+Km«Kb/R c1 c2]);

E22= [Y1 X1 X2; X1 Y2 0; X2 0 Y3]; F2l=diag([0 —X3 —X4]);
E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F21=diag([0 X3 X4]);
% E22= [Y1-X1 X2; —X1 Y2 0; X2 0 Y3]; F2i=diag ([0 X3-X41]);
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E= [eye(3) zeros(3,3); zeros(3,3) E22];

F [zeros(3,3) eye(3); F21 F22];

[0 00Kn/RO 0]

A = inv(E)xF;

B = inv (E)«*G;

%——Find linearized model for each verte
Y1 = JO.min+m1«L"2+m2«L"2 ; Y2 = J1+mkIl_min~2; Y3= J2+mZ[2_min"2;
X1 = mlxll_minx*L; X2= m2«12_minxL;

X3 = mlxgxll_min; X4 = m2gx12_min;

F22=-diag ([cO+Km«Kb/R cl1 c2]);

E22= [Y1 X1 X2; X1 Y2 O0; X2 0 Y3]; F2ldiag([0 —X3 —X4]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F21l=diag([0 X3 X4]);

% E22= [Y1 —X1 X2; —X1 Y2 0; X2 0 Y3]; F2l=diag ([0 X3-X4]);

E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

Al = inv (E)xF;

Bl = inv (E)xG;

0,

®
I

Y1 = JO.min+ml«L"2+m2«L"2 ; Y2 = J1+mkIl_min~2; Y3= J2+mZ|2_max 2;
X1 = mlxll_minxL; X2= m2x12_maxxL;

X3 = mlxgxll_min; X4 = m2xg*l2_max;

F22=-diag ([cO+Km«Kb/R c1 c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F21l=diag([0 X3 X4]);

E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

A2 = inv (E)xF;

B2 = inv (E)*G;

0,

Y1 = JO.min+mlxL"2+m2xL"2 ; Y2 = J1+mkll_max"2; Y3= J2+m2l2_min"2;
X1 = mlxll_maxkL; X2= m2«12_minxL;

X3 = mlxgxll_max; X4 = mzgxl2_min;

F22=-diag ([cO+Km«Kb/R cl1 c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F21l=diag([0 X3 X4]);

E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

A3 = inv (E)xF;

B3 = inv (E)xG;

OU

Y1 = JO.min+mlxL"2+m2«L"2 ; Y2 = J1+mXkll_max"2; Y3= J2+m2l2_max"2;
X1 = mlxll_maxkl; X2= m2xl2_maxxL;

X3 = mlxgxll_max; X4 = mzZgxl2_max;

F22=diag ([ cO+KmxKb/R c1 c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F2l=diag([0 X3 X4]);
E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

A4 = inv (E)xF;

B4 = inv (E)xG;

ou

Y1 = JOmax+mkL"2+m2«L"2 ; Y2 = J1+mXkIl1l_min~2; Y3= J2+mZ12_min~2;
X1 = mlxll_minxL; X2= m2«12_minxL;

X3 = mlxgxll_min; X4 = m2«g«12_min;

F22=diag ([ cO+Km«Kb/R c1 c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F2l=diag([0 X3 X4]);
E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

A5 = inv (E)xF;

B5 = inv (E)xG;

0,

(5



Y1 = JOmax+mkL"2+m2«L"2 ; Y2 = J1+mkIl_min~2; Y3= J2+m2l2_max"2;
X1 = mIxl1l_minxL; X2= m2«12_maxxL;

X3 = mlxgxl1l_min; X4 = m2:g*l12_max;

F22=-diag ([ cO+KmxKb/R c1 c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F2l=diag([0 X3 X4]);

E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

A6 = inv (E)xF;

B6 = inv (E)xG;

ou

Y1 = JOmax+mkL"2+m2xL"2 ; Y2 = J1+mkll_max~2; Y3= J2+m2l2_min"2;
X1 = mlxll_maxxL; X2= m2x12_minxL;

X3 = mlxgxll_max; X4 = mZgxI2_min;

F22=-diag ([ cO+Km«Kb/R cl c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F2l=diag([0 X3 X4]);
E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

inv (E)xF;

inv (E)*G;

w >
NN
ion

Y1 = JOmax+mkL™2+m2«L"2 ; Y2 = Jl+mkll_max”~2; Y3= J2+m2l2_max"2;
mlxl1l_maxxL; X2= m2«12_maxxL;

X3 = mlxgxll_max; X4 = mzgx*l2_max;

F22=-diag ([cO+Km«Kb/R c1 c2]);

E22= [Y1 —X1 —X2; —X1 Y2 0; —X2 0 Y3]; F2l=diag([0 X3 X4]);

E= [eye(3) zeros(3,3); zeros(3,3) E22];

F = [zeros(3,3) eye(3); F21 F22];

A8 = inv (E)xF;

B8 = inv (E)xG;

%————Define other matrices for the operfloop system
C2=[100000010000; 00100 0J;

D=1[0 0 0]

Q = diag([10 10 10 1 1 1]);% The matrix comes from the benchmark problem
Bw=[0 0;0 O; O 0;0 0;1 0;0 1];

Bw=inv (E)«Blw; % The disturbance input matrix

Cz=Q; % Define the performance output matrix

x
[N
1

%

% Formulate the problem in terms of LMIs formulation
%

% Declare variables

Y=sdpvar (6); % A symmetric matrix

W=sdpvar (6);% A symmetric matrix

L=sdpvar(1,6);% A matrix with the dimension of (1,6)
gamma2=sdpvar (1)% sqrt(gamma2) is the Hinfinity norm of the system

% The parameters for LMI stability region S(alpha,theta~—H————
theta=pi/3;
r=100000;
alpha=0.00005;
% LMIs constraint
H=[AlxY+Y*ALl +BlxL+L’ *B1’+Blw«Blw’ Y*xCz’
Cz —gammazeye(6)];

0,

(5

conl2=[AlY+Y*Al'+BlxL+(BlxL)'+2xalphaxY];

conl3=FrxY AlxY+B1lxL
Y+ALl'+(BlxL)’ —rxY ];

conld=[sin(theta }(ALlxY+B1lxL+Y«Al +(B1lxL)") cos(theta }(AlxY+BlxL—Y*xAl —(B1lxL)")
cos(theta y(Y*Al'+(BlxL)’ —AlxY—B1lxL) sin(theta y(AlxY+BlxL+Y*Al'+(B1lxL) ')];
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0,

(3

CON22=[A2Y+Y*A2'+B2xL+(B2xL) '+2 x alphaxY];

con23=FrxY A2xY+B2xL
Y*A2'+(B2xL)’  —rxY ;

con24=[sin(theta }(A2xY+B2xL+YxA2'+(B2xL) ")
cos(theta (Y*A2'+(B2xL)’ —A2xY—B2xL)

0,

cos(theta J(A2xY+B2xL-YxA2' —(B2xL) ")
sin(theta y(A2xY+B2xL+Y*A2'+(B2xL) ")];

(3

con32=[A3Y+Y*A3'+B3xL+(B3«L) '+2 xalphaxY];

con33=frxY A3xY+B3xL
YxA3'+(B3xL)"  —rxY ];

con34=[sin(theta k(A3xY+B3xL+YxA3'+(B3xL)")
cos(theta y(Y*A3'+(B3xL)’ —A3xY—B3xL)

0,

cos(theta y(A3xY+B3xL—Y*A3' —(B3xL) ")
sin(theta }(A3+xY+B3xL+Y*A3'+(B3x*L) ")];

()

cond2 =[AdY+Y*xA4'+B4xL+(B4xL)'+2xalpha«Y];

con43=fFrxY AdxY+B4xL
Y+A4'+(B4xL)’ —rxY ];

condd=[sin(theta } (AdxY+B4xL+Y«A4'+(B4xL)")

cos(theta Jx(Y+Ad' +(B4xL) —AdxY—BdxL)
0,

cos(theta y(Ad«Y+BaxL-Y+Ad' —(Bd«L) ")
sin(theta y (Ad«Y+BaxL+Y A4 +(B4xL) ')];

(5

con52 =[A5Y+Y*xA5'+B5xL+(B5+L)'+2xalpha«Y];

con53=frxY AS5xY+B5xL
Y+AB'+(B5xL)’ —rxY ];

con54=[sin(theta }(A5xY+B5xL+Y«A5"+(B5xL) ")
cos(theta y(Y*A5'+(B5xL)’ —A5xY—B5xL)

0,

cos(theta y (A5xY+B5xL—Y*A5' —(B5«L) ")
sin(theta J (A5xY+B5xL+Y A5’ +(B5xL) *)];

(5

con62=[A6rY+Y*xA6'+B6xL+(B6xL)'+2xalphaxY];

con63=FrxY A6 xY+B6xL
Y+AB'+(B6xL)’ —rxY ];

con64=[sin(theta }(A6xY+B6xL+Y«A6'+(B6xL) ")
cos(theta (Y*A6'+(B6xL) —A6xY—B6xL)

cos(theta y(ABxY+B6xL—YxA6' —(B6xL) ")
sin(theta )} (A6xY+B6xL+Y+A6'+(B6xL) ')];

con72=[A%Y+Y*xA7'+B7xL+(B7+L)'+2xalphaxY];

con73=FrxY A7xY+B7xL
Y*A7'+(B7xL)’ —rxY ];

con74=[sin(theta }(A7«Y+B7xL+YxA7 +(B7xL) ")
cos(theta }(Y*A7'+(B7xL)’ —A7xY—B7xL)

cos(theta y (A7+Y+B7xL-Y*A7' —(B7+L) ")
sin(theta y (A7+Y+B7xL+Y+A7'+(B7xL) *)];

con82=[A8Y+Y*A8'+B8xL+(B8xL)'+2xalphaxY];

con83=FrxY A8xY+B8xL
YxA8'+(B8xL)'  —rxY ];

con84=[sin(theta }(A8xY+B8xL+YxA8'+(B8xL) ")
cos(theta J«(Y+A8'+(B8xL)" —A8xY—B8xL)

cos(theta }(A8xY+B8xL—-Y*A8" —(B8xL) ")
sin(theta )}« (A8xY+B8xL+YxA8 +(B8xL) ')];

% Solve the LMIs constraints using Sedumi solwver
Imi=set(H>0)+set(conl2<0)+set(conl3<0)+set(conl4<0);
Imi=Imi+set(con22<0)+set(con23<0)+set(con24<0);
Imi=Imi+set(con32<0)+set(con33<0)+set(con34<0);
Imi=Imi+set(con42<0)+set(con43<0)+set(cond4<0);
Imi=Imi+set(con52<0)+set(con53<0)+set(con54<0);
Imi=Imi+set(con62<0)+set(con63<0)+set(con64<0);
Imi=Imi+set(con72<0)+set(con73<0)+set(con74<0);
Imi=Imi+set(con82<0)+set(con83<0)+set(con84<0);

opts=sdpsettings;
opts.solver="sedumi’;
err=solvesdp (Imi,gamma2);
gammassqrt (gamma2);

62



% Get the value of the matrices L,—¥
Lsol=double(L);

Ysol=double (Y);

Ksval=Lsolxinv (Ysol);% the state feedback controller is found

%

% End program for robust state feedback controller

%

2 Program for robust H., output feedback controller

%

% Outputf eedback.m

% Simulation of a rotary double inverted pendulum
% Author: Hoang Ha

% 30 July 2007

%

Dzu=zeros(6,1); Dyw=zeros(3,2); Dcl=zeros(6,2);

0,

C_Dyw=[C2 Dyw];
C2_null=null (C.Dyw); % Compute null space of the matrix [C2 Dyw]
CD=[ C2.null zeros(8,6)

zeros(6,5) eye(6,6)];
B_D12=[B’ Dzu'];
B_null=null (B_.D12); % Compute null space of the matrix [B’ Dzu]
BD=[ B_null zeros(12,2)

zeros(2,11) eye(2,2)]; % (14,13)

0,

(5

B1.D12=[B1’ Dzu']; Bl1l_null=null (B1.D12); BD1=[ Bl.null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(5

B2_.D12=[B2’ Dzu']; B2_null=null (B2.D12); BD2=[ B2.null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(5

B3.D12=[B3’ Dzu']; B3_null=null (B3_.D12); BD3=[ B3.null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(5

B4.D12=[B4’ Dzu']; B4_null=null (B4.D12); BD4=[ B4_null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(3

B5.D12=[B5’' Dzu']; B5_null=null (B5.D12); BD5=[ B5_null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(5

B6.D12=[B6' Dzu']; B6_null=null (B5.D12); BD6=[ B6_null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(5

B7_.D12=[B7’ Dzu']; B7_null=null (B7.-D12); BD7=[ B7-null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)

0,

(5

B8.D12=[B8’ Dzu']; B8_null=null (B8.D12); BD8=[ B8_null
zeros(12,2)
zeros(2,11) eye(2,2)];% (14,13)



% Declare two variables X,Y

X=sdpvar (6); % A symmetric matrix
Y=sdpvar (6); % A symmetric matrix
gamma=sdpvar (1); XY=[ X eye(6)

eye(6) YI;
ou
% Formulate the H infinity control problem in terms of LMIs formulation
0,
F11=[AxX+X+A’ X xClw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Blw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12=[A"xY+Y*A Y «Blw Clw’
Blw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll=BD*F11xBD; conl2=CD%F12«CD;

0,

(5

F11=[ALX+X*Al’ X+Clw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Biw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12=[A1'xY+Y*xAl Y«Blw Clw’
Blw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll1=BD1'«F11«BD1; conl21=CD’'xF12«CD;

0,

(5

F11.2=[A2xX+XxA2’ X+Clw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Blw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12.2=[A2’ xY+YxA2 Y«Blw Ciw’
Blw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll2=BD2'«F11.2«BD2; conl122=CD’'«F12.2xCD;

0,

(5

F11 3 =[A3xX+X*A3’ XxClw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Biw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12_3=[A3’ xY+YxA3 Y+Blw Clw’
Biw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conl13=BD3'«F11.3xBD3; conl23=CD'xF12 3xCD;,

0,

(5

F11 4 =[Ad«X+XxA4’ X+Clw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Blw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12_4=[A4’ «Y+YxA4 Y«Blw Ciw’
Blw’'xY —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll14=BD4’'«F11.4xBD4; conl24=CD'xF12 4xCD;
0

(5

F11.5=[A5xX+XxA5’ X+Clw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Biw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12.5=[A5’ xY+Y A5 Y+Blw Ciw’
Biw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll5=BD5'«F11.5xBD5; conl1l25=CD’'«xF12.5xCD;,

0,

(5




F11.6 =[A6xX+XxA6’ X*xClw’ Blw

ClwsX —gammaeye(6) zeros(6,2)
Biw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12_6 =[A6’ xY+Y xA6 Y+Blw Ciw’
Biw'xY —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll6=BD6'«F11.6+xBD6; conl26=CD’'«xF12 6xCD,

0,

(5

F11.7 =[A7+X+XxAT7’ X+Clw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Biw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12.7 =[A7’ xY+Y xA7 Y«Blw Clw’
Blw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conll7=BD7'«F11.7«BD7; conl27=CD'«F12_7xCD;

0,

(5

F11.8 =[A8xX+XxA8’ X+Clw’ Blw
ClwsX —gammaeye(6) zeros(6,2)
Biw’ zeros(2,6) —gammaeye(2)]; %(14,14)
F12.8=[A8'xY+YxA8  YxBlw Clw’
Biw’'xY  —gammaeye(2) zeros(2,6)
Clw zeros(6,2) —gammaeye(6)];%(14,14)

conl18=BD8x«F11.8«BD8; conl128=CD’'«xF12 8xCD;,

0,

ineq=set(conll<0)+set(conl2<0);
ineg=ineqgtset(conll1l<0)+set(conl21 <0);
ineg=ineqg+set(conll2<0)+set(conl22 <0);
ineq=ineqgtset(conll3<0)+set(conl23<0);
ineq=ineqgtset(conll4<0)+set(conl24 <0);
ineg=ineqg+set(conll5<0)+set(conl25 <0);
ineq=ineqg+set(conll6<0)+set(conl26 <0);
ineq=ineqgtset(conll7<0)+set(conl27 <0);
ineg=ineq+set(conl18<0)+set(conl28<0); ineg=ineq+set(XY>0);
opts=sdpsettings;

opts.solver="sedumi’;% use the solver sedumi
err=solvesdp (ineq ,gamma)%% minimize gamma by solving a system of LMis
Xsol=double (X); % get the value of variable X

Ysol=double(Y); % get the value of variable Y

gammavalue=double (gamma) % get the value of variable gamma
MN=eye(6)— XsolxYsol; [s,u,v]=svd(MN); M=(sxsqrt(u)’);
N=(vksqrt(u));% compute two matrices M and N such thatM= | —-XxY

% compute matrix Xcl
bigX=[eye(6) Ysol ;zeros(6) (vksqrt(u))’']=*inv ([Xsol
eye(6);(sxsqrt(u)’)’ zeros(6)]);

%

% Reconstruct controller parameters

%

% Declare the controller parameters as variables

Ak=sdpvar (6);

Bk=sdpvar (6 ,3);
Ck=sdpvar (1,6);
Dk=sdpvar(1,3);

(5

ImiCl=deltathetaC1+B%pil2xphiC+phiC '« pil2xBl’;

0,

0,

(5,

ImiC2=deltathetaC2+BZpil2«phiC+phiC 'xpil2xB2’;

0,

(5

ImiC3=deltathetaC3+B3pil2«phiC+phiC '« pil2«B3’;



0,

(3

ImiC4=deltathetaC4+B4&pil2«phiC+phiC x pil2«B4’;

0,

(5

ImiC5=deltathetaC5+B5pil2xphiC+phiC '« pil2«B5’;

0,

(5

ImiC6=deltathetaC6+B6&pil2«xphiC+phiC '« pil2xB6’;

0,

(3

ImiC7=deltathetaC7+B%pil2«phiC+phiC x pi12«B7";

0,

(5

ImiC8=deltathetaC8+B&pil2xphiC+phiC '« pil2«B8’;

0,

(5

delta21l 2=N«Ak«M +A2’'+Ysol xA2x Xsol+Ysol«B2x+Ck«M +N x«Bk+xC2x Xsol
+[Ysol«Blw Cilw]xinv (delta-cl)*[Blw’ ; ClwxXsol];

deltaR 2=A2«Xsol+XsolxA2'+B2 x (Ck«M +Dk *C2x Xsol ) + (Ck«M + Dk xC2x Xsol ) ' x B2’
+[Blw’; ClwxXsol]'xinv(delta.cl)*[Blw' ; ClwxXsol];

deltaS 2=A2"xYsol+YsolxA2+C2’x (Bk’«N'+Dk’ *«B2’x Ysol )+ (Bk’«N'+Dk’ *xB2’x Ysol) '« C2
+[Blw’x Ysol;Clw] '«xinv (delta_cl)*[Blw’'x Ysol;Clw];

Imidelta2=[ deltaR2 delta212”’

delta2l12 deltaS2];

0,

delta21 3=N«Ak+M +A3'+Ysol xA3+ Xs0l+Ysol«xB3xCk«M +NxBk+C2x Xsol
+[Ysol«Blw Cilw]xinv (delta-cl)*[Blw’ ; ClwxXsol];
deltaR.3=deltathetaC3+B3pil2«KC+KC’ * pi12+B3’;
deltaS 3=deltathetaB3+C2% pi21xKB+KB' * pi21xC2;
Imidelta3=[ deltaR3 delta213”’
delta213 deltaS3];

0,

(5

delta21l 4=N«Ak+«M +A4’+Ysol xAdx Xsol+Ysol«xB4xCk+M +NxBk+C2x Xsol
+[Ysol«Blw Cilw]xinv (delta_cl)*[Blw’;ClwxXsol];
deltaR 4=deltathetaC4+B4pil2«KC+KC' x pil2«B4’;
deltaS 4=deltathetaB4+C2%pi21«KB+KB’ x pi21xC2;
Imideltad=[ deltaR4 delta214”’
delta214 deltaS4];

0,

delta21 5=N«Ak+«M +A5’'+Ysol xA5x Xsol+Ysol«xB5xCk+M +N xBk+C2x Xsol
+[Ysol«Blw Cilw]xinv (delta.cl)=[Blw’;ClwxXsol];
deltaR 5=deltathetaC5+B5pil2«KC+KC’ x pil2xB5";
deltaS 5=deltathetaB5+C2% pi21«KB+KB’ x pi21xC2;
Imidelta5=[ deltaR5 delta2l15’
delta2l15 deltaS5];

0,

(5

delta21 6 =N«Ak«M'+A6’+ Ysol xA6x Xsol+Ysol«xB6+«Ck+M +N xBk+xC2x Xsol
+[Ysol«Blw Cilw]xinv (delta.cl)=[Blw’ ; ClwxXsol];
deltaR 6=deltathetaC6+B&pil2+KC+KC' x pil2«B6’;
deltaS 6=deltathetaB6+C2% pi21xKB+KB’ x pi21xC2;
Imidelta6=[ deltaR6 delta216’
delta216 deltaS6];

0,

(5

delta2 1 7=N«Ak«M+A7'+Ysol xA7x Xsol+YsolxB7xCk+M +N xBk+C2x Xsol
+[Ysol«Blw Cilw]xinv (delta-cl)*[Blw’ ; ClwxXsol];
deltaR 7=deltathetaC7+B#%pil2«KC+KC’ x pil2xB7’;
deltaS 7=deltathetaB7+C2% pi21+KB+KB’ x pi21xC2;
Imidelta7=[ deltaR7 delta217’
delta217 deltaS7];

0,

delta21 8=NxAk«M'+A8'+ Ysol xA8x Xsol+YsolxB8xCk«M +N xBkxC2x Xsol
+[Ysol«Blw Cilw]xinv (delta_cl)*[Blw’ ; ClwxXsol];
deltaR. 8=deltathetaC8+B&pil2+KC+KC' x pil2xB8’;




deltaS 8=deltathetaB8+C2% pi21«KB+KB’ x pi21xC2;
Imidelta8=[ deltaR8 delta218’
delta218 deltaS8];
OB/ 888/ 888/ S/ 8 S B/ 8Y S/ 8/ 8/ 8 5/ B S/ 8 8B 8/ 8 88 8/ 8 S8 85/ 8 S/ 888/ 8/ 86/ B 8 S/ 8 6/ 888/ 8/ S/ S/ 88/ 8/ S/ 8/ 8/ S/ 8/ S/ 818/ 8/
% NxAkxM’
inegdeltasset(Imidelta2<0);
% opts=sdpsettings;
% opts.solver="sedumi’;

errdelta=solvesdp(ineqdelta);
%

% Compute controller parameters
%
Ak_sol=double (Ak);
Bk_sol=double (Bk);
Ck_sol=double (Ck);
Dk_sol=double (Dk);
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