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CHAPTER |

INTRODUCTION

products from ev ey ‘ ydi ver a broad class of units,
which have two maj iQms. I 19 egrefiM@aipreducts by adding hydrogen
to unsaturated com efinic, con “ are very reactive and can
: product streams. The

second function is i ities e o amipants and sulfur, oxygen,
R N b

m 3 - AT W .
u %f\ro | proces aifs, Wihich "Ceuld be detrimental to

" A& % 1"‘\-.__
r f-' \ y

. | '_'.-r" A . L} " .
Fouling can b ed as the.p . _tralned particulates, or those
formed in the proc oNnto | . Entl This deposition can have a

nitrogen, and |

downstream proce

significant, negative impa€t on.te=o peration 2icy @ffthe unit. In hydrotreater, loss of
heat transfer and/or increaset Yo &' most obvious results of fouling in the

preheat exchangers, whil' > 1 esults in increased pressure drop.

5. 'ﬁcr ased energy costs,
-
to operating flexibility.

L b
hese etween shutdowns or during
1
I| ing the exchanger through bypasses. ‘.LIJI

Planning of‘eﬂchanger cleaning durilverations is very important. On the one

hagdhele&hin s iff Tessl@ibhoyBost I8 Adr i Pout it also
implies| th 7 hanger rieeds [tgbe [pug offille durigg | ningfja herglore in this

periouf time the cost actually increasgs. Thus, while cleaning is advantageous, doing it too

TS AIMIINEIR

chemical process especially nonlinear systems. The main advantage of the use of artificial

Thus, to solve

operations by i

neural network is obtaining a highly accurate mathematical model of the system without the

detail of the system. The process modeling applications use the artificial neural network to



approximate the relationship between the input and output variables. During the process
modeling, a number of candidate models are considered and only one model, which is

expected to the best prediction of the process outputs with the given process inputs, is

selected. The selected model is the on this expected to have the least prediction error in
the future. In addition, artifici . o the universal function approximator
that typically works approximation method for the
application of any arb
used to develop the model of
feed/effluent heat ex_c_:rba in ) b eveloped algorithm is employed
to determine t effluent heat exchanger

surfaces.

1.2 Resea‘rch

g

1. Develop the § p|r r'-':;r ,rﬁ heat exchanger fouling in

Hydrotreating unit by using=hReural-ne
. " wr

To determine schedule of the feed/effluent heat

i
1.3 Scope‘9|!‘ research

ﬂﬁﬁ‘mﬂ%ﬁ%ﬂ’m‘i

1 Hydrotreating unit in Fluid Ca@/tlc Cracking plant (ECC) are studied.

A WIRRTEI TN I $784

exchanger in Hydrotreating unit under fouling condition.



1.4 Contribution of research

The contribution of this research are as following:

1. We proposed an appr %/e /effluent heat exchanger in Hydrotreating
unit under fouli /
2. We develope 3 eters’ne t@on and cleaning schedule of
er s —

S

* i Meall

2. Thoroughly*studyg@roces ‘1{ ] aperat i‘LI ondition of Hydrotreating unit.

3. We collected thé®opegating daia/o *F" g uriit in FCC plant.

4. We applied the math atical —m d developed empirical models of
SRerEgan byir der fouling condition.

oy WA

izing the developed

s
=
models.m

7. We summarized and concluded our research.

AUEANENINEINT
RINTUUNININY



CHAPTER 11

LITERATURE REVIEW

In recent years,

heat transfer rate ca

. emgin the heat exchanger. It reduces
'&performance. There are many
—mng chemical, increasing the
heat transfer su

ese techniques applies in

order to minimize: ecessary to determine the

\ '\‘1 ting the variation of overall

heat transfer coeffiefent iati Soltlet temperaturdof hot and cold streams is

important. These varia ave-a-significal pn prtiuction rate and operating cost.
The main goal is to find the variatig ) ansfer coefficient with time to plan the
optimum cleaning schedule.o ;;ir anger gde the minimum operating cost.

oresented a corl g@by of the data set of

fouling threako goposed by Ebert and

ling inery
ml. showed the existence of a true threshold fomb
a series of laborat jlot plant experiments. This jpaper discusses the application of the
esho i is almost
nﬁ @ ﬂ . heesh g nl faogmulation is
dev d for use In further studies. Comparison between predictions of the Ebert-Panchal

mode and experimental data is dlf?uﬂ in the absence information on the

A R-IRNA-3 0 UNIINYINY

composition can differ noticeably. Consequently, the use of a threshold model to predict

Panchal, using side-stream monitoring

skan crude oil tested in

tests. Knudsen

fouling rates may not be appropriate. Therefore, the experiment results of Knudsen et al.
clearly demonstrate the existence of a fouling threshold, postulated by Ebert and Panchal, for

the crude oil tested. The Ebert-Panchal model does not provide a good prediction of the



conditions for the onset of fouling observed in these tests, mainly because it features a much
greater sensitivity to velocity than was observed. However, this model does provide
reasonable predictions of subsequent fouling rates for data presented by Knudsen et al. By

adjusting the activation energy parameter, the model also provides good predictions for data

proposed a new model for GiLlt o] i changers of crude distillation units.
Their experimental resultssgf t ah light j( ﬂge tube side surface temperature

and fluid velocity wer€ tSees= € amowt of iva Lunﬁrgy depends on the surface

temperature has been cale new ‘model for fouling formation and a
term for fouling remov. wtubewall shear stress was proposed,
respectively. To ted by Seleh et al. were
used. The model for only able to predict fouling

without consi id velacity. they lin noval. They used portable
fouling research uni ; ith=a 5 ‘ ransfer probe, which was
operated at co ime-anc SWele Canduc : in the transition region.

'a| .I‘..
!'1' elsWere calculated based on the

experimental re h R \}{L of the® roposed model from the
Vi ¥ i
than't ’-ﬁ

experimental results i ! ers. The \- Otlel results a fair agreement in
comparison with theexp enta { is” aled th ,,‘L among the models to predict the
fouling formation, on ns' ed “forma emovidl of fouling layer has a great

importance. Fortunately, the ' ;xr__.&“‘ 38 this advantage. To use the model and

hould be available. As shown the

o

also to calculate the activa f:.+

model can @ct ous ¢ or@ns better than other
D ——— = ,J ’

models.

2.2 Optimiza}ion of cleaning schedule
=Y

AULINYNINYIANS. -

consﬂ'ed until recently. In the past, Casado et a/. (1990) proposed a model based on the

st_of cleaning the fouled_exc gé s. The totic g_madel_for counter ent
q w e caq th rma!ia : sisl of rﬁd cid striea re lement tﬂ
q ‘ an

work. This work explained the costs of fouling and proposed a time dependent objective
cost function in the process operation. The cleaning plan based on minimization of the
process operation cost. Next, Michael C. Georgiadis, Lazaros G. Papageorgiou (2001)

proposed a mathematical programming framework for introduction of fouling consideration



q

during the heat integration of batch plant operation. A short-term scheduling problem is
considered that seeks to determine the optimal utilization of the available plant resourced

over a given time horizon. A characteristic of this problem is that the performance of each

heat-integrated unit, which decreases ’t‘ due to fouling, can be restored to its initial

operati ! ergll problem is formulated as a mixed
integer non-linear programg (MINLS /;%d that fouling considerations can

significantly affect the integration opportunities. This

: s
work has been W‘ Pi'eq;%mnsiderations in the heat
integration to a short-t S n
. , .
iedifC sc ing"-

proach presented is equally
applicable to p

Skavaja, el J. Bagajewicz (2004),

presented a new [“heat exchanger cleaning in

(2005) illustrated the opgiimi ' f-Cle hedule H heat exchanger network. Heat
exchanger cleaning is jostu _~_, _' ‘maxin : joid 1@ss understood as the value of
energy recovered of cIeaninv ; X etwork, minus the value of energy
recovered without heatgieXchanger- networ ms. the cost of heat exchanger

network cleaniig. The result shown that the value of ene Y- rel is affected by the

pends on the cost of

ot

. - 2 A3 a—
cleaning mterva.ﬂ n on

it
e formdﬂiJ'ion is both integer and
L

continuous decision variables and the function is mixed integer nonlinear programming

problem. For a Iarg!h&xchanger network ma uire a prohibitively large computational
eﬂFFuqaaan(imat n vqltln v Ibtal d a‘&lzing n eariunction in
man“tege variables. Moreover, uosa et al. ooj' studied the effect of heat exchanger

fouling on the performance of Stirlﬂ engine and deteﬂe the optimal cleaniruhe

VARV ARTINEIRE

time that yields the minimum cost flow. Cleaning time is assumed independent of the fouling

time. The cleaning is performed for both heat exchangers at the same time.



CHAPTER 111

THEORIES D PRINCIPLES

Wy

was accomplis , c pko _ npletely replaced thermal

cracking becaus i aling=ashighe heavy fuel oils and light

1 8imi M Topped Crude Feed
\

i A
tic cracking

| wt% vol%
Fresh feed 11000  100.0

Gas T 3 a&; 4.5

) Propan "'#L f . 2.2

QP 7777777 3.4
] 0.8 4.0

Wi

14

‘ tylene ! 38
4+ gasoline . . 404 46.7

Liggcgcle oil 19 1.9 33.2 32.0
DeC 7.7 8.7

9
IR NIBIUNTINIRY

necessary to regenerate the catalyst by burning off this coke with air. As a result, the catalyst

Total '100'0' 96.5 'iooo 1022

is continuously moved from reactor to regenerator and back to reactor. The cracking reaction

is endothermic and the regeneration reaction exothermic.



Some units are designed to use the regeneration heat to supply that needed for the
reaction and to heat the feed up to reaction temperature. These are known as “heat balance”

units.

enerator exit temperatures for

Z

The catalytic-craekifig.proes ssesjsuse

Average riser reactor temperat eWe in the range 900 to 1000°F (480-540°C), with

catalyst from 1200 to 1500 4650°815°C).

e classified as either moving-

bed or fluidized-bed units. “are -geveral=magifications under each of the classes

depending upon the desi lytic cracking process (TCC) is

representative Movi (FCC) of the fluidized-

bed units. There 0 &y andythe FCC unit has taken over

the field. The FCC unijgé’ cagfbefciassifidd as eithey 'De g s 3g, (transfer line) cracking units

depending upon wifere thie méjolffraction.a 36king reactiomoecurs.
L] e % L

. =4 L)
fflowsy of o@ ' 88saska @ 8imilar. The hot oil feed is
1*«.{ F o 4
Tilel
s

The proces

contacted with the" catalyst 3.8 thel reactor. As the cracking

reaction progresses, the ca 5t is progressi cactivated'byathe formation of coke on the
[ ) "

PN va

surface of the catalyst. The catal are'separated mechanically, and

1

oil remaining on the catalys ;{{Yr ed F' Fipping before the catalyst enters the

regenerator. The oil vapors are.ti . ) ractionation tower for separation into
streams having the desi

I

ator and is reacti by burning off the

coke deposi*

deactivation by l rheatin mount

i d to prevent catalyst
| .
mlcarbon burnOoff. This is
L

done by controlling the air flow to five a desired CO,/CO ratio in the exit flue gases or the

desire temperaturgr“ reienerator. The flu and catalyst are separated by cyclone

e
se orsjal Hrosta c |st catalys oﬂnits e -st‘ipped as it
Ieavﬂhe regenerator t0 remove adsorbed oxygeh before the catalyst is contacted with the

oil feed. d

QRIBLAIUNRINYIAY

The trend toward low sulfur and nitrogen contents in gasolines and diesel fuels

requires that either the FCC unit feed or products be treated to reduce sulfur and nitrogen.



Treating feed to the FCC unit offers the advantages that the sulfur and nitrogen in the
gasoline and diesel fuel products are reduced and, by adding hydrogen to the feed, naphtha

and LCO yields are increased without lowering the olefins content and octanes of the
naphtha fraction. For refineries that d t ydrotreat the FCC feed or naphtha products,
over 95% of the sulfur in the gase

rom the FCC naphtha.
ways. as a hydrodesulfurization

(HDS) unit, a mild hydreets ' rsion hydrocracking unit. In all
—— i —
cases the product sulfur.con ‘ to produce a refinery gasoline

blending pool with less t a 1oF 5 wppm to produce a refinery

hydrocracking, cracki : _ " Jperati ceurisimultaneously and it is relative
as to which predo finate isip , 2ati rs 0 a relatively mild operation
whose primary purposg® i B rédlice the sulfur and/or nitrogen
content (and not to change th =5 : ge) e feed. Hydrocracking refers to processes
whose prlmar purpQse is”“fo-reduce [E din which most of the feed is
converted .'. r than tha ] . Hydrotreating and
0 s with a substantial

amount of sulflm nd/or a'ﬂiiﬂ'e in boiling rage of the
L

products versus the feed are called hydroprocessing in this paper.

H drotreaﬂﬁ -ﬂnrocess to catalytically ullze petroleum products and/or remove
FHBIRENINEIN G
involVes lefinS and gum-

forming unstable diolefins to paraffu‘ Objectionable ele ts removed by hydro

q mmmmmmmm

specifically for sulfur removal it is usually called hydrodesulfurization, or HDS. To meet
environmental objectives it also may be necessary to hydrogenate aromatic rings to reduce

aromatic content by converting aromatics to paraffins.
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Although there are about 30 hydrotreating processes available for licensing, most of
them have essentially the same process flow for a given application. Figure 3.1 illustrates a

typical hydrotreating unit.

C, and Lighter to H,S Removal

\ \\li 3
700°F!

ﬁ-‘—d 800°F

H, Makeup

—_—

w Sour
Woter

Steam or
Hot 0|I

Tank

rization unit

,,,,,,,,,,,,,,,,,,,,,,,, e"oF after it is preheated to

the proper réacto 2tic i dre carried out below
= o
800°F (427°C) IHJ| inimize Cra 0, and the g™ 1S usually h&d to between 500 and

800°F (260- 427°C) e oil feed combined with the hydrogen-rich gas enters the top of the

AN

emaln on the surface of the catalyst and other products leave the reactor with the

oil- hydrogen stream. The reactor e‘hent is cooled befﬁseparatmg the oil fr

IR IUHATIN HIRY
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3.1.3 Hydrotreating Catalyst
Catalyst developed for hydrotreating include cobalt and molybdenum oxides on

§ tungsten and nickel sulfides, and vanadium
‘ ina catalysts are in most general use
% g to regenerate, and resistant to

re ___ation metals from the oxide to

composed of pounds supported on

alumina are maor tomemove than sulfur from

satisfactory leve i EXCess sl SWNickel-containing catalysts

generally require actiVati ' s i di ercaptans, or dimethyl
sulfide before brj ot -ﬂ-f. ature; \ A \ ®fbe refiners activate these
cobalt-molybdenum IR T '7; i /. Iiclin \ Mical into the oil feed during

ic a [Rgare” must be taken to prevent

excessive temperature

Cobalt-molybdenum catalySts-are-sell ulfur removal and nickel-molybdenum
TN,

catalysts are-sglective ritrogen removal, alysts will remove both sulfur

and nitrogek Nickel-molybdenum catalysts-have-a higherhydrogenatida activity than cobalt-

molybdenun‘t whi 0, reater saturation of
— e
aromatic rings. Lﬁl ply stated, e prima |'. bjective, then a cobalt-

molybdenum catalyst will reduce the sulfur a given amount at less severe operating

conditiens_wi Io‘ I cans ti -m degum catalyst, If nitrogen
reﬁnu:og:: rin szﬁioﬁ!ﬂ, ( bﬁm C tﬁi% preferred
catal“ | ' ' ' '

The ability to adjust pore sizef) concentrate poresﬁund a particular diam

QIANNIUANNTINYINY

generally require a minimum pore size to overcome most diffusional restrictions. Pores that
are larger than necessary lend little to improving diffusional characteristics and as the pore

diameters of the catalyst increase the surface area decreases (at constant pore volume).
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Activity generally decreases with surface area and loss in pore volume occurs in the smallest
diameter pores first. Highest activity retention is maintained if pore volume is concentrated in
a very narrow range of pore diameters.

At the hydrotreating severity togreéduge sulfur in LCO to 0.05 %wt, the performance

of high-activity NiMo and CoMoy equwalent

Catalyst consu bbl (0.003 to 0.02 kg/m°) feed

depending upon the se etals content of the feed.

d \'-. m yields are favored by low

temperatures. Reacfon rafd increg ;;wt»‘*"_' ApBrature, \ d hydrogenation of aromatic ring
compounds is a comprg 2N, using, Btor tBfhperatures to achieve maximum
reduction of aromatic content al gh-te Tature to give high reaction rates and a

Maximum aromatic reduction is

2 Eﬁ 75-385°C)] because

minimum amount of

achieved b@ 70-400°C)

e ffﬂt end [400-550°F (205-

High-pr j
288°C)] of a L reduced hydrogen consumption and extended=tatalyst life. Usually this

fraction originally &n about 11.1 wt% mofjsfiromatics and 17.5 wt% di-aromatics.

AUHANNHRAINT -

because of the resonance staiﬂlzatlon of the mono-aromatic ring. Hydrogen

A WIGNIG AUV IV 5y

range [400-650°F (205-345°C)] LCO. This is because the back end of the LCO contains only
di- and tri* -aromatics and the front end contains almost all of the mono-aromatics, about

1/3 of the di-aromatics, and none of the tri-aromatics in the LCO.
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Hydrotreating the feed to the FCC unit reduces the sulfur contents of the FCC
products but also increases the aromatic content of the LCO (probably because the
percentage of mono-aromatic compounds in the feed is increased). Hydrotreating the FCC

feed also makes it more difficult to red

hé aromatics content of the LCO to <20 vol%.

i

The main h ini ction isthat of *-'=--—-=..-.. but many others take place
to a degree proportional tg \ e i ypical reactions are:
o | S ~N

(3.1)
(3.2)

(3.3)

AuEIneningng.
ARIETAIUNRINYINY

CHOH+H,——>CH,+H,O (3.6)
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b. Peroxides:

C,H,,00H +3H,—>C,H,, +2H,0 3.7)

— \\W/

(3.8)

(3.9)

(3.10)

\fpe of compound. Lowering-
(]

oy \
boiling compounds #re dgsulfurizely Ofler-D6iling ones. The difficulty of

sulfur removal increase e’ order‘paraff eswand aromatics.
Nitrogen removal ‘more. operating conditions than does

desulfurization. For mide containing high concentrations

of nitrogen@
charge of 9(&)

All rea

by using a catalyst

cﬂs are pemfﬂondmons a temperature
rise through the*€actor of 5 to 20°F (3 to 11°C) is usually observe

ﬂUEJ’JVIEJVITNEI’Wﬂi
QW’]Mﬂ?ﬂJNW]’mFJ’]ﬂEJ
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3.2 Fouling

3.2.1 Impact of Fouling

Fouling can be descri ) ingwhich entrained particulates, or those

formed in the process stig jprhent. This deposition can have a
;‘.‘l-. = .

significant, negatlve i : unit. In hydrotreater, loss of

heat transfer a”dw d _WS results of fouling in the

preheat exchangers i 8 reac in increased pressure drop.
ncreased energy costs,
""i. "

increased mainte finitation S, ‘alipdl g to operating flexibility.
One direct f preheat éxchan ger fQliling is the cost of additional

furnace fuel ga i i feed 8aCt atlire. Hydrotreater fouling,

in either the prehe ' A C nifi | n ~. crease maintenance costs.

Ideally, mainten . cquired w “'.\ is t down to replace spent

! "
catalyst. The penal cate " ) Skadditional maintenance costs and

the cost of the catalyst. ) “economy £in Wi a unit for the sole purpose of

4

unplugging reactor be proc s interruption few refiners can

afford. Fouling in the pree : bed can impact unit throughput. The
reactor mIe,tjmp ~critical to ‘tf ogengFwith the unsaturated
Compounds i contaminanis i _tne _1eead. _Atter the o AT C gers transfer as much

heat as poss® s 10 eeded to achieve the

angers cannot tra,tltjfr sufficient heat to the

reactor inlet terii&rature If the™ a

feed, the furnace m?( lack the capacity to heat the feed to the necessary temperature. If this

AEANERING T

acromhe preheat exchangers and/or reactor bed. This increased pressure drop may result

in charge rates being reduced due to ﬁydrauhc limit. Fmalﬂ‘flment hydrotreater o

IRAIWUURTINH RS

influence unit and refinery profit margins. The operating flexibility achieved by reducing

fouling in a hydrotreater becomes an important consideration to today's refiner.
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3.2.2 Causes of Fouling

Many variables can impact a feed stream’s fouling potential and severity in the

hydrotreater pre-heat exchangers andgrgagtor bed. Feed composition, feed storage and

handling, unit design, and operat g\pars rsgcan each have a significant influence on

fouling. A thorough underStapdivg o' / s, individually and collectively,
impact fouling is essential q_,,_ ing cost-e iiors. A cause and effect diagram
s E influence hydrotreater fouling

(Figure 2) presents an overvi _ .
An operational change, Si H}‘ Fion o ten minimize a variable’s

influence on fo olution may be chemical

treatment.

can be an impor r i '5‘ ‘ . Unstable feeds sent to
tankage have a t o|f L the potential for oxygen
.I _ m peroxides, which can
polymerize, resuiting i _ | ) tre N © ‘.\"‘, tegrated refineries have the

ability to send the i e-hydr t dhother unit; therefore, by-passing
tankage. Feeds that h f 7 ed: ta ikage fouless than feeds from tankage or

imported feeds, since there Jess—exp oxygen and a decreased time for

Metallurgies

: : [ ’ SheII/Tube
- L b E R \ 2 HydWotreater
 Feed ' Sufficie 1 0.8 . | FQuling
= ql Management aip é e : '
oper Operation Properg Vaporization
Management Chemistrd p Extend s

ARTERATUNIN Y

Figure 3.2 Hydrotreater Fouling - Cause / Effect Diagram
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A wide range of streams, from naphtha to resids, can make up the feed to
hydrotreaters. Cracked heavier gas oils and resids usually have a greater fouling tendency
than a straight run naphtha or kerosene stream. The potential for a stream to foul is, in part,

hich are part of the feed. Consequently,

a function of the various trace compg
knowing the type and source @ " . ter feeds is an important first step in
identifying potential fouling, Prechitst .' % is stored and handled prior to
being charged to the hyeai : [ '[&understanding a feed's fouling
potential. Unstable f_ged_gsén —afonl more, primarily due to the
potential for oxygen co react with oxygen to form
peroxides, whi : er unit.
Some int i Nthe feed directly to the
hydrotreater from an ity ¢ passing, tan :""a,,i eeds, which have bypassed
tankage typically. and i m. tankag 71‘~.;o-?""‘~.' eeds, since there is less
i _""u;; reactions to occur. The
mechanical desi g ,'._ ave o de |t 'h pagt on the rate of fouling.
However, a unit rede wodr -L be justified by just reduced
fouling potential. i iferent h"v hose for which they were
designed may have af¥ incregseds fouling € Thi an specially be seen in units
operating at lower than des gn ?-;'

deposition PO ential Q A#W m.@ges in the hydrogen

feed rate ot ! 1pa > 3 AN 3 ange th

Mor& /

—
also contribute Eﬂ) fouling

han design velocities will increase the

fouling.

d&Jatl ng conversion, can

n poteUI associated with higher

operating temperatures When operating at these elevated temperatures, the complete

vaporization of the ea the qreheat exchangeglay result in partlculates depositing on

%a Hesat ha ! vl i ' EI l i
An intangible in" the operation of nit ‘and its potential” for fouling is the

management and control of the unit ﬁeratlons It is esse I that operations be a

QRN AUNNVINGIAY

short period of time. Hydrotreaters have been known to foul in less than 60 days. Chemical

treatment is being used to control hydrotreater fouling, it is important that the appropriate

chemistry be selected to address the specific fouling mechanism. The chemical treatment
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should also be injected in the proper location and streams to maximize its benefit in reducing

the overall fouling potential.

Table 3.2 Polyumerization Mechanisms

> RXCS
in Stopper

1 ROOAO
IintioXidant

RecHRE + RiH =
M&tol €drdinator

\
NofiFFree Rg -#, ;l:l zqtlon ‘1‘- sation)

RX +RY. -
RXRYR RYRXRY! {f.-f diary | ="RXRY Cl + H,0
RX and RY = RO ,"‘7' - = Condensation Inhibitor

Two pre omlnant fouling mechanisms, which can occur in hydrotreater units, are

. Deposition_occ a_particulate becomes_too large to
rer entrai e liqu %am ihw gﬁv ﬁsns in the heat
tr an surface of the heat exchanger or becomes trapped on the top of the catalyst bed.

Both inorganic and organic partlculateﬁ:an deposit and cau ullng in hydrotreatersu

RIaINIM IRTINHINY

through the mechanical equipment. The smaller the particle size, the less the tendency to
settle out of a flowing stream. The bulk fluid density becomes lighter as the material is

heated, and as it becomes lighter, the potential for particles to settle out increases,
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depending upon the weight and size of the particle. If the fluid is completely vaporized in the
heat exchanger train, it is possible for the larger particles to immediately settle out and foul
the heat transfer surfaces at that point. This phenomenon will depend a great deal on the

vapor velocities at the point of vaporiz As particulates agglomerate, or get larger, their

potential to deposit also incre

Particulates in . /ﬂ gorganic or inorganic. Inorganic
particulates are mate ; : n su%ﬂe an&on products, catalyst particles,
i - >

— e

or inorganic salts, which._ha me eptrained= otreater, feed stream. Organic

particulates may be form ious polymerization mechanisms.
The polymer ow to such a large size

that it drops out "‘-‘-u_‘ t. There is three major

polymerization mech ga \ /drou feed streams: free radical,
metal catalyzed, cal (@ ation) .1 \

Free radical %" .". 2416 ‘\ is formed and continues to
react with other i se ‘radic _con \ "‘n ..l' gate in the feed stream

producing longer chaigfpol ¥S. "longer chain po erskwill continue to be produced

7
=¥ J .
as long as free radiCals a bernq.ﬁ _ cal p

presence of light and

.\L perization is easily initiated in the
prmation increases exponentially with

temperature. A general rule is thatforevery= B°F) increase in temperature, the rate of

polymer formation do i Iymeriin tankage is possible
by free radieg] jolymerization. ~

l.: ;
or perm radicals, which react to

e oxygen source is typically from air in non-blanketed tankage. Another

d polymerization. In
this case, oxygem eacts W
form polymer.
source,of oxy en Xygenated compoundwthe feed stream which become more
Ther are numerous types of free radicals, Whrch can be formed rom d;erent trace
compounds found in a feed streanfThese include the akrng of a double b

TRINSUARIINGIY

the preheat exchanger train. The formation of free radicals has been investigated
extensively, and it is known that some compounds form free radicals more readily than

others. A special case of the free radical polymerization mechanism is metal catalyzed
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polymerization. There are numerous metals, which in very low concentrations, can act as a

catalyst and initiate polymerization reactions. The metals may be in the form of metal salts or

metal complexes. Metal salts may themselves contribute to deposit formation, or disassociate

at higher temperatures to catalyze some i} lymerization reactions. The metal ion has the
| .

ability to catalyze reactions b 7 i fogm free radicals at lower temperatures.
Some of these catalytic /

calcium, and magnesi g

ﬁer, nickel, vanadium, chromium,
é

Another type of pol ization reaction is-aai adical mechanism in which the

formation of a polym_er i > e radical, but results from the
reaction of two e

One of th i may e, or und, from a free radical-
initiated polymerizati n "' N pol; '-..‘ ‘- Jeaction is an example of non-
free radical poly igh, igfthat g icals ) holintls, react together to form
an even larger com t il H - I'i smaller compound, such as
water. This new,, " _' o . \ Ath Otfier reactive species in the
feed stream to make@higk ) Wel Y me i ome point, the polymer will
either:

° 25, atsitisTn 2able to stay entrained or soluble in the

3.3 Basic kngvm e of Heat ExEl&
i dl

WEANENINENNT

diffeﬂt temperatures without aIIov'vg them to mix. There are called indirec

RTRTHIRIN G

sumed, and no further

fluids at

Ay
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3.3.1 Overall Heat Transfer Coefficient

Heat is being transferred from the fluid inside, through dirt or fouling film, through

the tube wall, through another fouli
The general form of this coeﬁ&

e outside fluid at a local bulk temperature.

(3.11)
where A, is the i i ective (overall) thermal
resistance. Calculati i : 1 [ t [ . For a simple shell and
tube heat exchanger basic resistive components in
series

) N
resifance gty
(3.12)

where subsii

resistance for a

: n
i||

R, is the conductive

ln(r /r)

(3.13)

!. ] as the total area avallable ‘for heat transfer A in

“Notlce that can use either

equation (3.2). It makes no dlfferen‘ which one is useqg@is, long as the specmed
U, = = (3.14)

° " AR .
My 1 Jrlrl(ro/r,)Jr 1
Ak, 27lk  Agh,

4
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which, after simplifying yields

(3.15)
(3.16)
Because of p@rmalfope atiort, 5 e anger can become coated
with deposits thalleachfoutdr 1 e, WOTKIng ANG €O duBHg reaction with the fluid.

These factors presel addifional resistance

. et
factor equation (&8°3) califbe ‘. P

t8an be modeled via a fouling

I A s
o A | (3.17)

to consider fayling, 1d F are't or outer and inner surfaces,
respectivelyxGenerally,-performance-is-gradually-degraded-over-timesand costs are increased

because of wainte oull

Known quantitd E,‘ged on ﬂ
AU NeaNINgIns

After period of the operation the heat transfer surfaces for a heat exchanger may

actor is generally a

become coated with various deposn,’ present in the flonstems or the surfacua

ARNTOBRAATINETRE

resistance to the heat flow, or thus results in decreased performance. The overall effect is

o)

usually represented by a fouling factor, or fouling resistance, A5, which must be included

along with the other thermal resistances making up the overall heat transfer coefficient.
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Fouling factor must be obtained experimentally by determining the values of U for

both clean and dirty conditions in the heat exchanger. The fouling factor is thus defined as

Ny, T
3.3.3 The Log@érate n

The physi

plex to obtain analytical
solution, e.g. beca lencg, jdevelopi L W etc. Moreover, diverse
geometry ands- i eglude -'f'i, ali ‘ - relevant correlations.
Instead, we will t aff mal) be tholight of as 1"1- . tegral approach in which

the analysis is*Only dgpendént fipon F and*outlets and the overall

i

convection coefficigfit. ,.;& "
The form of Ng LQM f Co 1:‘,

(3.19)

ansfer and the overall convection

o

_—mm =

where A; and U, are the_

coefficient. @

n the hot and cold

eai_ﬁiTemperature Difference

|
l.wjg heat exchanger problems. This procedure M\/S us to calculate 47,
which can be thou‘t &s an appropriately avewd temperature difference between the

PR INBNTWHINI™

make implement this method

oLl Sesan T nyTay

- specific heats of both fluids are constant

“(LMTD) for so

- overall heat transfer coefficient is constant

- potential and kinetic energy changes can be neglected
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So the form of LMTD for co current flow are defined as

(Th,out _Tcout) ( hjin cm)

AT, = (3.20)
ln[(Th, c,out /(Th c m
!
the form of LMTD fo @d as
,out) % (3.21)
where the subscripts
Stated, i shperature di e ‘ahone el of the heat exchanger
less the temperat i ce other ) \ - divided by the natural
logarithm of t \
3.4 Artificial
e’ e : .
Artificial neural networks are herr ctures, which built from the attempt
to emulate the human brai if"‘:' 7 net e networks involve with the learning

process of 'mes' ' hie:‘ earned, the trained

network can; h&

addition, the 3 ﬁ 8 fir
adapt it in an inw ctive manner similarto the biological counterp%.

ﬂuﬂﬂﬂﬂ’ﬂ‘iﬁﬂ’m‘i

Slnce the artificial neural ne rk paradigm emerged from the attempt to emulate

AR TRV T

receptors that shuttle sensory information to it, and delivers action commands to effectors.

JPeTticular application. In

eir environment and

In addition, the brain is a huge and complicated neural network, which consists of about

1011 neurons. Each neuron consists of three main components: dendrites, cell body and
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axon (as shown in Figure 3.3). Dendrites, which are branchlike nerve fiber around the neural
cell body, receive signals from other neurons by the receiving zones, called synapse. The cell
body or soma sums the incoming signals, which are received from dendrites, and sends them

to an axon. Axon which is a long fib

r-like ! nsion from cell body is the transmit channel of
- i -
rons\\\ | //

impulses to the other neu

Axon ferminals

-

>

pgical neural network

ntionea Dasic concept oOF DIoIO deat to research in the

fevelop the model to solve

et o
complex probler‘iﬂin science and-eng artificial :ﬂron was created in 1943

by McCulloch and Pits. They proposed the model of a simple neuron, which seemed

appropriate for odel balic logi d_its ior._ The McCulloch-Pitts_neuron is a
simplefunit havi lineak a icﬂvc withfithr d Yallle tofpr@dute aioutput. In
19 '

osenblatt began work on the perceptron which consisted of neuron-like processing

area of the 'a-‘.

units with linear thresholds, and wer‘arranged in layers ﬂar to biological systene

IRINIBIMINIAY

the models, which are called MADALINE (Multiple Adaptive Linear). MADALINE was the first

artificial neural network to be applied to a real world problem.
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3.4.2 Components of an Artificial Neural Network

The artificial neural network consists of many interconnected artificial neurons or

nodes. In each node, there are mal i ;i ents that are used to build an artificial neural
network. These components \ %}v.
3.4.2.1 Weighting‘% ___/—i;

—

——

-

""éa,.;“ artificial neural network that
determine the intel i ionall as t ficial neuron. An artificial

'\ 5 :
neuron usually recei iputs : brk. "EaChginput has its own relative
weight, which impact i on —' ationy, fun: tion mSome inputs are made more
t ‘o, thé\ghecessing element as they

combine to produce @' neufal 3P Sé. ' ghting Afactors are greater than the

others. These wejghtingfactlirs cal _:_f“

: v W edEy
according to a networl@s spgfifig"topology.. <

VL \

3.4.2.2 Summation/Fungtion.or. Basis n
R - e

in\@spofise t@lvarious training sets and
\ ili
|

The first step in

the inputs @I ,,,,,,, : sented as (x1, X2,...,

nd by multiplying each

im of all inputs. Mathematically,

component of ti‘m"[(v ftm‘vector and then adding
|

L
up all the pro s. Moreover, the summation function can ore complex than the
simplistic summatk‘ ion. The inputs and luveighting factors can be combined in

AUBIMMINGINT
RINNIUANIINEAY
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The summation function can divide into two common forms:

e Linear Basis Function (LBF)

Linear basis function | unction, which is a first order basis

function. The net value i ﬂ and the weighting factors, which

(3.22)
o  RadialdBésis Funhctioni R
Radial bagls fungfionds ] ohere -"'i 1CLI Shilinvolves with the second-
order (nonlinear) bagi€ fur i_o' net-va ich lts, the distance to a reference
pattern, is showns&S thegfolloj
(3.23)

b
The res‘w& from the st

transformed to a wotking output by the transfer function. In the transfer function, the total

AN IR

the qessmg element generates a signal. If the summation is less than the threshold, no

o
etion;” almost alwqﬂ.the weighted sum, are

signal is generated from the transfer‘mctlon The transfﬁnctlon is generally no

ARNIU HNITNEARY

functions, which are the Step function, Ramp function, Linear function, Log-Sigmoid function,
Tangent-Sigmoid function, Gaussian function and Arc tangent function are shown in Table

3.3.
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Table 3.3 Transfer functions of an artificial neural network

Function Equation Characteristic

Step function Linear
Ramp function™ . Linear
Linear fun€tion foe M D N Linear

Log-Sigmoid fu Non-linear

Tangent-Sigmaoj Non-linear

Gaussian function Non-linear

bn-linear

PR
jm
i
3.4.2.4 Scaling ‘

A UHINUNINEING

proc ng steps are carried out on the input pattern and target. For example, the back

propagation algorithm is used to tra‘a feed-forward peg@pgron, if a sigmoid funu is

ARSIV AR IR

be operating almost exclusively in a saturated mode and not allow the network to train.

o)

Therefore, the training data shouid be range-scaie to avoid this probiem.
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3.4.2.5 Output Function

Each processing element or neuron allows one output signal, which it may be a

output to hundreds of inputs from othergneurons. This is just like the biological neurons,

-
TP

which there are many inputs , _action. Normally, the output is directly

equivalent to the trang /)

P—— -——;
3.4.2.6 Error FUMEHo=—— ‘ ———e

In the trainj i K i re requires a measure of

the difference betweg alf getw ‘ he target (desired output)

the most co uhctifns, are’ su el errer, uare errors and mean
! f / L i o N b Y

absolute error.

F F ;

] v
These error §# ?’i s are destiibed &
.--i'-? - =
¥

et M
PPy
-

el

F N e o e

Sum Square Error —

B I

(3.24)

1
MSE=—-% (v, - p.)

€a ”
AUEIANENINEING
q' MAE = %;{y -p| = (3.26)

ARIALAIUNRINYINY

p. is the network target

(3.25)
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3.4.2.7 Learning Function

The purpose of the learning function is to modify the variable connection weights on

rithm; supervised and unsupervised

the inputs of each processing element ‘Zr ing to some neural based algorithm to achieve a

desired result. There are tw al
learning. Supervised learni i

observer who grades e of the n or unsupervised learning, the

mterr:al cnt@he network.

be a training set of data or an

system must organlz

Artificial negfal / - cture. ¢ "’\ ed hto "'e@mnmon types such as feed-

forward networks and fee

Feed-forward net a_,_. _ om input to output one way only.

There is noﬁa bé es not affect in the
same layer. |F orks that associate

il
inputs with outpui

Nez‘works

f LL%JWQ NUNINYINT .

powerful networks. These networks are dynamic which their states change

AR AN i
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3.4.3.2 Connection Structures

An artificial neural network comprises the neuron and weight building blocks. The

behavior of the network depends on thi '. egaction between these building blocks. There are

four common types of connecti d-fo vard, feedback, lateral and time-delayed

connections.
°
For all s of a lower layer are
’ | .
propagated forwar , 3 : X Vi onnection networks.

For all the#r jons bring the data from

neurons of an upper Ig

o Laterald

I
For all the ne "j “modéls; sennections allow the neurons to

interact in t@

Delay elem‘tny be incorporated into uonnectlons to yield temporal dynamics

ﬂ%ﬂ’&’ﬂﬂ%ﬁw #IN73

Network Layers

QW’]&MQNNWIZMH'IMJ

layer, hidden layer and output layer. The input layer represents the raw information that is

fed into the network. The hidden layer is between the input and output layer. The output
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layer is the last layer of the networks that depends on the activity of the hidden layers and

the weights between the hidden and output layers.

1!
3.4.4 Learning Algorlt /7Neural Network
Training or L%s thwod@he weighting factor in the

interconnections to_a.c i rget griteria-for=thaggutput,layer. Information is stored

and distributed throu ion weights. Many of learning
> .

algorithms are iwiged' in E-\ e “‘ hown' in Table 3.4.

e,

m,
-

ificia™g&ural network

",

/780 "\

: ~ ossberg (AG)

Perceptro

.rrrrrm
bt 9L

Adaline Aptive Resonance Theory (ART)

F i j.
Backpropagaii “"j w Hopfield (CH)

[ . § 1
Bo .' i:

AssociﬂRew d : ector'ﬁjiantizer (LVQ)
1 |

—_

ﬂ%mwamwmm

In the supervised learning, t?mng process conS|sts of the input and output data.

QRTANA SR IINEIN Y

usually randomly set to begin, are then adjusted by the network. Thus, the network will

produce a closer match between the desired and the actual output in the next iteration. The

learning algorithm tries to minimize the current errors of all processing elements. This global
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error reduction is created over time by continuously modifying the input weights until

acceptable network accuracy is reached.

3.4.4.2 Unsupervised Learnin

|
Unsupervised | ﬂ If-supervised learning, is limited
to networks known as . ; éetworks are not in widespread
r eir weights. Instead, they
internally monitor their gseynetworks r regularities or trends in the

network. Even without

\)

input signals, igné Acco -"uﬁi
being told wheth i ojlg, theSne some information about
J \

how to organiie itsel i atioh is buit 1, Kitopology and learning rules.

3.4.5 Multila
/i@ :
Multilayer fd—f_o". vard ne raf ) :'#;' a one l“; the®most popular artificial neural
network architectures which j 'ﬂvdr_,ﬁp fr' aCtio rapproximation or modeling any
arbitrary system. This type of etwork-is=al Metimes called the multilayer perceptron

L L
because of its similari ”":“

forward neu{a& el i

layer. The irter

‘E'i prerereerm il | S
ﬂ'LlEJ'mElVI?WEﬂﬂ‘i
9 ANNTUNRIINYINY

e_than one layer. Multilayer feed-
ayers and an output

ceive internal inputs
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e
Chstput Laver
o

fleLiral network

No standard procedur€ been kno ermine the structure and the number

: iofwever, the general

ewalid-then check the error

of neurons omo

procedure .' 71=1m5_“5mm /AN

tolerance of

ra ocesS'Is stopped. If not, the
= I
size and the Stml ture are revised and the whole procedure r%ats until it satisfies the

tolerance. ‘

AUBINUNINYINT
g In_utilizing of an artificial neug network, the data ﬁollection is normally s nto
q Wriou sﬂ)&ﬂreﬁg e icﬁ;% traifp the eﬂ qud ﬂ
q |C i or fina

S
span the operating region of the model. Later is the testing data set, wi! S use

validation of the trained network. The selection of inputs data, which is fed into the
networks, is an important consideration for any particular application. For steady state

application, the selection of inputs to the networks basically depends on the relevant
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variables likely to have an effect on the predicted output variable. For modeling the dynamic
behavior of a system, it would not only depend on these relevant variables but also the time

history of these variables as well as the time history of the output variables. The knowledge

of the system such as the model se as the initial guide to decide on the time
history. \‘ ///

3.4.6.3 Data Proc -

After the data c 2 should b prgcessed using statistical procedure.
-

Data in the trai and unit variance. This is

necessary to prev lvith 2l ertain dimension.

3.4.6.4 Weigl

!

o *«. 3 N L
The initial@veigt spEcificati _:_14’ L effectSpriithe SPBed and quality of neural
network training. TheSmall§fandorn AUMDESISIoTally WsedMo initialize the weights of the

network so that each congéction reSpot r‘g;".' differ o y g training. If the final prediction

does not satisfy the errg :J?Eﬁ.ﬁyﬁﬁ"ﬁ wef@ts are also re-initialized and the

identification process is repeat ————

.-*"'L'W

3.46.5TH no-the Network——————

|l .
Trainind'” a procedure“tovdl groptimal vaIuesP the connection weights

and bias weights. Tr |n|ng begins by initially assigning arbitrary small random values to the

erativ, each of

| d’ﬂ ﬁ W Il thI ﬁuf inputs in the

train set are predicted and the weights are adjusted in the direction of the output
g predicted and th igh dj d he di f th p

prediction error is decreased. The w‘ghts are increment djusted for every pa

IaNN2 AANITNEIRY

significantly reduced by the use of suitable training algorithms. However, back propagation

algorithm remains the mainstay of performing neural network learning.
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3.4.6.6 Model Validation

Over-learning, which occurs when the network starts to learn the presented pattern

in a point-wise fashion instead of learn e functionality, is a potential problem that can

fning, the performance of the network

SEL starts to degrade on the testing
gﬁn.
——-—=r

ﬂ?JEJ’JVIEJVIﬁWEHﬂ?
RIAINTUURITINIA Y
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3.4.6.7 Basic Steps of an Artificial Neural Network Design

There are many procedures of the artificial neural network design but the basic steps

of the artificial neural design are summarized as the follow.

|
|
Generate data for traig \ A

validation and .\

\ Re@ORfiguration of the
aetwork
L

Train the neural ne

ot A=Ay

sotlsfoctorg

AraN t]JﬂJW]'JVIFJ']ﬂEJ

Artificial neural network model

Figure 3.5 Basic steps of an artificial neural network design
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3.4.7 Application of an Artificial Neural Network

The artificial neural network is widely applied in modeling of the unknown nonlinear

systems. The main advantage of the

artificial neural network is obtaining a highly

ithfutthe detail of the system. The process
0 approximate the relationship
es. During deling, a number of candidate

models are consiit?kwﬂ'E mogl, whiehai ea to the best prediction of the
process outputs with the gj S i S is Selected; .he selected model is the one that
the J&%s i thefliture ™

-

|
accurate mathematical model

modeling applications

between the input an

is expected to addition, artificial neural

network is also t works better than the

AUINENINYINS
ARIAINTUNRINYINY



CHAPTER 1V

SYSTEI\Q\%/}/PPLICATION

to model the overall heat
tly complex and non-linear
;. the first section is the actual

e is the use of neuron network

..: {P\ . Redctor

I

f

“ . Figure 4.1 Pr‘ocess-flow diagr:':lm for feed/efflueht exchahgef

qmmnmum'mmaﬂ

4.1 Description of the process

Hydrotreating unit typically has two main functions. The first is to catalytically

stabilize refined products by adding hydrogen to unsaturated compounds. Unsaturated or
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olefinic compounds are very reactive and can cause undesired polymerization products in
downstream process. The second function is to remove impurities such as sulfur, oxygen,
nitrogen and halide compounds from process stream, which could be detrimental to

downstream processes.

From figure 4.1, the feediSiréam i h hydrogen before heated in a set of

) then heats the feed stream to

the required reactor tempe Al t|al to the reaction, is relative

inertly until attaiW g‘ talyst. The reaction consists
,_‘._FF_ o

of a packed bed fi a _ i B<eX0 rotreating reaction takes

place. After the reactigs oled by transferring heat to

(e
0

' Y ey
Ci I v.'l I J'?if ""
= il

4.2 Mathemati

!
i |

| A
A large number, o_-r}}-m-v-—:- fou have been proposed. However,
they are not able to predlct he fouling forfr changing of the operating conditions

and differing feed types. Som€n jfi J s to predict fouling without considering
. o P

the effect o@j vele et

4.2.1 POI‘ .
Il .
Polley et+al. improved the threshold model of Ebert an nchal. The fouling rate
varies with the typ&f . Tube wall temperatt”as a strong effect on fouling formation

FuBIMERINGNT -
QRIBITIAIN1RY

Where o = 277.8 (m?K/J), ¥ = 4.167 x 10° (m?K/J), £ = 48 (KJ/mol) and R = gas

constant
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4.2.2 Mohammad fouling model

Mohammad proposed a new model for crude oil fouling in preheat exchangers of

crude distillation units. The experiment results of Australian light crude oil with the tube side

surface temperature and the fluid el
fouling formation and a ter
was proposed as follows \

(M?K/J)

' w " d \
F | L3 f - . T
the """‘ " Constakts\ol model should be calculated

based on the actual procgss. Theifils

are assumed close by ipfet te ﬁ’f.ﬁt i
P s /

these constants. Table 4.3 shows=the=error:
" —— :

e (7)) 'L'-. the tube wall temperature (7,)
reami(7;,,). Table 4.1 and 4.2 shows

(] - <

erent models in comparison with actual

ation 4.3) in Polley and Mohammad

(4.3)

Table 4.1 Polley fo‘irﬂ;del constants compari§@givith actual process

AUERERINEINS

Actual process

E (3/mol 47999.94

QRIANFNFINLAE




Table 4.2 Mohammad fouling model constants comparison with actual process

Model ) Actual process

Table 4.3 Summ@ S brs betiWeen kropasedtode™agiéh actual process
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S.0E-H
- - - 6.0E-04
- 4.0E-04
2.0E-04

'“" 0.0E+00

i Dy’

?ﬂﬂﬂﬁﬂﬂqﬂﬁ

| “ E.0E-08 -4 0E-04

Constant (m2K/J)

Fouling Resistance with New

D T -5.0E-04 u

Rl AINTUININGAS

Figure 4.2 Comparison of fouling rate of the Polley model and actual process

4
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3.5E-07 B.0E-06
3.0E-07 6.0E-06 %
= z
'E 2.5E-07 - $0E-06 E
b7 —
3 o5
= u
= & 4 ~
23 2.0E-07 {—k A s 20E0E 9 E
= N , — - . =
2 E 15807 - e o— e D nn L (LOE+00 gg
L™ = b= L]
| - = E
= -20E-06 E'U
g 5
4.0E-06 2
D.0E+00 5 - -6.0E-D6
Figure 4.3 Coglibaris foulingsrate ; '.1- IMad Mdel and actual process
J

b
¥ 7L

As shown in bl .1 an ﬂﬁ' Jostant, "1\ h0
|

different from the actuse Ocess; ‘“‘"‘"" D alMbhammad model from the actual

proposed model are much

process results is lower than*p and 4.2 compares the fouling rate,

which are calculated from. the-pré on feed/effluent exchanger fouling

data. It is revegli reﬁ; d models to predict

il L
iagyla odel

! o
gﬁdwe fouling rate should be available. Moreover, l

to extend the propfﬂdels for the other typeurude oil the constant value have to be

ﬁﬂﬂ”’!ﬂ&lﬂiﬂﬂ’]ﬂi
QW’]Mﬂ?ﬂJﬂJW]’JVIFJ’]ﬂEJ

the fouling uling formation and

removal of fou nd also to calculate the

ould be mentioned that

activation ener
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4.3 Preliminary study of single heat exchanger

In this case, we considered at a counter current shell and tube heat exchanger. The

configuration of heat exchanger is shoxﬂ ]gure 4.3.

thus consider here the gftuatiof ere-the ger is operating under maximum

throughput.

—Co

stant phusi b A LA igk heat cﬁdty with temperature

is neglecte
9 =

- Fil nt despite changes in

= o
yRold numbers eratures arﬂouling.

- No ener‘l

£ UHINYNINYING

The feed/effluent exchanger( formulated as coﬁ current flow. Assu

q ‘Wﬂ"’ﬁ"ﬁ NtEnTs i.eGL

. =m,C, (T, (4.4)

Prandtl and Re

c,out C l}'l

Qh = thp,h (Th,in - Th,out) (45)
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Where Q. Q,are a heat transfer rate for cold and hot stream, KJ/hr, m is a mass

flow rate, kg/hr and C, ., C,,are a specific heat for cold and hot stream, KJ/(kg K)

The heat transfer rate in a heat exchanger is explained as

",

//’ (4.6)
@'2 °C), A is a heat transfer

edifference (LMTD, °C)

Where Ui

emperate

surface area (m?) al

4.7
Using the ab; o1, “the “ca _ ) outlet temperature can be
computed from
(4.8)
4.9

AU
IRIANNT

By defining M. and M), as

Cus

HRIINYTRY
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M o= (l_kl)eXp(_ k, (kl _1))

= (4.12)
eXP(_ k, (k1 - 1))_ k,

M, = kl(e D (4.13)

;‘

4.3.3 Overall(

The overall hggf tragSt effici C heat exchanger was found
using as :

(4.14)

es of the cold stream and hot

stream (7zin, 7Teout s the msa ’i»s rate stream and cold stream (1,

and ), the heat tran _f area (Z)the over. transfel coefficient (U,) and the specific
j"...f.-r f ,

heat capacity of cold stream’@rd=he! N C,,») for the feed/effluent exchanger

are known. The values of ff-“' M, alculated. Thus, the value of outlet

temperatur"ﬁol hot stre

transfer rate are.obtained

A
e

4.4 Neur | etwork estimator

Autinendneng-

probﬂ Artificial neural network is fo‘md to be the one of various tools that can be used to

q WA SUIRIINEIAY

asferyg€oefficient and the heat
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4.4.1 Neural network training

In the current work, a mult| -forward neural network was applied as a state
estimator to determine the / fficient of feed/effluent exchanger in
hydrotreating unit. For ta sets for the network traingin

are devided into three ts and testing sets. Generally,

the data for modeli em in order to represent
accurately the system. cess variables, which consist
of the Reynold " d sfer coefficient (U), are
considered as th 4 : Ura / multilayer feed forward
network, which consi 7 i & ot > and an output layer, is
employed for ing gife pfocgss. Thesne r.‘, n in Figure 4.4,

For the dat@fpreg gration’ all A it has mean of zero and
of ghe fBr, achievin -- od 1\: C
%

neural network model.

standard deviatig
f £

Levenberg—Marquardi#Backpropaga i'.u-; { f . sholwn UMRAPPENDIX A) with the early
[
d to "":-‘*..J. feed=sforward neural network. The Mean

'JJ—- . .
Square Error (MSE) is ed as,the: ork selection and also for the stopping

weights and biases adjustme P ——
g [ 'W:

Table 44 The transfer functions in each _ rk estimator

stopping mechanism is L

Layer 'HT Equation

Layer #2 ‘ Log- Slgmb sz (x)= 1+le
ﬂﬂ“ﬁl’mﬁ"ﬂ WA

Layer #4 ‘ Linear - f j4 (x)=x 'y,
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Re(t)

Re(t-1)

Re(t-2)

Re(t-3)

i".\
) \‘*"‘.f,///*

\\J
Pr(t)

Pr(t-1)

u()

Pr(t-2)

Pr(t-3)

U(t-1)

U(t-2)

U(t-3)

tput Layer

ure 4.4 Neural networlvflguratlons for modeling

fl UHANENTNEINT....

(Re) the Prandtl number (P/iyand overall heat transfer coefficient in feed/effluent

q RTANATIIVIINIa Y

output node with a linear transfer function in the output layer, which is the estimating value

of the overall heat transfer coefficient in feed/effluent at time «



49

4.4.2 Design of a neural network estimator

As mention in the previous section, the appropriate configuration of neural network

idden layer size, the desired error and the

model can be determined by varyingkthe
maximum epochs. The hidde i
desired error is varied fr ~

to 100000.

omn ten nodes to five hundred nodes, the
)&m epochs are varied from 10000
é

wn only variation of hidden

VAR
off il
; 3 )74

den Node ;”é_”

Pesirgd-Error -
e T

MaximUuM-Epochs——

Days

Figure 4.5 The validation performance with ten hidden nodes
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Table 4.6 The neuron network model with fifty hidden nodes

Normalized Overall Heat Transfer
: Cofficient

A k) mmi WA
QW’] AINTNUNIINYINY
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Table 4.7 The neuron network model with one hundred hidden nodes

Cofficient
re S
=] o

Normalized Overall Heat Transfer

Jays

ﬂﬂmw%‘wmﬁ%
ammnmummmaﬂ
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Table 4.8 The neuron network model with five hundred hidden nodes

Normalized Overall Heat Transfer
. Cofficient

A ﬁﬁﬂﬂﬂﬂ?‘mﬂ’ﬂﬁ
Q‘W’] AINTNUNIINYINY
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— 10 Hidden nodes

Difference between modeling and actual

rence between modeling and actual

ﬁuafmﬂmwmﬂﬁ
qmmnmmmwmaﬂ
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Difference between modeling and actual

rence between modeling and actual

ﬁﬂﬂ’)ﬂ&lﬂﬁ“ﬂﬁﬂﬂﬁ
R AT IMTINENA Y
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Table 4.9 The mean square error for the various architectures of the neural network

Number of hidden node Mean square error (MSE)

4.4.3 Results

The Mea@¥Squag€ Ergor for th r, itectl igliral network is presented
in table 4.9. The argiitecy re" { E alledef the Mean Square Error is

T e ’ 5 i \

considered for apPlicati aff a ney wr r- imatorySihe "@ptimum architecture of a
ovefdll heat nsfer f' ieht & tina is shown in figure 4.6. It is

neural network for th

indicated that network c@hfigura On g g._ With -IIL~._ al data and after day-100, the
i i = F

validation set is remairfed f:,:’:' !ﬁ ..- /

illustrated in the figure 4.5f}.

othef neural network estimators are
ed that the network begins over fitting
after day-40-apd the Er he number of date increased.

_:—_..___i ........ kconfigurations atessidlilar and after day-40

K

| —
an’ be concludeqﬂFt the network with too

From figure™ds
the network Bedin, 0
=

From tI"H esults mentioned“above;

few hidden nodes is ncapable of complex process representation. On the other hand, if the

AUIIHEWS RO TS -

conf ation employed to represent the overall heat transfer coefficient of feed/effluent

exchanger in hydrotreating unit.

QW’]Mﬂ’iﬂJﬁJW]'JVIFJ’]ﬂEJ



CHAPTER YV

ING SCHEDULE

ABXCHANGER

A

| cleaning schedule of

t he detail of the modeling of
S in ter 1V. The variation of
stre; is 0 These variations have a
st d is divided into three
of n e ing heat exchanger. The
r time whereas the third one

in figu .1'8Bhe objective function for this

fix peration time.

) ‘ 7
T _
AUEINININEING
RN TUANIINYNNY

Figure 5.1 Process flow diagram for feed/effluent exchanger
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The objective function of finding the optimum heat exchanger cleaning schedule is to
be minimizing the operating costs in specific duration. Therefore, the objective function was
computed for various time intervals between consecutive cleaning. The model refers to the

tradeoff between furnace extra fuel costs due to fouling and heat exchanger cleaning costs.

\Kﬁym%m

e —

=

(5.1)

where

petween hot and cold fluids in unit

ing (KJ/h)

The optima Ieanlng schedule is obtained_by minimizing equation (5.1) (minimizing

of co putatlons for finding the optm]‘ cleaning schedule b* minimizing equation (5

QW"IGWTT’J'%UNW]'JVIFJ']Q )



58

The outlet cold temperature of each heat exchanger must be greater than the inlet

cold one and the outlet hot temperature of each heat exchanger must be lower than the inlet

Cold termperature: N’ /

hot one:

(5.2)

(5.3)
peratures can reach:

(5.4)

5.1 Optimization -:.:i edule for single heat

exchanﬁx

—
resulting in them ductio Tﬁ, the effect of fouling
L]
xchanger is important. In this section, we consftler the cleaning schedule

of single heat excl‘ﬁnn a fixed operation ti he single heat exchanger is counter

S INENINGAnNS -

thregses the first one focuses on the variation of number of cleaning period. The second

transfer rate. This is

behavior on he

one focuses on the variation of the p od of operation timeliliereas the third one deulth

ARIRIAIUANTINETIREY
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5.1.1 The influence of number of cleaning period on the optimal

cleaning schedule

r of cleaning period on the optimal cleaning

ction. It can be divided into two cases,
mber of cleaning heat exchanger is

ears operation with the same
n the optimal cleaning
The parameteggfor ghtifhizatiortof: raitioMtime are shown in table 5.1 and

the optimal cleanip@®sche#

ger case

Cop (KI/Kg °C)

AU INEN

Ce (Baht/(vJ/ h) é .
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Table 5.2 The comparison of number of cleaning and operating cost within 2 years of
operation time

'l-l

1 ’ No. of Cost
< 112(3|4(5|6|7 24 Abjzziz 2 Cleaning (Baht)
= d
[=]
= = 4 2 10,671,935

i 3 7,447,957
—— +

g,period on optimal cleaning

10,000,000 -

8,000,000 -

6,000,000 -

4,000,000 -

Operating Cost (Baht)

2,000,000 -

)
i

Figure 5.2 The cc?panson of number of cleanmg and operating cost within 2 years of

HHAANYNINGING...

10,671,935 Baht for operating cost v?reas more number of cleaning period has 7,447957

RIS TN AEIRE

more energy consumed at furnace to maintain temperature inlet or. Therefore, more

number of cleaning periods will help reduction of operating cost.
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5.1.1.2 The influence of number of cleaning period on the optimal cleaning

schedule with 3 years of operation time

The parameters for optimization of 3 years operation time are shown in table 5.3 and
the optimal cleaning schedule is
Tabléameter f& i ﬁi;changer case

—

=
\/ ¢
"

3.081

2391.45

40.0

,,,,,,,,,,,,,,,,,,,,,,,, e -

Table 5.4 Thejmp OPerating cost within 3 years of

operation time -

f’lﬂ VIENI NI
M4

2 16,334,616
/ 3 11,223,077
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The results of the influence of number of cleaning period on optimal cleaning

schedule and operating cost are presented in figure 5.3.

18,000,000 -
16,000,000 -
14,000,000 -

Operating Cost (Baht)

i

2,000,000

Figure 5.3 The combaris ber -of cleani ope ating cost within 3 years of

operation time

From table 5.4, the operating cost de

vhen the number of cleaning period is
all_heat transfer coefficient. This
G £ s reduced when the

eration.

increased since more,e

AUEANENINEINT
RINTUUNININY
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5.1.2 The influence of cost of furnace extra fuel on the optimal

cleaning schedule

Nowadays, the major concerned, fQr. gperating cost is furnace extra fuel cost and this

cost tend to be increased everyyy i { eals with cost of furnace extra fuel when

it increase by 20% with, 2 berof cleant M be also divided into two cases,
first one deal with ratiostim‘e&nd one focus on 3 years of
operation time with furnace | is 340 and* J/h), respectively.

5.1.2.1 The i Ace he i he optimal cleaning

U (KI/h g °C) gms o/

RIANNIRAR
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Table 5.6 Optimal cleaning schedule with different cost of furnace extra fuel within 2 years

of operation time

[ : Cost Fuel Cost
1/2|3|4|5|6|7|8]9]|10 7(18(19(20|21(22|23|24| (Baht/
= _ , (Baht)
£ MKJ/h)
= / ; 340 10,671,935
410 12,786,745

The results o cost af furn n optimal cleaning schedule

and operating cost are pc

12:500:0 ! . ﬁl"‘ -. %/ //////////
% 12,000,000 A J il'., u&,ﬂ_ %///////%
gy

-

- |
|
Figure 5.4 Theyjmparison of operating cost in the different cosﬂﬂkurnace extra fuel within
2 years of operatlor‘I

AU 3 NYNINLINS....
cost ccurred in case of large amount of cost of furnace extra fuel. The cost of furnace
ra fuel is 340 a w 1 67 ,935 rt| cgst rea
Qﬁ:Q4 / thorl castjinc ﬁZY %ﬂﬁag
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5.1.2.2 The influence of cost of furnace extra fuel on the optimal cleaning

schedule with 3 years of operation time

The parameters for optimization of 2 years operation time are shown in table 5.7 and
the optimal cleaning schedule is
Tabléameter f& i ﬁi;changer case

—

=
\/ ¢
"

3.081

2391.45

410.0

,,,,,,,,,,,,,,,,,,,,,,,, e =
.

Table 5.8 Optiﬁd’ clea rnaeedextra fuel within 3 years
|
of operation ti | l

‘o [V

ﬂu-s 5 12,481 8| 19jpof1 o
' 1 Ve
U -

340 16,334,616
410 19,615,272

A8
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The results of the different cost of furnace extra fuels on optimal cleaning schedule

and operating cost are presented in figure 5.5.

ing Cost (Baht)

Operat

LY 1 410
| RualBahtiy(MKI/h))

\ II'I ‘-l \l//////

Figure 5.5 The comgérisoff of operating |

3 years of operation time

t is observe of fu e

tra fuel a{j&a xtra fuel

increase frot 10 Baht/(MKJ/h) to 410 Bat gost is also increased
from 16,334,6 : h =
] il

AUEANENINEINT
RINTUUNININY
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5.2 Summary results for optimal cleaning schedule

Since fouling decreases the overall heat transfer coefficient and heat transfer rate

pgrformance. The heat exchange needs to be
/ productivity lost actually increases.
ate of exchanger, but doing too

Iost due to fouling of heat

resulted in the reduction of heat_ex

ctivity lost as it indicated

(5.5)

omparison of with and

O and 5.10 for 340 Baht/(MKJ/h) of
JE f furnace extra fuel.
=

The results of costas

furnace ext@l

eh heat exchanger has

3 number of cleam g
For 2 n | er of cleaning period and 340 Baht/(MKJ/h) eﬂj‘xrnace extra fuel, the %

saving compared b‘N unplanned cleaning a tlmal cleaning schedule of this studied

ﬁm HANYNINGIAT -

5. 12) e % saving is 15.34% for 2 y rs and 17.98% for 3 years of operation. It is noted

QWMWWWQW@’!M

% saving than 2 years of operation if cost of furnace extra fuel increase to 410 Baht/(MKJ/h).



Table 5.9 Summary result for 2 years optimal cleaning schedule with 340 Baht/(MKJ/h)

Table 5.10 Sum

Unplanned
2 Cleaning B€Tiod

Table 5.11 Summafresul

for 2 L'-V V‘F;,_'
l,-:‘ g

Operating Cost Productivity Lost Total Lost o )
(Baht) (Baht) (Baht) /6 Saving
Unplanned with
2 Cleaning Period 40,130,267 -
2 Cleaning Period 34,671,935 13.60%
3 Cleaning Period 43,447,957 -8.27%

=7
W&Z
Lo [ ZE A

‘il F-u"
f""'

Unplanned with
2 CleaRing P

2 ., e ‘l_

3 Cleaning|Perioo

i

Table 5.12 Summa‘( result for 3 years optimal cleaning schedule with 410 Baht/(MKJ/h)

=

N\
W8

b '|
,000,00 \ k 077
1.,

gleaning '.,

ith 340 Baht/(MKJ/h)

% Saving

95,400

16.31%

2.02%

eddile with 410 Baht/(MKJ/h)

Total Lost

) .
(Baht) 0% Saving
51,200 ", -
_ ‘L"i]
745 15.34%
-
45,155:887 -3.92%

il

Unplanned with
2 Cleaning Period
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CONCLUSI ‘WV}:}MMENDATION

61Conc|u5|q§_. .' __;.,

cost of heat i 2ural Kk roached to model the

overall heat trans ight o7/ .'-~ can be divided into two

. . " A LY "'1_;
section is the use of PO esent ual process.
A large 5 een proposed in the past.
However, they are 'n cdict-the | 'yo orl \ ion By changing of the operating

conditions and differi €0 ;' g the ;‘L-w models, the constants of

model should be recalc nased-on the ac ess Wi is obviously seen that there are
many deviations among the  propesed-—mod bredict the fouling formation of actual
process. Therefore, an artifigl -"":r‘? .‘»'_1 0 estimate the overall heat transfer

coefficient, vvmh i tf rocess. A multilayer

feed-forwardEiwerk-is-trained—by—Lavenberg-Marquardi-Backp fPedation algorithm. The

appropriatiorran.a : ;l'sds and fifty number of
=

o

hidden nodes, i efnployed asa {U‘
Next, the |mplementat|0n of optimal cleaning schedule of feed/effluent exchanger
using neuron net knmator is performed. yoptlmal solution solved by differential

ﬂ RYINHNINBANT -

od of operating time whereas the third one deal with the cost of furnace extra fuel.

The objective function is to_minimize f total oieratlng ccﬁ a fixed operatlon tln'u he

q W’]ﬁﬁﬂ‘i HMYTNHIRE

period. In addition, the influence of cost of furnace extra fuel on the optimal cleaning

schedule is presented in this chapter. It is revealed that the operating cost increased when

cost of furnace extra fuel increased. These parameters are sensitive to the optimal cleaning



70

schedule. Moreover, the influences of total lost on the optimal cleaning schedule are studied.
The results obtained that the total lost of planning of cleaning schedule is less than

unplanned case.

memmen%\\\f/f/&

For the fut varﬂons eﬁmmd stream and hot stream
'._—-—P"-;J . | -
and throughput du : rmation-.sk tudied. Because of the

disturbance on flo

MRgsfiow rate at real time. Thus,
the real time optimizagi®h i > redy In 0 @.achieve the accurate planning,

fe production plan and

ﬂﬂﬂ?ﬂ&lﬂﬁﬂﬂ’]ﬂ?
QW’]Mﬂ'ﬁﬂJﬂJ‘m?ﬂmﬂﬂ
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APPENDIX A

LEVENB ' MARQUARDT

Walgorithm in an artificial neural

network. In thi ithge . "B Sdigled output and the actual

target is propagated, g’ the-outpUt layerkio the hillden layers and finally to the

input layer. The ! iages are : tion Bfiminimizing the prediction

error.

al ne \*i,“ S thegloutput of the first layer

becomes the input of ghe fllowingdiayer: safionskthatidescribe of this operation are

o M=1 (A1)

where M iith S | e first layer receive
external inpl' : -

(A.2)

CVLIRN(E:) (i b

QAR TUAMINE

(A.3);u

e
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A.1.1 Performance Index

The backpropagation algorithm for multilayer feed-forward neural networks use the

mean square error as a criterion which |

(A.4)

where x is the v the corresponding target

output and actual g ithm for the approximate

(A.5)
(A.6)
where « is the learning |
F L E
From equation (A.5) and. (4 ;.;...,__-_ p indirect function of the weights in the
. "'; i:.-:'“ l‘::l o "- . .
hidden layers. Therefoke: hain” rule mine the error gradient as the
(A7)
The second term in each of ‘ese equations can S|Iy computed smce

S("’ -1)

ZW a’ " (A.9)

L
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Therefore,

(A.10)

Define

(A.11)

net input at layer m, then

(A.12)
(A.13)

Therefore, the approxi ) is Bxfiressed as the follows.

(A.14)

(A.15)

= -
|
A.2 Trainingu.dunction ' l

ﬂuﬁﬂ‘ﬂtmﬁw g3

The Levenberg-Marquardt method was designed to approach second order training

speed without having the computing the Hessian matroﬂlen the performance fuon

IR IUHURTINBIREY

H=J'J (A.21)



7

and the gradient can be computed as:

Vi=J'e (A.22)

where J is the Jacobian matrix, Whi ih 1 rst derivatives of the network errors with

respect to the weights andybias

When the scalar 4 igfferg thl &hjustie” Néw ol s\ Methed 'Wsing the approximate Hessian
matrix. When u igfffarge icent With"a@lismall step size. Newton’s
method is faster and g r}-;_« ! 2ar al dihinilumMso the aim is to shift towards
! g - - d l" L
Newton’s method agPquic ble T is decrea after each successful step
(reduction in performangg nd i sed oply when a tentative step would
I'
increase the performance fug Ction:= 1n-this performance function will always be

reduced at each of |terat|0n 1-the alg go! fgorithm. }-:
'._./ l.“iyji =

ﬂUEJ’JVIEJVITNEI’Wﬂi
QW’]Mﬂ?ﬂJNW]’mFJ’]ﬂEJ



APPENDIX B

NEURAL Ni\lr _

B.1 Neural netw ode f

KESTIMATOR

ufsigned int

tart,

tekpness_end)

float erfor;

unsigned i

K ' L L) .n .
struct fann _d8ta “data wafa ad train 'fr e (filename);

v
if(epochs_betwéen_r ,' or fﬂ: QE

{ e

printf(l Of\n", max_epochs,

—ﬂ
fann_se | ctivation_steepness_

fann_set_acgivation_steepness_ output(ann steepness_start);

ﬂwﬁmmwmm
ol aﬁ‘ﬁmwfom ANYIRY

rror < desired_error

|
en(ann, steepness_stz Ilt

printi("Epochs  %8d. Current error: %.10i\n", i, error);
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if(error < desired_error)

{

! / _start);
1es hic ( gann, steepness_start);

press_output(ann, steepness_start);

}
fann_de
}
int main()
{

const unsigned int A< iny
const tgsig

con f ur.u.-.v.v.--.--.---.-.—x.\u.‘un

con 1S10
e

const flqﬁ desired_errol

const unsigned int max_epochs = 50000;

const unmg‘@pochs between repou 10000;

ﬂ%ﬂﬂmﬂﬂiw g1n73

struct fann_train_data *data

R AghstianIngnae

num_neurons_hidden, num_output);

data = fann_read_train_from_file("testdata20061.txt");
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fann_set_activation_function_hidden(ann, FANN_SIGMOID_STEPWISE);
fann_set_activation_function_output(ann, FANN_SIGMOID_STEPWISE);
fann_set_training_algorithm(ann, FANN_TRAIN_RPROP);

fann_set_learning_ momentum(ann 0.1);

fann_train_on_file(

desired_error);

for(i=0; i !:
{
ifference=%f\n",
0], data->output[i][0],
t[i1[0]));
}
fann_say,

fann_destra (a

fann_destroy_trg

return O;

void train_on steep"ﬁe struct fann *ann%r *filename,

| WE INBRTREINT

float d ired_error, float steepness_start,

qmém‘:mmﬁ%maa

unsigned int i;

struct fann_train_data *data = fann_read_train_from_file(filename);
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if(epochs_between_reports)
{
printf("Max epochs %8d. Desired error: 9%.10f\n", max_epochs,

desired_error);

x_epochs || i==1]]

i, error);

if(error g desi ,.-r__r_,r ‘:@;
{ e
steepne t ’ﬂ"!'ﬁ

L
'\
||steepness_start);

m \ fan — | |den(anﬂf
fann_set_activation steepness output(ann, steepness_start);

ﬂﬂﬁﬂﬂﬂ“fliwmﬂi

break;

QW’]a*ﬂﬂ‘iﬂmW]’mFJ']ﬂEJ

fann_destroy_train(data);
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int main()
{
const unsigned int num_input = 11;

const unsigned int num_output = 1;

const unsigned

cU
" ———— =

const unsign

struct

iffefence=%f\n",
[i}[1], calc_o , data->output[i][0],
& o);
} i

ﬂ%ﬂgﬂﬂﬂiw g1n73

fann _destroy_train(data);

qmmmmumfmmaﬂ



APPENDIX C

NEURAL NETW“WFOR OPTIMIZATION

C.1 Source code /

0.000000000000000
0.0001
0.0000000001
20

0.8 — -
08 I} {

0.2

S?ﬁUEJ’JVIEJVIiWB’]ﬂi

%1. | algorithm; 0:Random; 1: DE/trt/l/exp 2: DE/randlzaexp 3:DE/rand-to- best@(p

AW REAS E

%4. int correction aigorithm; O: at bound; 1: non-bound

st/1ibifl, 9iDBesY/ 2//bin;
%?2. int trigonometric mutation;

%3. int fast_update algorithm; 0: No; 1: Yes

%)5. int gradient correction; 0: No; 1: Yes
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%6. int sampling technique; 0: No; 1: Sobol; 2: Niederreiter 3: HSS
%?7. int generation
%8. int population

%9. int stall generation limit

%10. double obj function tolera
%211. double delta (for corr
%712. double correction ft

%213. int correction_no

%14. int no. of variﬁ

%15. int no. of inemcqﬁ/- /
%16. int no. of i '
%17. double F -
9%18. double CRM

%19. double mutatig
9%20. double L

029918284

C.2 Sour@o

i
#include <stdio.hs
#include <std|itjll1
#include <gsl/gsl_\?tor.h>

AUHANININYINT

"floatfann.h"

RIRMATUINING 0 Y

} else{

return comval2;
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double mymin( double comvall, double comval2){

i \\W///

double objfunc(gsl.. ¢ i ,jdoub double *hsum, gsl_vector
*h, int flag){ \

extern int fno, gno, i

} else ifflag==1

,,,,,,

fno =

;.: 1 n

} else if (flag _,__.1__ 1‘,*,.

register mt‘

ﬂﬂﬂ’mﬁmﬁﬂ gIn%

|nt tli, t2i;
double t1, t2, totalcost=0;

qm&nmummma 4

tl = (double) t1i;

t2i = (int) gsl_vector_get(variable, 1);
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t2 = (double) t2i;

TG constraint///11111111111111111

gsl_vector_set(g, O, time-t1- tZ)‘l/

for (i=0, *gsum=0.0;

1 )¢fabs(gsl_vector_get(h, i));

do 01, U1: f )
k Houble =0 = mallocl sizeof(doublea = time ) =
-'—'l —
uble *cost_Q = malloc( sizeof(double)*time );
dm‘ﬁz malloc( saeof(dou”tlme );
cpc— , Tr=332, Qcostfactor=4.1, cleancostfactor—ZOOOOO
double k1,k2,Mh,Mc;
for (j=0; j < t1; j++) {
if ==0){

AUETRENINEINS. ..
AR adfshiumInenae
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UR[j]=(1246889*(U[j]+1)/2);

k1 = (Fh*cph)/(Fc*cpc);

k2 = (UR[j]*A)/(Fh*cph);

Mh = k1*((exp(-k2*(k1-1)))-1)/(exp(-k2*(k1-1)) - k1);

% %z*oa 1))/(exp(-k2*(k1-1)) - k1);

—cpCSC*(T

QlilFQLil*Qee

/(B 2* (k1-1)) - K1):
@0 (-k2*(k1-1)) - k1):

Vs

I
| \ cpPn), 111
Mh = k1*((exp(-k2*(k1-1)))- 1)/(1&@‘( k2*(k1-1)) - k1);
Mc = (1-k1)*exp@kaF(k1-1))/(exp(-k2*(k1-1)) - k1);

ﬂﬂﬂ?ﬁﬁﬂimﬂﬂﬂi

Qlil=cpc*Fe*(Tr-Tc2[j]);

1*Qcostfacto

qmmnmﬂmmmaﬂ

input[1] = R; //R(i-1)
input[2] = R; //R(i-2)
input[3] = R; //R(i-3)
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input[4] = P; //P(i)

input[5] = P; //P(i-1)
input[6] = P; //P(i-2)
|nput[7, = P; //P(| 3)

k2*(k1-1)) - K1):
e (-k2*(k1-1)) - K1);

k2 = (UR[j]*A)/(Fh*cph);
Mh = k1*((exp(-KBkR1-1)))-1)/(exp(-k2*(k1-1)) - k1);

AU t INHRTNEANS

Th2U] Thi-(Tc2[j]-Tel)/k1;

ch g mnm”““%wﬂ'mﬂ

ULj1=U1;
UR[j]=(1246889*(U[j]+1)/2);
k1 = (Fh*cph)/(Fc*cpe);
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k2 = (UR[j]*A)/(Fh*cph);

Mh = k1*((exp(-k2*(k1-1)))-1)/(exp(-k2*(k1-1)) - k1);

Mc = (1-k1)*exp(-k2*(k1-1))/(exp(-k2*(k1l-1)) - k1);

Tc2[j]=Mh*Th1+Mc*Tc1;
T [ig-Tc1) /K1

k2*(k1-1)) - K1):
e (-k2*(k1-1)) - K1);

input[7] = P; //P(i-3)

input[8] = U[j-1] &kadti-1)

ﬂﬂﬂ?ﬂﬁﬂﬁ”ﬂmﬂ‘i

calc_ ut fann_run(ann, input);

U[j] =ca

RIA9NTE BRANYa Y

k2 = (UR[jJ*A)/(Fh*cph);
Mh = k1*((exp(-k2*(k1-1)))-1)/(exp(-k2*(k1-1)) - K1);
Mc = (1-k1)*exp(-k2*(k1-1))/(exp(-k2*(k1-1)) - k1);



90

Tc2[j]=Mh*Th1+Mc*Tcl;
Th2[j]=Th1-(Tc2[j]-Tcl)/Kk1;
Q[j]=cpc*Fc*(Tr—T02[j])'

for (j_ e jW{

_ﬁ"‘"m{'

N, exp(-k2*(k1-1)) - K1);
@2 (k1-1)) - k1);

Uil =111

. XN (k1-1)) - K1);
T RTo1))/ (e [ 2%(k1-1)) - k1);
Tc2[j]=Mh*Th1+Mc*Tcl;
Th2[j]=Th1-(Tc2[id1)/k1;

ﬂummmmmm

} else if (j- t1 12==2) {

qmmmmwﬂawmaa

k2 = (UR[jJ*A)/(Fh*cph);
Mh = k1*((exp(-k2*(k1-1)))-1)/(exp(-k2*(k1-1)) - K1);
Mc = (1-k1)*exp(-k2*(k1-1))/(exp(-k2*(k1-1)) - k1);
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Tc2[j]=Mh*Th1+Mc*Tcl;
Th2[j]=Th1-(Tc2[j]-Tcl)/k1;
Qlil=cpc*Fc*(Tr-Tc2[j]);

cost Q j1=Q[j1*Qcostfactor;

.
,pt-_-f’

--_-—— -II < J

‘:f ‘”’ (@ )-1)/(exp(-k2*(k1-1)) - k1);
¥(k1-1)) - k1):

cost_Q[j]= Q[j]*Qcostfactor

ﬂﬂﬂ?ﬂ&lﬂiﬂﬂ’]ﬂi

for (j=0; j < time; j++){

QRAHNTUINIINYAY

totalcost = totalcost + 2*cleancostfactor;



totalcost=1e99;

ﬂUEJ’JVIEWIﬁWEHﬂi
R AINTNUNIINYINY
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