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CHAPTER  I 
INTRODUCTION 

1.1 Cooperative Diversity and Its Commercial Applications 

Signal attenuation or fading limits the data transmission rate and 

introduces errors to the transmitted signal. The undesired effect of fading can be 

mitigated by channel coding [1], time diversity [2], frequency diversity [3], spatial 

diversity [4,5,6], or cooperative diversity [7,8,9,10]. Cooperative diversity can improve 

transmission reliability and increase capacities of wireless networks, especially in large-

scale fading, in which spatial diversity from the cooperation schemes can improve the 

performance of the systems significantly [11]. The common concept is to employ the 

relay node(s) in the network so that the relay node relays the signals transmitted from 

the source node to the destination node when the direct link between the source node 

and the destination node is poor. 

Cooperative diversity has been applied commercially in the broadband 

wireless access system, for example, the Broadband Wireless Metropolitan Area 

Network, which has been standardized in IEEE 802.16j, where one or more relay stations 

can be employed to provide additional coverage or performance advantage [12]. When 

the mobile station has a poor link to the base station, the mobile station can 

communicate with the base station via the relay station instead. Service operators have 

to upgrade the base stations so that the base stations can recognize the relay stations. 

The relay stations are classified into two different types: transparent and non-

transparent. A non-transparent relay station communicates with the base station and 

mobile stations using the same carrier frequency, and can operate in both centralized 

and distributed scheduling mode. A transparent relay station communicates with the 

base station and mobile stations using the same or different carrier frequencies, and 

can only operate in centralized scheduling mode. In addition, cooperative diversity will 

be applied commercially in the cellular system, for example, the Long Term Evolution 

Advanced, which is being standardized by the 3rd Generation Partnership Project to 
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serve as a 4G mobile communication standard [13,14]. The Long Term Evolution 

Advanced is compatible with the first release Long Term Evolution equipment and can 

share the same frequency bands. Basically, the relay nodes help the base station to 

extend the range to the mobile station. This reduces the propagation path loss, and 

lowers the interference. 

1.2 Research Motivation 

1.2.1 Scheme Comparison 

Various cooperative diversity schemes have been proposed in the 

literature. The primary work considers the single-relay cooperative diversity schemes 

[10,15,16], where a system is composed of one source node, one destination node, and 

single relay node. The source node can transmit signals to the destination using the two-

hop link via the relay node instead of the direct link. The performance is improved 

because the chance that the two-hop link and the direct link become poor at the same 

time is smaller than the chance that the direct link alone becomes poor. 

It is natural to further improve the performance by increasing the number 

of relay nodes. The later work addresses the multiple-relay cooperative diversity 

schemes without relay selection [17,18,19], where a system uses all available relay 

nodes to relay the signals. The available relay nodes mean the relay nodes that can 

decode the signals from the source node correctly. The performance of such systems 

increases monotonically with the number of relays. 

Actually, the multiple-relay cooperative diversity schemes without relay 

selection suffer the loss in spectrum resource, that is, 

 1Transmission Rate  .
No. of Selected Relays

∝  

Accordingly, the recent work proposes the multiple-relay cooperative diversity schemes 

with relay selection [20,21,22,23,24], where a system selects only the best relay node to 

relay the signals. Even though not all relays are used, the loss in the asymptotic 
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performance does not incur because having several relay nodes to select already 

provided diversity orders [20]. 

From the aforementioned comparison, the multiple-relay cooperative 

diversity schemes with relay selection provide diversity gain without harming the 

transmission rate. Therefore, this thesis focuses on considering the multiple-relay 

cooperative diversity schemes with relay selection, which have been proposed in three 

different schemes in the literature: the fixed selective decode-and-forward without direct 

link combining scheme [21], the fixed selective decode-and-forward with direct link 

combining scheme [22], and the smart selective decode-and-forward scheme [24]. 

In fact, there are schemes that allow the relaying for more than two hops, 

but these schemes are proposed for using in ad hoc networks, which are the different 

kind of application, not the scope of this thesis. 

1.2.2 Analysis versus Simulation 

Since we have three different cooperative diversity schemes to consider 

and to benchmark with the non-cooperative system, we have to quantify their 

performance for doing comparison and gaining insights. The improvement in reliability 

and capacity of the cooperative diversity schemes can be well measured by their 

outage capacities and outage probabilities [25]. Both performance measures are also 

applicable for the non-cooperative system [26,27], which will be served as a benchmark 

(see section 1.3). 

However, the results in the literature are incomplete as shown in Table 1. 

By observing some special cases, we can be misled or make some conclusions too 

generally. As a result, we do not truly understand the gain offered from the cooperative 

diversity schemes and how to choose the best scheme. In order to really understand all 

schemes and apply them properly, the outage probability and outage capacity should 

be computed for all schemes with any topology, any number of relays, and any signal-

to-noise ratio regime. Unfortunately, it takes too long time to do Monte Carlo simulations. 
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For example, in 9-relay case, the Intel Pentium M processor 1.6 GHz with 768 MB of 

RAM takes 2 days to yield the results for only one topology setting. 

Therefore, we decided to find the analytical results, which can be 

obtained without waiting time, as proposed in [28,29]. 

Table 1 The available results in the literature 

Scheme Outage Probability Outage Capacity 

Fixed selective decode-

and-forward without direct 

link combining 

Exact analysis [21] Not available 

Fixed selective decode-

and-forward with direct link 

combining 

Approximated analysis 

[22,23] 
Simulation [24] 

Smart selective decode-

and-forward 
Not available Simulation [24] 

Another advantage of the analytical results is that the obtained 

mathematical expressions can be used later to prove theory to gain insights. By 

observing the simulation results alone, we can only conclude some trends without proof. 

For example, we have limitation in discussing the influence of the signal-to-noise ratio 

regime, the relay network topology, and the number of relays. On the other hand, the 

analytical result in [30] leads to the theory with proof that the fixed selective decode-

and-forward without direct link combining scheme achieves the same diversity-

multiplexing tradeoff as achieved by more complex protocols. 

1.3 Outage Probability and Outage Capacity 

The definitions of the outage probability and the outage capacity are 

given below. 
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• Outage probability  The probability that the maximum instantaneous end-to-end 

mutual information falls below a certain specified threshold, which is a 

transmission rate. 

• Outage capacity  The maximum transmission rate that is guaranteed to be 

supported if outages are allowed to occur with a certain specified probability. 

S D
γ

 

Figure 1 The point-to-point transmission: The source node transmits signals to the 

destination node, where the link has an instantaneous signal-to-noise ratio of γ , which is 

a random variable with probability density function ( )pγ γ  

For point-to-point transmission as shown in Figure 1, the outage 

probability and outage capacity can be calculated with the standard formulas. When the 

instantaneous signal-to-noise ratio is denoted by γ  and its probability density function is 

known to be ( )pγ γ , the outage probability at a transmission rate of R  is given by [26] 

 ( ) { } th

2
DC
u 0o t Pr log (1 ) ( ) ,R p dR

γ

γγ γ γ= + < = ∫P  (1.1) 

where th 2 1Rγ = − . When the outages are allowed to occur with probability ε , the 

outage capacity is given by [27] 

 ( )DC 1
out 2log (1 (1 ) { }),C F γ−= + − Eε ε  (1.2) 

where F  is the complementary cumulative distribution function of the instantaneous 

signal-to-noise ratio, i.e., 

 ( ) : Pr{ },F x xγ= <  

and { }γE  is the expectation of the instantaneous signal-to-noise ratio, i.e., 

 
0

{ } ( ) .p dγγ γ γ
∞

= ∫E  
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1.4 Outline 

Chapter II describes the system model and channel model, and 

describes the considered cooperative diversity schemes, namely, the fixed selective 

decode-and-forward without direct link combining scheme, the fixed selective decode-

and-forward with direct link combining scheme, and the smart selective decode-and-

forward scheme. Chapter III presents the analysis of the outage probabilities for all 

considered cooperative diversity schemes as well as discussions. Chapter IV presents 

the analysis of the outage capacities for all considered cooperative diversity schemes 

as well as discussions. Chapter V concludes the dissertation. 



 

 

CHAPTER  II 
MODELS AND SCHEMES 

For convenience, all variables are listed in Table 2. 

Table 2 Variable list 

Notation Description 

K  number of relay nodes 

k  {1, 2, }3, K∈ … , index of relay node 

maxk  selected relay node 

K  
{1,2, }3, K= … , set of indexes of relay 

nodes 

S  
{1,2, }3, K⊂ … subset of indexes of relay 

nodes 

l  | |= S , cardinality of S  

S  source node 

D  destination node 

jy  received signal at node j  

ijh  channel gain between node i  and node j  

ix  signal transmitted by node i  

jn  noise at node j  

0N  variance of noise 

ijΩ  path loss in linear scale 

ijd  distance between node i  and node j  

α  path loss exponent 

P  average transmit power 

W  transmission bandwidth 

ε  acceptable outage probability 

ijSNR  
instantaneous signal-to-noise ratio 

between node i  and node j   
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Table 2 Variable list (continued) 

Notation Description 

SNR  
average signal-to-noise ratio between the 

source node and the destination node 

SNR ij  
average signal-to-noise ratio between 

node i  and node j  

thresholdSNR  
threshold of average signal-to-noise ratio 

that two performance curves cross 

ijI  
instantaneous mutual information between 

node i  and node j  

SDI  
instantaneous mutual information between 

source node and destination node 

SkI  
instantaneous mutual information between 

source node and k th relay node 

DkI  
instantaneous mutual information between 

k th relay node and destination node 

R  maximum supported rate 

ijR  
maximum supported rate between node i  

and node j  

DCR  
maximum supported rate of direct 

communication 

FSDF-nodirectR  

maximum supported rate of fixed selective 

decode-and-forward without direct link 

combining scheme 

FSDF-directR  

maximum supported rate of fixed selective 

decode-and-forward with direct link 

combining scheme 

SSDFR  
maximum supported rate of smart 

selective decode-and-forward 
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Table 2 Variable list (continued) 

Notation Description 

MRCR  
maximum supported rate of combined 

links using maximum ratio combining 
DC
outP  outage probability of direct communication 

FSDF-nodirect
outP  

outage probability of fixed selective 

decode-and-forward without direct link 

combining scheme 

FSDF-direct
outP  

outage probability of fixed selective 

decode-and-forward with direct link 

combining scheme 

SSDF
outP  

outage probability of smart selective 

decode-and-forward 
DC
outC  outage capacity of direct communication 

FSDF-nodirect
outC  

outage capacity of fixed selective decode-

and-forward without direct link combining 

scheme 

FSDF-direct
outC  

outage capacity of fixed selective decode-

and-forward with direct link combining 

scheme 

SSDF
outC  

outage capacity of smart selective 

decode-and-forward 

FSDF-nodirectwε  

(0,1]∈ , transformation variable in fixed 

selective decode-and-forward without 

direct link combining scheme 

FSDF-directwε  

(0,1]∈ , transformation variable in fixed 

selective decode-and-forward with direct 

link combining scheme 

SSDFwε  
(0,1]∈ , transformation variable in smart 

selective decode-and-forward 
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2.1 System Model 

We consider a wireless relay network consisting of 2K +  single-antenna 

nodes: a designated source-destination node pair and K  relay nodes. The locations of 

all nodes are arbitrary but deterministically determined and all nodes do not move 

during the consideration period. Without loss of generality, the distance between the 

source and the destination nodes is normalized to one unit. The source and the 

destination nodes are denoted by S  and D , respectively. The source node can 

transmit signals directly to the destination node or transmit signals to the destination 

node via a relay. All relays are operating in decode-and-forward mode, and only a single 

relay will be selected to regenerate the signals. All nodes operate in a common 

frequency band. The system uses the time-division-multiplexing (TDM) protocol, and 

does not allow signal collision, that is, only one node can transmit signals at a time. 

Hence, if the system selects a relay to regenerate the signals, the transmission will be 

divided into two time slots so that the source and the relay nodes can transmit signals in 

separate time. The system is subject to the decrease of capacity to a half from dividing 

the transmission into two time slots. 

2.2 Channel Model 

We consider Rayleigh frequency-flat fading with the coherence time that 

is long enough for the system to complete transmitting a block of data. The model for the 

received signal and the channel for a link between any pair of nodes i  and j  is given 

by 

 = ,ijj i jy h x n+  (2.1) 

where ix  is the signal transmitted by node i , ~ (0, )ij ijh ΩCN  is the complex channel 

gain over the link i j→ , 0~ (0, )jn NCN  is additive white Gaussian noise at node j . 

We will denote by 2( , )μ σCN  a complex circularly symmetric Gaussian distribution with 

mean μ  and variance 2 / 2σ  for the real and imaginary components. The channel 

gains, noise, and transmitted signals are independent. The channel gain ijh  captures 

the effects of fading as well as path loss by setting ij ijd α−Ω = , where ijd  denotes the 
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distance between node i  and node j , and α  is the path loss exponent. We denote the 

channel from S  to the k th relay by Skh , and the channel from the k th relay to D  by 

Dkh . Every node i  transmits with the same average transmit signal power { }2| |iP x� E . 

Finally, we define ijSNR  as the instantaneous signal-to-noise ratio between node i  and 

node j , and define SNR  as the average signal-to-noise ratio from the source node to 

the destination node, given by 

 

{ }

{ }
SD

SD

0

SD

0

SD
0

2

.

SNR

P

N W
P

N W
Pd

N

h

W
α−

=

Ω
=

=

�SNR E

E

 (2.2) 

where W  is the transmission bandwidth. With respect to the average signal-to-noise 

ratio from the source node to the destination node, the average signal-to-noise ratio from 

node i  to node j  can be written as 

 

{ } { }
{ }

0

0

0

SD

2

ij ij

ij

ij

ij

ij

SNR SNR

P

N W
P

N W
Pd

N W

d
d

h

α

α

α

−

−

−

=

Ω
=

=

=

�

SNR.

E E

E

 (2.3) 

2.3 Selective Relaying Schemes 

In this section, we will describe the cooperative diversity schemes, which 

select a best relay from a set of relays to forward the information, including (i) fixed 

selective decode-and-forward without direct link combining, (ii) fixed selective decode-
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and-forward with direct link combining, and (iii) smart selective decode-and-forward. 

The selection is carried out to maximize the instantaneous end-to-end mutual 

information, as explained in the following subsections. As a benchmark, we describe the 

direct communication without cooperative diversity here. 

S D

1

2

3

K

K Relay Nodes

(No time sharing)

 

Figure 2 The direct communication scheme: The source node transmits signals directly 

to the destination node without any help from the relay nodes for the entire transmission 

period. 

Without any cooperative diversity, the source node transmits the signals 

directly to the destination node as shown in Figure 2. In this case, it is not necessary to 

divide the channel into two time slots. So, the source node can transmit signals to the 

destination node for the entire frame without loss from time sharing. The instantaneous 

end-to-end mutual information (between Dy  and Sx ), conditioned on the instantaneous 

channel, is given by 
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 (2.4) 

We refer to SDSNR  as the instantaneous SNR between the source and destination. 
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2.3.1 Fixed Selective Decode-and-forward without Direct Link Combining 
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K Relay Nodes

(The 1st time slot)

S D

1

2

kmax

K

K Relay Nodes

(The 2nd time slot)

 

Figure 3 The fixed selective decode-and-forward without direct-link combining scheme: 

The transmission is divided into two time slots. During the first time slot, the source node 

transmits signals, and only the selected relay node listens. During the second time slot, 

the selected relay node decodes and regenerates the signals to the destination node, 

which decodes the received signals. 

The first cooperative scheme considered here is the fixed selective 

decode-and-forward without direct-link combining, proposed in [21], as illustrated in 

Figure 3. This scheme always selects one relay to establish cooperation. If the selected 

relay fails to decode, the transmission is declared unsuccessful. If the decoding 

succeeds, the relay forwards the information to the destination. 

The selection is based on maximizing the instantaneous end-to-end 

mutual information. First, each relay is considered based on the following transmission 

scheme: The transmission is divided into two time slots. In the first time slot, the source 
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node transmits symbols, and the selected relay node listens. Given that the k th relay 

node is being considered, the maximum rate supported by the channel between the 

source and the relay nodes is 
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 (2.5) 

where we designate the channel gain from the source node to the k th relay by Skh . 

Likewise, the channel gain from the k th relay node to the destination node is 

designated by Dkh . Also, the factor 1/ 2  takes into account the loss from the time 

sharing due to dividing the channel into two time slots. If the transmission rate is not 

higher than the maximum rate, the relay will be able to decode the received signals and 

will transmit the regenerated version of the signals to the destination node during the 

second time slot while the source node will remain silent. The destination node decodes 

the signals transmitted from the selected relay node with an associated maximum rate of 
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 (2.6) 

Thus, the end-to-end maximum rate supported by using the k th relay node is given by 

 ( ) { }flow-nodirect S Dmin , .k kR k R R=  (2.7) 
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After considering all relays, the relay that offers the highest maximum rate is selected, 

say the maxk th relay, that is, 

 max flow-nodirectarg max ( ),
k

k R k
∈

=
K

 (2.8) 

where K  is the set of all relay indexes: { }1, 2,3, , K∈ …K  and the maxk th relay node is 

the selected relay node. The maximum rate supported by the fixed selective decode-

and-forward without direct link combining scheme is given by 

 FSDF-nodirect S Dmax min{ , }.k kk
R R R

∈
=

K
 (2.9) 

To implement the fixed selective decode-and-forward without direct-link 

combining scheme, the system must have the ability to select the best relay to 

regenerate the signals and to keep other relays silent. One possible way is to use the 

relay selection protocol proposed in [30]. In the overhead period, all relay nodes listen 

to the ready-to-send (RTS) signal from the source node and listen to the clear-to-send 

(CTS) signal from the destination. By receiving RTS signal from the source node and 

receiving CTS signal from the destination node, all relay nodes know the channel 

strengths from the source node and to the destination node. Then, all relay nodes wait 

for a period of time, which is reciprocal to the channel strength either from the source 

node or to the destination node, by using the weaker one. Then, the best relay node, 

which has the shortest waiting time, regenerates the signals. Other relay nodes can 

sense the transmitted signals from the best relay node and keep silent. The length of the 

overhead can be set small as long as the probability that several relay nodes have equal 

waiting time is negligible. 
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2.3.2 Fixed Selective Decode-and-forward with Direct Link Combining 
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K
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Figure 4 The fixed selective decode-and-forward with direct-link combining scheme: 

The transmission is divided into two time slots. During the first time slot, the source node 

transmits signals, and the selected relay and the destination nodes listen. During the 

second time slot, the selected relay node decodes and regenerates signals to the 

destination node, which combines and decodes the received signals from both time 

slots. 

The second cooperative scheme considered here is the fixed selective 

decode-and-forward with direct-link combining, proposed in [22], as illustrated in Figure 

4. This scheme always selects one relay to establish cooperation. If the selected relay 

fails to decode, the transmission is declared unsuccessful. If the decoding succeeds, 

the relay forwards the information to the destination. The destination node combines the 

signal received from both the source node and the selected relay node at the different 

time slots using maximum ratio combining. 
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The relay node selection is based on maximizing the instantaneous end-

to-end mutual information. First, each relay is considered based on the following 

transmission scheme: The transmission is divided into two time slots. In the first time 

slot, the source node transmits symbols, and both the selected relay node and the 

destination node listen. Given that the k th relay node is being considered, the 

maximum rate supported by the channel between the source and the relay nodes is 
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 (2.10) 

where we designate the channel gain from the source node to the k th relay by Skh . 

Likewise, the channel gain from the k th relay node to the destination node is 

designated by Dkh . Also, the factor 1/ 2  takes into account the loss from the time 

sharing due to dividing the channel into two time slots. If the transmission rate is not 

higher than the maximum rate, the relay will be able to decode the received signals and 

will transmit the regenerated version of the signals to the destination node during the 

second time slot while the source node will remain silent. The destination node performs 

maximum ratio combining on two signals received from the source node and the 

selected relay node at the different time slots, and then decodes the combined signal. 

The maximum rate supported by combining both channels is given by 
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Therefore, the maximum instantaneous end-to-end mutual information supported by 

using the k th relay node is given by 

 flow-direct S MRC( ) min{ , ( )}.kR k R R k=  (2.12) 

After considering all relays, the relay that offers the highest maximum end-to-end rate, 

say the maxk th relay, is selected, that is, 

 max flow-directarg max ( ),
k

k R k
∈

=
K

 (2.13) 

The maximum rate supported by the fixed selective decode-and-forward with direct link 

combining scheme is given by 

 FSDF-direct S MRCmax min{ , ( )}kk
R R R k

∈
=

K
 (2.14) 

To implement the fixed selective decode-and-forward with direct-link 

combining scheme, the system must have the ability to select the best relay to 

regenerate the signals and to keep other relays silent. One possible way is to use the 

relay selection protocol proposed in [29]. In the overhead period, all relay nodes listen 

to the RTS signal from the source node and listen to the CTS signal from the destination. 

Also, the destination node, which knows the channel strength from the source node by 

receiving the RTS signal from the source node, broadcasts the channel strength 

between the source node and the destination. By receiving RTS signal from the source 

node and receiving CTS signal from the destination node as well as the broadcasted 

channel strength between the source node to the destination node, all relay nodes know 

the channel strengths from the source node and to the destination node as well as the 

link between the source node and the destination node. Then, all relay nodes wait for a 

period of time, which is reciprocal to the channel strength either from the source node or 

of the combined channel between the link from the source node to the destination node 

and the link from itself to the destination node, by using the weaker one. Then, the best 

relay node, which has the shortest waiting time, regenerates the signals. Other relay 

nodes can sense the transmitted signals from the best relay node and keep silent. The 
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length of the overhead can be set small as long as the probability that several relay 

nodes have equal waiting time is negligible. 

2.3.3 Smart Selective Decode-and-forward 
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K
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Figure 5 The smart selective decode-and-forward scheme: The scheme performs as 

either the fixed selective decode-and-forward with direct-link combining scheme or the 

direct communication scheme by choosing the scheme that offers the higher maximum 

rate. 
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The third cooperative scheme considered here is the smart selective 

decode-and-forward, proposed in [24], as illustrated in Figure 5. This scheme is inspired 

from the loss from time sharing due to dividing the channel into two time slots in both 

fixed selective decode-and-forward schemes. This loss can affect the performance of 

the system more severely than the obtained benefit from performing cooperation. The 

third considered scheme is an adaptive cooperative scheme which decides when to use 

the fixed selective decode-and-forward with direct-link combining scheme or direct 

communication without cooperation based on the channel conditions. In this case, the 

maximum achievable rate is given by 

 SSDF FSDF-direct DCmax{ , },R R R=  (2.15) 

where DCR  and FSDF-directR  are given in (2.4) and (2.14), respectively. 

To implement the fixed selective decode-and-forward with direct-link 

combining scheme, the system must have the ability to select the best relay to 

regenerate the signals and to keep other relays silent. One possible way is to use the 

relay selection protocol proposed in [29]. In the overhead period, all relay nodes listen 

to the RTS signal from the source node and listen to the CTS signal from the destination. 

Also, the destination node, which knows the channel strength from the source node by 

receiving the RTS signal from the source node, broadcasts the channel strength 

between the source node and the destination. By receiving RTS signal from the source 

node and receiving CTS signal from the destination node as well as the broadcasted 

channel strength between the source node to the destination node, all relay nodes know 

the channel strengths from the source node and to the destination node as well as the 

link between the source node and the destination node. Then, all relay nodes wait for a 

period of time, which is reciprocal to the channel strength either from the source node or 

of the combined channel between the link from the source node to the destination node 

and the link from itself to the destination node, by using the weaker one. Other relay 

nodes can sense the transmitted signals from the best relay node, which has the 

shortest waiting time, and keep silent. Then, the best relay node compare itself with the 
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channel strength between the source node and the destination node with compensation 

for the time sharing free. After the comparison, the best relay node notifies the source 

node whether the cooperation should be used. If not, the best relay goes to sleep mode 

and the source node transmit the signals without cooperation and time sharing. 

Otherwise, the transmission is divided into two time slots, where the source node 

transmits the signals in the first time slot and the best relay node regenerates the signals 

in the second time slot. The length of the overhead can be set small as long as the 

probability that several relay nodes have equal waiting time is negligible. 



 

 

CHAPTER  III 
OUTAGE PROBABILITY 

The cooperative diversity has been expected to leverage the reliability of 

the wireless communications, which are exposed to the path loss and fading. In order to 

examine this expectation, we have to quantify the reliability for explicitly measuring how 

much the improvement is obtained and for comparing the considered schemes with 

different sets of factors. One of the important measures of reliability is the outage 

probability. This chapter first analyzes the outage probabilities of the considered 

cooperative diversity schemes. The obtained formulas are verified by computer 

simulations with several sets of parameters. Then, the formulas are used to provide 

numerical results with comparisons and discussions to gain insights. 

3.1 Direct Communication 

In order to examine whether the used cooperative diversity scheme 

really provides advantage in the employed environment and how much the improvement 

is, we have to compare the performance when the cooperative diversity scheme is 

being used to the performance when the cooperative diversity scheme is not being 

used. Accordingly, before we consider the outage probabilities of the cooperative 

diversity schemes, the outage probability of the direct communication is analyzed here 

to serve as a benchmarking. 

In the direct communication case, the formula for calculating the outage 

probability is straightforward and is available in standard materials. The outage 

probability is a function of a desired transmission rate R  and an average signal-to-noise 

ratio SNR . The formula is provided in Proposition 1. 

Proposition 1 : The outage probability, which is obtained from direct communication 

between the source node and the destination node, at a transmission rate of R  and at 

an average signal-to-noise ratio of the link between the source node and the destination 

node of SNR  is given by [27] 
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 (3.1) 

where DC
outP  denote the outage probability of the direct communication, SDd  is the 

distance between the source node and the destination node, and α  is the path loss 

exponent. 

Proof : From the definition, the outage probability is the probability that the instantaneous 

mutual information between the source node and the destination node falls below the 

desired transmission rate. 

 ( ) ( ){ }DC
out SD, Pr ,R I SNR R= <P SNR  (3.2) 

where SDI  denotes the instantaneous mutual information between the source node and 

the destination node, and is a function of the instantaneous signal-to-noise ratio, 

denoted by SNR , between the source node and the destination node. 

Given the instantaneous signal-to-noise ratio, the instantaneous mutual 

information can be calculated by [31] 

 ( ) ( )2SD log 1 ,I SNR SNR= +  (3.3) 

So, 

 ( ){ } ( ){ }SD 2Pr Pr log 1 .I SNR R SNR R< = + <  (3.4) 

The instantaneous signal-to-noise ratio is the squared modulus of the 

complex channel coefficient between the source node and the destination node, 

multiplied by the average transmit signal power at the source node { }2
SP x� E , and 

divided by the noise power spectral density at the destination node 0N , and divided by 

the transmission bandwidth W . 

 SD
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h P
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N W
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where P , 0N , and W  are constant, and 2
SDh  is a random variable. Then,  
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 (3.6) 

Since SDh  is a random variable with the probability density function 

( )SD0,ΩCN , 2
SDh  is an exponentially distributed random variable with the probability 

density function ( )1
SDexp −Ω  (see Lemma 1). 
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Since SD SDd α−Ω =  and is the mean of 2
SDh , the average signal-to-noise ratio of the link 

between the source node and the destination node can be written as 
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 (3.9) 

Substituting (3.9) into (3.8) yields (3.1). Q.E.D. 
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Lemma 1 : Let x be a random variable with a complex circularly symmetric Gaussian 

distribution with mean 0 and variance Ω , i.e., ~ (0, )x ΩCN . Let 2y x= . Then, y  is 

an exponentially distributed random variable with a rate parameter of 1−Ω , i.e., with 

mean Ω . 

Proof : There are two approaches to prove the lemma. We will show both of them as 

follows. 

Approach 1: Let 1x  be the real part of x . 

 { }1 Re ,x x=  (3.10) 

and let 2x  be the imaginary part of x . 

 { }2 Im .x x=  (3.11) 

Then, the probability density function of 1x  is normal distribution with mean 0 and 

variance 
2
Ω . 

 ( )
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2
1

1 exp ,
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2
x x xp

π

⎛ ⎞
⎜ ⎟
−⎜ ⎟ΩΩ ⎜ ⎟
⎝ ⎠

=  (3.12) 

and the probability density function of 2x  is also normal distribution with mean 0 and 

variance 
2
Ω . 

 ( )
2 2

2
21 exp ,x

xp x
π

⎛ ⎞
−⎜ ⎟ΩΩ ⎝ ⎠

=  (3.13) 

Considering changing the Cartesian coordinate system ( )1 2,x x  to the polar coordinate 

system ( ),ρ θ , the relations include 

 2 2
1 2 ,x xρ +=  (3.14) 

 2

1

arctan ,x
x

θ
⎛ ⎞
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 (3.15) 
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 ( )1 cos ,x ρ θ=  (3.16) 

 ( )2 sin ,x ρ θ=  (3.17) 

and the Jacobian of changing the differential in the Cartesian coordinate system 

( )1 2,x x  to the differential in the polar coordinate system ( ),ρ θ  can be calculated by 
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 (3.18) 

Hence, we obtain 

 1 2 .dx dx d dρ ρ θ=  (3.19) 

The joint probability of an infinitesimal area at the point ( )1 2,x x  can be written as 

( )
1 2 1 2, 2 1,x xp x x dx dx , and is related to the polar coordinate system ( ),ρ θ  by 

 ( ) ( )
1 2 1, ,2 1 2, , .x xp x x dx dx p d dρ θ ρ θ ρ ρ θ=  (3.20) 

Since 1x  and 2x  are statistically independent, the joint probability can be written as the 

product of marginal probabilities 

 ( ) ( ) ( )
1 2 1 21 2 1 2 1 2 1, 2, .x xx xp x x dx dx p x p x dx dx=  (3.21) 

Equating the right hand side expressions of (3.20) and (3.21) gives  
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Then, we take the integration over θ  in order to obtain the marginal probability of ρ . 
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 (3.23) 

and the cumulative distribution function of ρ  can be written as 
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Then, we take differentiation with chain rule in order to obtain the probability density 

function of ρ . 
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Let  

 2.s ρ=  (3.26) 
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Hence, sρ = . The Jacobian of changing the differential in ρ -domain to the 

differential in s -domain can be written as 
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Therefore, the probability density function of s  is given by 

 

( ) ( ) ( )
exp

1 exp

1
2

,

2

s s

s

p s J p s

s
s

s

ρρ ρ→ =

⎛ ⎞−⎜ ⎟Ω Ω⎝ ⎠
⎛ ⎞= −⎜ ⎟Ω Ω⎝ ⎠

=

=  (3.28) 

which is the exponential distribution with rate parameter 1−Ω , i.e., with mean Ω . Since 

 22 2 2
1 2 ,s x x x yρ= = + = =  (3.29) 

it follows that the lemma is true. Q.E.D. 

Approach 2 : Let 1x  be the real part of x , and 2x  be the imaginary part 

of x , as shown in (3.10) and (3.11), respectively. Then, the probability density functions 

of both 1x  and 2x  are normal distribution with mean 0 and variance 
2
Ω , as shown in 

(3.12) and  (3.13), respectively. Let 

 2
1 1 ,s x=  (3.30) 

and let 

 2
2 2 .s x=  (3.31) 

It follows that 1 1x s=  and 2 2x s= . The Jacobian of changing the differential in 1x -

domain to the differential in 1s -domain can be written as 
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( ) 1
1 1

1

1
1

1

1 .
2

dxJ
ds

d s
ds

s

x s =

=

=

→

 (3.32) 

Similarly, the Jacobian of changing the differential in 2x -domain to the differential in 2s -

domain can be written as 
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 (3.33) 

Therefore, the probability density function of 1s  is given by 
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 (3.34) 

and the probability density function of 2s  is given by 
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 (3.35) 

where the factor of 2 is introduced due to the addition between two equal probabilities 

on the negative side and the positive side in 1x -domain and in 2x -domain, respectively. 

Let  

 2 2
1 2 1 2.s x x s s= + = +  (3.36) 
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It follows that s  is a random variable, which is an addition between 1s  and 2s , which are 

statistically independent because both of them are a function of 1x  and 2x , respectively, 

which are in turn statistically independent. Therefore, the probability density function of 

s  can be written as the convolution between the probability density function of 1s  and 

the probability density function of 2s . 
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 (3.37) 

which is the exponential distribution with rate parameter 1−Ω , i.e., with mean Ω . Since 

 22 2
1 2 ,s x x x y= + = =  (3.38) 

it follows that the lemma is true. Q.E.D. 

3.2 Fixed Selective Decode-and-forward without Direct Link Combining Scheme 

The formula for calculating the fixed selective decode-and-forward 

without direct link combining scheme does not exist in standard materials. In the 

literature, there is a formula that can calculate the exact outage probability of the fixed 

selective decode-and-forward without direct link combining scheme. We propose a 

different formula that can also calculate the exact value, but is simpler for computation. 

We will present both of them in this dissertation. The first formula contains the double 
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summations, in which the inner summation grows combinatorial with the number of 

relays. On the other hand, the second formula contains the product that grows linearly 

with the number of relays. Therefore, it is more convenient to use the second formula 

even though both formulas provide the same result. 

3.2.1 Exact Formula : Approach 1 

For doing comparisons among different schemes later, the outage 

probability is still a function of a desired transmission rate R  and an average signal-to-

noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The first formula is provided in Theorem 1. 

Theorem 1 : The outage probability, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward without direct link combining 

scheme in the wireless relay network having K  relay nodes, at a transmission rate of R  

and at an average signal-to-noise ratio of the link between the source node and the 

destination node of SNR  is given by [21] 

( ) ( )FSDF-nodirect S D
out

0 SD SD
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e( , ) 1 ( p x1 x) e p
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d d
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SNR SNRS K S
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  (3.39) 

where { }1,2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , FSDF-nodirect
outP  denotes the outage probability of the 

fixed selective decode-and-forward without direct link combining scheme, SDd  is the 

distance between the source node and the destination node, Skd  is the distance 

between the source node and the k th relay node, Dkd  is the distance between the k th 

relay node and the destination node, and α  is the path loss exponent. 
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Proof : From the definition, the outage probability is the probability that the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the link from the relay node to the destination node falls below the desired 

transmission rate.  

 ( ) ( )FSDF-nodirect
out S S D D

1 1,
2

( , ) Pr max min
2 k k kk kSNR I SNI RR R⎧ ⎫⎧ ⎫= <⎨ ⎨ ⎬ ⎬

⎩ ⎭⎩ ⎭
P SNR  (3.40) 

where SkI  denotes the instantaneous mutual information between the source node and 

the k th relay node, DkI  denotes the instantaneous mutual information between the k th 

relay node and the destination node, where both of them are the functions of the 

instantaneous signal-to-noise ratio, denoted by SkSNR  and DkSNR , respectively, 

between the source node and the k th relay node and between the k th relay node and 

the destination node. The factor of 1/2 takes into account the loss due to dividing the 

transmission into two time slots. The maximum of the minimum can be written as the joint 

maximums. 
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 (3.41) 

Furthermore, the joint probability can be written as the conditional probability with the 

normalization. Accordingly, we guarantee that the links from the source node to the 

designated subset of relay nodes can support the desired transmission rate first, and 

then calculate the probability that the strongest link from the relay node to the 

destination node can support the desired transmission rate. Thus, we have to consider 

all possible disjoint subsets of the relay nodes, i.e., all combinations of the relay nodes 

that can receive information from the source node successfully. For the sake of 

presentation, we refer to this disjoint subset as decoding subset. 
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  (3.42) 

where S  is the decoding subset, which has a varying cardinality ranging from 0 until 

K , and is defined by 

 ( )S S
1 .
2 k kk I SNR R⎧ ⎫

= ∈ ≥⎨ ⎬
⎩ ⎭

S K  (3.43) 

Let first consider the normalization probability. Given the instantaneous 

signal-to-noise ratio between the source node and the k th relay node, the 

instantaneous mutual information between the source node and the k th relay node can 

be calculated by 

 ( ) ( )S S S2log 1 .k k kI SNR SNR= +  (3.44) 

The instantaneous signal-to-noise ratio is the squared modulus of the complex channel 

coefficient between the source node and the k th relay node, multiplied by the average 

transmit signal power at the source node { }2
SP x� E , and divided by the noise power 

spectral density at the k th relay node, which is assumed to be 0N  for all relay nodes, 

and divided by the transmission bandwidth W . 

 S
2

0
S ,k

k

h P
SNR

N W
=  (3.45) 
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where P , 0N , and W  are constant, and 2
Skh  is a random variable. Thus, 
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Since Skh  are statistically independent among k∈K , the expression is distributive and 

can be further manipulated. 
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Since Skh  is a random variable with the probability density function 

( )S0, kΩCN , 2
Skh  is an exponentially distributed random variable with the probability 

density function ( )1
Sexp k
−Ω  (see Lemma 1). 
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Therefore, 
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Likewise, 
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Now, let consider the conditional probability. Given the instantaneous 

signal-to-noise ratio between the k th relay node and the destination node, the 

instantaneous mutual information between the k th relay node and the destination node 

can be calculated by 

 ( ) ( )D D D2log 1 .k k kI SNR SNR= +  (3.52) 

The instantaneous signal-to-noise ratio is the squared modulus of the complex channel 

coefficient between the k th relay node and the destination node, multiplied by the 

average transmit signal power at the k th relay node, which is assume to equal that of 

the source node { }2
k Px =E , and divided by the noise power spectral density at the 

destination 0N , and divided by the transmission bandwidth W . 
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where P , 0N , and W  are constant, and 2
Dkh  is a random variable. Thus, 
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Since the channel coefficients of the links from the source node to every relay node and 

the channel coefficients of the links from every relay node to the destination node are 

statistically independent, i.e., S ,kh k∈K  and D ,kh k∈K  are statistically independent, 

the conditional probability becomes probability. 
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Since Dkh  are statistically independent among k∈K , the expression is 

distributive and can be further manipulated. 
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Since Dkh  is a random variable with the probability density function ( )D0, kΩCN , 2
Dkh  

is an exponentially distributed random variable with the probability density function 

( )1
Dexp k
−Ω  (see Lemma 1). 
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Then, 
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Therefore, 
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Substituting (3.50), (3.51) and (3.59) into (3.42), we obtain 
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Since S Sk kd α−Ω =  and is the mean of 2
Skh , the average signal-to-noise ratio of the link 

between the source node and the k th relay node can be written as 

 

{ } { }2
S S

0

S
0

S
0

.

k k

k

k

W
PSNR h

N
P

N

N

W

W
Pd α−

=

= Ω

=

E E

 (3.61) 

Comparing (3.61) with (3.9), we obtain 

 S S

0 SD

k k

W
P d

N d

α

α

−

−

Ω = SNR.  (3.62) 

Since D Dk kd α−Ω =  and is the mean of 2
Dkh , the average signal-to-noise ratio of the link 

between the k th relay node and the destination node can be written as 

 

{ } { }2
D D

0

D
0

D
0

.

k k

k

k

W
PSNR h

N
P

N

N

W

W
Pd α−

=

= Ω

=

E E

 (3.63) 

Comparing (3.63) with (3.9), we obtain 

 D D

0 SD

k k

W
P d

N d

α

α

−

−

Ω = SNR.  (3.64) 

Substituting (3.62) and (3.64) into (3.60) yields (3.39).  Q.E.D. 

3.2.2 Exact Formula : Approach 2 

Now, we provide the second formula in Theorem 2. Instead of relying on 

the double summations among decoding subsets, we consider the product among the 

flows from the source node to the destination node via the relay nodes. Hence, the 
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product grows linearly with the number of relays, and the obtained result takes less 

computation time when the number of relays increases.  

Theorem 2: The outage probability, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward without direct link combining 

scheme in the wireless relay network having K  relay nodes, at a transmission rate of R  

and at an average signal-to-noise ratio of the link between the source node and the 

destination node of SNR  is given by [29] 

FSDF-nodirect S D
out

1 SD

2

( , ) 1 .2 1exp
K

k k

k

Rd dR
d

α α

α
=

⎛ ⎞⎛ ⎞−
−⎜

⎡
⎟⎜ ⎟⎜ ⎟⎝

⎤+
= −⎢ ⎥

⎢ ⎠⎝ ⎠⎥⎣ ⎦
∏P SNR

SNR
 (3.65) 

where SDd  is the distance between the source node and the destination node, Skd  is 

the distance between the source node and the k th relay node, Dkd  is the distance 

between the k th relay and the destination node, and α  is the path loss exponent. 

Proof  : From the definition, the outage probability is the probability that the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the link from the relay node to the destination node falls below the desired 

transmission rate. 

( ) ( )FSDF-nodirect
out S S D D

1 1,(
2

, ) Pr max min
2 k k kkk

R I RSNR I SNR⎧ ⎫⎧ ⎫= <⎨ ⎨ ⎬ ⎬
⎩ ⎭⎩ ⎭

SNRP (3.66) 

where SkI  denotes the instantaneous mutual information between the source node and 

the k th relay node, DkI  denotes the instantaneous mutual information between the k th 

relay node and the destination node, where both of them are the functions of the 

instantaneous signal-to-noise ratio, denoted by SkSNR  and DkSNR , respectively, 

between the source node and the k th relay node and between the k th relay node and 

the destination node. The factor of 1/2 takes into account the loss due to dividing the 

transmission into two time slots. Then, 
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∩
 (3.67) 

Consider the flows from the source node to the destination node via the relay nodes. 

Each of them experiences the instantaneous signal-to-noise ratios that are statistical 

independent. Therefore, the expression is distributive, and the minimum can be 

manipulated further. 
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 (3.68) 

Without altering the expression, we take double negations, which change the union 

probability to joint probability. 
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∧

∧
⎭

∼  (3.69) 

Given the instantaneous signal-to-noise ratio between the source node and the k th 

relay node, the instantaneous mutual information between the source node and the k th 

relay node can be calculated by 

 ( ) ( )S S S2log 1 .k k kI SNR SNR= +  (3.70) 

The instantaneous signal-to-noise ratio is the squared modulus of the complex channel 

coefficient between the source node and the k th relay node, multiplied by the average 

transmit signal power at the source node { }2
SP x� E , and divided by the noise power 
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spectral density at the k th relay node, which is assumed to be 0N  for all relay nodes, 

and divided by the transmission bandwidth W . 

 S
2

0
S ,k

k

h P
SNR

N W
=  (3.71) 

where P , 0N , and W  are constant, and 2
Skh  is a random variable. Likewise, given the 

instantaneous signal-to-noise ratio between the k th relay node and the destination 

node, the instantaneous mutual information between the k th relay node and the 

destination node can be calculated by 

 ( ) ( )D D D2log 1 .k k kI SNR SNR= +  (3.72) 

The instantaneous signal-to-noise ratio is the squared modulus of the complex channel 

coefficient between the k th relay node and the destination node, multiplied by the 

average transmit signal power at the k th relay node, which is assume to equal that of 

the source node { }2
k Px =E , and divided by the noise power spectral density at the 

destination 0N , and divided by the transmission bandwidth W . 

 D
D

2

0

,k
k

h P
SNR

N W
=  (3.73) 

where P , 0N , and W  are constant, and 2
Dkh  is a random variable. Thus,  
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 (3.74) 

Since the channel coefficient of the link from the source node to the k th relay node and 

the channel coefficient of the link from the k th relay node to the destination node are 

statistically independent, i.e., Skh  and Dkh  are statistically independent for any 

{ }1,2, ,k K∈ … , the joint probability becomes the product between probabilities. 
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 (3.75) 

where both probabilities can be manipulated further. 
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and likewise, 
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 (3.77) 

Since Skh  is a random variable with the probability density function 

( )S0, kΩCN , 2
Skh  is an exponentially distributed random variable with the probability 

density function ( )1
Sexp k
−Ω  (see Lemma 1). 
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 (3.79) 

Since Dkh  is a random variable with the probability density function 

( )D0, kΩCN , 2
Dkh  is an exponentially distributed random variable with the probability 

density function ( )1
Dexp k
−Ω  (see Lemma 1). 
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 (3.81) 

Substituting (3.79) into (3.76) and substituting (3.81) into (3.77), the expression in (3.75) 

can be further manipulated. 
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 Substituting (3.82) into (3.69), (3.68) is given by 
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Since S Sk kd α−Ω =  and is the mean of 2
Skh , the average signal-to-noise ratio of the link 

between the source node and the k th relay node can be written as 
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 (3.84) 

Comparing (3.84) with (3.9), we obtain 

 S S

0 SD

k k

W
P d

N d

α

α

−

−

Ω = SNR.  (3.85) 

Since D Dk kd α−Ω =  and is the mean of 2
Dkh , the average signal-to-noise ratio of the link 

between the k th relay node and the destination node can be written as 
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Comparing (3.86) with (3.9), we obtain 
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Ω = SNR.  (3.87) 

Substituting (3.85) and (3.87) into (3.83), the expression can be further manipulated.  
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 (3.88) 

Substituting (3.88) into (3.67) solves (3.66), which yields (3.65). Q.E.D. 

3.2.3 Checking Approach 2 with Approach 1 

The formula (3.39) contains the combinatorial calculation, which makes 

the approach 1 more complicated than the approach 2, which results in the formula 

(3.65) containing only the product of K  terms. We will check whether the simpler 

formula (3.65) obtained from the approach 2 gives the same result as the conventional 

formula (3.39) obtained from the approach 1. We did not find a way to directly 

manipulate the simpler formula (3.65) to be the conventional formula (3.39). What we 

can do is to first specify K , and then manipulate both formulas to the point that both 

expressions are the same. Here, we show the cases that 1K = , 2K = , and 3K = . 

Let start from 1K = . The conventional formula gives 
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where [ ] 1
k∈∅

• =∏ . The simpler formula gives 
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which is the same as (3.89). 

Then, at 2K = , the conventional formula gives 
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and the simpler formula gives 
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which is the same as (3.91). 

Last, at 3K = , the conventional formula gives 
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and the simpler formula gives 
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  (3.106) 

which is the same as (3.97). 

3.2.4 Computation time comparison 

After checking that the proposed formula gives the answer equal to the 

counterpart formula in the literature, we then compare the computation time used by the 

proposed formula and the counterpart formula. The testing computer is the Intel Pentium 

M processor 1.6 GHz with 768 MB of RAM. The testing software is MATLAB version 

7.2.9.232 (R2006a) using the command cputime, which returns the CPU time that has 

been used by the MATLAB process in seconds. The comparison is shown in Table 3. 

When we increase the number of relays, the increased computation time required by the 

proposed formula is not observable because the number of terms in the formula 

increases linearly. On the other hand, the computation time required by the counterpart 

formula in the literature gets long abruptly because the number of terms in the formula 

increases combinatorially. 

Table 3 Computation time comparison between two exact formulas 

Number of relays In this thesis In the literature 

1 0.01 0.02 

2 0.01 0.02 

3 0.01 0.02 

4 0.01 0.02 

5 0.01 0.02 

6 0.01 0.02 

7 0.01 0.03 

8 0.01 0.03 

9 0.01 0.06 

10 0.01 0.09 
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11 0.01 0.18 

12 0.01 0.34 

13 0.01 0.66 

14 0.01 1.31 

15 0.01 2.66 

16 0.01 5.37 

17 0.01 10.69 

18 0.01 21.82 

19 0.01 43.82 

20 0.01 88.61 

3.3 Fixed Selective Decode-and-forward with Direct Link Combining Scheme 

The formula for calculating the outage probability of the fixed selective 

decode-and-forward with direct link combining scheme does not exist in standard 

materials. Even though introducing the direct link combining does not completely 

change the fixed selective decode-and-forward without direct link combining scheme, it 

becomes much more involved to analyze the outage probability. In the literature, there 

are two different formulas that can calculate the approximated outage probability of the 

fixed selective decode-and-forward without direct link combining scheme in the low SNR 

regime and in the high SNR regime, respectively. We propose a formula that can 

calculate the exact value. We will present three of them in this dissertation. 

3.3.1 Approximation in the low SNR regime 

For doing comparisons among different schemes later, the outage 

probability is still a function of a desired transmission rate R  and an average signal-to-

noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula for approximation in the low SNR regime is provided in Proposition 2. 
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Proposition 2 : The outage probability, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward with direct link combining scheme 

in the wireless relay network having K  relay nodes, at a transmission rate of R  and at 

an average signal-to-noise ratio of the link between the source node and the destination 

node of SNR  is approximated in the low SNR regime by [23] 
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  (3.107) 

where { }1,2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , FSDF-direct
outP  denotes the outage probability of the fixed 

selective decode-and-forward with direct link combining scheme, SDd  is the distance 

between the source node and the destination node, Skd  is the distance between the 

source node and the k th relay node, Dkd  is the distance between the k th relay node 

and the destination node, and α  is the path loss exponent, and 
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Proof : From the definition, the outage probability is the probability that the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the combined links from the source node to the destination node and from the relay 

node to the destination node falls below the desired transmission rate. 
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where SkI  denotes the instantaneous mutual information between the source node and 

the k th relay node, SD DkI +  denotes the instantaneous mutual information between the 

source node combined with the k th relay node and the destination node, where both of 

them are the functions of the instantaneous signal-to-noise ratio, denoted by SkSNR  and 

SDSNR , DkSNR , respectively, between the source node and the k th relay node, and 

between the source node and the destination node and between the k th relay node 

and the destination node. The factor of 1/2 takes into account the loss due to dividing 

the transmission into two time slots. The maximum of the minimum can be written as the 

joint maximums. 
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Furthermore, the joint probability can be written as the conditional probability with the 

normalization. Accordingly, we guarantee that the links from the source node to the 

designated subset of relay nodes can support the desired transmission rate first, and 

then calculate the probability that the direct link combined with the strongest link from 

the relay node to the destination node can support the desired transmission rate. Thus, 

we have to consider all possible disjoint subsets of the relay nodes, i.e., all combinations 

of the relay nodes that can receive information from the source node successfully. For 

the sake of presentation, we refer to this disjoint subset as decoding subset. 
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where S  is the decoding subset, which has a varying cardinality ranging from 0 until 

K , and is defined by 

 ( )S S
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Given the instantaneous signal-to-noise ratio between the source node 

and the k th relay node, the instantaneous mutual information between the source node 

and the k th relay node can be calculated by 

 ( ) ( )S S S2log 1 .k k kI SNR SNR= +  (3.113) 

The instantaneous signal-to-noise ratio is the squared modulus of the 

complex channel coefficient between the source node and the k th relay node, 

multiplied by the average transmit signal power at the source node { }2
SP x� E , and 

divided by the noise power spectral density at the k th relay node, which is assumed to 

be 0N  for all relay nodes, and divided by the transmission bandwidth W . 
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where P , 0N , and W  are constant, and 2
Skh  is a random variable. Thus, 
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Since Skh  are statistically independent among k∈K , the expression is distributive and 

can be further manipulated. 
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Since Skh  is a random variable with the probability density function 

( )S0, kΩCN , 2
Skh  is an exponentially distributed random variable with the probability 

density function ( )1
Sexp k
−Ω  (see Lemma 1). 

 ( )2
S

S S

1 exp .
kh

k k

xp x
⎛ ⎞

= −⎜Ω ⎟
⎝ ⎠Ω

 (3.117) 
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Therefore, 

  



 

 
61 

 

( ) ( )

( )

S S
0

S

2

S

2
0

2 1
11Pr exp

x

2

2 1
e p

1

.

R

k
k

k

kk

R

k

k

N W
SN

P

N W

I R R

P

∈∈

∈

⎡ ⎤⎛ ⎞⎧ ⎫ ⎢ ⎥⎜ ⎟< = −/⎨ ⎬ ⎢ ⎥⎜ Ω ⎟⎩

⎛ ⎞−
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

⎛ ⎞−
⎜ ⎟

⎭ ⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥=

Ω⎢
−
⎜ ⎥⎣ ⎝ ⎠⎦

⎟

∏

∏

∩
SS

S

 (3.119) 

Likewise, 
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Now, let consider the conditional probability. Given the instantaneous 

signal-to-noise ratio between the k th relay node and the destination node and the 

instantaneous signal-to-noise ratio between the source node and the destination node, 

the instantaneous mutual information between source node combined with the k th relay 

node and the destination node can be calculated by 

 ( ) ( )SD D D SD D2S D log 1 .k k kI SNR SNR SNR SNR+ + = + +  (3.121) 

The instantaneous signal-to-noise ratios are the squared modulus of the complex 

channel coefficient between the source node and the destination node, and the k th 

relay node and the destination node, respectively, multiplied by the average transmit 

signal power at the k th relay node, which is assume to equal that of the source node 

{ }2
k Px =E , and divided by the noise power spectral density at the destination 0N , 

and divided by the transmission bandwidth W . 
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where P , 0N , and W  are constant, and 2
SDh  and 2

Dkh  are random variables. Thus, 
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Since the channel coefficients of the links from the source node to every relay node are 

statistically independent from the channel coefficients of the links from the source node 

to the destination node and from every relay node to the destination node, the 

conditional probability becomes probability. 
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  (3.125) 

By introducing the condition on the channel coefficients of the links from 

the source node to the destination node with marginalization, the new expression equals 

the previous expression but becomes distributive and can be further manipulated. 
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Notice that the upper limit of integration is not infinity because the 

conditioned probability becomes zero after the instantaneous signal-to-noise ratio from 

the source node to the destination node is greater than the upper limit, i.e., the strength 

of the channel from the source node to the destination node alone guarantees the 

success of transmission regardless the help from any relay node. Since Dkh  is a random 

variable with the probability density function ( )D0, kΩCN , 2
Dkh  is an exponentially 

distributed random variable with the probability density function ( )1
Dexp k
−Ω  (see Lemma 

1). 
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Likewise, 
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Therefore, 
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Since D Dk kd α−Ω =  and is the mean of 2
Dkh , the average signal-to-noise ratio of the link 

between the k th relay node and the destination node can be written as 
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Comparing (3.131) with (3.9), we obtain 
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Substituting (3.132) into (3.130), we obtain 
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The evaluation of this integral is difficult due to the product of the 

exponential. We thus make two approximations: 
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Because SDΩ  is always positive, the expression on the right side of (3.134) is a 

decreasing function of x . This is readily shown by examining its derivative with respect 

to x : 
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0x  is the point where this expression becomes negative, i.e., 
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which occurs at 
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2) Third-order approximation of 
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where rf  will be determined later. 

The second term could also be expanded using Taylor series; the 

product of the terms, however, would significantly increase the number of terms in the 

approximation. We choose order-three approximations which yield good results. Clearly, 

the accuracy of the approximations could be further increased by increasing the 

approximation order. 
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Using the approximation in (3.134), the upper limit of the integral in 

(3.133) is L , where 
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The parameter rf  is then obtained by minimizing ( )rE f , the total squared error 
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To minimize ( )rE f , we set the derivative of this expression with respect 

to rf  to zero and obtain 
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Using Binomial Expansion, the resulting outage probability approximation can thus be 

written as 
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Substituting (3.119), (3.120) and (3.142) into (3.111), we obtain 
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Since S Sk kd α−Ω =  and is the mean of 2
Skh , the average signal-to-noise 

ratio of the link between the source node and the k th relay node can be written as 
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Comparing (3.144) with (3.9), we obtain 
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Ω = SNR.  (3.145) 

Substituting SD SDd α−Ω =  and (3.145) into (3.143) yields (3.107), in which L  in (3.108) is 

obtained by substituting SD SDd α−Ω =  into (3.137) and in turn substituting 0x  from (3.137) 

into (3.139).  Q.E.D. 
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3.3.2 Approximation in the high SNR regime 

For doing comparisons among different schemes later, the outage 

probability is still a function of a desired transmission rate R  and an average signal-to-

noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula for approximation in the high SNR regime is provided in Proposition 3. 

Proposition 3 : The outage probability, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward with direct link combining scheme 

in the wireless relay network having K  relay nodes, at a transmission rate of R  and at 

an average signal-to-noise ratio of the link between the source node and the destination 

node of SNR  is approximated in the high SNR regime by [22] 
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where { }1,2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , FSDF-direct
outP  denotes the outage probability of the fixed 

selective decode-and-forward with direct link combining scheme, SDd  is the distance 

between the source node and the destination node, Skd  is the distance between the 

source node and the k th relay node, Dkd  is the distance between the k th relay node 

and the destination node, and α  is the path loss exponent. 

Proof : From the definition, the outage probability is the probability that the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the combined links from the source node to the destination node and from the relay 

node to the destination node falls below the desired transmission rate. 
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where SkI  denotes the instantaneous mutual information between the source node and 

the k th relay node, SD DkI +  denotes the instantaneous mutual information between the 

source node combined with the k th relay node and the destination node, where both of 

them are the functions of the instantaneous signal-to-noise ratio, denoted by SkSNR  and 

SDSNR , DkSNR , respectively, between the source node and the k th relay node, and 

between the source node and the destination node and between the k th relay node 

and the destination node. The factor of 1/2 takes into account the loss due to dividing 

the transmission into two time slots. The maximum of the minimum can be written as the 

joint maximums. 

( ) ( )

( ) ( )

S S SD+ D D SD

S S SD+ D D SD

1Pr max min
2

1Pr max max

1,

2

2

1
2

.

k k kk

k

k

k kk k k

SNR I SNR SNR

SNR R I SNR SNR R

I R

I

⎧ ⎫⎧ ⎫ < =⎨ ⎨ ⎬ ⎬
⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎨ ⎬ ⎨ ⎬ ⎬

⎩ ⎭ ⎩ ⎭⎩
< ∧ + <

⎭

+

 (3.148) 

Furthermore, the joint probability can be written as the conditional probability with the 

normalization. Accordingly, we guarantee that the links from the source node to the 

designated subset of relay nodes can support the desired transmission rate first, and 

then calculate the probability that the direct link combined with the strongest link from 

the relay node to the destination node can support the desired transmission rate. Thus, 

we have to consider all possible disjoint subsets of the relay nodes, i.e., all combinations 

of the relay nodes that can receive information from the source node successfully. For 

the sake of presentation, we refer to this disjoint subset as decoding subset. 
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where S  is the decoding subset, which has a varying cardinality ranging from 0 until 

K , and is defined by 
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Given the instantaneous signal-to-noise ratio between the source node 

and the k th relay node, the instantaneous mutual information between the source node 

and the k th relay node can be calculated by 

 ( ) ( )S S S2log 1 .k k kI SNR SNR= +  (3.151) 

The instantaneous signal-to-noise ratio is the squared modulus of the 

complex channel coefficient between the source node and the k th relay node, 

multiplied by the average transmit signal power at the source node { }2
SP x� E , and 

divided by the noise power spectral density at the k th relay node, which is assumed to 

be 0N  for all relay nodes, and divided by the transmission bandwidth W . 
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where P , 0N , and W  are constant, and 2
Skh  is a random variable. Thus, 
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Since Skh  are statistically independent among k∈K , the expression is distributive and 

can be further manipulated. 
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Since Skh  is a random variable with the probability density function 

( )S0, kΩCN , 2
Skh  is an exponentially distributed random variable with the probability 

density function ( )1
Sexp k
−Ω  (see Lemma 1). 
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Therefore, 
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Likewise, 
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In the high SNR regime, the multiplication between (3.157) and (3.158) can be 

approximated by 
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Now, let consider the conditional probability. Given the instantaneous 

signal-to-noise ratio between the k th relay node and the destination node and the 

instantaneous signal-to-noise ratio between the source node and the destination node, 

the instantaneous mutual information between source node combined with the k th relay 

node and the destination node can be calculated by 

 ( ) ( )SD D D SD D2S D log 1 .k k kI SNR SNR SNR SNR+ + = + +  (3.160) 

The instantaneous signal-to-noise ratios are the squared modulus of the complex 

channel coefficient between the source node and the destination node, and the k th 

relay node and the destination node, respectively, multiplied by the average transmit 

signal power at the k th relay node, which is assume to equal that of the source node 

{ }2
k Px =E , and divided by the noise power spectral density at the destination 0N , 

and divided by the transmission bandwidth W . 
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where P , 0N , and W  are constant, and 2
SDh  and 2

Dkh  are random variables. Thus, 
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Since the channel coefficients of the links from the source node to every relay node are 

statistically independent from the channel coefficients of the links from the source node 

to the destination node and from every relay node to the destination node, the 

conditional probability becomes probability. 
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Define the random variables X  and Y  as 
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 (3.165) 

and 

 2
SD .Y h=  (3.166) 
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Since Dkh  is a random variable with the probability density function ( )D0, kΩCN , 2
Dkh  

is an exponentially distributed random variable with the probability density function 

( )1
Dexp k
−Ω  (see Lemma 1). 
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Likewise, 
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 (3.168) 

Then, the cumulative distribution function of X  can be derived as follows. 
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where the equality between the second line and the third line is due to the 

independence of 2
D ,kh k∀ . Consider the expression in (3.164), 
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Then, 
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By introducing the condition on the channel coefficients of the links from 

the source node to the destination node with marginalization, the new expression equals 

the previous expression but becomes distributive and can be further manipulated. 
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Notice that the upper limit of integration is not infinity because the 

conditioned probability becomes zero after the instantaneous signal-to-noise ratio from 

the source node to the destination node is greater than the upper limit, i.e., the strength 

of the channel from the source node to the destination node alone guarantees the 

success of transmission regardless the help from any relay node. Using (3.168) and 

(3.169), the integration becomes 
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When 
0

P
N W

→∞ , the argument of the exponential function becomes 

small. Therefore, the approximation ( )exp 1x x≈ +  can be applied. 
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With some manipulations, 
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 Using the binomial expansion, 
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After solving the integral, some manipulations and the use of identity 0.155 from [32], 

this expression reduces to 
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Substituting (3.159) and (3.177) into (3.149), we obtain 
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Substituting (3.9), SD SDd α−Ω = , S Sk kd α−Ω = , and D Dk kd α−Ω =  into (3.178) 

yields (3.146).  Q.E.D. 

3.3.3 Exact Formula 

For doing comparisons among different schemes later, the outage 

probability is still a function of a desired transmission rate R  and an average signal-to-

noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula for exact value at any SNR is provided in Theorem 3. 

Theorem 3 : The outage probability, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward with direct link combining scheme 
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in the wireless relay network having K  relay nodes, at a transmission rate of R  and at 

an average signal-to-noise ratio of the link between the source node and the destination 

node of SNR  is given by [28] 
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  (3.179) 

where { }1,2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , FSDF-direct
outP  denotes the outage probability of the fixed 

selective decode-and-forward with direct link combining scheme, SDd  is the distance 

between the source node and the destination node, Skd  is the distance between the 

source node and the k th relay node, Dkd  is the distance between the k th relay node 

and the destination node, and α  is the path loss exponent. 

Proof : From the definition, the outage probability is the probability that the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the combined links from the source node to the destination node and from the relay 

node to the destination node falls below the desired transmission rate. 

 ( ) ( )FSDF-direct
out S S SD+ D D SD

1 1( , ) Pr max min
2

,
2k k kk kSNR R I SNR SNRI R⎧ ⎫⎧ ⎫= <⎨ ⎨ ⎬ ⎬
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  (3.180) 

where SkI  denotes the instantaneous mutual information between the source node and 

the k th relay node, SD DkI +  denotes the instantaneous mutual information between the 

source node combined with the k th relay node and the destination node, where both of 

them are the functions of the instantaneous signal-to-noise ratio, denoted by SkSNR  and 

SDSNR , DkSNR , respectively, between the source node and the k th relay node, and 
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between the source node and the destination node and between the k th relay node 

and the destination node. The factor of 1/2 takes into account the loss due to dividing 

the transmission into two time slots. 

By introducing the condition on the channel coefficients of the links from 

the source node to the destination node with marginalization, the new expression equals 

the previous expression but becomes distributive and can be further manipulated. 
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The joint probability becomes a product of probabilities because the condition on the 

instantaneous signal-to-noise ratio between the source node and the destination node 

introduces the independence between the two events, which depend on the 

instantaneous signal-to-noise ration between the source node and the k th relay node, 

and the instantaneous signal-to-noise ratio between the k th relay node and the 

destination node and the instantaneous signal-to-noise ratio between the source and the 

destination node. 
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where the last line comes from the independence between the channel coefficient from 

the source node to the k th relay node and the channel coefficient from the source node 

to the destination node. Considering the remaining conditional probability, it becomes 

zero when 

 ( )SD SD
1
2

I SNR R≥  (3.183) 

because the strength of the channel from the source node to the destination node alone 

guarantees that the mutual information of the combined links exceeds the targeted 

transmission rate. Given the instantaneous signal-to-noise ratio between the k th relay 

node and the destination node and the instantaneous signal-to-noise ratio between the 

source node and the destination node, the instantaneous mutual information between 

source node combined with the k th relay node and the destination node can be 

calculated by 

 ( ) ( )SD+ D S D SD2D D log 1 .k kkI SNR SNR SNR SNR+ = + +  (3.184) 

Therefore, 
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 (3.185) 
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Hence, the integration can be split into two intervals with different integrands. 
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∏∫  (3.186) 

Given the instantaneous signal-to-noise ratio between the source node 

and the k th relay node, the instantaneous mutual information between the source node 

and the k th relay node can be calculated by 

 ( ) ( )S S S2log 1 .k k kI SNR SNR= +  (3.187) 

The instantaneous signal-to-noise ratio is the squared modulus of the 

complex channel coefficient between the source node and the k th relay node, 

multiplied by the average transmit signal power at the source node { }2
SP x� E , and 

divided by the noise power spectral density at the k th relay node, which is assumed to 

be 0N  for all relay nodes, and divided by the transmission bandwidth W . 

 S
2

0
S ,k

k

h P
SNR

N W
=  (3.188) 

where P , 0N , and W  are constant, and 2
Skh  is a random variable. Thus, 
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 (3.189) 

Since Skh  is a random variable with the probability density function 

( )S0, kΩCN , 2
Skh  is an exponentially distributed random variable with the probability 

density function ( )1
Sexp k
−Ω  (see Lemma 1). 
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 (3.190) 

Therefore, 
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 (3.191) 

Now, let consider the conditional probability. The instantaneous signal-

to-noise ratios are the squared modulus of the complex channel coefficient between the 

source node and the destination node, and the k th relay node and the destination 

node, respectively, multiplied by the average transmit signal power at the k th relay 

node, which is assume to equal that of the source node { }2
k Px =E , and divided by 

the noise power spectral density at the destination 0N , and divided by the transmission 

bandwidth W . 

 SD

0
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,
h P

SNR
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=  (3.192) 
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 D
D

2

0

,k
k

h P
SNR

N W
=  (3.193) 

where P , 0N , and W  are constant, and 2
SDh  and 2

Dkh  are random variables. Thus, 
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 (3.194) 

where the last line comes from the fact that the condition changes 2
SDh  from being the 

random variable to the constant. For convenience, we define x  such that 

 
0

.xP
N W

γ =  (3.195) 

Hence, 
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 (3.196) 

Since Dkh  is a random variable with the probability density function 

( )D0, kΩCN , 2
Dkh  is an exponentially distributed random variable with the probability 

density function ( )1
Dexp k
−Ω  (see Lemma 1). 
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 (3.197) 

Then, 
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Then, using (3.191) and (3.198) in (3.186), we obtain 
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Since SDh  is a random variable with the probability density function 

( )SD0,ΩCN , 2
SDh  is an exponentially distributed random variable with the probability 

density function ( )1
SDexp −Ω  (see Lemma 1). 
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 (3.200) 

From (3.192) and (3.200), we obtain 
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Applying (3.201) in (3.199), the limits of the integration change accordingly. 
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By expanding the products and distributing the terms, we obtain 
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  (3.203) 

Integrating both integrands and manipulating them further, we obtain 
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 (3.204) 

Substituting S Sk kd α−Ω = , D Dk kd α−Ω = , SD SDd α−Ω =  into (3.204), and 

comparing it with (3.9) yields (3.179).   Q.E.D. 

3.3.4 Computation time comparison 

It should be noted that the approximations in the literature were not done 

for reducing computational complexity. The approximations were done only because it 

was difficult to analyze the exact formula, and can even use longer computation time. 

We compare the computation time used by the proposed exact formula and the 

approximated formulas in the literature as shown in Table 4. The testing computer is the 

Intel Pentium M processor 1.6 GHz with 768 MB of RAM. The testing software is 

MATLAB version 7.2.9.232 (R2006a) using the command cputime, which returns the 

CPU time that has been used by the MATLAB process in seconds. It can be observed 

that the approximation formula for low SNR regime uses much longer computation time 

than the exact formula. Therefore, there is no need to apply the approximation formula 

for low SNR because it is not only less accurate but also less efficient in computation, 

especially when the number of relays gets large. Compared to the approximation 

formula for high SNR, the exact formula uses around the same computation time. 

Therefore, the exact formula provides accuracy without introducing the computational 

burden. 

Table 4 Computation time comparison between exact and approximated formulas 

Number of relays Exact Approx. low SNR Approx. high SNR 

2 0.02 0.13 0.02 

3 0.02 0.16 0.02 
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4 0.02 0.18 0.02 

5 0.03 0.23 0.02 

6 0.03 0.36 0.02 

7 0.03 0.59 0.03 

8 0.03 0.98 0.03 

9 0.04 1.82 0.03 

10 0.07 3.72 0.06 

11 0.07 6.82 0.06 

12 0.13 13.75 0.10 

13 0.23 27.38 0.21 

14 0.46 55.91 0.41 

3.4 Smart Selective Decode-and-forward Scheme 

The formula for calculating the outage probability of the smart selective 

decode-and-forward scheme does not exist in standard materials due to the 

complication, which is more than all fixed selective decode-and-forward schemes. 

Without an analytical result, the smart selective decode-and-forward scheme can only 

be studied by computer simulations. In this thesis, we propose a formula that can 

calculate the exact value at any SNR. 

For doing comparisons among different schemes later, the outage 

probability is still a function of a desired transmission rate R  and an average signal-to-

noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula for exact value at any SNR is provided in Theorem 4. 

Theorem 4 : The outage probability, which is obtained from employing the cooperative 

diversity with the smart selective decode-and-forward scheme in the wireless relay 

network having K  relay nodes, at a transmission rate of R  and at an average signal-to-
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noise ratio of the link between the source node and the destination node of SNR  is 

given by [28] 
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where { }1,2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , SSDF
outP  denotes the outage probability of the smart 

selective decode-and-forward scheme, SDd  is the distance between the source node 

and the destination node, Skd  is the distance between the source node and the k th 

relay node, Dkd  is the distance between the k th relay node and the destination node, 

and α  is the path loss exponent. 

Proof : From the definition, the outage probability is the probability that the higher 

between the instantaneous mutual information of the link from the source node to the 

destination node without transmission time dividing and the maximum among all relay 

nodes of the minimum between the instantaneous mutual information of the link from the 

source node to the relay node and the instantaneous mutual information of the 

combined links from the source node to the destination node and from the relay node to 

the destination node with two time slots dividing falls below the desired transmission 

rate. 

 
( ) ( ) ( )

SSDF
out

SD SD S S SD+ D D SD
1,

( , )

1Pr max ,max min
2 2k k kk kSNR SN

R

I I RR I SNR SNR

=

⎧ ⎫⎧ ⎫⎧ ⎫ <⎨ ⎨ ⎨ + ⎬⎬ ⎬
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P SNR
 

  (3.206) 

where SDI  denotes the instantaneous mutual information between the source node and 

the destination node, SkI  denotes the instantaneous mutual information between the 
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source node and the k th relay node, SD DkI +  denotes the instantaneous mutual 

information between the source node combined with the k th relay node and the 

destination node, where both of them are the functions of the instantaneous signal-to-

noise ratio, denoted by SkSNR  and SDSNR , DkSNR , respectively, between the source 

node and the k th relay node, and between the source node and the destination node 

and between the k th relay node and the destination node. The factor of 1/2 takes into 

account the loss due to dividing the transmission into two time slots. 

By introducing the condition on the channel coefficients of the links from 

the source node to the destination node with marginalization, the new expression equals 

the previous expression but becomes distributive and can be further manipulated. 
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  (3.207) 

The joint probability becomes a product of probabilities because the condition on the 

instantaneous signal-to-noise ratio between the source node and the destination node 

introduces the independence between the two events, which depend on the 

instantaneous signal-to-noise ration between the source node and the k th relay node, 
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and the instantaneous signal-to-noise ratio between the k th relay node and the 

destination node and the instantaneous signal-to-noise ratio between the source and the 

destination node. 
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  (3.208) 

where the last line comes from the independence between the channel coefficient from 

the source node to the k th relay node and the channel coefficient from the source node 

to the destination node. Considering the remaining conditional probabilities, they 

becomes zero when 

 ( )SD SD ,SNRI R≥  (3.209) 
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and 

 ( )SD SD ,1
2

I SNR R≥  (3.210) 

respectively, because the strength of the channel from the source node to the 

destination node alone guarantees that the mutual information of the direct link and the 

mutual information of the combined links exceed the targeted transmission rate. Given 

the instantaneous signal-to-noise ratio between the source node and the destination 

node, the instantaneous mutual information between the source node and the 

destination node can be calculated by 

 ( ) ( )SD D SD2S log 1 .I SNR SNR= +  (3.211) 

Also, given the instantaneous signal-to-noise ratio between the k th relay node and the 

destination node and the instantaneous signal-to-noise ratio between the source node 

and the destination node, the instantaneous mutual information between source node 

combined with the k th relay node and the destination node can be calculated by 

 ( ) ( )SD D D SD D2S D log 1 .k k kI SNR SNR SNR SNR+ + = + +  (3.212) 

Therefore, 
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and 
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 (3.214) 

Hence, the integration can be split into three intervals with different integrands. 



 

 
95 

( ){ }

( )

( )
( )

( )
( )

( )

SD

SD SD SD
0

S S

1
SD+ D D SD SD

S S

SD+ D D SD SD

Pr

1
2

11 1 Pr
2

1 Pr

11 1 Pr
2

Pr
2

1
1 1

SNR

k kK

k
k

k

k

k

k

k

SNR SNR

SNR

I SNR SNR SNR

SNR

I

I R

I

SNR SNR SNR

R

p d
R

I R

R

γ

γ γ
γ

γ

∞

=

<

⎡ ⎤⎛ ⎞⎧ ⎫− − ⎨ ⎬⎢ ⎥⎜ ⎟
⎩ ⎭⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞⎧ ⎫⎢ ⎥− ⎨ ⎬⎜ ⎟
⎢ ⎥⎩ ⎭⎝

=

<

+ < =

<

+ <

⎠⎣ ⎦

⎛ ⎞⎧ ⎫− − ⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠

=
⎛ ⎞⎧ ⎫
− ⎨ ⎬⎜ ⎟

⎩ ⎭⎝
=

⎠

∫

∏

( )

( )
( )

( )
( )

( ) ( ) ( )

SD

2

SD

SD

2

10

S S2

12
SD+

1

D D SD SD
1

S
1

1

S

11 1 Pr
2

0
1 Pr

10 1 1 Pr 1 0
2

1
2

R

R

R

SNR

SNR

k

K

k

k kK

k
k

K

k k
k

SNR

p d

I R

p d
R

I R p

SNR

I SNR SNR SNR

SNR

γ γ

γ γ
γ

=

=

−

=

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞⎧ ⎫− − ⎨ ⎬⎢ ⎥⎜ ⎟

⎩ ⎭⎝ ⎠⎢ ⎥+ ⎢ ⎥⎛ ⎞⎧ ⎫⎢ ⎥− ⎨ ⎬⎜ ⎟
⎢ ⎥⎩ ⎭⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎧ ⎫+ − − −⎨ ⎬⎢ ⎥⎜ ⎟

⎩

<

+ < =

<
⎭⎝ ⎠⎣ ⎦

∏∫

∏∫

∏ ( )

( )

( )
( )

2

SD

2

S S2

10
SD+ S

1

D SD

1

D D

11 1 Pr
2

.
P

2
1 r 1

R

R k kK

k
k

SNR

k

SNR

I SNR SN

d

I R

p d
SNRRR

γ γ

γ γ
γ

∞

−

=

−

⎡ ⎤⎛ ⎞⎧ ⎫− − ⎨ ⎬⎢ ⎥⎜ ⎟
⎩ ⎭⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞⎧ ⎫⎢ ⎥− ⎨ ⎬⎜ ⎟

⎢ ⎥⎩ ⎭⎝ ⎠⎣

<

+ <
⎦

=

∫

∏∫

 (3.215) 

Given the instantaneous signal-to-noise ratio between the source node 

and the k th relay node, the instantaneous mutual information between the source node 

and the k th relay node can be calculated by 

 ( ) ( )S S S2log 1 .k k kI SNR SNR= +  (3.216) 

The instantaneous signal-to-noise ratio is the squared modulus of the 

complex channel coefficient between the source node and the k th relay node, 

multiplied by the average transmit signal power at the source node { }2
SP x� E , and 

divided by the noise power spectral density at the k th relay node, which is assumed to 

be 0N  for all relay nodes, and divided by the transmission bandwidth W . 
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where P , 0N , and W  are constant, and 2
Skh  is a random variable. Thus, 
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Since Skh  is a random variable with the probability density function 

( )S0, kΩCN , 2
Skh  is an exponentially distributed random variable with the probability 

density function ( )1
Sexp k
−Ω  (see Lemma 1). 
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Therefore, 
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 (3.220) 

Now, let consider the conditional probability. The instantaneous signal-

to-noise ratios are the squared modulus of the complex channel coefficient between the 

source node and the destination node, and the k th relay node and the destination 

node, respectively, multiplied by the average transmit signal power at the k th relay 

node, which is assume to equal that of the source node { }2
k Px =E , and divided by 
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the noise power spectral density at the destination 0N , and divided by the transmission 

bandwidth W . 

 SD

0
SD

2

,
h P

SNR
N W

=  (3.221) 

 D
D

2

0

,k
k

h P
SNR

N W
=  (3.222) 

where P , 0N , and W  are constant, and 2
SDh  and 2

Dkh  are random variables. Thus, 
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where the last line comes from the fact that the condition changes 2
SDh  from being the 

random variable to the constant. For convenience, we define x  such that 

 
0

.xP
N W

γ =  (3.224) 

Hence, 
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Since Dkh  is a random variable with the probability density function 

( )D0, kΩCN , 2
Dkh  is an exponentially distributed random variable with the probability 

density function ( )1
Dexp k
−Ω  (see Lemma 1). 
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Then, 
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Then, using (3.220) and (3.227) in (3.215), we obtain 
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Since SDh  is a random variable with the probability density function 

( )SD0,ΩCN , 2
SDh  is an exponentially distributed random variable with the probability 

density function ( )1
SDexp −Ω  (see Lemma 1). 

 ( )2
SD

SD SD

1 exp .
h

xp x
⎛ ⎞

= −⎜ Ω ⎟
⎝ ⎠Ω

 (3.229) 

From (3.221) and (3.229), we obtain 
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Applying (3.230) in (3.228), the limits of the integration change accordingly. 
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By expanding the products and distributing the terms, we obtain 
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Integrating the integrand and manipulating them further, we obtain 
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  (3.233) 

Substituting S Sk kd α−Ω = , D Dk kd α−Ω = , SD SDd α−Ω =  into (3.233), and comparing it with (3.9) 

yields (3.205).   Q.E.D. 

3.5 Verification with Computer Simulations 

In this section, we verify the analytical outage probabilities with Monte 

Carlo simulations. To cover several cases, we vary the number of relay nodes at 1, 4, or 

9, and the target transmission rate at 1 b/s/Hz, 2 b/s/Hz, or 4 b/s/Hz. The relay nodes are 

arranged in grid topology between the source node and the destination node, between 

which the distance is 1000 m. All curves are plotted as a function of SNR , which is the 

average signal-to-noise ratio between the source node and the destination node. 

In Figure 6 – Figure 14, we plot the analytical and simulated outage 

probabilities of the fixed selective decode-and-forward without direct link combining 

scheme, the fixed selective decode-and-forward with direct link combining scheme, and 

the smart selective decode-and-forward scheme with the number of relay nodes 

{1,4,9}K =  and at a rate {1,2,4}R =  b/s/Hz, as a function of the SNR . It can be 

observed that the analytical results are in good agreement with the simulation results, 
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showing the validity of our analytical expressions in Theorem 1 – Theorem 4. Note that 

the outage probabilities of the fixed selective decode-and-forward without direct link 

combining obtained from Theorem 1 and Theorem 2 are exactly the same and give the 

overlap curves, which can be seen as one curve. This verifies that Theorem 2 simplifies 

the calculation in Theorem 1 without injuring exactness. 
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Figure 6 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 1 b/s/Hz for 1-relay network 
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Figure 7 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 1 b/s/Hz for 4-relay network 
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Figure 8 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 1 b/s/Hz for 9-relay network 
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Figure 9 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 2 b/s/Hz for 1-relay network 
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Figure 10 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 2 b/s/Hz for 4-relay network 
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Figure 11 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 2 b/s/Hz for 9-relay network 
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Figure 12 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 4 b/s/Hz for 1-relay network 
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Figure 13 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 4 b/s/Hz for 4-relay network 
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Figure 14 Verification of the outage probabilities of all analyzed cooperative diversity 

schemes at a rate of 4 b/s/Hz for 9-relay network 
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3.6 Results and Discussions 

First, we show that the approximated outage probabilities of the fixed 

selective decode-and-forward with direct link combining scheme provided in Proposition 

2 and Proposition 3 only work in specific cases, and become not handy in general. In 

Figure 15, we reproduce the parameters used to demonstrate the approximations in the 

literature, namely, at a rate of 1 b/s/Hz and 4 relay nodes with an artificial topology 

where all links have equal average signal-to-noise ratio. The approximation in low SNR 

regime is from Proposition 2, and the approximation in high SNR regime is from 

Proposition 3, and the exact value is from our analysis in Theorem 3. The approximation 

from Proposition 2 gets close to the exact value in low SNR regime, while the 

approximation from Proposition 3 gets close to the exact value in high SNR regime. In 

Figure 16, we change the topology to grid topology, and the approximation in low SNR 

regime does not work, while the approximation in high SNR is still reasonable. In Figure 

17, we change the number of relay nodes to 1 relay node, and the approximation in high 

SNR does not work either. Therefore, the approximations in the literature are not reliable, 

and our exact analyses are necessary. 

Then, we examine the performance gain of using cooperative diversity 

schemes over direct communication in terms of outage probability with various 

parameters. The outage probability of direct communication is provided in Proposition 1. 

In Figure 18, the target rate is 2 b/s/Hz, and the number of relay nodes is 4. Compared 

to direct communication, all cooperative diversity schemes offer diversity gain with the 

same diversity gain order, which can be observed from the slopes of the curves. Among 

the cooperative diversity schemes, the fixed selective decode-and-forward with direct 

link combining scheme is superior to the fixed selective decode-and-forward without 

direct link combining scheme, and the smart selective decode-and-forward scheme is in 

turn superior to the fixed selective decode-and-forward with direct link combining 

scheme. As we increase the number of relay nodes, both the diversity gain order and 

the performance gain are larger for all cooperative diversity schemes as shown in Figure 

19 and Figure 20, where we increase the number of relay nodes to 9 relay nodes and 15 
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relay nodes, respectively. Also, the performance gap between the fixed selective 

decode-and-forward with direct link combining scheme and the smart selective decode-

and-forward scheme becomes smaller. Therefore, the ability, to decide to cooperate or 

not cooperate, introduced in the smart selective decode-and-forward scheme can be 

overlooked in favor of the simpler fixed selective decode-and-forward with direct link 

combining scheme in such environment. Another cause that can give the same effect is 

the decreased target rate as shown in Figure 21, where we decrease the target rate to 1 

b/s/Hz. It can be observed that the gap between the fixed selective decode-and-forward 

with direct link combining scheme and the smart selective decode-and-forward scheme 

becomes smaller. 

In Figure 22, we increase the target rate to 4 b/s/Hz. It can be observed 

that the diversity gain obtained from cooperative diversity schemes is still preserved, but 

the cooperative diversity schemes, without the ability to decide to cooperate or not 

cooperate, namely, the fixed selective decode-and-forward without direct link combining 

scheme and the fixed selective decode-and-forward with direct link combining scheme, 

offer the performance gain over direct communication after the thresholds of average 

signal-to-noise ratio. This is because both fixed cooperative diversity schemes require 

higher received energy per bit to compensate the transmission rate due to dividing the 

transmission into two time slots. The similar problem can occur when we decrease the 

number of relay nodes as shown in Figure 23, where we keep the target rate at 2 b/s/Hz 

but decrease the number of relay nodes to 2 relay nodes. It can be observed that the 

diversity gain obtained from cooperative diversity schemes is still preserved, but the 

cooperative diversity schemes, without the ability to decide to cooperate or not 

cooperate, namely, the fixed selective decode-and-forward without direct link combining 

scheme and the fixed selective decode-and-forward with direct link combining scheme, 

offer the performance gain over direct communication after the thresholds of average 

signal-to-noise ratio. In any cases, the smart selective decode-and-forward scheme 

always offer good performance gain over direct communication as shown in Figure 24, 

where we further increase the target rate to 4 b/s/Hz. 
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Figure 15 The case that the approximated outage probabilities of the fixed selective 

decode-and-forward with direct link combining scheme in the literature are satisfying: a 

rate of 1 b/s/Hz for 4-relay network where all link have equal average signal-to-noise 

ratio 
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Figure 16 The case that the approximated outage probability of the fixed selective 

decode-and-forward with direct link combining scheme in the literature for low SNR 

regime is unsatisfying: a rate of 1 b/s/Hz for 4-relay network with grid topology 
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Figure 17 The case that the approximated outage probability of the fixed selective 

decode-and-forward with direct link combining scheme in the literature for high SNR 

regime is unsatisfying: a rate of 1 b/s/Hz for 1-relay network with grid topology 
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Figure 18 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 2 b/s/Hz for 4-relay network with direct communication 
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Figure 19 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 2 b/s/Hz for 9-relay network with direct communication 
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Figure 20 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 2 b/s/Hz for 15-relay network with direct communication 
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Figure 21 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 1 b/s/Hz for 4-relay network with direct communication 
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Figure 22 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 4 b/s/Hz for 4-relay network with direct communication 
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Figure 23 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 2 b/s/Hz for 2-relay network with direct communication 
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Figure 24 Outage probability comparisons of all considered cooperative diversity 

schemes at a rate of 4 b/s/Hz for 2-relay network with direct communication 



 

 

CHAPTER  IV 
OUTAGE CAPACITY 

We have seen that the cooperative diversity can really improve the 

reliability. Another desirable aspect of the cooperative diversity is the improvement in 

capacity. In order to examine this expectation, we have to quantify the capacity for 

explicitly measuring how much the improvement is obtained and for comparing the 

considered schemes with different sets of factors. One of the important measures of 

capacity is the outage capacity. This chapter first analyzes the outage capacities of the 

considered cooperative diversity schemes. Then, the obtained formulas lead to the 

follow-up theories that draw insights with analytical proofs. The obtained formulas as 

well as the follow-up theories are verified by computer simulations with several sets of 

parameters. Then, the formulas are used to provide numerical results with comparisons 

and discussions. 

4.1 Direct Communication 

In order to examine whether the used cooperative diversity scheme 

really provides advantage in the employed environment and how much the improvement 

is, we have to compare the performance when the cooperative diversity scheme is 

being used to the performance when the cooperative diversity scheme is not being 

used. Accordingly, before we consider the outage capacities of the cooperative 

diversity schemes, the outage capacity of the direct communication is analyzed here to 

serve as a benchmarking. 

In the direct communication case, the formula for calculating the outage 

capacity is straightforward and is available in standard materials. The outage capacity is 

a function of an acceptable outage probability ε  and an average signal-to-noise ratio 

SNR . The formula is provided in Proposition 4. 

Proposition 4 : The outage capacity, which is obtained from direct communication 

between the source node and the destination node, at an outage probability of ε  and at 
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an average signal-to-noise ratio of the link between the source node and the destination 

node of SNR  is given by [27] 

 
( )D

out

0

C
2

SD

1, log 1 ln ,
1

C

W
Pd

N
α

ε
ε

−

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

�

SNR SNR

SNR
 (4.1) 

where DC
outC  denote the outage capacity of the direct communication, SDd  is the distance 

between the source node and the destination node, and α  is the path loss exponent. 

Proof : From the definition, the outage capacity is the maximum transmission rate, 

between the source node and the destination node, that is guaranteed to be supported 

if outages are allowed to occur within a determined probability. 

 
( )

( )

DC
out

DC
out

, max

subject to ,

C R

R

ε =

≤

SNR

SNRP ε
 (4.2) 

which can be solved by first finding the cumulative distribution function of the mutual 

information between the source node and the destination node, that is, 

 ( ) { }SDPr .F x I x= <  

Then, solving *x  such that ( )*F x ε=  yields the outage capacity. Since we already 

knew the outage probability, it is not necessary to calculate the cumulative distribution 

function of the mutual information between the source node and the destination node, 

and the optimizer is the transmission rate R  such that 

 ( )DC
out .,R =SNRP ε� (4.3) 

From Proposition 1, 

 ( )DC
out

2 1, 1 exp .
R

R
⎛ ⎞⎛ ⎞−

= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
SNR

SNR
P  (4.4) 

By equating (4.4) to ε , that is,  
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 2 1 .1 exp
R⎛ ⎞⎛ ⎞−

− − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
ε  (4.5) 

Then, R  becomes ( )DC
out ,C ε SNR . 

 
( )DC

out ,2 11 exp .
C ε⎛ ⎞⎛ ⎞−⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝
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SNR

SNR
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By arranging the terms, we obtain 

 
( )DC
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12 1e p .x
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SNR
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ε� (4.7) 

By taking logarithms on both sides, we obtain 

 
( )

( )
DC
out ,2 1 1ln ,

C ε⎛ ⎞
−

−
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⎝ ⎠

SNR

SNR
ε  (4.8) 

which can be manipulated further to 

 ( )DC
out ,2 1 ln .1

1
C ε ⎛ ⎞= + ⎜ ⎟

⎝ − ⎠
SNR SNR

ε
 (4.9) 

Taking logarithms on both sides again yields (4.1).  Q.E.D. 

4.2 Fixed Selective Decode-and-forward without Direct Link Combining Scheme 

The formula for calculating the fixed selective decode-and-forward 

without direct link combining scheme does not exist in standard materials, due to the 

complication, which is more than finding the average capacity. Without an analytical 

result, the outage capacity can only be studied by computer simulations. In this thesis, 

we propose a formula that can calculate the value analytically. 

For doing comparisons among different schemes later, the outage 

capacity is still a function of an acceptable outage probability ε  and an average signal-

to-noise ratio SNR , where the average signal-to-noise ratio in this case is the average 
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signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula is provided in Theorem 5. 

Theorem 5 : The outage capacity, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward without direct link combining 

scheme in the wireless relay network having K  relay nodes, at an acceptable outage 

probability of ε  and at an average signal-to-noise ratio of the link between the source 

node and the destination node of SNR  is given by [29] 

( )FSDF-nodirect
out 2 FSDF-nodirect

1 1, log 1 ln ,
2

C
wε

ε
⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
SNR SNR  (4.10) 

in which FSDF-nodirectwε  is solved from FSDF-nodirectw  in the equation 
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after applying the transformation 

 
2

FSDF-nodirect 2 1exp ,
R

w
⎛ ⎞⎛ ⎞−

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
 (4.12) 

where FSDF-nodirect
outC  denotes the outage capacity of the fixed selective decode-and-

forward without direct link combining scheme, SDd  is the distance between the source 

node and the destination node, Skd  is the distance between the source node and the 

k th relay node, Dkd  is the distance between the k th relay and the destination node, 

and α  is the path loss exponent. 

Proof  : From the definition, the outage capacity is the maximum end-to-end transmission 

rate, trough the flow from the source node via the selected relay node to the destination 

node, that is guaranteed to be supported if outages are allowed to occur within a 

determined probability. 
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SNR ε
 (4.13) 

which can be solved by first finding the cumulative distribution function of the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the link from the relay node to the destination node, that is, 

 ( ) S D
1,
2

1Pr max min .
2 k kk

F x I I x⎧ ⎫⎧ ⎫ <⎨ ⎨ ⎬ ⎬
⎩ ⎭⎩ ⎭

=  

Then, solving *x  such that ( )*F x ε=  yields the outage capacity. Since we already 

knew the outage probability, it is not necessary to calculate the cumulative distribution 

function of the maximum among all relay nodes of the minimum between the 

instantaneous mutual information of the link from the source node to the relay node and 

the instantaneous mutual information of the link from the relay node to the destination 

node, and the optimizer is the transmission rate R  such that 

 ( )FSDF-nodirect
out , .R =P SNR ε� (4.14) 

From Theorem 2, 
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By equating (4.15) to ε , that is, 
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Then, R  becomes ( )FSDF-nodirect
out ,C ε SNR . 
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Unfortunately, the expression cannot be manipulated further to solve for 

( )FSDF-nodirect
out ,C ε SNR . With careful inspection, we propose a transformation 
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FSDF-nodirect 2 1exp ,
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= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
 (4.18) 

to apply to the left-hand-side expression in (4.16), denoted as the function ( ),f R SNR . 

The intuitive reasons behind the proposed transformation are as follows. 

First, the domain of the transformed function is bounded between 0 and 1. Therefore, 

efficient solving is promising. Second, the transformation maps both R  and SNR  into a 

single domain. Hence, writing R  as a function of SNR  by knowing a single parameter 

can be expected. Third, as will be shown later, the transformed function is continuous 

and strictly decreasing. So, the equation solving can be done. 

By applying the transformation to the function ( ),f R SNR , we obtain 
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The transformed function, denoted by ( )FSDF-nodirectF w , is now in 

FSDF-nodirectw -domain. Then, we show that ( )FSDF-nodirectF w  is continuous. Since S D

SD

k kd d
d

α α
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+  

is a constant, 
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+

 is a parabolic function, which is continuous. Also, due to 

the additive rule, the function 1 x−  is continuous. Hence, 
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which is the composite function of those two continuous functions, is continuous. Last, 

due to the multiplicative rule, 
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is continuous, so ( )FSDF-nodirectF w  is continuous. 

From Lemma 2, ( )FSDF-nodirectF w  is strictly decreasing and is bounded 

between 0 and 1. Hence, we can efficiently solve for the unique ( ]FSDF-nodirect 0,1wε ∈  in 

 ( )FSDF-nodirect ,F wε = ε  (4.20) 

that is, 
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After solving for FSDF-nodirectwε , by taking inverse transformation to 

 FSDF-nodirect FSDF-nodirect ,w wε=  (4.22) 

we obtain 
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which means 
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Therefore, at a given ε , ( )FSDF-nodirect
out ,C ε SNR  can be written as a function of SNR  via 

a single parameter, which is FSDF-nodirectwε . This indicates that the characteristic of the 

wireless relay network, parameterized by { }SD S D, , ;k kd d d kα α α ∀ ∈K , is lumped into the 

single parameter. By taking logarithms on both sides, 
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which can be manipulated further to 
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⎝ ⎠
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Taking logarithms on both sides again and dividing both sides by 2 yield (4.10).   Q.E.D. 

Lemma 2 : The function ( ) ( ] [ ): 0,1 0,1F x →  defined by 
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is strictly decreasing, and is bounded between 0 and 1. 

Proof : Let ,x y∈\ , where 

 0 1.x y< < <  (4.28) 

By powering thoroughly with a constant 1c , 

 1 10 1.c cx y< < <  (4.29) 

By multiplying -1 thoroughly, 

 1 10 1.c cx y> − > − > −  (4.30) 

By adding 1 thoroughly, 

 1 11 1 1 0.c cx y> − > − >  (4.31) 

Changing the constant from 1c  to 2c , we obtain 

 2 21 1 1 0.c cx y> − > − >  (4.32) 

By multiplying (4.31) and (4.32), we obtain 

 ( )( ) ( )( )1 2 1 21 1 1 1 1 0.c c c cx x y y> − − > − − >  (4.33) 

Introducing 3c  until Kc  and using mathematical induction, we obtain 
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By choosing 
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we obtain 

 
S D S D

SD SD

1 1

1 1 1 0,
k k k kdK K

k

d d
d

k

d
dx y

α α α α

α α
+

=

+

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟> − > − >
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ ∏  (4.36) 

which means 

 ( ) ( )1 0.F Fx y> > >  (4.37) 

Since we defined x y< , ( )FSDF-nodirectF w  is strictly decreasing and is bounded between 

0 and 1.  Q.E.D. 

4.3 Fixed Selective Decode-and-forward with Direct Link Combining Scheme 

The formula for calculating the fixed selective decode-and-forward with 

direct link combining scheme does not exist in standard materials, due to the 

complication, which is more than finding the average capacity. Without an analytical 

result, the outage capacity can only be studied by computer simulations. In this thesis, 

we propose a formula that can calculate the value analytically. 

For doing comparisons among different schemes later, the outage 

capacity is still a function of an acceptable outage probability ε  and an average signal-

to-noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula is provided in Theorem 6. 
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Theorem 6 : The outage capacity, which is obtained from employing the cooperative 

diversity with the fixed selective decode-and-forward with direct link combining scheme 

in the wireless relay network having K  relay nodes, at an acceptable outage probability 

of ε  and at an average signal-to-noise ratio of the link between the source node and the 

destination node of SNR  is given by [28] 

 ( )FSDF-direct
out 2 FSDF-direct

1 1, log 1 ln ,
2

C
wε

ε
⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
SNR SNR  (4.38) 

in which FSDF-directwε  is solved from FSDF-directw  in the equation 
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∑
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S S S

S K
S

S
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SNR SNR

  (4.39) 

after applying the transformation 

 
2

FSDF-direct 2 1exp ,
R

w
⎛ ⎞⎛ ⎞−

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
 (4.40) 

where { }1, 2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , FSDF-direct
outC  denotes the outage capacity of the fixed 

selective decode-and-forward with direct link combining scheme, SDd  is the distance 

between the source node and the destination node, Skd  is the distance between the 

source node and the k th relay node, Dkd  is the distance between the k th relay and the 

destination node, and α  is the path loss exponent. 

Proof  : From the definition, the outage capacity is the maximum end-to-end transmission 

rate, trough the flow from the link between the source node and the selected relay node 

to the combined links between the selected relay node and the destination node and 

between the source node and the destination node, that is guaranteed to be supported 

if outages are allowed to occur within a determined probability. 
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( )

( )

FSDF-direct
out

FSDF-direct
out

, max

subject to ,

C R

R

ε =

≤ ε

SNR

SNRP
 (4.41) 

which can be solved by first finding the cumulative distribution function of the maximum 

among all relay nodes of the minimum between the instantaneous mutual information of 

the link from the source node to the relay node and the instantaneous mutual information 

of the combined links between the relay node and the destination node and between the 

source node and the destination node, that is, 

 ( ) S SD+ D
1Pr max min .
2

1,
2k kk

F x II x⎧ ⎫⎧ ⎫ <⎨ ⎨ ⎬ ⎬
⎩ ⎭⎩ ⎭

=  (4.42) 

Then, solving *x  such that ( )*F x ε=  yields the outage capacity. Since we already 

knew the outage probability, it is not necessary to calculate the cumulative distribution 

function of the maximum among all relay nodes of the minimum between the 

instantaneous mutual information of the link from the source node to the relay node and 

the instantaneous mutual information of the combined links between the relay node and 

the destination node and between the source node and the destination node, and the 

optimizer is the transmission rate R  such that 

 ( )FSDF-direct
out , .R = ε�SNRP  (4.43) 

From Theorem 3, 
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  (4.44) 

By equating (4.44) to ε , that is, 
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  (4.45) 

Then, R  becomes ( )FSDF-direct
out ,C ε SNR . 
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Unfortunately, the expression cannot be manipulated further to solve for 

( )FSDF-direct
out ,C ε SNR . With careful inspection, we propose a transformation 

 
2

FSDF-direct 2 1exp ,
R

w
⎛ ⎞⎛ ⎞−

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
 (4.47) 

to apply to the left-hand-side expression in (4.45), denoted as the function ( ),f R SNR . 

The intuitive reasons behind the proposed transformation are as follows. 

First, the domain of the transformed function is bounded between 0 and 1. Therefore, 

efficient solving is promising. Second, the transformation maps both R  and SNR  into a 

single domain. Hence, writing R  as a function of SNR  by knowing a single parameter 

can be expected. Third, as will be shown later, the transformed function is continuous 

and strictly decreasing. So, the equation solving can be done. 

By applying the transformation to the function ( ),f R SNR , we obtain 
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The transformed function, denoted by ( )FSDF-directwF , is now in 

FSDF-directw -domain. Then, we show that ( )FSDF-directwF  is continuous. Since S
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is the linear combination of those two parabolic functions, so it is continuous. The 

denominator is a constant. The linear combination of all terms is continuous, so 

( )FSDF-directwF  is continuous. 

From Lemma 3, ( )FSDF-directwF  is strictly decreasing. Hence, we can 

efficiently solve for the unique ( ]FSDF-direct 0,1wε ∈  in 

 ( )FSDF-direct ,F wε = ε  (4.49) 

that is, 
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After solving for FSDF-directwε , by taking inverse transformation to 

 FSDF-direct FSDF-direct ,w wε=  (4.51) 

we obtain 
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 (4.52) 

which means 
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 (4.53) 

Therefore, at a given ε , ( )FSDF-direct
out ,C ε SNR  can be written as a function of SNR  via a 

single parameter, which is FSDF-directwε . This indicates that the characteristic of the 

wireless relay network, parameterized by { }SD S D, , ;k kd d d kα α α ∀ ∈K , is lumped into the 

single parameter. By taking logarithms on both sides, 
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which can be manipulated further to 
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Taking logarithms on both sides again and dividing both sides by 2 yield (4.38).   Q.E.D. 

Lemma 3 : The function ( ) ( ] [ )FSDF-direct : 0,1 0,1F w → , which is 

( ) ( )

S S D

SD SD SDD

SD

0 D

S

1
FSDF-direct FSDF-direct

FSDF

D

-direct 1
1

1

k k k

k k

d d d
d d dk

l k

k

K

k

l
l

d w w
d

F w
d
d

α α α

α α α
α

α

α

α

∈ ∈

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜

∈

= ⊆
=

∈

⎟
⎝ ⎠ ⎝ ⎠

∑ ∑⎛ ⎞
−⎜ ⎟

⎝+ ⎠−
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑

∑
∑∑�

S S

S

S K
S

S

 (4.56) 

is strictly decreasing, and is bounded between 0 and 1. 



 

 
128 

Proof : From Theorem 3, it can be shown that 

( ) ( ) ( )
( )

( )
( )

2

S DSD

SD SD

S

SD

2

SD

2

FSDF-direct
D SD SD

10

FSDF-direct
SD SD

12

1

FSDF-direct

1

exp exp

1 .exp

1

R

k k

k

R

d dd K
d d

k

dK

k

k

d

d

w w dxF d x d d x

d d xw dx

α αα

α α

α

α

α

α α α

α α

+

=

∞

=

−

−

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

= −

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝
− −

⎠

∏∫

∏∫

SNR

SNR

 (4.57) 

Let 2 1w w> . Then,  
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For 0,x >  
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By multiplying -1 thoroughly, 
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By adding 1 thoroughly, 
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Using mathematical induction, 
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Since ( )SD SDexp 0d d xα α− >  for any x , 
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Define two functions ( )
1y

f x  and ( )
2yf x , where 
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where I  is an interval, and 
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where 'I  is any interval such that 'I I⊂ . Then, then the integral of 
1
( )yf x  over I  will 

be less than the integral of 
2
( )yf x  over I , that is, 
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It can be shown easily that the expressions on both sides of the 

inequality in (4.63) are continuous. Thus, the inequality holds for [0, ]x δ∈  for 0δ > . 

Therefore, if we consider that [0, ]I δ= , 1 1y w= , and 2 2y w= , then 
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With the same approach, we obtain 
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Since we defined 21w w< , ( )FSDF-directwF  is strictly decreasing. Q.E.D. 
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4.4 Smart Selective Decode-and-forward Scheme 

The formula for calculating the smart selective decode-and-forward 

scheme does not exist in standard materials, due to the complication, which is more 

than finding the average capacity. Without an analytical result, the outage capacity can 

only be studied by computer simulations. In this thesis, we propose a formula that can 

calculate the value analytically. 

For doing comparisons among different schemes later, the outage 

capacity is still a function of an acceptable outage probability ε  and an average signal-

to-noise ratio SNR , where the average signal-to-noise ratio in this case is the average 

signal-to-noise ratio of the link between the source node and the destination node. The 

average signal-to-noise ratio of the link between other pair of nodes is the function of the 

average signal-to-noise ratio of the link between the source node and the destination 

node. The formula is provided in Theorem 7. 

Theorem 7 : The outage capacity, which is obtained from employing the cooperative 

diversity with the smart selective decode-and-forward scheme in the wireless relay 

network having K  relay nodes, at an acceptable outage probability of ε  and at an 

average signal-to-noise ratio of the link between the source node and the destination 

node of SNR  is given by [28] 
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in which SSDF
,wε SNR  is solved from SSDFw  in the equation 
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S

ε
SNR

SNR SNR
 (4.70) 
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after applying the transformation 

 SSDF 2 1exp ,
R

w
⎛ ⎞⎛ ⎞−

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
 (4.71) 

where { }1, 2,3, , K∈ …K  is the set of the indices of all relay nodes, S  is a subset of K , 

S  is the cardinality of the set S , SSDF
outC  denotes the outage capacity of the smart 

selective decode-and-forward scheme, SDd  is the distance between the source node 

and the destination node, Skd  is the distance between the source node and the k th 

relay node, Dkd  is the distance between the k th relay and the destination node, and α  

is the path loss exponent. 

Proof  : From the definition, the outage capacity is the maximum end-to-end transmission 

rate, trough the better flow between the flow from the source node to the destination 

node without transmission time dividing and the flow from the link between the source 

node and the selected relay node to the combined links between the selected relay 

node and the destination node and between the source node and the destination node, 

that is guaranteed to be supported if outages are allowed to occur within a determined 

probability. 

 
( )

( )

SSDF
out

SSDF
out

, max

subject to ,

C R

R

ε =

≤ ε

SNR

SNRP
 (4.72) 

which can be solved by first finding the cumulative distribution function of the higher 

between the instantaneous mutual information of the link from the source node to the 

destination node and the maximum among all relay nodes of the minimum between the 

instantaneous mutual information of the link from the source node to the relay node and 

the instantaneous mutual information of the combined links between the relay node and 

the destination node and between the source node and the destination node, that is, 

 ( ) SD S SD+ D
1Pr max ,max min
2 2

.1,k kk
F x II I x

⎧ ⎫⎧ ⎫⎧ ⎫ <⎨ ⎨ ⎨ ⎬⎬ ⎬
⎩ ⎭⎩ ⎭⎩ ⎭

=  (4.73) 
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Then, solving *x  such that ( )*F x ε=  yields the outage capacity. Since we already 

knew the outage probability, it is not necessary to calculate the cumulative distribution 

function of the higher between the instantaneous mutual information of the link from the 

source node to the destination node and the maximum among all relay nodes of the 

minimum between the instantaneous mutual information of the link from the source node 

to the relay node and the instantaneous mutual information of the combined links 

between the relay node and the destination node and between the source node and the 

destination node, and the optimizer is the transmission rate R  such that 

 ( )SSDF
out , .R = ε�SNRP  (4.74) 

From Theorem 4, 

( )

SSDF
out

S D D

SD SD SD

0 D

SD

2

1exp

2 1 2 1exp exp 1 1

( 1

1

2,

1

)

R R

k k

R

k k k

K

l

l

l k

k

R

d d d
d d d

d
d

α α α

α α α

α

α

∈ ∈

= ⊆
=

∈

⎛ ⎞−
−⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟− + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠−
⎛ ⎞

−⎜ ⎟
⎝ ⎠

= −

+
∑ ∑

∑∑
∑

S S

S K
S

S

SNR
SNR

SNR SNR

P

 (4.75) 

By equating (4.75) to ε , that is, 

( )

S D D

SD SD SD

0

S

2

D

D

21 1exp

2 1 2 1exp exp 1 1

1
1

R R

k k

R

k k k

K

l k
l

l

k

d d d
d d d

d
d

α α α

α α α

α

α

∈ ∈

= ⊆
=

∈

⎛ ⎞−
−⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟− + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠−
⎛ ⎞

−⎜ ⎟

−

⎝

+

=

⎠

∑
∑

∑
∑ ∑
S S

S K
S

S

ε

SNR

SNR SNR
 (4.76) 

Then, R  becomes ( )SSDF
out ,C ε SNR . 

 
( )SSDF

out , 1e1 xp 2C ε⎛ ⎞−
= − −⎜ ⎟⎜ ⎟

⎝
+
⎠

ε
SNR

SNR
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( )

( ) ( )SSDF SSDF
out out

S D D

SD SD SD

0

S

,

D

,

D

22 1 2 1exp exp 1 1

1
1

C C

k kl

k k k

K

k

l k
l

d d d
d d d

d
d

α α α

α α α

α

ε ε

α

∈ ∈

= ⊆
=

∈

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟− + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠−
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑∑
∑ ∑

∑

S S

S K
S

S

SNR SNR

SNR SNR

  (4.77) 

Unfortunately, the expression cannot be manipulated further to solve for 

( )SSDF
out ,C ε SNR . With careful inspection, we propose a transformation 

 SSDF 2 1exp ,
R

w
⎛ ⎞⎛ ⎞−

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR
 (4.78) 

to apply to the left-hand-side expression in (4.76), denoted as the function ( ),f R SNR . 

The intuitive reasons behind the proposed transformation are as follows. 

First, the domain of the transformed function is bounded between 0 and 1. Therefore, 

efficient solving is promising. Second, the transformation maps both R  and SNR  into a 

single domain and a residual SNR . Hence, writing R  as a function of SNR  by 

knowing a single parameter at each SNR  can be expected. Third, as will be shown 

later, the transformed function is continuous and strictly decreasing. So, the equation 

solving can be done. 

By applying the transformation to the function ( ),f R SNR , we obtain 

( )

S D D

SD SD SD

D

2

0 D

S

1exp 21

2 1 2 1exp exp 1 1

1
1
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k
R R

k kl

k

K

l k
l

k

kd d d
d d d

d
d

α α α

α α α

α

α

∈ ∈

= ⊆
=

∈

⎛ ⎞−
−⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟− + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠−
⎛ ⎞

−⎜ ⎟

↔

⎝

− +

⎠

∑ ∑

∑
∑∑

S S

S K
S

S

SNR

SNR SNR
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( )
( ) ( )( )

S D D

SD SD SD
12SSDF SSDF SSDF

SS

0

F

D

SD

D

exp 2ln ln 1

11
1

k k

k

k

k

d d d
d d

K

l k

l

l
k

d

d

w w

w

d

w

α α α

α α α

α

α

∈ ∈

⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= ⊆
=

∈

⎛ ⎞∑ ∑⎜ ⎟− −
⎜ ⎟
⎝ ⎠−

⎛ ⎞
−⎜ ⎟

⎝

− +

⎠

∑
∑

∑

S S

S K
S

S

SNR

  (4.79) 

The transformed function, denoted by ( )SSDFF w , is now in SSDFw -

domain. Then, we show that ( )SSDFF w  is continuous, when an SNR  is given. Since 

S

SD

k

k

d
d

α

α
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
S

 and D

SD

k

k

d
d

α

α
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
S

 is a constant, 
D

SD
1

SSDF
k

k

d
dw

α

α
∈

⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠
∑
S  is parabolic function, which is 

continuous. Since a logarithmic function is continuous, the polynomial 

( ) ( )2SSDF SSDF2 ln lnw w− SNR  is continuous. Since an exponential function is 

continuous, the composite function between the exponential function and the parabolic 

function is continuous. Hence, 

 ( ) ( )( )
S D

SD SD
2SSDF SSDFexp 2ln ln k

k kd d
d dw w

α α

α α
∈

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑

− SNR S  

is continuous. Due to multiplicative rule, the numerator 

( ) ( )( )
S D D

SD SD SD
12SSDF SSDF SSDFexp 2ln ln 1

k k k

k k

d d d
d d dw w w

α α α

α α α
∈ ∈

⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞∑ ∑⎜ ⎟− −
⎜ ⎟
⎝ ⎠

SNR S S  

is continuous. The denominator is a constant. The linear combination of all terms is 

continuous, so ( )SSDFF w  is continuous. 

From Lemma 4, the function ( )SSDFF w  is strictly decreasing on 
SSDF (0,1]w ∈ . Therefore, we can efficiently solve for the unique ( ]SSDF

, 0,1wε ∈SNR  in 

 ( )SSDF
, ,F wε =SNR ε  (4.80) 

that is, 
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( )
( ) ( )( )

S D D

SD SD SD
12SSDF SSDF SSDF
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⎝ ⎠−

⎛ ⎞
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⎝

=
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⎠

∑∑
∑

SNR S S

S K
S

S

ε

  (4.81) 

After solving for SSDF
,wε SNR , by taking inverse transformation to 

 SSDF SSDF
, ,w wε= SNR  (4.82) 

we obtain 

 SSDF
,

2 1exp ,
R

wε

⎛ ⎞⎛ ⎞−
− =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

SNRSNR
 (4.83) 

which means 

 
( )SSDF

out ,
SSDF

,
2 1exp .

C

w
ε

ε

⎛ ⎞⎛ ⎞−⎜ ⎟− =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

SNR

SNRSNR
 (4.84) 

Therefore, at a given ε  and SNR , ( )SSDF
out ,C ε SNR  can be found via a single 

parameter, which is SSDF
,wε SNR . This indicates that the characteristic of the wireless relay 

network, parameterized by { }SD S D, , ;k kd d d kα α α ∀ ∈K , is lumped into the single parameter. 

By taking logarithms on both sides, 

 
( )

( )
SSDF
out ,

SSDF
,

2 1 ln ,
C

w
ε

ε

⎛ ⎞−
− =⎜ ⎟⎜ ⎟
⎝ ⎠

SNR

SNRSNR
 (4.85) 

which can be manipulated further to 

 ( )SSDF
out ,

SSDF
,

12 1 ln .C

w
ε

ε

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠

SNR

SNR

SNR  (4.86) 

Taking logarithms on both sides again yields (4.69).  Q.E.D. 

Lemma 4 : The function ( )SSDFF w  defined by 
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( )

( )
( ) ( )( )

S D D

SD SD SD

SSDF SSDF

12SSDF SSDF

0 D

S

D

D

SS Fexp 2ln ln 1

1
1

1

k

k k

k kd d d
d d d

K

l k

l

l
k

w

d
d

F w

w w w

α α α

α α α

α

α

∈ ∈

⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= ⊆
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�

SNR S S

S K
S

S

 (4.87) 

 is strictly decreasing. 

Proof : Let :[0, ) [0, )g ∞ → ∞  denote a function 

 2.( ) 2g a a a+� SNR  (4.88) 

Function g  is strictly increasing because 

 ( ) 0.
dg a

da
>  (4.89) 

Hence, g  is a bijection, and 1g −  exists and is strictly increasing. By 

fixing SNR > 0 , we show that function :[0, ) [0,1]f ∞ →�   below is strictly increasing: 

{ } ( ){ }{ }2 2 2 2
S SD D SD( ) max max min , , .k kk

f y h h h g h y
∈

+ ≤� � P
K

 (4.90) 

Let 1 20 y y≤ <  be given. We want to show that 1 2( ) ( )f y f y<� � . Let 

 

1
1 1

1
2 2

2

2

( )

( )

.

a g y

a g y
a
y

β

−

−

�
�

�

 

Since 2a  and 2y  are positive, 

 0 1,β< <  

which gives the left-most inequality, and since 

 2 2( ),y g y<  
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we obtain 

 1
2 2( ) ,g y y− <  

which gives the right-most inequality. Now, consider 

 { } ( ){ }{ }2 2 2 2
2 1 1 S SD D SD 2max max m( ) - ( in , , .) k kk

y h h h g hy f y yf
∈

+ ≤= <� � P
K

 

Since one event is a subset of the others, 
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P

P

K

K K  

Due to independence and the definition of β , we can take the inverse 1g −  in the 

inequalities to obtain 
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Since each probability term is positive, 
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2 2
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k k
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y h y y h y

y h aa h a

β β
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< <∏ ∏P P

P

K K  

which gives 

 2 1( ) - ( ) 0,f y f y >� �  

and so 1 2( ) ( )f y f y<� � . 
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Considering ( )SSDFF w , it can be verified that 

 ( )SSDF SSDF
SSDF

1ln , 0 1,w f g w
w

F ⎛ ⎞⎛ ⎞= < ≤⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

�  

and hence is strictly decreasing on SSDF (0,1]w ∈ .  Q.E.D. 

4.5 Follow-up Theories 

The analyzed outage capacities lead to insights with analytical proofs as 

follows. First, we loosely compare the outage capacities of the considered schemes in 

Lemma 5. 

Lemma 5 : The outage capacities of the three considered schemes satisfy 

( ) ( ) ( )FSDF-nodirect FSDF-direc
out

t
out

F
ut

D
o
SS, , ,C C C≤ ≤SNR SNR SNRε ε ε  (4.91) 

for any ε  and SNR . 

Proof : Since 

 SSDF FSDF-direct DCmax{ , },R R R=  (4.92) 

we obtain 

 FSDF-direct SSDF.R R≤  (4.93) 

From 

 ( )MRC 2 S D( ) log 11
2

,k kR k SNR SNR= + +  (4.94) 

and 

 ( )D 2 Dlog 11
2

,k kSNRR +=  (4.95) 

we know that 

 MRC D( ) ,k kR Rk > ∀  (4.96) 
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because S 0kSNR >  and ( )2log ⋅  is a strictly increasing function. Therefore, from 

 FSDF-direct S MRCmax min{ , ( )},kk
R R R k

∈
=

K
 (4.97) 

and 

 FSDF-nodirect S Dmax min{ , },k kk
R R R

∈
=

K
 (4.98) 

we obtain 

 FSDF-nodirect FSDF-direct .R R≤  (4.99) 

Then, it can be verified that 

 FSDF-nodirect FSDF-direct SSDF ,R R R≤ ≤  (4.100) 

which gives (4.91) almost surely. Q.E.D. 

At first sight, the cooperative diversity seems to unconditionally provide 

advantage over the direct communication, and the results on outage probabilities 

support that conjecture. On the other hand, when we concern about outage capacity, 

the using cooperative diversity is not always beneficial. We show the limitation of the 

considered cooperative diversity schemes in Propositions 5, 6, and 7. Also, we show 

that it is possible to use cooperative diversity schemes only when they are beneficial in 

Corollary 1 and Corollary 2. 

Proposition 5 : In the high signal-to-noise ratio regime, we have 

 ( )
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FSDF-nodire
out
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c

D
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t

C

, 1lim ,
, 2

C
C→∞

=
ε

εSNR

SNR
SNR

 (4.101) 

and in the low signal-to-noise ratio regime, we have 
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, 2 ln 1

C
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ε εSNR
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SNR

 (4.102) 

Proof : Let’s consider the high signal-to-noise ratio regime. Since 
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( )FSDF-nodirect
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ε
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SNR SNR  (4.103) 

and 
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SNR SNR  (4.104) 

the limit of the ratio can be written as 
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 (4.105) 

By the l'Hospital's rule, we take differentiation for both the numerator and the 

denominator with respect to SNR . 

2 FSDF-nodirect

2 FSDF-nodirect

2 2

1 1log 1 ln1 1 2log 1 ln
2

1
lim lim ,

1log 1 ln log 1 ln
1 1

d
w

w d

d

d

ε

ε

ε ε
→∞ →∞

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎝ ⎠⎝ ⎠+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

=
SNR SNR

SNR
SNR

SNR

SNR SNR

SNR

 

  (4.106) 
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and  
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  (4.108) 

By the l'Hospital's rule, we take another differentiation for both the numerator and the 

denominator with respect to SNR . 
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where 
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Then, we obtain 
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which gives (4.101). 

Now, we consider the low signal-to-noise ratio regime. The limit of the 

ratio can be written as 
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By the l'Hospital's rule, we take differentiation for both the numerator and the 

denominator with respect to SNR . 
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Now, we obtain 
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  (4.117) 

which gives (4.102).  Q.E.D. 

 In the high signal-to-noise ratio regime, the outage capacity indicates that the 

fixed selective decode-and-forward without direct-link combining scheme is always 

worse than direct communication. In particular, direct communication offers double 

outage capacity, irrespective of FSDF-nodirectwε . This means that the loss in degrees of 

freedom due to signal repetition is detrimental compared to the gain in diversity using 

cooperation. In the low signal-to-noise ratio regime, the topology of the relay network, 
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which determines FSDF-nodirectwε , can make the ratio to be greater or less than 1. If it is 

greater than 1, i.e., 

 FSDF-nodir t 2ec ( ) ,1wε < − ε  (4.118) 

then the fixed selective decode-and-forward without direct-link combining scheme will 

provide higher outage capacity than direct communication (in the low signal-to-noise 

ratio regime). On the other hand, if the topology of the relay network makes 

 FSDF-nodir t 2ec ( ) ,1wε ≥ − ε  

then the fixed selective decode-and-forward without direct-link combining scheme will 

provide lower outage capacity than direct communication in both high and low signal-to-

noise ratio regimes. Intuitively, supposing all relay nodes are very far from the source 

and destination nodes, it is likely that the loss in degrees of freedom due to dividing the 

channel into two time slots dominates the improvement of the received signal strength 

from maximum ratio combining. 

Suppose that the topology of the relay nodes yields a performance gain 

to the fixed selective decode-and-forward without direct-link combining scheme. The 

performance gain will become smaller as a function of signal-to-noise ratio, and vanish 

eventually. Then, the performance gain turns out to be a performance loss. Thus, we 

expect that there exists an SNR  threshold at which both the fixed selective decode-

and-forward without direct-link combining scheme and direct communication provide 

equal outage capacity, resulting in Corollary 1. 

Corollary 1 : For a given outage probability ε , the SNR  at which the fixed selective 

decode-and-forward without direct-link combining scheme and direct communication 

have the same outage capacity is given by 
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Proof : Since thresholdSNR  is the SNR  such that 
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 ( ) ( )DC FSDF-nodirect
out out, , ,C Cε ε=SNR SNR  (4.120) 

 we equate (4.1) and (4.10), that is, 

2 2 FSDF-nodirectthreshold threshold
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SNR SNR  (4.121) 

By multiplying both sides with 2ln 2 , we obtain 
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SNR SNR  

  (4.122) 

Changing the base of the logarithm and using the properties of logarithm function, the 

equation can be manipulated as 
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By taking anti-logarithm on both sides, we obtain 
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which means 
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  (4.125) 

By subtracting 1 and dividing thresholdSNR  on both sides, we obtain 
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or equivalently, 
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( ) ( )( ) ( )threshol
2 FSDF-nodirect

d2 ln 1 ln 1 ln ,wεε ε− − + − − = −SNR  (4.127) 

which can be manipulated further to give (4.119).  Q.E.D. 

The intuition is made precise as follows. We can improve the overall 

performance by adaptively switching between the fixed selective decode-and-forward 

without direct-link combining scheme and direct communication depending on the 

operating signal-to-noise ratio. When SNR  is below thresholdSNR , we use the fixed 

selective decode-and-forward without direct-link combining scheme, which provides 

higher outage capacity. When SNR  is above thresholdSNR , we switch to use direct 

communication, which provides higher outage capacity. 

Proposition 6 : In the high signal-to-noise ratio regime, we have 

 ( )
( )

FSDF-direc
out

ou

t

t
DC

, 1lim ,
, 2

C
C→∞

=
SNR

SNR
SNR
ε

ε
 (4.128) 

and in the low signal-to-noise ratio regime, we have 
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Proof : Let’s consider the high signal-to-noise ratio regime. Since 
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the limit of the ratio can be written as 
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By the l'Hospital's rule, we take differentiation for both the numerator and the 

denominator with respect to SNR . 

2 FSDF-direct

2 FSDF-direct

2 2

1 1log 1 ln1 1 2log 1 ln
2

1
lim lim ,

1log 1 ln log 1 ln
1 1

d
w

w d

d

d

ε

ε

ε ε
→∞ →∞

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎝ ⎠⎝ ⎠+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

=
SNR SNR

SNR
SNR

SNR

SNR SNR

SNR

 

  (4.133) 
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and 
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Now, we obtain 
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  (4.136) 

By the l'Hospital's rule, we take another differentiation for both the numerator and the 

denominator with respect to SNR . 
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where 
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                                               FSDF-direct

1 1 1ln ln ,
2 1 wεε

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (4.138) 

and 
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Then, we obtain 
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 (4.140) 

which gives (4.128). 

Now, we consider the low signal-to-noise ratio regime. The limit of the 

ratio can be written as 
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 (4.141) 

By the l'Hospital's rule, we take differentiation for both the numerator and the 

denominator with respect to SNR . 



 

 
151 

2 FSDF-direct

2 FSDF-direct

2

0 0

2

1 1log 1 ln1 1 2log 1 ln
2

1
lim lim ,

1log 1 ln log 1 ln
1 1

d
w

w d

d

d

ε

ε

ε ε
→ →

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎝ ⎠⎝ ⎠+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

=
SNR SNR

SNR
SNR

SNR

SNR SNR

SNR

 

  (4.142) 

where 
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Now, we obtain 



 

 
152 

( )
( )

FSDF-direct

FSDF-direct
out

out

FSDF-direct

FSDF-direct

DC0 0

0

1ln
1

2ln 2 11
,

lim lim
,

ln

1ln
1 1

ln 2 11 ln
1

1 1 11 ln ln
2 1

lim

w

C

w

C w

ε

ε

ε

ε

ε

ε

→ →

→

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟−⎝ ⎠

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
⎛⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

=

=

SNR SNR

SNR

SNR
SNR

SNR

SNR

SNR

ε
ε

( )
( )

FSDF-direct

FSDF-direct

FSDF-direct

0

1 11 ln ln
1

11 lnln 11
2 l

lim
n 1 1ln

,
1

w

w

w

ε

ε

ε

ε

ε
ε →

⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

− − ⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎠

=

⎝

SNR

SNR

SNR

SNR

 (4.145) 

which gives (4.131).  Q.E.D. 

From Proposition 5 and Proposition 6, the outage capacity of the fixed 

selective decode-and-forward without direct-link combining scheme converges to that of 

the fixed selective decode-and-forward with direct-link combining scheme in both high 

and low signal-to-noise ratio regimes. Therefore, choosing not to do maximum ratio 

combining at the destination node is harmful to the obtained outage capacity only in the 

medium signal-to-noise ratio regime. 

In the high signal-to-noise ratio regime, the outage capacity indicates 

that the fixed selective decode-and-forward with direct-link combining scheme is always 

worse than direct communication. In particular, direct communication offers double 

outage capacity, irrespective of FSDF-directwε . This means that the loss in degrees of 

freedom due to signal repetition is detrimental compared to the gain in diversity using 

cooperation. In the low signal-to-noise ratio regime, the topology of the relay network, 

which determines FSDF-directwε , can make the ratio to be greater or less than 1. If it is 

greater than 1, i.e., 
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 FSDF-dire t 2c (1 ) ,wε < − ε  (4.146) 

then the fixed selective decode-and-forward with direct-link combining scheme will 

provide higher outage capacity than direct communication (in the low signal-to-noise 

ratio regime). On the other hand, if the topology of the relay network makes 

 FSDF-dire t 2c (1 ) ,wε ≥ − ε  

then the fixed selective decode-and-forward with direct-link combining scheme will 

provide lower outage capacity than direct communication in both high and low signal-to-

noise ratio regimes. Intuitively, supposing all relay nodes are very far from the source 

and destination nodes, it is likely that the loss in degrees of freedom due to dividing the 

channel into two time slots dominates the improvement of the received signal strength 

from maximum ratio combining. 

Suppose that the topology of the relay nodes yields a performance gain 

to the fixed selective decode-and-forward with direct-link combining scheme. The 

performance gain will become smaller as a function of signal-to-noise ratio, and vanish 

eventually. Then, the performance gain turns out to be a performance loss. Thus, we 

expect that there exists an SNR  threshold at which both the fixed selective decode-

and-forward with direct-link combining scheme and direct communication provide equal 

outage capacity, resulting in Corollary 2. 

Corollary 2 : For a given outage probability ε , the SNR  at which the fixed selective 

decode-and-forward with direct-link combining scheme and direct communication have 

the same outage capacity is given by 
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− −
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−
SNR  (4.147) 

Proof : Since thresholdSNR  is the SNR  such that 

 ( ) ( )DC FSDF-direct
out out, , ,C Cε ε=SNR SNR  (4.148) 
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we equate (4.1) and (4.38), that is, 

2 2 FSDF-directhreshold thresho d tl
1 1 1log 1 ln log 1 ln .

1 2 wεε
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞+ = +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

SNR SNR  (4.149) 

By multiplying both sides with 2ln 2 , we obtain 
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SNR SNR  

  (4.150) 

Changing the base of the logarithm and using the properties of logarithm function, the 

equation can be manipulated as 
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SNR SNR  (4.151) 

By taking anti-logarithm on both sides, we obtain 
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which means 
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  (4.153) 

By subtracting 1 and dividing thresholdSNR  on both sides, we obtain 
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or equivalently, 

( ) ( )( ) ( )thres
2 FSDF-direct

hold2 ln 1 ln 1 ln ,wεε ε− − + − − = −SNR  (4.155) 
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which can be manipulated further to give (4.147).  Q.E.D. 

The intuition is made precise as follows. We can improve the overall 

performance by adaptively switching between the fixed selective decode-and-forward 

with direct-link combining scheme and direct communication depending on the 

operating signal-to-noise ratio. When SNR  is below thresholdSNR , we use the fixed 

selective decode-and-forward with direct-link combining scheme, which provides higher 

outage capacity. When SNR  is above thresholdSNR , we switch to use direct 

communication, which provides higher outage capacity. Also, the fixed selective 

decode-and-forward without direct-link combining scheme can be used instead if the 

performance penalty in the medium signal-to-noise ratio regime is acceptable in the 

considered topology. 

Proposition 7 : In the high signal-to-noise ratio regime, we have 
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 (4.156) 

Proof : By definition, DC SSDFR R≤ , implying that 

 DC SSDF
ouout t( , ) ( , ),C C≤SNR SNRε ε  (4.157) 

and hence, 
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 (4.158) 

(We take the limit infimum because we are not sure yet whether the limit exists.) Next, fix 

k  and consider the following bound: 

 { }S MRC MRCmin , ( ) 2 ( ).kR R k R k≤  (4.159) 

Taking a maximum over k∈K  and over DCR  gives 

 SSDF SSDF ,R R≤  (4.160) 
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where 

 SSDF MRC DCmax max{2 ( )}, .{ }
k

R R k R
∈

�
K

 (4.161) 

Since 

 MRC SD( ) , ,R R kk > ∀  (4.162) 

we obtain 
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 (4.163) 

Since the mutual information is a concave function, 

 ( ) [ ]SD+ D D SD 2max log 1 ,kkk
I SNR XSNR

∈
+ += SNR

K
 (4.164) 

for the random variable 

 2 2
SD Dmax .kk

X h h
∈

+�
K

 (4.165) 

The inequality (4.160) implies that 

 SSDF SSDF
out out( , ) ( , ),C C≤SNR SNRε ε  (4.166) 

where SSDF
out ( , )C SNRε  is the outage capacity of a transmission scheme that has the 

maximum instantaneous end-to-end mutual information of SSDFR : 

 SSDF 1
out 2( , ) log 1 ( ) ,XC F ε−⎡ ⎤= +⎣ ⎦SNR SNRε  (4.167) 

where XF  is the cumulative density function of X . (The fact that :[0, ) [0,1)XF ∞ →  is 

strictly increasing and is a bijection can be shown by using a similar argument shown in 

Lemma 4.) 

Dividing the outage capacities by C
out
D ( , )C SNRε  and taking the limit 

supremum give 
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By the l'Hospital's rule, 
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 (4.169) 

which implies that 

 out

SNR
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DC

( , )slim up 1.
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≤
SNR

SNR
ε
ε

 (4.170) 

The inequalities (4.158) and (4.170) imply that the limit supremum and 

the limit infimum equal 1, and hence the existence of the limit, as given in the statement 

of the proposition.  Q.E.D. 

In the high signal-to-noise ratio regime, we see that the smart selective 

decode-and-forward scheme converges to direct communication, regardless of the 

relay network topology. This means that if the channel between the source and 

destination nodes is strong, the increased loss in bandwidth from dividing the channel 

into two time slots to do relaying dominates the increased received signal strength from 

combining the regenerated signals from any relay. In the low signal-to-noise ratio 

regime, the smart selective decode-and-forward scheme performs better than or, in the 

worst case, as good as direct communication with the help from relay nodes. This 

means that if no relay can improve the performance, the smart selective decode-and-

forward scheme will simply use direct communication. In any case, the smart selective 

decode-and-forward scheme does not perform worse than direct communication for any 

signal-to-noise ratio. This is because the smart selective decode-and-forward scheme 

decides not to use cooperative diversity when direct communication offers a higher rate. 

Naturally, increasing the number of relay nodes in the cooperative 

diversity schemes with relay selection is beneficial in terms of performance. Hence, the 

network that has larger number of relay nodes provides greater outage capacity than 
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that of the network with smaller number of relay nodes at any signal-to-noise ratio. From 

Proposition 7, it is clear that the outage capacity of the smart selective decode-and-

forward scheme in the high signal-to-noise ratio regime does not increase by adding 

more relay nodes. This can be attributed to the fact that the smart selective decode-and-

forward scheme converges to direct communication when the signal-to-noise ratio 

increases. On the other hand, It is different for the fixed selective decode-and-forward 

without direct link combining scheme and the fixed selective decode-and-forward with 

direct link combining scheme. In Corollary 3 and Corollary 4, we investigate the 

performance gap when we plot the outage capacities of the network with different 

number of relay nodes as a function of signal-to-noise ratio for both schemes. 

Corollary 3 : In the high signal-to-noise ratio, the curve gaps among the outage capacity 

plot of the fixed selective decode-and-forward without direct link combining scheme as 

a function of signal-to-noise ratio are constant. Hence, adding more relays still increases 

the outage capacity in the high signal-to-noise ratio regime. 

Proof : From Theorem 5, 
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As the signal-to-noise ratio becomes high, 
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where the logarithm can be split, thus we obtain 
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The second term makes the curve of outage capacity linear as a function of SNR  in 

decibels, and the first term, which is a constant, introduces the vertical offset of the 

curve. Hence, two networks with different number of relay nodes have equal second 

term and different constant terms. This means the gap between two curves is constant. 

Now, we show that adding more relays still increases the outage 

capacity even in the high signal-to-noise ratio regime. Considering two networks with 

unequal number of relay nodes, suppose the corresponding FSDF-nodirectwε ’s are x  and 

y , respectively. The corresponding outage capacities are 
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and so 
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which means 

2 2
1 1 1 1lim log 1 ln log 1 ln 0.
2 2x y→∞

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞+ − + >⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠SNR

SNR SNR  (4.176) 

Since two networks must have different outage capacities and having larger number of 

relay nodes is beneficial, adding more relays still increases the outage capacity in the 

high signal-to-noise ratio regime.  Q.E.D. 

Corollary 4 : In the high signal-to-noise ratio, the curve gaps among the outage capacity 

plot of the fixed selective decode-and-forward with direct link combining scheme as a 

function of signal-to-noise ratio are constant. Hence, adding more relays still increases 

the outage capacity in the high signal-to-noise ratio regime. 

Proof : From Theorem 6, 
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As the signal-to-noise ratio becomes high, 
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where the logarithm can be split, thus we obtain 

( ) ( )FSDF-direct
out 2 2FSDF-direct

1 1 1lim , log ln log lim .
2 2

C
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⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠SNR SNR

SNR SNR  (4.179) 

The second term makes the curve of outage capacity linear as a function of SNR  in 

decibels, and the first term, which is a constant, introduces the vertical offset of the 

curve. Hence, two networks with different number of relay nodes have equal second 

term and different constant terms. This means the gap between two curves is constant. 

Now, we show that adding more relays still increases the outage 

capacity even in the high signal-to-noise ratio regime. Considering two networks with 

unequal number of relay nodes, suppose the corresponding FSDF-directwε ’s are x  and y , 

respectively. The corresponding outage capacities are 
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where the first line uses the logarithm’s property. Since ,x y≠  
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and so 
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which means 
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SNR SNR  (4.183) 

Since two networks must have different outage capacities and having larger number of 

relay nodes is beneficial, adding more relays still increases the outage capacity in the 

high signal-to-noise ratio regime.  Q.E.D. 

It is interesting to examine whether improving the outage capacity by 

keep adding more relay nodes for the cooperative diversity schemes with relay selection 

leads to a saturation. Intuitively, it is likely that all schemes have the saturations because 

only the best relay node is utilized regardless of the number of relay nodes. Surprisingly, 

the proof in Theorem 8 indicates the answer in the other way around for all schemes. 

Theorem 8 : By keep adding more relay nodes, the fixed selective decode-and-forward 

without direct link combining scheme, the fixed selective decode-and-forward with 
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direct link combining scheme, and the smart selective decode-and-forward scheme are 

unbounded. 

Proof : For the fixed selective decode-and-forward without direct link combining scheme 

with K  relay nodes, we solve for FSDF-nodirectwε  in 

 
S D

SDFSDF-nodirect FSDF-nodirect

1

1 , 0, 1.
k kd dK
d

k

w w
α α

α
+

=

⎡ ⎤
⎢ ⎥− = > <
⎢ ⎥⎣ ⎦

∏ ε εε ε  (4.184) 

Based on the proof by contradiction, we claim that the outage capacity of the fixed 

selective decode-and-forward without direct link combining scheme is bounded, that is, 
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To find a contradiction, let 
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Since 

 lim 1,K

K ∞→
=ε  (4.188) 

we obtain 

 1FSDF-nodirect 21 1w
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for any 0δ > . Thus, there exists K  such that 

 1 1FSDF-nodirect2 2 .w
α α

δ
− −

<ε  (4.190) 

Since 1α > , 12 1α− < . Therefore, 

 FSDF-nodirect ,w δ<ε  (4.191) 

which means that we can keep increasing K  to make FSDF-nodirectwε  arbitrarily small, and 

as 0δ →  
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From Lemma 5,  

( ) ( ) ( )FSDF-nodirect FSDF-direc
out

t
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F
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o
SS, , ,C C C≤ ≤SNR SNR SNRε ε ε  (4.193) 

for any ε  and SNR . It follows that 

 ( )FSDF-dire t
out

c , ,C < ∞/ε SNR  (4.194) 

and 

 ( )SSDF
out ,C < ∞/ε SNR  (4.195) 

as well.  Q.E.D. 

4.6 Verification with Computer Simulations 

In this section, we verify the analytical outage capacities with Monte 

Carlo simulations. To cover several cases, we vary the number of relay nodes at 1, 4, or 

9, and the acceptable outage probabilities at 0.1 and 0.01. The relay nodes are 

arranged in grid topology between the source node and the destination node, between 

which the distance is 1000 m. All curves are plotted as a function of SNR , which is the 

average signal-to-noise ratio between the source node and the destination node. 
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In Figure 25 – Figure 30, we plot the analytical and simulated outage 

capacities of the fixed selective decode-and-forward without direct link combining 

scheme, the fixed selective decode-and-forward with direct link combining scheme, and 

the smart selective decode-and-forward scheme with the number of relay nodes 

{1, 4,9}K =  and at an outage probability {0.1,0.01}=ε , as a function of the SNR . It 

can be observed that the analytical results are in good agreement with the simulation 

results, showing the validity of our analytical expressions in Theorem 5 – Theorem 7. 
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Figure 25 Verification of the outage capacities of all analyzed cooperative diversity 

schemes at an outage probability of 0.1 for 1-relay network 
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Figure 26 Verification of the outage capacities of all analyzed cooperative diversity 

schemes at an outage probability of 0.1 for 4-relay network 
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Figure 27 Verification of the outage capacities of all analyzed cooperative diversity 

schemes at an outage probability of 0.1 for 9-relay network 
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Figure 28 Verification of the outage capacities of all analyzed cooperative diversity 

schemes at an outage probability of 0.01 for 1-relay network 
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Figure 29 Verification of the outage capacities of all analyzed cooperative diversity 

schemes at an outage probability of 0.01 for 4-relay network 
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Figure 30 Verification of the outage capacities of all analyzed cooperative diversity 

schemes at an outage probability of 0.01 for 9-relay network 

4.7 Results and Discussions 

We examine the performance gain of using cooperative diversity 

schemes over direct communication in terms of outage capacity with various 

parameters. The outage capacity of direct communication is provided in Proposition 4. 

In Figure 31, the acceptable outage probability is 0.01, and the number of relay nodes is 

4 with grid topology. Compared to direct communication, all cooperative diversity 

schemes offer significant performance gain. Among the cooperative diversity schemes, 

the fixed selective decode-and-forward with direct link combining scheme is superior to 

the fixed selective decode-and-forward without direct link combining scheme, and the 

smart selective decode-and-forward scheme is in turn superior to the fixed selective 

decode-and-forward with direct link combining scheme as expected in Lemma 5. As we 

increase the number of relay nodes, the performance gain is larger for all cooperative 

diversity schemes as shown in Figure 32, where we increase the number of relay nodes 

to 9 relay nodes. Also, the performance gaps among cooperative diversity schemes 
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become smaller. Therefore, the ability, to decide to cooperate or not cooperate, 

introduced in the smart selective decode-and-forward scheme or the ability, to combine 

the signals from the direct link, introduced in the fixed selective decode-and-forward 

scheme with direct link combining scheme can be overlooked in favor of the simpler 

fixed selective decode-and-forward without direct link combining scheme when the 

number of relay nodes is large enough. Then, we examine in the reverse way by 

decreasing the number of relay nodes as shown in Figure 33, where we decrease the 

number of relay nodes to 1 relay node. It can be observed that the gap among the 

cooperative diversity schemes become wide, and the performance gain obtained from 

the fixed selective decode-and-forward without direct link combining scheme over direct 

communication becomes marginal. 

We predict in Corollary 1 and Corollary 2 that the fixed selective decode-

and-forward without direct link combining scheme and the fixed selective decode-and-

forward with direct link combining scheme have the signal-to-noise ratio threshold that 

the outage capacity becomes lower than that of direct communication, and also predict 

the value of that signal-to-noise ratio threshold. Therefore, we compare the fixed 

selective decode-and-forward without direct link combining scheme and the fixed 

selective decode-and-forward with direct link combining scheme thresholds to direct 

communication at higher signal-to-noise ratio in Figure 34 and Figure 35, respectively. It 

can be observed that the threshold really exists for both schemes, and the predicted 

value is exact. 

Proposition 5 proves that the ratio between the outage capacities 

obtained by the fixed selective decode-and-forward without direct link combining 

scheme and by direct communication converges to a half at very high signal-to-noise 

ratio. In Figure 36, it can be observed that the ratio between two curves converges to a 

half as the signal-to-noise ratio rises. Likewise, Proposition 6 proves that the ratio 

between the outage capacities obtained by the fixed selective decode-and-forward with 

direct link combining scheme and by direct communication converges to a half at very 

high signal-to-noise ratio, and Figure 37 illustrates that. Also, Proposition 7 proves that 
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the ratio between the outage capacities obtained by the smart selective decode-and-

forward scheme and by direct communication converges to one at very high signal-to-

noise ratio, and that is illustrated in Figure 38. Therefore, it is not necessary to use 

cooperative diversity scheme when the signal-to-noise ratio is very high, and it is not 

harmful to use the smart selective decode-and-forward scheme because this scheme 

will tend to use direct communication automatically. 

Corollary 3 and Corollary 4 prove that the fixed selective decode-and-

forward without direct link combining scheme and the fixed selective decode-and-

forward with direct link combining scheme have the linear outage capacity curve in the 

medium and high signal-to-noise ratio regimes. Also, when we compare the outage 

capacity curves using different number of relay nodes, the gaps among the curves are 

constant, and so increasing the number of relay nodes still improves the outage 

capacity even in high signal-to-noise ratio. These are shown in Figure 39 and Figure 40 

for the fixed selective decode-and-forward without direct link combining scheme and the 

fixed selective decode-and-forward with direct link combining scheme, respectively. 

We examine the effect of increasing the number of relay nodes in Figure 

41, where we compare the outage capacities of the fixed selective decode-and-forward 

without direct link combining scheme with various number of relay nodes. By observing 

the curves alone, it can be conjectured that the saturation in improvement exists, that is, 

we cannot improve the outage capacity by simply increasing the number of relay nodes. 

However, Theorem 8 proves that the outage capacities of all considered cooperative 

diversity schemes are unbounded, and so the saturation does not exist. Therefore, we 

fix the signal-to-noise ratio at 20 dB and plot the outage capacity as a function of 

number of relay nodes in Figure 42. It can be observed that the curve crosses the 

horizontal line even at very large number of relay nodes. Hence, the curve does not 

become constant and the saturation does not exist. From both figures, we can show that 

increasing the number of relay nodes always improves the outage capacity but the 

improvement keeps being smaller. 
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We examine the effect of varying topology. We fix the signal-to-noise 

ratio at 20 dB, and generate 10,000 random topologies. Hence, the outage capacity of 

the network is now a random variable, depending on the specific network topology, and 

we consider the cumulative distribution function of the outage capacity. In Figure 43, we 

set the number of relay nodes at 4. The vertical line that crosses each cumulative 

distribution function curve marks the outage capacity (on the x-axis) of deterministic grid 

topology. About 35% of random network realizations provide better performance than 

the grid topology for all relaying schemes. Hence, the placement of relay nodes 

optimization offers benefit if it is possible. The performance differences among the 

schemes are reduced when the number of relays increases from 4  to 9  as shown in 

Figure 44. This supports the idea that the improvement from increasing the number of 

relay nodes keeps being smaller as the number of relay nodes becomes large. Also, it 

can be observed that when the number of relay nodes is 9, the vertical lines mark the 

probabilities of approximately 1 on the y-axis, implying that almost none of random 

network realizations provide better outage capacities than the grid topology provides. 

Hence, when the number of relay nodes becomes large, the grid topology is a good 

topology to use in deploying the relays, and the placement of relay nodes optimization is 

not necessary. On the other hand, when the number of relays is reduced to 1, there are 

different effects among schemes as shown in Figure 45. The fixed selective decode-

and-forward without direct link combining only relies on the two-hop relaying via a single 

relay node. The grid topology, that is, placing the relay node exactly in the middle, 

balances and maximizes the mutual information of both hops. Hence, the vertical line 

marks the probability of 1. The fixed selective decode-and-forward with direct link 

combining has a stronger second hop, and the balance of the mutual information can 

occur by placing the relay node closer to the source node. Hence, the vertical line 

marks the probability lower than 1. 
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Figure 31 Outage capacity comparisons of all considered cooperative diversity 

schemes at an outage probability of 0.01 for 4-relay network with direct communication 
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Figure 32 Outage capacity comparisons of all considered cooperative diversity 

schemes at an outage probability of 0.01 for 9-relay network with direct communication 
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Figure 33 Outage capacity comparisons of all considered cooperative diversity 

schemes at an outage probability of 0.01 for 1-relay network with direct communication 
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Figure 34 The threshold in the fixed selective decode-and-forward without direct link 

combining scheme at an outage probability of 0.01 for 4-relay network 
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Figure 35 The threshold in the fixed selective decode-and-forward with direct link 

combining scheme at an outage probability of 0.01 for 4-relay network 
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Figure 36 The fixed selective decode-and-forward without direct link combining scheme 

in high SNR regime at an outage probability of 0.01 for 4-relay network 
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Figure 37 The fixed selective decode-and-forward with direct link combining scheme in 

high SNR regime at an outage probability of 0.01 for 4-relay network 
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Figure 38 The smart selective decode-and-forward scheme in high SNR regime at an 

outage probability of 0.01 for 4-relay network 
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Figure 39 The fixed selective decode-and-forward without direct link combining scheme 

with varying number of relay nodes at an outage probability of 0.01 
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Figure 40 The fixed selective decode-and-forward with direct link combining scheme 

with varying number of relay nodes at an outage probability of 0.01 
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Figure 41 The fixed selective decode-and-forward without direct link combining scheme 

with increasing number of relay nodes at an outage probability of 0.01 
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Figure 42 The fixed selective decode-and-forward without direct link combining scheme 

with large number of relay nodes at an outage probability of 0.01 
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Figure 43 Cumulative distribution functions of outage capacities at signal-to-noise ratio 

of 20 dB at an outage probability of 0.01 for random topologies with 4-relay network 
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Figure 44 Cumulative distribution functions of outage capacities at signal-to-noise ratio 

of 20 dB at an outage probability of 0.01 for random topologies with 9-relay network 
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Figure 45 Cumulative distribution functions of outage capacities at signal-to-noise ratio 

of 20 dB at an outage probability of 0.01 for random topologies with 1-relay network 



 

 

CHAPTER  V 
CONCLUSIONS 

This dissertation presents the research work on wireless communications 

using cooperative diversity schemes. Our focus is on the information-theoretic studies, 

which would pave the way to practical design. We derive the exact expressions for 

outage probabilities and outage capacities for several decode-and-forward cooperative 

diversity schemes with relay selection in the systems using multiple relay nodes. The 

derived expressions are simple, and applicable for arbitrary network topologies and 

signal-to-noise ratios. Also, these expressions give the important insights. First, the fixed 

selective decode-and-forward without direct link combining scheme improves the 

outage capacity compared to direct communication only when the signal-to-noise ratio 

is below a certain threshold. That also occurs for the fixed selective decode-and-forward 

with direct link combining scheme. Then, we characterize the signal-to-noise ratio region 

for which relaying is beneficial. Second, in the high signal-to-noise ratio regime, the 

outage capacity of fixed selective decode-and-forward without direct link combining 

converges to half of that provided by direct communication. That also occurs for the 

fixed selective decode-and-forward with direct link combining scheme. Third, the outage 

capacity of smart selective decode-and-forward scheme (which is the best relaying 

scheme under consideration, but requires every relay to know the partial channel state 

information between the source and destination) converges to that of direct 

communication in the high signal-to-noise ratio regime. These results can guide the 

practical wireless communication network design, such as, the optimal relay node 

placement. 

In addition, we prove several follow-up theories and illustrate them in 

figures. First, we prove and illustrate the order of performance gain obtained from the 

considered cooperative diversity schemes. Second, we prove and illustrate the signal-

to-noise ratio thresholds of the fixed selective decode-and-forward without direct link 

combining and the fixed selective decode-and-forward with direct link combining 

scheme. Third, we prove and illustrate the convergences of the considered cooperative 
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diversity schemes at very high signal-to-noise ratio. Forth we prove and illustrate the 

linearity and the constant gap among the outage capacity curves of the fixed selective 

decode-and-forward without direct link combining scheme and the fixed selective 

decode-and-forward with direct link combining scheme using different number of relay 

nodes. Fifth, we prove and illustrate that the saturation in improvement by increasing the 

number of relay nodes does not exist, but the improvement keeps being smaller as the 

number of relay nodes become large. Last, we show the effect of the topology, which 

entangles with the number of relay nodes. 

5.1 Scheme Choosing 

In the situation that the destination node is not far from the source node 

and the radio environment is not in an urban area, the average signal-to-noise ratio is 

high and using cooperative diversity does not provide any performance gain. Therefore, 

it is not necessary to employ the cooperative diversity scheme. We can tell exactly 

whether the average signal-to-noise ratio is high enough to ignore the use of cooperative 

diversity by checking with our analytical results. 

In the situation that the destination node is not far from the source node 

and the radio environment is in an urban area, the average signal-to-noise ratio is high 

but can largely drop when the direct link is shadowed by an obstruction. Therefore, the 

smart selective decode-and-forward scheme is recommended. When the average 

signal-to-noise ratio is high, the smart selective decode-and-forward scheme performs 

as good as direct communication. When the average signal-to-noise ratio drops due to 

shadowing, the smart selective decode-and-forward scheme can greatly improve the 

performance. 

In the situation that the destination node is quite far from the source 

node, the average signal-to-noise ratio is low but not completely blind. The destination 

node can still receive signals from the source node via the direct link even though the 

signals are weak. Therefore, the fixed selective decode-and-forward with direct link 

combining scheme is recommended. This scheme can use the signals from the direct 
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link to strengthen the signals from the relay to gain the better performance without using 

additional channel resource. 

In the situation that the destination node is very far from the source node, 

the average signal-to-noise ratio is so low that the direct link is completely blind. The 

destination node cannot receive signals from the source node via the direct link. 

Therefore, the fixed selective decode-and-forward without direct link combining scheme 

is recommended. This scheme improves the performance with the simplest protocol 

among schemes, while the further improvement by combining the signals from the direct 

link is negligible. We can tell exactly whether the average signal-to-noise ratio is low 

enough to ignore the use of other more complicated schemes by checking with our 

analytical results. 

The number of relay nodes should be sufficiently dense to obtain the 

good performance, but should not be too dense because it is not worth due to the 

nonlinear improvement. As a rule of thumb, observed from our results, we recommend 

one-tenth of the coverage. For example, if the source node is designed to cover the 

destination node at 1 km away, then 10 relay nodes should be employed. Employing 

more relay nodes yields better performance but not significant. 

To choose the topology of employing the relay nodes, the grid topology 

is recommended because most of the other topologies do not perform better than the 

grid topology, especially when the number of relay nodes is dense enough. When the 

number of relay nodes is small, the relay node placement should be optimized. The 

optimization can be done by using our analytical formula as the objective function and 

the locations of relay nodes as the optimizer. This optimization can be done with 

reasonable computation time because the number of relay nodes is small. 

5.2 Future Work 

The cooperative diversity schemes, especially the smart selective 

decode-and-forward scheme, are promising. The fixed selective decode-and-forward 
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without direct link combining and the fixed selective decode-and-forward with direct link 

combining schemes have a trade-off, where the loss in degree of freedoms due to the 

duplex may offset the benefit both in terms of the outage probability and in terms of the 

outage capacity. Hence, it should be used selectively, depending on the condition of 

the channels. The extension to the multi-hop case is not likely to be analyzed in closed-

form, and is troublesome to do computer simulations. The optimal relay nodes 

placement can be conducted based on the provided results. 

The future work in this line of research is given as follows. Instead of 

information-theoretic study, the error rate of cooperative diversity scheme is analyzed 

approximately in [33]. The idea of cooperative multiple access is proposed in [34], and 

the idea of cooperative spectrum sharing protocol with secondary user selection is 

proposed in [35]. Due to the trade-off incurred by the half-duplex constraint in 

conventional cooperative diversity schemes, it is interesting to combine the ARQ with 

the cooperative diversity schemes to save the bandwidth [36,37,38,39,40], as well as 

the effect of imperfect channel state information on ARQ scheme [41]. The interference 

occurs in cooperative diversity scheme is an interesting issue to take into account. 

Several studies have been explored in the literature [42,43,44,45,46]. Using the 

compress-and-forward protocol, the cooperative diversity schemes with backhaul link 

are studied in [47,48,49,50]. 
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