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CHAPTER

INTRODUCTION

1.1 Research Motivation

At the beginning, Model Predictive Control (MPC)is developed to meet the specialized control needs
of power plants and petroleum refineries; but it can now/befound in a wide variety of application areas
and has been applied successfully in.the process industries*(see.[1, 2] and the references therein).

Due to its advantages over other control me'tJhods, and the fact that many new results of MPC
technology breakthrough have been proposed by researchers in the recent years (see [3]- [4]), we can
think of that MPC is still being furthesdeveloped as an interesting topic. Most of the recent proposed
methods are based on Robust Censtrained MPC (RCMPC), and the optimization problem is cast as
LMIs. This method is able to handlé thé dfawbacks oc'.(éurred in the existing MPC-based control tech-
niques. One of these is its inability to/explicitly in;onporate plant model uncertainties. Since the
design algorithm is based on the prior knowledge of tﬁe model, it is obvious that the obtained benefits
will be affected by the plant-model mismatch’ The othé‘»r' drawback is the computational complexities
of the optimization problems that need to be solved thr%)ﬁ'gh conventional linear or quadratic program-
ming [5]. We are interested in doing the/sésearch on the REMPC using LMIs because of the above
reasons. With this method we are able to incorporate i.@l:lt'_?.nd output constraints, and a description
of the plant uncertainties, and'guarantee cértain robustﬁe-ss-qproperties.

The theory of the MPC+ot lifiear Systems is quite matuie, but 1ts extension to hybrid systems
is still an active research area. Recent research has been focused on developing stabilizing controllers
for hybrid systems and in particular for PWA systems (see [6—12] and the references therein). PWA
systems belong to the promising €lass. of representation/of nonlinear systems by approximating the
nonlinearity with linear“or affine-functions. PWA systems can be considered'as a natural model class
for nonlinear systems sihce they have been used to represent a range of nonlinearities such as dead
zones, saturations,.and hysteresis, with arbitrary, accuracy [9]. Inpractice, uncertainties and robustness
are central themes inithe modeling and anaylsis of PWA systems [6]. The researchiis/focusing on the

implementation of RCMPC controller synthesis to the PWA systems.

1.2 Literature Review

MPC is an effective multivariable constrained control algorithm in which dynamic optimization prob-
lem is solved on-line. At each sampling time, MPC uses an explicit process model to compute pro-
cess inputs so as to optimize future plant behaviour over a time interval known as the prediction
horizon [13]. The optimization yields an optimal control sequence and the first control in this se-

quence is applied to the plant. At the next sampling time, the optimization problem is reformulated



and solved with new measurements obtained from the system [5, 14]. However, the receding horizon
strategy does not inherently imply the closed-loop stability and optimality. In these areas, the subject
has developed to a stage where it has achieved sufficient maturity to warrant the active interest in
nonlinear control. The stability method that we employ in the research is the direct approach using
Lyapunov quadratic function. Model uncertainties are also taken into the consideration to maintain
the robustness of the MPC algorithm [3, 15].

For an uncertain system, an infinite horizon performance function can also be used to guarantee
the robust stability of MPC algorithm. In RCMPC algorithm, a min-max optimization problem needs
to be solved online because the forecast of the system behaviour is not exclusive. Hence, the design
problem of RCMPC can be reduced to making min-max optimization problem with infinite horizon
performance function tractable [3]. Kothare et al. [5] propesed an RCMPC based on LMI in which
a linear state feedback control law_is-used to transformed the optimization problem with infinite
variables into one with finite variables and maintain the state vector inside invariant feasible sets.
This method provides the basic of the design of RCMPC algorithm. Furthermore, the state feedback
RCMPC has been studied extensivelyfin [15=18].. A thgrough overview of robustness in MPC is given
in [19].

However, the performance of the systems is highly limited in the presence of actuator satu-

-

ration. There are many proposed methods on'the stability of the systems in the presence of input
saturation because it is a classical issue in the real 5ysteps Liet al. [3] proposed an RCMPC formu-
lation to tackle this issue by using saturated finear feedﬂé_z_ik controller, in which the saturation control
can be described as a convex hull of a group of linear cg_)nt'i‘ol Besides actuator saturation, the other
real-life problem concerns dealing with-the time—delay:-_-Ti;me—delay systems were discussed exten-
sively in [20]. An overview of some control approaches and open pioblems in time-delay systems
was presented. In [18], the authdrs proposed an observer-based robust control for uncertain linear sys-
tems with time-delay. An application of RCMPC for systems with state-delay can be found in [4,21].
In [7], the RCMPC for systems with time-delay has been generalized to time-invariant state and input
delay and then the authors extended it furthermore to time-varying state.and.input delay in [22].
PWA systems belong.to a class of hybrid systems, for which the switching rule between dif-
ferent linear/affine dynamics is given by polyhedral partition of the state+input set. Hybrid systems
are dynamical“systefds*whose behaviour is“determined; by, both icontinuous and discrete dynamics.
Such systems are characterized by both variables-or signals'that take value from continuous sets, and
variables that take values from discrete, typically finite, sets. These continuous or discrete-valued
variables or signals may either depend on independent variables such as time, which also may be con-
tinuous or discrete, or be driven asynchronously by external or internal discrete events [11]. The mod-
eling power of PWA systems has already been shown in several applications, such as switched power
converters, optimal control of DC-DC converters and direct torque control of three-phase induction
motors, application to automotive systems, and systems biology, to mention just a few (see [2, 12],

and the references therein).



PWA systems have been studied extensively in [23]. A computational approach for stability
analysis of PWA systems and an extension of some aspects in linear systems and quadratic crite-
ria to PWA systems and piecewise quadratic Lyapunov criteria. An approach to optimal control of
PWA systems using feedback laws derived from the solution of Hamilton-Jacobi-Bellman equation
was presented. In [24] the authors have proven the equivalence of PWA systems and other class of
hybrid systems such as Linear Complementarity (LC) systems, and Extended Linear Complementar-
ity (ELC) systems, Max-Min-Plus-Scaling (MMPS) systems, and Mixed Logic Dynamical (MLD)
systems. Each modeling framework has its advantages and the equivalence of the hybrid dynamical
systems allows one to easily transfer the theoretical properties and tools from one class to another.
In [12], a study of stability and robustness of PWA systems.using MPC approach was proposed. In the
area of PWA with time-delay systems; the stability, analysis-of PWA with time-delay systems using
piecewise quadratic Lyapunov function-was proposed in [25]..Xiang Yong Mu et al. [26] introduced
state feedback control strategy basedson ellipsoid for Piece-Wise Affine system with time-delay.

Despite that PWA systems teceived./a lot of attention in the last decades, unfortunately, an
application of RCMPC for PWA sysiems pays to.a lesser extent. One of the first results in extending
the RCMPC algorithm for PWA systems is obtained i;nl[9]. Multiple model MPC technique involving
a sequence of local state feedback matrices, .and utilrillzin'g a single quadratic Lyapunov function was
presented in the paper. In [6] the design of linear stéte—feedback control law, and multiple quadratic
Lyapunov functions was extended from thé previous réguff, the uncertain PWA systems has the form
in which the parameters of each submodel in‘€ach polyh‘édral partition of the state space has a different
polytopic uncertainties description. _ 2

In the thesis, we apply the result in[3}t0 the uncer‘t_ahj PWA systems. The saturated control law
yields a less conservative result then the algorithm proposed in [6]. We are also extending the results
in [7,22] to the uncertain PWA/systems with time-delays. In particular,/we will show via numerical

examples that the developed algorithms are suitable and effective.

1.3 Thesis Objective

The main objective of this research is to apply the Robust Constrained MPC design framework to
discrete-time PWA systems under parametric uncertainties. In-order to guarantee robust performance,
the control law"applies a/parameter-dependent' Lyapunov function which corresponds to the vertices
of the polytopic uncertainties of the PWA systems. We consider saturated linear feedback control law
in deriving tractable and robustly stable closed-loop PWA systems.

The design approach is divided into two parts. The first part focuses on the design of a robust
control law for uncertain time-varying PWA systems with delay-free. The second part emphasizes
on the design of a robust control law for uncertain time-varying PWA systems with time-delays.
Moreover, we consider two sub-parts of PWA systems with time-delays, which are PWA systems
with time-invariant delays and PWA systems with time-varying delays. The design formulations are
then cast as a Linear Matrix Inequalities optimization problem and solved on-line to guarantee the

robust stability of the closed-loop systems.
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1.5

1.6

Scope of Thesis

. To develop an extension of RCMPC for PWA systems with delay-free using saturated linear

feedback controller.

. To develop RCMPC for PWA systems with time-invariant delays using saturated linear feed-

back controller.

. To extend further RCMPC for PWA systems with time-varying delay using saturated linear

feedback controller.

Methodology

7

. Literature review on RCMPE for PWA.systems with delay-free using linear feedback controller

Derivation of an extension of RCMPC for PWA systems with delay-free using saturated linear

feedback controller.

. Literature review on RCMPC o LPV systems with time-invariant and time-varying delays

systems. 4

Derivation of a new extension of RCMPC for PWA systems with time-invariant and time-
A

varying delays. 'J‘_f» '

s i Ad

. Development of a computer program {or implemﬁtjng all of the design formulations.

Simulation under MATEEAB environment and comparison of the.results with existing control

methods.

Contributions

. An extended design formulation of RCMPC for PWA systems with delay-free using saturated

linear feedback céntrol law.

A new design formulation of RCMPC for PWA systenis with time-invatiant'delays using satu-

rated linear feedback controller.

. An extension of design formulation of RCMPC for PWA systems with time-varying delays

using saturated linear feedback controller.

A computational tool for RCMPC used in several applications.



1.7 Structure of Thesis

The organization of the thesis is as follows. In the next chapter, the mathematical preliminary is
explained. Chapter 3 presents RCMPC for PWA systems with delay-free. Chapter 4 presents RCMPC
for PWA systems with time-invariant delays. Chapter 5 presents RCMPC for PWA systems with time-
varying delays. Chapter 6 presents numerical examples of the design formulations. In the last chapter,

conclusions are given.

AULINENINYINT
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CHAPTER I

MATHEMATICAL PRELIMINARY

In this chapter, an overview of the fundamental theory used in designing RCMPC for PWA systems

is given.

2.1 Piece-Wise Affine Systems

v
A PWA dynamical systems is a nonlinear systems described by

{ a(k 1) /= f(m(k),u(k),k) 1)
(k) 7 _g(x(k), u(k):k)
whose right-hand side is a piecewise affine/function of its arguments. It is assumed that a PWA
systems and a corresponding partition of the state space with polytopic cells X;, ¢ € Z. We are
concentrating on discrete-time models of’ PWA dynatmcal systems. The motivation stems from the
need to analyze these systems and to solve thlmlza__u_(m _problems, for which the continuous time
counterpart would not be easily computable.n F1 g. 2.1',<j1j.:udstrates the PWA system dynamics [12].

For systems (2.1), we adopt the following (Jleﬁn_iti_(églJ of trajectories or solutions presented in
[23]. —

Definition 2.1 (Trajectory). Let :v(k) E Uze 12\:’ be an absolutely continuous function. We say that
z(k) is a trajectory of the system (2:1) on [ko, kp] if, for almost all k € [ko, k¢], the equation x(k +
1) = f(z(k),u(k), k) holds forall i with z(k) € X;.

From an analysis point of view, however, the main obstacle will be the cases when no con-
tinuation of a trajectory inithé sense’of Definition 2. 1S possible. /Thesfollowing definition allow us
to single out such situations:“'For sake of clarity, we will present the 'main‘results in this thesis for

systems without attractive sliding modes.

Definition 2.2°(Attractive sliding mode). The systeni/(2.1) is said to have an attractive sliding mode

at x4 if there exists a trajectory with final state x ¢ but no trajectory with initial state x .

For the first part of the research, we consider the following time-varying discrete-time PWA

systems with delay-free

{ z(k+1) = Ai(k)x(k) + a;i(k) + Bi(k)u(k) for z(k) € X;. (2.2)

y(k) = Ci(k)z(k)



Figure 2.1: A PWA system: in e@l re"on a@ne dynamics is active. The sys-
tem dynamics changes when the stat itchi ndaries (denoted by dotted diagonal

lines). .
: ,\\ :
The next part, we consider '&%ﬁme PWA systems with time-
delay ‘
zk+1) =
(2.3)
y(k) =
We consider in particular the system§ 1 rm of two main models:

e :'}'J ot

1. Systems (2.3.1) - PWA&stems with time-invarian
Where 74, d € D £ delay satisfying 0 < 71 <

To < ... < Tp. D E

2. Systems (2.3.2) - PWA systgm&wr[h time-varyi elay

thij < FREInen ‘Wﬁﬂ g nensns
VRO i1 Vi TV BV 101 1) 111 oo

compatible dlmamons, respectively.

The regions X; C R are assumed to be closed (possibly unbounded) n-dimensional convex
polyhedra which we call cells. Following [11,12,23], each cell is constructed as the intersection of a

finite number (p;) of half spaces
X; = {z|Hl'z — g; < 0}, (2.4)

where H; = [h1, hio, - - -, Rip;], 9 = [9i1, Gios - - - ,gipi]T. Moreover, the set of cell indices is denoted
T and the union of all cells, X = U;czAj, will be referred to as partition. We also assume that the cells

have disjoint interior so that any two cells may only share common boundary, X; N X; = 0, Vi # j.



Many results in this thesis are concerned with the analysis of equilibria. Unless stated other-
wise, we will assume that the equilibrium point of interest is located at z = 0. It is then convenient
to let Zy C 7 be the set of indices for cells that contain the origin and Z; C Z be the set of indices for

cells that do not contain the origin. It is assumed that a; = 0 for 7 € Zj.

2.2 A Matrix Parameterization

Matrix parameterization will be useful in deriving the RCMPC of PWA sytems formulation subject

to systems condition z € X;, ¢ € Z;. For convenient treatment of affine terms, we define

Throughout this thesis, a bar oveisa signal vector denotes the augmentation of the vector with the
unit element 1. Somewhat informally, a'bar over a matrix indicates that it has been modified to be
compatible with the augmented signal wegtor. Hence, the PWA systems (2.2, 2.3.1, 2.3.2) can be

parameterized directly to introduce ¢ompagt notation of the model,

sk+1) 2 Ak)o(k) + Y A )5k 7llF)) + Bi(kju(k),
d=1 :

for z(k) € Xj,i € I

y(k) £ Cilk)x(k), =
o) (2.5)

P = _
Bk+1) £ Aik)z(k) + dZZIAdi(k')if(k' 2 Td(@% Bikyu(k), | b et
yk) = Ci(k)a(k), FESTSS
(2.6)
with

where d = 0 represents systems (2.2), and d > 0 represents systems (2.3.1, 2.3.2).

2.3 Modelsifor Uncertain Systems

Two paradigms of uncertain systems that are commonly encountered in robust control, namely, a poly-
topic uncertain model, and a norm-bound uncertain model. These paradigms arise from two different
modeling and identification procedures. We emphasizes a polyfopic uncertain model, and considering
the case when the system matrices, generally, [A;|Ag;|B;] € Q;,Vd € D 2 {1,2,...,p},Vi € Z, for
each cell can be written as a convex combination of matrices €2 Zl, cee QZL In other words, we assume
that for every k there exist scalars A;(k) > 0 with )7, A;(k) = 1 such that €;(k) can be written as

L
Qi(k) => M(k)Q, Viel 2.7)
=1



We will then consider the family of models obtained by considering all admissible A;(k). For nota-
tional convenience, we will for each cell X; associate an index set L(¢) that specifies the matrices that

are used in the inclusion. We will then rewrite (2.7) as
Qi(k) € Co{al} 2 co{[a}|Al|...|ALIB] ..., [AF|AL)...|aLIBE]}Y,  @8)

and [Ay|Agi|Biy) = [ALAY|BY,Vd € D,Vi € £ £ {1,2,..., L} represents a vertices of the convex
hull for each of the polyhedral regions partition ¢ € Z. For d = 0, the model represents uncertain
time-varying PWA systems (2.2), and for d > 0, the model represents uncertain time-varying PWA
systems with time-delay (2.3.1, 2.3.2).

Polytopic uncertain models can be developed asfollows: Suppose that for the (possibly non-
linear) system under consideration, we have input/eutput-data set at different operating points, or at
different times. From each data setz=we develop a number of linear models for the active regions
partition €2;, ¢+ € Z (for simplicity,swe assume that the various linear models involve the same state
vector). Then it is reasonable to asstiime'thai analysis and design methods for the polytopic system
(2.2), (2.3.1), and (2.3.2) with vertices given by the linear model are applied to the real system.

_—

2.4 Saturated Linear Feedback Control Lavﬁfy &

A linear state-feedback controller w(k + j{k) = Fx(k:+7‘k) has been used in [5, 10, 17] for LPV
systems, and it has been extended in [6] for.uncertaim?WA systems. This control structure makes
the optimization problem tractable. In the'paper; we pr()_p@éé the following saturated linear feedback

controller ; ol
wl + 51y 2] GEEE ) el eilf) €1 € T,
T A P2k + jIE)), ek +ilR) &, i € T,

where j > 0, F(k) € R™*"E (k) € R™*(+1) "and ¢(.) is a saturated function with the saturation

(2.9)

levels given by a vector u € R™ /In particular, forr=1,2,...,m, |
= Urmax; Ur =  Urmax
_ T T 4
o(u) = [U(ul) Ll YER) ] , 'and (o (uy) = ' | Ur €[ —Upr,max, Ur,max)
—Uprmax, | Ur < ¥—Ur max

In order to apply (2.9) to the robust constrained MPC algorithm, the satufation function needs
to be describedyas a linear polytope [27,28] . Let f, be the r-th row of the matrix #]. We define the

symmetric polyhedron
LF)={z eR":|frz| < tUrmax,” = 1,2,...,m}.
If the control u does not saturate for all » = 1,2,...,m, that is z € L(F'), then the saturated linear

feedback controller (2.9) is in the form of general linear state feedback control law

Fk)z(k + k), ok + jlk) € Xiyi € To,

LR RCRE [ B P 210

Let @ be the set of m x m diagonal matrices whose diagonal elements are either 0 or 1. There

are 2™ elements in ®. Suppose that each element of @ is labeled as Dy,q¢ = 1,2,...,2™, ie.
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® ={Dy,q=1,2,...,2™}. If D, belongs to @, then denote D, = I — D,,. Obviously, D, is also

an element of ®. For example, if m = 2 then

P = {D13D27D35D4}7

o={[s o] [0 515 V) 01}

Lemma 2.1 (Saturated linear feedback control law). Ler vectors u, v € R™. Suppose that for
z € R, ifx € L(H), then

o(u) ECO{un-I-D;UZqE Qé{1,2,...,2m}}.

This means that for two given feedback matrices F3 H eR™A% and suppose that
S . Vr a2 (2.11)
in terms of Lemma 2.1, we have v|

o(Fz )€ 06 fDFx+ B Hzs g& DY

Hence, we can obtain the polytope description of satf_lrated function

om om

o(Fz) = o = > N(Deift DyH)is Y No= LA € [0, 1], € X, € To,

. el 2.12)
o(Fz) = 4z = Z/\q(DqF + Dy H)z, Z,\'fqggl, X € [0,1),z € &;,i € Th.

g=1 == <

i

The benefit of this approach-is that the input constraint§vare satisfied by saturation function
naturally and no constraints:are-imposed-on-the-contiollei-gain-fc-directly. So the controller will
have higher gain than the RCMPC algorithm using linear feedback controller, which can utilize the
control region more sufficient, and has a better control performance. However, the representation of

the saturation function as linear polytope introduces conservatism in the formulation.

2.5 Model Predictive Control

MPC is an open-160p eontrOl désigniproceduré where @t €ach sathplifig[time £plant measurements
are obtained and a model of the process 1s used to predict future outputs of-the 'system subject to
system dynamics, input, and output constraints. Fig. (2.2) depicts the basic idea behind MPC. At
each discrete-time instant k, the measured variables and the process model (2.2, 2.3.1, 2.3.2) are used
to predict the future behaviour of the controlled plant over a specified prediction horizon N,. This is
achieved by considering a future control scenario as the input sequence applied to the process model,
which must be calculated such that certain desired constraints, and objectives are fulfilled. To do that,
a cost function Jj,(k) is minimized subject to constraints, yielding an optimal sequence of controls
over a specified control horizon N, and described as following

Ip(k),

min o
u(k+jlk), j=0,1,...,(m—1)
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where p is output or prediction horizon, m is input or control horizon.

According to the receding horizon control strategy, only the first element of the computed
optimal sequence of controls is then applied to the plant. To incorporate feedback, the optimal open-
loop input is implemented only until the next sampling time. Using the system state at time k + 1, the

whole procedure (prediction and optimization) is repeated, moving the control and prediction horizon

forward.
h
past future
Pledu,tcd gutputs 1, (k + jlk)
@/@/6/( -
{ .i Futu e |R
mputs u(k=g (%)
| | ;' . l i k‘ + —‘Nr;r.n | Jra =_—_|— .'1\-"-‘.!,}
s 4
_fipufhérizon- = 7
T 4 ' output hotizon
i - -
Higure 2.2: MPE scheme
24
2.5.1 Objective Function - -

The thesis emphasizes the caseof—mﬁmﬂ-rcorrtrel—and—pred‘retroﬁhorrzon (i.e. Ny = Np = 00). The

control objective is to minimize-an infinite horizon linear quadratic cost function

o
> k+ﬂkTQﬂk+ﬂm+uw+JMFRMk+ﬂm z(k) € X;,i € To,
Joo(k) = 130
Z (b 3[R)TQz(k + 7|k) + u(k + j|k)T Ru(k +5|k), z(k) € &;,i € Ty,
=0
(2.13)

where @, Q and R ‘are syminetrie, positive-definiteé'matrices dénoting suitable'weighting matrices.
It is well known that the infinite approach can guarantee nominal stability of the closed-loop

system.

2.5.2 Constraints

In this work we consider the Euclidean norm constraints on the input u(k + j|k) for the unsaturated

linear feedback RCMPC, given respectively as

lu(k + 7|k)|l2 < tmax, k>0,5>0. (2.14)
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Constraints on the input are typically hard constraints, since they represent limitations on the process

equipment (such as valve saturation) and as such cannot be relaxed or softened.

2.6 Robust Model Predictive Control

A control system is robust if it is insensitive to differences between the actual system and the model
of the system which was used to design the controller, and if the performance of the system meets
the specified range. These differences are referred to as model/plant mismatch or simply model
uncertainties. Any statement about robustness of a particular control algorithm must make reference

to a specific uncertainties range as well as specific stability and performance criteria.

2.6.1 Robust Stability

Robust stability is the basic closed-leop requirement, i.e., stability in the presence of uncertainties. In
MPC, various design procedures achieverobust stability in two different ways. The first approach is
by indirectly specifying the performance objective and uncertainties description in such a way that the
optimal control computations lead to gobust stability.. JTlhe second approach is by directly enforcing a
type of a robust contraction constraint which guarantg:esfthat the state will shrink for all plants in the
uncertainties set. :
27
2.6.2 Robust Performance =
7l

In the main stream of robust control literatuse; robuist 17érf;rmance is measured by determining the
worst performance over the specified uncertainties ra'n'.lgéi*j In direct extension of this definition, it
is natural to set up a new rebust MPC objective where the control action is selected to minimize
the worst-case value of the objective function. Many attempts have been made to synthesize such a
robust MPC, but they all had more or less drawbacks in terms of addressing robust stability or on-line
implementation. For more details on this topic, the reader is referred to [5, 19].

This thesis proyidesian éxtension! methods/of* RCMPC to PWA isystems (2.2, 2.3.1, 2.3.2).
We use a formulation to ‘calculate a state feedback ‘control law-and saturated state feedback control
law that minimizes an upper bound on the robust performanee and by using Isyapunov arguments,
guarantees thexobust stability. ‘For fairly'general uncertaintieS descriptions, the*optimization problem

can be expressed as a set of LMIs for which an efficient solution techniques exist.

2.7 Lyapunov Theory for Discrete-Time Systems

The Lyapunov stability theorem for discrete-time systems is reviewed. For discrete-time systems, we

use the forward difference
AV(z(k)) =V(z(k+ 1)) — V(z(k)).

The next Lemma establish the conditions necessary for a discrete-time PWA systems to be stable [29],
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Lemma 2.2 (Stability of Discrete-Time Systems). Consider the discrete-time PWA systems (2.2,

2.3.1, 2.3.2). Suppose there exists a scalar function V (z) continuous in x such that
o V(z)>0 Vz#0,
e AV(z) <0 Vz#0,
e V(0) =0,

locally in region X; or at which partition that the state may be entered at the next sampling time
(k+1), X;j,Vi # j, then the equilibrium state & = Oisasymptotically stable and V (z) is a Lyapunov

function

The general approaches foi.constiuction of Lyapunov-function that has been suggested for
PWA systems is known as quadratic stability. For PWA systems (2.2, 2.3.1, 2.3.2) with polytopic
uncertainties (2.8), a natural stability approach is t check the existence of quadratic Lyapunov func-
tion that depends not only on the systems state but Llso on the uncertain parameter (\). If we denote

A=A, A2, 5 A L]T, we can statgfthefollowing definition.

Definition 2.3 (Robust stability of PWA systems wi’l‘;hh delay-free). The uncertain discrete time PWA
systems (2.2) is said to be stable jf there exists a Lyapunov function
(k) € X;,Vi € Iy,

).
Jo. Z(k) € X, Viel,

£ B
V(a(k), ME)) = { :cEgTP %;;

where P;(\(k)), P;(\(k)) are symmetric; posmve deﬁnpte matrices, such that
AV (z(k),A(k)) < 0 for all hon-zero x(k) e R* and admzsszble pérameter A(k). Similarly, the

uncertain discrete time PWA| systems (2.2)is said to be robustly stablllzable if there exists a saturated

(2.15)

I h&?

jl(‘__k
(k

Tk

)
d ¥4
_-f

state feedback control law (2. 9) such that the resulting closed-loop systems is robustly stable for all

admissible uncertain parameter\(k). ~

Definition 2.4 (Robust-stability of PWA-systems+with time-invariant delay). The uncertain dis-
crete time PWA systems (2:3.1).is sdid to bé_stable ifthere exists a modified Lyapunov-Krasovskii

function (for simplicity, we omit \(k) from the formulation)

F -

k)P (k —I—Zm 1) TPy ok —7) & Z #(k S99 Pyz(k — 7)+
] =711+1
Tp
o+ Y w(k—5)TPuz(k—j), z(k) € X;,Vi€ T,
V(o(k)) = 4 e "
z(k)T Pz(k) + Y z(k—5)TPuzk— )+ > @k — )T Puz(k —j)+
j=1 j=114+1
Tp
Y B(k—))TPuE(k—j), (k) € X, Vi€,
\ j:'rp_1+1

(2.16)
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where P;, P;, Pi;, Py, . . ., Pyi, Py are symmetric, positive-definite matrices, such that AV (v(k)) <
0 for all non-zero v(k) € RP2™ and admissible parameter \(k). Similarly, the uncertain discrete
time PWA systems (2.3.1) is said to be robustly stabilizable if there exists a saturated state feedback
control law (2.9) such that the resulting closed-loop systems is robustly stable for all admissible

uncertain parameter \(k).

Definition 2.5 (Robust stability of PWA systems with time-varying delay). The uncertain discrete
time PWA systems (2.3.2) is said to be stable. if there exists a modified Lyapunov-Krasovskii function
(for simplicity, we omit \(k) from the formulation)

(

2(k)T Pz (k) + f: ix(k = )Rk ) | w(k) € Xyi € To.
V(m(k) = 4 = @.17)
s(k)T Pia(k) +¥ Zd;?:(k 2 )Ptk = j)| ,z(k) € X, i € T
\ =1 \J=74 -4 T,
where P;, P;, Py, Pj, ..., Pyi Py atfe symimetric, pc?ivitf_ve—deﬁnite maitrices, such that AV (m(k)) <

0 for all non-zero m(k) and admiissible parametel;f A(k). Similarly, the uncertain discrete time
PWA systems (2.3.2) is said to be robusily stabilizable if there exists a state feedback control law
u(k) = F(k)x (k) or saturated state feedback conirollaw u(k) =& (F(k)z(k)) such that the result-

ing closed-loop systems is robustly stable for all admissfibl_e): uncertain parameter \(k).

In fact, there is no general and sysiematic way tQ(EQIlf[lél_lly determine P;(.) as a function of the
uncertain parameter A(k). A traditional Way of addressing this problem 1is to look for a multiple Lya-
punov and modified LyapundViKrasovskii matrix P;(.) = P; which réndérs condition (2.15) satisfied.
Furthermore, a multiple matri); P; that satisfies the condition given ifi Deﬁnition 2.3,2.4, and 2.5 can
be found by using efficient LMI'tools. The quadratic stability, however, is somewhat conservative.

In the attempt to reduce the conservatism, the 'new’ stability condition has been proposed in
[16]. The benefit of this stability ‘condition is that it consists in the infroduction of an extra degrees of
freedom which allows to.get a control law without an explicit dependence on the Lyapunov function.
Specifically, itis based on the sufficientl.MI.conditions: We derive extension of-thesproposed method
in [16] for PWA systems (2.2, 2:3.1, 2.3:2).

Theorem 2.1 (New robust stability condition for PWA systems with delay-free). The uncertain
discrete-time PWA systems (2.2) is robustly stabilizable if there exist L symmetric matrices @ ;; with
j=1,2,..., L, for all i € Ty and a pair of matrices Y, G satisfying the following LMIs.

G+GT - Qij

B >0, Vj=12,....L,¥I=1,2,...,L Vi€eTy (2.18)

Furthermore, the state feedback matrix is given by

F=YG! (2.19)
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Proof. Assume there exists H € R™*" satisfying
\hrx(k + 51k)| < Urmax, V5 >0, 7=1,2,...,m,
From (2.18), G is of full rank and @);; is strictly positive definite. Therefore,
(G- Qij)TQ;; (G — Qij) >0,
which is equivalent to
GTQ;'G =G +G - Qi (2.20)
Then, defining F £ YG~, H £ ZG™!, satisfying (2.18) leads to

GTQ;'G -
(Ai; ¥ Bij(DoF + Dy H)G—Qj ’

which is equivalent to

r 4
G * \ * G *
# Y ) LY % > 0.
0 Qu QA +Bij(1?qF‘qu H)) Q,; 0 Qi
Letting P;; = Q;jl and Py = Q;ll, oie gets' ;

-F,i .

S0 Vil—1,20 . L, Vi Ty, Vg € Q.
Py(Aij + Bij(DoF + Dy H))& By 2y 4

For each 7, multiply the above corresponding'/ 4 £ 2,..'2*.’t'.'-',.L inequalities by &;(k), d;(k) > 0, Zlel o(k) =
1, and sum. Multiply the resulting j L I,2,...,lﬂﬁéﬁualities by A;(k) and sum. For each
q=1,2,...,2™, multiply the corresponding by A, (k); Ay 2.0, 2221 Ag(k) = 1to get

Bk

(£ : >0,V € I,
Paih)(Ai + Bep(k) Pah) |~ 2
where Pi(k) = 3271 X (k) PipePiy (k) = 312 01(k) P
Applying Schur complements [30], then it is equivalent;te

P, (k) Uit Bp(B)) i (45 +Bip(k])> 0, ] Vig To.
Choose the Lyapunov function of the form
V() = ()" Rik)ztk) ) | z(k) € X,Vie Ty
Then, we can conclude immediately from the above inequality that
AV(z(k)) = V(e(k+1)) = V(z(k))

= w(k)T [(Ai + Bip(k))T Py(k +1)(4; + Bip(k)) — P;(k)] = (k)

= a(k)" [(Ai + Bip(k))" Pt (k) (Ai + Bigp(k)) — Pi(k)] 2(k) <0,
for all non-zero x € R™. It follows immediately from Definition 2.3 that the uncertain discrete-time
PWA systems (2.2) is robustly stabilizable.

Notice that we can extend the theorem for the augmented condition where z € X;,1 € Z; directly.
Thus, the proof will be omitted. U



16

Theorem 2.2 (New robust stability condition for PWA systems with time-invariant delay). The
uncertain discrete-time PWA systems (2.3.1) is robustly stabilizable if there exist L symmetric ma-
trices Q;j with j = 1,2,...,L, for all i € Ly and a pair of matrices Y, G satisfying the following
LMIs.

G-i—GT—QZ'j * * *
G .
Qu * % | o il=12.. L Viel @21
0 0 M =«
AyG+By(DY +D;Z) 0 A Qq
where
A = [ALNDA5.0, & ,. Zonls
T 5 - |
Qi @il % ey
04 SO Qs Qau oo, *
of Jo 000N N Q|

Furthermore, the state feedback matrix is given by
o

= V(i (2.22)

Proof. The proof is a natural extension. of that of the un_ce_f;tain PWA systems (2.2) in Theorem 2.1.
O

The above Theorems 271, 2.2 are based on Definitions 2.3, 2.4 to search for a state feedback
law that robustly stabilizes the closed-loop system with a parameter-dependent Lyapunov matrix
P;(\(k)) = ZJLZI Xj(k)Pi; andeP = Qi_jl. It is dnteresting to note that, in contrast with the
quadratic stability synthesis, the'determination of the control (2.19) does not directly depend on the

Lyapunov matrices P; which are used to build the parameter-dependent Lyapunov matrix P;(A(k)).

2.8 LinearMatrix Inequalities

We give a brief introduction to LMI and some optimization problems based on LMIs. For more
details, the interested reader is referred to Boyd et al. [30].

A Linear Matrix Inequalities or LMI is a matrix inequality of the form

m
F(z) 2 Fo+ ) z:F; >0, (2.23)
i=1
where £ € R™ is the variable and the symmetric matrices F; = FZ-T € Rv*" 4 =0,1,...,m are

given. The inequality expressions in (2.23), F'(x) > 0 means that F'(x) is positive definite.
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We will also encounter a non-strict LMIs, which have the form
F(z) >0 (2.24)

The inequality expressions in (2.24) means that F'(z) is positive semi-definite.
Multiple LMIs Fy(z) > 0, ..., F,,(z) > 0 can be expressed as the single LMI

F(z) = diag(FY, ..., F®)(z)) > 0.

Therefore we will make no distinction between a set of LMIs and a single LML, i.e., ”the LMI F (z) >
0,...,F,(z) > 0" will mean the LMI diag(F() (), .. ., F®)(z)) > 0”.

The LMI (2.23) is a convex congtraint on . 1.€.sthe set {z|F(xz) > 0} is convex. It can
represent a wide variety of convex constraints on x. If_particular, constraints that arise in control
theory and have been used in the formulation in this thesis, such as Lyapunov function can all be cast
in the form of an LMI. Therefore, LMI+is an useful tool in this thesis, because the problem can be
solved in an efficient and reliable way. v

When the matrices F; arefdiagonal, the LN|II F(z) > 01s just a set of linear inequalities.

Nonlinear (convex) inequalities arg'converted to LM form using Schur complements.

-

Theorem 2.3 (Schur complements). Ler @(z) = Q(a:)T R(z) = R(z)T, and S(x) depend affinely

on x. Then the LMI /)
Q)i | Sl |4
{ S(ai? R(m‘)ﬁ}? \

is equivalent to the matrix inequalities 214

R(z) > 0, Qo) S(@)RE@IAS (2)” > 0,

or equivalently

Q) >0, R(z)—S(z)Q(z) 18(z)T >0.

We often encounter problems in which the variables are matrices, for example, the constraint
P > 0, where the entries of P arefthe,optimization variables. In such cases we will not write out the
LMI explicitly in the form ¥'(z)-> 0, but instead make clear which matricesiare the variables.

The LMI-based problem of central importance to this thesis is that of minimizing a linear
objective subject to LMI constraints:
minimize 'z

subjectto  F(z) >0 (2:25)

Here, F' is a symmetric matrix that depends affinely on the optimization variable z, and c is a real
vector of appropriate size. The MATLAB YALMIP toolbox [31] has ready packages for solving the
feasibility problem and solving the linear objective optimization problem subject to a set of LMIs
(2.25).

The observation about LMI-based optimization that is LMI problems are tractable. LMI prob-
lems can be solved in polynomial time, which means that it has low computational complexity and
numerical experience shows that these algoritms solve LMI problems with extreme efficiency. There-

fore, it is well-suited for online implementation which is essential for MPC algorithm.



CHAPTER III

RCMPC FOR PWA SYSTEMS WITH DELAY-FREE

This chapter presents the first strategy to employ RCMPC to PWA systems with delay-free. Section
3.2 discusses about RCMPC using state feedback law. The algorithm is then extended using saturated
state feedback law in section 3.3. The knowledge on deriving RCMPC in this chapter will be used to
extend the strategy to PWA systems with time-delay in themnext.chapter.

Remark 3.1. The formulation RCMPEC for PWA $ystems (2.2, 2.3.1, 2.3.2) from this chapter and the
next three chapters only concerns with ihe analysis of equilibria, where the affine terms a; = 0 for
z € &Xj,i € Ly. The robust perjormanee objective\is aimed at designing a predictive controller that
brings the systems to the origin (@& = 0. uw = 0) and at each time k, minimizing the infinite horizon
quadratic performance objective. Nevertheless, the formulation can be augmented directly using the

matrix parameterization method as @xplained “in the previous chapter for systems with conditions
a; 0,z € X;,i € Ty. )

3.1 Derivation of Upper Bound ,

o
The system is described by (2.2) with the“associated uﬂé@ffﬁinties set (2.8). The system state z(k) is
assumed to be measurable. As mentioned-in Section 2.6, the.minimization of the nominal objective
function (2.13) at each sampling time £ is replaced by the minimization of a robust performance

objective as follows

min max Joolk), (3.1
(k| k) [As(k+7)| B (k+J)]€Q,i€Z0,5 >0

where ) > 0, R > 0 are given weighting matrices.

As proposed in([§], ‘the min-max problem’ (3. 1)"is ‘used to minimize“the worst-case objective
function by deriving an upper bound among all time-varying plants [A4;(k)|B;(k)] € ©;. At sampling
time k, we define a quadratic Lyapunov functién (2.15). Suppose V satisfies thélféllowing inequality
for all z(k + jjk), u(k + j[k), . > 0satisfying (2.2), and for any [A; (k)| B;(k)) € €4,i € Zp,7 >0

V(w(k+ 5+ 1K) = V(z(k + jlk) < = [llz(k + 1K) T1IG + llulk + 51k)T1IR] - 3.2)

For the robust performance objective function to be finite, we let z(oo|k) = 0 and hence, V (z(oc0|k)) =

0. Summing (3.2) from j = 0 to j = oo, we obtain the following inequality

Too(k) < V(z(klk)) <7, 33
st B e ez, o) S V(@(klR)) < (3-3)

where y is an upper bound of the robust performance objective. Therefore, the robust constrained

MPC algorithm (2.13) has been redefined to synthesize, at each time step k, a constant saturated
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state-feedback control law to minimize the following optimization problem

min 7y,
a(k+jk) (3.4)
subject to (2.11), (3.2), (3.3).

The goal of the robust MPC algorithm has, therefore, been redefined to synthesize, at each
sampling time k, a (saturated) state feedback control law to minimize -y. As in standard MPC, only the
first computed input u(k|k) is implemented. At the next sampling time, the state z(k+1) is measured
and the optimization is repeated to recompute F'. The following subsection gives conditions for the

existence of the matrix P; satisfying (2.13) and the corresponding state feedback matrix F'.

3.2 State feedback RCMPC for PWA systems with delay-free

3.2.1 Control Algorithm

This part states the main results'of state feedback R(FMPC strategy for PWA systems with delay-free.

Theorem 3.1 (State feedback robust unconstrained MPC for PWA systems with delay-free).
Let z(k|k) = z(k) be the statesof the system (2.2)__Jilneasured at sampling time k in partition X;.
Suppose the switching sequence ofithe/PWA: sysien), fr@_m one partition to another is known. Then
the optimization problem (3.1) with & state-feedback eontrol law u(k + j|k) = Fz(k + j|k), F €
R™*" 5 > 0 can be solved by the following LMIs =

.

> L
min — 3.5
GaY,Qiz,Q;lr—x i )
subject to s T
] R
> 0, 7 (3.6)

GG —Qy * % %
AyG+ByY Q@ o+ x
Q%G 0 I =
R2Y 0 10w

> '0, 3.7)

Vi € Ty, VI € L, where Vi such that (E, i) €W, W is the set of all possible_switching sequences
defined as W &5\ Ty & Toy Omthé otliertiand Qs arid Q;, aressyminetric matriecs, and F =Y G -1

Proof. See [6]. O

Note that the variables in this problem should be strictly written as Q;;(k), Q;,(k),Y (k), F(k),
etc. to emphasize that they are computed at time k. For notational convenience, we omit the time
index here.

Theorem 3.1 formulates the robust unconstrained MPC problem, and derives an upper bound
on the robust performance objective. We extend the formulation incorporating the input constraints
as an LMI constraints in the robust MPC problem. As a first step, we need to establish the following
lemma which will also be required to prove robust stability. The lemma is an extension to PWA

systems in [5].
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Lemma 3.1 (Invariant ellipsoid). Consider the system (2.2) with the associated uncertainties set €2;
described by (2.8). At sampling time k, suppose there exist Q; > 0, 7, and F = Y G~ such that
(3.7) holds. Also suppose that u(k + j|k) = Fz(k + j|k),j > 0. Then if

z(k|k)TQ; tx(k|k) < 1,0r z(k|k)T Pix(k|k) < with Q; =P, Vi€ Iy,

then

ma z(k + j1B)TQ  z(k + jlk) < 1,Vi € Tp, 3.8
[Ai(k+j)|B¢(kfj)]eQi,jzl( Il Qi a(k + jlk) 0 ©.8)

or equivalently
max z(k + 7| Pallsr 5|k) < v, Vi € I, 3.9
Ay B et R L JIR) < 7Y € To 39
Thus, £ = {z|zTQZ_1z < 1} = {2’ Bz < v} is an invariant-ellipsoid for the predicted states of
the uncertain PWA systems with-delay-free_Fig. 3.1 illustrates the graphical representation of the

state-invariant ellipsoid [5].

Remark 3.2. The maximizationgin (3.8) and (3.9) ilevover the set (1, of time-varying PWA models that
can be used for prediction of the future states of théLs}stem. This maximization leads to the “worst-
case” value of ©(k + j|k)T Q7 ¥z (kA4 j[k) (qquivaléﬁtly, z(k+ jlk)E Pz (k + j|k)) at every instant
of timek + 3,5 > 1. .

Wk|k) € €
—— p(k+ik)€E Vi>1

Figure 3.1: Graphical representation of the state=invariant ellipsoid £iin 2-dimensions.

Proof. Because of the PWA systems with_delay-free comprises of several linear systems, then the
proof is a natural extensionfrom/[3], so.it will'be omitted here: O

In industry, many processes are subject to constraints on the control input. The explicit han-
dling of constraints may allow the process to operate closer to constraints and optimal operating
conditions. In LMI framework, input constraints is formulated as follows. For Euclidean norm con-
straint (2.14), at sampling time £ the constraint is imposed on the present and the entire horizon of
future manipulated variables, although only the first control move u(k|k) = u(k) is implemented.
Based on [5] and following [16, 30], we extend the formulation to PWA systems with delay-free as
follows

2
Upaxd *

YT G+GT—Qy >0, VieIyVieLl (3.10)
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From (2.20), then (3.10) implies

2
umaxI

>0, VieIyVle L
T T 1 ’ ’

Substituting F = Y'G ! into the inequality above multiplying the resulting inequality from the left-
hand and right-hand sides by diag[I, G|, we have

e ] Vie Ty Vie Ll
FT Qﬁl Z U, Vi 0>

Substituting Q;; = ')/Pil*1 and multiplying the resultingdnequalities by A\;(k + j) and summing up for

l=1,2,..., L, we obtain
7
ufnaxI *

e
EL %Pz(k-i-j)

Applying Schur complement to thednequality abovei and multiplying the resulting inequality from the
left-hand and right-hand sides by (& 1.7 |k) @nd taking into account of (2.10), we obtain

1 =
—u(k ¥ 5| K)" ulk A4 k) s"}—yw(k k) Px(k + k) 3.11)

max

Since the inequality (3.2) implies thatV (& (k+jlk)) strietly decreases as 7 goes to oo and V (k|k) <~y

from (3.3), we have ) 4 ¥/
;x(k+j|k)TP,;a;(k+j\k) S LWi€Ty,¥j >0 (3.12)

Hence, from (3.11) and (3.12), we conc_lu_;d_eltl:lat (3.10)ﬁg‘lgs._

Theorem 3.2 (State feedbackiRCMPC for PWA systems with delaé{-free). Let z(k) = z(k|k) be

the state of the uncertain systems (2.2) measured at sampling time k. Suppose that the uncertainties

set is defined by a polytope as in (2.8). Then the state-feedback matrix F in the control law u(k +
jlk) = Fz(k + jlk) for k,j >.0 that minimizes the upper bound 7y on the robust performance

objective function at samipling time k-and satisfies, a set-of specified-input constraints is given by
F=YG™!

where G is full-rank'and’Y iS‘obtained fronithe sélution of the'following linearohjective minimization

problem
min vy
GaKQil:Q:{l (313)

subject to (3.6), (3.7), (3.10).

3.2.2 Robust stability
In order to prove robust stability of the closed loop, we need to establish the following lemma.

Lemma 3.2 (Feasibility). Any feasible solution of the optimization in Theorem 3.2 at time k is also
feasible for all times t > k. Thus, if the optimization problem in Theorem 3.2 is feasible at time k,
then it is feasible for all times t > k.
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Proof. The proof of this lemma is a natural extension of that proposed in [5] by Kothare et al.
O

Theorem 3.3 (Robust stability). The feasible receding horizon state feedback control law obtained
from Theorem 3.2 robustly asymptotically stabilizes the closed-loop PWA systems with delay-free
(2.2).

Proof. See [6]. [l

3.3 Saturated state feedback RCMPC for PWA systems with delay-free

3.3.1 Control Algorithm

)
By applying the polytopic description of-the saturated linear feedback controller (2.12), the optimiza-

tion problem (3.4) can be reduced to.an LML optimization problem for uncertain system (2.2).

Theorem 3.4 (Saturated state feedback RCMP€ Ifor PWA systems with delay-free). Let z(k|k) =
z(k) be the state of the system (2.2 jimeasured at sampling time k in partition X;,i € Ty. Suppose the
switching sequence of the PWA system fronvonepartition to another is known. Then the optimization
problem (3.4) with a saturated state-feedback controtdaw ulk+j|k) = o(Fz(k+j|k)) can be solved
by the following LMIs : ‘ 4

il gy (3.14)

GhY,Z, Qi1 Qe n.
subject to SEL 27
i + o
L7 2 TN, (3.15)
z(klk) Qu 4
\7G+GT —Qy %k k|
AuGrk BiD¥ st DgZ) Q5% +1| (3.16)
) 1 .
. Q>G 0 ~I « | 7
R:{DgY +D, 7) 0 0 o
X *
>0, Xpr S U o = 1,2,...,m, (3.17)
ZT G+GT —Qy

Vi € Ty, VI €L, Ng € Q where Yi such that(iyi) € W, W lis theset ofiall possible switching
sequences defined as W & Ty x Ty. On the other hand Qj;; and Q);, are symmetric matrices, and
F=YG

Proof. We only need to consider the condition (2.11), because the saturated controller subject to input
constraint (2.14). We use the similar techniques as in [3, 5] to transform the saturated condition into

LMI representation. Assume there exists H € R™*" satisfy

|hrz(k + jlk)| < Urmax, Vj >0, r=1,2,...,m. (3.18)
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If the conditions in (3.15), and (3.16) are feasible, we obtain invariant ellipsoid as the polyhedral cell
bounding for predicted state z(k + j|k). From (2.20), then (3.18) implies

X *

. >0,X, <u?_.,r=12...mVieLVlecL,
7zt GTQ;'G

7,max?

Substituting H = ZG ! into the inequality above multiplying the resulting inequality from the left-
hand and right-hand sides by diag[I, G~!], and substituting Q;; = fyPil_l, we obtain

X *
HT 1

ST

>0, X, <vloonr=1,2...mVieIVlecL.

7,max’

Applying Schur complement to the inequality above and-muléiplying the resulting inequality from the
left-hand and right-hand sides by (k- 4|k}, we ebtain
{Ha(k + jlk)}T X {Hae bk} | < 2alb+ 40T Pax(k + j|k),

: 3 ~ (3.19)
5 KA\ r=1,2,...,m

= 7,max’
Condition in (3.19) is equivalent to . 4
1 Lt
7 {hak+ 310))" (el 5100 s a0 IR Bk B, = 1,2,...m. (320)
T,max ' ':j 5

Since the inequality (3.2) implies thatV (#(k+-7{k)) s'if‘l-'}(.:tlly decreases as j goes to oo and V' (k|k) <y

from (3.3), we have i
XA

;J;(k + 5|k)T Phz(kidglk) <1, Yik T,VI € L,V > 0. (3.21)

Hence, from (3.20) and (3.21), we conclude that (3.17)';'Ii"o'1ds.—
Define F' £ YGL. With the same procedure as the proof of Theorem 2.1, satistying (3.16)

leads to

6ZQ,L6 g
(Au% By(D,F + Dy H))G Qy * * =0
1 1 )
F2Q:G 0 I * |
v 3R (D, WD, H)G 1o R0
which is equivalent to
Q5 * B 0% O
’YQ;_ll(Ail + B;(DyF+-'Dy H)) 7QE_11 # L )
1 — 3
Q> 0 I x
R?(D,F + D, H) 0 0 I

where left-hand and right-hand sides are multiplied by diag [77% G, 'y*% Q;, I1,1).
Letting P;; = 'yQi_ll, P, = ng_ll, we gets

Py * k%

P.(Aq + By(D,F + D7 H)) P:

 (Aig + zz(qu + Dy H)) Fy ; "1 >0, WlecLViely Ve Q.
5 *

~

0
R>(D,F + D; H) 0 0
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For each ¢ € Q = 1,2,...,2™, multiply the corresponding inequalities by A,(k + j), Aq >
0, Zg:l Ag(k + 7) =1 and sum up to get

Pz‘l * * ok
P (A; + B; P
zl( il ‘L‘ lep) i *oF >0, VlieL,Viel,. (3.22)
Qz 0 I =«
R4 0 01

We define the PWA system (2.2) with uncertainties described by (2.8) into L PWA subsystems
in each of polyhedral partition &;

)
then the corresponding Lyapunov tunction V- at time k + 7 is.defined as follow

V(z(k + j|k)) =@ gl Pk +4lk), § >0 € X;,Vi € L. (3.23)
)
At sampling time k + j + 1, assumetthe'state z (% + 4 + 1|k) is implemented by the saturated state

feedback (2.9) enter partition A:

- =t

[
A ,-

V(z(k+ 5+ k)= g+ 5 LB Pk + 7 R1k) =ETPE, (3.24)

where & = A (k+ j)z(k + j|k) +Bj (k —i—j) (L k—l—j[k forall i € Zy,l € L, and for all i such
that (7,7) € W, where W is the set of all possible sw1téh‘tng sequences defined as W 2 T x Zy.
Then, we can see straightforward from inequalities (3.22 _),,(‘3 23), and (3.24) that

4
e

AV(z(k +3k) = V(o +=Tl)) =V (@(k L jR)

_ k+;Ll~c)_{[AJ,J,¢lu»_gg_tBﬁ,;uu—_ﬁzzz]_R, Wi (k + j) + Bau(k + )]

—P¥z(k + jlk)
< —[z(k +J|k)TQw(k+J|k)+U(k+3|k)TRU(k+JIk)]

which meets the performance constraints (3.2). Henceithe inequality (3.16) holds.
Next, we show that the inequality (3:15) holds. By applying congruence transformation to the
resulting inequality withydiag[1, Q 17, we have

1 * £
QrleEBN Q|7

Substituting @y = 'yPil_1 and applying congruence transformation to the resulting inequality with

diag[1,yP; '], we obtain

> 0,

1 *
z(klk) Pyt
which, by the Schur complements, yields

2(k[k)T Py (k|k) <

Hence, we conclude that the first inequality (3.15) holds. O



25

3.3.2 Robust Stability

Standard linear feedback controller can be considered as a special case of saturated linear feedback
controller when the input value within the prescribed bounds. Hence, Theorem 3.3 can be applied to
saturated state feedback RCMPC for PWA systems with delay-free. The implementation of saturated
linear feedback controller to the system has a similar robust stability condition as the standard linear

feedback controller.

3.4 Augmented Formulation

Theorem 3.5 (Augmented saturated state feedback RCMPC for PWA systems with delay-free).
Let x(k|k) = z(k) be the state of the system (2.2) measured-atsampling time k in partition X;,1 € T,.
Suppose the switching sequence of the PWA system from one partition to another is known. Then the
optimization problem (3.4) with a squurated state-feedback control law u(k + j|k) = o(Fz(k+7|k))

can be solved by the following LMIs \

{ [ min, 'y (3.25)
G’)ﬁ5Z1QilJQ€il
subject to w
iy x|
4 a4 >4, (3.26)
T(klk) Qg &
M@ -Gl AN
AyG + By(D¥£D, Z) Qs *
2l Zl_ 1 q_ q ) TQ’HJ _ Z 0’ (327)
QG L7
R:(D,Y + D, Z) 0 0 I
X : : * g
A 20 XS =12, m, (3.28)
z G+ G" - Qu ’

Vi € Ty, VI € L, Vq € Q, wheieNi such that (i,7) et W, W is the set of all possible switching
sequences defined as Wa2 ‘T x L1, on the other hand Qy and Q%l are symmetric matrices respectively,
and F =YG™ 1,

Proof. The proof follows Theorem:3:4: O

Based on'Theorem 3.4 and Theorem 3.5, we state the algorithm for the implementation of
saturated state feedback RCMPC for PWA sytems. It is given as follows

Algorithm 3.1 (Saturated state feedback RCMPC for PWA systems with delay-free).
1. Get the measured state x(k),z € X;,Vi € T.
2. Forxz € X;,1 € Iy,

e Solve ming,y,7,Q,,Q; Y -t (3.15),(3.16),(3.17) and compute F(k).
o Apply u(k) = o(F(k)z(k)) to the process.
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Trajectory Input

T
— - — Linear Feedback Robust Unconstrained MPC
2 — — —Linear Feedback Robust Constrained MPC
Saturated linear feedback RCMPC

-1.5F b
_2 1 I
0 5 10 15 0 5 10 15
time (iteration) time (iteration)
- Lyapunov function value \ Rz (ke + ilk)|
10°
A > ~
N N -

107 o N
107 -
10°% ’ 3

0 5 10 15 0 ) D = 5 %, ’ . 0 5 10 15 20

time (iteration) time (iteration)

Figure 3.2: Comparison of the DIOpose methods under input constraint

lu| < 1.

3. Forx € X;,1 € 14,

N T —
e Solve ming y 7 5. o. V5.1 (3:26).(3.27), and compute F' (k).

o Apply u(k) = o(F (k)Z(k))da the process

4. Setk:=k+1and :‘-';f_——s,‘

3.5 Numerical Example @

comsire il %B@ %HVFWEH 3
EIEALT ST

k) =
(k) —g [1,0 |z
0<B<05

The uncertain PWA system has two modes, where
X = {z|[1,0]z > 0}, A1 (k) =

= {z|[1,0]z < 0}, Az (k) =

[ I |
N
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Trajectory Input
25 T 0.2
—-— Linear Feedback Robust Unconstrained MPC ||
2R== N — — ~ Linear Feedback Robust Constrained MPC
15k N Saturated linear feedback RCMPC L
AN
1k N N NN i
N
05 N AN J
07 /\ 7\/‘77.— N _ — —
I\ - P N
-05F / -\0 / B
/ \ /
-1F , \, / B |
-1.51-// 4 -1.2
_2 1 I
0 5 10 15 0 5 10 15
time (iteration) time (iteration)
Nérm of F I (k + ilk)]
0.5
0.6 [N | |
1 T Z S S
/ # 0.4
05 ;
y 03
0.4 - J
!
03 ; 0.2
/
7
0.2, 0.1
4
_ \
10 04 ! 0
0 5 10 15 20) 0 b - 10 15 20 0 5 10 15 20
time (iteration) time (iteration) time (iteration)

Figure 3.3: Comparison of the proposed method with the existing methods under input constraint

lu| <0.5. ‘ \ &
4

The system with uncertaintigs 0 /< “B(k) < 05, then we can conclude that A;(k) € Q; =
CO{AH, Alg}, and Ag(k)) € QQ = CO{AQl, 14:22} ""'rt.".

244
2 23 [z _2
An(k)=| 55 Pl Anl=] 5 P |
5 5 L 5 10
32253 2 2v3
Agl(k) = _gﬁ g 3 A22(k) == _Sﬁ < E ’
5 5 5 10
Bi=B;=B= 1

At the time when the states enter. partition X1, theén the uncertainties
Q; = Co{(A11,B), (443, B)}, and when the states enter partition X5, then the uncertainties 9 =
Co{(A21,B), (A2, B)}.

We consider two cases inithe simulation, where the maximum input constraint:

With tuning parameters Q = I, R = 1, and given initial condition z(0) = [ —2,2]%, the LMI
conditions in Theorem 3.4 can be solved. On a 2.2 GHz Intel Centrino Core 2 Duo Processor, with 2
GB RAM, the CPU time required to compute the online algorithm in Theorem 3.4 are 5.62 seconds
=1, and 5.56 seconds for u2, = 0.5.

1
for u nax

max
Figures 3.2 and 3.3 shown the closed-loop response of the uncertain PWA system and the
corresponding control signal for the two cases respectively. In particular, the simulation intended

to compare the performance of saturated linear feedback RCMPC, and the linear feedback RCMPC
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algorithm. Notice that the simulation result of linear feedback robust unconstrained MPC also given
here only as a reference of the closed-loop system performance without input constraint.

The saturated linear feedback RCMPC has better performance because it effectively utilizes
the control region. The effectiveness of the proposed method can also be seen in Fig. 3.3 where
Umax = 0.5. The system states trajectory reaches the origin faster than the previous linear feedback
RCMPC method, while the input constraint is tighter. Further analysis concludes that, for the two
cases, the Lyapunov function value decreases along the sampling time which guarantees the robust

stability of the closed-loop systems, and the as tion of polytopic description for the saturated

)

% §
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CHAPTER IV

RCMPC FOR PWA SYSTEMS WITH TIME-INVARIANT DELAY

In practice, uncertainties and robustness are the main topic of research in the modeling and analysis
of nonlinear systems. It is also well known, that time-delay cannot be avoided in industry every-
where. There has been extensive research addressed in this area (see [5,20,25,32], and the references
therein). We extend the robust MPC strategy for uncettain®PWA systems in [6] into uncertain PWA
systems with time-invariant delay. In the design, yve adept multiple quadratic Lyapunov functions
corresponding to different vertices of-the uncertainties polytope in different partitions as the upper

bound function.

4.1 Derivation of Upper Bound

The system is described by (2:3.1) withithe associate;_d uncertainties set (2.8). The system state z(k)
is assumed to be measurable. As mengioned in section 2.6, the minimization of the nominal objective
function (2.13) at each sampling time & is teplaced by the minimization of a robust performance
objective as follows vdda
222244
min max—=_, Joo(K), “4.1)
w(k+jlk) [Ai(k+5)AgilkE)| Bi(BEIEQIE To,5 >0

where @ > 0, R > 0 are givemweighting matrices. ,

The min-max problem:«(4.1) is used to minimize the worst-case objective function by deriving
an upper bound among all time-varying plants [A;(k)| A4 (k)| B;(k)] € Q;,7 € Zp. Because the
parameter of time-delay is been considered in the polytopic description, therefore, a modified PWA

quadratic Lyapunov-Krasoyskiifunctionsisyused in the-formulations-and-defined as follow [5]:
T1 T2
V(u(k)) = oK) Pik) + ) ok =) Pusk =) +_ Y ok =5  Puxlk—j) +...
j=1 G
Tp
+ > z(k=)) " Puz(k—)), z€X,ie.

3:7']17 1+1
4.2)

At sampling time k, suppose V satisfies the following inequality for all z(k + j|k), u(k+j|k),7 > 0,
satisfying (2.3.1), and for any [A;(k + j)|Aqi(k + 7)|Bi(k + j)] € Qi,1 € Lo,

V(o(k+j+11k) = V(u(lk + k) < = [la(k +jIB)IG + lutk + k)R] . 43)

For the robust performance objective function to be finite, we let lim j_, oz (k+j|k) = 0, lim;_,oou(k+

jlk) = 0, and limj_,cV (v(k + j|k)) = 0. Summing (4.3) from j = 0 to j = oo, we obtain the
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following inequality

ma Jo(k) < V(v(klk)) <7, 44
A ) A % reapier, o (B) S VIVRIE)) <7 4

where <y is an upper bound of the robust performance objective. Therefore, the robust constrained
MPC algorithm (2.13) has been redefined to synthesize, at each time step k, a constant saturated
state-feedback control law to minimize the following optimization problem
min 7,
i(k%ik) (4.5)
subjectito (2.11) (463)4 (4.4).

4.2 Control Algorithm 2

By applying the polytopic description of the'Saturated linear feedback controller (2.12), the optimiza-

tion problem (4.5) can be reduced to an LMI optimilzation problem for uncertain systems (2.3.1).

Remark 4.1. As stated in the previous chapter that the standard linear feedback controller can be
considered as a special case of saturated linear. feedizack controller. In this chapter, we only consider
the derivation of saturated linear feedback cb’ntrollerl"'-,af ‘a more general formulation concept to PWA
systems with TID. =

Theorem 4.1 (Saturated state feedback RCMPC for PWA systems with TID). Ler z(k|k) = z(k)
be the state of the systems (2.3.1) measured at sampling_‘_l.g'me k'in partition X;,1 € Ty. Suppose the
switching sequence of the PWA system fronm one partiti_azTib another is known. Then the optimization
problem (4.5) with a saturated, state-feedback control law w(k + jlk) = o(F(k)z(k + j|k)) can be
solved by the following LMIs" = -

y (4.6)

min
Y,Z,Q;,Qi1,Qdi
subject to
1 *
>y WdissD,
JOAR S @.7)
i G875 Oy * Yok i11"al
G Qui  * % T x Tk
Q%G 0 ~I *x x * >0
R>(D,Y + D; Z) 0 0 I * * |77 (4.8)
0 0 0 0 M «
| AuG+Ba(DY+D;Z) 0 0 0 A @
Vq € Q,Vi € Iy, VI € L,V such that (i,i) € W,
X *
>0, Xpr UL oo™ =1,2,...,m, Vi€TIy,VIEL, (4.9)

ZT G-l—GT—QZ'l
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where Qj, Qgii, and Q5 are symmetric matrices, and F' = YG~1, with

I' = diag{Qi;, Quit, .-, Quit» Q2its --» Q2its - - - » Qpit } »
A\ - [Al’ilaoaA?ilaoa B 7Apil] ’
[ Qlil * * * . * i
Qua Qait  * ¥ L.k
]/\-4\ _ 0 0 QZil * e *
0 0 Qair Q3 ...
L 0 "l/// . Qpil A
Proof. We define the PWA syste un‘:rt @bed by (2.8) into L PWA subsys-
tems in each of polyhedral p 7 ) 1

o(k+1) = Ag(k)

At sampling time k + J +1,a

Y
in Theorem 4.1. Then we obtain the sta'fe" =

>Vi €Ty, Vi € L, @1
where ¢ £ E)\ (D 1 )‘ Y id
= \q
By applymgq(41 2) andﬂ;nﬁ;@ tl’legstze]( 1) enter pﬂlo 2\:] WE]OIEIH
=9
”@Wﬂ”r mnq ’ T mna
| w45+ 1]k) P 0 z(k + 7+ 1]k) (4.12)
w(k + j|k) 0 P || whk+j+1k) |’

where P = diag {Pis; — Py, Poiyt — Pijgs - - -, Ppir}, for all 1 such that (7,7) € W, where W is the set
of all possible switching sequences defined as W £ T x Zy.
By applying (4.11), and (4.12) into (4.3),

V(v(k + 5+ 1]k) = V(o(k + j|k) + llz(k + 5E) 5 + llu(k + 51k)]1%
w(k + j1k)T Ak + 5wk + j|k)
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where ) .
II * * AU
AT, Py (Ay + Bayp) ITy * L%
A= Ag;'lljgl(Ail + le'l,b) A2zl Alzl 11, e * ,
5 : -
A;q;zl 1(Air + Bap) A,J,;IP Ay ApzlelAzil o I

with (note that we omit the time (k + j)-term for space consideration)

zl + le¢ + Q + ¢TR1/J,

(Ai + Butp) >0,
A
T
A%
(4.13)
NN 201 (4.14)
By multiplying left-hand and right-hand sides of A by diag {Q_l I, 1,...,1 } then applying sev-

eral steps of Schur complement withithe same procedute.és the proof of Theorem 2.1, satisfying (4.8)

o uﬂQWHW§WﬂWﬂ

O Qua ke x

J @‘Qﬁm AT ey,

OOM*

~

(Ai + Bil(DqF +D;H)G 0 0 0 A @
Vg € Q,Vi € Ty, VI € L, Vi such that (4,i) € W.
Thus the inequality (4.8) holds.

Next, we show that the inequality (4.7) holds. By applying congruence transformation to the
resulting inequality with diag[1,T '], we have

1 *
l Ilo(klk) T-! ] =0
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szl

inequality with diag][1, fyI‘ 11, we obtain

1 * >0
v(klk) A0t |~

which, by the Schur complements, yields

Substituting T = ['yP I ,'yP1 ] and applying congruence transformation to the resulting

DREERE

v(k|k)TTv(k|k) < 7. (4.16)
Hence, we conclude that the first inequality (4.7) holds. O
4.3 Robust Stability J

Lemma 4.1 (Feasibility for PWA systems with TID). Any feasible solution of the optimization in
Theorem 4.1 at time k is also feasible for: all tim'fs t > k. Thus, if the optimization problem in
Theorem 4.1 is feasible at timedk. thea i1 is feasible jor all times t.>"k.

Proof. The proof of this lemmadis a natural extemlon‘ from Theorem 3.2.
Assume that the optimization in Theorem 4. Iis feas»ble at time k. The LMI problem which depends
explicitly on the measured state v(k|k) = v(k) of the____sy,st,em is the following

1 n.'* J‘*_ .
; >0, Vi€l
O (kIRF=T L

Thus, to prove the lemma, we need only toprove that the I";MI is feasible for all future measured states
v(k + jlk + j) = v(k + j)yg= 1. Now. feasibility of the problem atltime k implies satisfaction of

(4.8) and (4.9), which, using-L.émma 3.1, in turn imply for the uncertainties set description that (3.8)

is satisfied. Thus, for any €2; we -must have
v(k G ghk) T ok + jlky < 1,Vi € To.

Since the state measured at time k 4+ 1, that'is, v(k*+ 1|k +'1) = o(k"+ 1), equals [A;(k) +
Bii(k)y|Avir] - - - |AgiJw(k|k) for some [A; (k)| Agi| B (k)€ Qi,Vd € D, itgnust also satisfy this
inequality, i.e:,

v+ 1R+ )Tk 1K +1) < 1,Vi €1,

Thus, the feasible solution of the optimization problem at time k is also feasible at time k£ + 1. Hence,
the optimization is feasible at time k£ + 1. This argument can be continued for time k + 2,k + 3,...

to complete the proof. U

Theorem 4.2 (Robust stability for PWA systems with TID). The feasible receding horizon state
feedback control law obtained from Theorem 4.1 robustly asymptotically stabilizes the closed-loop
PWA systems (2.3.1).
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Proof. To prove the asymptotic stability, we will establish, according to Definition 2.4, that V (v(k|k)) =
v(k|k)TT(k)v(k|k), where T'(k) > 0 element-wise is obtained from the optimal solution at time &,
is a strictly decreasing Lyapunov function for the closed-loop.

First, let assume that Theorem 4.1 is feasible at time k¥ = 0. Lemma 4.1 then ensures feasibility
of the problem at all times k£ > 0. Because of I'(k + 1) is optimal whereas I'(k) is only feasible at

time k + 1, we must have
vk + 1k +1)TT(k + Dok + 1k +1) <w(k + 1|k + 1) T(k)v(k + 1k + 1). (4.17)

We know from Lemma 3.1 that if u(k + jlk) = o(F(k)z(k + j|k)),7 > 0 (F(k) is obtained
from the optimal solution at time k), then for any [ A (k) jA 4 (k)| B (k)] € ©;, we must have

v(k + k)" T (k)olle+1{k) < y(k|k) PolklE), v(k|k) # 0. (4.18)

Since the measured state v(k + MWk 1= w(k + 1) equals
[Ai(k) + Bu(k)Y|Aval - - - | Ada (ko) Tor some .I[Ail(k)lAdil(k)‘Bil(k)] € ;, it must also satisfy

(4.18). Combining this with inequality (4.17) we conclude that
ok +1Jk + 1)TT(k Ao FUR 1)< o(klR) AT R)u(klk), o(k|E) # 0.

Thus, V (v(k|k)) = v(k|k)T T (k)ufk| k) is'strictly deereasing Lyapunov function for the closed-loop.

We therefore conclude that v(k)"— 0ask — 0. B'i}f-che_cking Lyapunov stability conditions (4.8),

we conclude that the controller guarantees asjmptotiq.-sf}ab'ﬂity. O
ald vl

4.4 Augmented Formulation = <

]
4 el

Theorem 4.3 (Augmented saturated stz?té feedback RCMPC for BWA systems with TID). Let
z(k|k) = z(k) be the state of the-systems(2:3-1) measured at sampling ti}ne k in partition X;,i € 1.

Suppose the switching sequehée of the PWA system from one partition i0 another is known. Then the

optimization problem (4.5) with-a saturated state-feedback control law u(k + j|k) = o(F (k)z(k +
j|k)) can be solved by the following LMIs

min ¥ (4.19)

Y,Z,Q;,Q:1,Qail

subject to

klk) T (4.20)
[ G + GT — Qzl * * * * * ]
G Qlil * * * *
1 Z%é . 0 'yf * % * >0
R2(D,Y + D; Z) 0 0 ~I % * |7 (4.21)
0 0 0 0 M «x
| 4G+ By(D,Y+D;Z) 0 0 0 A Qy
Vg € Q,Vi € Ty, VI € L, Vi such that (i,i) € W,
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X *

L >0 X <u? .,r=12....m Viel,VleL, (4.22)
z G+ G - Qq

7,10aX 7

where Q1, Qi and le are symmetric matrices respectively, and F = Y G™1, with

L' = diag{Qi, Quit, - Quit, Q2its s Q2its - - -, Qpit } »
A\ = [AlilaO,AQilaO,"-a---,Apil] s

[ Qui * * ... %
Qui Qoir  * X ...k
]/\Z _ 0 0 Q?il 7* i - *
0 0 Qo Qul o *

| - 0 0 O e |

Proof. The proof follows Theorem 4.1 v O

4.5 Numerical Example

-

Consider the following uncertain PWA/system with the Jpartitioning

cos(a(k)) —sm(a(kj- 7l ok — 1 "
+0'1[sm(a(k:)) cos(a(k)+7@eg)*)] (k 1“[1] (k)
CfE [10Ja(E 00
O‘(k)_{ r R0l < 0

0>0,0<p<03 7 =2
From the uncertain PWAsystem we can see that the system has two modes
& £ {J)'[].,O].'IJ - O}aXQ - {2'[1,0].’17 < 0}5

We consider the system'with uncertainties 0 < (k) < 0.3, the maximum input constraint umayx =
0.2, and 8 =-0.6; =At-the-time when-the-states enter partition, X 5 then, the, uncertainties Q2 =
Co{(A11, A111,B), (A12, A112,B)}, and when the states enter partition Xy, then the uncertainties
Qo = Co{(A21,A121, B), (A22, A122, B)}.

With tuning parameters () = I, R = 1, and given initial conditions z(—2) = z(-1) =
z(0) = [ —2,2]%, the LMI conditions in Theorem 4.1 can be solved. On a 2.4 GHz Intel Centrino
Core 2 Duo Processor, with 1 GB RAM, the CPU time required to compute the online algorithm in
Theorem 4.1 is 12.75 s.

Figure 4.1 shows the closed-loop response of the uncertain PWA system and the corresponding
control signal for the two cases of standard linear feedback controller and saturated linear feedback
controller. The effectiveness of the proposed method can be seen since the saturated linear feedback

controller is able to drive the system states trajectory to reach the origin faster, while keeping the
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Figure 4.1: Comparisoi it constraint |u| < 0.2.
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pling time which guarantees the robust stabi ~-and the assumption for the saturated linear feedback
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CHAPTER V

RCMPC FOR PWA SYSTEMS WITH TIME-VARYING DELAY

The uncertain and time-varying delays are addressed to a lesser extent. In [4], the authors present
an algorithm considering only one state delay. This delay is assumed unknown, but with a known
upper bound. In [22], the authors extended their idea to uncertain and time-varying delays systems
by utilising the augmented state feedback to improve optimality and stability.

In this part, we generalized the results from the last-chapter. We deal with systems that allow
state delays to be uncertain and time-varying. This delay issassumed unknown, but with a known

upper and lower bound.

5.1 Derivation of Upper Bound

The system is described by (2:3.2) with/the associatéd uncertainties set (2.8). The system state (k)
is assumed to be measurable. As mengioned in sectioﬂ_2.6, the minimization of the nominal objective
function (2.13) that regulates the system {0 the origin (# = 0,u = 0) at each sampling time & is

replaced by the minimization of a robust performance objective
il

min - Joo(K), (5.1
w(k+jlk) [Ai(k+),Aqilkr),B: (E¥3)1EQ4,7a€ Lq

subject to (2.14), with

00
S [Hx (k + IR + llulk + 302 |, 7€ x;i € T, (5.2)
j=0

where Q = QT > 0, R=.R" >, 0.are given weighting matrices. The.optimization problem in this

work has incorporated 74 in the[ max’’ operator.
The min-max problem (5.1) is used to minimize the worst-case objective function by deriving
an upper bound, among-all time: varying' plants [fli(k),fidi(k),éi(k)] eV € £4. Because
the parameter of time-delay is considered in"the polytopic descriptions therefore,-a' modified PWA

quadratic Lyapunov-Krasovskii functional is used in the formulation, and defined as follow [22].

V(m(k)) = z(k)T Pz(k +Z Z— (k— )T Puz(k—j) |, € Xi,i € L. (5.3)
d=1 \j=14

In particular, the expression for the candidate Lyapunov function in each region can be recast as [23]
T
T By | T(k) P, x z(k)

and it is also applied to the delayed candidate Lyapunov function (sz)’ respectively.
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At sampling time k, suppose V satisfies the following inequality for all Z(k + j|k),u(k +
jlk),j > 0, satisfying (2.3.2), and for any [A;(k + 5), Agi(k + 3), Bi(k + j)] € Qi, 74 € L4

V(m(k+j+ 1K) = V(m(k + jIK) < =[50+ j10)3 + lutk + jR)IE] . 5.5

For the robust performance objective function to be finite, we let lim;_,oZ(k + j|k) = 0,
lim;_,oou(k + j|k) = 0, and lim;_, oV (m(k + j|k)) = 0. Summing (5.5) from j = 0 to j = oo, we

obtain the following inequality

] _ max Jg(k) < V(m(klk)) <, (5.6)
[As(k+7)|Aai(k+35)| Bi (k-+5)] €90 ,7a€ L4
where <y is an upper bound of the rebust performance objective: Therefore, the robust constrained
W]
MPC algorithm (5.1) has been redefined to.synthesize, at.each time step k, a constant state-feedback

control law to minimize the following optimization problem

man.

(k+J) (5.7)
ghbjécifto (211), (5.5),(5:6).

5.2 Control Algorithm 4 J .

By applying the polytopic description of the séiturated-'ji"i‘lelé'lr feedback controller (2.12), the optimiza-

tion problem (5.7) can be reduced to an LMf optlmlzat'fon problem for uncertain system (2.3.2).
%M

Theorem 5.1. Let Z(k|k) = Z(k) be the state of the—s*ystem (2.3.2) measured at sampling time k

in partition X;,1 € T. Suppose the swnchmg sequerice of the PWA ssystem from one partition to

another is known. Then the ogtumzaaan_pmblem_(ii)_wnh_a_satumfed state-feedback control law
u(k + jlk) = o(F(k)z(k + ][k)) can be solved by the following LMIs~

__ min v, (5.8)
Y,Z,Q;,Qi1,Qai
subject to
1
| >0 vdeDVieLVieT, (5.9)
m(klk) T
[ G — Qi * x5 Dk 1ok 4
é Qll’il * ES % *
_%(_; 0 "/I_ * * *
1~ - > 0,
Rz 0 0 ~I x x (5.10)
0 0 0 0 M =«
| AaG+Byp 0 0 0 A Qy
Vg € Q,Vi € I,VI € L,Vi such that (1,) € W,
X *
20, X <@l e =1,2,... m VIELVIET, (5.11)

ZT G+ GT —
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where Q;1, Qqi1, and Q;l are symmetric matrices respectively, and F = Y G, with
% =D,Y+D;Z,
r = dlag {Qila Qzlila ey Q?ﬂla szila ey Q?zila ey szila ey Q?pil} )

~ _ _ _ _ T
A = [Alzl I3 ’0 A’ﬂ'l,El—{—laO’ tee ’A{il,ﬁlaAgz’l,Ezaoa A2’Ll,u2 Apzl,u 50’ z’l;il,ﬁp] )
= A, = T4
Adity, = iy By = Td
a 0, K, 7é Tds
M\ = diag [Mp,l,Mp,Z,...,Mp,p] , ;’// ,
Qe * % //
V Q(Td)d Q(Td+1)’l § | / '
Mpq = , : :
0
Proof. We define the PWA system bed by (2.8) into L PWA subsys-
tems in each of polyhedral p certain and time-varying,
2(k+1) = A;(k)z Vie Ll (5.12)
At sampling time k + j + 1 is implemented by the saturated
state feedback (2.9), there exists
|z ., m. (5.13)

as in Theorem 4.1. em
Then we obtain the state;V; > 0,

- ﬂ?%ﬁﬂfﬂﬂﬁﬁ? Bk, G

foralli € Z, foraalll% T4 € L4,

‘5}%@ AGATR NW]’W]EH@ d

Adzl(k + .7) [Adzl,gd (k + .7) Adzl,gd—l—l(k + .7) Adzl,ud (k + .7)]
By applying (5.3) and assume that the state (5.14) enter partition A7, we obtain
P 0
0 P

2(k + j + 1]k)

V(m(k+j +1k)) — V(m(k + j|k)) = e Z(k + 5+ 1|k) }

w(k + j|k)
(5.15)

where N . . .
P = diag {Pm,Pm, EE aPpil} ’

Py = diag { Pz, 11yi — Pir,yitr Pz j+2)it — Pey1yit - - Prgyic} »
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for all 4 such that (4,4) € W, and W is the set of all possible switching sequences defined as W =
Ix1T.
By applying (5.14), and (5.15) into (3.2), we obtain

w(k + jlk)T Ak + §)m(k + jlk) <0, (5.16)

where

My = Py u— Pu+ AGP
I = d1ag{13(T +1)3l )il+Ai’;l,?1PZlA1il7?l}’
I, = diag {P(T +1)il ' p)il + A&l,?pl%ljpil,?p} J
Boa = | ATy, Paba,..
5o, = [AZ;Z’NPP;ZAU, hf
This can be rewritten as
Py— P !
i = Lyl >0, (5.17)

where

M = dig {P<11+1mm m Prayyis -~ Plra}

Bz yits -+ =Prnyits -5 P+ 1)i

_ I N T
v - P iy I fan TR
‘ (5.18)
U
Applying Schjqawlﬁe tﬁn ﬁi >qui
q Py — Py
(5.19)
A NoR
Define - - - - _ ~
Py £4Qy" > 0,Py £ 7Q;" > 0, Py £1Qgy > 0,Yd € D, 7y € &4 (520
FAVQ,LH 2 ZQ," '
Using the new measure of robust stability in [16]
(C_? - Q,-l)T Q;ll ((_}’ — Qzl) > 0, which is equivalent to (521)

GTQ;'G > G+ G — Qy,
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and by multiplying left-hand and right-hand sides of A by diag { G, I,I,...,I } and applying
several steps of Schur complement, we can transform A into (5.10).

Suppose that (5.10) is satisfied, then the closed-loop system is asymptotically stable, and we
obtain the inequality (3.3). By applying the definition (5.20) and Schur complement, (3.3) is equiva-

1 *
[ ] > 0, (5.22)

lent to

m(k|k) T

O

5.3 Robust Stability

Lemma 5.1 (Feasibility for PWA systems with TVD). Any feasible solution of the optimization
in Theorem 5.1 at time k is also feasible for all times t > k. Thus, if the optimization problem in
Theorem 5.1 is feasible at time k' thengit isfeasible for all times t > k.

|

Proof. The proof of this lemmas a natural exiension from Lemma 4.1. U

Theorem 5.2 (Robust stabilityfor PWA systéms with TVD). The feasible receding horizon state
feedback control law obtained from Theorem 5:1 rolbusﬂy asymptotically stabilizes the closed-loop
PWA systems (2.3.2). —

Proof. The proof of this theorem is a natural éxtensiohﬁx:qm Theorem 4.2. U
1)

5.4 Numerical Example o

Consider the following discrete-time PWA system. with uncertain.and ime-varying delays
ok + 1) = 0.4;(k)z(k)+ 0.1A (B)a(k — m.(k)) + Bi(k)ufk), = € X;,i € T

_ | cos(a(k)) —sin(a(k)) A1
w09 = 4009 = | 06 oot e s |+ B0 =[ 1]

(k)
k) — el 10]2(k) = 0
(k)_{—g [1,0]z(k) < O

0 =0.75, 0 < B(k) < 0.5, 1 < 11(k)< 3, umax = 05

(5.23)

From (5:23), we can see that the system has«two modes

A % _25ﬁ

X = {z|[1 0]z > 0}, k) = A1(k) =

1 ={z|[1 0]z >0}, A1 (k) = A1 (k) [¥ §+ﬁ(k)]
Xo ={z|[1 0]z < 0},A2(k)=A (k)—[ % % ]
= ol O <0 A = A0 = | fs K

With the uncertainty parameter 0 < (k) < 0.5 and the time varying integer 1 < 71 (k) < 3,
we conclude that when
x(k) € &1, =Co {(A%a A%l,laA%l,QvA%l,SvB%)a (A%aA%l,laA%l,%A%l,?ﬂB%)} ’
.’E(k‘) € X;, (s = Co {(A%’ A%Q,l’ A%Q,Qa A%2,3’ B%)a (A%, A%2,1’ A%2,27 A%Q,?ﬂ B%)} )
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Figure 5.1: Saturated-R and non satura RCMPC simulation result.

W\

1y.

with AL = AL, if 7y (k) = 1, oA} _

The LMI conditions in Theorem 5.’ S si he YALMIP toolbox for the tuning
parameters Q = I, R = 1, z(—3) =9y z(0) = [-2,3]. On a2.4 GHz Intel
Centrino Core 2 Duo Processor, with 1 ' ne required to compute 20 iterations on

the online algorithm in Theore imulation results of the state
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function requirement. ’ E
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CHAPTER VI

APPLICATION EXAMPLES

We will show that the proposed algorithm is suitable and effective through several following exam-
ples. For these examples, the YALMIP toolbox with SEDUMI solver is used to compute the solution
of the LMI problems.

6.1 Cruiser PWA Model

Consider the following cruiser PWA.model taken from [Corona and Schutter, 2006], with a few

modification to incorporate uncertaingies and time—d|elay in the system

z(k+1) = Ai(k)z(k) + 0A1(k)a(k~ 71 (k) + Bilk)u(k), for z2(k) < (>) 0,7 = 1(2) € Zyo,

Y iV 0.97+/3%,k)<' 231
Al_A”‘[o 0.99+5(’k)]’31‘[4.61]’

. AT s )] 5 [ 2.28
Az = Az = [ 0 096+ ﬂ(k).a_] BAS [ 4.54 ] ’

0=0.1, 0 <MB) <L 1 <RI 3, umax = 0.5,

where z1(k), z2(k), u(k) are the cruise position, speedr,—y_eﬂll(_)city, and throttle or brake. The system
has been discretized with timeisampling 7s = 1s. The bbjéctive 1S to'bring the cruise to x1 = 0 m
from initial position. '

We setup the initial condition z(—3) = #(-2) = &(—1) = z(0) = [3,0]7. The LMI condi-
tions in Theorem 5.1 can be solved using the YALMIP toolbox for'the tuning parameters () = Io,
R = 1. On a 2.4 GHz Intel CentrinoCore 2 Duo Processor, with 1 GB RAM, the CPU time required
to compute 20 iterations on_the online algorithm in Theorem;5.1 is 43.06,s. Figure 6.1 shows the
simulation results of the state responses, optimal input, Lyapunov function, norm of state feedback,

and the saturated controller.function-requirementrespectively:

6.2 Autonomous Land Vehicle

This example is the autonomous land vehicle model adapted in [26]. Consider that the objective is to
design a controller that force a cart on the £ — y plane to follow the straight line y = 0 with a constant
velocity ug = 1m/s. Assume that a controller has already been designed to maintain a constant
forward velocity. The cart’s path is then controlled by the torque 7' about the z axis according to the

following discrete-time equations

z(k +1) = Aiz(k) + ai(k) + Biu(k)
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Figure 6.1: Saturated-RCMPC and non saturated—R(j}\/IPC simulation result for Cruiser PWA model.

where j
0 0.7 A jJ--, 0 0.7 0
Al = A5 = 0 —0.007 0 s Ay :A{% 0 —0.007 O ,
0.309 0 (k) S, 0.914 0 B(k)
0 0.7 0 0
A3 = | 0 —-0.007 O s Bi=By=B3=By;=Bs= |l |,
1 0 Bk) 0
0 . 0
a1 = —as = 0 ,@9 = —a4 = 0 ;a3 = 0.
=0.757 <0216

The state of the system is, (21, 25; x3) = (1), W, y), where 1) is the heading angle with time derivative
w, and y is the cart’s distance from the line y = 0. The inputsof the system u&="T", where 1" is the
control torquegWe ¢onsider'parametric uncertainties f'in the range 0 < (k) &1 and assumed to be
arbitrarily time-Varying in the indicated range of variation. Assume all the states are measurable and
the trajectories can start from any possible initial angle in the range vy € [—3?”, 3?”], and any initial
distance from the line. The heading angle (1)) is approximated by a piecewise affine function yielding

a piecewise affine system with five regions as follows

= {zlz1 € (-F,-5)}, % = {alor € (-5, )},
Qs = {zlz1€ (-% )}
U = {alz1 € (5,5)}, % = {alo € (5, F)}-
We construct an initial state (0) = [37/15,0,3]7. The system is subject to input constraint |lu(k +

7)|k)|l2 < IN.m, j > 0. And with tuning parameters () = I3, R = 1, the LMI conditions in Theorem
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3.4 and Theorem 3.5 can be solved. On a 2.4 GHz Intel Centrino Core 2 Duo Processor, with 1 GB
RAM, the CPU time required to compute the online algorithm is 4.67 s. We obtained the following
results as depicted in Fig. 6.2. Also included in the figure are the active regions and Lyapunov func-
tion value over time iterations, the norm of F' as a function of time for the saturated state feedback

RCMPC, and the norm condition for the saturated function can be applied with polytopic description.

Trajectory Active Regions
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3 - _ — — -7 - heading angle (deg) || 45
= @ - deriyative (deg/s) :
. — — z; - distange (m) 4 o
er . w - inputd(N aid) I 35
\
s \ B 3t o O 0000000O0O0
25
2 o)
, 1.5
Il it 1
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time_(iteration) time (iteration)
Lyapunov function value Notméof F |z (k + k)|
10° 2 1
10° N 0.8
16 \ A g "
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pag
107" | . 0.4
\ 5
107° i v — 0.2
=1 }
107 0 —— 0
0 5 10 15 0 5 J 10 15 0 5 10 15
time (iteration) - time (iteration)=- == time (iteration)

Figure 6.2: Saturated RCMPC algorithm applied to-a Fand-Vehicle Model.

6.3 Inverted Cart-Pendulum

This example illustrates 'the ‘stabilization at'the inverted “position (open-loop unstable equilibrium
point) of a pendulum-cart system using the RCMPC for PWA system with time-yarying delay formu-
lation. Assumeg,the penduluml can start anywhere 'within £30° of vertical, the fuil nonlinear dynamics
from [33] is chosen. The problem can be addressed by approximating the nonlinear dynamics with a
PWA model and then a RCMPC controller can be designed to stabilize the inverted pendulum [33].
With Z corresponding to the position of the cart and 8 the angle of the pendulum (@ = + at the
vertical position), the state was chosentobe z = [z 2o 23 247 =[Z 0 z é]T. The nonlinear

dynamics of the cart-pendulum are then

0010 0 0
(t) = 0001 ) 0 O, (t) 6.1
=100 0 0" e || -memorom | MY o
0000 fa(z(1)) T cos(m2 0) I



46

fi(z(t) =
fa(x(t)) =

ml cos(z2(t)) — l(M
S ' , [ is the length of the pendulum,
u is the force applied to the cart, g is the g{a-;l-i%atL(;I;gméferatlon b and c are the translational and
rotational viscous damping coefficients: Fof- this garfmexample M = 1.525 kg, m = 0.15 kg,
I = 0314 m, g = 9.8 ms~2,p e = 0.005 Ns/m. s {

A PWA approximatio F the ‘ linearizing (6.1) into three
¢ by tlUwg values { &, 7, 18n}. By
change of coordinate z}, = zo — 7r we obtained a PWA model

@%&J ’a%@*ﬁ@w %J'%ﬂ%f 6.2)

with region partitions

AR am‘mmwma d

Q; = {zlz5 € [187T w77 € Xi}, i =2€ T, (6.3)
QZ—{a;|a:2 ( 187r, 138 ),xeX,}, 1 =3 €1,

|
open-loop unstable equilibrium Jboints of the pendulur
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Cart-Pendulum Trajectories
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b | |
25 30 35
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Figure 6.4: Saturated-RCMPC simulati - ‘ or _Pendulun A model - systems trajecto-

ries.
and the model matrices, where
0 0
0 0
Ai=A4As3=| 9 ngl> (M+m)  lc  0.9397h Bi=Bs=| 1 |,

...... W

1

0 A

oo | g TN

_ ama\mﬁiuy TINYIaY

A U
Ml

0 (M+m) _ (M+m)b
Ml Mmi?

The PWA model (6.2) is then discretized with sampling time, 7's = 0.2 seconds. To apply the
RCMPC for PWA system with time-varying delay algorithm, we assume that the pendulum position
is perturbed by time delay 71 (k), and there is uncertainty 8(k) in the cart velocity due to the physical
condition, and/ or the approximation error. For this case, 1 < 71(k) < 2, and 0 < (k) < 0.03. To

that end, we have the discretized PWA system with perturbed time-delay and uncertainty as follows

z(k +1) = Ajz(k) + Ayz(k — 11(k)) + a; + Biu(k), =(k) € X;,i € T, (6.4)
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Input and Time-delay events 7(k) Lyapunov function value

,OCOOOCCOC

-10 1072
15 . . . . . . 10 . . . . . .
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

time (iteration) time (iteration)

Norm of F' [Py (k + ilk)|
33 T T T T T T 12 T T T
-l . | \

N \/\/ - i ’ \
31 L I
300 L 1 8|} \ |
291 1 \ —
6 ’ \ \
281 3 \ " \ \
I
27t A ar \
! g / V \
26 i |
| 2
25
24 . . . . . 1 a - 0 . . n : L -
0 5 10 15 20 25 30 35 i =7 0 3 10 15 20 25 30 35
time (iteration) time (iteration)

Figure 6.5: Saturated-RCMPC simulation 'rfsu'lt for Cart-Pendulum PWA model.

L

where ; ry

vl
1 —0.0208« 02073+ﬂ(k) ~0.0012 0.0141
A de_ |0 174100 00002+ p(k) 02480 | o _ o _ | —0.0486
P=4 710 —0.2198a _0:9993 4 6(k) —0.0183 . 1__ 57 01375 |’
0 7.8449a 0.0026 + B(k)  1.6495 —0.5147
—0.0005 0 —0.0208(1—a) 0 0
| o0as:n = |0 1m10(1=a) 0 0
G==a=| o104 {0 A= AB=0 2021981 %0) 0 0
1.0115 0, ,7.8449(1—a) 0 0
1 —0.02274 02078% B(k)P 100013 00142
i 0 180580000024 f(k)i 0.2520 | | L | 1-D.0493
2710 —0.2416a 0.9993 4+ B(k) .—0.0200 |> ~2 7~ | 0.1385 |’
O-, 8595500, 0.0026, +3(k),  1.7123 —0.5261
0 1550.0227(1 = @) 40 0
-8 0o 18058(1—a) 0 0
=0, Adz=1 o (241601 —0a) 0 0
0 85955(1—a) 0 0

The constant « is the retarded coefficient [34], which satisfies & € [0,1]. The limits correspond to
the delay term, respectively. In this case, we assume o = 0.99.

A RCMPC controller is then designed with the closed-loop equilibrium points of all poly-
topic regions are placed at 2oy = [71 o4 73 4] = [0 0 0 0]7. Assume the maximum input
constraint Umax = 15 Nm. We set an initial points z(—2) = z(—1) = z(0) = [0 &7 0 O]T
The LMI conditions in Theorem 5.1 can be solved using YALMIP toolbox for the tuning parameters
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Eigures6.0¢ Two tanks level system.

Q = I, and R = 1, respectively. Ona 2.4 . GHz I&eL_Centrino Core 2 Duo Processor, with 1 GB
RAM, the CPU time required to gompute 35 iteration#‘& on the online algorithm is 57.44 seconds. Fig-
ures 6.4, and 6.5 show the simulation results of the stat:c-af-"re’éponses, optimal input, Lyapunov function,
norm of state feedback, and the saturaged controller flfﬂ&ﬁon requirement, respectively.

244

6.4 Two-Tank Level System 7N

d .l

Consider the two-tank level'system.as-depicted.in-Fig.6.6.The controk objective is to stabilize the
level of the two tanks at 0.5 fheter. Assume that the valve V-3 and V-4 are always open, and the
two tanks have the same dimension. The problem can be addressed by approximating the nonlinear
dynamics with a PWA model and then a RCMPC controller can be designed to stabilize the system.

In general, the nonlinear dynamics of the two tanks-system depends‘on the level of each tank

@1 =% (qru1 — k3v/z1 — 72) o>
. 1> T
Po= S gous st kisy/Tr e 5 Ka/Z2)

R
11.51 = ? (q1u1) 71 = To (6.6)
io = % (qou2 — ka\/T2)

i1 = % (qru1 + k3/z2 — 27) o<
. 1 < T2
iy = % (qouo — k3v/T2 — 21 — ka\/T2)

where g1, qo are the control valve liquid flow rate, u1,ug are the percent opening of the control

(6.5)

(6.7)

valve, k3, k4 are the valve coefficient. For this particular system, A = 0.0346 m?, ¢; = ¢o =
2.8510 m?®/s, k3 = k4 = 3.4892 m?5/s. A PWA approximation of the nonlinear dynamics is ob-
tained by linearizing (6.5), (6.6), (6.7) into three open-loop unstable equlibrium points of the two
tanks level where each of the z; and z2 in {0.3 m, 0.5 m, 0.7 m}. We obtained 9 set of PWA model
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because of the level in the two tanks can vary each other in the three operating regions. By change of

coordinate, £ = z1 — 0.5, 4, = zo — 0.5, u} = w1, and v}, = ug — —k1__ then

2¢2v/0.5’
z(t) = Ai(t)z(t) + ai(t) + Biu(t), (6.8)

where u(t) = [} (t), ubh(t) |1, x(t) = [2}(t), z5(t) ]* € &;, i € Z, and the region partitions

( Q; ={z|z} € (—0.1,0.1) and &, € (—0.1,0.1),z € X;}, i =1 € Iy,
Q; = {z|z} € (0.3,0.1] and 2}, € (0.3,0.1),z € X;}, i =2 € I,
Q; = {z|z} € (-0.3,—-0.1] and &, € (-:0.3,-0.1,z € X;}, i =3 € T4,
Qi = {z|z} € (0.3,0.1] and 2%, & (~01,0.1),z € X;}, i =4 € T4,

{ Qi ={z|r} € (-0.3,—0:1] and z}, € (<0470.1),z € X;}, i =5€ Ty, (6.9)
Q; = {z|z} €(=0:1,0:1) and'z, € (0:3:00);z € X;}, i =6 € Iy,
Q; = {z|z} € (<071,0.pand 2}, € (-0.3,-0.1],7°€ X;}, i =7 eI,
0 = {zlo, c0B, 0 andd, & (0.3, 0.l e X}, i=8cT,

I,

Q; = {z|z} (2034001 and 7, € (0.3, 01,3 € X;}, i =9 € Ty,

a

\

The model matrices for each of the opéerating regioné_,‘

i
4

(0 0 0 0 0
Al = 0 ka , Q= Oa A2 - 0 _“N- ka ) a2 = ks (1 1.2 ’
i 24+/0.5 -+ _'--ZA\/W 2A \05 0.7
[0 0 A
A = 0 —— K ]’a3_ LW e R F = | %
| 24v0.3 2405 (=
r k3 kJ3 s — k
A, — 2402 2402 b o —55Vv0.2 A = Ay g — —a
4 = k3 o ( kg + k4 ) AALRL == k_3m ™ 5 4, U5 — 45
L 24V0.2 24v/0.2 ~ 24/05) DAVASES, &)
_ i == = -
Ag = _2Aj07 = QAjﬁ . ] 2%6 V0.2 ]
- k k3 k ) - e ke (1 12 ’
L QAj(ﬁ o (2Aj@ + 2A\;(ﬁ) i [ 24 024 24 ( 0.5 0.7)
r k3 k3 b r k
A, = | T2Avoz 244/02. o , - ]?—AV 0.2 ]
o k k k ? = harksa/ kg o1 0.8 ?
| 2A\;(ﬁ -] (2,4\;0? + 2A\;(ﬁ) J /24 02%+5% ( 0.5 os)
r__k k 1 r k 79l
Ag = zAon 2A\;07 ag = | _1?% 0.4 ]
- k k k ) | k3w ke (185 08 ’
L 2A\;(ﬁ ~ (24\;0_4 = 2A\;(ﬁ> 1 =, 24 0.4 + 2A ( 05 03)
r_ Siks k3 . r k
Ay — | 2AVOa 2AV0 A P %V 04 ]
- k k k v B9= | ks oA ke (L1 12 |
L 2A\;(ﬂ a (QA\%Z T3 40.7) i | 24 0.4+ 5% ( 0.5 0.7)
a0
A

The PWA model (6.8) is then discretized with sampling time, Ts = 7 seconds. To apply the
RCMPC for PWA system with time-varying delay algorithm, we assume that the level measurements
in both of the tanks are perturbed by time delay 7 (k), and there is uncertainty 5(k) due to the physical
condition, and/ or the approximation error. For this case, 1 < 71(k) < 2,and 0 < (k) < 1.2. To

that end, we have the discretized PWA system with perturbed time-varying delay and uncertainty as
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Tank Level Trajectories

03FT \ 7
& Q
N 1
N 1
02— \\ \ 1
Y
AN |
- N \ N
S AY ~.
T~ N 9] \Q
= N Vi -
01 Tl N / P 7
— T~ N Vi -
é Tees ~ \\ // % -7
o~ RS \‘Q , _ .- - -
;é /} .\@/ N ,_—‘0’ B _00’
£ o oty P - :
c ¥ 2
° L |
3 SN i
4 g i ¥
0.1~ Ciet T b \ 4
- ’
- =&
X~ - //J \
7
// .
-02f- % B
4
4
P 4 .
o \
|
-0.3E1 ! \ .8 \ \ 13
-0.3 -02 -0.1 : 0" 0.1 0.2 03

‘ Levelin tank 1 (m)

Figure 647: Two tanks levé} system trajectories.

follows v y
2k +1) = Aiw(k) + Ao (k=7 (k) + @ o Biu(k), z(k) € Xi,i €T, (6.10)
where T
T V11 + ,3(]41) V12 i — Uli (1105) 1)12(1 o a) .
A; Ay, = ={1.2 ...
¢ V21X 1)22—01;-}— B(k) 2 1 ’U21(1 — 04) ’!)22_(1 'E Ol) & { e ’9}’

The values of v11, v13, V21, ’Ugé depend on the A matrices in each of thé operating regions. The con-
stant « is the retarded coefficient [34], which satisfies « € [0, 1]. The limits correspond to the delay
term, respectively. In this case, wé assume o = 0.8.

A RCMPC controller is then designed with the closed-loep equilibrium points of all polytopic
regions are placed at zfi= [} =517 =[0 0]7. Assume the maximum input constraint tyay = 1.
We set an initial points z(—2) = z(=1).= z(0) into several initial liquid leyels. The LMI conditions
in Theorem 5.1 '¢anbe solved using YALMIP toolbox for the tuning parameters, @ = o, and R = I,
respectively. On a 2.4 GHz Intel Centrino Core 2 Duo Processor, with 1 GB RAM, the CPU time
required to compute 10 iterations on the online algorithm is 64.5 seconds totally for all of the initial
points. Figure 6.7 shows the trajectories of the level in the two tanks for several initial liquid level,

respectively.

Remark 6.1. The RCMPC with saturated controller is feasible to be applied online in the two-tank
system example due to the slow-dynamics of the tank system. On the other hand, it should be noted
that the online optimization problems lead to a computational burden due to the size of LMIs. Thus,

this formulation is not feasible to be applied online for the fast-dynamics systems, as in examples 6.1,
6.2, and 6.3.
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CHAPTER VII

CONCLUSIONS

7.1 Summary

This thesis has proposed an extension of Robust Constrained Model Predictive Control framework
to stabilize Piece-Wise Affine systems using saturated lincar feedback controller. The online opti-
mization problem of RCMPC can be.transformed into andsMI optimization, which can be handled by
currently available software with extreme efﬁcien(fy. By properly constructing a Lyapunov function
and/or a Lyapunov-Krasovskii function; LiMIs conditions for closed-loop stability and constraints
satisfaction have been obtained:” Then, the effectivieness of the proposed method has been demon-
strated through some application’€xamples. 1o summarize the thesis, we highlight main topics in the
following. .

Chapter 1 briefly introduces the motivation béflind the research. Next, the literature review is
given to cover an overview of REMPC framework a{s well as the development of an emerging and
promising PWA systems. Afterward, we piesent the thesis scope and research contributions.

In Chapter 2, a basic knowledge with some impéftant concepts and tools to be used throughout
the thesis are presented. The description 6f PWA systems and the systems matrix parameterization
are introduced in Sections 2.1 and 2.2. . The mathem_aﬁc_ral_r¢presentations of the uncertainties are
discussed in Section 2.3. Section 2.4 presénts the deﬁnitioﬁ of saturated linear feedback control law.
The remaining sections include-a MPC and RCMPC framework, the Lyapunov theory in discrete-time
systems, and LMIs optimization-tool.

Chapter 3 presents the detail steps in the extensions formulation of a RCMPC framework to
stabilize PWA system with delay“fres.time. An uppetibound of the worst-case performance is de-
rived, then the optimization problems is reformulated into LMIs optimization approach. A normal
and an augmented approach of saturated state feedback strategies are presented. Robust stability of
formulation is_also taken into consideration, while the numerical example shows the effectiveness of
the formulation:

Chapters 4 and 5 propose other two RCMPC framework to stabilize the PWA systems with
time- delay. In Chapter 4, the framework is used to stabilize the PWA systems with time-invariant
delay. A more general approach is considered in Chapter 5, where the framework is used to stabilize
the PWA systems with time-varying delay satisfying upper and lower bound of certain delay value. An
upper bound of the worst-case performance is derived, then the optimization problems is reformulated
into LMIs optimization approach. A normal and an augmented approach of saturated state feedback
strategies are presented. Robust stability of formulation is also taken into consideration, while the
numerical example shows the effectiveness of the formulation.

Finally, four different application examples illustrated the RCMPC formulation in Chapter 6.



55

Moreover, some conclusions are made in chapter 7, together with some extensions and potential

improvements of the proposed technique.

7.2 Possible Extensions

1. Reference trajectory tracking
The research in this thesis is mainly to the infinite horizon regulator with zero target. In
optimal tracking problems, the systems output are required to track a reference trajectory

y(k) = Crz,(k), where the reference state , is,computed from the equation

T (et 1) = A, 2, (B)" 20(0) = z10.

2
The choice of performance objective for the robust trajectory tracking objective is

o
o 2 ) [ICa(E™ i) #Crai (kY G +lulk ¥ 1k)|%] = € Xiyi € Z,
3=0 ’
The plant dynamics can be aigménteéd by the reference trajectory dynamics to reduce the robust
trajectory tracking problem.
4
2. Systems with input delay —
In practice, the delay can oecur not only in the state of the systems, but also in the systems
input. We deal with systems that allow mput delay gpd state delays to be uncertain and time-
varying. At sampling time k > T, ‘we-would hk_to demgn a saturated state feedback control
law L

u(kEi—rlElk) = o(Frlk i —T{ENE)A 7 >0,

to minimize the followiflg'inﬁnite horizon robust performance objective

o i i
Joo 23 [l gl )G + llulk 44 — (k) |K) %] = € Xiyi €,
7=0

3. Norm-bound uncertain PWA model

This paradigmscensists of;aPWA-medel withsuncertainties or pertutbations; appearing in the

feedback loop.
y(k) = C’x(k), g
Q(k) = qzx( ) + un,u( ) 'T(k) € Xza S I
p(k) = (Bg)(k).

The operator A is a block-diagonal, with A; : R — R" . Each A; is assumed to be either a
repeated scalar block or a full block, and models a number of factors, such as nonliniearities,
dynamics or parameters, that are unknown, unmodeled, or neglected. A number of control

systems with uncertainties can be handled using this framework.
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