

กัญจนา ทองฬนิท : การมอบหมายงานให้กับพนักงานที่มีระดับความชำนาญหลากหลาย โดยมีการเรียนรู้. (ASSIGNMENT OF CROSS-TRAINED WORKERS WITH LEARNING EFFECT). อ. ที่ปรีกษาวิทยานิพนธ์หลั่ก : ผศ. ดร. เหรียญ บุญดีฬกุลโขค. จ. ที่ปรึกษาวิทยานิพนธ์ร่วม ผศ. ดร่ วิกาวี ธรรมาภรณ์พิลาศ, 93 หน้า.

งานวิจัยนี้ได้ยกประเด็นปัญหาด้านคุณราาพคำตอบ ซองปัญหาการมอบหมายงานที่ใช้ใน จุตสาหกรรมว่าอาจไม่เหมาะสม ถ้าพนักงานที่ถูกออบนมายมีระดับความสามารถที่ความ แตกต่าง โดยทั่วไปแล้วในจุตสานครรมเครั่องนุ่งห่ม จะจัดสมดุลการผลิตโดยใช้เวลามาตรฐานใน การจัดกลุ่มงาน เพื่อจัดงานเข้าสูตกนี่งาน หลังจากนันกลุ่มงานที่ถูกจัดไว้ในแต่ละสถานีจะถูก มอบหมายให้กับพนักงงน วิจีการจดดกลุ่มโดยไม่ได้พิคารณาถึ่งระดับความสามารถของพนักงาน แบบนี้ อาจจำกัดคุณภาพคองคำตอบ คังนั้น งานวิจยนี้จึจได้รวมบัญหาการจัดสมดุลการผลิตและ การมอบหมายงานเจ้าด้วยกัน นอกจากนี้แล้วเนื่องจากในอุตสาหกรรมด้านแฟธั่น มักมีการผลิต ผลิตภัณฑ์ แบบใหม่หรีฮสไตล์ใหม่ในทุกว ดดูกาล ด้วยเหตุนี้จึงทำให้พนักงานต้องเรียนรู้งานใหม่ อยู่ตลอด ในงานวิจัยนี้ดึงพืจารณาระดับความสามารถของพนักงาน ทั้งที่กำหนดคงที่และ ที่ระดับ ความสามารถที่เปลี่ยนแปลงไปจากการเรียนรู้ โดย ได้สร้างโปรแกรมเชิงเส้นแบบผสมและแบบ ทวิภาค ของทั้งสองบัญหา โดยววตถุประสงค์ของป็บนาคือ ต้องการให้รอบเวลาในการผลิตน้อยสุด กรณีที่ระดับความสามารกคงที่ และต้องการทำให้เวลาปิดงานเร็วที่สุด กรณีที่พิจารณาด้านการ เรียนรู้ ในการหาคำตอบ ฮิวริสติกของแตืละปัญหาได้ถูกพ้ฒนาขึ้น โดยมีการกำหนดขอบเขตล่าง และของเขตบนของคำตอบ ประสิทธิภาพของฮิวริสติกถูกทดสอบโดยเปรียบเทียบกับคำตอบที่ดี ที่สุด นอกจวกนี้ในงานวิจัยยังยยนยันความไม่เหมาะสมของวิธีกามมอบหมายที่ใข้กันใน จุตสาหกรรพ ษมื่อพนักงานมีทักษะที่แตกต่างกันมาก ๆ และยังยืนยันควาวนคนมสมในการมอบหมาย งานที่กำหนดดระดับความสามารถของพนักงานคงที่ในขณะที่ระดับควมมฬามารถของพนักงานจะ เปลี่ยนแปลงตลอดจากการเรียนรู้โดยเฉพาะอย่างยิ่งเมื่อพนักงานมีการเรียนรู้ที่ต่างกัน

ศูนย์วิทยทรัพยากร

\# \# 4771848321 : MAJOR: INDUSTRIAL ENGINEERING

KEYWORDS: ASSINGMENT PROBLEM / LEARNING / HEURISTIC
KANJANA THONGSANIT: ASSIGNMENT OF CROSS-TRAINED
WORKERS WITH LEARNING EFFECT. ADVISOR: ASST. PROF. REIN BOONDISKULCHOK, Ph.D., COADVISOR : ASST. PROF. WIPAWEE THARMMAPHORNPHLLAS, 93 pp.

This dissertation addresses the problem of the practical application of worker assignment among workets' of highly varying skill tevels. Generally, a heuristic method for the assembly line palancing problem is applied in garment industry, which is that the tasks or grouped tasks are first pre-determined based on a standard processing time and then are assigned to the workers. The process of grouping and assigning tasks without considering the skill level of the worker limits the quality of the solution. Consequently, an integrated approach to the assembly line balancing and worker assignment problem has been developed.

Due to the nature of fashion industry, new designs and new styles are launched every season and the workers in the industry are continuously required to learn new processes. This dissertation concerns the skill level of workers of both constant skill levels and learning ability. MIP models for both problems were developed and the objective is to minimize the cycle time and makespan respectively. To find a solution, a heuristic was proposed and a lower bound and the upper bound were determined, The performances of the heuristics were tested by comparing the solution obtained to the optinal solution. The result of the comparison of the solution from the heuristic and in practical application confirms the disadvantage if the practical application is applied-for workers of highly varying skill levels. The censtant skill level of workers learning ability is not appropriate in situations where workers have differing learning ศูนยวิทยทรพยากร

ACKNOWLEDGEMENTS

I would like to thank my advisor Asst. Prof. Rein Boondiskulchok, Ph.D. and my co-advisor Asst. Prof. Wipawee Thammaphornphilas , Ph.D. to provide advice and support all period of the study and \boldsymbol{f} always remember the word "balancing your life also" as you recommendation. Moond also hike to thank Prof. Dr. William G. Ferrell and Assoc. Prof. Dr. Mary E. Kurzfrom Faculty of Industrial Engineering, Clemson University, U.S.A, for encoungement and suggestions.

I am very thankful to my committee members and faculty members Asst. Prof. Dr. Manop Reodecha, Asst. Prof. Dr. Paveena Chaovalitwongse, Asst. Prof. Dr. Napassavong Rojanarowan, Prof. Dr. Karndee Leopairote, Asst. Prof. Dr. Seeronk Prichanont Assoc. Prof. Dr. Parames Chutima , Ajarn Surapong Sirikulvadhana and Ajarn Poon for their useful suggestions.

I wish to ackñowledge Thai Government and Silpakorn University for the sponsorship of my education. Thanks to friendship from my friends Ph.D. Student , Jitti, Surachai, Supakanya, Chaiyathuch, Kanya, Sujin, Ronnachai, Thanasan, Aniruth, Isarawit, Varaporn, Siravit and Krisada. I am thankful to my friends at Glemson U., Swaros, Onurai ,Sunarin, Arika, Jaqui, Esengul, Yongjun, Duanmu, Mahelich, Xiaoyu for friendship and supports. I reallyeppreciate their helps. I cannot forget to thank my KMITNB's friends, Nattawet, Thidawan, Naratip, Nantakrit and my friends from Chiang Mai U. and Silpakorn U. who always support me. I also would like to thanks my friends from Thai Garment Development Foundation to support me the data about garment induŝtry, $?$

I would like to thank my family and my cousins who always take care me. I would like to thank my parents (Jaroon and Wongduan) who give me breath
 sisters (Asst. Prof. Dr. Pajaree and Dr. Jaruwan) for their supports and endless love. Finally, I would like to thank everything and everyone to make me completed this work.

TABLE OF CONTENTS

Page
ABSTRACT (THAI) ... iv iv
ABSTRACT (ENGLISH) V
ACKNOWLEDGEMENTS vi
 vii
 xi
LISTS OF FIGURES. xiii
CHAPTER I INTRODUCTION 1
1.1 Introduction 1
1.2 Statement of the problem.. 3
1.3 Dissertation objectives 4
1.4 Dissertation scope 5
 5
1.6 Dissertation methodolog 6
1.7 Dissertation organization...................... 7
 8
2.1 A review of assembly line balancing problems 8
2.1.1 Assembly line balancing problems 8
2.1.2 Solving the problems 10
ศู 2.2 - $=$ 12
2.2.1 Variations on the assignment problem.. $\ldots .$. 13
2.2.1.1 Variations in agent 13
2.2.1.2 Variations in objective .. 13
2.2.2 Skill levels of workers and cross-training in assignment problems 16

Page

2.2.3 Surveys related to the assignment problems 17
2.3 Surveys related to assembly line balancing problem and assignment
problem concerning constant skill level... 19
2.4 Surveys related to the assignment problems concerning learning ability 21
2.5 Surveys related to the task-worler assignment in garment industry 25

CHAPTER IIII TASK-WORKER ASSIGNMENT ASSUMING CONSTANT
SKILL LEVEL... 27
3.1 Problem deseriptior.. 27
3.2 Model formulation ... 29
3.3 Heuristie deseription and numerical example 32
3.4 Performance measurement of heuristic... 37
3.4.1 Testing problem, ~.. 37
3.4.2 Computational experiments.. 39
3.4.2.1 The performance of UB and $\mathbb{L} B$ of the heuristic 39
3.4.2.2 The parameters applied in the heuristic 40
3.4.2.3 The computationat time and the quality of solution 42

CHAPTER IV TASK-WORKER ASSIGNMENT TAKING INTO ACCOUNT

4.4 The detail of the heuristic and numerical example 56
4.5 Performance measurement of heuristic.. 64
Page
4.5.1 Testing the problems 64
4.5.2 The parameters applied in the heuristic 65
4.5.3 Performance of heuristics on test problems 68
4.5.3.1 The computational time of the heuristic 69
4.5.3.2 The quality of the solution of the heuristic 74
4.5.3.3 The comparison of the quality of the solution of the
heuristic to the heuristic for the constant skill level 82
4.6 Discussion of computational results 85
CHAPTER V CONCLUSION AND FUTURE RESEARCH. 86
5.1 Conclusion 86
5.1.1 Introduction 86
5.1.2 Problem description: the task-worker assignment problem assuming constant skill levels 865.1.3 Mathematical model of the task-worker assignment problemassuming constant skill levels87
5.1.4 Heuristic for the task-worker assignment problem assuming constant skill levels 87
5.1.5 Performance measurement of the heuristic assuming constant skill levels 88
5.1. 1 - 5.1.6 Problem description: the task-worker assignment problem into
account learning ability 88
(0) 5.1 .7 Mathematical model of the task-worker assignment problem 89
5.1.8 Heuristic for the task-worker assignment problem taking into
(2) 5.1.9 Performance measurement of the heuristic taking into account
5.2 Discussion and recommendations 90
5.2.1 Task-worker assignment assuming constant skill levels 90

Page

5.2.2 Task-worker assignment taking into account learning ability 92
\qquad

LIST OF TABLES

Table 4.12 The percentage deviation of the heuristic for constant skill level from the

LIST OF FIGURES

Figure 3.5 Computational time of the heuristic when the skills of worker are varied 43
Figure 3.6 The percentage of the difference between the optimal solution or the best found solution and the heuristic solutions (\%). 44
Figure 3.7 The comparison of the percentage difference between the proposed heuristic and 2-stage hemintic solutions (\%) 45
Figure 4.1 Makespan from an assignment solution..... 49
Figure 4.2 An expression of the Makespan 53
Figure 4.3 Dijkstràs algorithm 55
Figure 4.4 the overyiew of the heuristic 57
Figure 4.5 An example of LB and UB. 58
Figure 4.6 (A) Nodes of the group of tasks 59
Figure 4.6 (B) Feasible nodes of task-workstation assignment. 59
Figure 4.6 (C) Nodes for Modified Dijkstra's algorithm...................... 59
Figure 4.7 The pseudo code of Modified Dijkstra's algorithms. 61
Figure 4.8 An example of the Modified Dijkstra's algorithn...... 63

Figure 4.11 The quality of the solution of the test when the parameters are varied 68
Figure 4.12 CPU time of the test when the parameters are varied (sec.) 68

Figure 4.13 CPU Time of optimal sol. when No. Tasks increase (sec.)....................... 71
Figure 4.14 CPU Time of optimal sol. when No. Items increase (sec.) 72
Figure 4.15 CPU Time of optimal sol. when No. learning slope varies (sec.)............. 72
Figure 4.16 CPU Time of heuristic sol. when No. Tasks increase (sec.) 73
Figure 4.17 CPU Time of heuristic sol, when No, 1tems incréase (sec.) 73
Figure 4.18 The fraction of CPU.Time (\%).. 74

Figure 4.21 The percentage difference $7 \mathrm{w} 21 \mathrm{t} 300 \mathrm{i}(\%) \ldots \ldots . ~ . ~ . ~ 79 ~$

Figure 4.23 The percentage difference 8 w24t100i (\%)... 80
Figure 4.24 The percentage difference $8 w 24 \mathrm{t} 300 \mathrm{i}(\%)$.. 81
Figure 4.25 The percentage difference when No. Tasks and No.Items increase (\%) .. 82
Figure 4.26 The percentage difference diff con_heu when No. Tasks increase (\%)......... 84
Figure 4.27 The percentage difference diffcon_heu when No. Items increase(\%) 84

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER I

1.1 Introduction

INTRODUCTION

Generally, in the garment industry, workers have different skill levels due to their experience and training, In addition, due to the high turnover rate in the industry, teams often consist of both new workers and experienced workers. For this reason, a high variation of operation time between workers occur's. The question is how to balance the line and assign workers of varying skill levels to workstations to maximize productivity.

Both the assembly line balancing problem and worker assignment problem are complicated by themselves and, as such, are typically resolved using a two-stage heuristic. First, the assembly line balancing problem is addressed by aggregating tasks using predetermined time standards. With this established, workers are assigned to the tasks. In the Thai garment industry, it is common for one group to do the line balancing and then a line supervisor to assign the workers to the grouped tasks. This basic approach is very poor for a number of reasons, the most serious of which is that grouping tasks for the line balancing effort does not consider the differences in worker skills whereas the supervisor who makes the actual assignments certainly does. This practical-ebservation points to the general problem and defines the research problem addressed here, namely, investigation of integrated line balancing by task grouping and worker assignment to task groups with consideration of varying skill
levels between workers for labor-intensive assembly operations.

To provide further motivation for addressing this problem, consider the following example. There are 3 workers assigned to 5 tasks, the task processing time for each worker and the average processing time are given in Table 1.1. The typical two-stage heuristic used in practice would apply average processing time to group tasks for line balancing. If the objective is to minimize the maximum processing time of the workstations, the assignments would be task 1 to workstation 1 ; tasks 2 and 3 to
workstation 2; and tasks 4 and 5 to workstation 3 . This yields a maximum processing time of 5 using the average times of the workers. The second phase assigns one worker to each workstation with the objective of improving the solution. This yields the assignment of worker A to workstation 1, worker B to workstation 2 and worker C to workstation 3. The maximum processing time is 5 at workstation 2.

Table 1.1. The task processing time for each worker (sec.)

However, if the both problems are integrated, workenskills are considered at the same time as task grouping. The optimal solution will be 4. The solution of taskworkstation assignment is $\{12,3,45\}$ and the solution of worker-workstation assignment is $\{B, A, C\}$. The maximum cycle time is $\max \{3,4,4\}=4$. It should be noted that the quality of the solution solved in this way is better than the solution in the case of grouping tasks without considering worker skills apdassigning groups of tasks to workers later. As such, there appears to be a strong potential for significant improvement by addressing the line balancing and worker assignment problems in an integrated fashign rather than sequentially. In this study, we are interested in developing a methodology for assigning tasks to workers of varying skill levels.

and two-stage approaches in practical application. The comparison of the quality of the solution between the two approaches can be questioned. What is the effectof the varying skill levels on the quality of the solution between the methods used in practical application versus an integrated approach to assembly tine balancing and worker assignment?

In the fashion industry, new product styles are launched more frequently than in the past with smaller lot sizes due to increased market competition. Consequently, a trend in garment production in Thailand has emerged shifting from mass production to small lot production since it is more flexible and responsive compared to mass production. Garment production is labor intensive and the production rate mainly depends on worker skills: With different experience and training, each worker has different skill levels and learning ability. Generally, people learn and improve their performance by repeating operations, and as a result, they will require less time to produce the succeeding unit or gain proficiency with the repetition of the same task. This is called learning behavior

In mass production, learning behavior is usually not considered. A constant production rate assumption is atways assumed in developing a task-worker assignment since the learning period is only a small part compared to a whole production period. However, in the fashion industry, since new product styles are launched more frequently and lot sizes are smaller, the learning period becomes a more substantial part of production time. A task-worker assignment with a constant production rate assumption may not directly apply since it may not provide the optimal solution in practice. For this reason, learning should be considered in a taskworker assignment in the fashion industry.

In this study we are interested in developing a methodology of assigning tasks to workers of varying skill levels taking into account learning. What is the effect of applying the constant skill level in situations that account for the workers learning ability on the quality of the solution?
 worker assignment is studied. Thesystem considered in this problem is an assembly
 Solution to a double assigument tasks fo workstations and workers for workstations. A workstation consists of a worker who operates the assigned tasks. There are i identical items. An item is processed through a number of tasks from the first task to the last task until the item is completed as a finished product. A worker will operate
on an item as soon as she/he has finished their work on the current item and has released it into buffer spaces before the next workstation. All items are processed along the same route which passes through all workstations. The problem assumes that the workers have multiple skills so they are be able to do more than one task. The skill levels of the workers are different. The task processing time depends on the skills of workers who execute those tasks. This study looks at both the constant skill level and skill level with learning ability.

A task-worker assignment method where all tasks must be assigned to workers was developed. In it, each worker is assigned to at least one task and some workers can have multiple assignments. Moreover, a task cannot be split and assigned to more than one workstation. In the study, tasks are ordered in a series and consecutive tasks are only allowed in the multiple assignments because of the continuous flow of the production line. This problem also includes the following assumptions.

1) The number of tasks is greater than the number of workers.
2) The task processing time is given.
3) Other learning factors anong the tasks at the same workstation are not considered e.g. the task similarity.
4) There is unlimited buffer space before each workstation or worker.
5) At the start of production, there is no work in progress in the line.
6) Iearning ability depends on each worker.

1.3 Dissertation objectives

(1) 1.3.1 The objective of this research is to develop an efficient heuristic to solve the problem of an integrated approach to assembly line balancing and worker assignment assuming constant skill levels of workers in order to minimize cycle time Q1.3.2 The objective of this tesearch is to develop an efficient heuristic to solve the problem of an integrated approach to assembly line balancing and worker assignment taking into account learning ability of workers in order to minimize makespan or the completion time.

1.4 Dissertation scope

This study focuses on a fixed task-worker assignment for which there is a solution for the assignment problem. In the problem, the tasks are ordered in a series since it is an assembly line for a finished product. For learning behavior, the LogLinear model was applied to represent the learning ability of each worker. Based on the Log-Linear model, if t_{1} and t_{n} represent the task precessing time of the first and the $n^{\text {th }}$ item, and using \varnothing in terms of learning slope, $t_{n}=t_{1} \cdot n^{(\log \phi / \log 2)}$ (Wright, 1936).

The problem assumes that the task processing time depends on the learning ability of the worker who operated the task. Furthermore, the study sets the task in discrete processing time which was generated from the learning model. If a worker is assigned to more than one task, we use the sum of the task processing time that he/she performs to represent processing time of the combined tasks. We assume that the task similarity between the tasks is ignored.

1.5 Dissertation contribution

An integrated approach to the assembly line balancing and worker assignment was developed in this dissertation. The problem was that the quality of the solution of the assignment in a practical application or a tyo stage heuristic may not be appropriate when there is high worker skill variation. The result of the study confirms the existence of this problem and can serve to increase the level of awareness in the industry of the effect of the varying skills of workers on production rates. 0 performance of the production linewhen assuming constant skill levels in situations

Mathematical models of an integrated approach to the assembly line balancing and worker assignment assuming constant skill levels and mathematical models of the problem accounting for learning ability were proposed in conducting this research.

Furthermore a heuristic was developed to solve the problem of constant skill level and its quality of the solution and eomputational time was compared to the solution from a commercial solver. It was found that in many cases, the heuristic can determine the optimal solution. We u室ed the solution from the first heuristic to limit search space for the seeond problem!

The heuristic for solving the task-worker assignment problem accounting for learning ability was proposed and its quality of solution and computational time compared to the solution from a conmercial optimization solver. It was found that in some cases, the heuristic achieves the optimal solution. We believe that the results of this dissertation can be used a guideline for other researchers to further develop similar heuristics of apply them to other problems.

1.6 Dissertation methodology

จุหาลงกรณ์มหาวิทยาลัย

1.7 Dissertation Organization

The outline of this dissertation is as follows. The relevant literature is reviewed in Chapter II. In Chapter III, task-wörker assignment assuming constant skilllevel is formulated and a heuristic to solve the problem and a performance measurement of the heuristic and the computational results is proposed. In Chapter IV, the task-worker assignment accounting for learning ability is formulated and a computational results is proposed. Finally, the conclusion and suggestions for future research are presented in Chapter V.

CHAPTER II

LITERATURE REVIEW

This chapter is organized as follows: Firstly, a review of assembly line balancing problems, which consists of the problem description and solving method. Secondly, assignment problems which consist of the problem description, variations on assignment problems and a survey of problems related to worker assignment. Thirdly, a survey related to assembly line balancing problems and assignment problems with a constant skill level and finally, a survey related to assembly line balancing problems and assignment problems with learning ability.

2.1 A review of assembly line balancing problems

An assembly line consists of a series of workstations. One objective in designing a flow line is to attempt to allocate equal amounts of work to each workstation (Wile, 1972). This is known as line balancing. The problem of line balancing is to distribute the total work content to the workstations in the line, such that idleness of resource at each station is minimized (Gavett, 1968). The cycle time is the available time for an operator to complete his unit of work at his station. The bottleneck workstation is the workstation in which work content is equal to the cycle time.

2.1.1 Assembly line balancing problems

The simple assembly line balancing problem (SALBP) is one of assigning the tasks to stations according to some criteria. In the problem, the tasks

 have a precedence requirement, so the tasks cannot be processed in an arbitrary sequence. All tasks must be processed. The task processing time does not depend onthe workstation, so the task processing time is same for an assignment at any workstation. The total line is considered to be serial. SALBP is designed for the mass-production of a single product. Mainly, there are two types of simple assembly line balancing problems (SALBP). The objective of SALBP-I is to minimize the
number of stations along the line and the cycle time is given. The objective of SALBP-II is to minimize the cycle time or maximize the production rate and the number of stations is given (Baybars, 1986). There are many generalized assembly line balancing problems which occur in a system with several products or different models and different line layouts. For example, more than one worker operates the tasks or the parallel workstations. Furthermore, the system has assignment restrictions. For example, some tasks have to be assighed to the same workstation or incompatible tasks have to be assigned to different workstations.

The problem addressed in this dissertation is the SALBP-II type. Since the number of workers is known, we want to minimize the cycle time. However, this problem in the study deviates from the original SALBP since workstations are nonidentical. A worker who performs the tasks in a workstation has different levels of performance.

The mathematical formulation of the SALBP-II problem is the following:

Index

ARC $\quad=$ a set of $\operatorname{arcsfrom}(j, u)$ which is an arc from task j to u to symbolize that j is the immediate predecessor of u

Cycle $=$ Cycle time
จุห้าลงกรรณมมหาวิทยาลัย
Subject to
Cycle time constraint:

$$
\begin{align*}
& \sum_{j \in J} t_{j} \times x_{j s} \leq \text { Cycle } \tag{2.2}\\
& \sum_{s \in S} x_{j s}=1 \\
& \sum_{s \in S} s \times x_{j s} \leq \sum_{s \in S} s \times x_{u s} \tag{2.3}
\end{align*}
$$

Constraints 2.2 are to ensure that the cycle time is not exceed by the workstation time of any workstation. Constraints 2.3 are to ensure that each task is assigned to just one station. Constraints 2.4 represent the precedence constraints to ensure that no task is assigned to an earlier station than its predecessor.

2.1.2 Solving the problems

There are a variety of procedures for solving SALBP-I, whereas only a few procedures solved SALBP-II directly. Most research has applied SALBP-I to solve SALBP-II by increasing the cycle time until a balance is achieved. The initial lower bound or the minimal cycle time is determined, and then an assignment of tasks to workstations following the precedence constraints using SALBP-I method is applied. The trial cycle time is successively increased until a feasible solution found. This procedure is called the iterated method (Baybars, 1986; Scholl and Klein, 1999; Scholl and Becker, 2006). The search method starts with the lower bound, and the cycle time is successively increased by one until a feasible solution is found. This is called the Lower Bound Method. The lower bound can be fetermined by several methods. The lower bound (LB) for SALBP-II can be obtained by omitting the precedence constraints. Let $\mathrm{t}_{\max }$ be the maximum task time, $\mathrm{t}_{\text {sum }}$ be the sum of task times for all tasks, and k be the number of workers, $L B=\max \left\{t_{\max }, \mathrm{t}_{\text {sum }} / k\right\}$. For another way to set the lower bound, Talbot and Patterson (1984) have restricted the possible assignment of each task to a station interval which is bounded by the concept of an ēarliest and latest station. The lower bound is the minimal cycle time in which the earliest station is less than or equal to the latest station for all tasks. Pastor änd 0 Ferrer (2008) developed a mathematical model for SALBP based on the concept of a feasible assignment from the earliest to latest interval. Sprecher-(1999) and Klein and Scholl (1996) have calculated the lower bound using different methods and selected the best lower bound among the results.

Not only does the search start with the lower bound, but it also starts with the upper bound, and the cycle time is successively decreased by a step until a feasible solution is found or it equals the lower bound. It is called the Upper Bound Method. Furthermore, the search can be in the interval [LB, UB]. This is called a binary search. The interval is successively subdivided into two sub-intervals by selecting the mean value, $(\mathrm{LB}+\mathrm{UB}) / 2$. If a feasible solution is found, the UB is set to the maximum station time in the corresponding solution. Otherwise, LB is set to c plus step. These are the generat search procedures applied in the previous research. The exact algorithms for solving SAI BP-II are based on the branch and bound principle. Furthermore, several rtiles were/developed in order to reduce computation and improve the search process (Askjin and Standridge, 1993).

For example, only maximal station loads have to be considered. A station is termed maximal if no task can be assignedito it without violating the precedence and the cycle time constraints, i.e. a workstation should never close while "fittable" tasks remain. A fittable task is an unassigned task that can be completed in the remaining idle time of the station. Moreover, for the dominance rule, suppose there is a station where one of its tasks, u, could be feasibly replaced by a longer task, v, and all the successors of u must also follow v. If v is substituted for u, the remaining workload is reduced without losing any possible sequence completions. Suppose we have three tasks $1,2,3$ with task time $(2,4,2)$ respectively and task 1 and task 2 are completed before their successors task 3 can be started. In this case, task 2 dominates task 1 since task time of task $2>$ task time of task 1 and all of task 1 डs/successors. Let cycle time be $c=4$. Af we place task 1 first, the solution is $(1,2$, and 3$)$. The workstation time will be $\{2,4,2\}$. However, if b is placed first, the solution is $(2)(1,3)$. The workstation time will be $\{4,4\}$. The dominated task is ignored. The solution is better than the previous lsolution. The partial/sequence that places the dominated task is fathomed. The dominance rule is applied in many heuristics. Furthermore, the bound violation is a rule that determines the upper bound of the largest workstation to which each task can be assigned. After a workstation is assigned, the unassigned task is checked. If any such task has an upper bound less than or equal to the order of the assigned workstation, then this partial solution is fathomed.

Regarding the assembly line balancing problem, when the operation time for every task is different depending on who executes the task, Miralles, et al. (2008) applied branch and bound using the bound violation rule. Finally, the rule of
excessive idle time is the rule that uses the total idle time to fathom the partial sequence. Let the total idle time be $\mathrm{k} \times \mathrm{c}-\mathrm{t}$ sum . Thus whenever the cumulative idle time exceeds $\mathrm{k} \times \mathrm{c}-$ tsum, the partial solution is fathomed. The fathom rule has been applied in many algorithms. Furthermore, there are many researchers who have proposed heuristics for SALBP-IIe.g. heta-heuristic (Fatih Ugurdag et al.,1997; Liu, et al., 2008; Tasan and Tunali ,2008 (). Liu, et al., (2008) proposed two-stage heuristics for SALBP-II. First, the initial solution was determined then it was improved by swapping tasks among workstations.

In this study, we are interested in applying the maximal station loads rule to limit the number of tasks assigned to a worker within the trial cycle time, then determine the feasible assignment from the alternative of the tasks. After the groups of tasks are generated based on the maximal station load rule, the feasible assignments from matching the group of tasks that/validate the assignment requirement are searched. With this method, the number of the alternative groups of tasks will be reduced and the feasible solution will be generated.

The UB and LB will be developed. To determine lower bound, we believe that the lower bound considering the precedence constraints is better than the lower bound omitting the precedence constraints.

2.2 The assignment problem

The ctassical assignment problem is to find a one-to-bne match between n tasks and m agents; the objective is to minimize the total costef the assignments. The mathematical model for the classic assignment problem may be given as:
ศูนย์วิทย่ยุกรัพยากร
Subject to

$$
x_{i j}=0 \text { or } 1
$$

;where $x_{i j}=1$ if agent i is assigned to task $j, 0$ if not, and $c_{i j}=$ the cost of assigning agent i to task j.

2.2.1. Variations on the assignment problem

Pentico (2007) and Burkard (2002) proposed a survey paper of the variation of assignment problems. For example, an assignment problem that has variations in agent and objective, and an assignment problem with multiple tasks per agent, among others, were proposed.

2.2.1.1 Variations in agent

In practice, agents or workers have different skill levels. The industry sets a rating for the workers e.g. A, B and C and only the worker who is qualified is allowed to perform a given task (Dell'Amico and Martello, 1997). In assigning workers to machines, there are multiple alternatives in the assignment. The assignment can involve only a subset of workers and machines to be assigned (Prins , 1994).

For the proposed assignment problem in this dissertation, we assume that the workers have different skill levels; however 1 t is assumed that all workers should be assigned in the problem.

6 The original minimizing total cost has been modified based on the situation.| For example, Martello, et al. (1984) halve polinted out the problem of minimizing the difference between the maximum and minimum assignment values, whichis called the balanced assignment problem. In addition, Duin and Volgenant (1991) have proposed the minimum deviation by minimizing the difference between the maximum and average assignment costs. For example, in a cutting problem, the objective is to minimize the waste from cutting a standard size edge-piece down to the individual sizes.

The bottleneck assignment problem differs from the classic assignment problem in that the objective changes from minimizing the sum of the costs of assigning tasks to agents to minimizing the maximum of costs of the assignments. An example of the bottleneck assignment problem from Lev and Weiss (1982) is as follows: A foreman takes a four-person work crew from Philadelphia to Atlantic City in order to fix some equipment. The four workers have the ability to use all machines. Due to the different skill leyels, the length of time will vary for each worker to fix each machine. The crew will reum to Philadelphia together. Therefore they will leave Atlantic City when thelast crew member finishes. Thus the foreman needs to assign the tasks so that the largest task time is minimized.

The objective of the mini-max formulation is the same as the objective in the assembly line balancing problem. It is applied to the simple Assembly Line Balancing Problem (SALBP-II) with the objective of minimizing cycle time or minimizing the maximum workstation time (Scholl, 1999). Generally, mini-max in time will be maxi-min in production rate. Suer (1998) has proposed the maxi-min formulation to maximize the minimization of the assembly rate for designing parallel assembly lines.

2.2.1.3 An assigmment problem with multiple tasks per agent

There is one type of problem called the Generalized Assignment Problem (GAP). In the model, an agent may be assigned more than one task. The generalized assignment problem is the problem-of assigning each task specifically to_one agent, so the total cost of processing all tasks is minimized and no agent exceeds its rêsource capacity. Applications of the GAP appear in many fields such as vehicle routing, fixed charge location problems, grouping and loading for flex̦ible manufacturing systems, scheduling projects, allocating storage space, and designing communication networks.,
จุหาลงกรณ่มหทาวิทยาลัย $x_{i j}=1$ if task j is assigned to agent i, and $x_{i j}=0$ otherwise:

$$
\text { Minimize } \quad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Subject to

The GAP assumes that there is one resource available to the agents. Gavish and Pirkul (1986) have proposed the Multi-Resource Generalized Assignment Problem (MRGAP) which consumes several resources processed by the agents. This problem has beertapplied to the distribution of petroleum products; for example, an oil company intending to minimize the costs of delivering petroleum products (super, unleaded pẹtrol etc.). Shtub ąd Kogan (1998) have presented an extension of MRGAP to the case where demand varies over time and capacity assignments are dynapic.

For the proposed assignment problem in this dissertation, multiple assignments are allowed for a worker. However it is different from GAP since the resource capacity is not limited. Furthermore, this dissertation considers that the assignments.should validate the precedence constraint.
2.2.1.4 Others variations in assignment problems

Multi-dimensional assignment problems match the members of
three or more sets. For example, the problem could be matching jobs with workers
and machines or assigning students and teachers to classes and time slots. Franz and Miller (1993) have discussed the multi-period assignment problem for assigning 0 medical residents and rotations at a teaching hospital. The objective was to maximize the expressed preferences of the residents. Kouvelis and Yu(1997) have presented a solution for the assignment problem which contains uncertainties.

2.2.2 Skill levels of workers and cross-training in assignment problems

Workers have different skill levels according to experience, capability, knowledge and background. Skill levels are represented by production rate, percent of efficiency and performance (Spragg et.al, 1999). For an assignment based on the skill level, many researchers have defined skill level in different patterns. Hassamonts (2004) has set skill levels with ratings. For example the " A " rate is the rate that a worker can complete standard task at least 20% faster than the specified standard time. Chan, et al. (1997) rated skill ranging from 0 (unskilled) to 1.5 (fully skilled) which depends on the performance of the worker performing a sewing operation. Song, et al. (2006) defined the operator's efficiency as the ratio of the garment quantity of a piece finished by an operator divided by time. The applications of skill levels also appeared in planning (e.g. workforce planning, staffing), promoting (evaluating performance of a worker), motivating workers and using data of assignment.

For the flexibility of the production line, multi-skilled workers or cross-trained workers are required. It is recognized as a tool for increasing production flexibility when addressing changes in demand, worker assignment, and absenteeism. Labor flexibility has a positive effect on operational performance indicators, such as the throughput time and the delivery performance of jobs (e.g. Treleven, 1989). Cross-training also increases the possibility that workers may help each other and share their workloads. Moreover, cross-training can mitigate turnover because flexible workers can more easily replace the workers who teave, and can improve motivation. Ferexample, some cross-trained workers feel that they have experienced professional growth
et al., 2004). The multi-skilled worker applies both in the industry and service sectors e.g. power stations (Eitzen and Panton, 2004), production lines (Bokhorst et al., 2004), skills may be set to be a floaten to attend to the operation,when it is backed up(Hopp, 2004). Farrar (1993) analyzed the potential performance and benefits achievable with a floater in serial production systems.

However, total flexibility of the workforce is not desirable in practical situations. The requirement of training all workers for all machines would be very costly. Moreover, a high level of labor flexibility may also involve considerable productivity loss due to the shift of workers between machines (Slomp et. al., 2005). Wong, et al. (2005) studied the impact of the different levels of skill inventory of workers on the assembly. The number of skills was investigated in order to find out the optima number of task skuls that an operator should possess in the apparel assembly \qquad 0
Several researehers studied and developed cross-training policies in order to determine the distribution of workers' skills. Yang (2007) has compared a set of cross-training policies studying the different numbers of cross-trained workers (i.e. one, two, three or four from each department), additional skills per cross-trained worker, and additional machmes (i.e. four workers / five machines having worker-tomachine ratios 80\%) to analyze the performance of the policies. Inman (2005) has compared policies of total cross-training, reciprocal pairs (each cross-trained worker serving the paired unit) and chained cross-training (one worker trained some units linking the units in a chain) Cross-training has been investigated by many researchers such as Brusco and Johns (1998) who studied characteristics of crosstraining policies in the number of work activity categories and the level of productivity. Jordan, et al. (1995) have stated that chained cross-training results in a robust change in workload characteristics. Inman, et al. (2004) applied chaining to cross-training assembly line workers to mitigate the impact of absenteeism.

2.2.3 Surveys related to assignment problems

Abstract

Suer-(1996) has addressed the problem of finding the optimal manpower assignment and cell loads simultaneously. A single workstation, or "cell", consists of: a number of operators assigned to each task type. ACtwo-phase hierarchical method is proposed using two models of mixed integer and integer

 9 programming formulations. The first modeln determines the alternative cellconfigurations in order to maximize the production rate. The second model is to allocate worker assignment and load to cell to maximize the production of the cell and utilize the least number of workers. Suer and Bera (1998) have expanded the previous models of Suer (1996) by allowing multiple products to be assigned to
multiple cells (lot-splitting). This model does not address the operator's skill level for each task.

Nakade and Ohno (1999) have considered the optimal worker allocation problem in a U-shaped production line. The multi-skilled worker operates multiple machines and visits each machine once for each unit of production. They derived the lower bound of the number of workers under the required cycle time and proposed an algorithm for findirg an optimal allocation of workers to machines in order to minimize the cycle time using the minimum number of workers. Nevertheless, they do not consider, the worker allocation problem when there are different skill levels amons yorkers.

Slomp and Molleman (2002) have investigated the impact of crosstraining on team performance under conditions where there is a fluctuating demand and supply of human resources. A task assignment heuristic is used for comparing the cross-training policies.

Slomp and Bokhorst (2005) have proposed a model that considers trade-offs between training costs and the workload balance among workers in a manufacturing cell. The integer programming model was proposed to calculate which workers have to be tyained for which machines. They used a bottleneck worker to determine workload balance. The assumption of the problem is based on the idea that a bottleneck worker is used for determining the efficiency of the manufacturing cell.

Futatsuishi, et al. (2002) addressed the probfen of minimizing the total elapsed tine from the start up time to the completion of a job in an environment where a single worker needs more than one skill and one task can be processed by several persons.

Norman, et al. (2002) have proposed a model accounting for human skills. The skillievels of workers are permitted to change by providing them with
additional training. A mixed integer programming model to assign workers to tasks in manufacturing cells is proposed in order to maximize the effectiveness of the Organization (function of productivity, output quality and training cost). ? Corominas, et al. (2006) have studied the assignment of tasks to the members of a multi-functional staff in a work center. The problem focuses on service industries that train workers on every task. The different tasks require varying levels of attention and responsibility. The number of consecutive periods operated by
workers should fall within the specified interval limited by a minimum and a maximum number of periods working at each type of task.

Campbell and Diaby (2002) have proposed an assignment heuristic for allocating cross-trained workers to multiple departments. Each worker has different capabilities for working in each department.

Caron, et al. (1999) have studied assignment with seniority and job priority constraints in the daily scheduling of nurses in hospital.

Askin and Chen (2006) have studied dynamic task assignment for throughput maximization with worksharing. Two types of worksharing can be found: Dynamic assembly-Line Balancing/(DLB) and Moving Worker Modules (MWN). MWM applications usually have pore machines than workers. Workers carry work pieces along the line within zones and share use of machines. DLB matches machines and workers with some tasks assigned to a designated worker, which are called fixed tasks. Other tasks can be performed by either of an adjacent pair of workers. These are called shared tasks. A worker chooses to either pass on a job with the shared task undone or complete the shared task, according to specific rules.

2.3 Surveys related to assembly line balancing problems and assignment problems concerning constant skill level

Although the integrated line balancing and worker assignment problems appear to have tremendous relevance in practice, there are few references indicating past research im this area. Hassamontr (2004) propesed twb-phased heuristics for assembly line-balancing with operator's skill and machine constraints, which is basically the approach described above. The first phase assigns operations to workstations using standard times and the second phase assigns workers to workstations. Wong, et al. (2005) developed aline balancing technique using Genetic Algorithms (GA) in which each worker has an efficiency factor related to skill leyel.
determines the number of workers for each task that is required, then identifies the skill(s) of each worker, and finally makes the assignments.

An extremely interesting paper by Miralles, et al. (2008) addresses grouping and assigning together considering worker skill. Their approach uses mathematical programming along with a branch and bound solution procedure. There are a number of key differences between this work and the problems under consideration here because their research focuses on designing a work environment that helps disabled workers develop capabilities where some workers cannot operate some tasks. Then Chaves (2009) proposed a hybrid meta-heuristic to solve the problem.

Chen et al., (2009) addressed the problem of assigning tasks to workstations and assigning machines in the workstation in order to balance the load. However all machines are assumed to haye the same performance. Assignment restrictions have been added to the assembly line palancing problem. Scholl, et al. (2010) examined the assembly line balancing problem with assignment restrictions including task restriction, resource restriction and workstation restriction. For example, incompatible tasks must be assigned to different workstations and an assignment should not exceed the available space. However, the difference in task processing times between workstations is nat considered. In regard to multi objectives, Zhang, et al. (2008) examined the problems of minimizing cycle time, the variation of workload and the total cost. The problem is modelled in a non-linear approach and solved by a genetic algorithm. Zhang and Gen (2009) formulated a non-linear model for mixed model assembly line balancing and solved the problem using a genetic algorithm with the objective of minimizing cycle time, increasing the line efficiency and reducing the total cost.

Corominas, et al. (2008) proposed a process of rebalancing a motorcycleassembly line considering two groups of workers; skilled and unskilled workers. The skilled workers caln perform all the tasks, whereas the unliskilled workers can only perform a subset of tasks. The unskilled workers will take longer to perform tasks than the skilled workers. However, the study assumed that the task processing time of Q workers in the same group (skilled and unskilled) is equal.

2.4 Surveys related to assignment problems concerning

learning ability

Generally, people will learn and improve by repeating operations. They will require less time to produce succeeding units. This is learning behavior and can be studied and represented by a mathematical model (Wright, 1936, Dar-El, 2000). Learning is time-dependent. In this dissertation, we focus on the Log-Linear model. Based on the Log-Linear model, if t_{1} and t_{n} represent the task processing times of the first and the $n^{\text {th }}$ item, and use \varnothing in terms of learning slope, $t_{n}=t_{1} \cdot n^{(\log \phi \mid \log 2)}$ (Wright, 1936). The property of the leapning phenomenon is that whenever the total quantity of units produced doubles, the time per unit to produce the unit decreases by a constant rate-(known as learning rate) (Sumanth, 1985). For example, if the time taken to produce the first unit is 10 hours, and if the learning rate is 80 percent, then the time taken to produce the second, fourth, eighth, and sixteenth units are as follows:

Second unit $=0.8 \times 1020,02=8$ Time units.
Fourth unit $=0.8 \times 8(2<6)=6.4$ Time units.
Eighth, unit $=0.8 \times 6.42 / 2=5.12$ Time units.
Sixteenth unit $=0.8 \times 5.12=4.096$ Time units.
In general, the percentrate of learning =

Cunfulative average time/unit at half the given production level

For example, time taken for eighth unit / time taken for fourth unit $=5.12 / 6.4=0.8$
The learning curve is given by a hyperbola of the form:

$=\log$ of learning rate $/ \log 2$
$=\log \mathrm{r} / \log 2: r=$ learning rate

Since learning rate $(r)=t_{n} / t_{n / 2}=\frac{t_{1}(n)^{s}}{t_{1}\left(\frac{n}{2}\right)^{s}}=(2)^{s}$

Therefore,

$$
s=\frac{\log r}{\log 2}
$$

,and

Many factors influence learning e.g. job complexity, the number of repetitions, previous experience and training (Dâr-El, 2000). Learning is addressed in many studies related to production e.g./ scheduling (Mosheiov, 2001), assembly line balancing (Chakravarty, 1988), and allocation or worker selection (Nembhard, and Osothsilp, 2005). Workers vary in learning which is affected by many factors: individual ability, individual variability, financial incentives, organizational norms and constraints, training and the nature of the social environment (Uzumeri and Nemhard, 1998). Learning data can be kept and analyzed due to systems support. Many organizations have installed data acquisition systems to record detailed production and quality data to enable product tracking, quality control, and piece-rate wage tracking (Nemhard et al., 2000). Moreover, computer technology allows organizations to record individual worker activities at shorter time intervals at a dramatically lower cost (Uzumeri and Nemhard, 1998). Therefore, many researchers can examine the mathematical form for individual learning. Examples of learning models are: log-linear, exponential function, and hyperbolic functions.

Nemhard and Uzumeri (2000B) have categorized learning modeling into two broad areas: organizational learning and individual learning. Organization learning research has focused on the overall implications of learning across large organizational units" (Nemhard and Uzumeri, 2000B). The organization learning curves use data that are aggregated across many individuals and many processes (Nemhard and Uzumeri, 2000B). Individual learning research has examined the microstructure of the learning curve in order to understand the mechanisms by which
learning occurs at the individual level (Nemhard and Uzumeri, 2000A). The purpose of individual learning is to provide management the information that will give the assignment more efficient allocation with specific characteristics. This study focuses on the individual learning of each worker.

Task complexity is a factor that affects the learning function. Uzumeri and Nemhard (1998) have found that workers have variations in a task. Workers learn more quickly in a location task (fixed location) than in a more difficult search task (randomized location) and it was also found that there were greater performance improvements in tasks performed in the order of "difficult to easy" than those performed in the order of "easy to difficult." Nembhard (2000) has studied the effects of task complexity on learning and forgetting. The results indicate that task complexity significantly affeets learning and forgetting rates.

In a sewing process, three attributes of skill-complexity, which are method, machine and material, are involyed! The method consists of the sewing stitch, the length of the stitch, and the section of the unit that is assembled. The machine consists of the type of equipment employed and the amount of automation relevant for the task. The material consists of the specific grade, density, fiber type and accounts for whether the fabric is knitted or woven.

Nembhard (2000) has also examined the effects of task complexity and experience on parameters of learning and forgetting in the garment industry. The study found that the effect of task complexity on learning and forgetting parameters depends on the experience of workers. Workers who have experience with the task method, machine, or materiaf will learn more rapidly and forget more rapidly. Nembhard (2001) proposed a heuristic worker-task assignment policy by assigning the more rapid learners to the shorter production run tasks, and the more gradual learners to the longer production run tasks. The results indieate that the heuristic method signifieantly improves overall productivity under empirically observed conditions and under many experimental conditions.

Leopairote (2003) has investigated workforce flexibility in a labor constrained flow-line system assuming that workers are heterogeneous with respect to learningforgetting effects. The distribution of individual learning and forgetting behaviors was obtained from an automotive company. The study focused on an unpaced and asynchronous flow line system and addressed selecting appropriate workers for the production lines. The number of stations performed by each worken and level of task
sharing are determined. Workers are then assigned to stations and the worker schedule and rotation pattern over a production period is determined in order to maximize throughput of flow line.

Sayin and Karabati (2007) have proposed assigning cross-trained workers to departments. This model has two objectives which are maximum utility and skill improvement. The department utility is a function of departmental labor shortage. Two stages of optimization were studied. The first stage of the model needs to maximize total departmental utility subject to typical assignment constraints. The second stage of the model seeks to maximize total skill improvement by using the outcome of total utility value of the first stage as a parameter input in a constraint of the second stage model. A worker must be allocated to a department. One department allows many workers to work. The skill level of each worker is modeled by a hyperbolic learning curve. The research proposes that once a worker is assigned to a department, his skill levels should improve according to his individual learning curve and the improved skill levels are used for the assignment in the next period.

The problem in this dissertation focuses on assigning the tasks to workstations when the tasks have a precedence requirement, which is the assembly line balancing problem. Generally, the conventional assembly line balancing problem is designed for large batch problems, so the given processing time of the problem is the same for all units; whereas in an assembly line balancing problem for small batch problems, learning cannot be ignored (Karni and Herer, 1995). Consequently, the objective of the conventional problem, which is -minimizing the maximum workstation time, cannot be applied when learning is relevant since the bottleneck time dynamically changes based on the reduction of learning slope of an assignment. For this reason, minimizing makespan or completion time is incorporated in thisproblem.

An assembly line balancing problem with learning consideration is studied under different assumptions. For example, the learning for all tasks is same (Toksari, et al. 2008), learning depends on the task which is assigned (Chakyavarty 1988; Karni and Herr 1995; Dar-El 1998; Cohen, Vintner et al. 2006), and learning depends on the worker who operates the task (Cohen, Y., 2008). Furthermore, the processing time which represents learning behavior is set in different ways eeg. discrete (Kari and Herer,1995 : Ghakravarty, 1988) and continuous, (Cohen and Dar-El 1998 ;Cohen, Vintner et al. 2006; Cohen, Y., 2008) which is represented by a learning model. Moreover some studies assumed that tasks can be divisible (Cohen, Vintner et al. 2006 and Cohen, Y., 2008), whereas others (Karni and Herr, 1995 ; Chakravarty, 1988 ; Cohen and Dar-El 1998) assumed the tasks cannot be split.

Regarding the production system, most previous studies focused on the assembly line which is a non-buffered system in which all units are transferred between workstations simultaneously based on the bottleneck station. The upper envelope concept was developed and applied in the non-buffered system (Cohen, Vitner et al. 2006). The upper envelope is formed by the largest workstation time value. It represents the production rate of each stage. Thus the makespan is the sum of the production times under the envelope. For this reason, minimizing area under the envelope is minimizing makespan. Cohen, Vitner, et al. (2006) and Cohen, Y. (2008) developed a method to determine the optimal assignment based on the upper envelope concept. Cohen and Dar-El (1998) proposed an outline of a heuristic procedure to solve the problem. The idea is that the flat learning slope will give the small slope in makespan value, so the heuristic will start with limiting the small slope, then determine the task-worker assignment which is valid for the allowance. Using the total processing fime of each task, an assembly line balancing technique is determined. The allowance is re-adjusted in increments and solving the problem is repeated until a feasible solution is found. In this dissertation, we focus on the buffered production line. However, in previous studies, there is rarely research which focuses on the problem where a buffer is allowed in the system.

2.5 Surveys related task-worker assignmentin the garment industry
 Many researchers have studied problems in the garment industry. Examples

 of research study are simulation modeling (Khan, 1999), assembly line balancing (Masaru, et al.,1981; Betts and Mahmoud, 1992; Chan, 1997; Hui and Ng; 1999), scheduling (Wong and Chan; 2001; Tomastik, 1996; Chen, et al., 1992), and allocatioHui and Ng (1999) have studied the effect of time variation for assembly line balancing. They have reported that the time variance should be taken into
consideration for improving the effectiveness of line balancing. In real situations, there can be a wide variation in the average skill of workers. A lot of factors cause variations in the operational time of the task such as the fabrics and sub materials, performance of the machinery, working environment and quality level of the product.

Betts and Mahmoud (1992) have studied assembly line balancing in the cloth industry for varying skill of workers. They have stated that the problem of varying skill of workers has multiple optimum solutions that allow the line balancer increased flexibility in the choice of a particular solution. Since the assembly line involves different operations being performed at different production rates, balance control is necessary to make sure that the right person is assigned the right task. Chan, et al. (1997) have presented Genetic Algorithm that can be used for solving the assembly line balancing problem in an effectiye manner to meet the realistic production conditions in which workers have arbitrary skill levels. However, they assumed the skill levels at a constant production rate. Moreover, they have allowed that a worker performs only one task and that a task can be assigned to only one worker.

In practice, the pefformance of the assignment depends on the skill and experience of supervisors who are important for it to be successful. Spargg, et al. (1999) have proposed a model accounting for a supervisor to monitor, analyze and repair production schedules; whereas, Hui, et al. (2002) have captured the knowledge of experienced supervisors and proposed a rule based system for determining the right number of operators to be moved in and out of a sewing section.

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย
CHAPTER III

TASK-WORIKERASSIGNMENT ASSUMING CONSTANITSKUE LEVEL

This chapter presents-a problem of an integrate approach to assembly line balancing problem and worker assignment problem assuming constant skill levels of workers. The remainder of this chapter is organized as follows. A problem description and mathematicalmodel are presented in Section 3.1-3.2. A heuristic to solve the problem is presented in Section 3.3. A performance measurement of heuristic and the computational results are presented in Section 3.4. The conclusions of this work and discussion are presented in Section 3.5.

3.1 Problem description

This problem concerns a flow shop where all job routings are identical and involve all workstations that are in series in the line. A workstation consists of a worker who operates the assignedtasks. An order includes i identical items must be processed through those tasks. We consider the process that includes o tasks and k workers where $0 \geq k$. Workers with potentially multiple skitls and different skill levels must be assigned to perform tasks. Workers with multipleskills are allowed to perform more than one task as long as they are consecutive in the routing. The differing skill levels of workers are reflected in different processing times for each worker on the same task.
ρ The problem is to jointly assign tasks so that the line is balanced and assign workers to those tasks. To simplify the problem, artificial workstations are established to represent grouped tasks. Tasks within the same workstation nutul be หาลงกรมมมหาวกบาละ of workstations must equals to the number of workers but the number of tasks can be greater than these because some workers can perform more than one task. As a result, the decision becomes worker-workstation assignment.

Figure 3.1 refers to the earlier example of 5 tasks to 3 workstations and illustrated alternative assignment between workstations and workers. For example, on the first row, tasks 1,2 , and 3 are assigned to workstation 1 ; the task 4 is assigned workstation 2; task 5 is assigned to workstation 3. At the bottom of the Figure 3.1, alternatives of worker-workstation assignment are illustrated.

Figure 3.1 The solutions of grouping tasks to workstation and the assignment II) between workstations and workers.
 ways to group consecutive tasks toworkstations multiplied by the number of possible feasible assignments or complexity of the problem. The goal of the researeh is to develop a task-worker assignment where all tasks must be assigned to workers and each worker is assigned to at least one task. If worker is assigned to more than one task, the length of time they spend on that group of tasks equal to the sum of the
processing time of those tasks. The consecutive tasks are only allowed in case of the multiple assignments. It is further assumed that there is unlimited buffer space between each workstation and the travelling time between workstations is zero.

Table 3.1 The number of feasible assignments or complexity of the problem

3.2 Model formulation

The mathematical model presents below to determine which tasks $\{j=1, \ldots, 0\}$ and workers $\{w=1, \ldots, k\}$ have to be assigned to the workstations $\{s$ $=1, \ldots, k\}$. The model has one type of continuous decision varable and three types of binary decision variables. The continuous variable is the objective function value or cycle time ($C y \overrightarrow{c l e}$). The binary decision variables relate to the assignments that are to determine whether the task is assigned in a workstation ($\left.y_{j s}\right)^{5}$, whether the worker is chosen for a workstation $\left(r_{w s}\right)$. And also the three dimensional variables, $a_{\text {wis }}$ combine the assignment solution of both variables $y_{i s}$ and $r_{w s}$? A number of consträints are formulated to ensure feasibility of assignment. The first set of constraints is required to represent the calculation of cycle time or bottleneck time. The maximum processing time of workstation is examined to evaluate the cycte time: required to ensure that all workers must be assigned to operate tasks in a workstation. The last set of constraints involves task - workstation assignment. They are required
to ensure that all tasks are grouped and assigned to workstations. The MIP model for this problem will be defined using the following notations (Table 3.2):

Cycle time constraint:

$$
\begin{equation*}
\sum_{w \in W} \sum_{j \in J} P_{w j} a_{w j s} \leq \text { Cycle } \quad \forall s \tag{3.2}
\end{equation*}
$$

Worker - workstation assignment constraint:

Grouping task-workstation assignment constraint:

Constraints (3.2) determine the cycle time which is the sum of the processing times of the workstation in which tasks are assigned. Constraints (3.3) through (3.6) relate worker assignments to workstations. Gonstraints (3.3) force atl workers to beassigned to at least one task. Constraints (3.4) ensure that if a worker is assigned to the tasks at a workstation, he or she must be assigned to that workstation while constraints (3.5) and (3.6) deal with the required one to one assignment between workers and workstations. Constraints
$y_{j+1 \mathrm{~s}}=1$ then $y_{j s}=1$. (e.g., If $y_{53}=1$, then $y_{43}=1$ and, in turn, if $y_{43}=1$, then $y_{33}=1$.) Similarly, (3.9) forces the correct structure for the precedence relationships on the workstations: if $y_{j s}=1$ then $y_{j s+1}=1$ (e.g., if $y_{11}=1$, then $y_{12}=1$ and since $y_{12}=1$ then $y_{13}=1$). Constraints (3.10) and (3.11) ensure that a task cannot be split among workers; thus, each task will be assigned to only one worker.

To illustrate how these variables are interpreted, consider the 5 task, 3 workstations example discussed previously. The solution on the first row of Figure 3.1 would be represented in the model as $\vec{y}_{1}^{T}=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\right], \vec{y}_{2}^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ and $\vec{y}_{3}^{T}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$. Fo interpret fifese vectors, $y_{11}=y_{21}=y_{31}=1$ in \vec{y}_{1}^{T} means that tasks 1, 2 and 3 are grouped and assigned to workstation 1. For the other 2 workstations ($s=2$ and 3), the assignments are determined by $y_{j s}-y_{j s-1}$ for each j. So, for example, $\vec{y}_{2}^{T}-\vec{y}_{1}^{T}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array} 0\right]$ means that task 4 is assigned to workstation 2.This is how the constraint set restricts consecutive tasks to the same workstation. It is proposed by Glass and Herer, 2006.

3.3 Heuristic descripfion and numerical example

The proposed heuristic for/finding a solution to this problem involves two steps: first, tasks are grouped and, then, the problem is transformed into an assignment problem between the groups of tasks and workers. As noted earlier, there are a very large number of possible task groupings and this is eritical to the quality of the solution, so developing a methodology to generate groups of task efficiently is one focus of this researtch. The proposed methodology starts by determining the upper bound (UB) land low er bound (LB) bf the cycle time.. Atrialvalue between UB and LB is set to be an upper limit of group size. Then, consecutive tasks are grouped base uponthe maximal station load rule. Once tasks are grouped, the problem becomes an

Step 1: Generate the initial UB and LB

To determine the LB of the cycle time, the processing time of the fastest worker who performs each task is used to represent the processing time of that task. The tasks are assigned to the workstation as in SALBP-II which can be solved by an exact algorithm to minimize cycle time. Groups of tasks are obtained once the LB is found. All precedence constraints are considered to determine the LB. It should be noted that since the LB is obtained using the processing time of the fastest workers, it may not feasible when all workers are assigned.

To illustrate, again consider our 5 task, 3 worker example. The minimum processing time of each task is $2,1,1,2,2\}$ which is the time of the fastest worker for each of the 5 tasks. To miminize cycle time using the exact algorithm, the tasks are grouped for the 3 workers as $\{1$ and 2, 3 and 4,5\} with corresponding workstation time of $\{3,3,2\}$. The initial lower bound is $\max \{3,3,2\}=3$. However the assigned worker solution is $\{B, C, C\}$, which is infeasible.

The initial UB is defined as a feasible solution. This is achieved by a one to one assignment between the groups of tasks from LB and workers. This assignment is not an original assignment problem since the objective is to minimize the maximum workstation time or cycle time; therefore, a mathematical model of the problem is formulated. This solution will be the initial feasible solution and the cycle time will be the initial UB. In the example, the initial UB is $\max \{3,3,5\}=5$ with solution task grouping $\{12,34,5\}$ executed by worker assignment $\{\mathrm{B}, \mathrm{C}, \mathrm{A}\}$.
Step 2: Set the "frial value" of the cycle time
Once the LB and UB are determined, a trial value is set. A trial value is chosen to be the bound on the eycle time for generating groups of tasks. This can be done in any number of ways as long as it is between the LB and the UB so it can be though of as the liner combination of the two, $\mathrm{Bt}=\times \mathrm{LB}+(1-) \times \mathrm{UB}, 0 \leq \alpha \leq 1$. For example, other research that uses this general approach frequently begins with the midpoint,
 ffins a higll quatity solution as well as the computation time of the a gorithnn so it is adjusted for specific situations using computational experimentation to achieve the desirable balance for the decision maker.

Step 3: Determine the groups of tasks

A fundamental property associated with optimal solutions of this class of problems is

 that the consecutive tasks will be grouped with the maximum group size and without exceeding the current trial value. This idea is the foundation behind this step in the heuristic because groups of tasks will dnly be generated based on the maximal station load rule. With this method, the number of the groups of tasks will be reduced and a feasible solution will be generated.This idea is implemented by using the maximal station load rule to generate groups of tasks for that workstation. Tasks are added sequentially until the trial value is exceeded; that is, only the froups that have a cycle time (e.g, the sum of task processing time) within the trial value is considered. Referring back to our 5 task, 3 worker example, if $L B=3, U B=5$ and $=5$, the first trial value is 4 . The possible groups of tasks based on the rule of worker A are $\{$ task2 $\},\{$ task3\} and $\{$ task4\}. Worker A cannet operate task number 1 since his or her processing time of this task is 5 which is greater than 4. Using this logic, the possible groups of tasks for worker B are $\{$ task1, task2\}, \{task2 $\},\{$ task 3$\},\{$ task 4, task5 $\}$ and $\{$ task5\}. Worker B cannot perform task 1 alone because the his or her processing time is below the LB so tasks 1 and 2 are grouped (processing time 3 seconds) which is above the LB and below the trial value. Therefore the first task groups for worker B is \{task1, task2\}. The possible groups of tasks for worker, \mathbf{C} are $\{$ task2, task3\}, \{task3, task4\}, \{task4, task5\}

Step 4: Determine the assignment between the possible grous of tasks and workers
 are transformed in parameters so the assignment between the possible groups of $\operatorname{task} \boldsymbol{s}(g=1,2, \ldots G)$ and workers is obtained from the following mathematical model with the objective of minimizing cycle time.

Inputs
$b_{j g}=\left\{\begin{array}{l}1 \text { if task } j \text { is assigned in group } g \\ 0 \text { otherwise }\end{array}\right.$
$r_{w g}=\left\{\begin{array}{l}1 \text { if worker } w \text { operates the tasks in group } g \\ 0 \text { otherwise }\end{array}\right.$

Subject to

$$
\begin{equation*}
e_{g} x_{g} \leq \text { Cycle } \tag{14}
\end{equation*}
$$

$\sum_{g \in G} b_{j g} x_{g}=1$
$\sum_{g \in G} r_{w g} x_{g}=1$

(2)

Group	1	2	3	4	5	6	7	8	9	10	11	12
	3	3	1	3	4	4	3	2	4	4	2	2

```
\(x_{g}=\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline pattern & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}
cycle \(=4\)
```

Step 5: Check the feasibility of the solution

In this step, the UB or LB is altered based on the previous results to reduce the search space for the next iteration. If feasible solution is found using the trial value, the UB is set to the maximum workstation time in this feasible solution. If not, the LB is set to the trial value. After the UB or LB is updated, the heuristic will check the gap between UB and LB. The search stops when a gap, UB-LB, is less than a predefined amount.

Back to our example, a feasible solution can be obtained from the task groups identified in Step 3. The assignment is \{task1, task2\} for worker B, \{task3\} for worker A and \{task4, task5\} for worker C. The cycle time of the assignment is $\max \{3,4,4\}=4$. Since the solution is feasible, UB is set to 4 . For $\mathrm{LB}=3$ and $\mathrm{UB}=4$, the next trial value is 3.5. After groups of tasks are generated and the assignment problem is solved, no feasible solution is found. Hence, LB is set to 3.5. If the stopping criteria is for the gap size to be 1 or less, the heuristic stops because UB $\mathrm{LB}<1$ and the minimal cycle time from the heuristics is 4 .

Thecomputational experiments are designed to exercise the model and heuristic in à way that illustrates some of the features of each as well as gain some insights that numericalexamples can provide. Normally in a modular production in the garment industry, the number of workers is between 6 and 15 . The problem parameters were chosen to reflect a realistic situation in the garment industry. In this testing, the number of tasks was three times to four times the number of workers, since generally in the garment industry a worker is assigned less than three to four tasks. The experiments set the number of workers at 8,12 and 15 and the number of tasks at 3 times and 4 times the number of workers. Hence, there are six problem sizes: 8 workers with 24 tasks (8w24t), 8 workers with 32 tasks (8 w 32 t), 12 workers
with 36 tasks (12w36t), 12 workers with 48 tasks (12w48t), 15 workers with 45 tasks (15w45t) and 15 workers with 60 tasks (15w60t). For each problem size, an experiment was run with the standard processing times and skill of the workers set at two levels. The standard processing times of each task are generated randomly on the intervals $[1,10]$ and $[1,30]$ according to a uniform distribution. The skill level of workers is generated on the intervals $[-20 \%, 20 \%]$ and $[-50 \%, 50 \%]$ also according to a uniform distribution: The skill level of worker is the percentage deviation of the task processing time from the standard processing time. Each standard processing time intervals are paired with both skill level intervals for each combination of workers and tasks, so there are 4/tésts for each problem size. For example, if the standard processing time of task1 is 10 and the skill level of worker A is 20%, so the task1's processing time of worker A becomes 12. 5 replications are used in each test meaning that the processing times and skill levels were randomly generated 5 times for each number of tasks and workers. All algorithms have been implemented using C++ a PC with an Intel Core ${ }^{\mathrm{TM}} 2$ Dūo 2.00 GHz CPU and 1.93 GB of RAM. All mathematical programs were solved using the AMPL CPLEX 8.0. There are 4 tests for each problem size, 20 replicates for a problem size, 8 worker and 5 replicates for 12 workers and 15 workers as shown in Table 3.3.

Table 3.3 Problem Size

3.4.2 Computational experiments

The computational experiments are designed to exercise the model and heuristic in a way that illustrates some of the features of each as well as gain some insights that numerical examples can provide. Normally in a modular production system in the garment industry, the number of workers is between 6 and 15. The problem parameters were chosen to reflect a realistic situation in the garment industry. In this testing, the number of tasks was three times to four times the number of workers, since generally in the gafment industry a worker is assigned less than three to four tasks. The experments set the number of workers at 8,12 and 15 and the number of tasks at 3 times and 4 times the number of workers. Hence, there are six problem sizes: 8 workers with 24 tasks (8 w 24 t), 8 workers with 32 tasks (8 w 32 t), 12 workers with 36 tasks (12 w36t), 12 workers with 48 tasks (12 w 48 t), 15 workers with 45 tasks (15 w 45 t) and 15 workers with 60 tasks (15w60t). For each problem size, an experiment was run with the standard processing times and skill of the workers set at two levels. The standard processing times of each task are generated randomly on the intervals $[1,10\}$ and 11,30$]$ according to a uniform distribution. The skill level of workers is generated on the intervals [-20\%, 20\%] and [-50\%, 50\%] also according to a uniform distribution. The skill level of worker is the percentage deviation of the task processing time from the standard processing time. Each standard processing time intervals are paired with both skill level intervals for each combination of workers- and tasks, so there are 4 tests for each problem size. For example, if the standard processing time of task1 is 10 and the skill level of worker A is 20%, so the task1's processing time of worker A becomes 12. 5 replications are used in each test meaning that the processing times and skill levels were randomly generated 5 times for each number of tasks and workers. All algorithms have been implemented using $\mathrm{C}++\mathrm{a} \mathrm{PC}$ with an Intel Core ${ }^{\mathrm{TM}} 2 \mathrm{Duo} 2.00 \mathrm{GHz} \mathrm{CPU}$ and 1.93 GB of RAM. All mathematical programs were solved using the AMPL CPLEX 8.0. given in Section 3.3. As mentioned, we expect the range between the initial UB and initial LB is in short-range. The experiment is designed to investigate the effect of the
factor of the variation of skills of worker on the quality of the initial UB and the initial LB. The average on the difference between initial UB and initial LB is presented in Table 3.4.

Table 3.4 The difference between the initial upper bound and initial lower

From the data obtained in Table 3.4, it is found that when the skills of worker is vary in high level, the interval [-50,50], the difference between the initial UB and initial LB is higher than its when the skills of worker is vary in low level, the interval $[-20,20]$. The search space of the trial bound will be increased when skills of worker vary in highlevel.
3.4.2.2 The parameters applied in the heuristic

There are two parameters associated with the heuristic: the gap between UB and LB that will serve as the stopping criterion and the weights to be placed on the upper and lower bounds for determining the trialyafue. It is anticipated that the value of the gap that terminates the heuristic affeets 贵e trade-off between the quality of the solution and the computational time. When the gap size is small the quality of the solution will be better but the computation time will be longer because of the increased number of iterations. With widerlgaps ${ }^{\text {Ithe reverse is seen. As }}$ mentioned previously, experimentation is one way to set these parameters at levels that are acceptable to the decision maker. As such, an experimental study was conducted with the gap between UB and LB at four levels, $(0.001,0.003,0.03$, and 0.3). The weights associated with the UB and LB correspond to $\alpha=.8, .5,2$ and. 1
meaning the ratio of the UB:LB weights are $(20: 80,50: 50,80: 20,90: 10)$. For example, $90: 10$ ratio places the trial value 10% of the interval below the UB. This is strictly trial and error because the sole purpose here is to determine suitable parameters to use in the heuristic for the experimental comparisons. The experiments
were performed on problem 8 w 24 t and the measures that were recorded were computational time and quality of the solution. Quality is measured by the normalized difference between the heuristic solution and the CPLEX obtained optimal solution using:
\% Difference $=\frac{\text { Heuristis solution - Optimal solution }}{\text { Optimal solution }} \times 100$
Figure 3.3 indicates that more weight on the UB leads to shorter computational times for all stopping criteria conditions although the difference is not very dramatic because the computational time is rather sbort for a 30\% gap. Regarding solution quality, Figure 3.4 shows that all gaps except 30% found the optimal solution to this problem. As such, we selected a $90 ; 10$ weight ratio and a gap of 0.03 in an effort to achieve a good solution rather quickly.

จุพาลงกรณ์มหาวิทยาลัย

Figure 3.4 The percentage difference of cycle time between heuristic and exact solution (\%)

As expected, the ability to find a high quality feasible solution depends on the position of trial value. In these experiments, it is noted that the optimal solution was found routinely with and rather quickly with most of the weight on the UB so we hypothesize that the UB in the heuristic is very good. It would take extensive experimentation to generalize this over wide range of situation; however, in these experiments this is true. $66 \times 3 / 296$
3.4.2.3 The computational time and the quality of the solution of

The computational time of the heuristic is compared to the computational time of optimal solution which is found by solved the mathematical model presented inSection 4 using CPLEX. The run time of the problem is limited to 15 hours (54,000 see.) and the results are presented in Table 3.5. Blank entries indicate that no optimal solution is found within 15 hours. For the problem with 8 workers, the optimal solution can be found for all tests whereas for the problem with 12 workers, the optimal solution is only found by CPLEX in certain cases se the average run time is calculated from the cars where the optimal solutions were found within 15 hours. For 15 workers, CPLEX could not find the optimal solution for any cases. As expected, the computational time of the heuristic is significantly lower than
the time to find the exact solution and even for larger problems the computing time was less than 10 seconds.

Table 3.5 The computational time of the heuristic and exact solution (sec.)

Test	8w24t	8w36t	12w36t	12w48t	15w45t	15w60t
Run time : Optimal (sec.)	$\mathbf{2 1 1 5}$	7549	25,026	41,582	-	-
Run time : Heuristic(sec.)	$\mathbf{1 . 1 5 6}$	1.520	2.189	3.983	4.375	9.105

Figure 3.5 compares the computational time of the heuristic versus different skill levels of the workers. It can be seen that computational time is dramatically higher when the variability of the skill levels is high,, that is, the skill levels are generated using the broader uniform distribution between [1,50]. The high variation of skill level results the big difference between UB and LB since the fastest worker in the high variation of skill level reflects the lower LB. The number of search increases when the difference between UB and $\pm B$ is high. With the reason the computational time increases.

For the quality of solution, \% difference is used as described in earlier. For problems $8 w 24 t$ and $8 w 32 t$ t, the heuristic found the optimal solution in almost all cases. Since the optimal solutions was rarely found by CPELX within 15
hours for problems with 12 and 15 workers, the comparison is made between the best know solution from CPLEX and the heuristic. As can be seen in Figure 3.6, the heuristic solution is better than the best solution from CPLEX for all the cases. Furthermore, the difference between the best found solution and the optimal solution increases when the problem size increases and especially when skills of workers vary in high level as shown in Figure 3.6. The heuristic works well comparied to CPLEX when the problem size increase.

Figure 3.6 The percentage of the difference between the optimal or the best
 quality found using the proposed heuristic solution to the solution quality found by applying the 2-stage heuristic commonly found in the Thai garment industry that has been outlined earlier in this paper. For comparison, a slight modification to the previous percentage difference is mâde:

The skill levels of the workers are distributed uniformly in four intervals for these tests: $[-10,10],[-20,20],[-30,30],[-50,50]$. Figure 3.7 displays the results and they are very interesting. The 2 -stage heuristic is less than 5% worse that the proposed
heuristic when the deviation of skills of worker is small (e.g., generated by the [$20,20]$ interval). The performance degrades to $10-15 \%$ when the deviation of skills of worker increases as reflected in a generation interval of [-30, 30] and the degradation is dramatic in the highest level of variance, increasing to $25-40 \%$. We submit that this degree of error in labor intensive industries where competitive position can be lost with small decreases in efficiency, it is important for decision makers to consider using an integrated approach such as this proposed algorithm.

Figure 3.7 The comparison of the percentage difference between the proposed

This chapter has proposed a problem of an integrate approach to assembly line balancing problenil and worker assiğnment problem/assumiñg constant skill levels of workers. The problen with the objective to minimize cycle time is modeled. For solving the problem, a heuristic is developed. The lower bound and upper bound are determined. The binary search is modified to deternine the sequence of trial cycle time. The heuristic groups the tasks based on the maximal station toad rule within a trial value limit. Then, an assignment between the groups of tasks and the workers is performed.

The effectiveness of the heuristic is evaluated in term of computational time and quality of solution compared to the optimal solution. Moreover, the proposed
heuristic is compared to the 2-stage heuristic in term of the quality of solutions. It confirms the disadvantage if the 2-stage heuristic is applied when the skills of worker vary highly.

CHAPTER IV

TASK-WORIKER ASSIGNMENT TAKING INTO ACCOUNT LEARNING ABILITY
 This chapter presents a problem of an integrated approach to assembly line

 balancing and worker assignment taking into account learning ability of workers. The remainder of this chapter is organized as follows. A problem description and mathematical model presented in section 4.1-4.2. A heuristicto solve the problem is presented in Section 4.3. The detail of the heuristic and a numerical example shows in Section 4.4. A performance measurement of heuristic and the computational results will be presented in Section 4.5. The conclusions of this work and discussion are presented in Section 4.6.
4.1 Problem description

This problem concerns an assembly line which is a set of sequential workstations. Buffer spaces are set up between workstations. Arworkstation consists of a worker wo carries out assigned tasks. An order includes i, which are identical items that mustbe processed along the same route pass through all workstations. This problem assumes that the workers have multiple skills and are able to do more than one task. The skill levels of workers differ; therefore, workers' processing time vary.

the sulcceeding item being shorter than the preceding item. In the problem, the processing time of each worker for each item is based on the skill level and learning

Table 4.1 The processing times of 5 tasks, 3 workers (A, B, C) and 3 items (sec.)

We want to establish worker assignments where all tasks must be assigned to workers. Each worker is assigned to at least one task. Since it is assumed that the number of tasks is greater than the number of workers, some workers can perform multiple tasks. Only consecutive tasks are allowed in the multiple assignments to smooth out the line. If a worker is assigned to more than one task, the worker processing tine is determined by the sum of the processing tide of all tasks that s /he performs. For example, if task 1 and task 2 are assigned to-worker A, then the task processing times are 7, 6, 4 for items 1,2 , and 3 respectively. Tasks cannot be split. This problem is also based on the following assumptions:
 to minimize the makespan, which is the completion time of the last item of the last
i.e. the solution of assignment i.e. worker A - operation 1 and 2, worker B - operation 3 and worker C - operation 4 and 5.

The mathematical model presented below determines which tasks $\{j=1, \ldots, o\}$ and workers $\{w=1, \ldots, k\}$ are assigned to the workstations $\{s$ $=1, \ldots, k\}$. Workers must complete all items $\{m=1, \ldots, i\}$ with the minimum completion time. The model uses three types of continupus decision variables and three types of binary decision variables. The continuous variables relate to the objective function value or makespan ($C_{\max }$), the processing time $\left(q_{m s}\right)$, and completion time ($\pi_{m s}$) of items m in workstationss. The binary decision variables relate to the assignments that are to determine whether the fask is assigned to a workstation $\left(y_{i s}\right)$, whether the worker is chosen for a workstation $\left(r_{\text {ws }}\right)$, and also the three dimensional variables, $a_{\text {wjs }}$ which combine the assignment solution of both variables $y_{\text {js }}$ and $r_{\text {ws }}$. Different types of constraints are formulated to ensure feasibility of assignment. The first set of constraints represents the mechanism of the flow line in which all items follow the same sequence of operations. The processing time of tasks was used to evaluate the completion time of each item. The second sety of that all workers must be assigned to operate tasks within a workstation. Thelast set of constraints involves task - workstation assignment. They are required to ensure that only consecutive tasks are grouped and assigned to workstations. The MIP model for this problem was developed using the notations in Table 4.2:

Table 4.2 Notations

Minimize
Subject to
Completion ine constraint:
$q_{m s}=\sum_{w \in N} \sum_{j \in J} T_{w m j} a_{w j s}$
$\pi_{11}=q_{11}$
$\pi_{m s} \geq \pi_{m s-1}+q_{m s}$

Worker workstation assignment constraint:

$$
\begin{array}{ll}
\sum_{s \in S} r_{w s}=1 & \forall w \\
\sum_{w \in W} r_{w s}=1 & \forall s \tag{4.9}
\end{array}
$$

Grouping task - workstation assignment constraint:

Objective function (4.1) is to minimize the makespan. Constraints (4.2) are used to calculate the sum processing time of all tasks that are assigned in workstations for item m. Constraint (4.3) reflects that the production line starts empty, no WIP at the beginning of production so the completion time of first item in the first workstation equals q_{11}. Constraints (4.4) represent that workstation s can process an item only after the previous workstation $s-1$ has finished the operation on the item m. Similarly, anitem m can be operated on a workstation only after the previous item $m-1$ has completed the operation on the workstation as shown in constraints (4.5). Constraints (4.6) force all workers to be assigned to at least one task. Constwaints (4.7) represent that if a worker is assigned to any tasks in workstation, they must work in that workstation. Constraints (4.8)-(4.9) represent one - one assignmentbetween workers and workstations.

Constraints (4.10) through (4.14) concern grouping tasks and assigning them to workstations. Constraints (4.10) through (4.12) forcell a structure on the taskworkstation assignments. Constraint (4.10) assigns the last task oto the last workstation k. Constraints (4.11) force the required precedence relationships among
 correct structure for the precedence relationships on the workstations: if $y_{j s}=1$ then $y_{j s+1}=1$ (e.g., If $y_{11}=1$, then $y_{12}=1$ and since $y_{12}=1$ then $y_{13}=1$.

Constraints (4.13) and (4.14) also ensure that a task cannot be split among workers; thus, each task will be assigned to only one worker.

To illustrate how these variables are interpreted, consider the 5 task, 3 workstations example discussed previously. If tasks 1, 2, and 3 are assigned to workstation 1, task 4 is assigned to workstation 2 and task 5 is assigned to workstation 3, this assignment would be represented in the model as $\vec{y}_{1}^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]$, $\vec{y}_{2}^{T}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}\right] \quad$ and $\vec{y}_{3}^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$. To interpret these vectors, $y_{11}=y_{21}=y_{31}=1$ in \vec{y}_{1}^{T} means that tasks 1,2 and 3 are grouped and assigned to workstation 1. For the other 2 /yorkstations $(s=2$ and 3$)$, the assignments are determined byy $y_{i s}-y_{j s-1}$ for each f. So, for example, $\vec{y}_{2}^{T}-\vec{y}_{1}^{T}=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$ means that task 4 is assigned to workstation 2 . This is how the constraint set restricts consecutive tasks to the same workstation.

4.3 Heuristic description

The idea behind the heuristic is applying the concept of an upper envelope of a non-buffered system in order to determine the upper bound (UB) and lower bound (LB) of the solution to limit search space. The solutions are searched only between UB and LB. The heuristic starts by grouping tasks into workstations then, assigning workers to perform grouped tasks. Groups of consecutive tasks are generated based on the trial value, which is a predetermined value between UB and $L B$. The objective of the problem is to determine the assignment of the grouped tasks and workers which has the minimum makespan.

Regardiag the relation between idle time and makespan, the idle time has the recurrence relation between the idle time of the previous workstation and the idle time of the previous item on the same workstation. Bellman (1982) identified makespan in two simple expressions. For the first expression, makespan is calculated by the idle time on the last station plus the summation of the task's processing time of the last
workstation plus the summation of task's processing time of the first station as shown in Figure 4.2.

Figure 4.2 An expression of the Makespan
Makespan depends on the idle time on the last station plus the total task processing time of the lastworkstation, and the idle time on the last station depends on the idle time of previous stanions! The recurrence relation of the idle times of the previous workstation is shown in Section 4.3.1. We developed a methodology to minimize the idle time of every workstation via a recurrence relation. The details of the heuristic are presented in Section-4.3.3.

4.3.1 The recurrence relation between the idle times

This section shows the recurrence relation between the idle times of the previous workstation. Let FF be the flow time of an item m from the completion time of the first workstation to the completion of workstations as shown in an equation 4.15, i.e. $F T_{33}=q_{32}+q_{33}$, let $I D_{m s}$ be the idle time of an item m at workstation-s, there are two types of expression of the makespan. Using the idle time on the last workstation, the makespan $\left(\pi_{i k}\right)=\sum_{m=1}^{i} q_{m k}+\sum_{m=1}^{i} D_{m k}$, the first term is the sum of the task processing time and the second term is the sum of the idle times on the last workstãtion. Using the flow time, the makespan $\left(\pi_{i k}\right)=\sum_{m=1}^{i} q_{m, 1}+F T_{i k}$, the firstterm of the right side is the sum of the task prollessing fime at the first workstation and flow time of the last item at the last workstation. \|)

จุหากรูกรูณ์มหาวิทยาลัย

$$
\begin{equation*}
\text { so } \quad F T_{m s}=\sum_{z=1}^{m} I D_{z 5}+\sum_{z=1}^{m}\left(q_{z 5}-q_{z 1}\right) \tag{4.16}
\end{equation*}
$$

Since the start of the processing of item m at workstation s follows both the completion of item m at the previous workstation $s-1$ and the completion of the previous item $m-1$ on workstation s, the recurrence relation hold for every flow time, so

By replacing $\mathrm{FT}_{m-1 \mathrm{~s}}$ and $\mathrm{FT}_{m s-1}$ in an equation 4.17 by the equation 4.16, $\sum_{z=1}^{m} I D_{z s}+\sum_{z=1}^{m}\left(q_{2 s}-q_{21}\right)=$
$q_{m s}+\max \left[\sum_{z=1}^{m-1} I D_{2 s}+\sum_{z=1}^{m-1}\left(q_{2 s}-q_{25}\right)-\frac{\left.q_{m 1}, \sum_{z=1}^{m} I D_{z s-1}+\sum_{z=1}^{m}\left(q_{2 s-1}-q_{21}\right)\right]}{(\beta)}\right]$

By subtracting the quantity, $\sum_{z=1}^{m}\left(q_{2 k}-q_{21}\right)$ from both sides of the equation 4.18, the recurrence relation for idle time is obtained.
 of the previens workstation and the idle time of the previous item on the same workstation. For example given a partial solution on workstation 1, which is worker1 operating task 1, 2 on station 1, so when a worker, is assigned on the workstation2, the idle on the workstation 2 will depend on the itle onl the workstation 1 and the idle time of the previous item on the workstation2. The relation is the same for the next workstation until the last workstation which is a part of makespan. From this fact of

4.3.2 The Dijkstra's algorithm

Generally, Dijistra's algorithm is algorithm to determine the shortest path. For example Dijkstra's algorithm is used to determine the shortest path between any two nodes the start node, s and the end node, t. The principle behind Dijkstra's algorithm is that if node x is a node between the start node, s and the end node, t, the shortest path from s to t, then $s,-, x$ had better be the shortest path from s to x. The length of the shortest path to eaeh node is improved if there is a better way from s to other node through x. This algorithm is dynamic programming strategy where the distance from s to all nearby noces is kept, then it is use to find the shortest path to other distant nodes, Skiena (1998). Figure 4.3 shows the step of Dijkstra's algorithm. The Dijkstra's algorithm is modified to determine the feasible assignment between the consecutive grouped tasks and workers which has minimum makespan.

Figure 4.3 Dijkstra's algorithm

4.4 The detail of the heuristic and numerical example

The heuristic simplifies the problem by grouping tasks first. After tasks are grouped, the feasible assignment between the groups of tasks and workers will be determined by the modified Dijkstra's algorithm. We developed a procedure to generate groups of tasks. First, the UB and LB of the solution are determined. Then the trial value between UB and LB is set as a bound for task grouping. They are detailed in the following steps. Eigure 4.4 shows the flowchart of the heuristic.

To determine UB and LB, the summation of task processing time is determined in Table 4.3-based on the data in Table 4.1 and it is solved as an assembly line balancing problem to minimize the maximum workstation time. The objective function value in this stage becomes the LB of the original problem. The solution of worker - task assignment is used to evaluate makespan. This makespan becomes the UB of the original problem.

For example, to minimize the maximum workstation time, the solution of the taskworkstation assignment is $\{12,3,45\}$, the worker-workstation assignment is $\{\mathrm{C}, \mathrm{B}$, A\} and the objective value is 16 , so the LB is 16 . The makespan of this solution and also the UB is 29, as shown in Figure 4.5.
Step 2: Set the triblal value (TV)

Once LB and UB are determined, a trial value is set. A trial value is chosen to be the bound for generating groups of tasks. The trial value is 10% of the UB-LB difference increased from the $L B$ or $T V=L B+(U B-L B) \times 0.1$. Therefore, the first trial value of the example is $16+(29-16) \times 0.1=17.3$. The UB or the makespan 0 value of the solution consists of the idle time plus workstation time at the last workstation. The LB is the minimum size of grouped tasks. However, the solution of the minimum groups of tasks may not give the optimal solution in makespan value. For this reason, we set the trial value by increasing the LB with the small amount (10\%) of the UB-LB difference in order to search for a better solution in a close area.

Table 4.3 the summation of task processing time (sec.)

	Task 1	Task 2	Task 3	Task 4	Task 5
Worker A	11	6	15	4	11
Worker B	12	8	16	5	11
Worker C	8	8	18	5	10

Figure 4.5 An example of LB and UB
Step 3: Determine the groups oftasks
The idea is that we will generate only the groups of tasks based on the maximal station load rule which is that a workstation will never close if fittable tasks remain. The consecutive tasks will be grouped without exceeding the current trial value and with the maximum group size. Only the groups of tasks based on the maximal station load rule are generated. Beginning with each task, the next consecutive task will be in the groups. Only the maximum group size (the sum of task processing time) within the trial value is considered. The groups of tasks are generated based on the trial value. For example, the first trial value is 17.3 . The possible groups of tasks based on the rule of worker A are $\{$ tasks1, 2\}, \{task2\} \{task3\} \{tasks4, 5\}, and \{task 5\}. Worker A does not operate task 1 alone and 4 alone because the sum processing time of tasks 1 and 2 is 17 seconds and the sum processing time of tasks 4 and 5 is 15 seconds which are below the maximum group size of 17.3 seconds. The possible groups of tasks for worker B are \{task1\}, $\{$ task2\}, \{task3\}, $\{$ tasks4, 5\} and $\{$ task5\}. Worker B does not operate tasks 4 alo one because the sum processing time of tasks 4
\{task5\}. Worker C cannot operate task 3 since the processing time of task 3 is 18 seconds which is greater than 17.3.

In Figure 4.7(A), the number in the nodes shows a group of consecutive tasks within the trial value. In this step, a worker who is chosen to carry out each group of tasks is not considered. However, workers who can do those tasks within the trial value are shown at upper right of the nodes. For node 12, workers A and C can be chosen. In the next step, the heuristic will determine the feasible paths. A feasible path must include all tasks using the number of nodes equal to the number of workers. The infeasible nodes are cut off as in Figure 47(B). The féasible path is duplicated based on the workers who can operate tasks in those nodes. Therefore, node 12 will be extracted to node 12A and 12Cas shown in Figure-4.7(C). After that, the step of the modified Dijkstra's algorithm /s/pun to determine the path which leads to the

Figure 4.6 (A) Nodes of the group of tasks, 4.7(B) Feasible nodes of

Step 4: Determine the assignment of the possible groups of tasks and workers
 workstation that includes an assignment between the consecutive tasks and a worker and a path means the assignment starting from the first workstation to the last workstation. In the Dijistra's algorithm, the shortest path from the starting node to every other node is determined in order to develop the shortest path to the ending node. In the heuristic, the shortest path to each node becomes the minimum idle time of that node which is designed to search for a solution minimizing makespan. If the
minimum idle time of the last station is found, the minimum makespan would tend to be reached.

The search will start at a randomly selected initial node. The initial nodes are the ones which own the first task e.g. node 12A and 12C. The algorithm will repeat at other initial nodes that are not selected. All jnitial nodes are possible to be chosen.

Figure 4.7 shows the pseudo code of the modified Dijkstra's algorithm. Firstly, the best makespan is set to UB (line 0). The initial node is randomly selected (line 1) and the variables to keep a solution are initialized (line 2 to line 10). In each step, the heuristic will determine, which node in set Q which has the minimum idle time. It will be node u as shown in line 12. In the first loop, node u will be the initial node. If node u is found, the prode u will be added to set Se and removed from set Q (line 14 to line 15). The nodes which are connected from node u using a single arc will be node b. The algorithm will check the feasibility of assignment of node b from node u. The one to one assignment between worker and workstation is examined. If the assignment is feasible (line 17), the sub-makespan and the idle time on the workstation b will be determined (line 18).

If the new idle time, new -idle e_{b}, is less than idle time, $i d l e_{b}$ of node b and the sub makespan is less than the best makespan, the idle time of the node, idle $_{b}$ is updated (line 19-20). Then the assignment solution is kept (line 21). For example, the initial node is $12 A$, so node $12 A$ will be node u. Node $3 B$ will be node b. This assignmentis feasible. The sub-makespan will be 23 and the idle time will be 7 .

Figure 4.9 shows an example of the idle and the sub-makespan. Set previous b , the previous hode of node b equals node 12A. The steps will repeat for all node b. Then the new ngde u, which has minimum idle time, is determined again. The step will repeat until nomode having minimum idle is, found or idle time of every node in Q equals infinity. If the last tasks is in node buand s.makespan ${ }_{b}$ is fess than the best makespan, then the best makespan is updated (line 22-23). For example, node u is 3B and node 45C is node b. Previously, the best makespan was infinity. It is updated to 28 with the assignment solution ($12 \mathrm{~A}, 3 B, 45 C$) as shown in Figure 4.8. Since the heuristic is designed to minimize iclle time that is not a direct algorithm to minimize makespan, it is better to keep a set of solutions in a node.

Step 5: Check the improvement of the solution and Stopping Criteria

This step is to select whether UB and LB should be updated in order to further limit search space. If a better makespan of a feasible solution is found, the UB is set to the makespan value in the corresponding solution. Otherwise LB is set to the previous trial value. Then new trial value is re-calculated. The stopping criteria depend on the cumulative number of iterations which is not improving the makespan. For example, the limit of iterations is 2 ; the heuristic will stop if a solution is not improved in 2 consecutive iterations

Figure 4.7 The pseudo code of Modified Dijkstra's algorithms
Q4)

Figure 4.9 An example of idle and sub-makespan

4.5 Performance measurement of the heuristic

4.5.1 Testing the problems

A heuristic algorithm was implemented using the C++ programming language. The quality of the solution and computational time of the proposed heuristic were compared to those obtained from the mathematical model which was solved by CPLEX 8.0. Both GPEEX and the heuristic algorithm were run on a PC with an Intel Core ${ }^{\mathrm{TM}} 2$ Duo 2.00 GHz CPU and 1.93 GB of RAM.

Normally in a modular production system in the garment industry, the number of werkers is between 6 and 15. However, only the problem with 7-9 workers was tested since a problem size of 10-15 workers is too large to achieve optimal solutions using the mathematical model. The problem parameters were chosen to reflect a realistic situation in the garment industry. In this testing, the number of tasks was three times to four times the number of workers, since generally in the garment industry a worker is assigned less than three to four tasks. The numbers of items that were exanined were 100 and 300 for the difference of lot sizes. Furthermore, the difference in learning period is also reflected. Regarding the learning process, a major reduction in the processing time occurs during the beginning of the process. Therefore, for the 100 item problem, major reduction is the large part of the process, whereas the 300 item problems include both major and minor reduction. The proportion of minor reduction is greater than that ef major reduction

Table 4.4 shows all the problem sets of this test. The parameters of the problem instanees were developed. Based on Log-Linear motel, if t_{1} and t_{n} represent the task processing times of the first and the $n^{\text {th }}$ item, and using \varnothing in terms of learning slope, $t_{n}=t_{1} \cdot n^{(\log g} \log ^{\log 2)}$ (Wright, 1936). The learning slope for apparel manufacturing is reported by Rosenwasser (1982) and is $0.77-0.85$. In this test, the learning slope was uniformly generated from the interval between [0.77, 0.85] and [0.70, 0.90] in
 generated) The mean task processing times of the first item $\left(t_{1}\right)$ were generated uniformly in the intervals [1, 10] and [1, 30]. The differences in performance of experienced and inexperienced workers on the sewing line are represented by the percent deviations from the mean task processing times. The percent deviations are
uniformly distributed in the intervals [-20\%, 20\%] and [-50\%, 50\%]. For example, if the mean task processing time of the first item is 10 and the percentage of deviation 20%, t_{1} becomes 12 .

Table 4.4 Problem Size

There are 8 tests per problem size. Each test has 10 replicates, but for $8 w 24 t 300 i, 9 w 27 t 100 i$ and $9 w 27 t 300 i$, we used 5 replicates, so the number of instances are 40 for 8 w 24 t 300 i , 9 w 27 t 100 i and 9 w 27 t 300 i and 80 for the other problems. For the problem sets $7 \mathrm{w} 21 \mathrm{t} 100 \mathrm{i}, 7 \mathrm{w} 21 \mathrm{t} 300 \mathrm{i}, 8 \mathrm{w} 24 \mathrm{t} 100 \mathrm{i}$ and 8 w 24 t 300 i , CPLEX was designed to run until the optimal solution was found. Since the problem size of 9 workers is quite large to achieve the optimal solutions, the run time of the problem was limited. For 9 workers with 100 items, 9 w27t100i, the limited run time was 259,200 sec. (3 days). For 9 workers with 300 items, $9 \underline{w} 27 t 300 i$, the limited run time was $345,500 \mathrm{sec}$. (4 days) due to the larger size of the problem.
 trial value (Gap), the limit number of the loop (Limit), \% of special group and the
be missed if the gap is too large. To determine the suitable parameter, the gap to set trial value was designed in two levels, Gap $\{0.2,0.3\}$.

The limit number of loop (Limit) is the stopping criteria. For example, the heuristic will stop if the best solution is not improved greater than or equal to 3 loops of the trial makespan. Figure 4.10 shows an example of an improvement of makespan when the limit number is three The computational time is reduced when the limit number of the loop is small. Howerep the optimal solution may be missed if the loop stops too early. To determine a suitable parameter, the limit number of the

Figure 4.10 An example of an improvement of makespan
The heuristic also allows a sub set of the groups which has a summation of/task processing times close to the generated group to add in the heuristic. If the number of groups increase, the chance to find the optimal solution will increase while the computational time also increases e.g. Task $\{1,2,3\}$ is the generated group of tasks which has 10 sec . Let $\%$ of special group be equal to 10%, if the tasks 1,2 consume 9 sec. The group of tasks 1,2 will be the special group which is included in the heuristic. To determine a suitable parameter, $\%$ of special group was designed in two levels, $\{10 \%, \mathbf{1 5 \%}\}$.

Since the heuristic was delsigned to mumimize ficle time that is nota direct algorithm to minimize makespan, it is better to keep a set of solutions ina node. In the modified Dijkstra's algorithm, more than one solution is kept, so the computational time will increase if the number of solutions increases. In the heuristic, the number of solutions is designed in two levels, two times and three times the
number of workers, $\{2 \mathrm{w}$, and 3 w$\}$. If the number of the workers is 7 , then the number of the solutions will be 14 and 21 .

The problem size 7 w 21 t 100 i was tested. The test started at the level of parameters which gives the quickest computational times which are, Gap $\{0.3\}, \operatorname{Limit}\{3\}, \%$ of special group $\{10 \%$ \}and the number of solutions that are stored in a node\{2w\} in Test 1. Then the quality of the solution and the computational time were investigated. Theresults of the tests are in Table 4.5. The percentage difference of the heuristic solution from the optimal solution was calculated as the following equation:

where $\mathrm{Heu}_{\text {sol }}$ is the makespan obtained by a heuristic, and Opt ${ }_{\text {sol }}$ is the makespan of the optimal solution obtained by using an exact algorithm.

Each factor was adjusted to another level one at a time and then the quality of the solution and the computational time were investigated. The results of the test are shown in Table 4.5, Figures 4.11 and 4.12. Since no test significantly improves the quality of the solution of Test 1 as shown in Table 4.5, the parameters of Test 1 were selected to be suitable parameters which are $\operatorname{Gap}\{0.3\}, \operatorname{Limit}\{3\}, \%$ of special group $\{10 \%\}$ and the number of solutions that are stored in a note $\{2 \mathrm{w}\}$.

Table 4.5 The quality of the solution and CPU Time of the test when the parameters are varied

Figure 4.1 The quality of the solution of the test when the

Figure 4.12 The CPU of the test when the parameters are varied(sec.)

The purpose of these, experiments was to evaluate the performance of
 computational time. The comparison of the quality of the solution between the problems applying the constant skill level and the skill level including learning ability are investigated in section 4.5.3.3.

4.5.3.1 The computational time of the heuristic

This dissertation compares the computational time of the proposed heuristic to the computational time from CPLEX solution. The task processing time of the first item, the \% deviation of the processing time among the workers and the learning slope are varied in wrolevels as mentioned in Section 4.5.1. Table 4.6 presents the computational time of the problem when the number of tasks is equal to 3 times the number of workers with 100 -items. Table 4.7 presents the computational time of the problem when the number of tasks is equal to 3 times the number of workers with 300 jems. Table 4.8 presents the computational time of the problem when the number of tasks is equal to 4 times the number of workers with 100 items for problems using 7 and 8 workers.

Table 4.6 CPU time of the problem: No. tasks $=3 \times$ No. workers, 100 items(sec.)

Table 4.7 CPU time of the problem : No. tasks $=3 \times$ No. workers, 300 items(sec.)

For the computational time of the optimal solution, it was found that when the number of tasks and the number of workers are increased, the computational time of the optimal solution will increase as shown in Figure 4.13. And when the number of items and the number of workers are increased, the computational/time of the optimal solution will dramatically increase as shown in Figure 4.14.

Table 4.8 CPU time of the problem : No. tasks $=4 \times$ No. workers, 100 items(sec.)

Figure 4.14 CPU Time of optimal sol. When No. Items increase (sec.)

Furthermore, when the learning slope of the worker varies at a high level, it was found that the computational time of the optimal solution is greater than the computational time when learning slope varies at a low level as seen in Figure 4.15.

For the computational time of the proposed heuristic, it was found that the total computational time of the heuristic is less than the computational time from CPLEX solution. When the number of tasks and the number of workers are increased, the computational time of the heuristic solution will slightly increase as shown in Figure 4.16. However when the number of items and the number of workers are increased, the total computarional time of the heuristic solution will increase, especially for 9 workers as shown infigure 4.17.

Figure 4.16 CPU. Time of heuristic sol. when No. Tasks increase(sec.)

Figure 4.17 CPU. Time of heuristic sol. when No. Items increase(sec.)

To investigate the computational time of the heuristic, the heuristic step was divided into three parts which are generating UB and LB, determining the feasible path and applying the modified Dijkstra's algorithm. It was found that determining the feasible path consumes 81% of the total time, generating UB and LB consumes 18% of the total time, and applying the modified Dijkstra's algorithm takes only 1% of the total time as seen in Figure 4.18.

Figure 4.18 The fraction of CPU. Time (\%)

4.5.3.2 The quality of the solution of the heuristic

percentage difference of a heuristic from the solution of CPLEX solution. The percentage difference of the heuristic solution from the optimal solution was

The offset from the optimal including mean (Avg. diff), the standard deviation (Std. diff) and the maximum of the difference from the optimal solution (Max diff) were calculated. When the optimal solution was not achieved within the time limit for problem 9w27t100i and 9w27t300i, the best objective value within the time limit was compared to the heuristic solution. Table 4.9 shows the percentage difference of the problem when the number of tasks is equal to 3 times the number of workers for 100 items. Table 4. 10 shows the percentage difference of the problem when the number of tasks is equal to 3 times the number of workers for 300 items. For the problem size of 9 workers, since the time of exact solution test is limited, some tests may found the optimal sollution. In the column "Exact Opt", the problem 9 w27t300i has two parts which consist of the solutions which were found to be the optimal solution and the solutions which were not found to be the optimal solution within the time limit. The number of the optimal solutions for each test is presented in the column. For example, $1 / 5$ means that from 5 tests, 1 test has the optimal solution within the limit time. Table 4.11 presents the percentage difference of the problem when the number of tasks is equal to 4 times the number of workers with 100 items for problems of 7 and 8 workers. In Figures 4.19-4.24, the percentage difference of the heuristic from the solution of exact solution of each problem size is presented.

It was found that the heuristic gives the percentage difference from the optimal solution at less than 0.80%. The maximum of the difference was less than 4.6\% for alltests.
 ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table 4.9 The percentage difference of the problem :No. tasks $=\mathbf{3 \times}$ No. workers, 100item(\%)

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Table 4.10 The percentage deviation of the problem : No. tasks $=3 \times$ No.

Table 4.11 The percentage difference of the problem : No. tasks $=4 \times$ No.
workers, 100 items(\%)

Figure 4.23 The percentage difference $8 \mathrm{w} 24 \mathrm{t} 100 \mathrm{i}(\%)$

Fignre 4.24 The percentage difference $8 w 24 t 300 i(\%)$

It is found that the percentage difference will increase when the number of workers increases. Producing 100 items has the percentage difference higher than 300 items as seen in Figure 4.20. The reason is that the heuristic group tasks are based on the sum of processing times, so the sum of cessing times from 300 items can better represent the learning effect than the sunt of processing times from 100 items. For example, the sums of processing times of task 1 for 100 items from workers A and B are equal, while the learning slopes of worker A and worker B are different for 100 items. However, if the production is 300 items, the sum of processing times is significantly different. For this reason, the heuristic achieves the better solution.

Figure 4.25 The percentage difference when No. Tasks and No.Items increase($\%$)
4.5.3.3 The comparison of the quality of the solution of the heuristic to the heuristic for the constant skill level

where Con $_{\text {sol }}$ is the makespan obtained by a heuristic for constant skill level, and $\mathrm{Heu}_{\text {sol }}$ is the makespan from the heuristic solution obtained by the heuristic in Section 4.3.

Table 4.12 shows the percentage difference between the constant skill level and the heuristic solution. It was found that when the learning slope among workers has high variation, their percentage difference will be higher as in Figure 4.26. It was also found that the percentage difference of the learning slope among workers which varies at low leyel is low. When the learning slope among workers has high variation for both of 100 and 300 items, there is a higher percentage difference than the low variation as shown in Figure 4.27. This means that the assumption of constant skill level is appropriate for the small difference in learning slope among workers and for large lots.

Table 4.12 The percentage difference of the constant skill level solution from the heuristic solution (\%)

จุหาลงกรณมหาวิทยาลัย

Figure 4.26 The percentage difference diff con_heu when No. Tasks

Figure 4.27 The percentage difference diff con_heu when No. Items
 ค) 9 ค)

4.6 Discussion of computation results

This chapter has proposed a problem of Assembly Line Worker Assignment and Balancing Problem with learning consideration. The problem which consists of the assembly line balancing problem and assignment problem with the objective of minimizing makespan was modeled. A heuristic was developed to solve the problem and the lower bound and upper bound yere deternined. For the sequence of trial makespan, the search starts from. LB to UB. The heuristie groups the tasks were based on the value of the trial value. The groups of tasks were filtered and only the groups that were possible to give the feasible task-workstation assignment were kept. The worker-workstation assignment solution was determined based on the recurrence relation of the idle time among workstations in Section 4.3.1. The modified Dijkstra's algorithm was developed to deternine the worker-workstation assignment.

The effectiveness of the heuristic was evaluated in terms of computational time and quality of the solution or makespan. It was found that the computational time of the proposed heuristic is significantly lower than the computational time from the exact solution. However, the computational time of the heuristic increases when the number of items and the number of workers increase. The heuristic found a solution within 0.80% from optimal solution on average.

To answer the question about the effect of using the constant skill level in situations accounting for worker learning ability, it was found that using the constant skill level in this situation is not appropriate since it has an gffect on makespan. However, the comstant skill level is suitable in situations where workers have slightly different learning slopes and a large production lot.

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER V

CONCLUSION AND FUKURE RESEARCH

5.1 Conclusion

5.1.1 Introduction

The appropriateness of using a two-stage heuristic for the practical application of worker assignment for workers with highly varying skill levels is addressed in this research. An integrated approach to the assembly line balancing problem and worker assignment problem was developed. The problem consists of a simultaneous selution to a double assignment: tasks to workstations and workers to workstations. This dissertation concerns both situations which are constant skill levels of workers and skill levels taking into account the learning ability of workers.
5.1.2 Problem description: the task-worker assignment problem assuming constant skill levels

The problem focuses on the final assembly time. The total line is considered to be serial with workstations consisting of one worker. Since the number of tasks is greater than the number of workers, a worker may be assigned more than one task. For the multiple assignments, consecutive tasks areonly allowed since the tasks have precedence relation. There are i identical items which is processed in a number of tasks. After the worker has finished the tasks for processing an item, the item is sent to the next workstation along the line untilithas passed through the last

5.1.3 Mathematical model of the task-worker assignment problem assuming constant skill levels

A mathematical model is outlined in Chapter III. The model combines the original assembly line balancing problem/and assignment problem. A variable $a_{\text {wjs }}$ which represents that task is assigned 10 worker w in workstation s which is designed to merge both problems. The main constraints were designed to cover the requirements of the system. To represent the group of consecutive tasks, the variable $y_{j s}$ was developed. The ebjective of the mathematical model is to minimize the maximum workstation time of csgle time.
5.1.4 Heuristic for the task-worker assignment problem assuming constant skill levels

For the proposed heuristic, starting with limiting search space by UB and LB, the heuristic uses the processing time of quickest worker of each task to determine LB. To set the UB close to the LB , the UB was developed based on the solution from the LB. The search space between UB and LB is split by the trial cycle time and the solution between the trial cycle time and LB is examined. No matter what solution is feasible or infeasible, the pant of the search space separated by a trial value is discarded. Gensequently, the search space is continuously refraced. The groups of tasks are generated based on the trial value, then assigned to the workers. Only the groups which hatye valid maximal station loads rule are considered. Tasks are added sequentially until the trial value is exceeded; that is, only the groups that have a cycle time within the trial value are considered. The maximal station loads rule is a classic rulefor assembly line balancing problems. To determine the feasible assignment of
the groups of tasks to workers, a mathematical model is modeledinthe heuristic. The highlight of the model is that we added two parameters, $b_{j g}$ and $r_{w g}$ to indicate which

5.1.5 Performance measurement of the heuristic assuming

 constant skill levelsThe heuristic factors that haye an effect on the quality of the solution, such as the position of the trial value between the UB and LB and stopping criteria of the search, were investigated. These parameters were tested in a small problem size, 8w24t. It was found that the position that is close to UB gives the best computation time. This means that the finat solution is close to the upper bound and we can conclude that the heuristic has an efficient UB. The suitable stopping criterion of the heuristic which is limited by agap between UB and LB is then determined.

Furthermore, the effect of the varying skill levels on the quality of the solution between the two-stage heuristic and the proposed heuristic was studied. Using the two-stage heuristie, firstly, the assembly line balancing problem is addressed by aggregating tasks using predetermined time standards and then with this established, the workers are assigned to the tasks. The percentage difference between the cycle time from the proposed fieuristic and the cycle time from the two stages method is calculated. The resulf of the comparison confirms the disadvantage if the practical application is applied when the skills of workers vary greatly. The performance degrades to $10-15 \%$ when the deviation of skills of workers increases as reflected in a generation interval of $[-30,30]$ and the degradation is dramatic in the highest level of variance, increasing to $25-40 \%$.
5.1.6 -Problem description: the task-worker assignment problem taking into account learning ability 90 The second problem takes into account skill levels, with learning consideration since it is the nature of fashion industry to launch new designs and new
model was developed. The objective of the problem is to minimize makespan. The objective of the conventional problem, which is minimizing the maximum workstation time, does not apply when learning is relevant since the bottleneck time
dynamically changes based on the reduction of learning ability for an assignment. Therefore, minimizing makespan or completion time was used as the objective in addressing this problem.

5.1.7 Mathematical model of the task-worker assignment

 problem taking into account learning abilityA mathematical-model for the problem was developed as described in Chapter IV. However, this model is different from the mathematical model in Chapter III in regards to caloulating the objective value, makespan, which is based on the completion time of the las jtem. The number of constraints in the problem is greater than in the problem in chapter HI due to the calculation of makespan, which depends on the number of items. Consequently, the computational time of the model is higher than the mathematicalmodel proposed in Chapter III.

5.1.8 Heuristic fon the task-worker assignment problem talking

 into account learning abilityA heuristic was developed to solve the problem of assigning tasks to workers factoring in learning consideration. The heuristic starts with limiting search space by B and LB. We use the benefit of the solution from the heuristic of the problem using constant skill levels to determine UB and LB of the solution. The summation of the task processing time is represented as the eonstant skill level. The objective value or cycle time is the LB. It can be LB siace it is obvious that the maximum workstationtime is always less than the makespan value. The solution is evaluated using the nakespan valuelas UB. ON ? ? ? O

शFor the sequence of trial value between UB and LB, the search extends from LB to UB. The binary search could not be applied in the problem since the 9 gharacte istics of both problems are differenty A stoups of tasks blsed on the tifiat value was generated. The groups of tasks were filtered and only the groups that-were possible to give the feasible task-workstation assignment were kept. The assignment of the possible groups of tasks and workers was then determined

In the Dijistra's algorithm, the shortest path from the starting node to every other node was determined in order to develop the shortest path to the ending node. In the heuristic, the shortest path to each node becomes the minimum idle time of that node which is designed to search for a/solution minimizing makespan. If the minimum idle time of the last station is found, the minimum makespan would tend to be reached. The Dijkstra's algorithm was modified for the problem to fit the problem.

5.1.9 Performance measurement of the heuristic taking into account learning ability
 The effectiveness of the heuristic was evaluated in terms of computational time and quality of the solutions, It was found that the computational time of the proposed heuristic is significantly-lower than the computational time of the exact solution. Furthermore, the proposed heuristic can keep the quality of the solution

 with a percentage deviation of less than 0.80 on average.In addition, it was found that when the workers have different learning slopes, the assumption of a constant skill level in all situations is not appropriate since it has an effect on the quality of the-solution. However, the constant skill level is suitable in situations where the workers have stightly different learning slopes and with the large production 10 s.
5.2 Discussion and recommendations
 workers have high variation in skillevels as seen in Section 3.4.2.1. For this reason, the computational time of the heuristic is higher when workers have high variation in
skill levels.I Consequently, we recommend resetting the UB in order to make the heuristic is not sensitive to high variation in skill levels.

There are three variables of assignment in the mathematical models of the both problems, which are $a_{w j s}, y_{j s}$ and $r_{w s}$. The three dimension variable $a_{w j s}$ is the same assignment solution which is combined from $y_{j s}$ and $r_{w s}$. The mathematical model was developed based on background knowledge. Consequently, we recommend improving the model or reseting of precedence constraints.

Although the computational time of the heuristic is fast, when the number of tasks and workers increase, it tends to rapidly increase. If was found that the main computational time of the heuristic is from the assignment of the grouped tasks to the werkers in which a solver is called to solve an assignment model. As a result, it was determined that the heuristic could be improved.

This heuristic may have a limitation in application since the problem is designed for tasks that are set in series. Nevertheless, the framework of this heuristic can be applied.

Since the model assumes that all workers are fully cross-trained, it is further assumed that they can be assigned to any task on a line. However in practice, a worker may have skills to work on only certain tasks. To solve this problem, the assumption can be relaxed in our model by assigning an infinite cost to any workertask combination. Consequently, the number of the alternatives of grouped tasks is reduced, as is the problem size of the assignment groups of tasks to workers in Section 3.3. The computational time can be reduced when-workers have skills for only certain tasks.

Since the heuristic generates the groups of tasks based on the trial value, the optimal solution is a solution in which all workers work as close to the final
cycle time as possible. However in fact, there may be the other solutions same cycle time which are not included in this heuristic.
(2) comparing the two stage assignments, which are the assembly line found that the proposed problem has more complexity since it addresses the two problems together. We recommend that the supervisor should consider the variation
of skills of the workers before making an assignment. The proposed problem is recommended to account for the high variation of skills of workers.

There are several interesting possible extensions to the present work. A future research direction could be to consider a more general case. It can be developed as an integrated approach to assembly line balancing and worker assignment in different conditions in mitlustrial manufacturing. The problem can be modified following generalized assembly line balancing. For example, it may be a system for several products or different models, or include a differen̆t line layout. For example, it could include paralle Pworkstations or a group of tasks which can be operated by more than one worker or a system which has assignment restrictions e.g. some tasks have to be assigned to the same workstation or some tasks are incompatible and have to , be
in the form of a multi-objective problem.

Also regarding further solution development, a randomized-based heuristic can be added to improve the quality of the solution. A local search procedure or meta-heuristic may be more efficient for problems of a larger size.

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

REFERENCES

Altimparmak, F., Dengiz, B. and Bulgak, A.A. 2007. Buffer allocation and performance modeling in asychronous assembly system operations: An artificial neural network metamodeling approach. Applied Soft Computing, 7: 946-956.
Askin, R, G. and Chen, J. 2006. Dynamic task assignment for throughput maximization with worksharing. European Journal of Operational research 168: 853-869.

Askin, R. G. and Standridge, C. R. 1993. Modeling and Analysis of Manufacturing Systems, $1^{\text {st }}$ Ed. New York: John Wiley \&Sons.

Baybars, I. 1986. A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem. Management Science, 32

Bellman, R., Esogbue, A.O. and Nabeshima, I. 1982. Mathematical aspects of scheduling \& Applications. $1^{\text {stt }}$ ed.: Pergamon Press, 1982.

Betts, J. and Mahmoud, KI. 1992.-Assembly line balancing in the clothing industry allowing for varying skitls of operatives. International Journal of clothing Science and Technotogy 4(4):28-34.
Bokhorst, A.C., Slomp, J. and Molleman, E. 2004. Development and evaluation of cross-teaining policies for manufacturing teams. IIE Transactions 36: 969984.

$$
\Rightarrow
$$

Brusco, M.J. and Johns, T.R. 1998. Staffing a multi-skilled workforce with varying levels of productivity: an analysis of cross-training policies.

Caron, G., Hansen, P.and Jaumard 1999. The assignment problem with seniority and heuristic for allocating cross-trained workers. European Journal of

Operational Research 138: 9-20.

Chakravarty, A. K. 1988. Line Balancing with Task Learning Effects IIE Transactions 20(2): 186-193.

Chan, K.C.C. 1997. Handling the assembly line balancing problem in the clothing industry using a genetic algorithm. International Journal of clothing Science and Technology 10(1): 21-37.
Chaves, A.A., Lorena, A.A.N. and Miralles, e. 2009. Hybrid Metaheuristic for the Assembly Line Worker Assignment and Balancing Problem. Lecture Notes in Computer Science: Hybrid Metaheuristic, Springer : Berlin, Heidelberg.
Chen, C. , Racine, R. and Swift, F. 1992. A practical approach to the apparel production-planning and/scheduling problem. International Journal of clothing Science and Techology 4(2): 9-18.
Chen, J.C. , Hsaio, M.H., Chur-Chieh, C. and Cheng-Ju, S. 2009. A grouping genetic algorithm for the assembly line balancing problem of sewing lines in garment industry. The eight International Conference on Machine Learning and Cybernetics, China.
Cohen, Y. , Vitner, G. and Sarin, S. 2007. Work allocation of work in assembly lines for lots with homogenous learning. European Journal of Operational Research 108: 922-931.
Cohen, Y., Vitner, G. and Sarin, S. 2008. Work allocation to stations with varying learning slopes and without buffers. European Journal of Operational Research 184(2): 797-801.
Corominas, A., Pastor, R., and Plans, J. 2008. Balancing assembly line with skilled and unskilled workers. Omega 36(6): 1126-1132.
Corominas, A., Pastor, R. and Rodiriguez, E. 2006. Rotational allocation of tasks to multifunctional workers in a service industry. International Journal
Production Economics 103:3-9..
Dar-El, E.M. 2000. Human Learning: From/Learning Curves to Learning \cap Organizations, Kluwer: Boston, MA.

Dell'Amico, M. and Martello, S. 1997. The k-cardinality assignment problem.
Discrete Applied Mathematics 76: 103-131.

Duin, C.W. and Volgenant, A. 1991. Minimum deviation and balanced optimization: A unified approach. Operations Research Letters 10(1): 43-48.

Eitzen, G. and Panton, D. 2004. Multi-skilled Workforce Optimization. Annals of Operations Research 127: 359-372.

Farrar, T.M. 1993. Optimal use of an extra server in a two station tandem queuing network. IEEE Transactions on Automatic Control 38: 1296-1299.

Fatih Ugurdag, H., Rachamadugu, R., andPapachristou, C. A., 1997. Designing paced assembly lines with fixed number of stations. European Journal of Operational Research 102 (3) $\overline{\mathrm{pp}}$: 488-501.
Franz, L.S. and Miller, J.L. 1993. Scheduling medical residents to rotations:solving the large-scale multiperiod staff assignment problem. Operation Research 68(3): 269-279.

Futatsuishi, Y., Watanabe, I and Nakanishi, T. 2002. A study of the multi-stage flow shop scheduling problem with alternative operation assignments. Mathematics and Computers in Simulation 59: 73-79.

Gavett, J.W. 1968 Production and operations management, Harcourt, Brace \& world Inc.

Gavish, B., Pirkul, H. 1991. Algorithms for the multi-resource generalized assignment problem. Management Science 36(7): 583-590.
Hassamontr, J 2004. Assembly Line Balancing with Operator's Skill and Machine Constraints. Hawaii International Conference on Business (HIC 2004), June $20-24,2004$, USA.
Hopp, W.J. andVan Oyen, M.P. 2004. Agile workforce evaluation: a framework for cross-training and coordination. IIE Transactions 36:919-940.

Hui, P.C.L. and Ng, S.F. 1999. A study of the effect of time variation for assembly

Hui, P.C.L., Chan, C.C., Yeung, K.W. and Ng, S.F. 2002. Fuzzy operator allocation

Reduce Staffing Costs. Health Care Management Rev 30(2): 116-125.

Jordan, W.C. and Graves, S.C. 1995. Principles on the benefits of manufacturing process flexibility. Management Science 41: 577-594.

Kan, M.R. 1999. Simulation modeling of a garment production system using a spreadsheet to minimize production cost. International Journal of clothing Science and Technology 11(5): 287-299.
Karni, R. and Herer, Y. T. 1995. Allocation of tasks to stations in small-batch assembly with learning: basic concepts. International Journal of Production Research 33(11): 2973-2998.
Kouvelis, P. and Xu, G. 1997. Robust Discrete Optimization and Its Applications Kluwer Academic Publishers, Dordrecht, The Netherlands.
Leopairote, K. 2003. Policies for multi-skilled worker selection assignment and scheduling Dissertation, Industrial Engineering, University of Wisconsinmadison.

Lev, B. and Weiss, H. 1982. Introduction to Mathematical Programming Quantitative Tools for decision Making 1 ${ }^{\text {st }}$ ed. New York:Elsevier North Holland,Inc.

Lix, S. B., Ing, H. L., and Huang, H. C., 2003. Two bi-directional heuristics for the assembly line type If problem. The International Journal of Advanced Manufacturing Technology 9(9): 656-661.
Martello, S., Pulleyblank, W.R.., Tóth, P and de Werra, D. 1984. Balanced optimization problems. Operations Research Letters 3(5): 275-278.
Masaru, N., See, U., Yochito, M., Katsuyuki, S. and Yukihiro, A. 1981. Line balancing of sewing systems (a simple calculating method to determine the number of workstations and cycle time). Journal of the Textile Machinery Society of Japan 27(2):57-62.
Morales, C., Garcia-sabater, J. P., Andres, C.\& Carlos, M. 2008.Branchand bound procedures for solving the Assembly Line Worker Assignment and Balancing

Problem: Application to Sheltered Work centres for Disable. Discrete
AppliedMathematics 156(3):352-367 Ane G. 2001. Scheduling problems with a learning effect. European Journal

Nakade, K. and Ohno 1999. An optimal worker allocation problem for a U-shaped production line. International Journal Production Economics 60-61: 353358.

Nembhard, D.A. 2000. The effects of task complexity and experience on learning and forgetting: A Field study. Human factors 42(2): 272-286.
Nembhard, D.A. 2001. Heuristic approagh for assigning workers to tasks based on individual learning rates. International Journal of Production Research 39(9): 1955-1968.
Nembhard, D.A. and Osothsilp, N. 2005. Learning and forgetting-based worker selection for tasks of yarying complexity. Journal of the Operational Research Society 56(2): 576-587.
Nemhard, D.A. and Uzumer, M Y. 2000A. An individual-based description of learning within an organization. IEEE Transactions on Engineering Management 47(3): 370-378.
Nemhard, D.A. and Uzumeri, M V. 2000B. Experiential learning and forgetting for manual and cognitive tasks. International Journal of Industrial Ergonomics 25(4),315-326.
Norman, B.A., Tharmmaphornphilas, W, Needy, K.L., Bidanda, B. and Warner, R.C. 2002. Worker assignment in cellular manufacturing considering technical and human skills. International journal production research (40)6:1479-1492.
Pastor, R. and Ferrer, L. 2008. An improved mathematical program to solve the simple assembly line balancing problem. International Journal of Production Research 47(11): 2943-2959.
Pentico, D.W.2007. Assignment problems: A golden anniversary survey. European Journal of Operational Research Volume 176(2): 774-793.
Prins, C. 1994. An overview of scheduling problems arising in satellite 623.

procedures for simple assembly line balancing. European Journal of
Operational Research 168(3): 666-693.

Scholl, A., Fliedner, M., and Boysen, N., 2010. Absalom: Balancing assembly lines with assignment restrictions. European Journal of Operational Research 200: 688-701.

Scholl, A. and Klein, R. 1996. Maximizing the production rate in simple assembly line balancing - A branch and bound procedure. European Journal of Operational Research 91(3): 3677885.

Sayin, S. and Karabati, S. 2007 - Assigning cross-trained workers to departments: A two-stage optimization model to maximize utility and skill improvement. European Journal of eperational research 176:1643-1658.

Skiena, S.S. 2008. The Algorithm/Design Manual. Springer: Newyork, USA.
Slomp, J., Bokhorst, J.A.C. and/Molleman, E. 2005. Cross-training in a cellular manufacturing environment. Computers \& Industrial Engineering 48: 609624.

Slomp, J., Molleman, E. 2002. Gross-training policies and team performance. International Journal production research 50(5): 1193-1219.
Song, B.L., Wong, W.K. Fan, J.T., and Chan, S.F. 2006. A recursive operator allocation approach for assembly line balancing optimization problem with the consideration of operator efficiency. Computer \& Industrial Engineering 51(4): 585-608.
Spragg, J.E., Fozzard, G. and Tyler, D.L. 1999. FLEAS:A flow line environment of automated supervision. International Journal of clothing Science and Technelogy 10(6): 322-327.
Sprecher, A. 1999. A competitive branch-and-bound algorithm for the simple assembly line balancing problem. International Journal of Production Research 37(8): 1787-1816.
Suer, G.A. 1996 obptimal operator and cell loading in labor-intensive mantafacturing
cells. Computer industrial Engineering $31(1 / 2): 155-158$.
Suer,G.A. and Bera, I.S. 1998 Optimal operator assignment and cell loading when
 Science 30(1): 85-99.

Tasan, S., and Tunali, S. 2008. A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing 19(1): 49-69.

Toksari, M. D. and Isleyen, S. K. 2008. Simple and U-type assembly line balancing problems with a learning effect. Applied Mathematical Modeling 32(12): 2954-2961.
Tomastik, R.N., Luh, P.B. and Liu G. 1996. Scheduling Flexible Manufacturing System for Apparel Production. IEEE Transaction on Robotics and Automation 12(5):789-799.
Treleven, M. 1989. A review of dual resource constrained systems research. IIIE Transactions 21: 279-287.
Uzumeri, M and Nembhard D.A. 1998. A population of learning: a new way to measure organizational learning. Journal of Operations Management 16: 515-528.
Wild, R. 1972. Mass-production management; the design and operation of production flow-line systems, John Wiley \& Sons.
Wong, W.K., Chan C.K. and Ip, W.H.2001. A hybrid flowshop scheduling model for apparel manufacture. International Journal of clothing Science and Technology 13(2):115-131.
Wong, W.K., Mok, P.Y. and Leung, S.Y.S. 2005. Developing a Genetic Optimisation Approach to Balance an Apparel Assembly Line. International Journal Advanced Manufacturing Technology 28: 387-394.
Wright, T.R. 1936. Factors affecting the cost of airplanes. Iournal of Aeronautical Sciences B(4): 122-128.

Yang, K.K. 2007. A comparison of cross-training policies in different job shops.

Zhang W,International Journal of Production Research 45(6): 1279-1295. hang W, and Gen M.,2009. An efficient multiobjective genetic algorithmfor mixedmodel assembly line balancing problem considering demand ratio-based cycle

International Conference on Systems, Man and Cybernetics (SMC)
Singapore.

Zulch, G., Rottinger, S. 2004. A simulation approach for planning and re-assigning of personnel in manufacturing. International Journal of Production Economics 90(2): 265-277.

VITA

Miss Kanjana Thongsanit was born on April 10th, 1976 in Phitsanuloke province, Thailand. She graduated from Chiang Mai University, Thailand in academic year 1998 with a bachelor's degree in Industrial Engineering. She earned a Master's degree in Industrial Management Engineering from-King-Mongkut's University of Technology North Bangkok, Thailand in academic year 2001. After her graduation, she decided to work as a quality managennent consultant at Thai Garment Development Foundation (TGDF) from 2001-2002- In 2003, she changed her career to be a lecturer at Industrial Engineering and Management department, Silpakorn University (Sanamchan Campus), Nakornpatom. She got a scholarship from Thai government to study a Ph.D. in year 2004 in Industrial Engineering at Chulalongkorn University, Thailand.

ศูนย์วิทยทรัพยากร
 จุหาลงกรณ์มหาวิทยาลัย

