การปรับปรุงการประมาณค่าความน่าจะเป็นของการชักตัวอย่างแถวเชิงตั้งฉากแบบสุ่ม

A Thesis Submitted in Partial Fulfillment of the Requirements

Chulalongkorn University
 จุหาลงกร่เม่หทาวิทยาลัย

กฤษฎา สังขมงคล : การปรับปรุงการประมาณค่าควิมมน่าจะเป็นของการชักตัวอย่ามแอวชิงตั้ง घากแบบণุ่น(AN IMPROVEMENT OF PROBABILITY APPROXIMATION OF RANDOMIZED ORTHOGONAL ARRAY SAMPLING) e.ที่ปรีทมาวิทยานิพนธ์หลัก : ศ.ดร. กฤษルะ

 Tมมนต์ที่หกตอง $¢ \cdot X$ มีค่าจำกัด
 ส่วนที่สองเราปรับปรงอสมการความเข้มข้นแบบไม่สม่าสสมอสำหรับการสุ่ตต่วอย่างแบบแถวเชิงตั้งดาก
 คนยวิทยทรัพยากร ภาควิ้น คณิตศาสตร์ \qquad
\# \# 5072208523 : MAJOR MATHEMATICS
KEYWORDS : STEIN'S METHOD / QRTHOGONAL ARRAY

KITSADA SUNGKAMONGKOK AN IMEROVEMENT OF PROBABILITY APPROXIMATION OFRANDONIZED OBPHOGONAL ARRAY SAMPLING.
THESIS ADVISOR: PROE. KRITSANA NEAMMANEE,Ph.D., CO-ADVISOR: KITTIPONG LAIPAPORN Php., $2 \overline{9} \mathrm{pp}$.

Let X be a random vector yniformly distribated on 0,1$]^{3}$ and let f be an integrable function from \mathbb{R}^{3} into \mathbb{R} and define \Rightarrow N

A simple estimator of μ js
where $X_{1}, X_{2}, \ldots, X_{n}$ are independent randorf vectors and uniformly distributed on $[0,1]^{3}$. However, there are many methods to choose the points X_{i} 's. One of those is the orthogonal array. In 1996. Foh was the first one who considered the normal approximation of $W=\frac{\hat{\mu}-\omega^{2}}{\sqrt{\operatorname{Var}(\hat{\mu})} \text { where } \operatorname{Var}(\hat{\mu})>0}$ and gave a uniform bound. In 2008, Neammanee and Laipaporn impreved the rate of convergence of Loh to be $O\left(q^{-\frac{1}{2}}\right)$ with the assungtion that the sixth moment of $f \circ X$ is finite.

In this thesis y improve their results under the finiteness of the frourth moment of $f \circ X$. In the secothd part, we improve a non-uniform eoncentration inequality for a randomized orthogonal array which is given by Neammanee and Leipaporn in 2006.

ศูนย์วิทยทรัพยากร

ACKNOWLEDGEMENTS

I am greatly indepted to Professor Dr. Kritsana Neammanee, my thesis advisor. Thanks are also due for generous comments provided by Dr. Kittipong Laipaporn, my thesis co-advisor who has helped improving my work. Furthermore, I am thankful for my thesis committee-Assistant Professor Dr. Songkiat Sumetkijakan, Dr. Nattakarn Chaidee, Assistant Professor Dr. Kanint Teerapabolarn for their suggestions to this thesis. I am also sincerely grateful to all of my teachers for my knowledge and skill, especially, Mr. Aisuriya Sudprasert, my undergraduate advisor.

Finally, I would like to thank my dear friends for giving me good experiences at Chulalongkorn university.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

CHAPTER I

INTRODUCTION

In many scientific fields,-we-are often confrented-with the problem of estimating a value of integral over a high-dimensional domain. Among numerical integration techniques, Monte Carlo methods are especfally useful and competitive for high-dimensional integration.

Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be a meashrable function. Our aim is to estimate

This is equivalent to finding the expectation of $f \circ X$ where X is a random vector uniformly distributed on a unit hypercube $\{0,1]^{d}$. The simple Monte Carlo method is to draw $X_{1}, X_{2}, \ldots X_{n}$ independently and uniformly distributed from $[0,1]^{d}$ and to use

as an estimator of μ. There are yarions alternative ways to select the point X_{i} 's. For examples, lattiopsampling(see Patterson[18]), latin hypercube sampling(see, Owen[15]), the orthogonafarray sampling(see, Loh[10], Owen[16], Tang[21) Serambled net sampling(see, Owen [3] and [14]). In this work we investigate orthogonal array sampling.

Let d, n, q and t be positive integers with $t \leq d$ and $q \geq 2$. An orthogonal array of strength t with index $\lambda(\lambda \geq 1)$ is an $n \times d$ matrix of n rows and d columns with elements, taken from set $\{0,1, \ldots, q-1\}$ such that in any $n \times t$ submatrix, each of the q^{t} possible rows occurs the same number of times of course $n=\lambda q^{t}$. The class of all
such arrays is denoted by $O A(n, d, q, t)$ (see Raghavarao [19] for more details).

Loh(1996) considered the class $O A(n, 3, q, 2)$ when $n=q^{2}$ and constructed the sam-

$\{1,2,3\}$; and
(c) $U_{i_{1}, i_{2}, i_{3}, j}$'s and π_{k} 's be all stochastically independent.

An orthogonal array-based sample of size $q^{2},\left\{X_{1}, X_{2}, \ldots, X_{q^{2}}\right\}$, is defined to be

$$
\left\{X\left(\pi_{1}\left(a_{i, 1}\right), \pi_{2}\left(a_{i, 2}\right), \pi_{3}\left(a_{i, 3}\right)\right): 1 \leq i \leq q^{2}\right\}
$$

where, for each $i_{1}, i_{2}, i_{3} \in\{0,1, \ldots, q-1\}$ and $j \notin\{1,2,3\}$,

From now on, we let X be a uniform random vector on $[0,1]^{3}$ and Φ the standard normal distribution. Loh(1996) gave a uniform bound on the normal approximation of W in Theorem 1.1.
?
Theorem 1.1. Suppose that $E(f \circ X)^{r}<\infty$ for some even integer $r \geq 4$. Then
 $O\left(\frac{1}{q^{\frac{1}{2}}}\right)$ in Theorem 1.2 and they also investigated a non-uniform concentration inequality จุห้าลังกรณ์มหาวิทยาลัย

$$
\sup \{|P(W \leq z)-\Phi(z)|:-\infty<z<\infty\}=O\left(q^{-\frac{1}{2}}\right), \quad \text { as } q \rightarrow \infty
$$

Theorem 1.3. Assume that $E(f \circ X)^{4}<\infty$. Then, there exists a constant C such that

$$
P(z \leq W \leq z+\lambda) \leq \frac{C \lambda}{1+z}+\frac{1}{1+z} O\left(\frac{1}{\sqrt{q}}\right), \text { as } q \rightarrow \infty,
$$

for any nonnegative real numbers z, λ.
In this work, we relax the condition on the momentrof $f \circ X$ in Theorem 1.2 to $E(f \circ X)^{4}<\infty$ and improve the bound of Theorem 1.3. These are our main results.

Theorem 1.4. (A Uniform boundt)
Suppose that $E(f \circ X)$

Theorem 1.5. (A Non-uniform concentration inequality)
Assume that $E(f \circ X)^{4}<\infty$. Then, there exists a constant C such that

We organize our thesis as follows. In chapter 2 we give some basic concepts in probability theory, background of Stein's method and some useful properties of Stein's solution. In chapter 3 we give a uniform bound in normal approximation of randomized orthogonal array sampling. In chapter 4 we give a non-uniform coneentration inequality
for randomize eorthogonal array sampling.

CHAPTER II

PRELIMINARIES

In this chapter, we give some basic concepts in probability which will be used in our work. The proof is omited but can be found in $[1,17]$.

2.1 Probability Space and Random Variables

A measurable space (Ω, \mathcal{F}) is a set Ω with a σ-algebra \mathcal{F} of subset of Ω. A probability measure P is a measure on \mathcal{F} with $P(\Omega)=1$. Then (Ω, \mathcal{F}, P) is called a probability space. The set Ω will be referred as a sample space and its elements are called points or elementary events. Member of \mathcal{F} are called events. For any event A, the value $P(A)$ is called the probability of A, \mathcal{K}

Let (Ω, \mathcal{F}, P) be a probability space. A function $X: \Omega \rightarrow \mathbb{R}$ is said to be a random variable if for every Borel set B

$$
X^{-1}(B) \equiv\{\omega \in \Omega: X(\omega) \in B\} \in \mathcal{F} .
$$

A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is a finite family of random variables $X_{1}, X_{2}, \ldots, X_{k}$ where $X_{i}: \Omega \leftrightarrows \mathbb{R}$ for all $i=1,2, \ldots, k$ and X_{i} is called component ofthe random vector. We shall usually use the notation $P(X \in B)$ in stead of $P(\{\omega \in \Omega X(\omega) \in B\})$. In the case where $B=(=b, a]$ or $[a, b], P(X \in B)$ is denoted by $P(X=a)$ or $P(a \leq X \leq b)$, respectively.

Let X be a random variable. A function $F: \mathbb{R} \rightarrow[0,1]$ which is defined by ศูนย่วิทยทรัพยากร

Let X be a random variable with the distribution function $F . X$ is said to be a aiscrete random variableiftheimabe of x iscountable and xiscalled continuous?

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

for some nonnegative integrable function f on \mathbb{R}. In this case, we say that f is the probability function of X.

Now we will give some examples of random variables.
We say that X is a normal random variable with parameter μ and σ^{2}, written as $X \sim N\left(\mu, \sigma^{2}\right)$, if its probability function is defined by

exp

Moreover, if $X \sim N(0,1)$ then X is said to be a standard normal random variable.
We say that a discrete random variable X is uniform with parameter n if there exist $x_{1}, x_{2}, \ldots, x_{n}$ such that $P\left(X=\boldsymbol{p}_{i}\right)=\frac{1}{n}$ for any $i=1,2$,

If X is a continuous random variable with probability function
otherwise,
we say that X is uniform on $[a, b]$.
We say that $X=\left(X_{1}, X_{2}, X_{n}\right)$ is a continuous random vector if and only if there are measurable function $f: \mathbb{R}^{n} \frac{\lambda}{2} 0, \infty$ and joint distribution function F of X satisfying

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{n}} f\left(t_{1}, t_{2}, \ldots, t_{n}\right) d t_{1} d t_{2} \ldots d t_{n}
$$

the smallest σ-algebra generated by \mathcal{E}_{α}.
We say that the set of random variables $\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ is independent if $\left\{\sigma\left(X_{\alpha}\right) \mid \alpha \in\right.$ $\Lambda\}$ is independent, where $\sigma(X)=\left\{X^{-1}(B) \mid B\right.$ is a Bored subset of $\left.\mathbb{R}\right\}$. We say that $X_{1}, X_{2}, \ldots, X_{n}$ are independent if $\left\{X_{1}, X_{2}, \ldots, \mid X_{n}\right\}$ is independent.

Theorem 2.1. Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if for any Botel sets $B_{1}, B_{2}, \ldots, B_{\text {n we }}$ have

Proposition 2.2. If $X_{i j} ; i=1,2, \ldots, j, j=1,2, \ldots, m_{i}$ are independent and $f_{i}: \mathbb{R}^{m_{i}} \rightarrow \mathbb{R}$ are measurable, then $\left\{f_{i}\left(X_{11}, X_{, 2}, \ldots, X_{\left.i \overline{m_{i}}\right)}\right), i=1,2, \ldots, n\right\}$ is independent.

2.3 Expectation, Variance and Conditional Expectation

Let X be any random variable on a probability space (Ω, \mathcal{F}, P).
If $\int_{\Omega}|X| d P<\infty$, then we define its expected value to be

Proposition 2.3.

1. If X is a discrete random variable and $\sum_{x \in \operatorname{Im} X}|x| P(X=x)<\infty$, then

2. If X is a continuous random variable with probability function f and $\int_{\mathbb{R}}|x| f(x) d x<\infty$,

Proposition 2.4. Let X and Y be random variables such that $E(|X|)<\infty$ and $E(|Y|)<\infty$ and $a, b \in \mathbb{R}$. Then we have the followings:

จหาลงครณมหาวิทยาลัย

2. If $X \leq Y$, then $E(X) \leq E(Y)$,

3. $|E(X)| \leq E(|X|)$.

Let X be a random variable which $E\left(|X|^{k}\right)<\infty$. Then $E\left(|X|^{k}\right)$ is called the k-th moment of X about the origin and $\left.E[(X)-E(X))^{k}\right]$ is called the k-th moment of X about the mean.

We call the second moment of X about, the mean, the variance of X and denoted by $\operatorname{Var}(X)$. Then

We note that

1. $\operatorname{Var}(X)$
2. If $X \sim N\left(\mu, \sigma^{2}\right)$ then $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$

Proposition 2.5. If X_{1}, \ldots, X_{n} are independent and $E\left|X_{i}\right|<\infty$ for $i=1,2, \ldots, n$, then 1. $E\left(X_{1} X_{2} \ldots X_{n}\right)=E\left(X_{1}\right) E\left(X_{2}\right) \ldots E\left(X_{n}\right)$,
2. $\operatorname{Var}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right) \geqslant a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+\cdots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$ for any real number a_{1}, \ldots, a_{n}.

The following inequalities are usefulin our work.

2. Chebyshev's inequality :

Let X be a finite expected value random variable on a probability space ($\Omega, \mathcal{F}_{0}, P$)

and sign-measure $\mathcal{Q}_{X}: \mathcal{D} \rightarrow \mathbb{R}$ by

$$
\mathcal{Q}_{X}(E)=\int_{E} X d P \quad \text { for all } E \in \mathcal{D} .
$$

Then, by definition of the integral implies $\mathcal{Q} x$ absolutely continuous with respect to $P_{\mathcal{D}}$ and there exists a unique measurable function $E^{\mathcal{D}}(\mathbb{X})$ on $(\Omega, \mathcal{F}, \mathcal{D})$ such that

$$
\int_{E} E^{\mathcal{D}}(X) d P_{\mathcal{D}}=\mathcal{Q}_{X}(E)=\int_{E} X d P \quad \text { for any } E \in \mathcal{D}
$$

We will say that $E^{\mathcal{D}}(X)$ is the conditional expectation of X with respect to \mathcal{D}.
Moreover, for any random variables X and \mathcal{R} on the same probability space (Ω, \mathcal{F}, P) such that $E(|X|)<\infty$, we will denote $E^{\sigma(Y)}(X)$ by $E^{Y}(X)$.

Theorem 2.6. Let X be a random variable on probability space (Ω, \mathcal{F}, P) such that $E(|X|)<\infty$, then the followings hotd for any sub σ-algebra \mathcal{D} of \mathcal{F}.

1. If X is random variable on $\left(\Omega, \mathcal{D}\left(P_{\mathcal{D}}\right)\right.$, then $E^{\mathcal{D}}(X)=X$ a.s $\left[P_{\mathcal{D}}\right]$,
2. $E^{\mathcal{F}}(X)=X$ a.s. $[P],-12.2$
3. If $\sigma(X)$ and \mathcal{D} are independent, then $E^{\mathcal{D}}(X)=E(X)$ a.s. $\left[P_{\mathcal{D}}\right]$.

Theorem 2.7. Let X and Y be random variables on the same probability space (Ω, \mathcal{F}, P) such that $E(|X|)$ and $E(|Y|)$ dre finite. Then for any sub σ-algebra \mathcal{D} of \mathcal{F} the followings hold.

1. If $X \leq$ then $E^{\mathcal{D}}(X) \leq E^{\mathcal{D}}(Y)$ a.s. $\left[P_{\mathcal{D}}\right]$,
2. $E^{\mathcal{D}}\left(a X(b \mathcal{D})=a E^{\mathcal{D}}(X)+b E^{\mathcal{D}}(X)\right.$ a.s. $\left[P_{\mathcal{D}}\right]$ for any $a, b \in \mathbb{R}$ Theorem 2.8. Let X and Y be random variables on the same probability space (Ω, \mathcal{F}, P) such that $E(|X Y|)$ and $E(|Y|)$ are finite and $\mathcal{D}_{1}, \mathcal{D}_{2}$ any sub σ-algebra of \mathcal{F}. If X is a

3. $E^{\mathcal{D}_{2}}(X Y)=E^{\mathcal{D}_{2}}\left(X E^{\mathcal{D}_{1}}(Y)\right)$ a.s.s. $\left[P_{\mathcal{D}_{2}}\right]$.

$$
P(A \mid \mathcal{D})=E^{\mathcal{D}}\left(\mathbb{I}_{A}\right)
$$

where \mathbb{I}_{A} is defined by

2.4 Stein's Method for Normal Approximation

The Stein's methodfor obtaining an explicit bound for the error in the normal approximation for dependent random variables was investigated in 1972. Stein's technique is free of Fourier methods and relied instead on the elementary differential equation. Stein's method has been applied with much success in the area of normal approximation. This method was adapted and applied to the Poisson approximation by Chen(1974, 1975). There are at least three approaches to use Stein's method when the limit distribution is normal, i.e., a concentration inequality approach, an inductive approach and a coupling approach
In this section we give basic results on the Stein's equation and its solution.
Let Z be a standard normal distributed random variable and let $\mathcal{C}_{b d}$ be the set of continuous and piecewise continuously differential functions $g: \mathbb{R} \rightarrow \mathbb{R}$ with $E\left|g^{\prime}(Z)\right|<\infty$.

For $g \in \mathcal{C}_{b d}$ and any real valued function s with $E|s(Z)|<\infty$, the equation
is called Stein's equation.

Hence

$$
\begin{equation*}
g^{\prime}(w)-w g(w)=s(w)-E s(Z) \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& E\left(g^{\prime}(W)-W g(W)\right)=P(W K z)-\Phi(z) \tag{2.3}\\
& \text { for anytrandom variable } W \text { and the solution } g_{z} \text { of Stein's equation (2.2) is given by } \\
& \qquad g_{z}(w)= \begin{cases}\sqrt{2 \pi} e^{\frac{w^{2}}{2}} \Phi(w)[1-\Phi(z)] \quad \text { if } w \leq z \\
\sqrt{2 \pi} e^{w^{2}} \Phi^{2}(z)[1-\Phi(w)] \quad \text { if } w \geq z .\end{cases} \tag{2.4}\\
& \text { The following properties of } g_{z} \text { are used in this work. }
\end{align*}
$$

Proposition 2.9. ([1], [20]) For all real numbers w, u, v, z, we have

$$
\text { 1. }\left|g_{z}^{\prime}(w)\right| \leq 1 \text {, }
$$

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

AN IMPROVMENT OF NORMAL APPROXIMATION

 OF RANDOMLZED ORDHIGGONALARRAYS SAMPIING

In this chapter, weuse the same notations as in the previous chapters. Loh([10]) used a random function $\rho_{\pi}:\{0,1, \ldots, q-1\}^{2} \rightarrow\{0,1, \ldots, q-1\}$ defined by

$$
\left(i_{1}, i_{2}, p_{\pi}\left(i_{1}, i_{2}\right)\right)=\left(\pi_{1}\left(a_{i, 1}\right), \pi_{2}\left(a_{i, 2}\right), \pi_{3}\left(a_{i, 3}\right)\right)
$$

for some $i \in\left\{1,2, . ., q^{2}\right\}$ and showed that W in chapter 1 can be rewritten as the sum
where

for some $i \in\left\{1,2, . ., q^{2}\right\}$ and showed that W in chapter 1 can be rewritten as the sum

$$
\Rightarrow \sum_{i_{1}=0}^{q-1} \sum_{i_{2}=0}^{q-1} Y\left(i_{1}, i_{2}, \rho_{\pi}\left(i_{1}, i_{2}\right)\right)
$$

$\mu\left(i_{1}, i_{2}, i_{3}\right)=E f \circ X\left(i_{1}, i_{2}, i_{3}\right) \cdot$
$H e$ also gave a uniform bound of orthogonal array sampling designs in Theorem 3.1

Neammanee and Laipaporn ([11]) improved the rate of convergence of Theorem 3.1 to be $O\left(\frac{1}{q^{\frac{1}{2}}}\right)$ in Theorem 3.2.

Theorem 3.2. Suppose that $E(f \circ X)^{6}<\infty$. Then $\sup \{|P(W \leq z)-\Phi(z)|: \infty \mid f y<\infty\}=O\left(q^{-\frac{1}{2}}\right)$, as $q \rightarrow \infty$.
In this chapter, we relax the condition on the mement of $f \sigma X$ from $E(f \circ X)^{6}<\infty$ to $E(f \circ X)^{4}<\infty$ as in Theorem 3.3. $H e r e$ is our main result.

Theorem 3.3. Suppose that E

To prove Theorem 3.3, we need the following lemmas and some notations. For each i, j and $k \in\{0,1, \ldots, q-1\}$, we let I and K be uniformly distributed random variables on $\{0,1, \ldots, q-1\},(I, K)$ uniformly distributed on $\{(i, k) \mid i, k=0,1, \ldots, q-1, i \neq k\}$. Let
where

$$
P(W \leq a, \widetilde{W} \leq b)=P(W \leq b, \widetilde{W} \leq a)
$$

where

$$
M(t)=\frac{q}{4}(\widetilde{W}-W)\{\mathbb{I}(0 \leq t \leq \widetilde{W}-W)-\mathbb{I}(\widetilde{W}-W \leq t \leq 0)\}
$$

$$
\Delta g(W)=\frac{1}{q-1} E g(W) \sum_{i=1}^{q-1} \sum_{j=1}^{q-1} E Y\left(i, j, \rho_{\pi}(i, j)\right)
$$

and \mathbb{I} is the indicator function.
Lemma 3.5. ([8]) If $E(f \circ X)^{r} \leqslant \infty$ for some positive even integer r, then
$E(\widetilde{W}-W)^{r} \leq O\left(q^{-\frac{r}{2}}\right)$, as $q \rightarrow \infty$,
Lemma 3.6. ([10]) If $E(f \circ X)<\circ$ for some positive even integer r, then
$\sum_{i=0}^{q-1} \sum_{j=0}^{q-1} \sum_{k=0}^{q-1} E Y^{r}(i, j, k)=O\left(q^{3-r}\right)$, as $\underset{\rightarrow \infty}{\Longrightarrow}$.
Lemma 3.7. If $E(f \circ X)^{4}<\infty$, Then $E W^{4}=O(1)$
Proof. From Lemma 3.4, if we choose $g(\bar{w})=w^{3}$ then we have

$$
\begin{align*}
E W^{4} & =3 E \int_{-\infty}^{\infty}(W+t)^{2} M(t) d t-\Delta W^{3} \\
& =\frac{3 q}{2} E W(\widetilde{W}-W)^{3}+\frac{q}{4} E(\widetilde{W}-W)^{4}+\frac{3 q}{4} E W^{2}(\widetilde{W}-W)^{2}-\Delta W^{3} \tag{3.3}
\end{align*}
$$

$$
\text { and } \Delta W^{3}=\frac{1}{q-1} E W^{3} \sum_{i=0}^{q-1} \sum_{j=0}^{q-1} E Y\left(i, j, \rho_{\pi}(i, j)\right)
$$

For convenience, we will use the notation $\bar{Y}(i, j)$ for $Y\left(i, j, \rho_{\pi}(i, j)\right.$) and by Lemma 3.6 we have

$$
\left(\sum_{i} \sum_{j} I\right.
$$

$$
\leq \sum_{i_{1}, j_{1}} \sum_{i_{2}, j_{2}} \sum_{i_{3}, j_{3}} \sum_{i_{4}, j_{4}}^{2} E\left|\bar{Y}\left(i_{1}, j_{1}\right)\right| E\left|\bar{Y}\left(i_{2}, j_{2}\right)\right| E\left|\bar{Y}\left(i_{3}, j_{3}\right)\right| E\left|\bar{Y}\left(i_{4}, j_{4}\right)\right|
$$

$$
\leq \frac{q^{6}}{4}\left(\sum_{i_{1}, j_{1}} E\left|\bar{Y}\left(i_{1}, j_{1}\right)\right|^{4}+\sum_{i_{2}, j_{2}} E\left|\bar{Y}\left(i_{2}, j_{2}\right)\right|^{4}+\sum_{i_{3}, j_{3}} E\left|Y\left(i_{3}, j_{3}\right)\right|^{4}+\sum_{i_{4}, j_{4}} E\left|\bar{Y}\left(i_{4}, j_{4}\right)\right|^{4}\right)
$$

$$
=q^{6} \sum E\left|Y\left(i, j, \rho_{\pi}(i, j)\right)\right|^{4}
$$

จุหนิลงกรณ์มหาวิทยาลัย
$=O\left(q^{4}\right)$
where we have used the weighted A.M.-G.M. inequality,

$$
x_{1}^{w_{1}} x_{2}^{w_{2}} \ldots x_{n}^{w_{n}} \leq w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
$$

where $w_{1}, w_{2}, \ldots, w_{n}>0, w_{1}+w_{2}+\cdots+w_{n}=1 /$ and $x_{1}, x_{2}, \ldots, x_{n} \geq 0$, in the second

Together with inequality (3.3) and Lemma 3.5 we have
and

Proof. We will prove our main result by using Stein's method. Let z be any real number.
We replace a function g in equation (2.3) with the function g_{z} from (2.4) which implies

Thus, it suffices to bound

$$
\left|E g_{z}^{\prime}(W)-E W g_{z}(W)\right|
$$

instead of

By (3.1) we have,

$|P(W \mid z)-\Phi(z)|$

and

where we have used Proposition 2.9(2) in the last equality.
Thus, from (3.4), (3.5) and Propositon 2.9. 1),

$$
\begin{equation*}
+\left|1-E \int_{-\infty}^{\infty} M(t) d t\right|+O\left(\frac{1}{q}\right) \tag{3.6}
\end{equation*}
$$

จุฯาลงมรฺณ์มหาวิทยาลัย

Hence, by (3.6)-(3.8)

$$
\begin{equation*}
|P(W \leq z)-\Phi(z)| \leq O\left(\frac{1}{\sqrt{q}}\right)+\left|E \int_{-\infty}^{\infty}\left\{g_{z}^{\prime}(W)-g_{z}^{\prime}(W+t)\right\} M(t) d t\right| \tag{3.9}
\end{equation*}
$$

From Lemma 3.5, we note that

$$
\begin{equation*}
E \int_{-\infty}^{\infty}|t| M(t) d t=\frac{q}{8} E W W-\frac{q}{8}\left\{E|\vec{W}-W|^{4}\right\}^{\frac{3}{4}}=O\left(\frac{1}{\sqrt{q}}\right) . \tag{3.10}
\end{equation*}
$$

From [8] p.59, we know that

then, by Proposition 2.9(3), Lemma 3.7, (3.10) and (3.11),

$$
\begin{aligned}
& \left.\left|E \int_{\mathbb{R}}\left\{g_{z}^{\prime}(W)-g_{z}^{\prime}(W+t)\right\} M(t) d t\right|+\sqrt{4}\right)(0+|t|) M(t) d t \\
& \leq E \int_{W+t>z} M(t) d t+\left.E\right|_{t \leq 0}\left(|W|+\frac{\sqrt{2 \pi}}{}\right.
\end{aligned}
$$

$$
\leq E \int_{t>0} \mathbb{I}(z-t \leq W \leq z) M(t) d t+E \int_{t \leq 0}|W||t| M(t) d t+\frac{\sqrt{2 \pi}}{4} E \int_{t \leq 0}|t| M(t) d t
$$

$$
\leq O\left(\frac{1}{\sqrt{q}}\right)+\frac{q}{4} E|W| \frac{|\widetilde{W}-W|^{3}}{2}+\frac{-2\left(\frac{1}{\sqrt{q}}\right)}{\sqrt{2}}
$$

$$
=O\left(\frac{1}{\sqrt{q}}\right)+\frac{q}{8}\left(E W^{4}\right)^{\frac{1}{4}}\left(E \mathscr{W}^{-}-W^{4}\right)^{\frac{3}{4}}+O\left(\frac{1}{\sqrt{q}}\right)
$$

$$
\begin{align*}
& \quad \leq O\left(\frac{1}{\sqrt{q}}\right)+\frac{q}{8} O\left(\frac{1}{q^{\frac{3}{2}}}\right) \tag{3.12}\\
& =O\left(\frac{1}{\sqrt{q}}\right) \cdot\left(5 x^{2}\right. \\
& \text { Hence, by (3.9) and }(3.12) \text {, we have }
\end{align*}
$$

ศูนย์วิทยยทัรัพ่ยากร
จุหาลงกรณ์มหาวิทยาลัย

CHAPTER IV

AN IMPROVEMENT OF A NON-UNIFORM CONCENTRATION INEQUALITSFOR RANDOMIZED ORTHOGONAL ARRAY SAMPLING

In this chapter we give a non-uniform concentration inequality of W defined in chapter 3 and write C instead of aposit fve value with possibly different values in different places. First of all we give the cefinitions of uniform and non-uniform concentration inequalities as follows:

Let X be a random variable. The function $Q_{X}:(0, \infty) \rightarrow \mathbb{R}$ which defined by $Q_{X}(\lambda)=\sup P(x \leq \lambda \leq x+\lambda)$
is called a uniform (Lévy) concentration function of X and the function $Q_{X}: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ which defined by

$$
Q_{X}(x ; \lambda)=\mathcal{P}(x \leq X \leq x+\lambda)
$$

is called a non-uniform (Lév) concentration function of X.

The upper bounds of uniform and non-uniform concentration functions are called uniform and non-uniform concentration inequalities respectively.

Neammane and Laipaporn $([9])$ gave a non-uniform concentration inequality for W in Theorem 4.1.

Theorem 4.1. Assume that $E(f \circ X)^{4}<\infty$. Then, there exists a constant C, such that ศนย์ริฟยิทรัพ่ยากร

for any nonnegative real numbers z, λ.

To prove Theorem 4.2, we need the following lemmas and some notations. For each i, j and $k \in\{0,1, \ldots, q-1\}$, and $z>0$, we let I and K be uniformly distributed random variables on $\{0,1, \ldots, q-1\},(I, K)$ uniformly distributed on $\{(i, k) \mid i, k=0,1, \ldots, q-1, i \neq$ k\}. Let

Lemma 4.3. ([9]) Assume that. $E(f \Omega X)^{r}<\infty$ for some positive even integer r. Then

1. $E|\widetilde{Y}-\widehat{Y}|^{r} \leq O\left(\frac{1}{q^{\frac{r}{2}}}\right)$, as q

2. For any positive integen n and t such that $n+t$ is an even number and $n+t \leq r$,
 tiable function, then
where

$$
K(t)=\frac{q-1}{4}(\widetilde{Y}-Y)(\mathbb{I}(0 \leq t \leq \tilde{Y}-Y)-\mathbb{I}(\tilde{Y}-Y \leq t<0))
$$

$$
\text { (9) and } 0 \text { (0) }
$$

Lemma 4.5. ([8]) If $E(f \circ X)^{2}<\infty$, then $E(\widehat{Y}-\widetilde{Y})^{2}=\frac{4}{q}+O\left(\frac{1}{q^{2}}\right)$, as $q \rightarrow \infty$.
Lemma 4.6. ([7]) If $E(f \circ X)^{4}<\infty$, then

1. $E\left(\sum_{i=0}^{q-1} \sum_{j=0}^{q-1} \sum_{k=0}^{q-1} Y(i, j, k)\right)^{4} \leqslant \rho\left(q^{2}\right),{ }_{\text {as }} q+\infty$.
2. $E\left(\sum_{i=0}^{q-1} \sum_{j=0}^{q-1} \sum_{k=0}^{q-1} x_{z}(i, j, k)\right)^{4} \frac{1}{\left(1+\frac{\tilde{x}}{6}\right)^{2}} O\left(\frac{1}{q^{2}}\right)$, as $q \rightarrow \infty$
emma 4.7. Assume that $E(f, X)^{4} \mid<\infty$. Let $)=\max \left(\frac{q(q-1)}{4(q-4)} E|\widehat{Y}-\widetilde{Y}|^{3}, \frac{1}{\sqrt{q}}\right)$
and
$U_{\gamma}=\sum_{i \neq k}\left|\sum_{j=0}^{q-1}\left\{\hat{Y}_{z}\left(i, j, \rho_{\pi}(i, j)\right)-\hat{Y} /\left(k, j_{i, \rho_{\pi}(k, j)}\right)-\hat{Y}_{z}\left(i, j, \rho_{\pi}(k, j)\right)-\widehat{Y}_{z}\left(k, j, \rho_{\pi}(i, j)\right)\right\}\right|$
$\times \min \left(\gamma, \sum_{i \neq k}\left|\sum_{j=0}^{q-1}\left\{\hat{Y}_{z}\left(i, j, \rho_{\pi}(i, j)\right)+\hat{Y}_{3}\left(k, j, \rho_{\pi}(k, j)\right)-\hat{Y}_{z}\left(i, j, \rho_{\pi}(k, j)\right)-\widehat{Y}_{z}\left(k, j, \rho_{\pi}(i, j)\right)\right\}\right|\right)$.
Then
3. $E U_{\gamma} \geq 3 q+O(1)$, as $q \rightarrow \infty$.
4. $\operatorname{Var}\left(U_{\gamma}\right) \leq \gamma^{2} O\left(q^{2}\right)$, as $q \Longrightarrow \infty$.

Proof. (1.) By the fact that $\min (a, b) \geq b-\frac{b^{2}}{4 a}$ for any $a, b>0$,

$$
\begin{aligned}
& \geq q(q-1) E(\widehat{Y}-\widetilde{Y})^{2}-\frac{q(q-1)}{4 \gamma} E|\widehat{Y}-\widetilde{Y}|^{3} \\
& \geq=q(q-1) E(\hat{Y} Q \tilde{Y})^{2}-\frac{(q(q-1)}{4\left(\frac{q(q-1)}{4(q-4)} E|\hat{Y}-\widetilde{Y}|^{3}\right)}-\left.E|-\tilde{Y}|\right|^{3} .
\end{aligned}
$$

By Lemma 4.5 we have
 จุหาลกำกณ์มต่หวิิทยาลัย

(2.) For each $i, k \in\{0,1, \ldots, q-1\}$ and random permutations β, α on $\{0,1, \ldots, q-1\}$ we let

By equations (2.24), (2.25) and (2.26) p. 26 and p. 27 of [9] we have

$$
\begin{align*}
& E T_{\gamma}^{2}=\frac{q(q-1)}{4} E\left(\widetilde{T}_{\gamma}-T_{\gamma}\right)^{2}+\frac{1}{q(q-1)} \sum_{i \neq k} \sum_{l \neq m} E \hat{s}_{\gamma}\left[(i, k),\left(\rho_{\pi}(l, \cdot) \rho_{\rho_{\pi}}(m, \cdot)\right)\right] T_{\gamma} \tag{4.2}\\
& E\left(\widetilde{T}_{\gamma}-T_{\gamma}\right)^{2} \leq\left\{\gamma^{2} O\left(\frac{1}{q}\right)+\frac{\gamma^{2}}{(1+z)^{2}} O\left(\frac{1}{q^{2}}\right)\right\} \\
& \text { and } \sum_{i \neq k} \sum_{l \neq m} E \hat{s}_{\gamma}\left[(i, k),\left(\rho_{\pi}(l, \cdot)\right), \rho_{\pi}(m, \cdot)\right] T_{\gamma} \leq \gamma^{2} O\left(q^{4}\right) .
\end{align*}
$$

Then by $(4.2),(4.3) \operatorname{and}(4.4)$

$$
\operatorname{Var}\left(U_{\alpha}\right)=E T_{\gamma}^{2}
$$

$$
\leq \frac{q(q-1)}{4}\left\{\gamma^{2} O\left(\frac{1}{q}\right)+\frac{\gamma^{2}}{(1+z)^{2}} O\left(\frac{1}{q^{2}}\right)\right\}+\frac{1}{q(q-1)}\left\{\gamma^{2} O\left(q^{4}\right)\right\}
$$

จุหาลงครณมหาวิทยาลย

Lemma 4.8. If $E(f \circ X)^{4}<\infty$, then $E \widehat{Y}^{4}=O(1)$.
Proof. First we note that

By Lemma 4.3(2) we have

and by Lemma 3.6,

If we can show that $P(z \leq \hat{Y} \leq z+\lambda) \frac{C}{(1+z)^{3}}+\frac{1}{(1+z)^{2}} O\left(\frac{1}{\sqrt{q}}\right)$. Then we have
Theorem 4.2.
Let γ be defined as in Lemma
Case $1(1+z)^{2} \gamma \geq 1$.
By Lemma 4.8 and the fact that $\sqrt{ } \geq \frac{1}{(1+z)^{2}}$,

By Hölder's inequality and Lemma 4.3(1), $E|\widetilde{Y}-\widehat{Y}|^{3} \leq O\left(\frac{1}{q}\right)$. Then $\gamma=O\left(\frac{1}{\sqrt{q}}\right)$.

Case $2(1+z)^{2} \gamma<1$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
& \qquad f(t)=\left\{\begin{array}{l}
0 \\
\left.(1+t+\gamma)^{3}(t-z)+\gamma\right) \\
(1+t+\gamma)^{3}(\lambda+2 \gamma)
\end{array}, \begin{array}{l}
\text { if } \quad z-\gamma \leq t \leq z+\lambda+\gamma, \\
(\underbrace{t},
\end{array}\right. \\
& \text { Then } f \text { is a non decreasing function }
\end{aligned}
$$

Since f is a continuous and piecevise continuously differrentiable function, by Lemma 4.4 we have

Let U_{γ} be defined as in Lemma 4.7, we observe that

$$
\frac{(1+z)^{3}}{4} E \mathbb{I}(z \leq \widehat{Y} \leq z+\lambda) \mathbb{I}\left(U_{\gamma} \geq q\right)
$$

$$
\begin{equation*}
=\frac{(1+z)^{3}}{4} E\left\{\mathbb{I}(z \leq \widehat{Y} \leq z+\lambda)-\mathbb{I}\left(z \leq \widehat{Y} \leq z+\lambda, U_{\gamma} \leq q\right)\right\} \tag{4.5}
\end{equation*}
$$

 $$
+\frac{4}{(1+z)^{3}}|\widetilde{\Delta} f(\widehat{Y})|+P\left(E U_{\gamma}-U_{\gamma} \geq 3 q+O(1)-q\right)
$$

$$
\leq \frac{C}{(1+z)^{3}}(\lambda+2 \gamma) E|\widehat{Y}|\left|(1+\gamma)^{3}+\widehat{Y}^{3}\right|
$$

$$
+\frac{4}{(1+z)^{3}}|\widetilde{\Delta} f(\widehat{Y})|+P\left(E U_{\gamma}-U_{\gamma} \geq q\right)
$$

$$
\left.\leq \frac{C}{(1+z)^{3}}(\lambda+2 \lambda)\{E|\hat{Y}|+E|\hat{Y}|\}\right\}
$$

$$
+\frac{4}{(1+z)^{3}}, \triangle f(\hat{y}) \quad \frac{1}{q^{2}} \operatorname{dar} \mathrm{~L}_{2}
$$

$$
\begin{equation*}
\leq \frac{C \lambda}{(1+z)^{3}}+\frac{C z}{(1+z)^{3}}+\frac{4}{\left.\frac{1}{1}+z\right)^{3} \Delta f(\hat{Y}) \left\lvert\,+\frac{1}{q^{2}}\right.} \gamma^{2} O\left(q^{2}\right) \tag{4.6}
\end{equation*}
$$

By (4.6), $(1+z)^{2} y<1$ and the fact that $\gamma=O\left(\frac{1}{\sqrt{q}}\right.$

From, Lemma $4.6(1,2)$ Lemma 4.8 and the fact that $\gamma=O\left(\frac{1}{\sqrt{q}}\right)$,

$$
|\widetilde{\Delta} f(\widehat{Y})|=\left|\frac{1}{q} E f(\hat{Y}) \sum_{i=0}^{q-1} \sum_{j=0}^{q-1} \sum_{k=0}^{q-1} \widetilde{\Gamma}_{2}(\hat{i}, j, k)\right|
$$

$\leq \frac{C}{q}(\lambda+2 \gamma) E\left[\left(+\gamma^{3} \sum_{i=0}^{q-1} \sum_{j=0}^{q-1} \sum_{k=0}^{q-1} \widehat{Y}_{z}(i, j, k) \mid\right.\right.$

จุหาลงกรผ์สมษหทาวิทยาลัย

REFERENCES

[1] Barbour, A.D. and Chen, L.H.Y.: an introduction to Stein's method. Singgapore University Press, Singapore, 2005.
[2] Chen, L.H.Y. and Shao, Q.M. a non-uniform Bérry esseen bound via Stein's method. Rrobab. Theory Relat. Field. 120, 236-254 (2001).
[3] Davis, P.J. and Rabinowitz, P.. methods of numerical integration, 2nd ed. Academic Press, Orlando, $\mathrm{FL}, 1984$.
[4] Evans, M. and Swartz, T. approximating integrals via-Monte-Carlo and deterministic methods, Oxford Univ Press, 2000.
[5] Ho, S.T. and Chen, L.H.Y: $\mathrm{m}^{2} L_{p}$ bound for the remainder in a combinatorial central limit theorem. Ann. Probab. 6, 231-249 (1978).
[6] Hall, M.Jr.: combinatorfal theory. Blaisdell publishing company, 1967.
[7] Laipaporn, K. and Neammanee, K.: a non-uniform bound on normal approximation of randomized orthogonal array sampling designs. Internationnal Mathematical Forum 2, 2347-2367 (2007).
[8] Laipaporn, K.: bound in a combinatorial central limit theorem for randomized orthogonal array sampling designs. Ph.D. thesis, Chulalongkorn University 2006.
[9] Laipaporn, K. and Neamıanee, $\mathrm{K}:$ a non-uniform concentration inequality for randomized orthogonal array-sampling designs. Thai Journal of Mathematies. 4. 11-34 (2006).
[10] Loh, W.L. a combinatorial central limit theorem for randomized orthogonal array sampling designs. Ann. Statist. 24, 1290-1224 (1996).
[11] Neammance, K. and Laipaporn, K.: a uniform bound on a combinatorial central limit theorem for randomized orthogonaLarray sampling designs. Stochastic Analysis and Application. 26, 243255 (2908).
[12] Neammanee, K. and Suntornchost, J.: a uniform bound in a combinat$(9) \begin{aligned} & \text { orial central/limit theorem. Stochastic Analysis andlll Application. } \\ & 23,1-2 \theta \\ & 2005)\end{aligned}$
[13] Owen, A.B.: Monte-Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34, 1884-1910 (1997a).
[15] Owen, A.B.: a central limit theorem for latin hypercube sampling. J.R.Statist. Soc. Ser.B 54, 541-551 (1992a).
[16] Owen, A.B.: orthogonal array for computer experiments, integration and visualization. Statist. Sinica. 2, 439-452 (1992b).
[17] Petrov, V.V.: limit theorem of probability theory sequences of independent random variables. Clarendon Press, Oxford 1995.
[18] Patterson, H.D.: the errors of lattice sampling. J. Roy. Statist. Soc. Ser. B 16, 140-149 (1954).
[19] Raghavarao, D.: constructions and combinatorial problems in design of experiments. John Wiley, New York 1971.
[20] Stein, C.M.: approximation computation of expectations. IMS, Hayward, CA.
[21] Tang, B.: orthogonal array-based latin hypercubes. J. Amer. Statist.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

