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CHAPTER I
INTRODUCTION

1.1 Introduction.

A ring of quadratic integers is a subring of a quadratic field which plays the
same roles as the ring of integers Z in the field Q. Infact, a ring of quadratic
integers is an integral domain. Some of them are principal ideal domains but
some are not. Greg Dresden and Wayne M. Dymacek[1] studied about factors
of quotient rings over the Gaussian integers Z [i]. They generalized the idea of
quotient rings of integers to Gaussian integers. So we generalize their idea to the
general quadratic integers, in case that they are principal ideal domains.

The Euler ¢p—function on the set of positive integers is defined to be the number
of unit elements in the quotient ring of integers. James T. Cross[2] extended
this function to the ring of Gaussian integers.We will study this function on our
quadratic integer rings.

In Section 1.2, we give definitions, examples and also investigate some basic
properties of the rings of quadratic integers.

In Chapter 2, we study factors of the quotient rings and Euler ¢—function over
the ring of Eisenstein integers Z [%] . Moreover we determine the irreducible
elements of the ring of Eisenstein integers.

Lastly, we generalize this idea to the general quadratic integers, in case they

are principal ideal domains in Chapter 3.

We give some examples of these rings in the next section.



1.2 Definitions and Basic Properties.

A quadratic field is a field extension of Q of degree 2. Let K be a quadratic
field. Then |K : Q| = 2 and K = Q|[a] where « is a root of a monic irreducible
polynomial of degree 2, say f(x) = 2?+ax+bwherea,b € Q,ie. a = @.
Since a,b € Q,a* — 4b = Z—; = (%) for some dy,ds € Z and then there exist

d,c € Z such that dydy = ¢*d where d is a square free integer. Hence K = Q [a] =

Q [\/aQ — 46] =Q [\/dldg =Q [\/E} for some square free integer d.

Definition 1.2.1. Define w = %ﬁ in case d = 1(mod 4) and w = V/d in case
d = 2,3(mod 4).

Definition 1.2.2. (i) If w is as in Definition 1.2.1, then the conjugate of w is
o= %g in case d = 1(mod 4) and w = —V/d in case d = 2,3(mod 4).

(ii) If a + bw € Q[w], then (a + bw) (a + bw) is the norm of a + bw. We will use
the notation N (a + bw) for the norm of a + bw.

Theorem 1.2.3. Let a+ bw € Z |w].
(i) Ifd=2,3(mod 4), then N (a + bw) = a? — b*d.
(i) If d = 1(mod 4), then N (a + bw) = a® + ab+ b* (154) .

Proof. (i) Suppose d = 2,3(mod 4). Then w = —v/d, and so w+w = 0, ww = —d.
Thus N (a + bw) = (a + bw) (a + bw) = a? + ab(w + @) + b*wo = a® — b2d.

(ii) Suppose d = 1(mod 4). Then @ = (1 — V/d)/2, and so w + @ = 1, ww = 172,
Thus N (a +bw) = (a+bw)(a+Ww) = a® + ab(w + @) + Vwo = a® + ab +
e 0

We next state some results about units, conjugates, and norm. The proofs are

all straightforward.

Theorem 1.2.4. (i) For any a € Z|w], « is a unit if and only if N (a)) = £1.
(ii) If « and (3 are elements of Q [w], then N (af) = N (a) N (5).



(ili) If u and u' are units, then so are uu’ and *.

(iv) If o and B are elements of Z|w|, then aff = ap.

(v) If a|B in Z|w], then N () |N (B) in Z.

(vi) For any o € Z [w], if N () = £p, where p is a prime integer, then « is an

irreducible element in 7 |w).

In Chapter 3 we will consider only quadratic integers which are PID and we
know that if an integral domain is a Fuclidean domain, then it is a PID. So we

will give some examples of Euclidean quadratic integer rings.

Example 1.2.5. Ifd = —3,-2,—1,2,3,5,13,17,21 then Z [w] is Fuclidean do-

main.

Proof. Define 0 : Z [w] — Z§ by 0(a + bw) = |N (a + bw)|.

Clearly 6 is function, §(a + bw) > 0 and ker 6 = {0}.

Let a; +aow, by +bow be nonzero elements in Z [w|. By Theorem 1.2.4 (ii), N((a; +
asw)(by + baw)) = N(ay + asw)N (by + bow). Then 0((a1 + asw)(by + bow)) =
0(ar + aow)f(by + bow) and O((a; + asw)(by + bow)) > O(ay + asw).

Consider aq + asw, by +bow € Z [w] and by 4 baw # 0. There exists ¢; + guw € Q [w]
such that a;+asw = (b1 +bow)(q1+qaw). Let s1, 89 € Z be the best approximations
to q1, g2, respectively, that is,

|1 — s1] < 5 and [g2 — 59| < %

Given 1 + rw = a1 + asw — (b + bow)(s1 + Sow) € Z[w|. Thus a3 + asw =
(b1 + bow) (81 + Sow) + 11+ row and O(ry +rew) = O(ag + asw — (by + bow) (51 + S2w)).
Case 1. d = 1(mod 4). Since a; + asw = (b1 + bow)(q1 + qw),
O(r1 + row) = 0((b1 + bow) (g1 + qow) — (b1 + baw) (81 + S2w))
(b1 + bow)((q1 — s1) + (g2 — s2)w))

)+ (g2 — s2)w)
(
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We have if ’9 | < 1 then Z [w] is Euclidean domain with the Euclidean valuation
6. Hence for d = 1(mod 4), if d = —3,5,13,17, 21, then Z [w] is Euclidean domain.
Case 2. d = 2,3(mod 4). Since a; + asw = (by + bow)(q1 + qw),
0(r1 + row) = 0((b1 + baw)(q1 + qaw) — (b1 + bow)(s1 + S2w))

)

= 0((b1 + bow)((q1 — 51) + (g2 — s52)w))
= 0(b1 + bow)0((q1 — s1) + (g2 — s2)w)
= 0(b1 +bow) [(q1 — 51)* = (g2 — 52)*d]|
< 0(by + bow) H — }l ‘

= 0(by + bow) | 54|

We have if |%l| < 1 then Z [w] is Euclidean domain with the Euclidean valuation
. Hence for d = 2,3(mod 4), if d = —2,—1,2, 3, then Z |w] is Euclidean domain.
O

In [3], Ratinan Boonklurb gave all imaginary quadratic integer rings which are

Euclidean domain.

Example 1.2.6. [3](Ratinan Boonklurb,1998) For d < 0, Z|w] is Euclidean
domain if and only if d=—-11,-7—-3,—-2,—1.

Theorem 1.2.7. Let D be a PID.

(i) Ewvery nonzero nonunit element of D is prime if and only if it is irreducible.
(ii) For any m € D, (m) is a mazimal ideal if and only if () is a prime ideal.
(iii) For any m € D, m is prime if and only if D/ (n) isa field.

Theorem 1.2.8. Let D be a PID, ay,as, ...,a, € D such that fori # j,
(a;) + (aj) = D. Then

D/ (ayas...an) = D/ {a1) ® D/ {as) & ... & D/ (ay) .



CHAPTER 11

FACTORS OF QUOTIENT RINGS OVER EISENSTEIN
INTEGER RINGS

In this chapter, we study factors of the quotient rings over the ring of Eisenstein
integers Z|[w] = {a + bw |a,b € Z}, where w = (—1 + 1/=3)/2. The field of frac-
tions of Eisenstein integers is the field Q [\/—_3} . We prove that it is a Euclidean
domain in Chapter 1, so it is a principal ideal domain and a unique factorization
domain. For any ideal (a + bw) of Z [w], we will find the structure of the quotient

ring Z [w] / {a + bw).

2.1 Factors of Quotient Rings over Ring of Eisenstein In-

tegers

First, we have w = (—1—\/—3) /2, w+w=—-1, wo=1and w?+w+1=0.

Lemma 2.1.1. Ifk is a positive integer, then c+dw belongs to the ideal (ak + bkw)
if and only if k(a® — ab + b?) divides both ac + bd — cb and ad — cb.

Proof. Let k be a positive integer. Then for any ¢ + dw € Z [w],

ctdw  (c+dw)(ak + bkw)
ak +bkw — (ak + bkw) (ak + bkD)

_ (ack + bdk — cbk) (adk — cbk) w
k? (a2 —ab+b%) k%2 (a® — ab+ b?)

_ (ac+bd — cb) (ad — cb) w
k(a2 —ab+0?)  k(a?—ab+b2)

Thus ¢ + dw € {(ak + bkw) if and only if k(a® — ab + b?) divides both ac + bd — cb
and ad — cb. ]



Lemma 2.1.2. For a nonzero element a + bw € Z[w]|, there exists a unit u €

{41, +w, +w?} such that (a + bw)u = = + yw where x and y are positive integers.

Proof. Let a + bw € Z[w] and a + bw # 0.

Case 1. a,b € Z;. Then (a + bw)(—1) = —a — bw where —a, —b € Z*.

Case 2. a € Z" and b € Z'. Then (a+bw)(—w) = —aw—bw? = —aw—b(—w—1) =

(—a+b)w + b where (—a+b),b € Z.

Case 3. a € Z" and b € Z~. Then

(a+ bw)(—?) = (a + bw)(w+ 1)

= aw + bw? + a + bw
=aw+b(—w—1)+a+bw
=aw—b+afora,a—beZt.

Case 4. a,b € Z{. Then (a + bw)(1) = a + bw for a,b € Z*.

Hence for a + bw € Z [w], there exists a unit v € {+1, 4w, +w?} such that (a +

bw)u = x + yw where x and y are positive integers. O]
Lemma 2.1.3. If a is a positive integer larger than 1 ,then Z|w]/ (a) = Z, [w].

Proof. Define ¢ : Z[w] — Z,[w] by ¢ (z+yw) = [z], + [y],w. It is obvious
from the definition of ¢ that ¢ is onto. Next, we will show that ¢ is a ring

homomorphism. Let @1 + y1w, T5 + yow € Z [w]. Then
¢ (1 + y1w) + (22 + yow)) = ¢ (21 + 22) + (Y1 + y2) w)
= [z1+ 3], + (1 + 1], w
= [w1], + [22], + ], w + [, w
= [z, + [nlaw) + ([z2], + [32], w)
= ¢ (21 + y1w) + ¢ (22 + yaw).
Also, ¢ (21 + y1w) - (22 + yow)) = ¢ (2122 + (T2y1 + T1Y2) W + Y1y20°)
= ¢ (2122 + (T2y1 + T1Y2) w — Y12 (w + 1))

= ¢((r122 — Y1y2) + (T2y1 + T1Y2 — V1Y) W).



= [2122 — y1yp], + [T2y1 + T1Y2 — Y192, W

= [r122], + [T201 + T192], w0 — [Y192], (1 + W)
= [2122], + [T2y1 + T112], w + [1192), W?

= ([z1]y + [l w) - ([22], + [y2], w)

= ¢ (71 + y1w) - ¢ (v2 + Yow).

Hence ¢ is a surjective ring homomorphism. Since ¢ (a) = [a], = [0],, (a) C ker ¢.
Next, let  + yw € ker¢. Then 0], = ¢ (z +yw) = [z], + [y],w, i.e. both z
and y are congruent to 0 modulo a, so we can write x = ax’ and y = ay’ for
some 2’,y € Z. Then x + yw = az’ + ay’w € (a). Thus ker ¢ C (a). Therefore
ker ¢ = (a) and so Z [w] / (a) = Z, [w]. O

Definition 2.1.4. For any x+yw € Z [w], define the norm of z4+yw by N (x + yw) =
(r +yw) (z +yo) = 2% + zy(w + @) + Y*wo = 2° — zy + >

Lemma 2.1.5. Let a + bw € Z [w] where a and b are relatively prime and s =
N(a+bw) = a* —ab+b*. Then Z|w]/{a+ bw) = Z;. Consequently if s is a

prime number, then a + bw s irreducible.

Proof. Let a+bw € Z |w], where a and b are relatively prime and s = N (a + bw) =
a?—ab+b%. By Lemma 2.1.2, we can assume without loss of generality that a and
b are both positive. Since (a,b) = 1, (a?,b) = 1. Then (b, s) = (b,a*—ab+b*) = 1,
so b~! exists in Z,. Since a® — ab+ b? = 0(mod s), (ab™1)> = ab™' — 1(mod s). To
show that Z [w] / (a + bw) = Zs, define ¢ : Z [w] — Zs by

¢ (x+yw) = [z — (ab™") y],

where [t] = [t],.
For any m € Z, ¢ (m) = [m — (ab™1) 0] = [m], so ¢ is surjective.
Let 1 + yiw and x5 + yow € Z [w]. Thus

O((21 + yw) + (22 + 1ow)) = O((21 + 32) + (Y1 + Y2) w)

= [(w1 4 72) = (ab™") (41 + 2)]



= [z1 = (ab™") yi] + [22 — (ab™) 2]
= ¢ (r1 + hw) + ¢ (x2 + yow), and
O((21 + y1w) (T + yow)) = B(w122 + (Y172 + T1Y2)w + Y1y2w?)
= ¢(z122 + (Y122 + T1y2)w + (—w — 1)y192)
= ¢((x122 — 11y2) + (122 + T1y2 — Y112)w)
= [(z122 — y1y2) — (ab™") (Y122 + 2192 — Y192)]
= [z129 + (ab™" = 1) yay2 — (ab™') (122 + 2132)]
= [a:lxg + (ab ) 1o — (ab™) (y120 + xlyz)]
= [z1 — (ab™") yi] [z2 — (ab™") 2]
= ¢ (21 + y1w) ¢ (T2 + yow).
Then ¢ is a ring homomorphism.
Moreover, since ¢ (a+ bw) = [a — (ab™')b] = [0], {a + bw) C ker . Next, let

¢+ dw € ker ¢. Then
c+dw  (c+dw)(a+bw)

a+bw (a+bw)(a+bw)

ac + adw + cbw + bdww
a? —ab+ b2

ac+bd — cb+ (ad — cb)w
a? —ab + b2

_ (ac+bd—cb)  (ad—cb)w
a?—ab+ b2 a—ab+ b’

Since ¢ (c+dw) = [c—ab~'d] = [0],[ad —cb] = [c—ab 'd][-b] = [0]. By
lad — cb] = [0], we have [ab*c — a*bd] = [ad — cb] [—ab] = [0]. Then [ac — a*b~2bd]
= [ab%c — a®bd] [b~2] = [0]. Since (ab™')* = ab~* — 1(mod (a2 — ab+ b?) ),

l[ac — (ab™' — 1) bd] = [0]. Then [ac — ad + bd] = [0], and so [ac — bec + bd] = [0].
Thus a + bw|c+dw and ¢ + dw € (a+bw). Hence ker¢p C (a+ bw) and so
ker ¢ = (a + bw). Then Z [w]/ (a + bw) = Zs. Consequently if s is a prime num-
ber in Z then Z [w] / (a + bw) is a field. Hence ¢ = a+bw is an irreducible element

in Zw].



Lemma 2.1.6. Let p be a prime number. Then Z,[w] = Z,[x] / (x* + . + 1) .
Consequently = + x + 1 has no root in Z,, if and only if Z, |w] is a field.

Proof. Define ¢ : Z, [z] — Z, [w] by

Clearly that ¢ is a surjective ring homomorphism.
Next, we will show that ker ¢ = (2% + 2z + 1) . Since p (22 + 2+ 1) =0, (2? + x + 1)
C ker ¢. Let f(z) € ker ¢, so f(w) = 0. Since p is prime, Z, is a field.
There exists myz, () which is a minimal polynomial of w over Z,. Since w ¢ Z,
and w? +w+ 1 = 0, mg,(z) is a polynomial with degree 2. Thus z* + = +
1 = bmyg, (z) for some b € Z,, and f(z) = g(zx)mg, (z) for some g(z) €
Z, [x] such that deg(f (z)) =deg(g (z)) + 2. Then f(z) = g (x) (b~'b)mgz, (x) =
g ()b~ (bmg, (x)) = g(x)b~ (2* + x + 1). Thus f(z) € (z*+x+1) and ker
¢ C (#*+x+1). Hence kerp = (2> + z +1). By the standard isomorphism
theorem, Z, [z] / (z* + © + 1) & Z, [w]. Since 2> + x 4+ 1 has no root in Z,, it is
irreducible in Z, [z]. Hence (z* + 2 + 1) is a maximal ideal in Z, [z] if and only if
Z,|w] is a field.

[

Next, we will determine the irreducible elements of the ring of Eisenstein

integers.

Theorem 2.1.7. Up to association, the irreducible elements in Z |w] are exactly
the followings:

(i) 0 =a+bw and 6 = a + bw, where N (¢) = N (&) is a prime number in Z
and N (o) ,N (¢) = 1(mod 6),

(ii) 2+ w, where N (24 w) =3 and (3) = (2 +w)?,

(iii) m, where 7 is prime in Z such that 7 = 5(mod 6),

(iv) 2.

Proof. (i) and (ii) follow by Lemma 2.1.5.
(iii) Let 7 be a prime in Z such that 7 = 5(mod 6). Thus (2z +1)* = —3(mod
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7) and hence ? + x + 1 has no root in Z,. By Lemma 2.1.6, Z, [w] is a field.
By Lemma 2.1.3, Z [w] / (7) = Z, [w]. Hence (m) is a maximal ideal and so 7 is
irreducible.

(iv) Since 22 + z + 1 has no root modulo 2, by Lemma 2.1.6, Z; [w] is a field. By
Lemma 2.1.3, Z [w] / (2) = Zs [w], so (2) is a maximal ideal in Z [w]. Hence 2 is
irreducible.

Conversely, let 3 be an irreducible element in Z |w].

Case 1. =7 € Z*. Since 7 is an irreducible in Z [w], 7 is a prime integer. For

odd prime 7, by Lemma 2.1.3 and Lemma 2.1.6,
Zw) [ (m) 2 L (W] & Z [2] [ (2% + 2+ 1).

Thus Z, [z] / (> +  + 1) is a field. Then 2? + z + 1 = 0(mod 7) has no solution.
Thus (22 + 1)? = —3(mod =) has no solution. By [4, pagel31], # =5 (mod 6).
Case 2. f=a+bw € Z" [w]. By Lemma 2.1.5, Z [w] / {(a + bw) = Zn(q4t) Then
N (a + bw) is a prime integer. We have N (a + bw) = 1 or 3 or 5(mod 6).
Suppose that N (a + bw) = 5(mod 6). By (iii), N (a + bw) is irreducible. It
contradicts N (a + bw) = (a + bw) (a + bw). So N (a4 bw) =1 or 3(mod 6).
If N (a+ bw) = 3(mod 6), then 3|N (a + bw). Since N (a + bw) is a prime integer,
N (a 4+ bw) = 3. One of these is a + bw = 2 + w. For N(a + bw) = 1(mod 6), we
have N (a + bw) = (a + bw) (a + bw) = N (a + bw). We will show that 3 and 3
are not associated, suppose they are. Then (a 4 bw) = (a + b), i.e.
a + bw = u(a + bo) for some unit u € {+1, +w, +w?}

= ua + ubw

= ua + ub(—w — 1)

= (ua — ub) — ubw.
Thus a = (ua — ub) and b = —ub, so u = —1 and b = 2a. Hence N (a + bw) =
a’? — ab + b* = a® — 2a® + 4a® = 3a?, it contradics the fact that N (a + bw) is a

prime integer. Thus 8 and [ are not associated.
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Theorem 2.1.8. Ifa,b and k are positive integers such that a and b are relatively

prime, then
Zlw]/ (ak +bkw) = {[z" +y'w] : 0< 2" <k,0<y <k(a® —ab+1%)}.

Proof. Let [z + yw] € Z|w] / (ak + bkw). Since (a,b) = 1, there exist integers s
and t such that as + bt = 1. Then aks + bkt = k. Thus k + (ak + bkw)(—s +
wt) = (akt — bks — bkt)w. Then k = (akt — bks — bkt) w(mod (ak + bkw)). Let
m = akt — bks — bkt. Then

k = mw(mod (ak + bkw)). (1)
Since k (a® — ab + b*)w = (ak + bkw)(a + bw)w,
k(a® — ab + b*) w = 0(mod (ak + bkw)). (2)

Thus [z + yw] [nlkt +2 + yw} where = n1k + 2’ such that 0 < 2’ < k
= [2" 4+ nimw + yw] by (1)
= [2" + (nim + y)w]
= [2" + (nok (a® — ab+ V?) + y )w] where nym +y = nok(a® — ab
+b?) + ¢ such that 0 <y < k(a® — ab+ b?)
= [z" +y'w] by (2).
Hence [z + yw] = [¢' + y'w], with 0 < 2’ < k,0 <y <k (a® — ab+b?).
Let @1,91,22,y2 € Z such that 0 < zy, 20 < k,0 < y1,y2 < k(a® — ab+ b?) and
[z1 + y1w] = [x9 + yow]. Then (x2 — 1) + (Y2 — y1)w € (ak + bkw). Appealing to
Lemma 2.1.1, we conclude that & (a* — ab + b?) |a(zg — 1) +b(ya —y1) —b(z2—21)
and k (a* — ab + b*) |a(ya — y1) — b(xo — x1). Therefore
k(a? — ab+b?) [a(a(zz — 1) + b(y2 — y1) — bz — 21)) + (=b) (alyz — y1) — b (x2 — 71)),
and so k |zy — x1. Since 0 < 1,29 < k, 11 = 9. Then k (a? — ab + b?) [b(ys — v1)
and k (a® — ab + b*) |a(ys — y1). We have
a(ys — 1) = k (a* — ab + v*) [, and
b(y2 — y1) = k (a* — ab + b*) Iy for some 14,1, € Z.
Since (a,b) = 1, there exist integers s and t such that as 4+ bt = 1. Then
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a(ya —y1)s = k (a®> — ab+ b?) lys and
b(ya — y1)t = k (a® — ab + b?) lot.
Thus yo — y1 = (y2 — y1)(as + bt) = k (a® — ab+ b?) (I35 + lot). Hence
k(a? — ab+ b%) lys — y1. Since 0 < yy1, 92 < k (a® — ab + b?), y1 = yo. O

From Theorem 2.1.7 and Z [w] is a UFD, for any nonzero Eisenstein integer

a + bw, we have
a+bw~ 2 [of" - [To) - [T - (2+w)",

where u;, v;, e;,t,n € Zg .
Theorem 2.1.9. Let a+ bw € Z[w]\ {0} be such that
0t b~ 2 Lo - TLot - TIm - 2+ w)",

where u;,v;,e;,t,n € Zd, s1 = [[N(o}),ss = [[N(G}),k = 2t - [[75 and
R, =Z[w]/{(24w)"). Then Zw]/{a+ bw) = Zs, ® L, & Ly, [w] & R, where
R, & Zgm [w] when n = 2m and R, = Z[z]/ (3™z,3™" 2? 4+ 3z + 3) when n =
2m + 1.

Proof. Let a and b be integers, not both zero, such that
a+bw~2 [l -1y - TIn - (24 w),
s1=[[N(o}"),sa =[[N(@),k=2"-T]r{, and R, =Z[w]/{(2+w)").
Applying Theorem 1.2.8, we arrive at
ZI]/ a+b) 2 ZL] / (TTo% - T -2 TIme - 2+ w)")

= 2w/ (1lo") @ Zw] /(I15,")

DZw]/ (2" [I7") ®Z[w] /{(2+w)").
Consider [[o;" = ¢ + dw. Thus s; = [[N(0;") = N(][[o;") = N(c + dw) =
c? —cd + d*. Clearly 2, 3 and any prime 7 in Z such that 7 = 5(mod 6) cannot
divide ¢ + dw, and any prime ¢ in Z with ¢ = 1(mod 6) we have ¢ = 0,04

for some h, whence ¢ cannot divide ¢ + dw. Thus (¢,d) = 1. By Lemma 2.1.5,
Zwl/([]of) = Zw]/{c+dw) = Ze_cqraz = Zs,. Similarly, Z [w] /(][] ;") =
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Zs,. By Lemma 2.1.3, Z [w] / (2" - [] ") = Zg [w].

For even n, let n = 2m where m > 0. We have ((2 +w)") = ((—=3w?)™) = (3™).
Thus Z [w] /(2 4+ w)") = Z|w] / (3™) = Zgm [w]. Hence Z[ ]/ {a+bw) 2 Zs &
ZLs, ® Ly, [w] & Zzm [w].

For odd n, let n = 2m + 1 where m > 0. We will show that

Ropi1 = Z[w] /{2 +w)™™) 2 Z[a] / (372, 37+ 2% + 32 + 3).

2m+1 2m

First, we have (2 + w) 24 w)(2+w)
=24+ w)((2+w)?)™

=2+ w)(4+4w+wH)™

=24+w)B(1l4w)™
= (24 w)(3(-w?)™
)

(—w?)™

WIS

(2+w)

(2 +w)(
(2+w)(
=24+wd+dw—-—w-1)"
=2+ w)(3+3w)™
(2+w)(3

(2 +w)(
=(2+w)(3
=(24+w)3

Then (2 4+ w)*™ ™ ~ (24 w) 3™, s0 (2 +w)*™ ") = (2 3™ + 3™w). By Theorem
218,

R2m+1:Z[w]/<2-3m+3mW>={ [a+bw]:0<a<3™and 0 <b< 3™ }

Define ¢ : Z [x] — Z[w] /(2 -3™ 4+ 3™w) by ¢ (f (z)) = [f (w — 1)]. Let [a + bw] €
Zw]/(2-3"+3"w), then [a +bw| = [a+b(w—1)+0b] = ¢ (a+ bxr +b). Thus
¢ is a surjective function. Next, let fi (x), fo (z) € Z[x].

¢ (f1(2) + f2(2)) = [fi(w—1) + fo (w—1)]
[f1(w =1+ [fa (w—1)]
¢ (f1(2)) + ¢ (f2(2)), and
¢(f1(z) f2(2)) =[fi(w—=1)- fo(w—1)]
=[filw=1][fa(w—-1)]
= o (f1(2) - ¢ (f2(2)).

Hence ¢ is a surjective ring homomorphism.

2
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We will show that ker ¢ = (3™z, 3™ 2% + 3z + 3). Since
¢ (3"r) = 3" (w—1)]
= [w(2-3" 4+ 3"w)]
= [0],
¢ (3m*1) = [3m]

=[3"(2+w)(24+w)]

=[(2-3"+3"w) (2+ )]

= [0] and

(2 +3r+3)=[(w—1)*+3(w—1) + 3
= W+ w+1]
= [0],
(3mx, 3™ 2% + 3z +3) C kerd. Let p(x) € ker ¢. Since 2 + 3z + 3 is monic,
p(z) = (2 + 3z +3)q(z) + r(x) for some q(z) and r(z) = 79+ 7 (z+ 1) in
Z|x]. Hence r(z) € ker¢, ie. [rog+rw] = [0], so rp + mw € (2-3™ + 3"w).
Therefore 7o + rw = (u 4+ vw) (2 - 3™+ 3"w) = (2 - 3™u — 3™v) + (3™v + 3™u) w
for some u + vw € Z[w]. Then r(x) = 1o+ (z+1) = (2-3"u—3"v) +
(3mv + 3™u) (x + 1) = 3™y + 3™ (u+v) z. Thus p(z) = (2® + 32+ 3) ¢ () +
3™ y4+3™ (u +v) x € (3™x, 3™ 2? + 3x + 3). Then ker ¢ C (3™x, 3™ 22 + 3x + 3) ,
Hence ker ¢ = (3™z, 3™ 22 + 3z + 3). Then Ry, 1 2 7Z[x] / (3™2, 3™ 22 + 32 + 3) .
O]

Example 2.1.10. 88 + 110w = 22(4 + 5w)
=22(6 +Tw + 2(—w — 1))
= 22(6 + Tw + 2w?)
=2-11(3+2w)(2 +w).
We have N(3 4+ 2w) =7 = 1(mod 6) and 11 = 5(mod 6).
Thus Z [w] / (88 + 110w) = Z [w] / (2 - 11(3 + 2w) (2 + w))
2 7 ® Ly W) D Z[Ww] /(2 + w)
> T @ Lgo [ W] D Z W] ] (z, 3, 2% + 3z + 3). O



15

2.2 The Euler ¢p—function for Eisenstein Integers.

In this section we will consider the Euler ¢p—function over the ring of Eisenstein
integers. For € Z [w], we denote the set of all units of the quotient ring Z [w] / ()
by @z, () which forms a multiplicative group. We denote Euler ¢—function of
over Z[w] by ¢z () which is the order of the group ®z, (). In this section, we
denote the types of irreducible elements in Z [w] as in Theorem 2.1.7 and N (¢) = ¢

where o as in (i).

Lemma 2.2.1. The equivalence classes of Z [w| modulo a power of an irreducible
element are given as follows:

(i) M ={a] 0<z< g,

(i) ) = {[o+ 9] 10 < 7,y < T,

(ii) 2+w)) ={lz+yw]:0< 2,y <3m},

(iv) 2+w)™h) ={lz+yw]: 0< 2 <30 <y < 3™}

(V) " =A{lr+yw]:0<z,y <2}

w

w

S

Zw]/ (o
Wi/«
Wi/«
[wl /¢
[w /(2

N N N N

w

Proof. (i) Let 0 < x,y < ¢" be such that [z] ., = [y],,n). Then z —y € (0"), so
0" |z —y and @" |z — y. Since ¢™ and " are not associated and ¢" = N(o") =
o"a",q" |xr —y. Thus x = y. Next, let 0" = u — vw where u,v € Z, so that vw =
u(mod (c™)). Suppose that (q,v) # 1, then ¢ |v. Then @ |v, so ¢ |v. Since vw =
u(mod (0™)), o |u. Thus @ |u. Since (0,7) = 1, 07 |u, i.e. ¢|u. Hence ¢|v and
q |u, then g |o™. It contradicts ¢ = 0 t o™. Therefore (¢,v) = 1, and so (¢",v) =
1. Then there is r € Z such that rv = 1(mod ¢"), then rv = 1(mod (¢™)). Thus
row = ru(mod (¢™)) and so w = ru(mod (¢")). Since ¢" = 0(mod (c™)), for any
a,b € Z,[a+bw] .y = la+bruf ., = [z],., where 0 <z < ¢" is the remainder
when dividing a + bru by ¢". Thus Z [w] / (™) = {[z] : 0 < 2 < ¢"}. By Theorem
2.1.8, Z [w] / {ak + bkw) = {[z + yw] : 0 < x < k,0 <y < k (a® — ab + b?)} where
(a,b) = 1. Thus
Zw]/(m™) ={[r+yw] : 0 < z,y < 7"}

From the proof of Theorem 2.1.9, we have ((2 + w)*™) = ((—3w?)™) = (3™) and
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(2 +w)?™ ) = (3™(24w)) = (2-3™ + 3™w), so

Zw] /{24 w)*™) ={[z +yw] : 0 < z,y < 3™}, and
Zw] {2+ w)? ™) ={[r+yw]: 0<2 <3 0<y< 3™
Finally, Z[w] / (2") = {[zx +yw] : 0 < z,y < 2"}. O

Lemma 2.2.1 implies that Z[w] / (c™) has ¢" elements, Z[w]/(7x") has 7"
elements, Z [w] / {((2 + w)™) has 3" elements, and Z [w] / (2") has 2%" elements.

Now we are ready to identify the unit group of these quotient rings.

Theorem 2.2.2. (i) Py (0") ={[z] : 0 <2 < ¢" and (¢,x) = 1},

(i) @ogy (77) = Lo+ g 10 < w0,y < 7 and (m,2) = 1 or (m,y) = 1},
(i) Doy (2+w)7) = {[z + 3] -0 < 2,y < 3" and 31 (2 — )},

(iv) Pz (2 +w)*™ ) ={[z+yw] : 0 <2 <3™0<y <3 and 3t (z —y)},
(v) @z (2") ={lr+yw]: 0< 2,y <2" and (2,2) =1 or (2,y) = 1}.

Proof. Let o, B € Z|w]. Then [«] is a unit in Z [w] / (B) if and only if [o] [y] = [1]
in Z[w]/(B), for some v € Z[w]. Then [a] is a unit in Z [w]/(B) if and only
if ay = 1(mod f) if and only if 8§ + ay = 1 for some 6 € Z [w] if and only if
(a, B) = 1.
(i) Let x € Z such that 0< x < ¢". Then
x = and 0 [z],,., € Pz (0") if and only if (z,0") =1
if and only if 0 1 x
if and only if otz and 6  x
if and only if 05 1 x
if and only if ¢ 1 =
if and only if (¢, z) = 1.
Thus @z, (0") = {[z] : 0 <2 < ¢" and (¢,z) = 1}.
(i) Let z,y € Z such that 0< 2 < 7. Then
[+ yw] ey € Pzp) (77) if and only if (z + yw, ") =1
if and only if 71z + yw
if and only if 7fz or w1y
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if and only if (m,2) =1 or (m,y) = 1.

Thus ®zp) (") = {[z +yw] : 0 < 2,y < 7" and (7,z) = 1 or (7,y) = 1}.
(iii),(iv) Consider (z + yw, (2 +w)") =1 if and only if 24+ w { = + yw. By Lemma
211,24+ wfz+ywif and only if 31 (z —y). Thus

Pz (2+w)*™) ={[r +yw] : 0 < 2,y <3™ and 31 (v — y)} and

Pz (2 +w)™™ ) ={lz+yw] : 0 <z <3 0<y <3™ and 31 (z —y)}.

(v) Let [z + yw]igny € Z[w] /(2"). We have [x + yw]ony € Pz (27) if and only if

(x +yw,2") = 1 if and only if 2 1 z + yw if and only if (2,2) = 1 or (2,y) = 1.
Thus

Pz (2") ={lr+yw] : 0 <2,y < 2" and (2,2) =1 or (2,y) = 1}. O

Remark By Theorem 2.2.2, ¢z, (0") = ¢" — ¢"', ¢z (1) = 72" % (7? — 1),
Pzt (2 +w)P™) = 2- 3771, g (2 4+ w)*m ) = 2327, gy (27) = 3- 222,

Theorem 2.2.3. oy, (0") = Zgn_gn—1.

Proof. By Theorem 2.2.2, &z, (0") = {[2] : 0 <z < ¢",(¢,z) = 1}. Then [z], ., €
Pz, (0") if and only if [z],. € Pz(¢"). Define f : @z(¢") — Pz (0") by
f([@] ) =[] yny. Let [x1],0, [x2] 0 € Pz (¢") be such that [21],. = [22],.. Then
x1 = x2(mod ¢"), so 21 = x2(mod ¢"). Therefore [21] ., = [22],,. Thus fis a
function. Clearly f is onto.

Let (1] 0, [#2] 0 € Pz (¢") such that f([z1],.) = f([z2],0), Le. [21] pny = [T2] oy -
Thus o™ |x1 — 22, s0 6" |21 — x2. Since ¢" = ¢"¢" and o™ and 6" are not associ-
ated, ¢" |z1 — x2. Then [21] . = [22] ». Thus f is one to one function.

Let [1]gn, [22]gn € Pz (q"). Then f([z1]pn) + f(lza]gn) = [21]ony + [w2] () =

21+ @2l gy = Fllr+22ly) = Fllor)y + laal)e Next, f(loal,) - Fllaal,) =
(1] (gny * [T2](gny = 21 - T2 (yuy= [([x1 - @2] ) = f([21]yn - [22],0). Hence [ is a
ring isomorphism. The unit group of the ring Z, is cyclic of order ¢" — ¢"*, i.e.
Dz (q") = Zgn_gn-1[5, pages 46 — 51](EthanD.Bolker,1970). Thus ®z (o") =
Lign—_gn—1.

q"—q"~
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Lemma 2.2.4. (i) (1 +pw)pk = 1+ wptt(mod p**?2) where p is an odd prime
number.

(i) (1+2w)? =1+ 251 (mod 2++2).

(i) (14 4w)% =1+ w2"2(mod 2++3).

Proof. Let B € Z|w], r be a prime integer and k be a positive integer. Define
p=(1+ ﬁr)rk Then
p=1+r*8r + H= (G2 4 ) (g g RSNG00 (gt
Given = w and r = p, then
2pF =1, 3pF (0" — 1) = 2), 4[p* " — 1)(P* - 2)(p* - 3) ... Thus

k(nk__ k(nk_ k__ k(nk__ k__ k__
p=1+prwp+ 2 (p2 L) (wp)? + 2 (p é)(p 2) (wp)? + 2 (p 1)(1;4 2)(p"—3) (wp)4—|—

k+1

p =1+ wp*t + apt? for some a € Z [w], so
p =1+ wptt(mod pkt?).
Hence (1 + pw)?" = 1 + wph (mod pFt?).
Given # = w and r = 2 then
2[2F —2,3|(2F —1)(2F —2), 4]2F (2% — 1)(2F — 2)(2¥ — 3),.... Thus
p=1+2"+y 42 (2 = (2w)? + w&mg + Qk(zkfl)(iﬁ)@k*g) (2w)* +
p=1+ w2kt 4+ 2 (2 = (2w)? + W(Qw)3 + a2*2 for some « € Z |w].
Then p =1 + w2b 4+ w?(2F — 1)25F (mod 2++2)
=1+ w2 4 (—w —1)(2%F — 1)28 1 (mod 2¢+2)
=1+ w2kt — w(2F — 1)2F1 — (2F — 1)2%F L (mod 2F+2)
=1 + w2k+1 _ w22k+1 + w2k+1 _ 22k+1 + 2k+1(m0d 2k+2)
= 1+ w2k2 4 2k (mod 2k+2).
Hence (14 2w)?" = 1+ 25+ (mod 2++2).
Given 3 = 2w and r = 2 then
p=1+42F2y 4 —Qk(gg_l) (4w)? + —2k(2k_16)(2k_2) (4w)3 + 2k(2k_1)(222_2)(2k_3) (4w)t + ...
_ k k+3 (ok 2*-1)(2*=2) 5k
p =1+ 2820 4 2kF3(2F — 1)w? + g k53 ..
p =1+ 2F2y(mod 28+3).
Hence (1 + 4w)?" = 1 4 282w (mod 2++3). O

Lemma 2.2.5. (i) The order of [1 + pw] in @z (p") is p"~', where p is an odd
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prime number.

(ii) The order of [1+ 2w] in Py, (27) is 2"

(iii) The order of | ] (2 + w)?™) is 3m~ 1.

(iv) The order of [1 + 3w] in Pz, (2 + w)*™ 1) is 3™,
) [ ) (

(v) The order of [1 4 4w] in Pz, (27) is 272

1+ 3w] in (I)Z[w]

Proof. (i) Given k =n — 1 and k =n — 2 in Lemma 2.2.4 (i). Then
(1+pw)”"" =1+ wp"(mod (p"+'))
= 1(mod ()
(14 pw)?" " =14 wp™ ! = 1(mod (p")).
Thus the order of [1 + pw| in Pz, (p") is p" .
(ii) Given k =n — 1 and k =n — 2 in Lemma 2.2.4 (ii). Then
(14 2w)%"" =1+ 2"(mod (21))
= 1(mod (27)),
(142w)>" " =1+2"" = 1(mod (27)).
Thus the order of [1 + 2w] in ®zp, (27) is 2"
(iii) Given k =m — 1 and k = m — 2 in Lemma 2.2.4 (i). Then

(14 3w)?™ " =1+ w3™(mod (3™H1))
= 1(mod (3™)),
(143w)*" " =1+ w3™ ! = 1(mod (3™)).

Thus the order of [1 + 3w] in Pz ((2 + w)?™) is 3™
(iv) Let @ = 2+w. Then o? = —3w? and o®™ ! = (=3w?)™(2 +w), so (a®™T1) =
(3ma). Since 3™t = 3m .3 = 3" (—a?w™?), 3?2 = 3" (—aPw™?), (3™2) =
(3mtla?).
Given k =m and kK =m — 1 in Lemma 2.2.4 (i). Then
(14 3w)® =1+ w3™ M (mod (3m+2))
=1+ w3™(—a?w™?)(mod (3™*?))
=1+ w3™(—a’w™?)(mod (3™ a?))
=1+ w3™(—a’w™?)(mod (3™ a))
= 1(mod (3"«)).
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Then (1 + 3w)*" = 1(mod (a?™1)),
(143w)*™ " =1+ w3™(mod (3m+1))
=1+ w3™(mod (3™a?))
= 1(mod (3"a)).
Then (14 3w)*™ " = 1(mod (a?™*1)).
Thus the order of [1 + 3w] in Pz, (a*™1) is 3™,
(v) Given k =n — 2 and k =n — 3 in Lemma 2.2.4 (iii). Then
(1+4w)*"” =1+ 2"w(mod (21))
= 1(mod (27)),
(14 4w)?° =1+ 2" 'w(mod (2M))
= 1(mod (2")).
Thus the order of [1 4+ 4w] in Pz, (27) is 22 O

Lemma 2.2.6. (i) In gy (2"), [1+ 4w]iye, # (2] gny , [30] g0y and [2w?] 5., for
all z € Z.

(i) In Pz ((2+w)"), [+ 3W]I<€(2+w)n> # (2] 0rwyny » B0 (apwyny and [2w?] o )y
for all z € Z.

(iii) In Pz, (7"), [1+ 7rcu]’<€7rn> # 2] oy » [20] 7y and [xw2]<ﬂn> for all x € Z.

Proof. Let ¢ € Z[w] be called special if []gny = [2]gn , [2W]9ny OF [2w?] (any for
some z € Z. Let B denote the set of all b such that (1 + 4w)’ = c(mod 27)
where 0 < b < 2”2, Note that if b € B, then bt € B for all t € Z*. First, we
show that 272 ¢ B. Put k = n — 3 in Lemma 2.2.4 (iii), we have (1 + 4w)2n_3 =
1+ 2" 'w(mod 2"). Then ¢ = 1+ 2" 'w(mod 27), so 1+ 2" 'w — ¢ = 0(mod 2").
If c =z € Z, then 2" |2"~1 | a contradiction. If ¢ = zw, then 2" |1, a contradiction.
If ¢ = zw?, then

1+2"w—a2w?=1+2""'w+ x(w+ 1)(mod 2")

=(x+1)+ (2" + z)w(mod 2"), so

271271 + 2 and 2" |1 + x. Thus z = k2"—1 for some k € Z, so 2" [2"71 + k2" — 1,
27271 — 1, a contradiction. Then 2"7® ¢ B. Let L € B be the least element.
Dividing 2"~2 by L we have 2""2 = Ld + r where 0 < r < L. If r = 0, then
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L = 2" for some t such that 0 < ¢ < n — 3. Then [1+ 4w, = [1+ 4w,

Since L € B,2" % € B, it is an impossible. Then r # 0. Since the order of
ny jq On— Ld+r Ld r
[1+ 4] gy 10 Py (27) 5 2772, [1] gy = [1 + ot = [1 + dw]ipny [1+ 4]y =
[8]igny [1 + 4w]igny some special s. Let s = z, 2w or rw? for some x € Z. Since
[s] € Pz (2"), x is odd. Then there is y € Z such that [yz],, = [1],. in
®z (2") . Thus [?ﬂ]@n) = [H(zn) in @z, (2"). Then [?J]<2n> = [ys]<2n> [1+ 4”]2211) in
Py (27) . Since s = z, zw or aw? for some x € Z,r € B. But r < L, a contradic-
tion. Thus [1 + 4w]’(€2n> # 2] gny » [1W] gy and [2w?] g,y for all 2 € Z. In the same
way, [1+ 3w]<(2+w) ny # (2] gy + [BW] 24y and [zw? J(@4wym for all @ € Z and
1+ 7r(,u]]<€7rn> # 2]y » [1w] ey and [zw? gy for all z € Z. O

Next, we will consider the structure of @z, (") , Pz (2 + w)™) and Py, (27).
Theorem 2.2.7. &y (7") = Zign-1 X Lign—1 X Lig2_y.

Proof. Let H be generated by [1 + 7w], ., . Then the order of H is gl
Define f : @z (7") — @z (7") by f([z]m) = [2]ny . Since @z (7") is cyclic

n—1

and ¢z (") = 7"~ (m — 1), there is some [a]_, in @z (7") which has order 7

Then f([a]n) = [a] my € Py (77) has order 771, Let K = <[a]<ﬂn>>. Then
the order of K is 7"~!. By Lemma 2.2.6, H N K = {[1]}. Next, since 7 is
prime in Z [w],Z[w]/ (7) is a field and Pz, (7) is cyclic order 72 — 1. Given
Py (7)) = <[ﬁ]<ﬂn>> .Then 7~ = 1(mod 7) in Z [w] and f™ ! = 1+~ for some
v € Z[w]. Then (67 H)™ " = (14y7)™ " = 1(mod 7™) and (47 )™ ! = 1(mod
") in Z[w]. Since the order of [] ., € gy (7) is 72 =1 and (7"~ ', 7% —1) = 1,
the order of [™" ]y € Py (7") is 72 — 1. Set R = <[5”n_1]<ﬂn>>. Then the
order of R is 72 — 1. Now since every member of HK has order a power of 7

HK N R ={[1]}, and the order of HKR is 7" '7"~! (1? — 1) = ¢z, (7). Thus

CI)Z[w] (7‘(‘”) =HKR= anfl X anfl X Zﬂz_l.

Theorem 2.2.8. (i) Pz ((2+w)?™) = Zgm—1 X Zgm—1 X Lz X L.
(ll) q)Z[w] ((2 + w)2m+1) = ng X ng—l X Zg X ZLis.
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Proof. Let o = 2 + w.

(i) Define 1 : @z (3™) — g1 (@) by pi([algm) = [a] y2m)- Since 7 (3™) is cyclic
and ¢z (3™) = 2- 3™, there is some [(];., € Pz (3™) has order 3™,

Let K = <[ﬁ]<a2m>> in ®zp (@®™), R = <[—1]<a2m>> and I = <[w]<a2m>>. Set
H= <[1 + 3w]<a2m>>. Then the order of H is 3™!. By Lemma 2.2.6, H N K =
{[1]} and the order of HK is 3*" 2. Since every member of HK has order a
power of 3, HK N R = {[1]}. By Lemma 2.2.6, [w] ,om, ¢ H. It is obvious
that [w],emy € KU R. Thus HKR NI = {[1]}. Since the order of HKIR is
31 (2.3m71) . 3 = gy (a2™), Dy (a?™) = HKIR.

(ii) Define = @7 (3™) — Pz (a*™) by p((alym) = [a] y2m+1y- Since Pz, (3™) is
cyclic and ¢z (3™) = 2 - 3™, there is some [(];, € Pz (3™) has order 3™~ ' Let
K = <[ﬂ]<a2m+l>> in @z, (a2™H1) | R = <[—1]<a2m+l>> and I = <M <a2m+1>>. Set
H = <[1 + 3w]<a2m+1>>. Then the order of H is 3. By Lemma 2.2.6, HN K =
{[1]} and the order of HK is 3*"~'. Since every member of HK has order a
power of 3, HK N R = {[1]}. By Lemma 2.2.6, [w] ,om+1y ¢ H. It is obvious
that [w] jems1y € K UR. Thus HKRN I = {[1]}. Since the order of HKIR is
3 (2 31) 2 3 = gy (a2™H) | Dy (02™H) = HKIR. 0

Theorem 2.2.9. ®y1,) (2") = Zgn-1 X Zgn-2 X Lz X Zs.

Proof. Let H = ([1+2] g0 ) K = ([1+4]gn ). = (o] ), and R =
<[—1]<2n>>. Then the order of H is 2" ! and the order of K is 2772,

(1) We will show that HNK = {[1]} . Suppose that [1 + 4w]l<€21n> =1+ 2w]’<622"> . By
Lemma 2.2.6, since (1 + 2w)? = =3, ky is odd number. Then ([1 + 4w]{3,,)*" " =

—2

([1+2w]2.)7 " = ([1+2w]h., ). Since (1+20)” = 1+ 2" (mod 27),
(14 2w)* 2 = (1 + 271 (mod 27). Thus ((1+4w)")?" > = (14 20)%" * =
(142" =1 4 k27 !(mod 2"), it contradicts Lemma 2.2.5. Then H N K =
{[1]} and the order of HK is 2*"~3. Since every member of H K has order a power
of 2, HK NI = {[1]}.

(2) We will show that [—1] ., ¢ HUKUI. By Lemma 2.2.6, we have [—1] 5., ¢ K.

It is obvious that [—1] 5.y & I. Suppose that [—1] ., = [1+ 2w]’<g2n>for some k € Z.
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Then —1 = (1 + 2w)*(mod 27), (=1)* = (1 + 2w)*(mod 27), 1 = (1 + 2w)*(mod
2"). By Lemma 2.2.5, 271 |2k, so 2"72 |k. Then k = ¢2"~2 for some t € Z. Thus
1= (142w = (1+20)2" 7 = (1+ 27 Y = 14420 1 4¢ (£ — 1) 2234 (mod
2"). Then 0 = 2(1 +¢2"?)(mod 2"), it is a contradiction. Hence [~1] . ¢ H,
thus HKIN R = {[1]}. Since the order of HKIR is 2"71-2"72. 3.2 = ¢y, (2"),
Bppy (27) = HKIR = Lys X Lynz X Ly x Ly, O

Theorem 2.2.10. Let (1, 3> € Z[w] with (81,082) = 1. Define f : ®zp (61) X

Dz (B2) — Zw] [/ (B1B2) by f (Im], [m2]) = [n], where n = n;(mod 3;) fori=1,2.
Then f is a ring monomorphism and Imf = @z, (5152).

Proof. Let (1, By € Z |w] with (81, 52) = 1.

Define f : Oz (B1) x By (82) — Z[w]/ (B} by f (i) ) = ), where
n = ni(mod ;) for i = 1,2. Let ([pu],[pe]), ([61],[62]) € Pz (B1) X Pzp) (B2)
and ([p1], [n2]) = ([01],[02]). Then p; = 6;(mod ;) for i = 1,2. The Chinese
Remainder Theorem implies that there is a unique A such that A = p; = 6;(mod
G;) for i = 1,2. Thus f ([m],[pe]) = f([01],]02]), f is a function. For i = 1,2,
if n = n;(mod f3;) where 1, € g1 (5;) and (n;, 5;) = 1, then (n,3;) = 1, thus
(n, 5182) = 1. Thus Imf = @z, (B132), and we have ker f = {0}.

Lot ([un] [1a])» (102, 02]) € @ (51) <oy (Bo), then £ () )41 (1], 6]) =
w+ 0 where p = p;(mod ;) and 0 = 6;(mod ;) for i = 1,2. Thus p +
0 = p; + 0i(mod ;) for i = 1,2. Then f([u], [po]) + [ ([61],[62]) = n+0 =
P+ 0] Ja +6a]) = £ () + 181], ) + 62]) = £ [a]) + (6], 6),
f preserves an addition. We have f ([u1], [u2]) f ([01],[02]) = 1@ such that p =
wi(mod ;) and 6 = 6;(mod f;) for i = 1,2. Thus pf = p0;(mod ;) for i = 1, 2.
Then f ([p], [pa]) f([61],[02]) = 0 = f ([p161], [1262]) = f ([ [0h] , [p2] [62]) =
f(([pa], [p2]) ([01] ,[02])), f preserves a multiplication. Hence f is a ring monomor-
phism and Imf = ®zp (5152). ]



Example 2.2.11. =72 — 27w = 45w + 72(—w — 1)
= 45w + T2w?
= 9w (5 + 8w)
=32w(9+ 12w + 4(—w — 1))
= 3%w(9 + 12w + 4w?)
= (2 +w)4(3 + 2w)?.
We have N(3+2w) =T.
Thus Gpp) (—72 — 27w) = By (2 + w)*(3 + 2w)?)
>~ Oy (2 +w)?) X Pgp (3 + 2w)?)
& Vg X Lz X Ly X iy X ZLigs.

Example 2.2.12. 19w = (5 4 3w)(2 — 3w)w.
We have N(5+ 3w) = N(2 — 3w) = 19 = 1(mod 6).
Thus ®z;,) (19w) = Py, (54 3w)(2 — 3w))

= Oy (54 3w) X Py (2 — 3w)

& Zisas X Liao.
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CHAPTER III

FACTORS OF QUOTIENT RINGS OVER QUADRATIC
INTEGER RINGS

In this chapter, we will generalize the idea in chapter 2 to obtain factors of
the quadratic integer rings Z[w] = {a + bw|a, b € Z} for w = v/d where d is a
square free integer such that d = 2,3(mod 4) or w = (1 + v/d)/2 where d is a
square free integer such that d = 1(mod 4), which is a principal ideal domain.

Let d be a square free integer, and

Vid Jif d =2,3(mod 4),

(1++/d)/2 ,if d=1(mod 4).

Then the minimal polynomial of w over Q is

2% —d ,if d =2,3(mod 4),
m(z) =
2 —r+ 152 if d=1(mod 4).
If d =2,3(mod 4), then W = —vVd and so w + W = 0, ww = —d and w? — d = 0.

If d = 1(mod 4), then T = (1 —Vd)/2 and so w +@ = 1, ww = =2 and
Aot (154 =0

For any a + bw € Z [w], define the norm of a + bw to be N(a+ bw) = (a+ bw)(a +
bw) = a® + ab(w + w) + b*ww.

a® — bd ,if d = 2,3(mod 4),
Then N(a+ bw) =

a*+ab+ "2 if d=1(mod 4).
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3.1 Factors of Quotient Rings over Ring of Quadratic In-

tegers.

Lemma 3.1.1. Let a and b be relatively prime integers, then

m + nw belongs to the ideal (ak + bkw) if and only if kN (a + bw) divides both
ma +mb +nb (4) and an — mb if d = 1(mod 4) and kN (a + bw) divides both
ma — nbd and an —mb if d = 2,3(mod 4).

Proof. Let a and b be relatively prime integers.

Case 1. d = 1(mod 4). For any m + nw € Z [w], we have

m+nw  (m+nw) (ak + bkD)
ak +bkw  (ak + bkw) (ak + bkD)

mak + ankw + mbkw + nbkwi
k2N (a + bw)

mak + mbk + nbk (172)  (ank — mbk) w
k2N (a + bw) k2N (a + bw)

_ma+mb—|—nb(%l) (an —mb) w
kN (a + bw) kN (a+bw)

Thus m + nw € (ak + bkw) if and only if kN (a + bw) divides both ma + mb +
nb (%), and an — mb.

Case 2. d=2,3(mod 4). For any m + nw € Z [w], we have

m+nw  (m+nw) (ak + bkD)
ak +bkw  (ak + bkw) (ak + bkD)

B mak + ankw + mbkw + nbkww
k2N (a + bw)

mak — nbdk  (ank — mbk)w
= +
E2N (a +bw) k%N (a + bw)

~ ma —nbd (an —mb)w
" kN (a+bw) kN (a+bw)

Thus m+nw € (ak + bkw) if and only if kN (a + bw) divides both ma — nbd, and

an — mb. O



Lemma 3.1.2. If a is a positive integer larger than 1, then Z|w]/ (a) = Z, [w] .

Proof. Define ¢ : Z [w] — Z, [w] by ¢ (z + yw) = [z],+[y], w- It is obvious from the

a

definition of ¢ that ¢ is onto. Next, we will show that ¢ is a ring homomorphism.

Let 21 + 11w, 22 + yow € Z [w]. Then
¢ (21 + 1w + 22 + yow) = ¢ (21 + 22) + (11 + y2) W)
=[x+ x2], + (1 + 2], w
= ([1], + [n]o w) + ([22], + 2], @)
= ¢ (214 yw) + ¢ (22 + yow) .
Case 1. d = 1(mod 4). Then
¢ (1 + y1w) (22 + yow)) = O((z122 — Y112 (1 = d) /4) + (2251 + Y192 + T1Y2) W)
= [z1w2 = yry2 (1 = d) /4], + [2201 + y192 + 2132] 0
=[], [w2], — (1], [y2], (1 — d) /4
H[waly W1]a + 1], 2o + 1], [y2],) @
=[], [wa], + 1], [, (0 = (1 = d) /4)
+ (w2, [l + [, [y2) w
= ([1]q + [yala w) ([z2], + [w2], @)
= ¢ (21 + y1w) ¢ (x2 + Yow).
Case 2. d=2,3(mod 4). Then
¢ (z1 4+ y1w) (22 + yow)) = ¢ (2172 — Y1y2d + (2291 + T112)w)
= [2132 — y11pd], + [T2y1 + 210] W
= [11] [w2], + (], [v2la d + ([22], [yl + (2], [v2l,) @
= ([21]q + [yal, w) ([22], + [w2] @)
= ¢ (21 + 11w) ¢ (T2 + Bow).

Hence ¢ is a surjective ring homomorphism. Since ¢ (a) = [a], = [0],,a € ker ¢.
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Then (a) C ker ¢. Let x + yw € ker ¢. Then [0], = ¢ (v + yw) = [z], + [y], w, i.e.

a

both x and y are congruent to 0 modulo a, so we can write © = az’ and y = ay’
for some x',y € Z. Then z + yw = az’ + ay'w € (a). Thus ker ¢ C (a). Then
ker ¢ = (a). Hence Z [w] / (a) = Z, [w]. O

Lemma 3.1.3. Let a+bw € Z |w] where a and b are relatively prime integers and
s=N(a+bw). Then Z|w]/ (a + bw) = Zs. Consequently if s is a prime number,

then a + bw s irreducible.

Proof. Let a + bw € Z [w] where a and b are relatively prime integers.
Case 1. d = 2,3(mod 4). Then s = N (a + bw) = a* — b*d. Since (a,b) = 1,
(a®,b) = 1. Then (b,s) = (b,a® — b*d) = 1, so b~! exists in Z,. Since a® — b*d =
0(mod s), a2b~2 — b2b~2d = 0(mod s). Thus (ab™')* = d(mod s). To show that
Zw] /[ {a+ bw) = Z, define ¢ : Z[w] — Zs by

¢ (x +yw) = [z = (ab™") y]

where [t] = [t]

For any m € Z, ¢ (m) = [m — (ab™1) 0] = [m], so ¢ is surjective.
Next, let z1 + yyw and zg + yow € Z [w]|. Thus

¢ (21 + 11w) + (22 + 12w)) = ¢ (21 + 72) + (1 + y2) W)
= [(z1 4+ 22) = (ab™") (11 + 12)]
= (w1 — (@™ y1) + (22 — (ab™") go)]
= [z — (ab™) ] + [22 — (ab™") go]
= ¢ (21 + y1w) + ¢ (22 + yow), and
¢ (21 4+ y1w) (22 + yow)) = O((2122 + dyry2) + (172 + T1y2) W)
= [z122 + dy1yz — (ab™") (Y122 + 2192)]
= |22 + (ab™ ) yr1ya — (ab™) (179 + 2172)
= [(z1 = (@™)y1) - (22 — (ab™") )]

= ¢ (21 + y1w) ¢ (T2 + yow).
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Thus ¢ is a surjective ring homomorphism.
Moreover, since ¢ (a+bw) = [a— (ab™)b] = [0], (a+ bw) C ker$. Next, let
m + nw € Kker ¢, then

m+nw  (m+nw)(a+ bo)
a+bw  (a+bw)(a+bw)

_ ma —nbd + (an — mb) w
N (a+ bw)

_ma — nbd n (an —mb)w
 N(a+bw) N(a+bw)

ma —nbd ~ (an — mb)w

s s
Since [0] = ¢ (m + nw) = [m — ab~'n], [an —mb] = [0]. By [mb— an] = [0], we
have [mab® — na?b] = [ab] [mb — an] = [0] . Then [ma — na®b=2b] = [b~2] [mab® — na?b)
= [0]. Since (ab™")> = d( mod s), [ma—dbn] = [0]. Thus a + bw |m + nw
and m + nw € (a+bw). Hence ker¢ C (a+ bw) and so ker¢p = (a+ bw).
Then Z|w]/{a+ bw) = Zs. Consequently, if s is a prime number in Z then
Z|w]/{a+ bw) is a field. Hence 0 = a + bw is irreducible in Z [w].

Case 2. d = 1(mod 4). Then s = N (a+bw) = a®> + ab+ b? (132). Since
(a,b) =1, (a®,b) = 1. Then (b,s) = (b,a® + ab+ b* (15%)) = 1, so b™! exists in
Zs. Since a® + ab + b* (154) = 0( mod s), a®b~% + abb™? + b*b~2 (15¢) = 0(mod

s). Thus (ab™')* = —ab™! — (159)(mod s). To show that Z [w] / (a + bw) = Zj,
define ¢ : Z [w] — Zs by

¢ (x +yw) = [z — (ab™")y]

where [t] = [t],.
For any m € Z, ¢ (m) = [m — (ab™1) 0] = [m], so ¢ is surjective.
Next, let zy + yyw and x5 + yow € Z [w|. Thus

¢ (1 +y1w) + (22 + 1pw)) = ¢ (21 + 22) + (11 + 42) w)

= [(v1 +22) — (ab™") (1 + y2)]
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= [(z1 = (ab™") y1) + (22 — (ab™) y2)]
= ¢ (21 +y1w) + ¢ (x2 + yow), and
¢ (21 +11w) (22 + yow)) = S((2122 — (174) y132) + (172 + T1y2 + Y132) W)

= [z122 — (554) yay2 — (ab™") (1122 + 2192 + Y112)]
= [2122 + (—ab™' — ({fd)) iy — (ab™) (a2 + 2190)]
= [m1 + (@b gy — (ab™) (112 + 213p)|

= [(z1 — (@) y1) - (22 — (ab7") )]

= ¢ (21 + y1w) & (T2 + yaw).

Thus ¢ is a ring homomorphism.
Moreover, since ¢ (a + bw) = [a — (ab™1) b] = [0], (a + bw) C ker ¢.
Next, let m + nw € ker ¢, then

m+nw (m+nw)(a+ bw)

a+bw  (a+bw)(a+bo)

_ ma+anw + mbw + nbww
N (a+ bw)

ma + mb+ nb (:52) + (an — mb) w
N (a + bw)

ma + mb + nb (172) N (an — mb)w
S S

Since [0] = ¢ (m + nw) = [m — ab™'n], [an — mb] = [m — ab™'n| [—b] = [0].

By [mb — an] = [0], we have [mab® — na?*b| = [mb — an] [ab] = [0]. Then

[ma — na®v=2b] = [mab® — nab) [b=2] = [0]. Since (ab™")* = —ab~"' — (15¢)(mod
s), [ma+an+ (54) bn] = [ma — (—ab™' — (154)) bn] = [0], then

[ma +mb+ (52) bn] = [0]. Thus a+bw |m + nw and m+nw € (a + bw). Hence
ker¢ C (a+ bw) and so ker¢p = (a+ bw). Then Z[w]/{(a+ bw) = Z;. Con-
sequently, if s is a prime number in Z then Z[w]/{(a + bw) is a field. Hence
0 = a+ bw is irreducible in Z [w]. O
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In the next lemma we use Legendre symbol so we will give the definition.

Definition 3.1.4. Let p be an odd prime number and a € Z such that p t a.
Define the Legendre symbol as follows:

p

(a) 1 ,if 2> = a(mod p) has a solution in Z,
—1 ,otherwise.

Lemma 3.1.5. Let p be an odd prime number.

Let m(x) be the polynomial obtained from reducing the coefficients of m(z) modulo
p. Then m(z) is irreducible in Z, [z] if and only if (%) =—1.

In which case, Z, |w| = Z, [x] / (m(z)) is a field.

Proof. Suppose (%) = —1. Then 2? = d(mod p) has no solution in Z. Suppose

that m(x) has a root @ in Z,,.
Case 1. d = 2,3(mod 4). Then m(a) = @*> —d = 0, i.e. a®> = d(mod p), a
contradiction.

Case 2. d = 1(mod 4).

Since @ is a root of m(x), (2a + 1)? = d, i.e. (2a+1)? = d(mod p), a contradiction.
Hence m(z) has no root in Z,, so m(z) is irreducible over Z,.

Conversely, assume that (%) = 1. Hence there exists an integer a such that

a2 =

(mod p).

Case 1. d=2,3(mod 4). Then m(z) = 2> —d =2* — a®> = (x — a)(z + a)(mod
p), i.e. m(x) is not irreducible in Z, [z].

Case 2. d = 1(mod 4). Then 4m(z) =42? —4dr+1—-d = 2z — 1) —d =
(22 —1)2—a?>= (2r — 1 —a)(2z — 1 + a)(mod p), so 4m(z) is not irreducible in
Zy |x].

Finally when m(x) is irreducible in Z, [z], we have Z, [w] = Z, [z] / (m(x)) is a

field. O
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Lemma 3.1.6. Ford = 1(mod 4), let m(x) be the polynomial obtained by reducing
all coefficient of m(x) modulo 2. Then m(z) has no solution in Zy if and only if

d = 5(mod 8). In which case, Zy [w] = Zs [z] / (M(x)) is a field.

Proof. d = 5(mod 8) if and only if I%d is an odd integer
if and only if m(z) = 2? — z + 5% = 2> — z — 1(mod 2)
if and only if m(z) has no solution in Zs,
and when this happens () is irreducible in Z, [z]. Hence Zy [w] = Zs [x] / (m(x))

is a field. O

Lemma 3.1.7. (i) For any odd prime integer q, {q) = (a)* for some o € Z|w]
if and only if q|d.
(ii) (2) = (a)? for some a € Z[w)] if and only if d = 2,3(mod 4).

Proof. (i) Let (q) = (@)? for some o € Z [w].

Case 1. d = 2,3(mod 4). By Lemma 3.1.5, Z,[z]/(2? —d) = Z,[w] =
Z[w]/{q) = Z|w] / ()®. We have o+ (a)? is nonzero nilpotent, then there exists
a monic polynomial z +@ in Z, [z] such that (z +a) + (2? — d) € Z,[2] / (z* — d)
is nonzero nilpotent. Thus (k) (22 — d) = (z + @)’ for some k € Z, [z] such that
k is a polynomial with degree 0. Since ¢ is a prime in Z,k is a unit of Z, [7]
such that kk = 1. Thus (22 —d) = E (z+a) = EFa?+2Kar+k (@)*. Thus
E = 1,a=0,0 = (@)’ = —d. Hence ¢|d.

Case 2. d = 1(mod 4). By Lemma 3.1.5, Z, [z] / <:c2 -z +@> = Zglw] =
Z|w]/{q) = Z[w]/ {a)’. We have a 4 (@)” is nonzero nilpotent, then there ex-
ists a monic polynomial x + @ in Z, [z] such that (z +a) + <12 —x+ @> €
Zglz]/ <x2 —z+ @> is nonzero nilpotent. Thus (k) (22 —z+(159)) = (v + a)*

for some k € Z,[r] such that k is a polynomial with degree 0. Since ¢ is a

prime in Z, k is a unit of Z,[z] such that Bk = 1. Thus (22 — z + (159))
E (z+7a)° = Fa?+2kar + % (@)*. Thus E =123 = 1, @? = (154), then

T=4(a)’=4(5%) =1—d. Hence q|d.
Next, suppose that ¢|d. Then 2> — d = 2?(mod q) if d = 2,3(mod 4), and
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4(2? -2+ (5%) =42 —42+1—d = (20 — 1)*(mod ¢) if d = 1(mod 4). Hence

there exists a nonzero f(r) € Z, [z] such that f(z)? + (m(z)) = (m(x)). Since

Zq|x] | (m(2)) 2 Zy [w] = Z|w] / {qg), there exists o €Z[w] such that (a + (¢))* =

(@), Le. (@)’ = (q).

(ii) Suppose that d = 2,3(mod 4). By Lemma 3.1.5, Z; [z] / (2? — d) = | =
Z|w]/(2). Since d = 0 or 1 then 2 — d is a square in Z; [x]. Therefore Z [w] / (2>

has nonzero nillpotent elements, so (2) = (a)? for some a € Z [w].

Conversely, suppose there exists o € Z [w] such that (a)* = (2). Since Z [w] / (2)

Ly W] = Zs [x] / (M(x)) where m(x) € Z [z] is minimal polynomial of w, there ex-

ists a nonzero f(z) = & —a@ € Zs [z] such that (z —a@)* = (m(x)). Thus m(x)

d—1

is square in Zj [z]. Suppose m(z) = 2* —x — (%) is square in Zy [z]. Then

2 d—1
v - = (5

m(z) = 22 — d, and so d = 2, 3(mod 4). O

) = m(z) = (r —a)? = 22 — @ which is a contradiction. Hence

Next, we will determine the irreducible elements of the ring of the quadratic

integers.

Theorem 3.1.8. Up to association, the irreducible elements in Z |w] are exactly

the followings:

(i) 0 = a+bw,d = a+ bw where |[N (c)] = |N(T)| is a prime number and
(o) # (o),

(i) @ = a4+ bw,@ = a + bw where |N (a)] = |N (@)| is a prime number and
(@) = (@),

(ili) m where 7 is an odd prime number in Z such that w1 d and (£) = —1,

(iv) 2 where d = 5(mod 8).

Proof. (i) and (ii) follow from Theorem 1.2.4 (vi).

(iii) Let 7 be an odd prime number in Z such that 7 { d and (£) = —1. By Lemma
3.1.2 and Lemma 3.1.5, Z [w] / (7) = Z, [w] is a field. Hence 7 is an irreducible
element.

(iv) Suppose d = 5(mod 8). By Lemma 3.1.2 and Lemma 3.1.6, Zs [w] = Z [w] / (2)
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is a field. Hence 2 is an irreducible element.

Conversely, let 3 be an irreducible element in Z |w].

Case 1. (§ = 2. Since Z[w]/ (2) = Zs [w] and 2 is irreducible , Zs [w] is a field.
By Lemma 3.1.6, we have d = 5(mod 8).

o~

Case 2. 3 = 7is odd prime integer. Since Z [w] / (7) = Z, [w] and 7 is irreducible,
Ly W] = Zy [z] / (M(2)) is a field. By Lemma 3.1.5, (£) = —1.

Case 3. ( = a+bw. Let g = N(a+bw) be a prime number. Since [ is
an irreducible element, a and b are relatively prime and Z[w]/(5) is a field.
By Lemma 3.1.3, Z[w]/(B) & Z, so q is a prime number. If 3 = 3 , then
1= N@B) = 83 = N(B) 5o (g) = (8)(3) where (3) # (B). I § ~ 3, then
¢ = N(B) = 36 = up? for some unit v € Z[w] so (¢) = (3> = (B)* where

(B) = (B)- O
For a nonzero quadratic integer a + bw, we have

a+bw~2-T[ov -[[7% - [[7% -]t

where wu;, v;, e;, ki t € Z .

Theorem 3.1.9. If a, b, k are positive integers such that a and b are relatively

prime, then
Z[w]/ {ak + bkw) = {[z' + yw] : 0 < 2" <k|N (a+bw)|,0 <y <k}.

Proof. Assume that a, b, k are positive integers such that a and b are relatively
prime.

Case 1. d = 1(mod 4). Let [z +yw| € Z[w]/ (ak + bkw). Since (a,b) = 1,
there exist integers s and ¢ such that as + bt = 1. Then aks + bkt = k. Therefore
kw — (ak + bkw)ws — (ak + bkw)t + (ak + bkw)s = bks (154) — akt + aks. Then
kw = bks (152) — akt 4+ aks(mod (ak + bkw)), so

kw = m(mod (ak + bkw)) for m = bks (152) — akt+aks € Z. (1)
And k|N (a + bw)| = |(ak + bkw)(a + bw)| € (ak + bkw), then

k|N (a + bw)| = 0(mod (ak + bkw)). (2)
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Thus [z 4+ yw| = [:c + (nk +19) w} where y = nik + ¢ such that 0 <y < k

[x + nikw + y'w }

= [z 4+ mm +yw] by (1)

= [n2k [N (a + bw)| + 2’ + y'w] where z +nym = nok |N (a + bw)|

42" such that 0 < " < k|N (a + bw)|
= [z" +y'w] by (2).

Hence [z +yw] = [¢' + y'w], with 0 < 2’ < k|N (a+bw)|,0 <y < k.
Case 2. d = 2,3(mod 4). Let [z 4+ yw| € Z[w]/ (ak + bkw). Since (a,b) =1
there exist integers s and t such that as + bt = 1. Then aks + bkt = k. Therefore
kw — (ak + bkw)ws — (ak + bkw)t = —bksd — akt. Then kw = —bksd — akt(mod
(ak + bkw)), so

kw = m(mod (ak + bkw)) for m = —bksd—akt € Z. (3)
And k|N (a + bw)| = |(ak + bkw)(a + bw)| € (ak + bkw), then
k|N (a4 bw)| = 0(mod (ak + bkw)). (4)

Thus [z + yw| = [SL’ + (n1k 4y )w| where y = nyk + % such that 0 <y < k

]
]

= [z 4+ mm +yw] by (3)

= [x—i—nlkw—i—y

= [n2k [N (a + bw)| + 2’ + y'w] where z + nym = nok |N (a + bw)|
42" such that 0 < 2" < k|N (a + bw)|

= [2" +y'w] by (4).
Hence [z +yw] = [¢' + y'w], with 0 < 2’ < k|N (a+bw)|,0 <y < k.
Next, Let x1,41,x2,y2 € Z such that 0 < z1,29 < k|N (a4 bw)|,0 < 41,92 < k
and [z; + y1w| = [22 + yow]. Then (zo — x1) + (y2 — y1)w € {ak + bkw).
Case 1. d = 1(mod 4). By Lemma 3.1.1, we have kN (a + bw) |a(xs — x1) +
b(ya—y1) (F52)+b(z2—21) and kN (a + bw) |a(ya—y1) —b(x2—x1). Thus kN (a + bw) |
b(a(zz —x1) +b(ya — y1) (F57) + bl — 21)) + bla(ys — y1) — b(w2 — 1))
+a(a(ys — y1) — b(xe — 1)), then k|ys — y1 . Since 0 < yo, 41 < k,y2 = y1.
Thus kN (a + bw) |(a 4+ b) (x2 — 21) , kN (a + bw) |=b(x2 — x1). Since (a,b) =1, (a+
b, —b) = 1. Then kN (a + bw) |xa — 1. Since 0 < x9, 21 < k|N (a + bw)|, z2 = 7.
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Case 2. d=2,3(mod 4), we have kN (a + bw) |a(x2 — 1) — bd(y2 — y1) and
EN (a + bw) |a(y2 — y1) — b(z2 — x1). Thus

kN (a+ bw) |b(a(zz — 1) — bd(y2 — y1)) + alalyz — y1) — b(z2 — 1)),
then k ‘yQ — Y- Since 0 < Y2, < k? Y2 = Y1-

Therefore kN (a + bw) |a(xy — x1) and kN (a + bw) |—b(x2 — x1). Since (a, —b) =
1,EN (a+ bw) |x2 — 1. Since 0 < z9, 21 < k|N (a + bw)|, x9 = x1. O

Theorem 3.1.10. Let a + bw € Z [w] \ {0} be such that
a+bw~2-[[ov-[[av - []n& - []ak

where  u;,v;, e, kit € Zg, s1 = [[N(0}%),s9 = [[N(77),s3 = 2t - [[ 7}, and

R=Zw]/{[T(cw)*). Then Z[w]/{a + bw) = Zy, ® Ly, ® Zs, [w] ® R.

Proof. Let a and b be integers, not both zero, such that s; = [[ N(¢;"),
so=[IN(}),s5 =2"-T]m5", and R =Z[w] / (T](c;)*) . Since
a+bw~2-T[ov -[[7% - [[7% - [] ot
(a+bo) = ([Tot" - Tt -2 - TTm - [Tk, 1)

By Theorem 1.2.8, and Z[w] is a principal ideal domain, we arrive at
Zlw/{a+bw) = Zw]/([Toy - TToy -2 - TTa - Tl ey)
=2/ (o) o Zw] /(17"
LW /(2 - TT7") @ Z[w] /(T ey"). (2)

Consider [[ o7 = m + nw. We will show that Z[w] / (m + nw) = Zy(mnw)-
Clearly, m; does not divide m + nw for all i. Next, in case d = 5(mod 8), 2 is
irreducible then 2 does not divide m + nw. Finally, for any prime ¢ € Z such that
q # m; for all i. Since N (q) = ¢, up to associated ¢ = ab where a, b are irreducible
elements of Z [w] .

If ¢ = ;8 for some i and nonzero nonunit 3 € Z[w]|. Then ¢t m + nw.

If ¢ = m;8 for some i and nonzero nonunit 3 € Z [w]. Then ¢ t m + nw.

If ¢ = 0,3 for some i and nonzero nonunit 3 € Z[w]. Then gt m + nw.

If ¢ = 0,3 for some i and nonzero nonunit 3 € Z [w]. Then ¢> = N (q) = N (0;8) =
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N (o;) N (B). Thus ¢ = N (0;) = 0,0;. Hence ¢ does not divide m+ nw. Therefore
(m,n) = 1. By Lemma 3.1.3, Z[w| /([ 0;") = Z[w]/ {m +1nw) = Znmmine) =
Ly n(otiy = s, Similarly, the second term in (2) is isomorphic to Zs,. Thanks
to Lemma 3.1.2, the third term is isomorphic to Zs, [w]. Hence Z [w] / {(a + bw) =

U

Zs, ® ZLsy, ® Zs, [w] ® R.

Example 3.1.11. Let d =5 then d =1 (mod 4).
By Theorem 3.1.7, up to association, the irreducible elements in Z[w| are ex-

actly the followings:

(i) 0 =a+bw,d = a+ bw where [N (c)] = |N(7)|is a prime number and
(o) # (@),

(i) a =2+w,@=2+w where [N2+w)|=|N2+w)|] =5and 2+w) =
(2 +w),

(ili) 7 where 7 is an odd prime number in Z such that 7 = 2,3(mod 5),
(iv) 2.
We have —224 + 28w = 28(—8 + w)

=28(-9+w+1)

= 28(—9 + w?)

=7-22(34+w)(—3+w)

=7-2234w)(2+w)(2—w).
Next, we will show that (3+w) # (3+w), We have 3+ & = 4 — w and
N3+ w) = N(4 — w). Suppose that (3 +w) = (4 —w), then 3+ w = u(4 —w)
for some unit v € Zw]. Thus u = —1 and 4u = 3, it is a contradiction.
Hence (3+w) # (3+w) and N(3 + w) = 11. Since 2 — w is a unit of Z [w],
(=224 + 28w) = (7-2*(3+ w)(2 + w)).
Thus Z [w] / (=224 + 28w) = Z [w] / (T - 22(3 + w)(2 + w))

=701 D Zog [w] D Z W]/ (2 + w). O
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3.2 The Euler ¢—function for the Ring of Quadratic Inte-

gers.

In this section we will consider the Euler ¢p—function over the ring of quadratic
integers. For § € Z[w], we denote the unit group of the ring of Z[w]/(5) by
Pz (). We denote Euler ¢p—function of 3 over Z [w] by ¢z, (5) is defined to be
the order of multiplicative group of @z, (5). In this section, we denote irreducible
element in Z [w] as in the last section.

Note. N (a) = ¢ where « is as in Theorem 3.1.8 (ii).

Theorem 3.2.1. The equivalence classes of 7 [w] modulo a power of irreducible

are given as follows :

™) ={lr+yw| : 0 <z, y <7},

a®™) ={[r +yw]: 0 < w,y < g™},

o) ={lz+yw] : 0 <z <" 0<y < g™},
2" ={[r+yw] : 0 < z,y < 2"}.

Proof. Let 0™ = m + nw. Claim Z[w] / (6™) = {[z] : 0 <2 < N (0)"} We have
—nw = m(mod m + nw). Suppose that (N (o),n) # 1, then N (¢)|n. Then
(m+nw) (m+nw) |n, (m+nw)|n, (m+nw) |m and

(m + nw) (m + nw) |m , N (m + nw) [m. Thus N (m + nw) |m + nw but N (m + nw)
= (m + nw) (m + nw), it is impossible. Thus (N (¢),n) = 1. Therefore

(N (m +nw),n) = 1. Then there is r € Z such that rn = 1(mod N (m + nw)),
then rn = 1( mod m + nw). Thus —rnw = rm( mod m + nw),—w = rm(mod
m + nw). Hence if [a + bw] € Z[w]/ (¢") then [a + bw] = [z] where 0 < z <
N (m+ nw),

Zw]/(m+nw)y={[z]:0<z<N(m+nw)}.

Next, Let [z] = [y]in{[z] : 0 <2z < N(m+nw)}. Then z—y € (m + nw) . There-

fore m+nw | —y and m+nw |z — y. Since m+nw and m+nw are not associated,
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N (m+ nw) |z —y. Thus x = y. Hence Z [w] / (¢™) = {[z] : 0 <2z < N (0)"}. By
Theorem 3.1.9, Z [w] / (ak + bkw) = {[x + yw] : 0 <z < k[N (a + bw)|,0 <y < k}
where (a,b) = 1. Thus

Zw] [ (7") ={lr +yw] : 0 <,y <7"},

Zlw] /(o) = {lz +yw] : 0 <,y < g™},

Zw) /o) ={lr +yw] : 0 <2 < g™, 0 <y < g™},

Zwl /(2" ={lz+yw]: 0 <z y <27} O

This theorem implies that Z[w]/(¢") has N (o)" elements, Z [w] / (7") has
72" elements, Z [w] / (@™) has ¢" elements, and Z [w] / (2") has 22" elements.

Now we are ready to identify the units of the rings in Theorem 3.2.1.

Theorem 3.2.2. (i) Pz (0") ={[z]:0 <2z < N (0)" and (N (0),z) = 1},

(ii) Pz (7") ={lr +yw]: 0 <2,y < 7" and (7,2) =1 or (m,y) = 1},

(iii) In case d = 1(mod 4), let @« = u + vw and N(«a) = q,

Py (@) ={[z+yw] : 0 < z,y < ¢™ and ¢ { (:Bu~|—xv +yv (%l)) or

q1 (yu—av)},

In case d = 2,3(mod 4), let « = u+ vw and N(«a) = q,

Dy (™) = {[z +yw] : 0 < 2,y < g™ and g (vu — yud) or ¢ f (yu — av)}

(iv) In case d = 1(mod 4), let « = u + vw and N(a) = q,

Py (@) ={[z+yw] : 0 <2 < ¢, 0 <y < ¢™ and qf (zu+ zv+ yv (152))
or a1 (yu — w0)},

In case d = 2,3(mod 4), let « = u+ vw and N(a) = q,

Py (™) ={[z +yw]:0 <z < g™, 0 <y < ¢™ and ¢t (zu — yud) or
qf(yu—zv)},

(v) Pz (2") ={lzr+yw]: 0 <2,y <2" and (2,z) =1 or (2,y) =1}

Proof. Let a,b € Z|w]. Then [a] is a unit in Z [w] / (b) if and only if [a] [¢] = [1]
in Z[w]/ (b), for some ¢ € Z|w]. Then [a] is a unit in Z [w]/(b) if and only if
ac = 1(mod b) if and only if be + ac = 1 for some e € Z|w] if and only if
(a,b) = 1.
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Consider @z, (a*™), let o = u+wvw and z+yw € Z [w] / (a*™). If d = 2, 3(mod 4)
by Lemma 3.1.1, (u + vw, x + yw) = 1 if and only if u+vw {1 x+yw if and only if ¢ t
(xu — yud) or gt (yu — xzv) . If d = 1(mod 4) by Lemma 3.1.1, (u + vw, z + yw) =
1 if and only if v + vw t x + yw if and only if ¢ 1 (xu—l—xv—l—yv (%l)) or
q1 (yu — zv). Hence if d = 1(mod 4),
Dyp) (@) ={[z +yw] : 0 < 2,y < ¢™ and ¢ 1 (zu+ zv+ yv (152)) or

qf (yu—av)},
if d = 2,3(mod 4),
Py (@) ={[z+yw] : 0 < z,y < ¢™ and ¢ 1 (zu — yud) or ¢t (yu — zv)}.
In the same way, we have
if d = 1(mod 4),
Py (@) ={[z+yw] : 0 <z < ¢, 0 <y <gmand ¢ (zu+ zv + yv (59))

or ¢ { (yu—=zv)},

if d = 2,3(mod 4),
Pz (@) = {[r + yw] 0 <z < ¢"™,0 <y < ¢™ and ¢ f (zu — yud) or

qf(yu—av)},
Dz (0") ={[z] : 0 <z < N (0)" and (N (0),z) = 1},
Py (") ={lr +yw] : 0 <2,y < 7" and (7,2) =1 or (7,y) = 1},
Oy (2") = {fz + 9] : 0 <2,y < 2" and (2,2) = 1 or (2,y) = 1}. 0

Example 3.2.3. In Z [(1+ v/5)/2], N(4+w) = 19 is a prime integer.
Since 17 + 9w = (4 + w)?,
Dz (17 + 9w) = Pz (4 + w)?)
={[z] : 0 < 2 <19? = 361 and (x,361) = 1}.
Thus ¢z (17 + 9w) = 192 — 19 = 342, O
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