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CHAPTER I

Stochastic differentia | Wations in various areas
such as in economics and ivilland mec 1neer1ng, environmental
science, signal processi { fltesing, | e \“\\“\.\\\ hysics, population dynam-
ics and psycho 1 ¢ '..v 1 Ing _. ine i \ everting square root
process [3] is an SD 2ryy ,_; 1 coysiderable t ~ athematical finance as
an alternative to ge - v Brofvnian me 4 I S as a model for volatility,

interest rate, and"other fix |i-"'l'_‘ es, and forms the stochastic volatility

component of Hestor S agBet | _;-r »del (4], Moreover, it can be used for pricing

However, introducing a J ;.==....vm- uch process makes the model be-

come more realistic. process with jumps on which

we fOCUS in r.:‘vmn- K-nas the 1orm

R ]

dS(ﬁ: o _@(t_)dﬁ(t) (1.1)

where ¢ € [0,7], S(t7), denotes lim S(r is a Wiener process and N is a

B HANEATT -

parame w1 is the long run equﬂlbrlum price or mean reversion level, « is the

TR e ie

If we have the strong solution in explicit form of an SDE with jumps, we

can determine its expectation, variance and covariance functions or even higher-
order moments. Unfortunately, this SDE with jumps has no strong solution in

explicit form. Thus, we would like to find its numerical approximation. Note



that even though all coefficient functions satisfy the linear growth condition, we
cannot directly apply the standard convergence theory for numerical simulations

to this model due to the non-Lipschitz diffusion coefficient which is the square

root function.

In this work, we s : methods: Euler-Maruyama
(EM) method, compens ,‘ er (CSSBE) method, and
jump-adapted Eul : 3¢ ¥ neri ly . igating on their perfor-
mance as well as aceu | 10del in weak sense. Com-
putable error boung \ i"‘u.:_‘_ methods will also be

provided.

AULININTNEINS
AR TUNNINGAY



CHAPTER 11

bility and summarize im-
DEs umps The proof will be

omitted but car e foud ' [2 ‘_ %\.

caders have knowledge

Let (Q, .7, P) ) a casurable space. A ran-
dom variable is a e hle finction \i. Y". Typically, the measur-
able space (Y,X) is the mé Sarable spic ‘the real numbers (R, %), where

A is the Borel o- algebra l'?%, ,,ih.e" variable. It can be shown that

)

a function p : A €/ B) is a measure on
= S —————————

(R, ) and 8 Ca 7R — [0,1] defined
by F(z) := P( T ) - a distribution function of X.

A discrete random varlable is a random varlable whose distribution function is

discret ariable whose
distmbEliﬁﬂjMElﬂlﬁ mbﬂo‘:{ﬂaﬁ;(}rete random
varlable is absolutely continuous with respect t&he counting measre N, then

AN TRINIRRY IR
qf the distribution p of a continuous random variable X is absolut contlnuous
with respect to the Lebesgue measure A, then a Radon-Nikodym derivative ﬁ is
called a probability density function of X.

The expected value or mean of X, denoted by E[X] or just EX, is defined



as E[X] = / XdP. If X is a discrete random variable with probability mass
Q

function p(z), then the expected value becomes E[X] = Z z;ip(x;). If the distri-

T

bution of X admits a probablhty density function f(x), then the expected value

can be computed as F[X]| = ' random variable X has mean p,

then the variance of : iwven by Var(X) := E[(X — u)?].

Two random va dY * eqdbutlon denoted by X =
PO S DY=p

Y, if they have t istTibitii i.e. ) (Y € B) for all B € 4,
and are indepe :

B,Ce B If X a

Given a probabil pace %P ‘._.. astic | rocess with state space YV
-' ' Blos a set I, i.e. a stochastic
process X is a collection X _ T ch X, is a Y-valued random
- £— Y, X(w)(t) := Xy(w), is called

a realization, asraje : e path cessgX . Usually, the state

space Y is ]R iich comes with the Borel o- Z E #n index set I is an
interval [O,T] o S ﬂ ={U; : t € I} and
V = {V; : t € I} 'on the same probability space are independent if Us and V; are

"I NN RN T o

is the smﬂlest o-algebra which m?tes Y measurable For a stochastic process X =

WIANDAEH mmﬁﬂfﬁlﬁ“ﬂfﬁ

algebras on 2 is called a filtration if .%, C .%; for all s < t. A stochastic process

X ={X,:t €I} issaid to be adapted to the filtration {7, : t € I} if 0(X;) C
F; for all t € I and we will call X an adapted process {X;, %, : t € I}. Every

stochastic process X = {X; : t € I} is always adapted to the natural filtration



generated by X: {# =oc({X;:s<t}):tel}. If astochastic process U is

adapted to the natural filtration generated by a stochastic process V', we say that

U is adapted to the stochastic process V. A filtration{.%, };¢; is said to satisfy
the usual conditions if it is

iti if i right ’f s, l.e. mﬁt_,_ezc% forall t € I,
and %, contains all the / \ ‘

? 0

A stochastic proce =X, : { G } s-sme stationary increments
" i ——
if Xy — X, =X . L and“hewith t + h,s + h € I, and

independent in gty , Ty 6 ﬁ""“ e [ with t1 < ... < t,,

Xt2 — th, e 4 ; J C 1 [ m v ]eS.
A normal ¢ 7 parameter 4 € R and 0% > 0 is a
continuous distribtion whiose probab nsit ' tl is of the form f(z) =
1 RG] J i ! 4 - I A > 1 " . 2
e 22 . nal bution. IV has mean g and variance o
2mo i F ] ! \
An exponential ¢ ion. Fap(X)swith | eter A > 0 is a continuous
distribution whose probability £y -4 ion 1 form f(x) = Ae ™ 1,50.

An exponential distribuition n..,. n( ﬁ‘ha ; and variance

A Poisson dlStI‘lbutlom 3y i“'f;

)\

cter A > 0 is a discrete distribu-

k
tion whose probabili = d" I ke NU{0}. A
e — e
Poisson distri ‘-;-f- ion Poi(\) ] 1 ‘\.“
Let (Q,#,P - >0 aﬁu tration. An adapted

stochastic process W {W,,.%, : t >0} is called Brownian motion or a Wiener

“""eﬁ‘mﬁmﬂm S HYINT

° s statlonary and 1nde]%cndent 1ncreme3

AI IR AT IVTE Y

o It has almost surely continuous sam ;e path
Let {7;} be a sequence of independent exponential random variables with pa-
n

rameter A and 7,, = ZTi. An adapted stochastic process N = {N;, %, : t > 0}

defined by N; := Z list, = #{n € N: T,, > t} is called a Poisson process with

neN



intensity A\. Moreover, a Poisson process N with intensity A satisfies the following
properties which show nicely what kind of sample path a Poisson process has:

e Ny = 0 almost surely.

e For every t > 0, NV; has al son/ 2o ) distribution.

e It has right con ous-aid ‘Sample paths which increase
An adapted st YL LN F 0} defined by N, = N, — At

is called a comper o \

An adapted IStighpiboess X = {iX4, 7, \ ich that E|X;| < oo
for all t € I is 7 2 in ‘ \ I such that s < t,
E(X| %) = ‘ id a compensated Poisson

process N are martingaless Thetof 7’ \E V;] = 0 for all ¢ > 0.

2.3 Stochastic

In what follows, we w xed interval [0,7]. First,

we introducesail appropriate class of 166 integrable processess Let {F:}icom) be

LY/ ——— A

the natural filtratio 77 hen“a stochastic process

C={C,:te [Oﬂ]} is said to be simple ere exists r_:j partition II: 0 =ty <

t <. < t"— and a sequence 24 =1,...,n} of random variables

~ FUHAHR TN~
li, antm;’t = @1 Lot {T}

X Sriory eV ALY

Also, for each t such that t,_; <t < t, we define

t T k—1
/ CSdWS = / 031[07t]dW5 = Z Z’L(M/tl — Wtifl) + Zk(Wt — Wtk—l)’
0 0 i=1



0
where Z Zi(Wy, =Wy, ) :==0.
Novvf we will introduce the definition of It6 stochastic integral of any general

process. Let C = {C; : t € [0,,

stochastic process which satisfies the

following conditions:

T]}

It can be shown thajiifhefl cPotes STorREtC prote-a ] C)={L(C):tel0,T]}

to which the sequence - ;' [ stoc esses converges in mean square:

The mean squ {-;_:_:_._._."“L:;S“.'“.‘"*.-.’f—‘.’.' stochastic inte .- al of the stochas-
tic process s d , -‘ t CydWs. Tt can be
shown that this “| nition of Ito stochastic integrals is =1i1 deﬁned, see [8, 9].

Next, we will df stochastic mtegra]d)nth respect to compensated Poisson

=f UL AR

measur

C R4 and ollec on of Borel a re on
51 s Faam

et (Q,.7, P) be a probability space, G C R? and p a Radon measure on (G,%).
A Poisson random measure on GG with intensity measure p is an integer-valued
random measure M : Q x ¢4 — N such that

e For almost all w € Q, M(w, -) is an integer-valued Radon measure on G.



e For each B € ¢, M(B) := M(-,B) is a Poisson random variable with

parameter u(B).

e For disjoint sets By, ..., B, € ¢, the random variables M (By),..., M(B,)
are independent. '
It can be shown that fo
random measure M o

random measur ' ing ts in ity measure:

on G = [0,7] x R an (¢ stoc with respect to

compensated Poisson/r nicas VA of & o\l re>integrable process X
; - A t ~

which is adapted™o aPoigSon process N, denoted b XsdNg,t € [O7T]}, n

analogous way of defining the 7 S r ic integral, s 2]
Both It6 stochastic an integral with respect to compen-

sated Poisson random Measure-are rartin sihence, they have expectation zero

.H,.-f
24 SDES v | .m

ll

We interpret a stockastlc differential equatlon with jumps

AUY HRARENTNEANT o

where t € I =[0,77] or [0, 00) as ghe stochastic 1rﬂral equation

RN IUNMAIN AN Y.

Where the first integral on the right-hand side is a Lebesgue integral (or a Riemann

at any time t-&.[0,7

integral since the set of discontinuous points of the process has Lebesgue measure
zero), the second one is an It6 stochastic integral, and the last one is a stochastic

integral with respect to compensated Poisson random measure.



There are two kinds of solutions of an SDE with jumps called strong and
weak solutions. A strong solution of the SDE with jumps (2.1), on the given

probability space (€2,.7, P) and with respect to the fixed Wiener process W and

)l condition Y, is a process X =

ted by the Wiener process
—

the compensated Poisson pro

filtr

ondition Y.

besgue or Riemann in-

) respect to compensated
almeost surely.

0 1‘ ensated Poisson sample

‘ 17 ht,x).

the underlying Wiener and

compensated Poisson proces ﬁf . ' e Wiener and compensated Pois-

son processes by other Wien werand,
— ..—"".—‘_ _:'.-'

1 Poisson processes, we would get

another strong'sol e functional relationship,

but with the yv_————ﬁ* esSes in it. For a weak
solution, the pa‘m ’ irested in the distribu-
tion of X'. The wiitial condition Y and the coefficient functions f(t,x), g(t,x) and

AT 5

In th thesis, we only COl’lSld(—‘? strong solutlons of SDEs with j Jumg.}I We now

NI PRI AL P

Lipschitz and linear growth conditions:

|f(t,z) — f(t,y)| +|g(t,x) — g(t,y)| + |h(t,z) — h(t,y)| < K |z -y,

f(t,2)] + |g(t, 2)] + [h(t, ) < K2 (1 +|z[?)



10

for every t € I, € R,y € R where K is a positive constant. In addition,
the random variable Y is independent of the Wiener and compensated Poisson

processes and has finite second moment:

Then, there exists a SDE with jumps (2.1), see [7].

4

AULININTNEINS
AR TUNNINGAY



CHAPTER III

In this chapter, we prese thet ree merica , S investigated in this thesis

and give the concept of s and weak con merlcal solutions. From
now on, for a s \\&‘\\'

f) in place of X; and use the
subscript whe

First of all, we ean-reverting square

root process wi 1p ) be a complete

]
probability space .1t_ £ \ > the usual conditions.
Let W be a Wiener proc 7 JISSON Process ith intensity A such that

N(t) = N(t) — At is the ‘ ocess. Assume that W and

N are independent, and all ofthese proce: re defined on this probability space.
This thesis consider ) 11 which ¢, A positive, u is nonnegative,

Ad >0, N T -
o+ A0 > | e e L LOST_STL -2 ‘

f.- he condition oo+ \d >
|!

have a unique strong solution which williever become negative

For any gl o init

0 will force (1.1)- !I

with probability ong, see [13]. The follo theorem yields the expectation of

the“ﬂ‘i:dﬁlﬁ}ﬂ"ﬁm‘iw g1

Theore 3.1. [13] For the equagon (1.1),

QW']@QT]‘?WNWHV]EI’]QH

so that hm ES(t)

Now, we will focus on our three numerical schemes. We write s,, to denote the

numerical approximation of (1.1) and simulate the model on a fixed finite interval

[0, 7).
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For the first method, we divide the interval [0, T'] into N parts with a fixed time
step A = Z. Then, we acquire an equidistant time discretization {to,t1,...,tx}
with ¢, = nA. Then, we define the EM approximation to (1.1) by setting so = E Sy

and forming

L+ 5snANn, (3.1)

where AW, = W . ! 0] :‘ll; dist, ibuted with mean zero

and variance A, is '7 1er \
. . r . L 3 ‘ “‘.‘\
PP ‘

has the distrib \
funct1on However, we

due to negative va
have known that ution-5S () \\ ative almost surely. Thus,

N (tp41)—N(t,), which

sOn process increment.
l

Note that a nu .1) may break down

AW (£) + 6S(t7)dN (1)

which is a computati ‘safer problen son, e use |s,| instead of

s, under the ' ----------------------- — —
v O

Next, with the

/)

troduced in [5] is defined by lettmg so= ES, and forming

f TA_% T’J%mﬂﬂ’lﬂ‘i
ST TR

sn = or each step from

tx}, the CSSBE

scheme for (1.1

e note he
has two substeps. The first substep which is to find s}, ; concerns only with the
deterministic component, and the second substep which is to substitute s}, ; from
the first substep into the formula to obtain s, ; deals with the random parts from

the Wiener process and the compensated Poisson process.
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Our last method based on time discretizations that include all jump times is
originally introduced in [11]. We adapt this method from [1] where a compound
Poisson process, which is a pure jump process, is used to be the jump process in

process in the SDE with jumps is a
1 i s’ump process but can be sep-

) and a n 't —\t. Recall that waiting

the model. Note that in this t
compensated Poisson pro
arated into a pure ju
time between two conseeutive jin J f soi. process with intensity A is

exponentially distribe mean % We construct a

jump-adapted time dis 1d distant time discretiza-

tion with step size A and T, . _ generated by the Poisson

process N, and theén oxderly renanteall points in ‘ jump-adapted time dis-
o i'\‘ jump t

: o,tl

mes {71, Ts,..., Ty} and
Y b
the number of jump time r&y@@ S
(tns1) =W (t,), which is normally

cretization, namely {7, ¢ i

‘(V)t‘a, fixed number. More-

over, the jump-adapfed gime d}&#ﬁ -?‘."-

sizes, so we define A,, = ¢, e _g.lgd,_é. Vs

,tr } may have different step

distributed with mean zero ax o',]' : ce . The JAE scheme for (1.1) is

e et
iy

then given by settir

i e —

7= ).

m Snal-s if t+1 is not amnp time;

Sn+1 = (33)

7 f [ Sn 1 4+ 08,41- | H is a jump time.
For eaﬂtuﬂsn [0 M,ﬂmlﬁ m‘ﬂu’j’cm ﬁe first substep

which is to find s,,,- deals Withrnonjump comfglent, and the secw substep
J
1

fjbn and nonjump component —AA,,. The nonjump part will be assigned to the

first substep, and for the second substep we add a jump of size ds, - * 1 if it is a

jump time and do nothing if it is not a jump time because we have already known
which step is a jump time of the Poisson process N whose jumps have size 1.

A numerical solution s, with the grid size A is said to converge strongly
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with order v to S at time 7' if there exists a constant C', independent of A, such

that

E|S(T = Sn,T| S CA”
for any A sufficiently small, where s l‘ i ! / 'he numerical solution at time T'.
As one can notice froni th 1it] oug error, strong schemes provide

pathwise approximations.. Fherefore, &l uitable for problems such
as filtering, scenari ,

A numerical s

to converge weakly

with order v to S Liere exists a constant C

independent of A,

for any A sufficient 3 ; merical solution at time

T and 0123(74-1) denote t, spa 2(~' continuously differentiable functions

which have polynomial ofﬁg’-ﬁﬁ-:f v to choose the function f to be

the identity function wheu "“ﬁ diulate and measure the error in weak

sense. Weak’ ;- measure and are
- 'i""g'
appropriate fo Y_ . ation of moments,

. .! avil
risk measures a ,! expected v |
W d

|
|
¥ |

ﬂ‘NEJ’J‘VIEJVIﬁWEJ’]ﬂi
QW]Nﬂ‘iﬂJlliﬂ’TJﬂEl']ﬁﬂ



CHAPTER IV

This chapter provi €S T1g0rous TTOT ‘oun ak sense for Euler-Maruyama
and compensated split-step bac ward| Bul \ e key ingredients of our
proof is the Fub I's thebreud afid the r \ \ ality. Let’s state these two

theorems in the & il use ' , h D

( *« s, and either

‘- i "\ n xdy < 0,

Theorem 4.1.

[
sen [ [ sta

Theorem 4.2. [10] Le

/; o

b b

- arl
-

on J = [a,b], and u(t) < flt)=+glt) [ 1

‘ Gativ continuous functions defined

s)ds for all t € J. Then, for any

telJ,

h—n—wn——n— 7/ /o N I _NOl7rigl lulv

IS Siiaiai: i

Recall here

ﬁ A ver, every Ito stochastic inte-
i
gral and stochastic 1ntegral with respect to compensated Poisson random measure

i::ifFTTI“EﬁW‘I iE]’“?T'ﬁ“ WETTa™ "
IRAIBMIINING A

e will first deal with the EM method. Throughout this section, s, will de-
note the EM numerical solution of (1.1). Let us define the continuous-time EM

approximation

s(t) = so + a/o (u—8(r))dr + a/o VIs(r)[dW (r) + 5/0 s(rydN(r)  (4.1)
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where t € [0,7T], and §(t) is the step function §(t) := s, for t € [t,,t,+1). From
(3.1) and (4.1), we see that at each grid point ¢ = ¢,, §(t) = s, = s(t,). This

yields that an error bound for s(¢) will automatically imply an error bound for

Theorem 4.3. Es,, —

Proof. First, notice
condition of all ¢6 steps, and s, is inde-
pendent of AW A. Note that if the
time step is not i : 14 be cpenden AN,. Taking expecta-
tion in (3.1) yild thatF sh 2 g =iA e T Therefore, for each n,

desired result. O

This theore $that lim "L, . s, the discrete approx-
imation of S(t) still eps 1 sion w \ s 8 ciently small. Note that

we usually choose A so gmall {h == "heorem 3.1, we also immediately

g P A n |

Corollary 4.4 | o — (.

It is worth Temarking | ro: ‘-ﬂ ‘we can show that
when |1 — aA| < 1 or e - ﬁsm < CA for some

constant C', where N is the number of time steps. Therefore, the order of weak

PN k) EJ Wiy

|ES — Bsy| = (1— e ES, — pl
awwmnj\@wnmﬁma
We will show that (Z (_z!A) — (1 —aA)N = AA for some constant A

which does not depend on N and A, and then set C' = |A||ESy — p| in order to

obtain our desired result. Observe that
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3 N
+ )

)=,
. (7))

and
N
(1—aA)N + (N) (—aA)N
Then, ( | fe(N)(aA)* where
= i F .ﬂl.n-l
fe(N) is a polynomialfover NV of deg (V) (@A)* does not
depend on N and A U‘f‘ sine ‘ 1 ate N' where | < k by

0 nihilate the remainder AR

by matching it with o' a at AFlof=t < 2kl Whatever

Nis,ka(a 11 convergent. e g

is hard to expliettly calculate suck In" é ater, Theorem 4.7,
which is the mayes ; les 'F!" error bound of the

claim. However, it

|

EM method for the mean—reverting Square root process

BN NN )

jumps.

Proof. leerve that E|s,| is bounded and for any t € [t tns1), = sn Hence,
!i ’]1 ﬁ ﬁaﬂ j ﬂ ;[1(:04 Am, !V’;mnyﬂé [’1‘@167“6
aA|ESy — pl, if |1 —aA] <1,

Dl(a7A7 SO):“’? N) =
aA|ESy — p||]l — AN, if 1 —aAl > 1

and N is the number of time steps.
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Proof. Let t € [0,T] and n = | L], the integer part of %. Since 5(t) = s, = s(t,,)

at each grid point ¢ = t,,, we have

Taking absolution gh thig eq '. tion an ling that ¢ —nA < A, we obtain

ny : n \\ |1 — aA| < 1, then we

sult. If |1 —aA| > 1, then

that

Note that n can be
have that |1 — aA|" <

11— aA|" < |1 — aA|Y; hen desired result. O

Remark that A herefore, in this case,

we choose D i“ .}:' ' on the number of

™ il
1I . I
g -

Theorem 4.7. Fo?an t e 0,77,

ﬁuﬂ[@%ﬂﬂﬁﬂﬂqﬂi

where Dy (a, A So,u, zs de na’i as in Lemma
amj SEEEANeNaY

s(t) / (1)) dr
/ V]s(r dW(r) +6 /0 t (S(r™) — 5(r)) dN(r).

time steps V.

/‘\
L
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Taking expectation through this equation and replacing »~ by r will not have any

effect on the Lebesgue integrals yield

t ok .
Next, for the right hand s o above@quation, we will apply Theorem 4.1
in order to interchangé t e A .n and the integral. Note

that the expectationis«t 8 {utcg vith respect to.the probability measure P

over the whole space&?, ot 0, ] a \ o-finite measure spaces. We will

verify that

Since the exact vith probability one,
1S(t)| = S(t) almg 'S (1
is bounded on [0,?]. By I s 5 15 P 5 \ E|S )| + E|s(r)| is also

s(r)|d'r is bounded. Then,

—"(ESy — p) which

we can interchange the orde -"Er 4; e C ‘ation and the integral as desired.

|E[S(t) T —

v_ 2 LI I S Sy —‘ E’ ‘

_ﬂ gl

t t

\E(S(r) —s@)|dr+o | |E(s(r)—5(r))|dr

FHJEJ% Eﬁme nm .
Roasnsalal AN

emma 4.6. Now, we will
apply Theorem 4.2 to this inequality. Observe that we have to check only that
|E[S(t) — s(t)]] is continuous. Also, notice that ES(t) = u+ e *(ESy — u) and
the absolution are continuous. We claim that Es(t) is also continuous; hence, we

will acquire the desired condition for applying Theorem 4.2. To show our claim,
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t
we first note that for every measurable function f, / f(r)dr is continuous in t.
0

From (4.1),
¢
Es(t) = Esy+aF | (u— dir = E'so+ aut — E/ 5(r)dr.
' 0
Since F|5(t)| is bounded ' .8 ¢ can interchange the order

which is continuous

[E[S(8) = s()]] < D

(**)

Note that the 6(na eration by parts. O
il Il
! "

Note that there are other versions of Gronwall’s inequality which can yield the
error b , € ing great vg - e Gronwall’s inequality
in Thearjﬂlﬂ‘ilmﬂ‘ﬁ tﬂ;lﬂﬁhﬁ$7 as we have

| fm_md fr% a lot of #éthOOkSl ¢ | | & Y.
I MIBIN I N -
' sufficiently small is 1.0.

qnerical solution when A 1 n
Recall that s, and s(t) agree on every grid point and Corollary 4.4 gives a

weak error at each grid point t,. Because the number of time steps is finite,
max e " — (1 — aA)"||ESy — p| is an error bound for our numerical solution
n

s, for every grid point. This differs from the error bound in Theorem 4.7 which
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provides the error for the continuous-time EM approximation s(t) for the whole
interval [0,7]. Thus, the error bound from Theorem 4.7 can be used instead of

max [e"*" — (1 — aA)"||ES,

— p| for Corollary 4.4. Another good aspect of
the error bound in Theorem 4.7 is

calculated.

uler Method

fion, s, will denote the

om 3.2). We now define

S(r)dN(r), (4.2)

= §,41 for t € [ty t,11). From
orid point t = t,,. Like the EM
h order to obtain an error bound
for our numerical so

h like the previous section

so that someite

Theorem 4.8. n — [

Proof. Note that li{s 1| is bounded. T&Jng expectation in (3.2) yields that

T W%}W‘Wm =
QRIANLY s

SSBE method seem better than the EM method.

Corollary 4.9. |[ES(nA) — Es,| = | e " — " |ESo — pl.

1—|—aA

Lemma 4.10. E|5(t)| is bounded on [0,T].
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The proof of the above lemma is similar to Lemma 4.5’s.

Lemma 4.11. |E[s(t) — 5(t)]| < Da(a, A, So, i) for any t € [0,T] where

Proof. Let t € [0,T] a

we acquire that

Taking expectatio

Els(t)

Taking absolution on h it os-of this ‘_ ; oting that (n +1)A —t < A

and applying Theorem 4.8, we-obtain

which complete the proof

The“ﬂﬁfl”ll”"flﬂ’ﬂﬁw dr’

|E[S(t) — s( }< Dy(a, A S’o,

WA ﬂﬂﬂ%ﬂéﬁ%WQﬂﬂﬁﬁ d

We can imitate the proof of Theorem 4.7 to prove this theorem by applying
Lemma 4.10 and Lemma 4.11 instead of Lemma 4.5 and Lemma 4.6, respectively.

From Theorem 4.12, since < a/\, we also have that

1+A

[B[S(t) = s(t)]] < aA|ESy — pl(e™” —1).
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Hence, the order of weak convergence for the CSSBE numerical solution is 1.0.
Observe that we can still imitate the package of proof from section 4.1 to find

error bounds for other methods that have a constant time step size. Unfortunately,

the JAE method has random #i | ‘ 8izgs, so we cannot use the proof from
section 4.1 to show a . It is harder to find such
bound. A

AUEINENINYINS
ARAINTUNMINAY



CHAPTER V

in Table 5.1, th&0ung ofcase o % A= 0.5)e szaazuz%:L

SSBE
\h 4763783329189
l\ 049146585376390
| 0.096803880286828

0.187913414674431

A 99316006183166 | 0.35494%7561051703
Table 5.1: Erfof bou hen'o = 4,0 = 0.5,0 =

O&A:&5=QHO:LMH =l

ﬂ*v%%’& YRR

Flgure - 5.6, graphs that show the order of convergence in weak sense of our

Qe ﬁeﬁﬁtﬁfﬁ‘sfrﬁﬁm’m’m

he error in weak sense: |ES(T) — Es,r|. Here, ES(T) can be calculated from
Theorem 3.1, and we find E's, r by averaging s, o of all 1,000,000 paths. For
each graph, the x-axis is the size of A and the y-axis represents the weak error

|ES(T) — Es,r|. Here, we plot these graphs in log-log scale so that the slope of
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each line will represent the order of convergence in weak sense. The reference line
with slope of one is also plotted in dash. Note that for Figure 5.3 - 5.6, we fix
a=06,u=050=057=0.15 =1and T = 0.25 and vary A over 4, 12, 36

and 108. For each A, the expect \1 1ber of jumps of sample paths is AT so that

AL f jumps of sample paths are
¥ ——

x-k
AR
| 7 3 —

we examine the cases wh

1, 3,9 and 27, correspon

g ' "
. »Na
10 "'-.,'_. -_
NN T —+— EM i
N RN —&— CSEBE
N B —%— JAE
% .,
e 1
S
T
o
(A0 ]
I
b=
107 b 4
-
//
"SE‘ L7
o] | JUITEIVI W 4
. :
10 . N i ] | CE: (] 5 -
0% ' 0 10

AR ADIUNNIINEIA.,

and T = 0.5.
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f—— 1
—&— CSSEE |
—— JAE
1 | i
S
<
&
z
10 4
10'2 :
10
Flgure : Weak error plots When o = 6 W= 50 o= 0 = 36,0 = 0.1,59 =
IJ"

ﬂlWﬁ\iﬂ‘iﬂmWT}ﬂ?J’]ﬁﬂ
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—+— EM ]
—&e&— C55BE |
——JAFE

weak errar

-2

ﬂUEJ’J‘i’lEWI‘iWElHﬂ’ﬁ

Flgure Weak error plots When a=06,u=0. 5 c=05A=4,0= 1 ,So = 1,

@W’Tmﬂ‘iﬂmﬁﬂﬂmﬁﬂ
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ﬂUEJ’J‘i’lEWI‘iWElHﬂ’ﬁ

Figure pltwhna 6, = 050 0.5, A=12,0 = 01 0o=1,

@W’Tmﬂ‘iﬂmﬁﬂﬂmﬁﬂ
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—+—EM

—#— JAE

—&— csseE |

weak errar

ﬂUEJ’J‘i’lEWI‘iWElHﬂ’ﬁ

Flgure Weak error plots when a=06,u=0. 5 0c=05\X=36,0= 0 1,50 =

@W’Tmﬂ‘iﬂmﬁﬂﬂmﬁﬂ

1,
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—&— CSSBE ||
—+— JAE ]

—a—EN

10"

Pt

‘0
=

0L HEamM

10 b

¢

AUEING
IRTAINIUUNR

Figure m Weak error plots when a = 6,
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Lastly, graphs that show weak error bounds for EM and CSSBE methods
coming from Theorem 4.7 and Theorem 4.12, respectively, together with the weak

error plots from corresponding simulation are illustrated. Figure 5.7 - 5.8 show the

relation between our theoretical err: mds and the errors from our simulation

in the case @ = 4, 4 = 0.3 e R A\ , =1, and T = 0.5. Here, we
A, , 2%, éthat we can obtain each

point of theoretical crie bounds g "‘~ erence line with slope of

—+— Simulation [
—%— Theory

wieak errar
=)
| 53
T

107 F

fiU

;fﬂﬂﬂ§W81ﬂi

Figure 5.7: Theoretical error bound from Theorem 4.7 and weak error plot for

EM method when a =4,4=0.5,0 =03, A=8,0=0.2,50 =1, and T = 0.5.
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10 -
—&— Simulation [
————Theary
10 .
S
A i
&
E=
107 i
m"‘ 1 . P e |_2 - s
Flgure : Theoretical error bound from Theorem 4.12 and weak error plot for

ﬂﬁgﬁﬁﬁ“ﬁi‘ﬂfﬁiﬂﬁﬁﬁ’l i



CHAPTER VI

DISCUSSI ONCLUSION

In this work, we hax

1Z0TOUS nu%bounds in weak sense for

EM and CSSBE met meah-reverting's oot process with jumps.

The numerical i methods and also with
the JAE method il A 'w of 1 methods tend to have
order of weak con ce 1t01.0. 1 wi th the general theory for
SDEs with jumps wigh Lipsc . i oefficionts In fact, from the formulae of the
error bounds for NI 4 . ‘ 1 m ter . we know that the order
of weak convergence for I ] : if S C ly 1.0.

We notice that the form .. Caror : fids for EM and CSSBE methods do

not depend on parameters o ause these parameters relate to the

Wiener process and_the compensated,Poissor s.which_are martingales.

Comparing #he 1lac of error bounds for EV ;m.’_ SSBE methods, we
better than EM method’s.

|

LT computer simulation in many cases Hl

see that the e ”-?
H hich both of EM and

This agrees wit | l
CSSBE plots are c]i'sﬁgether

B S P o s

compare‘]vvlth EM and CSSBE methods for other models, it has been observed

THLH s oy

oncermng with jumps, which are A and §. However,  represents the degree of
jumps and should be around 0.1 or 0.2 for instance. Thus, we shift out attention
to the effect of the number of jumps in sample paths to its accuracy. Figure

6.1 and 6.2 show some sample paths simulated by the JAE method with the
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same parameters used in Figure 5.6. The dash line in each picture represents the

expectation of the exact solution obtained from Theorem 3.1.

G LR EL ek R
RIAINIUNRIINYIAL
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0.8
08
0.7 F
S gs}
05F
0.4

03

EI.2

EI 05 015 025

ﬂUEJ’J‘i’lEWI‘iWElHﬂ’ﬁ

Flgure : A sample path of JAE method that has a small number of jumps

ﬂﬁ”"laxﬁ?‘lﬁﬂwﬁ IWNETNY
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When the number of jumps is too low, in Figure 5.3, all methods will behave
indistinctively. The more the number of jumps, the more the difference of JAE

method to the other two schemes. If the number of jumps is too high, the JAE

exact solution at tiu S 1 & that theAE.method has high volatility
when X is too larggeafid gah aflect ifs performance: Hence, we should use the

Xpe ted number of jumps.

Anyway, this i our Lyp dis. T ctual fa s are still unknown. This
might need a the i iroy bound fo S method a d leep analysis which is
more complicated the e oth 1 ds’ becs se of the nonconstant time

step size.

AU INENTNYINS
ARIANTAUNNIINGIAY
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