CHAPTER ITII

VAPOR-LIQUID EQUILIBRIUM CALCULATION

3,1 Flash Calculations

Flash calculation 1s.a process calculation whereby a liguid
passing through a vadve undergoes a pressure drop sufficient to
cause “Flashing" orgpartial vaporization,  producing a two-phase
stream of liquid and vapor in eguilibraum. This calculation 1s also
widely used to determine the phase conditicn of a stream of known
composition, temperature and pressure.(id,h 35)

For a system containing a total of Fmoles of a feed mixture
with overall composition given, by the set of N mole fractions zlz ?l
e 23, Bgaeee.Zye Depending oh temperature and pressure, the system
may be entirely vapor. In thas study, the interest is on state for
which the system.consists of liguid and vapor 1n eguilibrium. Let
L represents the number of moles of liquid, with mole fraction Xi =
X, Xreee, Xy and let V be the moles of vapor with mole fraction gl
= Y, Yaeeo, Yy The following material balance component must be
satisfied

F = L +V (3.1)

4 component material balance gaves
ZF =% Li+yV (3.2)
where, by definition, the y are related to the x through the "K

value', K
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substitute Equation (3.1) and (3.3) 1into Eguation (3.2) and

eliminate either L or V from the equation, it gives

x, = 11 (3.4)
(Kl—l)(V/F)+l
and
o i Zl(Ki—l) (2.5)
(Kl—l)(V/F)+l
but
z X, = z F. F 1.0
Then Ly, - IX E Ol
1 1
b z, (K, = 300 = /! F(V/F) (3.6)

i=1 (K_-1)(V/F)+

The Equaticon (3.6) is-the criteria which yaelds a convergence
function. Insfdash calculation the set zi and Ki =, Ki, I& s ey KN
are presumed known. Then, a convergence method 1s applied to find
a suitable value.of (V/F) which makes F(V/F) = 0. The iterative
variable (V/F) is'bounded between 0 and 1, and the function 1is
relatively linear in V/F.

For convenience, flash calculation are done on a computer, one
mast have’a systematic iterative procedure | for rapid convergence to
the correc£ answer. The most widely employed computer methods for
solving Equation (3.6} are the false position and the Newton's
Raphson method. In this study, Newton's method was shosen for

solving Equation (3.6). With this method, a predicted value of the



root of i1teration (I+l) is computed from the recursion relation

r(y/F) T
o™ - et - (3.7)
F (V/F)
where the derivative in Equation (3.7) is
' Z.(K -—l)
F (V/F)T — 1 (3.8)

Y (K, -1) (V/E)11 )2

The iteration cangbe Jinitiated by assuming (V/F) = 0.5.

Sufficient accuracy will be achieved by terminating the iteration

I""]‘—(V/F)I/(V/F)I <l e where e 1s the tolerance of the

I+l

when |(v/F)
system. Values of (V/F)  “should constrained to lie between 0 and
1. Then, af (V/F)I = Q.1 and (V/F)I+l is computed from Equation

(3.7) to be 0.05, (V/F)I+l should be reset to, say, one half of

the interval from (V/F)I to 0°sr 1, whichever 1s closer to (V/F)I

larger than 1, 1t will be reset to (1+(V/F) 1/2.0. One should
check the existence.of a valid root (0< (V/F)< 1) before. returning
to recalculate a correct root (V/F that gives F(V/F) =.0.0)

In any calculatién of a simple equirlibrium separation process,
1t 1s ususlly desirable: to check first to_make sure that two phases
are present [at! equilibraum, This is /done by performing bubble and
dew point caleculations.

3.2 Bubble and Dew Point Calculations

Bubble' and |'dew’/ point zalculations are wuseful to  determine

saturation conditions for licuid and vapor streams, respectively.
/

It is important to note that when vapor liquid is established, the

vapor 1s at its dew point and the liquiad 1is at its bubble point.
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3.2.1 Bubble Poaint Calculations

In bubble point calculations, the liquid composition 1is
known and either the temperature or pressure 1s faixed. The vapor
phase composition and pressure or temperature of the system are
unknown. The vapor phase is predicted by

—— lei {3.9)

A precise indicatorsis the parameter V/F, which must lie

between 0 and 1. If E(W/Flrat V/F = 0 1s greater than zero, the

mixture 1s below 1ts bubble point: and F(V/F) = 0, the mixture 1s

at 1ts bubble peoint.(12 14, 25)

N N
Let x. = @& and 3¥x = 2z "=1.0, and V/E = 0, then
1 1 =i T &
F(vgF) F = 4p(0)y = 1:3 2 K (3.10)

The bubble point criterieon, therefore, is

N
1 Al a8 (3.11)
1=

This equation is useful for ecaleulating bubble point
temperature at a fixed pressurc or bubble point preesure at a
specified temperature.

3.2.2 Dew Point/Calculations

Dew point calculations, in effect, are the opposite of
bubble point calculataens, the vapor phase composition is known and
the liquad phase composition and the system temperature or pressuré
are to be calclulated. The specified equation used in the dew point
calculataen 1is

X} = yi/Ki 03.12)
If F(V/F) at V/F = 1 is less than zero, the mixture is above its

dew point (superheated vapor}. If F(V/F) = 1,the mixture 1s at 1ts

dew point.

22



N N
Let yl = zl and Iy, =Xz, =1.0, and V/F = 1, then

=171 1=} 1
N
F{v/F) = F{1) = 1Z=L(Zl/K1)_l (3.13)
Therefore, the dew point criterion is

N
Zy(z,/K) = L (3.14)

3.2.3 Checking Phase Conditions for a Mixture (14)

By extending the reasoning involved in bubble and dew
point calculations it can be seen that a mixture for which .::_Zillel <
will be a subcooled liquidy whereas if i%fixl > 1, the mixture must
contain at least some vapor. o Similarly, ifiZTL(yi/Kl) < 1, a mixture
will be a superheated vaper,/ and if:g:':l(yi/[(l) > 1, the mixture must
contain at least some laiguid. Thus the following crateria can be
set up to ascertain  the phase condition of a mixture which

potentially contains both vapor and liguid.

1gLKix1 i%l(yi/}( l) Phase Condition
<1 >1 Subcooled 1iquid
=1 >1 Saturated licuid
>1 >l Mixed vapor and liquid
>] =1 Saturated vapor
>1 <1 i Supérheated wapor

In another way, it" can be checked that F(V/F) .is
positive @t V/F =0 and negative at V/F = 1, .then thé two [phase
exist.. If F(V/F) is negative at (V/F) = 0, a mixture will be a
subcocled liquad. On the other hand, if F(V/F) 1s positive at V/F

= 1, a mixture will be a superheated vapor.
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3.3 Method of Calculation

A trial and error solution of an implicit equaton involving a
single variable consists of assuming value for the unknown variable
until a value i1s found which satisfies the eguation. An eguation
involving a single variable X can be written as

£x) |= 0O
where f(x) 1s the funeticn.resulting from putting all terms of the
equation on the left hand . side. ' In a trial and error or iterative,
solution successive walues of x are assumed according to a -
systematic plan until a valuye of x which causes a £(x) to be =zero
is found.

In practical computing, théere is only a discrete set of numbers
to try as possible zeros, and'‘none of these may happen to produce
exactly zero for f(x). We shall therefore seek a pair of numbers,
X X, which are "closed to each other" and such that f(xl) and
f(x2 ) have opposite signs {or in rare case one of them may be
zero) .

In practice, because of the ragdom effects of the roundoffs
which occur in the function evaluatiocn of f(x); we usually have hot
a \51ngle change " of sign, but a short sequence of @consecutive
numbers which gives a sequence of changes in sign for f{x).
Althoughw xn prineiple thas.eould,be congused with a, sequence »of
distanect zeros, 'in ‘prctice there 1s%little troukle with this effect
provided we can form a reasonable estimate of the size of the
roundoff error made during the function evaluation. Roundoff
troubles are bound to occur in the problem that there i1s almost an

exact cancellation between the positive terms and the negative
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terms that occur in the function evaluation process. Suitgble
systematic plan for this finding a solution are called convergence

method. We consider here the Newton Raphson method of convergence.

3.3.1 Newton Raphson Method {Newton's Method of Convergence)

This method is very useful for improving a first
approximation of a root of an eguation of the form £(x) = 0, which
might have been obtained by the search method, by an approximate
graph of the function, or by some other‘means.

Consider thes@raph of £{x) versus x, shown in Figure 3.1,
and assume that ® i1s;the first zpproximation of a root. If we
draw a tangent line to the curve at X.= %5 , the tangent line will
intersect that x axis at a value X,,7, which is an improved

approximation to the root. It can, be seen Fiéure 3.2 that the

slope of the tangent line is

£ (x) = £ (3.16)
2 Tl
h n+l
from which
f(xn)
X = X - —— {3.17)
n+l n £ (xn)

The value of the function and the valtle of "the derivative

of the function are determined at x = X ands the approximation to

the root, x is obtained by, using Equation|(3.17}. | The same

ndl !
procedure is repeated, with the new approximation, to get a still
better approximation to the root. This continues until successive

values of the approximation root differ by less than a prescribed
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FIGURE 3.3b A SECOND CASE OF NO CONVERGENCE (42)
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small epsilon (&) whach controls the allowable error in the root,
or until the value of the function becomes less than scome
prescribed small value.

The Newton Raphson methed 1s widely used in practice

because of its generally rapid convergence. However, there are
cases in which convergence does not occur. One such example 1s
shown in Figure 3.3a where f'(x) changes sign near the root. A

second case in which canvergence may not occur 1s llustrated 1in
figure 3.3b. In this example, | the anitial approximation to the
root was not sufficaently/clese to the true value, and the tangent
to the cureve for X has/a very small slope, resulting in x
being for the right where @ local maxamum in the curve causes the
difficulty (oscillation about the local maximum) . Other functions
could be i1llustrated in which there is.a /jump to root other than
the one nearest to the first approximation. ' These difficulties can
be avoided by having the initial approximation sufficiently close
to the root value, but sometimes thais is not possible.

As we have seen, the Newton Raphson method"required the
differentiation of the function. If the deravative of the function
1s very complicated, 1t may be advantageocus to suitable a finite
difference s~approximation (of) sthe/ demivative ffor+, thegwactual
derivative. (11,15, 42) v

3.2.2 Desirable Characteristics

In “devising or choosing/a convergence method for a
particular calculation, cne should seek several desirable
characteristics :

1. The convergence method should lead to the
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desired root ot the equaticn. If the equation has multiple root,
the convergence should 1lead reliably to the particular root an
question.

2. The convergence method should be stable: it
should approach the root asymtotically” or in a well damped
oscillating fashion, rather than developping large oscillations of
successive values of the trial variable.

3. The eonvergence methed should lead rapidly to
the desired value. Many / iterations or many computations per
iteration will _require; more =—compititer tame. This speed of
convergence criterion is particularly important when the equation
1s 1nvolved in a subrgutine which must be solved many times in the
course of a main calculation.

4. Iterations should be avoided wherever possible.
For example, 1t 1s usually better to solve a cubic equation by an
algebraic approach than by an iterative soluticn.

e If there is any doubt whether convergence has

been achieved, 1t is desirable to surround the answer, 1.e., come

b 4

at it from both sides. (14)

3.3.3 Initaial Estimates and Tolerance

In order to implement a convergence method for the
computer, 1t 1s necessary to provide some procedure for obtaining an
nitial’ estimate'x  andjto indicate the tolerance, | which as | the
allowable error in f(x) within which the calculation will be
stopped. The initial estimate can be selected in one of two ways :
one can specify a particular value for x which 1s known to be in a

region such that the convergence method will lead to the converged
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sclution in a straightforward manner, or if the calculation 1is
being repeated for a number of different values of other variables

included in f(x), one can use the last previous converged value of

x as the first estimate for the n alculation.
The toleranc ccted so that x will be

found within the desi should not be low

%

T rance is too large,
"\.\\\\

- . it from both

enough to regquire an unnecessar ;Lly arge number of iterations. If
there 1s a pOSSle.ll
it 1s useful to s

sides. (14)
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